Sample records for ultracool main-sequence stars

  1. Weighing Ultra-Cool Stars

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Large Ground-Based Telescopes and Hubble Team-Up to Perform First Direct Brown Dwarf Mass Measurement [1] Summary Using ESO's Very Large Telescope at Paranal and a suite of ground- and space-based telescopes in a four-year long study, an international team of astronomers has measured for the first time the mass of an ultra-cool star and its companion brown dwarf. The two stars form a binary system and orbit each other in about 10 years. The team obtained high-resolution near-infrared images; on the ground, they defeated the blurring effect of the terrestrial atmosphere by means of adaptive optics techniques. By precisely determining the orbit projected on the sky, the astronomers were able to measure the total mass of the stars. Additional data and comparison with stellar models then yield the mass of each of the components. The heavier of the two stars has a mass around 8.5% of the mass of the Sun and its brown dwarf companion is even lighter, only 6% of the solar mass. Both objects are relatively young with an age of about 500-1,000 million years. These observations represent a decisive step towards the still missing calibration of stellar evolution models for very-low mass stars. PR Photo 19a/04: Orbit of the ultra-cool stars in 2MASSW J0746425+2000321. PR Photo 19b/04: Animated Gif of the orbital motion. Telephone number star Even though astronomers have found several hundreds of very low mass stars and brown dwarfs, the fundamental properties of these extreme objects, such as masses and surface temperatures, are still not well known. Within the cosmic zoo, these ultra-cool stars represent a class of "intermediate" objects between giant planets - like Jupiter - and "normal" stars less massive than our Sun, and to understand them well is therefore crucial to the field of stellar astrophysics. The problem with these ultra-cool stars is that contrary to normal stars that burn hydrogen in their central core, no unique relation exists between the luminosity of the

  2. The ultracool dwarf DENIS-P J104814.7-395606. Chromospheres and coronae at the low-mass end of the main-sequence

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Alcalá, J.; Biazzo, K.; Ercolano, B.; Crespo-Chacón, I.; López-Santiago, J.; Martínez-Arnáiz, R.; Schmitt, J. H. M. M.; Rigliaco, E.; Leone, F.; Cupani, G.

    2012-01-01

    Context. Several diagnostics ranging from the radio to the X-ray band are suitable for investigating the magnetic activity of late-type stars. Empirical connections between the emission at different wavelengths place constraints on the nature and efficiency of the emission mechanism and the physical conditions in different atmospheric layers. The activity of ultracool dwarfs, at the low-mass end of the main-sequence, is poorly understood. Aims: We perform a multi-wavelength study of one of the nearest M9 dwarfs, DENIS-P J104814.7-395606 (4 pc), to examine its position within the group of magnetically active ultracool dwarfs, and, in general, advance our understanding of these objects by comparing them to early-M type dwarf stars and the Sun. Methods: We obtained an XMM-Newton observation of DENIS-P J104814.7-395606 and a broad-band spectrum from the ultraviolet to the near-infrared with X-Shooter. From this dataset, we derive the X-ray properties, stellar parameters, kinematics, and the emission-line spectrum tracing chromospheric activity. We integrate these data by compiling the activity parameters of ultracool dwarfs from the literature. Results: Our deep XMM-Newton observation provides the first X-ray detection of DENIS-P J104814.7-395606 (log Lx = 25.1), as well as the first measurement of its V band brightness (V = 17.35 mag). The flux-flux relations between X-ray and chromospheric activity indicators are here for the first time extended into the regime of the ultracool dwarfs. The approximate agreement of DENIS-P J104814.7-395606 and other ultracool dwarfs with flux-flux relations for early-M dwarfs suggests that the same heating mechanisms work in the atmospheres of ultracool dwarfs, albeit weaker as judged from their lower fluxes. The observed Balmer decrements of DENIS 1048-3956 are compatible with optically thick plasma in local thermal equilibrium (LTE) at low, nearly photospheric temperature or optically thin LTE plasma at 20 000 K. Describing the

  3. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    NASA Astrophysics Data System (ADS)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J.; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-01

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs’. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them—ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  4. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    PubMed

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  5. Photometry, Astrometry, and Discoveries of Ultracool Dwarfs in the Pan-STARRS 3π Survey

    NASA Astrophysics Data System (ADS)

    Best, William M. J.; Magnier, Eugene A.; Liu, Michael C.; Deacon, Niall; Aller, Kimberly; Zhang, Zhoujian; Pan-STARRS1 Builders

    2018-01-01

    The Pan-STARRS1 3π Survey (PS1)'s far-red optical sensitivity makes it an exceptional new resource for discovering and characterizing ultracool dwarfs. We present a PS1-based catalog of photometry and proper motions of nearly 10,000 M, L, and T dwarfs, along with our analysis of the kinematics of nearby M6-T9 dwarfs, building a comprehensive picture of the local ultracool population. We highlight some especially interesting ultracool discoveries made with PS1, including brown dwarfs with spectral types in the enigmatic L/T transition, wide companions to main sequence stars that serve as age and metallicity bechmarks for substellar models, and free-floating members of the nearby young moving groups and star-forming regions with masses down to ≈5 MJup. With its public release, PS1 will continue to be a vital tool for studying the ultracool population.

  6. Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2017-12-01

    Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.

  7. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    PubMed Central

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2017-01-01

    Stellar-like objects with effective temperatures of 2700K and below are referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars and brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15% of the stellar-like objects in the vicinity of the Sun2. Based on the small masses and sizes of their protoplanetary disks3,4, core-accretion theory for ultracool dwarfs predicts a large, but heretofore undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report the discovery of three short-period Earth-sized planets transiting an ultracool dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype transit survey9. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet based on our data, the most likely resulting in an irradiation significantly smaller than Earth's. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  8. Could Ultracool Dwarfs Have Sun-Like Activity?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with

  9. Habitable zones around main sequence stars

    NASA Technical Reports Server (NTRS)

    Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T.

    1993-01-01

    A mechanism for stabilizing climate on the earth and other earthlike planets is described, and the physical processes that define the inner and outer boundaries of the habitable zone (HZ) around the sun and main sequence stars are discussed. Physical constraints on the HZ obtained from Venus and Mars are taken into account. A 1D climate model is used to estimate the width of the HZ and the continuously habitable zone around the sun, and the analysis is extended to other main sequence stars. Whether other stars have planets and where such planets might be located with respect to the HZ is addressed. The implications of the findings for NASA's SETI project are considered.

  10. Lithium abundances among solar-type pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Strom, Karen M.; Wilkin, Francis P.; Strom, Stephen E.; Seaman, Robert L.

    1989-01-01

    Measurements of Li I 6707 A line strengths were carried out for two samples of pre-main-sequence (PMS) stars (L 1641 and Taurus-Auriga), and the Li abundances estimated for PMS stars are compared with those deduced from observations of Li line strengths for main-sequence stars in the Alpha Persei cluster. It was found that the maximum Li abundances among the PMS stars with solar mass values greater than 1.0 exceed the maximum abundances for Alpha Per stars by at least 0.3 dex. Some PMS stars, including few apparently young stars, showed large (greater than 1.0 dex) Li depletion, and some apparently old PMS stars showed little or no depletion.

  11. Massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.

    2017-08-01

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H II regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H II region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78

  12. Lithium in lower-main-sequence stars of the Alpha Persei cluster

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra; Lambert, David L.; Stauffer, John R.

    1988-01-01

    Lithium abundances are presented for main-sequence stars of spectral types F, G, and K in the young open cluster Alpha Per. For 46 cluster members, a correlation between Li abundance and projected rotational velocity v sin i is found: all of the Li-poor stars are slow rotators. Two explanations are proposed to account for the correlation: (1) that the Li depletion is introduced following a rapid spin-down phase experienced by young low-mass stars, and that this episode of Li depletion may be the dominant one determining the spread of Li abundances among young low-mass main-sequence stars, and (2) that star formation has occurred over a finite period such that the older stars have undergone a spin-down and depletion of Li by a means that may or may not depend on rotation. The Li abundance in the warm and rapidly rotating stars appears to be undepleted, as is predicted by recent models of pre-main-sequence stars. The depletion observed in the cool stars exceeds the level predicted by these models.

  13. Finding the Onset of Convection in Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2003-01-01

    The primary goal of the work performed under this grant was to locate, if possible, the onset of subphotospheric convection zones in normal main sequence stars by using the presence of emission in high temperature lines in far ultraviolet spectra from the FUSE spacecraft as a proxy for convection. The change in stellar structure represented by this boundary between radiative and convective stars has always been difficult to find by other empirical means. A search was conducted through observations of a sample of A-type stars, which were somewhat hotter and more massive than the Sun, and which were carefully chosen to bridge the theoretically expected radiative/convective boundary line along the main sequence.

  14. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* < {10}10 {M}⊙ ), while massive spirals (with {M}* > {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  15. Wide cool and ultracool companions to nearby stars from Pan-STARRS 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deacon, Niall R.; Liu, Michael C.; Magnier, Eugene A.

    2014-09-10

    We present the discovery of 57 wide (>5'') separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS 1 (PS1) data and the spectral classification of 31 previously known companions. Our companions represent a selective subsample of promising candidates and span a range in spectral type of K7-L9 with the addition of one DA white dwarf. These were identified primarily from a dedicated common proper motion search around nearby stars, along with a few as serendipitous discoveries from our Pan-STARRS 1 brown dwarf search. Our discoveries include 23 new L dwarf companions and one knownmore » L dwarf not previously identified as a companion. The primary stars around which we searched for companions come from a list of bright stars with well-measured parallaxes and large proper motions from the Hipparcos catalog (8583 stars, mostly A-K dwarfs) and fainter stars from other proper motion catalogs (79170 stars, mostly M dwarfs). We examine the likelihood that our companions are chance alignments between unrelated stars and conclude that this is unlikely for the majority of the objects that we have followed-up spectroscopically. We also examine the entire population of ultracool (>M7) dwarf companions and conclude that while some are loosely bound, most are unlikely to be disrupted over the course of ∼10 Gyr. Our search increases the number of ultracool M dwarf companions wider than 300 AU by 88% and increases the number of L dwarf companions in the same separation range by 82%. Finally, we resolve our new L dwarf companion to HIP 6407 into a tight (0.''13, 7.4 AU) L1+T3 binary, making the system a hierarchical triple. Our search for these key benchmarks against which brown dwarf and exoplanet atmosphere models are tested has yielded the largest number of discoveries to date.« less

  16. Reconciling mass functions with the star-forming main sequence via mergers

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter

    2017-06-01

    We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.

  17. The circumstellar environments of dusty main sequence stars

    NASA Astrophysics Data System (ADS)

    Gebrim, Antonio S. Hales

    Our current understanding of the formation of planetary systems is strongly linked to astronomical observations of gas and dust around young stars. This thesis is dedicated to studying the physical conditions acting in the circumstellar environments of pre-main sequence and early main sequence dusty stars. These early stellar ages correspond to the timescales over which planets are thought to be formed. The first part of this work is dedicated to a search for dusty early A-type stars in the northern galactic plane. Data from the IPHAS Ha survey is first used to select a sample of galactic A-type stars. This sample is then correlated with data from the Spitzer Space Telescope in order to search for 8 microns and 24 microns excesses associated with warm dust orbiting the stars. The improved photometric sensitivities of these new galactic surveys allow the list of known galactic 'Vega-like' sources to be extended to unexplored optical magnitude ranges (13.5 < r < 18.5 mags). Only 1.1% of a sample of 3062 A-type stars with available optical to mid-infrared spectral energy distributions showed detectable excesses at 8 microns. Searching over 1860 stars observed at 24 microns yielded similar statistical results (1.2%). Only 10 stars have both 8 and 24 micron excesses. These results support the idea that warm dust located relatively close to the stars is rare in main sequence systems. Follow-up observations of this new sample of dust-excess stars will provide better insights into the properties of the systems. Resolved images are crucial for understanding the dynamics and evolution of proto-planetary disks. Observing the detailed disk structure requires high-contrast, high-spatial resolution imaging very close to the bright central star. As a consequence, only a handful of these systems have yet been resolved. The second part of this work shows how near-infrared Polarimetric Imaging on the 3.8 meter United Kingdom Infrared Telescope can be used to obtain reflected

  18. Observations of normal main-sequence and giant B stars

    NASA Astrophysics Data System (ADS)

    When interpreting the continuous and line spectra of B stars, it is helpful to think in terms of a model consisting of a photosphere and a mantle which is the outer part of the atmosphere where the effects of nonradiative heating are seen. A survey of the spectra of these stars shows that conditions in the photosphere determine most of what is seen, and in the case of most B stars, the presence of the mantle can be detected only by a special effort. The shape of the visible continuum spectrum and the shape and absolute value of the UV continuous spectrum as determined from low resolution spectra are discussed. Effective temperature for B stars in the main sequence, including corrections for interstellar extinction and bolometric corrections are explored. The major constituents of B-type spectra, variation of the strength of line along the main sequence band, the UV spectra, UV line blocking, intrinsic colors, and variations in light and spectra are also examined.

  19. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  20. Habitable zones around main sequence stars.

    PubMed

    Kasting, J F; Whitmire, D P; Reynolds, R T

    1993-01-01

    A one-dimensional climate model is used to estimate the width of the habitable zone (HZ) around our Sun and around other main sequence stars. Our basic premise is that we are dealing with Earth-like planets with CO2/H2O/N2 atmospheres and that habitability requires the presence of liquid water on the planet's surface. The inner edge of the HZ is determined in our model by loss of water via photolysis and hydrogen escape. The outer edge of the HZ is determined by the formation of CO2 clouds, which cool a planet's surface by increasing its albedo and by lowering the convective lapse rate. Conservative estimates for these distances in our own Solar System are 0.95 and 1.37 AU, respectively; the actual width of the present HZ could be much greater. Between these two limits, climate stability is ensured by a feedback mechanism in which atmospheric CO2 concentrations vary inversely with planetary surface temperature. The width of the HZ is slightly greater for planets that are larger than Earth and for planets which have higher N2 partial pressures. The HZ evolves outward in time because the Sun increases in luminosity as it ages. A conservative estimate for the width of the 4.6-Gyr continuously habitable zone (CHZ) is 0.95 to 1.15 AU. Stars later than F0 have main sequence lifetimes exceeding 2 Gyr and, so, are also potential candidates for harboring habitable planets. The HZ around an F star is larger and occurs farther out than for our Sun; the HZ around K and M stars is smaller and occurs farther in. Nevertheless, the widths of all of these HZs are approximately the same if distance is expressed on a logarithmic scale. A log distance scale is probably the appropriate scale for this problem because the planets in our own Solar System are spaced logarithmically and because the distance at which another star would be expected to form planets should be related to the star's mass. The width of the CHZ around other stars depends on the time that a planet is required to

  1. Pre-main-sequence isochrones - II. Revising star and planet formation time-scales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-09-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ˜2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); ˜6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  2. Cool circumstellar matter around nearby main-sequence stars

    NASA Technical Reports Server (NTRS)

    Walker, H. J.; Wolstencroft, R. D.

    1988-01-01

    Stars are presented which have characteristics similar to Vega and other main-sequence stars with cool dust disks, based on the IRAS Point Source Catalog fluxes. The objects are selected to have a 60-micron/100-micron ratio similar to Vega, Beta Pic, Alpha PsA, and Epsilon Eri, and they are also required to show evidence of extension in the IRAS Working Survey Database. The fluxes are modeled using a blackbody energy distribution. The temperatures derived range from 50 to 650 K. The diameters of the dust disks observed by IRAS are estimated.

  3. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    NASA Technical Reports Server (NTRS)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; hide

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  4. Chromospheric variations in main-sequence stars

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Donahue, R. A.; Soon, J. H.; Horne, J. H.; Frazer, J.; Woodard-Eklund, L.; Bradford, M.; Rao, L. M.; Wilson, O. C.; Zhang, Q.

    1995-01-01

    The fluxes in passbands 0.1 nm wide and centered on the Ca II H and K emission cores have been monitored in 111 stars of spectral type F2-M2 on or near the main sequence in a continuation of an observing program started by O. C. Wilson. Most of the measurements began in 1966, with observations scheduled monthly until 1980, when observations were schedueld sevral times per week. The records, with a long-term precision of about 1.5%, display fluctuations that can be idntified with variations on timescales similar to the 11 yr cycle of solar activity as well as axial rotation, and the growth and decay of emitting regions. We present the records of chromospheric emission and general conclusions about variations in surface magnetic activity on timescales greater than 1 yr but less than a few decades. The results for stars of spectral type G0-K5 V indicate a pattern of change in rotation and chromospheric activity on an evolutionary timescale, in which (1) young stars exhibit high average levels of activity, rapid rotation rates, no Maunder minimum phase and rarely display a smooth, cyclic variation; (2) stars of intermediate age (approximately 1-2 Gyr for 1 solar mass) have moderate levels of activity and rotation rates, and occasional smooth cycles; and (3) stars as old as the Sun and older have slower rotation rates, lower activity levels and smooth cycles with occasional Maunder minimum-phases.

  5. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    NASA Astrophysics Data System (ADS)

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  6. Submillimeter studies of main-sequence stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  7. ASCA X-ray observations of pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, S. L.; Walter, F. M.; Yamauchi, S.

    1996-01-01

    The results of recent Advanced Satellite for Cosmology and Astrophysics (ASCA) X-ray observations of two pre-main sequence stars are presented: the weak emission line T Tauri star HD 142361, and the Herbig Ae star HD 104237. The solid state imaging spectrometer spectra for HD 142361 shows a clear emission line from H-like Mg 7, and spectral fits reveal a multiple temperature plasma with a hot component of at least 16 MK. The spectra of HD 104237 show a complex temperature structure with the hottest plasma at temperatures of greater than 30 MK. It is concluded that mechanisms that predict only soft X-ray emission can be dismissed for Herbig Ae stars.

  8. Theory of winds in late-type evolved and pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1983-01-01

    Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.

  9. Searching for δ Scuti-type pulsation and characterising northern pre-main-sequence field stars

    NASA Astrophysics Data System (ADS)

    Díaz-Fraile, D.; Rodríguez, E.; Amado, P. J.

    2014-08-01

    Context. Pre-main-sequence (PMS) stars are objects evolving from the birthline to the zero-age main sequence (ZAMS). Given a mass range near the ZAMS, the temperatures and luminosities of PMS and main-sequence stars are very similar. Moreover, their evolutionary tracks intersect one another causing some ambiguity in the determination of their evolutionary status. In this context, the detection and study of pulsations in PMS stars is crucial for differentiating between both types of stars by obtaining information of their interiors via asteroseismic techniques. Aims: A photometric variability study of a sample of northern field stars, which previously classified as either PMS or Herbig Ae/Be objects, has been undertaken with the purpose of detecting δ Scuti-type pulsations. Determination of physical parameters for these stars has also been carried out to locate them on the Hertzsprung-Russell diagram and check the instability strip for this type of pulsators. Methods: Multichannel photomultiplier and CCD time series photometry in the uvby Strömgren and BVI Johnson bands were obtained during four consecutive years from 2007 to 2010. The light curves have been analysed, and a variability criterion has been established. Among the objects classified as variable stars, we have selected those which present periodicities above 4 d-1, which was established as the lowest limit for δ Scuti-type pulsations in this investigation. Finally, these variable stars have been placed in a colour-magnitude diagram using the physical parameters derived with the collected uvbyβ Strömgren-Crawford photometry. Results: Five PMS δ Scuti- and three probable β Cephei-type stars have been detected. Two additional PMS δ Scuti stars are also confirmed in this work. Moreover, three new δ Scuti- and two γ Doradus-type stars have been detected among the main-sequence objects used as comparison or check stars.

  10. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    NASA Astrophysics Data System (ADS)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${<}5$~Myr) massive star forming regions. IMPS have masses between 2 and 8 $M_{\\odot}$ and are getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  11. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons tomore » super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.« less

  12. Discovery of magnetic A supergiants: the descendants of magnetic main-sequence B stars

    NASA Astrophysics Data System (ADS)

    Neiner, Coralie; Oksala, Mary E.; Georgy, Cyril; Przybilla, Norbert; Mathis, Stéphane; Wade, Gregg; Kondrak, Matthias; Fossati, Luca; Blazère, Aurore; Buysschaert, Bram; Grunhut, Jason

    2017-10-01

    In the context of the high resolution, high signal-to-noise ratio, high sensitivity, spectropolarimetric survey BritePol, which complements observations by the BRITE constellation of nanosatellites for asteroseismology, we are looking for and measuring the magnetic field of all stars brighter than V = 4. In this paper, we present circularly polarized spectra obtained with HarpsPol at ESO in La Silla (Chile) and ESPaDOnS at CFHT (Hawaii) for three hot evolved stars: ι Car, HR 3890 and ɛ CMa. We detected a magnetic field in all three stars. Each star has been observed several times to confirm the magnetic detections and check for variability. The stellar parameters of the three objects were determined and their evolutionary status was ascertained employing evolution models computed with the Geneva code. ɛ CMa was already known and is confirmed to be magnetic, but our modelling indicates that it is located near the end of the main sequence, I.e. it is still in a core hydrogen burning phase. ι Car and HR 3890 are the first discoveries of magnetic hot supergiants located well after the end of the main sequence on the Hertzsprung-Russell diagram. These stars are probably the descendants of main-sequence magnetic massive stars. Their current field strength (a few G) is compatible with magnetic flux conservation during stellar evolution. These results provide observational constraints for the development of future evolutionary models of hot stars including a fossil magnetic field.

  13. THE DISCOVERY OF SOLAR-LIKE ACTIVITY CYCLES BEYOND THE END OF THE MAIN SEQUENCE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Route, Matthew, E-mail: mroute@purdue.edu

    2016-10-20

    The long-term magnetic behavior of objects near the cooler end of the stellar main sequence is poorly understood. Most theoretical work on the generation of magnetism in these ultracool dwarfs (spectral type ≥M7 stars and brown dwarfs) suggests that their magnetic fields should not change in strength and direction. Using polarized radio emission measurements of their magnetic field orientations, I demonstrate that these cool, low-mass, fully convective objects appear to undergo magnetic polarity reversals analogous to those that occur on the Sun. This powerful new technique potentially indicates that the patterns of magnetic activity displayed by the Sun continue tomore » exist, despite the fully convective interiors of these objects, in contravention of several leading theories of the generation of magnetic fields by internal dynamos.« less

  14. Submillimeter Imaging of Dust Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to image circumstellar dust disks surrounding main-sequence stars. The delivery of the SCUBA detector we had planned to use for this work was delayed repeatedly, leading us to undertake a majority of the observations with the UKT14 submillimeter detector at the JCMT (James Clerk Maxwell Telescope) and optical imagers and a coronagraph at the University of Hawaii 2.2-m telescope. Major findings under this grant include: (1) We discovered 5 asymmetries in the beta Pictoris regenerated dust disk. The discovery of these asymmetries was a surprise, since smearing due to Keplerian shear should eliminate most such features on timescales of a few thousand years. One exception is the "wing tilt" asymmetry, which we interpret as due to the scattering phase function of dust disk particles. From the wing tilt and a model of the phase function, we find a disk plane inclination to the line of sight of < 5 degrees. Other asymmetries (e.g. the butterfly asymmetry) suggest a disk that has been recently disturbed. We searched for possible nearby perturbers but found no clear candidates. Low mass stars (M dwarfs) and brown dwarfs would have fallen beneath the sensitivity threshhold of our survey, however. (2) We calculated a set of disk models to assess the detectability of dust disks around stars as a function of (a) distance, (b) disk, inclination (c) dust optical depth/mass, and (d) imaging resolution. These models guided our observational strategy on Mauna Kea. (3) We performed a coronagraphic survey of approx. 100 main-sequence stars in search of additional examples of circumstellar disks. The best new candidate disk, around the 5 M(sun) star BD+31deg.643, is distinguished by its large extent (few x 10( exp 3) AU). This disk, if real, cannot be rotationally supported. We suggest that the dust particles are ejected from a smaller, unseen disk (Kuiper Belt?) by strong radiation pressure forces due to the high luminosity central star. (4) SCUBA images of

  15. SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.

    2016-04-20

    The “main sequence of galaxies”–defined in terms of the total star formation rate ψ versus the total stellar mass M {sub *}—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log( M {sub ⊙} yr{sup −1} Kpc{sup −2}) and the stellar mass surface density in units ofmore » log( M {sub ⊙} Kpc{sup −2}) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ( σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.« less

  16. 2-dimensional models of rapidly rotating stars I. Uniformly rotating zero age main sequence stars

    NASA Astrophysics Data System (ADS)

    Roxburgh, I. W.

    2004-12-01

    We present results for 2-dimensional models of rapidly rotating main sequence stars for the case where the angular velocity Ω is constant throughout the star. The algorithm used solves for the structure on equipotential surfaces and iteratively updates the total potential, solving Poisson's equation by Legendre polynomial decomposition; the algorithm can readily be extended to include rotation constant on cylinders. We show that this only requires a small number of Legendre polynomials to accurately represent the solution. We present results for models of homogeneous zero age main sequence stars of mass 1, 2, 5, 10 M⊙ with a range of angular velocities up to break up. The models have a composition X=0.70, Z=0.02 and were computed using the OPAL equation of state and OPAL/Alexander opacities, and a mixing length model of convection modified to include the effect of rotation. The models all show a decrease in luminosity L and polar radius Rp with increasing angular velocity, the magnitude of the decrease varying with mass but of the order of a few percent for rapid rotation, and an increase in equatorial radius Re. Due to the contribution of the gravitational multipole moments the parameter Ω2 Re3/GM can exceed unity in very rapidly rotating stars and Re/Rp can exceed 1.5.

  17. The effect of starspots on the radii of low-mass pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.

    2014-07-01

    A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.

  18. The V-band Empirical Mass-luminosity Relation for Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Xia, Fang; Fu, Yan-Ning

    2010-07-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  19. The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Xia, F.; Fu, Y. N.

    2010-01-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  20. ABSOLUTE PROPERTIES OF THE PRE-MAIN-SEQUENCE ECLIPSING BINARY STAR NP PERSEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Claud H. Sandberg; Fekel, Francis C.; Muterspaugh, Matthew W.

    2016-07-01

    NP Per is a well-detached, 2.2 day eclipsing binary whose components are both pre-main-sequence stars that are still contracting toward the main-sequence phase of evolution. We report extensive photometric and spectroscopic observations with which we have determined their properties accurately. Their surface temperatures are quite different: 6420 ± 90 K for the larger F5 primary star and 4540 ± 160 K for the smaller K5e star. Their masses and radii are 1.3207 ± 0.0087 solar masses and 1.372 ± 0.013 solar radii for the primary, and 1.0456 ± 0.0046 solar masses and 1.229 ± 0.013 solar radii for the secondary. The orbital period is variable over long periods of time. A comparisonmore » of the observations with current stellar evolution models from MESA indicates that the stars cannot be fit at a single age: the secondary appears significantly younger than the primary. If the stars are assumed to be coeval and to have the age of the primary (17 Myr), then the secondary is larger and cooler than predicted by current models. The H α spectral line of the secondary component is completely filled by, presumably, chromospheric emission due to a magnetic activity cycle.« less

  1. X-rays across the galaxy population - I. Tracing the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Aird, J.; Coil, A. L.; Georgakakis, A.

    2017-03-01

    We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.

  2. Common Warm Dust Temperatures Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate

    2011-01-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  3. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{submore » S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars« less

  4. Main sequence models for massive zero-metal stars

    NASA Technical Reports Server (NTRS)

    Cary, N.

    1974-01-01

    Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.

  5. The Winds of Main Sequence B Stars in NGC 6231, Evidence for Shocks in Weak Winds.

    NASA Astrophysics Data System (ADS)

    Massa, Derck

    1996-07-01

    Because the main sequence B stars in NGC 6231 have abnormallystrong C iv wind lines, they are the only main sequence Bstars with distinct edge velocities. Although the underlyingcause for the strong lines remains unknown, these stars doprovide an opportunity to test two important ideas concerningB star winds: 1) that the driving ions in the winds of starswith low mass loss rates decouple from the general flow, and;2) that shocks deep in the winds of main sequence B stars areresponsible for their observed X-rays. In both of thesemodels, the wind accelerates toward a terminal velocity,v_infty, far greater than the observed value, shocking ordecoupling well before it can attain the high v_infty. As aresult, the observable wind accelerates very rapidly, leadingto wind flushing times less than 30 minutes. If theseconjectures are correct, then the winds of main sequence Bstars should be highly variable on time scales of minutes.Model fitting of available IUE data are consistant with thegeneral notion of a rapidly accelerating wind, shocking wellbefore its actual v_infty. However, these are 5 hourexposures, so the fits are to ill-defined mean wind flows.The new GHRS observations will provide adequate spectral andtemporal resolution to observe the expected variability and,thereby, verify the existance of two important astrophysicalprocesses.

  6. Interferometric observations of main-sequence stars: fundamental stellar astrophysics, circumstellar matter, and kinematics

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.; Eiroa, Carlos

    2003-10-01

    With our minds focussed on the direct detection of planets using the space interferometry mission DARWIN/TPF, we have made an attempt to identify how the set of ESO Very Large Telescope Interferometer instruments available now, and in the near future (VINCI, MIDI, AMBER, GENIE, FINITO and PRIMA) could contribute to the DARWIN/TPF precursory science program. In particular related to the identification of a short list of science stars to be observed with DARWIN/TPF. We have identified two research projects which can be viewed as DARWIN/TPF precursory science and can be embarked upon shortly using the available VLTI instruments: (1) the direct measurement of stellar angular diameters of a statistically meaningful sample of main-sequence stars with AMBER; (2) an interferometric study of those main-sequence stars that exhibit an infrared excess with either AMBER or MIDI. On the longer run, VLTI can obviously make a significant impact through the exploitation of the infrared nuller GENIE and the astrometric facility PRIMA.

  7. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find thatmore » some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.« less

  8. Winds in hot main-sequence stars near the static limit

    NASA Technical Reports Server (NTRS)

    Morrison, Nancy D.

    1995-01-01

    This project began with the acquisition of short-wavelength, high-dispersion IUE spectra of selected late O- and early B-type stars that are near the main sequence in open clusters and associations. The profiles of the resonance lines of N(V), Si(IV), and C(IV) were studied, and we found that the C(IV) lines are the most sensitive indicators of mass loss (stellar winds) in stars of this type. The mass loss manifests itself as an extension of the short-wavelength absorption wing of the doublet, while there is no P Cygni-type emission on the long-wavelength side of the line profile. We investigated whether the short-wavelength extension could be caused by blended lines of other ionic species formed in the photosphere. Although blending is present and introduces uncertainty into the estimation of the precise location on the main sequence of the onset of the mass-loss signature, it is a crucial issue only in a few marginal cases. Mass loss certainly overwhelms blending in its influence on the spectrum between spectral types B0 and B1 (effective temperatures in the range 25,000-27,000 K). We defined a parameter called P(sub w), to describe the degree of asymmetry of the C(IV) resonance-line profile, and we studied the dependence of this parameter on the fundamental stellar parameters. For this purpose, we derived new estimates of the stellar T(eff) and log g from a non-LTE, line-blanketed model-atmosphere analysis of these stars (Grigsby, Morrison, and Anderson 1992). In order to estimate the stellar luminosities, we performed an exhaustive search of the literature for the most reliable available estimates of the distances of the clusters and associations to which the program stars belong. The dependence of P(sub w) on stellar temperature and luminosity is also studied.

  9. The evolution of angular momentum among zero-age main-sequence solar-type stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Stauffer, John R.; Macgregor, Keith B.; Jones, Burton F.

    1993-01-01

    We consider a survey of rotation among F, G, and K dwarfs of the Pleiades in the context of other young clusters (Alpha Persei and the Hyades) and pre-main-sequence (PMS) stars (in Taurus-Auriga and Orion) in order to examine how the angular momentum of a star like the sun evolves during its early life on the main sequence. The rotation of PMS stars can be evolved into distributions like those seen in the young clusters if there is only modest, rotation-independent angular momentum loss prior to the ZAMS. Even then, the ultrafast rotators (UFRs, or ZAMS G and K dwarfs with v sin i equal to or greater than 30 km/s) must owe their extra angular momentum to their conditions of formation and to different angular momentum loss rates above a threshold velocity, for it is unlikely that these stars had angular momentum added as they neared the ZAMS, nor can a spread in ages within a cluster account for the range of rotation seen. Only a fraction of solar-type stars are thus capable of becoming UFRs, and it is not a phase that all stars experience. Simple scaling relations (like the Skumanich relation) applied to the observed surface rotation rates of young solar-type stars cannot reproduce the way in which the Pleiades evolve into the Hyades. We argue that invoking internal differential rotation in these ZAMS stars can explain several aspects of the observations and thus can provide a consistent picture of ZAMS angular momentum evolution.

  10. Pre-main-sequence stars in the young cluster IC 2391

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Hartmann, Lee W.; Jones, Burton F.; Mcnamara, Brian R.

    1989-01-01

    Seven or eight new, late-type members of the poor open cluster IC 2391 are identified, and membership is confirmed for two other stars. The new members fall approximately along a 3 x 10 to the 7th yr isochrone, which is the age estimated for the cluster on the basis of it super main-seqence turnoff. Echelle spectra were obtained for the most probable cluster members. Most show H-alpha in emission and a strong Li 6707 A absorption line, and a few are rapid rotators. The Li abundances for cluster stars cooler than the sun are considerably less than the primordial Li abundance, providing the first direct evidence for substantial premain-sequence Li burning. The rotational velocities show a range from about 15 to 150 km/s, with a distribution of rotational velocities not significantly different from that observed for low-mass stars in the Pleiades.

  11. New radio detections of early-type pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.

  12. ASTEROSEISMIC ANALYSIS OF THE PRE-MAIN-SEQUENCE STARS IN NGC 2264

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, D. B.; Casey, M. P.; Kallinger, T.

    2009-10-20

    NGC 2264 is a young open cluster lying above the Galactic plane in which six variable stars have previously been identified as possible pre-main-sequence (PMS) pulsators. Their oscillation spectra are relatively sparse with each star having from 2 to 12 unambiguous frequency identifications based on Microvariability and Oscillations of Stars satellite and multi-site ground-based photometry. We describe our efforts to find classical PMS stellar models (i.e., models evolved from the Hayashi track) whose oscillation spectra match the observed frequencies. We find model eigenspectra that match the observed frequencies and are consistent with the stars' locations in the HR diagram formore » the three faintest of the six stars. Not all the frequencies found in spectra of the three brightest stars can be matched to classical PMS model spectra possibly because of effects not included in our PMS models such as chemical and angular momentum stratification in the outer layers of the star. All the oscillation spectra contain both radial and nonradial p-modes. We argue that the PMS pulsating stars divide into two groups depending on whether or not they have undergone complete mixing (i.e., have gone through a Hayashi phase). Lower mass stars that do evolve through a Hayashi phase have oscillation spectra predicted by classical PMS models, whereas more massive stars that do not, retain mass infall effects in their surface layers and are not well modeled by classical PMS models.« less

  13. ESTIMATING THE RADIUS OF THE CONVECTIVE CORE OF MAIN-SEQUENCE STARS FROM OBSERVED OSCILLATION FREQUENCIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wuming, E-mail: yangwuming@bnu.edu.cn, E-mail: yangwuming@ynao.ac.cn

    The determination of the size of the convective core of main-sequence stars is usually dependent on the construction of models of stars. Here we introduce a method to estimate the radius of the convective core of main-sequence stars with masses between about 1.1 and 1.5 M {sub ⊙} from observed frequencies of low-degree p -modes. A formula is proposed to achieve the estimation. The values of the radius of the convective core of four known stars are successfully estimated by the formula. The radius of the convective core of KIC 9812850 estimated by the formula is 0.140 ± 0.028 Rmore » {sub ⊙}. In order to confirm this prediction, a grid of evolutionary models was computed. The value of the convective-core radius of the best-fit model of KIC 9812850 is 0.149 R {sub ⊙}, which is in good agreement with that estimated by the formula from observed frequencies. The formula aids in understanding the interior structure of stars directly from observed frequencies. The understanding is not dependent on the construction of models.« less

  14. Main-Sequence O Stars in NGC 6231: Enhanced Winds

    NASA Astrophysics Data System (ADS)

    Morrison, Nancy D.

    Three late O-type main-sequence stars in the open cluster NGC 6231 will be observed with IUE at high dispersion, and their C IV and N V resonance-line profiles will be studied. From low-dispersion IUE observations, 10 members of the cluster have been found to have anomalously strong C IV resonance lines for their spectral types. Massa, Savage, and Cassinelli (1984) observed two of these "UV peculiar" stars (spectral types B0.5 V and B1 V) at high dispersion. They found that the C IV lines have a strong, broad, shortward-shifted absorption component, which suggests a greatly enhanced wind relative to the average for the spectral type. They proposed that the enhancement is due to an overabundance of C. Recently, however, Grigsby, Gordon, Morrison, and Zimba (1992) showed from optical spectra that these stars have normal C abundances. Thus, there is not yet a convincing explanation for these strikingly anomalous stellar winds. By extending the temperature range over which the phenomenon has been studied at high dispersion, however, we expect to gain new physical information. From wind modeling of the line profiles, we will derive mass-loss rates and terminal velocities, and we will test whether these winds are described by radiation-driven wind theory.

  15. THE YOUNG OPEN CLUSTERS KING 12, NGC 7788, AND NGC 7790: PRE-MAIN-SEQUENCE STARS AND EXTENDED STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidge, T. J.

    2012-12-20

    The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less

  16. Main-sequence magnetic CP stars: II. Physical parameters and chemical composition of the atmosphere

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.

    2007-03-01

    This paper continues a series of reviews dedicated to magnetic CP stars. The occurrence frequency of CP stars among B5 F0-type main-sequence stars is shown to be equal to about 15 20%. The problems of identification and classification of these objects are addressed. We prefer the classification of Preston, which subdivides chemically peculiar stars into the following groups: Am, λ Boo, Ap/Bp, Hg-Mn, He-weak, and He-strong stars. The main characteristic features of objects of each group are briefly analyzed. The rotation velocities of CP stars are shown to be about three times lower than those of normal stars of the same spectral types (except for λ Boo and He-strong objects). The rotation periods of CP stars range from 0.5 to 100 days, however, there is also a small group of objects with especially long (up to several tens of years) variability periods. All kinds of peculiar stars can be found in visual binaries, with Am-and Hg-Mn-type stars occurring mostly in short-period binaries with P < 10 days, and the binary rate of these stars is close to normal. The percentage of binaries among magnetic stars (20%) is lower than among normal stars. A rather large fraction of CP1-and CP2-type stars was found to occur in young clusters (with ages smaller than 107 years). Photometric and spectral variability of peculiar stars of various types is discussed, and it is shown that only objects possessing magnetic fields exhibit light and spectral variations. The chemical composition of the atmospheres of CP stars of various types is considered. The abundances of various elements are usually determined by comparing the line profiles in the observed spectrum with those of the synthetic spectra computed for various model atmospheres. Different mechanisms are shown to contribute to chemical inhomogeneity at the star’s surface, and the hypothesis of selective diffusion of atoms in a stable atmosphere is developed. Attention is also paid to the problems of the determination of

  17. Hubble Tarantula Treasury Project - VI. Identification of Pre-Main-Sequence Stars using Machine Learning techniques

    NASA Astrophysics Data System (ADS)

    Ksoll, Victor F.; Gouliermis, Dimitrios A.; Klessen, Ralf S.; Grebel, Eva K.; Sabbi, Elena; Anderson, Jay; Lennon, Daniel J.; Cignoni, Michele; de Marchi, Guido; Smith, Linda J.; Tosi, Monica; van der Marel, Roeland P.

    2018-05-01

    The Hubble Tarantula Treasury Project (HTTP) has provided an unprecedented photometric coverage of the entire star-burst region of 30 Doradus down to the half Solar mass limit. We use the deep stellar catalogue of HTTP to identify all the pre-main-sequence (PMS) stars of the region, i.e., stars that have not started their lives on the main-sequence yet. The photometric distinction of these stars from the more evolved populations is not a trivial task due to several factors that alter their colour-magnitude diagram positions. The identification of PMS stars requires, thus, sophisticated statistical methods. We employ Machine Learning Classification techniques on the HTTP survey of more than 800,000 sources to identify the PMS stellar content of the observed field. Our methodology consists of 1) carefully selecting the most probable low-mass PMS stellar population of the star-forming cluster NGC2070, 2) using this sample to train classification algorithms to build a predictive model for PMS stars, and 3) applying this model in order to identify the most probable PMS content across the entire Tarantula Nebula. We employ Decision Tree, Random Forest and Support Vector Machine classifiers to categorise the stars as PMS and Non-PMS. The Random Forest and Support Vector Machine provided the most accurate models, predicting about 20,000 sources with a candidateship probability higher than 50 percent, and almost 10,000 PMS candidates with a probability higher than 95 percent. This is the richest and most accurate photometric catalogue of extragalactic PMS candidates across the extent of a whole star-forming complex.

  18. Spectroscopic investigation of stars on the lower main sequence

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Soubiran, C.; Bienaymé, O.; Korotin, S. A.; Belik, S. I.; Usenko, I. A.; Kovtyukh, V. V.

    2008-10-01

    Aims: The aim of this paper is to provide fundamental parameters and abundances with a high accuracy for a large sample of cool main sequence stars. This study is part of wider project, in which the metallicity distribution of the local thin disc is investigated from a complete sample of G and K dwarfs within 25 pc. Methods: The stars were observed at high resolution and a high signal-to-noise ratio with the ELODIE echelle spectrograph. The V sin i were obtained with a calibration of the cross-correlation function. Effective temperatures were estimated by the line depth ratio method. Surface gravities (log g) were determined by two methods: parallaxes and ionization balance of iron. The Mg and Na abundances were derived using a non-LTE approximation. Abundances of other elements were obtained by measuring equivalent widths. Results: Rotational velocities, atmospheric parameters (T_eff, log g, [Fe/H], V_t), and Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, and Zn abundances are provided for 131 stars. Among them, more than 30 stars are active stars with a fraction of BY Dra and RS CVn type stars for which spectral peculiarities were investigated. We find the mean abundances of the majority of elements in active and nonactive stars to be similar, except for Li, and possibly for Zn and Co. The lithium is reliably detected in 54% of active stars but only in 20% of nonactive stars. No correlation is found between Li abundances and rotational velocities. A possible anticorrelation of log A(Li) with the index of chromospheric activity GrandS is observed. Conclusions: Active and nonactive cool dwarfs show similar dependencies of most elemental ratios vs. [Fe/H]. This allows us to use such abundance ratios to study the chemical and dynamical evolution of the Galaxy. Among active stars, no clear correlation has been found between different indicators of activity for our sample stars. Based on spectra collected with the ELODIE spectrograph at the 1.93-m telescope of the

  19. Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Maggio, A.; Sciortino, S.

    2000-09-01

    We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.

  20. VizieR Online Data Catalog: NGC 7129 pre-main sequence stars (Stelzer+, 2009)

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Scholz, A.

    2010-09-01

    We make use of X-ray and IR imaging observations to identify the pre-main sequence stars in NGC 7129. We define a sample of young stellar objects based on color-color diagrams composed from IR photometry between 1.6 and 8um, from 2MASS and Spitzer, and based on X-ray detected sources from a Chandra observation. A 22ks long Chandra observation targeting the Herbig star SVS 12 was carried out on Mar 11, 2006 (start of observation UT 14h29m18s). (5 data files).

  1. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  2. X-ray Emission from Pre-Main-Sequence Stars - Testing the Solar Analogy

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2000-01-01

    This LTSA award funded my research on the origin of stellar X-ray emission and the validity of the solar-stellar analogy. This research broadly addresses the relevance of our current understanding of solar X-ray physics to the interpretation of X-ray emission from stars in general. During the past five years the emphasis has been on space-based X-ray observations of very young stars in star-forming regions (T Tauri stars and protostars), cool solar-like G stars, and evolved high-mass Wolf-Rayet (WR) stars. These observations were carried out primarily with the ASCA and ROSAT space-based observatories (and most recently with Chandra), supplemented by ground-based observations. This research has focused on the identification of physical processes that are responsible for the high levels of X-ray emission seen in pre-main-sequence (PMS) stars, active cool stars, and WR stars. A related issue is how the X-ray emission of such stars changes over time, both on short timescales of days to years and on evolutionary timescales of millions of years. In the case of the Sun it is known that magnetic fields play a key role in the production of X-rays by confining the coronal plasma in loop-like structures where it is heated to temperatures of several million K. The extent to which the magnetically-confined corona interpretation can be applied to other X-ray emitting stars is the key issue that drives the research summarized here.

  3. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  4. A search for pre-main-sequence stars in high-latitude molecular clouds. 3: A survey of the Einstein database

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre; Magnani, Loris; Fryer, Chris

    1995-01-01

    In order to discern whether the high-latitude molecular clouds are regions of ongoing star formation, we have used X-ray emission as a tracer of youthful stars. The entire Einstein database yields 18 images which overlap 10 of the clouds mapped partially or completely in the CO (1-0) transition, providing a total of approximately 6 deg squared of overlap. Five previously unidentified X-ray sources were detected: one has an optical counterpart which is a pre-main-sequence (PMS) star, and two have normal main-sequence stellar counterparts, while the other two are probably extragalactic sources. The PMS star is located in a high Galactic latitude Lynds dark cloud, so this result is not too suprising. The translucent clouds, though, have yet to reveal any evidence of star formation.

  5. Ultracool dwarf benchmarks with Gaia primaries

    NASA Astrophysics Data System (ADS)

    Marocco, F.; Pinfield, D. J.; Cook, N. J.; Zapatero Osorio, M. R.; Montes, D.; Caballero, J. A.; Gálvez-Ortiz, M. C.; Gromadzki, M.; Jones, H. R. A.; Kurtev, R.; Smart, R. L.; Zhang, Z.; Cabrera Lavers, A. L.; García Álvarez, D.; Qi, Z. X.; Rickard, M. J.; Dover, L.

    2017-10-01

    We explore the potential of Gaia for the field of benchmark ultracool/brown dwarf companions, and present the results of an initial search for metal-rich/metal-poor systems. A simulated population of resolved ultracool dwarf companions to Gaia primary stars is generated and assessed. Of the order of ˜24 000 companions should be identifiable outside of the Galactic plane (|b| > 10 deg) with large-scale ground- and space-based surveys including late M, L, T and Y types. Our simulated companion parameter space covers 0.02 ≤ M/M⊙ ≤ 0.1, 0.1 ≤ age/Gyr ≤ 14 and -2.5 ≤ [Fe/H] ≤ 0.5, with systems required to have a false alarm probability <10-4, based on projected separation and expected constraints on common distance, common proper motion and/or common radial velocity. Within this bulk population, we identify smaller target subsets of rarer systems whose collective properties still span the full parameter space of the population, as well as systems containing primary stars that are good age calibrators. Our simulation analysis leads to a series of recommendations for candidate selection and observational follow-up that could identify ˜500 diverse Gaia benchmarks. As a test of the veracity of our methodology and simulations, our initial search uses UKIRT Infrared Deep Sky Survey and Sloan Digital Sky Survey to select secondaries, with the parameters of primaries taken from Tycho-2, Radial Velocity Experiment, Large sky Area Multi-Object fibre Spectroscopic Telescope and Tycho-Gaia Astrometric Solution. We identify and follow up 13 new benchmarks. These include M8-L2 companions, with metallicity constraints ranging in quality, but robust in the range -0.39 ≤ [Fe/H] ≤ +0.36, and with projected physical separation in the range 0.6 < s/kau < 76. Going forward, Gaia offers a very high yield of benchmark systems, from which diverse subsamples may be able to calibrate a range of foundational ultracool/sub-stellar theory and observation.

  6. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙}more » and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.« less

  7. Ultra-cool dwarfs viewed equator-on: surveying the best host stars for biosignature detection in transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury

    2018-05-01

    There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.

  8. Verifying reddening and extinction for Gaia DR1 TGAS main sequence stars

    NASA Astrophysics Data System (ADS)

    Gontcharov, George A.; Mosenkov, Aleksandr V.

    2017-12-01

    We compare eight sources of reddening and extinction estimates for approximately 60 000 Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) main sequence stars younger than 3 Gyr with a relative error of the Gaia parallax less than 0.1. For the majority of the stars, the best 2D dust emission-based reddening maps show considerable differences between the reddening to infinity and the one calculated to the stellar distance using the barometric law of the dust distribution. This proves that the majority of the TGAS stars are embedded in the Galactic dust layer and a proper 3D treatment of the reddening/extinction is required to calculate their dereddened colours and absolute magnitudes reliably. Sources with 3D estimates of reddening are tested in their ability to put the stars among the PARSEC and MIST theoretical isochrones in the Hertzsprung-Russell diagram based on the precise Gaia, Tycho-2, 2MASS and WISE photometry. Only the reddening/extinction estimates by Arenou et al. and Gontcharov, being appropriate for nearby stars within 280 pc, provide both the minimal number of outliers bluer than any reasonable isochrone and the correct number of stars younger than 3 Gyr in agreement with the Besançon Galaxy model.

  9. The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Gregory, Scott G.; Adams, Fred C.; Davies, Claire L.

    2016-04-01

    Pre-main-sequence (PMS) stars of mass ≳0.35 M⊙ transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analogue of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photometric data for ˜1000 PMS stars from five of the best studied star-forming regions: the Orion Nebula Cluster, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we de-redden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample. We find that PMS stars on Henyey tracks have, on average, lower fractional X-ray luminosities (LX/L*) than those on Hayashi tracks, where this effect is driven by changes in LX. X-ray emission decays faster with age for higher mass PMS stars. There is a strong correlation between L* and LX for Hayashi track stars but no correlation for Henyey track stars. There is no correlation between LX and radiative core mass or radius. However, the longer stars have spent with radiative cores, the less X-ray luminous they become. The decay of coronal X-ray emission from young early K to late G-type PMS stars, the progenitors of main-sequence A-type stars, is consistent with the dearth of X-ray detections of the latter.

  10. Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.; von Braun, Kaspar; van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Jones, Jeremy; White, Russel; McAlister, Harold A.; ten Brummelaar, Theo A.; Ridgway, Stephen; Gies, Douglas; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C), Kron (R K I K), Sloan (griz), and WISE (W 3 W 4) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  11. THE MAGNETOSPHERE OF THE ULTRACOOL DWARF DENIS 1048-3956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravi, V.; Hallinan, G.; Hobbs, G.

    2011-07-01

    Ultracool dwarfs, the least-massive contributors to the stellar mass function, exhibit striking magnetic properties that are inconsistent with trends for more massive stars. Here, we present the widest-band radio observations to date of an ultracool dwarf, DENIS-P J104814.9-395604, in four 2 GHz bandwidths between wavelengths of 1 cm and 10 cm. These data were obtained with the Australia Telescope Compact Array using the new Compact Array Broadband Backend instrument. We detected a stable negatively sloped power-law spectrum in total intensity, with spectral index {alpha} = 1.71 {+-} 0.09. Circular polarization fractions between 0.25 and 0.4 were found at the low-frequencymore » end of our detection band. We interpret these results as indicative of gyrosynchrotron emission. We suggest that the radio emission originates from beyond the corotation radius, R{sub C} , of the star. Adopting this model, we find R{sub C} between 1.2 R{sub *} and 2.9 R{sub *}, and a non-thermal electron density and magnetic field strength between 10{sup 5} and 10{sup 7.2} cm{sup -3} and between 70 and 260 G, respectively, at R{sub C} . The model accounts for the violation of the Guedel-Benz relation between X-ray and radio luminosities of low-mass stars by DENIS-P J104814.9-395604.« less

  12. Habitable Moons and Planets Around Post-Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Lorenz, R.

    2014-04-01

    Habitability is ephemeral, and arises against the backdrop of stellar evolution. Atmospheric modulation of incoming and outgoing radiative fluxes can restrict or extend the insolation domain in which habitable conditions can persist, and feedbacks (notably, silicate weathering of CO2) may fortuitously adapt that modulation to counteract evolving luminosity. But eventually the star will win. What happens then depends on the histories of stellar luminosity, and of stellar mass loss. While the enhancement of luminosity may render the outer solar system habitable in a classic radiative/convective equilibrium sense, a scenario studied in most detail in connection with Saturn's moon Titan, the enhanced solar wind associated with the latter may strip atmospheres unprotected by magnetic fields. The question of post-main sequence habitability is therefore not a simple one.

  13. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renzini, Alvio; Peng, Ying-jie, E-mail: alvio.renzini@oapd.inaf.it, E-mail: y.peng@mrao.cam.ac.uk

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3Dmore » SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies.« less

  14. Molecules and dust in the Large Magellanic Cloud: new colour classifications for post-Main-Sequence stars

    NASA Astrophysics Data System (ADS)

    Markwick-Kemper, Ciska; Leisenring, Jarron; Meixner, Margaret; van Dyk, Schuyler; Szczerba, Ryszard

    In the Large Magellanic Cloud (LMC), as in the Milky Way, dust formation predominantly occurs in the circumstellar environments of evolved stars. The process of dust condensation is not fully understood, and investigating the dust condensation sequence in the low metallicity environment of the LMC (about half of the solar metallicity), may yield additional insights in the dust condensation process. Topics to be studied include the final condensation products, the correlation of the condensation sequence with evolutionary status of the star, degree of crystallinity of the silicates and ratio of carbon-rich dust producing stars. The composition and properties of dust are most easily studied using infrared spectroscopy, and using the high sensitivity of the Infrared Spectrograph (IRS) on board of Spitzer, we were able to observe the thermal emission from circumstellar dust of these stars individually. A sample of 63 post-Main-Sequence stars were selected, using their 2MASS/MSX colours (Egan et al. 2001). We aimed to cover all post-Main-Sequence evolutionary stages, to make an inventory of the dust condensation products, while we placed a certain emphasis on oxygen-rich AGB stars with a intermediate mass-loss rate, to study the existence of a threshold mass-loss rate above which crystalline silicates are observed (Kemper et al. 2001). Here we will present the observed spectra, along with their spectral classification. We find that a large fraction of the stars we observed exhibit spectral features of carbon-rich dust and molecules, such as SiC, C2H2 and MgS. In fact we find that many of these stars are previously classified as oxygen-rich AGB stars, or as OH/IR stars based on their NIR/MIR colours (Egan et al. 2001). These colours are determined for Galactic samples, while in the LMC sample, stars with a carbon-rich chemistry in their outflows occupy a much larger region of the various colour-colour diagrams. In addition, a large fraction of the sample show amorphous

  15. Soft X-ray observations of pre-main sequence stars in the chamaeleon dark cloud

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Kriss, Gerard A.

    1987-01-01

    Einstein IPC observations of the nearby Chamaeleon I star forming cloud show 22 well-resolved soft X-ray sources in a 1x2 deg region. Twelve are associated with H-alpha emission line pre-main sequence (PMS) stars, and four with optically selected PMS stars. Several X-ray sources have two or more PMS stars in their error circles. Optical spectra were obtained at CTIO of possible stellar counterparts of the remaining X-ray sources. They reveal 5 probable new cloud members, K7-MO stars with weak or absent emission lines. These naked X-ray selected PMS stars are similar to those found in the Taurus-Auriga cloud. The spatial distributions and H-R diagrams of the X-ray and optically selected PMS stars in the cloud are very similar. Luminosity functions indicate the Chamaeleon stars are on average approximately 5 times more X-ray luminous than Pleiad dwarfs. A significant correlation between L sub x and optical magnitude suggests this trend may continue within the PMS phase of stellar evolution. The relation of increasing X-ray luminosity with decreasing stellar ages is thus extended to stellar ages as young as 1 million years.

  16. Tidal Disruptions of Main-sequence Stars of Varying Mass and Age: Inferences from the Composition of the Fallback Material

    NASA Astrophysics Data System (ADS)

    Gallegos-Garcia, Monica; Law-Smith, Jamie; Ramirez-Ruiz, Enrico

    2018-04-01

    We use a simple framework to calculate the time evolution of the composition of the fallback material onto a supermassive black hole arising from the tidal disruption of main-sequence stars. We study stars with masses between 0.8 and 3.0 M ⊙, at evolutionary stages from zero-age main sequence to terminal-age main sequence, built using the Modules for Experiments in Stellar Astrophysics code. We show that most stars develop enhancements in nitrogen (14N) and depletions in carbon (12C) and oxygen (16O) over their lifetimes, and that these features are more pronounced for higher mass stars. We find that, in an accretion-powered tidal disruption flare, these features become prominent only after the time of peak of the fallback rate and appear at earlier times for stars of increasing mass. We postulate that no severe compositional changes resulting from the fallback material should be expected near peak for a wide range of stellar masses and, as such, are unable to explain the extreme helium-to-hydrogen line ratios observed in some TDEs. On the other hand, the resulting compositional changes could help explain the presence of nitrogen-rich features, which are currently only detected after peak. When combined with the shape of the light curve, the time evolution of the composition of the fallback material provides a clear method to help constrain the nature of the disrupted star. This will enable a better characterization of the event by helping break the degeneracy between the mass of the star and the mass of the black hole when fitting tidal disruption light curves.

  17. Did A Planet Survive A Post-Main Sequence Evolutionary Event?

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca; Jang-Condell, Hannah; Zimmerman, Mara

    2018-06-01

    The GL86 is star system approximately 10 pc away with a main sequence K- type ~ 0.77 M⊙ star (GL 86A) with a white dwarf ~0.49 M⊙ companion (GL86 B). The system has a ~ 18.4 AU semi-major axis, an orbital period of ~353 yrs, and an eccentricity of ~ 0.39. A 4.5 MJ planet orbits the main sequence star with a semi-major axis of 0.113 AU, an orbital period of 15.76 days, in a near circular orbit with an eccentricity of 0.046. If we assume that this planet was formed during the time when the white dwarf was a main sequence star, it would be difficult for the planet to have remained in a stable orbit during the post-main sequence evolution of GL86 B. The post-main sequence evolution with planet survival will be examined by modeling using the program Mercury (Chambers 1999). Using the model, we examine the origins of the planet: whether it formed before or after the post-main sequence evolution of GL86B. The modeling will give us insight into the dynamical evolution of, not only, the binary star system, but also the planet’s life cycle.

  18. Spectroscopic and asteroseismic analysis of the remarkable main-sequence A star KIC 11145123

    NASA Astrophysics Data System (ADS)

    Takada-Hidai, Masahide; Kurtz, Donald W.; Shibahashi, Hiromoto; Murphy, Simon J.; Takata, Masao; Saio, Hideyuki; Sekii, Takashi

    2017-10-01

    A spectroscopic analysis was carried out to clarify the properties of KIC 11145123 - the first main-sequence star with a directly measured core-to-surface rotation profile - based on spectra observed with the High Dispersion Spectrograph (HDS) of the Subaru telescope. The atmospheric parameters (Teff = 7600 K, log g = 4.2, ξ = 3.1 km s-1 and [Fe/H] = -0.71 dex), the radial and rotation velocities, and elemental abundances were obtained by analysing line strengths and fitting line profiles, which were calculated with a 1D LTE model atmosphere. The main properties of KIC 11145123 are: (1) a low [Fe/H] = -0.71 ± 0.11 dex and a high radial velocity of -135.4 ± 0.2 km s-1. These are remarkable among late-A stars. Our best asteroseismic models with this low [Fe/H] have slightly high helium abundance and low masses of 1.4 M⊙. All of these results strongly suggest that KIC 11145123 is a Population II blue straggler; (2) the projected rotation velocity confirms the asteroseismically predicted slow rotation of the star; (3) comparisons of abundance patterns between KIC 11145123 and Am, Ap, and blue stragglers show that KIC 11145123 is neither an Am star nor an Ap star, but has abundances consistent with a blue straggler. We conclude that the remarkably long 100-d rotation period of this star is a consequence of it being a blue straggler, but both pathways for the formation of blue stragglers - merger and mass loss in a binary system - pose difficulties for our understanding of the exceedingly slow rotation. In particular, we show that there is no evidence of any secondary companion star, and we put stringent limits on the possible mass of any such purported companion through the phase modulation technique.

  19. The Effects of Rotation on the Main-sequence Turnoff of Intermediate-age Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Wuming; Bi, Shaolan; Meng, Xiangcun; Liu, Zhie

    2013-10-01

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some "multiple populations" in globular clusters.

  20. ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Hongwei; Chen, Xuefei; Han, Zhanwen

    2015-10-10

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. Formore » intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as

  1. Copious amounts of hot and cold dust orbiting the main sequence a-type stars HD 131488 and HD 121191

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melis, Carl; Zuckerman, B.; Rhee, Joseph H.

    2013-11-20

    We report two new dramatically dusty main sequence stars: HD 131488 (A1 V) and HD 121191 (A8 V). HD 131488 is found to have substantial amounts of dust in its terrestrial planet zone (L {sub IR}/L {sub bol} ≈ 4 × 10{sup –3}), cooler dust farther out in its planetary system, and an unusual mid-infrared spectral feature. HD 121191 shows terrestrial planet zone dust (L {sub IR}/L {sub bol} ≈ 2.3 × 10{sup –3}), hints of cooler dust, and shares the unusual mid-infrared spectral shape identified in HD 131488. These two stars belong to sub-groups of the Scorpius-Centaurus OB associationmore » and have ages of ∼10 Myr. HD 131488 and HD 121191 are the dustiest main sequence A-type stars currently known. Early-type stars that host substantial inner planetary system dust are thus far found only within the age range of 5-20 Myr.« less

  2. Observation and modelling of main-sequence star chromospheres - XII. Two-component model chromospheres for five active dM1e stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2009-08-01

    We aim to constrain the Hα, CaII H and CaII K profiles from quiescent and active regions on active dM1e stars. A preliminary analysis of all the data available for dM1e stars shows that the Hα/CaII equivalent width (EW) ratio varies by up to a factor of 7 for different stars in our sample. We find that spectroscopic binaries have a significantly smaller ratio than single dM1e stars. We also find that the pre-main-sequence stars Gl 616.2, GJ 1264 and Gl 803 have a ratio lower than main-sequence single dM1e stars. These differences imply that different chromospheric structures are present on different stars, notably the temperature minimum must decrease with an increasing Hα/CaII EW ratio. For these reasons, it is impossible to reproduce all observations with only one grid of model chromospheres. We show that the grid of model chromospheres of Paper VI is adequate to describe the physical conditions that prevail in the chromospheres of spectroscopic binaries and pre-main-sequence M1e stars, but not for the conditions in single dM1e stars. One or more additional grids of model chromospheres will be necessary to reproduce all observations. We use the method developed in Paper XI in this series, in order to build two-component model chromospheres for five M1e field stars: FF And A, FF And B, GJ 1264, AU Mic and Gl 815A. Our solutions provide an exact match of the Hα and the mean CaII H & K EWs within measurement uncertainties. We compare the theoretical profiles and the observed profiles of Hα and the CaII H & K resonance lines. On the one hand, our fits to the CaII lines are reasonably good. On the other hand, our models tend to produce Hα profiles with a central absorption that is too deep. This suggests that the column mass at the transition region for plages is underestimated, but this would imply that the contrast factor between quiescent and active regions in the CaII lines is larger than 5. We find that, except in the cases of FF And A and AU Mic, the total

  3. IUE observations of pre-main-sequence stars. I - Mg II and Ca II resonance line fluxes for T Tauri stars

    NASA Technical Reports Server (NTRS)

    Giampapa n, M. S.

    1981-01-01

    IUE satellite and Lick 3 m reflector image tube scanner measurements of the Mg II and Ca II resonance lines in a sample of T Tauri stars are the basis of a discussion of the Mg II h and k line emission and the Ca II H and K line emission, within the context of stellar chromospheres. Corroborative evidence is presented for the chromospheric origin of these resonance lines, and chromospheric radiative loss rates in the Mg II and Ca II resonance lines are derived. It is found that the degree of nonradiative heating present in the outer atmospheres of T Tauri stars generally exceeds that of the RS CVn systems, as well as the dMe stars and other active chromospheric dwarfs, and it is inferred that the surfaces of such pre-main sequence stars are covered by regions similar to solar plages. The mean chromospheric electron density of T Tauri stars is determined as 10 to the 11th/cu cm.

  4. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner

  5. Habitable zone lifetimes of exoplanets around main sequence stars.

    PubMed

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  6. THE HAWAII INFRARED PARALLAX PROGRAM. II. YOUNG ULTRACOOL FIELD DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Michael C.; Dupuy, Trent J.; Allers, Katelyn N., E-mail: mliu@ifa.hawaii.edu

    We present a large, uniform analysis of young (≈10–150 Myr) ultracool dwarfs, based on new high-precision infrared (IR) parallaxes for 68 objects. We find that low-gravity (vl-g) late-M and L dwarfs form a continuous sequence in IR color–magnitude diagrams, separate from the field population and from current theoretical models. These vl-g objects also appear distinct from young substellar (brown dwarf and exoplanet) companions, suggesting that the two populations may have a different range of physical properties. In contrast, at the L/T transition, young, old, and spectrally peculiar objects all span a relatively narrow range in near-IR absolute magnitudes. At a given spectralmore » type, the IR absolute magnitudes of young objects can be offset from ordinary field dwarfs, with the largest offsets occurring in the Y and J bands for late-M dwarfs (brighter than the field) and mid-/late-L dwarfs (fainter than the field). Overall, low-gravity (vl-g) objects have the most uniform photometric behavior, while intermediate gravity (int-g) objects are more diverse, suggesting a third governing parameter beyond spectral type and gravity class. We examine the moving group membership for all young ultracool dwarfs with parallaxes, changing the status of 23 objects (including 8 previously identified planetary-mass candidates) and fortifying the status of another 28 objects. We use our resulting age-calibrated sample to establish empirical young isochrones and show a declining frequency of vl-g objects relative to int-g objects with increasing age. Notable individual objects in our sample include high-velocity (≳100 km s{sup −1}) int-g objects, very red late-L dwarfs with high surface gravities, candidate disk-bearing members of the MBM20 cloud and β  Pic moving group, and very young distant interlopers. Finally, we provide a comprehensive summary of the absolute magnitudes and spectral classifications of young ultracool dwarfs, using a combined sample of 102

  7. The dot{M}-M_* relation of pre-main-sequence stars: a consequence of X-ray driven disc evolution

    NASA Astrophysics Data System (ADS)

    Ercolano, B.; Mayr, D.; Owen, J. E.; Rosotti, G.; Manara, C. F.

    2014-03-01

    We analyse current measurements of accretion rates on to pre-main-sequence stars as a function of stellar mass, and conclude that the steep dependence of accretion rates on stellar mass is real and not driven by selection/detection threshold, as has been previously feared. These conclusions are reached by means of statistical tests including a survival analysis which can account for upper limits. The power-law slope of the dot{M}-M_* relation is found to be in the range of 1.6-1.9 for young stars with masses lower than 1 M⊙. The measured slopes and distributions can be easily reproduced by means of a simple disc model which includes viscous accretion and X-ray photoevaporation. We conclude that the dot{M}-M_* relation in pre-main-sequence stars bears the signature of disc dispersal by X-ray photoevaporation, suggesting that the relation is a straightforward consequence of disc physics rather than an imprint of initial conditions.

  8. Possibility that the far ultraviolet excess in M31 is due to main sequence stars

    NASA Technical Reports Server (NTRS)

    Tinsley, B. M.

    1972-01-01

    The far ultraviolet excess in the central region of M31, observed by OAO-2, could be due to young main sequence stars. More than enough such stars are present in the model for the M31 inner disk population derived by Tinsley and Spinrad (1971) to match line- and color-indices at longer wavelengths. If the far ultraviolet radiation of typical galaxies arises from young stars, the theoretical ultraviolet background is enhanced greatly by evolutionary effects. For evolution at the rate of Tinsley and Spinrad's model for M31, or of Arnett's (1971) linear model for our galaxy, the enhancement is a factor 2.5 to 14, depending on the Hubble constant and the spectrum at wavelengths below 1700 A.

  9. The zero age main sequence of WIMP burners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbairn, Malcolm; Scott, Pat; Edsjoe, Joakim

    2008-02-15

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations whichmore » are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.« less

  10. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    NASA Technical Reports Server (NTRS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  11. A DETAILED FAR-ULTRAVIOLET SPECTRAL ATLAS OF MAIN-SEQUENCE B STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Myron A.

    2010-02-01

    We have constructed a detailed spectral atlas covering the wavelength region 930-1225 A for 10 sharp-lined B0-B9 stars near the main sequence. Most of the spectra we assembled are from the archives of the Far Ultraviolet Spectroscopic Explorer satellite, but for nine stars, wavelength coverage above 1188 A was taken from high-resolution International Ultraviolet Explorer or echelle Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra. To represent the tenth star at type B0.2 V, we used the Copernicus atlas of {tau} Sco. We made extensive line identifications in the region 949-1225 A of all atomic features having published oscillator strengths atmore » types B0, B2, and B8. These are provided as a supplementary data product-hence the term detailed atlas. Our list of found features totals 2288, 1612, and 2469 lines, respectively. We were able to identify 92%, 98%, and 98% of these features with known atomic transitions with varying degrees of certainty in these spectra. The remaining lines do not have published oscillator strengths. Photospheric lines account for 94%, 87%, and 91%, respectively, of all our identifications, with the remainder being due to interstellar (usually molecular H{sub 2}) lines. We also discuss the numbers of lines with respect to the distributions of various ions for these three most studied spectral subtypes. A table is also given of 162 least blended lines that can be used as possible diagnostics of physical conditions in B star atmospheres.« less

  12. Circumstellar Material on and off the Main Sequence

    NASA Astrophysics Data System (ADS)

    Steele, Amy; Debes, John H.; Deming, Drake

    2017-06-01

    There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.

  13. Theory and evidence of global Rossby waves in upper main-sequence stars: r-mode oscillations in many Kepler stars

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria L.; Lee, Umin

    2018-02-01

    Asteroseismic inference from pressure modes (p modes) and buoyancy, or gravity, modes (g modes) is ubiquitous for stars across the Hertzsprung-Russell diagram. Until now, however, discussion of r modes (global Rossby waves) has been rare. Here we derive the expected frequency ranges of r modes in the observational frame by considering the visibility of these modes. We find that the frequencies of r modes of azimuthal order m appear as groups at slightly lower frequency than m times the rotation frequency. Comparing the visibility curves for r modes with Fourier amplitude spectra of Kepler light curves of upper main-sequence B, A, and F stars, we find that r modes are present in many γ Dor stars (as first discovered by Van Reeth et al.), spotted stars, and so-called heartbeat stars, which are highly eccentric binary stars. We also find a signature of r modes in a frequently bursting Be star observed by Kepler. In the amplitude spectra of moderately to rapidly rotating γ Dor stars, r-mode frequency groups appear at lower frequency than prograde g-mode frequency groups, while in the amplitude spectra of spotted early A to B stars, groups of symmetric (with respect to the equator) r-mode frequencies appear just below the frequency of a structured peak that we suggest represents an approximate stellar rotation rate. In many heartbeat stars, a group of frequencies can be fitted with symmetric m = 1 r modes, which can be used to obtain rotation frequencies of these stars.

  14. Hokupa'a-Gemini Discovery of Two Ultracool Companions to the Young Star HD 130948

    NASA Astrophysics Data System (ADS)

    Potter, D.; Martín, E. L.; Cushing, M. C.; Baudoz, P.; Brandner, W.; Guyon, O.; Neuhäuser, R.

    2002-03-01

    We report the discovery of two faint ultracool companions to the nearby (d~17.9 pc) young G2 V star HD 130948 (HR 5534, HIP 72567) using the Hokupa'a adaptive optics (AO) instrument mounted on the Gemini North 8 m telescope. Both objects have the same common proper motion as the primary star as seen over a 7 month baseline and have near-IR photometric colors that are consistent with an early L classification. Near-IR spectra taken with the NIRSPEC AO instrument on the Keck II telescope reveal K I lines, FeH, and H2O band heads. Based on these spectra, we determine that both objects have a spectral type of dL2 with an uncertainty of two spectral subclasses. The position of the new companions on the H-R diagram in comparison with theoretical models is consistent with the young age of the primary star (<0.8 Gyr) estimated on the basis of X-ray activity, lithium abundance, and fast rotation. HD 130948B and C likely constitute a pair of young contracting brown dwarfs with an orbital period of about 10 yr and will yield dynamical masses for L dwarfs in the near future. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  15. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  16. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  17. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will havemore » less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.« less

  18. Linear Relation for Wind-blown Bubble Sizes of Main-sequence OB Stars in a Molecular Environment and Implication for Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhou, Ping; Chu, You-Hua

    2013-05-01

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R b ≈ 1.22 M/M ⊙ - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M ⊙ will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  19. Individual Dynamical Masses of Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Liu, Michael C.

    2017-08-01

    We present the full results of our decade-long astrometric monitoring programs targeting 31 ultracool binaries with component spectral types M7-T5. Joint analysis of resolved imaging from Keck Observatory and Hubble Space Telescope and unresolved astrometry from CFHT/WIRCam yields parallactic distances for all systems, robust orbit determinations for 23 systems, and photocenter orbits for 19 systems. As a result, we measure 38 precise individual masses spanning 30-115 {M}{Jup}. We determine a model-independent substellar boundary that is ≈70 {M}{Jup} in mass (≈L4 in spectral type), and we validate Baraffe et al. evolutionary model predictions for the lithium-depletion boundary (60 {M}{Jup} at field ages). Assuming each binary is coeval, we test models of the substellar mass-luminosity relation and find that in the L/T transition, only the Saumon & Marley “hybrid” models accounting for cloud clearing match our data. We derive a precise, mass-calibrated spectral type-effective temperature relation covering 1100-2800 K. Our masses enable a novel direct determination of the age distribution of field brown dwarfs spanning L4-T5 and 30-70 {M}{Jup}. We determine a median age of 1.3 Gyr, and our population synthesis modeling indicates our sample is consistent with a constant star formation history modulated by dynamical heating in the Galactic disk. We discover two triple-brown-dwarf systems, the first with directly measured masses and eccentricities. We examine the eccentricity distribution, carefully considering biases and completeness, and find that low-eccentricity orbits are significantly more common among ultracool binaries than solar-type binaries, possibly indicating the early influence of long-lived dissipative gas disks. Overall, this work represents a major advance in the empirical view of very low-mass stars and brown dwarfs.

  20. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    NASA Astrophysics Data System (ADS)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  1. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  2. A multi-wavelength study of pre-main sequence stars in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Guenther, E. W.; Stelzer, B.; Neuhäuser, R.; Hillwig, T. C.; Durisen, R. H.; Menten, K. M.; Greimel, R.; Barwig, H.; Englhauser, J.; Robb, R. M.

    2000-05-01

    Although many lowmass pre-main sequence stars are strong X-ray sources, the origin of the X-ray emission is not well known. Since these objects are variable at all frequencies, simultaneous observations in X-rays and in other wavelengths are able to constrain the properties of the X-ray emitting regions. In this paper, we report quasi-simultaneous observations in X-rays, the optical, and the radio regime for classical and weak-line T Tauri stars from the Taurus-Auriga star-forming region. We find that all detected T Tauri stars show significant night-to-night variations of the X-ray emission. For three of the stars, FM Tau and CW Tau, both classical T Tauri stars, and V773 Tau, a weak-line T Tauri star, the variations are especially large. From observations taken simultaneously, we also find that there is some correspondence between the strength of Hα and the X-ray brightness in V773 Tau. The lack of a strong correlation leads us to conclude that the X-ray emission of V773 Tau is not a superposition of flares. However, we suggest that a weak correlation occurs because chromospherically active regions and regions of strong X-ray emission are generally related. V773 Tau was detected at 8.46 GHz as a weakly circularly polarised but highly variable source. We also find that the X-ray emission and the equivalent width of Hα remained unchanged, while large variations of the flux density in the radio regime were observed. This clearly indicates that the emitting regions are different. Using optical spectroscopy we detected a flare in Hα and event which showed a flare-like light-curve of the continuum brightness in FM Tau. However, ROSAT did not observe the field at the times of these flares. Nevertheless, an interesting X-ray event was observed in V773 Tau, during which the flux increased for about 8 hours and then decreased back to the same level in 5 hours. We interpret this as a long-duration event similar to those seen on the sun and other active stars. In the

  3. Ultracool Dwarfs and their companions

    NASA Astrophysics Data System (ADS)

    Blake, Cullen H.

    This thesis explores new techniques for making precise measurements of low-mass stars and brown dwarfs, collectively known as Ultracool Dwarfs (UCDs). These new techniques are directly applicable to the search for extrasolar planets and efforts to test theoretical models of stellar structure and evolution at the bottom of the main sequence. The first three chapters of this thesis describe the development and application of a new technique for making radial velocity measurements of UCDs at near infrared (NIR) wavelengths. The first chapter describes a pilot study that demonstrates a significant improvement over previous work on Doppler measurements in the NIR. Using this technique we have carried out a Doppler survey of 65 L dwarfs. The second chapter describes the discovery of a new spectroscopic binary that may be one of the most important for constraining theoretical models of UCDs. The third chapter describes the Doppler survey in detail and presents measurements of a new spectroscopic binary system that is an excellent candidate for a giant planetary companion to a mid-L dwarf. This chapter also includes a discussion of the of the rotation, space motions, and binarity of the L dwarfs in the survey sample. The fourth chapter describes efforts to obtain precise photometric measurements of UCDs with the Peters Automated Infrared Imaging Telescope (PAIRITEL). Using software scheduling and data reduction systems designed in part by the author, PAIRITEL gathered more than 10 6 seconds of observations of a sample of 20 UCDs. We investigate the limitations to ground-based infrared photometry and characterize the ability of a system like PAIRITEL to detect transits of UCDs by Earth-like planets. The fifth chapter explores the potential impact of future synoptic surveys on studies of UCDs. Surveys like Pan-STARRS and LSST will obtain a small number of high-quality observations of a large number of UCDs. Using data from the Sloan Digital Sky Survey, we demonstrate that

  4. The properties and environment of primitive solar nebulae as deduced from observations of solar-type pre-main sequence stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan; Strom, Karen M.

    1991-01-01

    The following topics were discussed: (1) current observation evidence for the presence of circumstellar disks associated with solar type pre-main sequence (PMS) stars; (2) the properties of such disks; and (3) the disk environment.

  5. A Population Study of Wide-Separation Brown Dwarf Companions to Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey J.

    2005-01-01

    Increased interest in infrared astronomy has opened the frontier to study cooler objects that shed significant light on the formation of planetary systems. Brown dwarf research provides a wealth of information useful for sorting through a myriad of proposed formation theories. Our study combines observational data from 2MASS with rigorous computer simulations to estimate the true population of long-range (greater than 1000 AU) brown dwarf companions in the solar neighborhood (less than 25 pc from Earth). Expanding on Gizis et al. (2001), we have found the margin of error in previous estimates to be significantly underestimated after we included orbit eccentricity, longitude of pericenter, angle of inclination, field star density, and primary and secondary luminosities as parameters influencing the companion systems in observational studies. We apply our simulation results to current L- and T-dwarf catalogs to provide updated estimates on the frequency of wide-separation brown dwarf companions to main sequence stars.

  6. The discovery of low-mass pre-main-sequence stars in Cepheus OB3b

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Naylor, T.; Jeffries, R. D.; Drew, J. E.

    2003-05-01

    We report the discovery of a low-mass pre-main-sequence (PMS) stellar population in the younger subgroup of the Cepheus OB3 association, Cep OB3b, using UBVI CCD photometry and follow-up spectroscopy. The optical survey covers approximately 1300 arcmin2 on the sky and gives a global photometric and astrometric catalogue for more than 7000 objects. The location of a PMS population is well defined in a V versus (V-I) colour-magnitude diagram. Multifibre spectroscopic results for optically selected PMS candidates confirm the T Tauri nature for 10 objects, with equal numbers of classical TTS (CTTS) and weak-line TTS (WTTS). There are six other objects that we classify as possible PMS stars. The newly discovered TTS stars have masses in the range ~0.9-3.0 Msolar and ages from <1 to nearly 10 Myr, based on the Siess, Dufour & Forestini isochrones. Their location close to the O and B stars of the association (especially the O7n star) demonstrates that low-mass star formation is indeed possible in such an apparently hostile environment dominated by early-type stars and that the latter must have been less effective in eroding the circumstellar discs of their lower-mass siblings compared with other OB associations (e.g. λ-Ori). We attribute this to the nature of the local environment, speculating that the bulk of molecular material, which shielded low-mass stars from the ionizing radiation of their early-type siblings, has only recently been removed.

  7. A search for pre-main sequence stars in the high-latitude molecular clouds. II - A survey of the Einstein database

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre; Magnani, Loris

    1990-01-01

    The preliminary results are reported of a survey of every EINSTEIN image which overlaps any high-latitude molecular cloud in a search for X-ray emitting pre-main sequence stars. This survey, together with complementary KPNO and IRAS data, will allow the determination of how prevalent low mass star formation is in these clouds in general and, particularly, in the translucent molecular clouds.

  8. Pre-main Sequence Evolution and the Hydrogen-Burning Minimum Mass

    NASA Astrophysics Data System (ADS)

    Nakano, Takenori

    There is a lower limit to the mass of the main-sequence stars (the hydrogen-burning minimum mass) below which the stars cannot replenish the energy lost from their surfaces with the energy released by the hydrogen burning in their cores. This is caused by the electron degeneracy in the stars which suppresses the increase of the central temperature with contraction. To find out the lower limit we need the accurate knowledge of the pre-main sequence evolution of very low-mass stars in which the effect of electron degeneracy is important. We review how Hayashi and Nakano (1963) carried out the first determination of this limit.

  9. A Search for Planets and Brown Dwarfs around Post Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Otani, Tomomi; Oswalt, Terry D.

    2016-06-01

    The most promising current theory for the origin of subdwarf B (sdB) stars is that they were formed during binary star evolution. This project was conducted to test this hypothesis by searching for companions around six sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion. If it is emitting a periodic signal, the orbital motion of the star around the system’s center of mass causes periodic changes in the light pulse arrival times. O-C diagrams for six sdB pulsators were constructed from several years’ observations, providing useful limits on suspected companions’ minimum masses and semimajor axes. The results were constrained by “period vs. amplitude” and “mass vs. semimajor axis” models to quantify companion masses and semimajor axes that are consistent with the observational data, if any. Two of our targets, V391 Peg and HS0702+6043, are noted in previous publications to have substellar companions. These were used to validate the method used in this research. The results of this study yielded the same masses and semimajor axes for these two stars as the published values, within the uncertainties. Another of the targets, EC20117-4014, is noted in the literature as a binary system containing an sdB and F5V star, however the orbital period and separation were unknown. The new data obtained in this study contain the signal of a companion candidate with a period of 158.01 days. Several possible mass and semimajor axis combinations for the companion are consistent with the observations. One of the other targets in this study displayed preliminary evidence for a companion that will require further observation. Though still a small sample, these results suggest that planets often survive the post-main-sequence evolution of their parent stars.

  10. Reevaluating the Mass-Radius Relation for Low-mass, Main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Chaboyer, Brian

    2012-09-01

    We examine the agreement between the observed and theoretical low-mass (<0.8 M ⊙) stellar main-sequence mass-radius relationship by comparing detached eclipsing binary (DEB) data with a new, large grid of stellar evolution models. The new grid allows for a realistic variation in the age and metallicity of the DEB population, characteristic of the local galactic neighborhood. Overall, our models do a reasonable job of reproducing the observational data. A large majority of the models match the observed stellar radii to within 4%, with a mean absolute error of 2.3%. These results represent a factor of two improvement compared to previous examinations of the low-mass mass-radius relationship. The improved agreement between models and observations brings the radius deviations within the limits imposed by potential starspot-related uncertainties for 92% of the stars in our DEB sample.

  11. Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Scelsi, L.; Sacco, G.; Affer, L.; Argiroffi, C.; Pillitteri, I.; Maggio, A.; Micela, G.

    2008-11-01

    Aims: We have analyzed optical spectra of 25 X-ray sources identified as potential new members of the Taurus molecular cloud (TMC), in order to confirm their membership in this star-forming region. Methods: Fifty-seven candidate members were previously selected among the X-ray sources in the XEST survey, having a 2MASS counterpart compatible with a pre-main sequence star based on color-magnitude and color-color diagrams. We obtained high-resolution optical spectra for 7 of these candidates with the SARG spectrograph at the TNG telescope, which were used to search for lithium absorption and to measure the Hα line and the radial and rotational velocities. Then, 18 low-resolution optical spectra obtained with the instrument DOLORES for other candidate members were used for spectral classification, for Hα measurements, and to assess membership together with IR color-color and color-magnitude diagrams and additional information from the X-ray data. Results: We found that 3 sources show lithium absorption, with equivalent widths (EWs) of 500 mÅ, broad spectral line profiles, indicating rotational velocities of 20{-}40 km s-1, radial velocities consistent with those for known members, and Hα emission. Two of them are classified as new weak-lined T Tauri stars, while the EW ( -9 Å) of the Hα line and its broad asymmetric profile clearly indicate that the third star (XEST-26-062) is a classical T Tauri star. Fourteen sources observed with DOLORES are M-type stars. Fifteen sources show Hα emission. Six of them have spectra that indicate surface gravity lower than in main sequence stars, and their de-reddened positions in IR color-magnitude diagrams are consistent with their derived spectral type and with pre-main sequence models at the distance of the TMC. The K-type star XEST-11-078 is confirmed as a new member on the basis of the strength of the Hα emission line. Overall, we confirm membership to the TMC for 10 out of 25 X-ray sources observed in the optical. Three

  12. Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol

    1995-01-01

    We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.

  13. High Dispersion Line Profile Studies of TW HYA and Other Pre-Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    1984-07-01

    We propose to extend our study of line profiles in T Tauri stars by obtaining a 16 hour SWP-HI spectrum of TW Hya and 6-8 hour LWP-HI spectra of TW Hya, AK Sco, CoD -35 10525 and CoD -33 10685. High dispersion spectra of pre-main sequence (PMS) stars provide unique information on line widths, shifts, and asymmetries, as well as evidence for mass outflow, circumstellar absorption, and diagnostics for the temperature structure of the outer atmosphere layers of these complex yet incredibly important objects. We have previously obtained and studied line profiles in RU Lupi and the prototype star T Tau. RU Lupi has line profiles that are dominated by the wind expansion, for example the MgII and FeII multiplet UV1 profiles are unique in that they have a classical P Cygni shape, whereas T Tau has more symmetric emission profiles indicative of a chromosphere and hotter layers not dominated by expansion. TW Hya is different from these two previously studied stars in that it may be the brightest known example of a post-T Tauri star, and hence less active and older than the other PMS stars. We intend to compare its line profiles with those of RU Lupi and T Tauri in order to understand the differences in the non-thermal mass motions, wind expansion, and thermal structures of these three very different T Tau stars. The requested LWPHI spectra are to obtain MgII and FeII multiplet UV1. profiles of 4 different T Tauri objects so as to infer the expansion and thermal structure in their chromospheric layers.

  14. The Hyades main sequence

    NASA Astrophysics Data System (ADS)

    Eggen, O. J.

    1982-11-01

    Intermediate band, H-beta and RI observations of 72 Hyades cluster stars to V = 11 mag are reported and discussed. A modulus of 3.2 mag is derived on the basis of a comparison with field stars of large parallax. Also presented are observations of 98 main-sequence stars of the Hyades group that were previously found to be group members from kinematical considerations. Parallaxes of the group stars, computed on the assumption that they are members of an extended Hyades cluster, yield mean values of (U, V, W) = (+40.5, -18.4, -4.9) km/s, with dispersions of (2.3, 2.3, 6.0) km/s, compared with (+41.7, -18.4, -2.0) and (2.6, 1.3, 1.9) km/s for the brightest cluster members. It is noted that all the stars discussed can be considered as members of a supercluster in which only a slight relaxation control of the W velocities is present for stars far from the nucleus. Evidence is found, including that of the Praesepe cluster at Z = +80 pc, for some interchange between the U, V, and W velocities in stars farthest from the galactic plane, with the total cluster velocity being maintained.

  15. Using the phase shift to asymptotically characterize the dipolar mixed modes in post-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Christensen-Dalsgaard, J.; Cunha, M.

    2018-03-01

    Mixed modes have been extensively observed in post-main-sequence stars by the Kepler and CoRoT space missions. The mixture of the p and g modes can be measured by the dimensionless coefficient q, the so-called coupling strength factor. In this paper, we discuss the utility of the phase shifts θ from the eigenvalue condition for mixed modes as a tool to characterize dipolar mixed modes from the theoretical as well as the practical point of view. Unlike the coupling strength, whose variation in a given star is very small over the relevant frequency range, the phase shifts vary significantly for different modes. The analysis in terms of θ can also provide a better understanding of the pressure and gravity radial order for a given mixed mode. Observed frequencies of the Kepler red-giant star KIC 3744043 are used to test the method. The results are very promising.

  16. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  17. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  18. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fractionmore » of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.« less

  19. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul; Roth, Lorenz; Strobel, D.; Reiners, Ansgar

    2018-01-01

    An interesting question about ultracool dwarfs is whether their emission is purely internally driven or partially powered by external processes similar to auroral emission known from planetary bodies of the solar system. Here we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the UV. The dwarf’s UV emission is generally weaker compared to younger-type M-dwarfs. We detect the Mg II doublet at 2800 A and constrain an average flux throughout the Near-UV. In the Far-UV without Lyman alpha, the ultracool dwarf is extremely faint with an energy output of at least a factor of 1000 smaller than expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyman alpha emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of M-dwarf stars much closer than the spectrum expected from Jupiter-like auroral processes.

  20. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul D.; Roth, Lorenz; Strobel, Darrell F.; Reiners, Ansgar

    2018-05-01

    An interesting question about ultracool dwarfs recently raised in the literature is whether their emission is purely internally driven or partially powered by external processes similar to planetary aurora known from the solar system. In this work, we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the ultraviolet (UV). The obtained spectra reveal that the object is generally UV-fainter compared with other earlier-type dwarfs. We detect the Mg II doublet at 2800 Å and constrain an average flux throughout the near-UV. In the far-UV without Lyα, the ultracool dwarf is extremely faint with an energy output at least a factor of 250 smaller as expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyα emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of mid/late-type M-dwarf stars relatively well, but it is distinct from a spectrum expected from Jupiter-like auroral processes.

  1. Extended Star Formation or a Range of Stellar Rotation Velocities? The Nature of Extended Main Sequence Turnoffs in Intermediate-Age Star Clusters

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2016-10-01

    Recently, deep color-magnitude diagrams (CMDs) from HST data revealed that several massive intermediate-age star clusters in the Magellanic Clouds exhibit extended main-sequence turn-offs (eMSTOs), and in some cases also dual red clumps. This poses serious questions regarding the mechanisms responsible for the formation of massive star clusters and their well-known light-element abundance variations. The nature of eMSTOs is currently a hotly debated topic of study. Several recent studies indicate that the eMSTOs are caused by an age spread of about 100-500 Myr among cluster stars, while other studies indicate that eMSTOs can be caused by a coeval population in which the relevant stars span a range of rotation velocities. Formal evidence to (dis-)prove either scenario still remains at large, mainly because the available stellar tracks that incorporate the effects of rotation are only available for masses > 1.7 Msun whereas the stars in the known eMSTOs of intermediate-age clusters are less massive. To circumvent this issue, we identified a massive star cluster in the Large Magellanic Cloud (LMC) that has the right dynamical properties to host an eMSTO along with an age at which the effects of age spreads to CMD morphology are substantially different from those of spreads of rotation rates: the 600 Myr old cluster NGC 1831. We propose to obtain deep WFC3/UVIS imaging with filters F336W and F814W to analyze the morphologies of the MSTO and upper MS regions of NGC 1831 at high precision and compare with model predictions. This will have a lasting impact on our understanding of the eMSTO phenomenon and of star cluster formation in general.

  2. Heavy Element Abundances in Two B0-B0.5 Main Sequence Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.

    We propose FUSE observations of AV304 (B0.5V) and NGC346-637 B0V), two sharp-lined main-sequence stars in the Small Magellanic Cloud, to determine the abundances of heavy elements, especially those of the iron group. The FUSE spectral region contains numerous Fe III lines, including the resonance multiplet (UV 1) near 1130 Angstroms, that is excellent for abundance determinations and two strong multiplets of V III, an ion that does not produce measurable lines longward of 1200 Angstoms, in metal-deficient stars. In addition there are several measurable lines from Cr III and Mn III. A limited analyses of ground-based spectra of these stars by Dufton et al. (1990) and Rolleston et al. (1993) indicated an average underabundance of 0.7-0.8 dex for most light elements and a recent analysis of HSTSTIS data on AV304 by Peters & Grigsby (2001) suggests that the Fe group elements are depleted by the same amount relative to the sun. When combined with the HST-STIS results, this effort will represent the first attempt to measure the abundances of Fe group elements in the photospheres of early B, main sequence stars in an external galaxy. Although abundances of the Fe-peak elements are of interest because they are important for assessing opacities for stellar evolution calculations and the validity of theoretical calculations of explosive nucleosynthesis, the ground-based study did not yield this information because measurable lines from these species are found only in the UV spectral region. Abundances and abundance ratios of both heavy & light elements will be compared with the HST-STIS results from AV304, H II regions, supernova remnants, evolved massive stars in the SMC, and theoretical calculations of nucleosynthesis.

  3. First discovery of a magnetic field in a main-sequence δ Scuti star: the Kepler star HD 188774

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Lampens, P.

    2015-11-01

    The Kepler space mission provided a wealth of δ Sct-γ Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler δ Sct-γ Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at Canada-France-Hawaii Telescope. The data were analysed with the least-squares deconvolution (LSD) method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid δ Sct-γ Dor star, but the first known magnetic main-sequence δ Sct star. This makes it a prime target for future asteroseismic and spot modelling. This result casts new light on the interpretation of the Kepler results for other δ Sct-γ Dor hybrid candidates.

  4. Persistent Sub-Yearly Chromospheric Variations in Lower Main-Sequence Stars: Tau Booe and alpha Com

    NASA Technical Reports Server (NTRS)

    Maulik, Davesh; Donahue, Robert A.; Baliunas, Sallie L.

    1997-01-01

    The recent discoveries of extrasolar planetary systems around lower main-sequence stars such as tau Booe (HD 120136) has prompted further investigation into their stellar activity. A cursory analysis of tau Booe for cyclic chromospheric activity, based on its 30-yr record of Ca 2 H and K fluxes obtained as part of the HK Project from Mount Wilson Observatory, finds an intermediate, sub-yearly period (approximately 117 d) in chromospheric activity in addition to, and separate from, both its rotation (3.3 d) and long-term variability. As a persistent subyearly period in surface magnetic activity is unprecedented, we investigate this apparent anomaly further by examining chromospheric activity levels of other stars with similar mass, searching for variability in chromospheric activity with periods of less than one year, but longer than measured or predicted rotation. An examination of the time series of 40 mid-to-late F dwarfs yielded one other star for further analysis: alpha Com (HD 114378, P approximately 132 d). The variations for these two stars were checked for persistence and coherence. Based on these determinations, we eliminate the possibilities of rotation, long-term activity cycle, and the evolution of active regions as the cause of this variation in both stars. In particular, for tau Booe we infer that the phenomenon may be chromospheric in origin; however, beyond this, it is difficult to identify anything further regarding the cause of the activity variations, or even whether the observed modulation in the two stars have the same origin.

  5. On The Sfr-M* Main Sequence Archetypal Star-Formation History And Analytical Models

    NASA Astrophysics Data System (ADS)

    Ciesla, Laure; Elbaz, David; Fensch, Jeremy

    2017-06-01

    From the evolution of the main sequence we can build the star formation history (SFH) of MS galaxies, assuming that they follow this relation all their life. We show that this SFH is not only a function of cosmic time but also involve the seed mass of the galaxy. We discuss the implications of this MS SFH on the stellar mass growth, and the entry in the passive region of the UVJ diagram, while the galaxy is still forming stars. We test the ability of different analytical SFH forms found in the literature to probe the SFR of all type of galaxies. Using a sample of GOODS-South galaxies, we show that these SFHs artificially enhance or create a gradient of age, parallel to the MS. A simple model of a MS galaxy, such as those expected from compaction or variation in gas accretion, undergoing some fluctuations provide does not predict such a gradient, that we show is due to SFH assumptions. We propose an improved analytical form, taking into account a flexibility in the recent SFH that we calibrate as a diagnostic to identify rapidly quenched galaxies from large photometric survey.

  6. M Dwarfs From The SDSS, 2MASS and WISE Surveys: Identification, Characterisation and Unresolved Ultracool Companionship

    NASA Astrophysics Data System (ADS)

    Cook, Neil James

    2016-08-01

    The aim of this thesis is to use a cross-match between WISE, 2MASS and SDSS to identify a large sample of M dwarfs. Through the careful characterisation and quality control of these M dwarfs I aim to identify rare systems (i.e. unresolved UCD companions, young M dwarfs, late M dwarfs and M dwarfs with common proper motion companions). Locating ultracool companions to M dwarfs is important for constraining low-mass formation models, the measurement of substellar dynamical masses and radii, and for testing ultracool evolutionary models. This is done by using an optimised method for identifying M dwarfs which may have unresolved ultracool companions. To do this I construct a catalogue of 440 694 M dwarf candidates, from WISE, 2MASS and SDSS, based on optical- and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints I isolate a sub-sample of 36 898 M dwarfs and search for possible mid-infrared M dwarf + ultracool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). I present 1 082 M dwarf + ultracool dwarf candidates for follow-up. Using simulated ultracool dwarf companions to M dwarfs, I estimate that the occurrence of unresolved ultracool companions amongst my M dwarf + ultracool dwarf candidates should be at least four times the average for my full M dwarf catalogue. I discuss yields of candidates based on my simulations. The possible contamination and bias from misidentified M dwarfs is then discussed, from chance alignments with other M dwarfs and UCDs, from chance alignments with giant stars, from chance alignments with galaxies, and from blended systems (via visual inspection). I then use optical spectra from LAMOST to spectral type a subset of my M dwarf + ultracool dwarf candidates. These candidates need confirming as true M dwarf + ultracool dwarf systems thus I present a new method I developed to

  7. The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields

    NASA Astrophysics Data System (ADS)

    Santini, Paola; Fontana, Adriano; Castellano, Marco; Di Criscienzo, Marcella; Merlin, Emiliano; Amorin, Ricardo; Cullen, Fergus; Daddi, Emanuele; Dickinson, Mark; Dunlop, James S.; Grazian, Andrea; Lamastra, Alessandra; McLure, Ross J.; Michałowski, Michał. J.; Pentericci, Laura; Shu, Xinwen

    2017-09-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M), I.e., the main sequence (MS) relation of star-forming galaxies, at 1.3≤slant z< 6 in the first four Hubble Space Telescope (HST) Frontier Fields, on the basis of rest-frame UV observations. Gravitational lensing combined with deep HST observations allows us to extend the analysis of the MS down to {log} M/{M}⊙ ˜ 7.5 at z≲ 4 and {log} M/{M}⊙ ˜ 8 at higher redshifts, a factor of ˜10 below most previous results. We perform an accurate simulation to take into account the effect of observational uncertainties and correct for the Eddington bias. This step allows us to reliably measure the MS and in particular its slope. While the normalization increases with redshift, we fit an unevolving and approximately linear slope. We nicely extend to lower masses the results of brighter surveys. Thanks to the large dynamic range in mass and by making use of the simulation, we analyzed any possible mass dependence of the dispersion around the MS. We find tentative evidence that the scatter decreases with increasing mass, suggesting a larger variety of star formation histories in low-mass galaxies. This trend agrees with theoretical predictions and is explained as either a consequence of the smaller number of progenitors of low-mass galaxies in a hierarchical scenario and/or of the efficient but intermittent stellar feedback processes in low-mass halos. Finally, we observe an increase in the SFR per unit stellar mass with redshift milder than predicted by theoretical models, implying a still incomplete understanding of the processes responsible for galaxy growth.

  8. The origin of the scatter of the star forming main sequence at z=0

    NASA Astrophysics Data System (ADS)

    Shanahan, Clare; Somerville, Rachel S.; Saintonge, Amelie; Huang, Mei-Ling

    2016-01-01

    We investigate the origin of the dispersion in the relationship between star formation rate (SFR) and stellar mass, known as the star forming main sequence (SFMS). Our study includes predictions from a state-of-the-art semi-analytic model (SAM) as well as observations from the COLDGASS, Bluedisk, and GAMA surveys. Using a simple toy model we demonstrate that, in the absence of a correlation between gas fraction and galaxy size, we would expect more compact disks to live 'high' on the SFMS, and vice versa, due to the observational Kennicutt relation. We demonstrate that this correlation is not seen in the observations, nor is it predicted by the SAM. We find in both the model and the observations that extended disks have a higher fraction of their baryonic mass in total cold gas and in HI and $H_{2}$ gas separately, offsetting the dependence of SFR on disk size. We investigate the origin of the gas fraction-size correlation in the SAMs, and find that it is connected with the rate of cosmological accretion of gas from the intergalactic medium.

  9. SPLAT: Using Spectral Indices to Identify and Characterize Ultracool Stars, Brown Dwarfs and Exoplanets in Deep Surveys and as Companions to Nearby Stars

    NASA Astrophysics Data System (ADS)

    Aganze, Christian; Burgasser, Adam J.; Martin, Eduardo; Konopacky, Quinn; Masters, Daniel C.

    2016-06-01

    The majority of ultracool dwarf stars and brown dwarfs currently known were identified in wide-field red optical and infrared surveys, enabling measures of the local, typically isolated, population in a relatively shallow (<100 pc radius) volume. Constraining the properties of the wider Galactic population (scale height, radial distribution, Population II sources), and close brown dwarf and exoplanet companions to nearby stars, requires specialized instrumentation, such as high-contrast, coronagraphic spectrometers (e.g., Gemini/GPI, VLT/Sphere, Project 1640); and deep spectral surveys (e.g., HST/WFC3 parallel fields, Euclid). We present a set of quantitative methodologies to identify and robustly characterize sources for these specific populations, based on templates and tools developed as part of the SpeX Prism Library Analysis Toolkit. In particular, we define and characterize specifically-tuned sets spectral indices that optimize selection of cool dwarfs and distinguish rare populations (subdwarfs, young planetary-mass objects) based on low-resolution, limited-wavelength-coverage spectral data; and present a template-matching classification method for these instruments. We apply these techniques to HST/WFC3 parallel fields data in the WISPS and HST-3D programs, where our spectral index set allows high completeness and low contamination for searches of late M, L and T dwarfs to distances out to ~3 kpc.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  10. Prof. Hayashi's work on the pre-main sequence evolution and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Nakano, Takenori

    2012-09-01

    Prof. Hayashi's work on the evolution of stars in the pre-main sequence stage is reviewed. The historical background and the process of finding the Hayashi phase are mentioned. The work on the evolution of low-mass stars is also reviewed including the determination of the bottom of the main sequence and evolution of brown dwarfs, and comparison is made with the other works in the same period.

  11. Radio detections of southern ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C.

    2016-04-01

    We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 increasing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1-2)R*, magnetic field inclination 20°-80°, field strength ˜10-200 G, and power-law electron density ˜104-108 cm-3. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Güdel-Benz relation by more than two orders of magnitude.

  12. The environmental impacts on the star formation main sequence: An Hα study of the newly discovered rich cluster at z = 1.52

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Yusei; Kodama, Tadayuki; Tadaki, Ken-ichi

    2014-07-01

    We report the discovery of a strong over-density of galaxies in the field of a radio galaxy at z = 1.52 (4C 65.22) based on our broadband and narrow-band (Hα) photometry with the Subaru Telescope. We find that Hα emitters are located in the outskirts of the density peak (cluster core) dominated by passive red-sequence galaxies. This resembles the situation in lower-redshift clusters, suggesting that the newly discovered structure is a well-evolved rich galaxy cluster at z = 1.5. Our data suggest that the color-density and stellar mass-density relations are already in place at z ∼ 1.5, mostly driven bymore » the passive red massive galaxies residing within r{sub c} ≲ 200 kpc from the cluster core. These environmental trends almost disappear when we consider only star-forming (SF) galaxies. We do not find SFR-density or SSFR-density relations amongst SF galaxies, and the location of the SF main sequence does not significantly change with environment. Nevertheless, we find a tentative hint that star-bursting galaxies (up-scattered objects from the main sequence) are preferentially located in a small group at ∼1 Mpc away from the main body of the cluster. We also argue that the scatter of the SF main sequence could be dependent on the distance to the nearest neighboring galaxy.« less

  13. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Correnti, Matteo; Girardi, Léo, E-mail: goudfroo@stsci.edu

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotationmore » velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.« less

  14. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, J. D.; Rujopakarn, W.; Daddi, E.

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxiesmore » having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.« less

  15. A Higher Efficiency of Converting Gas to Stars Pushes Galaxies at z ˜ 1.6 Well Above the Star-forming Main Sequence

    NASA Astrophysics Data System (ADS)

    Silverman, J. D.; Daddi, E.; Rodighiero, G.; Rujopakarn, W.; Sargent, M.; Renzini, A.; Liu, D.; Feruglio, C.; Kashino, D.; Sanders, D.; Kartaltepe, J.; Nagao, T.; Arimoto, N.; Berta, S.; Béthermin, M.; Koekemoer, A.; Lutz, D.; Magdis, G.; Mancini, C.; Onodera, M.; Zamorani, G.

    2015-10-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ˜ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (˜300-800 M⊙ yr-1) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ˜ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (˜30%-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  16. Constraining tidal dissipation in F-type main-sequence stars: the case of CoRoT-11

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Damiani, C.; Gandolfi, D.

    2011-05-01

    Context. Tidal dissipation in late-type stars is presently poorly understood and the study of planetary systems hosting hot Jupiters can provide new observational constraints to test proposed theories. Aims: We focus on systems with F-type main-sequence stars and find that the recently discovered system CoRoT-11 is presently the best suited for this kind of investigation. Methods: A classic constant tidal lag model is applied to reproduce the evolution of the system from a plausible nearly synchronous state on the zero-age main sequence (ZAMS) to the present state, thus putting constraints on the average modified tidal quality factor < Q_s' > of its F6V star.Initial conditions with the stellar rotation period longer than the orbital period of the planet can be excluded on the basis of the presently observed state in which the star spins faster than the planet orbit. Results: It is found that 4 × 106 ≲ < Q_s' > ≲ 2 × 107, if the system started its evolution on the ZAMS close to synchronization, with an uncertainty related to the constant tidal lag hypothesis and the estimated stellar magnetic braking within a factor of ≈5-6.For a non-synchronous initial state of the system, < Qs' > ≲ 4 × 106 implies an age younger than ~1 Gyr, while < Q_s' > ≳ 2 × 107 may be tested by comparing the theoretically derived initial orbital and stellar rotation periods with those of a sample of observed systems. Moreover, we discuss how the present value of Qs' can be measured by a timing of the mid-epoch and duration of the transits as well as of the planetary eclipses to be observed in the infrared with an accuracy of ~0.5-1 s over a time baseline of ~25 yr. Conclusions: CoRoT-11 is a highly interesting system that potentially allows us a direct measure of the tidal dissipation in an F-type star as well as the detection of the precession of the orbital plane of the planet that provides us with an accurate upper limit for the obliquity of the stellar equator. If the

  17. CAN WE PREDICT THE GLOBAL MAGNETIC TOPOLOGY OF A PRE-MAIN-SEQUENCE STAR FROM ITS POSITION IN THE HERTZSPRUNG-RUSSELL DIAGRAM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, S. G.; Hillenbrand, L. A.; Donati, J.-F.

    2012-08-20

    Zeeman-Doppler imaging studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (H-R) diagrams for the stars in the sample. Intriguingly, the large-scale field topology of a given pre-main-sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we arguemore » that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the H-R diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the H-R diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of {approx}40% of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars above {approx}> 0.5 M{sub Sun} appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main-sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars ({approx}< 0.5 M{sub Sun} at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the H-R diagram are confirmed, they may provide a new method of constraining PMS stellar evolution models.« less

  18. A method for selecting M dwarfs with an increased likelihood of unresolved ultracool companionship

    NASA Astrophysics Data System (ADS)

    Cook, N. J.; Pinfield, D. J.; Marocco, F.; Burningham, B.; Jones, H. R. A.; Frith, J.; Zhong, J.; Luo, A. L.; Qi, Z. X.; Lucas, P. W.; Gromadzki, M.; Day-Jones, A. C.; Kurtev, R. G.; Guo, Y. X.; Wang, Y. F.; Bai, Y.; Yi, Z. P.; Smart, R. L.

    2016-04-01

    Locating ultracool companions to M dwarfs is important for constraining low-mass formation models, the measurement of substellar dynamical masses and radii, and for testing ultracool evolutionary models. We present an optimized method for identifying M dwarfs which may have unresolved ultracool companions. We construct a catalogue of 440 694 M dwarf candidates, from Wide-Field Infrared Survey Explorer, Two Micron All-Sky Survey and Sloan Digital Sky Survey, based on optical- and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints we isolate a subsample of 36 898 M dwarfs and search for possible mid-infrared M dwarf + ultracool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). We present 1082 M dwarf + ultracool dwarf candidates for follow-up. Using simulated ultracool dwarf companions to M dwarfs, we estimate that the occurrence of unresolved ultracool companions amongst our M dwarf + ultracool dwarf candidates should be at least four times the average for our full M dwarf catalogue. We discuss possible contamination and bias and predict yields of candidates based on our simulations.

  19. The slowly pulsating B-star 18 Pegasi: A testbed for upper main sequence stellar evolution

    NASA Astrophysics Data System (ADS)

    Irrgang, A.; Desphande, A.; Moehler, S.; Mugrauer, M.; Janousch, D.

    2016-06-01

    The predicted width of the upper main sequence in stellar evolution models depends on the empirical calibration of the convective overshooting parameter. Despite decades of discussions, its precise value is still unknown and further observational constraints are required to gauge it. Based on a photometric and preliminary asteroseismic analysis, we show that the mid B-type giant 18 Peg is one of the most evolved members of the rare class of slowly pulsating B-stars and, thus, bears tremendous potential to derive a tight lower limit for the width of the upper main sequence. In addition, 18 Peg turns out to be part of a single-lined spectroscopic binary system with an eccentric orbit that is greater than 6 years. Further spectroscopic and photometric monitoring and a sophisticated asteroseismic investigation are required to exploit the full potential of this star as a benchmark object for stellar evolution theory. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 265.C-5038(A), 069.C-0263(A), and 073.D-0024(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), proposals H2005-2.2-016 and H2015-3.5-008. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, proposal W15BN015. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  20. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main-sequence

  1. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, M.; Elbaz, D.; Daddi, E.

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: themore » correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.« less

  2. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main

  3. Theoretical studies of massive stars. I - Evolution of a 15-solar-mass star from the zero-age main sequence to neon ignition

    NASA Technical Reports Server (NTRS)

    Endal, A. S.

    1975-01-01

    The evolution of a star with mass 15 times that of the sun from the zero-age main sequence to neon ignition has been computed by the Henyey method. The hydrogen-rich envelope and all shell sources were explicitly included in the models. An algorithm has been developed for approximating the results of carbon burning, including the branching ratio for the C-12 + C-12 reaction and taking some secondary reactions into account. Penetration of the convective envelope into the core is found to be unimportant during the stages covered by the models. Energy transfer from the carbon-burning shell to the core by degenerate electron conduction becomes important after the core carbon-burning stage. Neon ignition will occur in a semidegenerate core and will lead to a mild 'flash.' Detailed numerical results are given in an appendix. Continuation of the calculations into later stages and variations with the total mass of the star will be discussed in later papers.

  4. Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2010-09-01

    We have measured v sin i for a selected sample of dM1-type stars. We give 114 measurements of v sin i for 88 different stars, and six upper detection limits. These are the first measurements of v sin i for most of the stars studied here. This represents the largest sample of v sin i measurements for M dwarfs at a given spectral type. For these measurements, we used four different spectrographs: HARPS (ESO), SOPHIE (OHP), ÉLODIE (OHP) and UVES (ESO). Two of these spectrographs (HARPS and SOPHIE) are particularly stable in wavelength since they were designed for exoplanet searches. We measured v sin i down to an accuracy of 0.3kms-1 for the highest resolution spectrographs and a detection limit of about 1kms-1. We show that this unprecedented accuracy for M dwarfs in our data set is possible because all the targets have the same spectral type. This is an advantage and it facilitates the determination of the narrowest line profiles for v sin i ~ 0. Although it is possible to derive the zero-point profiles using several spectral types at a time. These values were combined with other measurements taken from the literature. The total sample represents detected rotation for 100 stars (10 dM1e and 90 dM1 stars). We confirm our finding of Paper VII that the distribution of the projected rotation period is bimodal for dM1 stars with a much larger sample, i.e. there are two groups of stars: the fast rotators with P/sin i ~ 4.5d and the slow rotators with P/sin i ~ 14.4d. There is a gap between these two groups. We find that the distribution of stars as a function of P/sin i has two very abrupt cuts, below 10d and above 18d. There are very few stars observed out of this range 10-18d. We also observe that the distribution increases slightly from 18 to 10d. We find that the M1 subdwarfs (very low metallicity dwarfs) rotate with an average period of P/sin i ~ 7.2d, which is about twice faster as the main group of normal M1 dwarfs. We also find a correlation for P/sin i to

  5. Chandra and HST Observations of the High Energy (X-ray/UV) Radiation Fields for an Evolutionary Sequence of Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, G. J.; Brown, J. M.; Walter, F. M.; Valenti, J.; Ardila, D.; Hillenbrand, L. A.; Edwards, S.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Calvet, N.; Bethell, T. J.; Ingleby, L.; Bary, J. S.; Audard, M.; Baldovin, C.; Roueff, E.; Abgrall, H.; Gregory, S. G.; Ayres, T. R.; Linsky, J. L.

    2010-03-01

    Pre-main-sequence (PMS) stars are strong X-ray and UV emitters and the high energy radiation from the central stars directly influences the physical and chemical processes in their protoplanetary disks. Gas and dust in protoplanetary systems are excited by these photons, which are the dominant ionization source for hundreds of AU around the star. X-rays penetrate deep into disks and power complex chemistry on grain surfaces. ``Transitional disks'' are an important short-lived evolutionary stage for PMS stars and protoplanetary systems. These disks have transformed most of the dust and gas in their inner regions into planetesimals or larger solid bodies. As dust disks disappear after ages of roughly 5 Myr high levels of stellar magnetic activity persist and continue to bathe the newly-forming protoplanetary systems with intense high energy radiation. We present new X-ray and UV spectra for a sample of PMS stars at a variety of evolutionary stages, including the classical T Tauri stars DE Tau and DK Tau, the transitional disk stars GM Aur and HD135344B, the Herbig Ae star HD104237, and the weak-lined T Tauri star LkCa4, the Eta Cha cluster [age 7 Myr] members RECX1, RECX-11, and RECX-15, and TW Hya association [age 8 Myr] member TWA-2. These include the first results from our 111 orbit HST Large project and associated X-ray data. New and archival Chandra, XMM, and Swift X-ray spectra and HST COS+STIS FUV spectra are being used to reconstruct the full high energy (X-ray/EUV/FUV/NUV) spectra of these stars, thus allowing detailed modeling of the physics and chemistry of their circumstellar environments. The UV spectra provide improved emission line profiles revealing details of the magnetically-heated plasma and accretion and outflow processes. This work is supported by Chandra grants GO8-9024X, GO9-0015X and GO9-0020B and proposal 11200754 and HST GO grants 11336, 11616, and 11828.

  6. Discovery of Par 1802 as a Low-Mass, Pre-Main-Sequence Eclipsing Binary in the Orion Star-Forming Region

    NASA Astrophysics Data System (ADS)

    Cargile, P. A.; Stassun, K. G.; Mathieu, R. D.

    2008-02-01

    We report the discovery of a pre-main-sequence (PMS), low-mass, double-lined, spectroscopic, eclipsing binary in the Orion star-forming region. We present our observations, including radial velocities derived from optical high-resolution spectroscopy, and present an orbit solution that permits the determination of precise empirical masses for both components of the system. We find that Par 1802 is composed of two equal-mass (0.39 +/- 0.03, 0.40 +/- 0.03 M⊙) stars in a circular, 4.7 day orbit. There is strong evidence, such as the system exhibiting strong Li lines and a center-of-mass velocity consistent with cluster membership, that this system is a member of the Orion star-forming region and quite possibly the Orion Nebula Cluster, and therefore has an age of only a few million years. As there are currently only a few empirical mass and radius measurements for low-mass, PMS stars, this system presents an interesting test for the predictions of current theoretical models of PMS stellar evolution.

  7. Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars

    NASA Astrophysics Data System (ADS)

    González Hernández, J. I.; Delgado-Mena, E.; Sousa, S. G.; Israelian, G.; Santos, N. C.; Adibekyan, V. Zh.; Udry, S.

    2013-04-01

    Context. Detailed chemical abundances of volatile and refractory elements have been discussed in the context of terrestrial-planet formation during in past years. Aims: The HARPS-GTO high-precision planet-search program has provided an extensive database of stellar spectra, which we have inspected in order to select the best-quality spectra available for late type stars. We study the volatile-to-refractory abundance ratios to investigate their possible relation with the low-mass planetary formation. Methods: We present a fully differential chemical abundance analysis using high-quality HARPS and UVES spectra of 61 late F- and early G-type main-sequence stars, where 29 are planet hosts and 32 are stars without detected planets. Results: As for the previous sample of solar analogs, these stars slightly hotter than the Sun also provide very accurate Galactic chemical abundance trends in the metallicity range -0.3 < [Fe/H] < 0.4. Stars with and without planets show similar mean abundance ratios. Moreover, when removing the Galactic chemical evolution effects, these mean abundance ratios, Δ [X/Fe] SUN - STARS, against condensation temperature, tend to exhibit less steep trends with nearly zero or slightly negative slopes. We have also analyzed a subsample of 26 metal-rich stars, 13 with and 13 without known planets, with spectra at S/N ~ 850, on average, in the narrow metallicity range 0.04 < [Fe/H] < 0.19. We find the similar, although not equal, abundance pattern with negative slopes for both samples of stars with and without planets. Using stars at S/N ≥ 550 provides equally steep abundance trends with negative slopes for stars both with and without planets. We revisit the sample of solar analogs to study the abundance patterns of these stars, in particular, 8 stars hosting super-Earth-like planets. Among these stars having very low-mass planets, only four of them reveal clear increasing abundance trends versus condensation temperature. Conclusions: Finally, we

  8. The dynamics of post-main sequence planetary systems

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander James

    2017-06-01

    The study of planetary systems after their host stars have left the main sequence is of fundamental importance for exoplanet science, as the most direct determination of the compositions of extra-Solar planets, asteroids and comets is in fact made by an analysis of the elemental abundances of the remnants of these bodies accreted into the atmospheres of white dwarfs.To understand how the accreted bodies relate to the source populations in the planetary system, and to model their dynamical delivery to the white dwarf, it is necessary to understand the effects of stellar evolution on bodies' orbits. On the red giant branch (RGB) and asymptotic giant branch (AGB) prior to becoming a white dwarf, stars expand to a large size (>1 au) and are easily deformed by orbiting planets, leading to tidal energy dissipation and orbital decay. They also lose half or more of their mass, causing the expansion of bodies' orbits. This mass loss increases the planet:star mass ratio, so planetary systems orbiting white dwarfs can be much less stable than those orbiting their main-sequence progenitors. Finally, small bodies in the system experience strong non-gravitational forces during the RGB and AGB: aerodynamic drag from the mass shed by the star, and strong radiation forces as the stellar luminosity reaches several thousand Solar luminosities.I will review these effects, focusing on planet--star tidal interactions and planet--asteroid interactions, and I will discuss some of the numerical challenges in modelling systems over their entire lifetimes of multiple Gyr.

  9. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are

  10. Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium

    NASA Astrophysics Data System (ADS)

    Chen, Y. Q.; Nissen, P. E.; Benoni, T.; Zhao, G.

    2001-06-01

    We present a survey of lithium abundances in 185 main-sequence field stars with 5600 <~ Teff <~ 6600 K and -1.4 <~ [Fe/H] <~ +0.2 based on new measurements of the equivalent width of the lambda 6708 Li I line in high-resolution spectra of 130 stars and a reanalysis of data for 55 stars from Lambert et al. (\\cite{Lambert91}). The survey takes advantage of improved photometric and spectroscopic determinations of effective temperature and metallicity as well as mass and age derived from Hipparcos absolute magnitudes, offering an opportunity to investigate the behaviour of Li as a function of these parameters. An interesting result from this study is the presence of a large gap in the log varepsilon (Li) - Teff plane, which distinguishes ``Li-dip'' stars like those first identified in the Hyades cluster by Boesgaard & Tripicco (\\cite{Boesgaard86}) from other stars with a much higher Li abundance. The Li-dip stars concentrate on a certain mass, which decreases with metallicity from about 1.4 Msun at solar metallicity to 1.1 Msun at [Fe/H] =~ -1.0. Excluding the Li-dip stars and a small group of lower mass stars with Teff < 5900 K and log varepsilon (Li) < 1.5, the remaining stars, when divided into four metallicity groups, may show a correlation between Li abundance and stellar mass. The dispersion around the log varepsilon (Li)-mass relation is about 0.2 dex below [Fe/H] =~ -0.4 and 0.3 dex above this metallicity, which cannot be explained by observational errors or differences in metallicity. Furthermore, there is no correlation between the residuals of the log varepsilon (Li)-mass relations and stellar age, which ranges from 1.5 Gyr to about 15 Gyr. This suggests that Li depletion occurs early in stellar life and that parameters other than stellar mass and metallicity affect the degree of depletion, e.g. initial rotation velocity and/or the rate of angular momentum loss. It cannot be excluded, however, that a cosmic scatter of the Li abundance in the Galaxy at a

  11. W134: A new pre-main-sequence double-lined spectroscopic binary

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.; Stapelfeldt, Karl R.

    1994-01-01

    We report the discovery that the pre-main-sequence star Walker 134 in the young cluster NGC 2264 is a double-lined spectroscopic binary. Both components are G stars with strong Li I 6708 A absorption lines. Twenty radial velocity measurements have been used to determined the orbital elements of this system. The orbit has a period of 6.3532 +/- 0.0012 days and is circular within the limits of our velocity resolution; e less than 0.01. The total system mass is stellar mass sin(exp 3) i = 3.16 solar mass with a mass ratio of 1.04. Estimates for the orbit inclination angle and stellar radii place the system near the threshold for eclipse observability; howerver, no decrease in brightness was seen during two attempts at photometric monitoring. The circular orbit of W 134 fills an important gap in the period distribution of pre-main-sequence binaries and thereby constrains the effectiveness of tidal orbital circularization during the pre-main sequence.

  12. Pre-main sequence variables in young cluster Stock 18

    NASA Astrophysics Data System (ADS)

    Sinha, Tirthendu; Sharma, Saurabh; Pandey, Rakesh; Pandey, Anil Kumar

    2018-04-01

    We have carried out multi-epoch deep I band photometry of the open cluster Stock 18 to search for variable stars in star forming regions. In the present study, we identified 65 periodic and 217 non-periodic variable stars. The periods of most of the periodic variables are between 2 hours to 15 days and their magnitude varies between 0.05 to 0.6 mag. We have derived spectral energy distributions for 48 probable pre-main sequence variables. Their average age and mass are 2.7 ± 0.3 Myrs and 2.7 ± 0.2 Mo, respectively.

  13. Domains of pulsational instability of low-frequency modes in rotating upper main sequence stars

    NASA Astrophysics Data System (ADS)

    Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga

    2017-07-01

    We determine instability domains on the Hertzsprung-Russell diagram for rotating main sequence stars with masses of 2-20 M⊙. The effects of the Coriolis force are treated wihin the traditional approximation. High-order g modes with harmonic degrees ℓ up to 4 and mixed gravity-Rossby modes with |m| up to 4 are considered. We include the effects of rotation in wider instability strips for a given ℓ compared to the non-rotating case and in an extension of the pulsational instability to hotter and more massive models. We present results for a fixed value of the initial rotation velocity as well as for a fixed ratio of the angular rotation frequency to its critical value. Moreover, we check how the initial hydrogen abundance, metallicity, overshooting from the convective core and opacity affect the pulsational instability domains. The effect of rotation on the period spacing is also discussed.

  14. FUV Spectroscopy Of Outflows And Disks Around The Intermediate Mass Pre-main-sequence Stars HD135344B And HD104237

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, G.; Brown, J. M.; Walter, F. M.; Ayres, T. R.; DAOof TAU Team

    2011-01-01

    The intermediate-mass, pre-main-sequence (Herbig Ae/Fe) stars HD135344B (F4) and HD104237 (A8 IV-V) are both still surrounded by almost face-on circumstellar disks. The disk around HD135344B is a ``transitional'' disk with a 25 AU radius cleared inner hole but still with some gas and dust very close to the star. We have obtained FUV spectra of these stars using the HST COS and STIS spectrographs that show that both stars have dramatic high-velocity (terminal velocity = 300-400 km/s) outflows and rich fluorescently-excited molecular hydrogen emission, originating primarily from warm gas in their disks. We present these FUV spectra and outline the outflow and disk properties implied by the observed emission and absorption line profiles. The profiles and widths of the molecular hydrogen lines provide strong constraints on the location of the emitting regions. This work is supported by HST grants for GO projects 11828 and 11616, and Chandra grant GO9-0015X to the University of Colorado.

  15. Activity-rotation relations for lower main sequence stars

    NASA Astrophysics Data System (ADS)

    Dobson-Hockey, Andrea Kay

    It was known for some time that stellar rotation and activity are related, both for chromospheric activity and control activity. Younger, more rapidly rotating stars of a given spectral type generally show higher levels of activity than do older, more slowly rotating stars. On the Sun acitivity is distinctly related to magnetic fields. This leads to the suggestion that activity, at least in solar-type stars, is traceable to a magnetic dynamo which results from the interaction of rotation and differential rotation with convection. The more efficient the coriolis forces are at introducing helicity into convective motions, the more the magnetic field will be amplified and the more activity that is expected. The precise nature of the relationship between magnetic fields, rotation, and activity remains to be well-defined. It is the purpose to examine the relationship between activity and rotation in order to better define and express such a relation (or relations). To meet this goal, a comprehensive sample of stars was collected from the published literature having two or more of the following: chromospheric Ca II, H, and K emission indices; coronal soft X-ray illumination; rotation rates; and where possible, ages. It is seen that the use of normalized activity units and Rossby number generally improves the correlation between activity and rotation. The use of the convective turnover time further permits a possible explanation for the distribution of stars in an activity-color diagram. A large and homogeneous data set permits better definition of previously examined functional dependencies such as the time decay of activity and the relationship between chromospheric and coronal activity indicators.

  16. ALMA observations of α Centauri. First detection of main-sequence stars at 3 mm wavelength

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Vlemmings, W.; Bayo, A.; Bertone, E.; Black, J. H.; del Burgo, C.; Chavez, M.; Danchi, W.; De la Luz, V.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Justtanont, K.; Krivov, A.; Marshall, J. P.; Mora, A.; Montesinos, B.; Nyman, L.-A.; Olofsson, G.; Sanz-Forcada, J.; Thébault, P.; White, G. J.

    2015-01-01

    Context. The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. This feedback will probably also help identify stars that potentially host planetary systems that are reminiscent of our own. Aims: Earlier observations with Herschel and APEX have revealed the temperature minimum of α Cen, but these were unable to spatially resolve the binary into individual components. With the data reported in this Letter, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870 μm. In the present context, we intend to extend the spectral mapping (SED) to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. Methods: The Atacama Large Millimeter/submillimeter Array (ALMA) is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our objectives with both its high sensitivity of the collecting area for the detection of weak signals and the high spatial resolving power of its adaptable interferometer for imaging close multiple stars. Results: This is the first detection of main-sequence stars at a wavelength of 3 mm. Furthermore, the individual components of the binary α Cen AB are clearly detected and spatially well resolved at all ALMA wavelengths. The high signal-to-noise ratios of these data permit accurate determination of their relative flux ratios, i.e., SyB / SyA> = 0.54 ± 0.04 at 440 μm, = 0.46 ± 0.01 at 870 μm, and = 0.47 ± 0.006 at 3.1 mm, respectively. Conclusions: The previously obtained flux ratio of 0.44±0.18, which was based on measurements in the optical and

  17. THE SOLAR NEIGHBORHOOD. XXVI. AP Col: THE CLOSEST (8.4 pc) PRE-MAIN-SEQUENCE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riedel, Adric R.; Henry, Todd J.; Jao, Wei-Chun

    2011-10-15

    We present the results of a multi-technique investigation of the M4.5Ve flare star AP Col, which we discover to be the nearest pre-main-sequence star. These include astrometric data from the CTIO 0.9 m, from which we derive a proper motion of 342.0 {+-} 0.5 mas yr{sup -1}, a trigonometric parallax of 119.21 {+-} 0.98 mas (8.39 {+-} 0.07 pc), and photometry and photometric variability at optical wavelengths. We also provide spectroscopic data, including radial velocity (22.4 {+-} 0.3 km s{sup -1}), lithium equivalent width (EW) (0.28 {+-} 0.02 A), H{alpha} EW (-6.0 to -35 A), vsin i (11 {+-} 1more » km s{sup -1}), and gravity indicators from the Siding Spring 2.3 m WiFeS, Lick 3 m Hamilton echelle, and Keck-I HIRES echelle spectrographs. The combined observations demonstrate that AP Col is the closer of only two known systems within 10 pc of the Sun younger than 100 Myr. Given its space motion and apparent age of 12-50 Myr, AP Col is likely a member of the recently proposed {approx}40 Myr old Argus/IC 2391 Association.« less

  18. Extended Star-formation and Disk-like Kinematics in a z~3 Massive ``Main-Sequence'' Galaxy through [CII] Imaging and Multi-J CO Line Observations

    NASA Astrophysics Data System (ADS)

    Leung, Tsz Kuk Daisy; Riechers, Dominik A.; Clements, David; Cooray, Asantha; Ivison, Rob; Perez-Fournon, Ismael; Wardlow, Julie

    2018-01-01

    Dusty star-forming galaxies (SFG) at high redshifts are the main contributors to the comoving star formation rate (SFR) density, which peaks between the redshift of z=1-3 (``Cosmic Noon''). Yet, new insights into their gas dynamics, and thus, structural evolution are awaiting spatially resolved observations. I will present the latest results from our kpc-scale [CII] imaging and multi-J CO line observations obtained with ALMA, CARMA, PdBI, and the VLA in one of the most massive ``main-sequence'' disk galaxy known. XMM03 (z=2.9850) is an extremely IR-luminous galaxy with a SFR of ~3000 Msun/yr, but its molecular gas excitation is surprisingly similar to the Milky Way up to J=5, which is in stark contrast with most high-z galaxies studied to date. The monotonic velocity gradient seen in the [CII] line emission suggest that it is a rotating disk galaxy. Based on the molecular gas surface density and the far-UV radiation flux determined from photo-dissociation region (PDR) modeling, the star-forming environment of XMM03 is similar to nearby SFGs. These findings together with the ~1100 km/s wide CO(1-0) line across the entire disk of ~8 kpc in radius showcase the different interstellar medium (ISM) environment that we are probing at the most massive end of galaxies in the early Universe. With a stellar mass of M*~10^12, its specific SFR is consistent with an extrapolation of the ``star-forming main-sequence'' up to M*~10^12 Msun at z~3. Our findings therefore confirm the prevalence of disk-wide star formation responsible for assembling most of the stellar masses toward the ``Cosmic Noon''.

  19. Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Ting, Yuan-Sen; Rix, Hans-Walter; Quataert, Eliot; Weisz, Daniel R.; Cargile, Phillip; Conroy, Charlie; Hogg, David W.; Bergemann, Maria; Liu, Chao

    2018-05-01

    We develop a data-driven spectral model for identifying and characterizing spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars. Binaries and triples are identified as targets whose spectra can be significantly better fit by a superposition of two or three model spectra, drawn from the same isochrone, than any single-star model. From an initial sample of ˜20 000 main-sequence targets, we identify ˜2500 binaries in which both the primary and secondary stars contribute detectably to the spectrum, simultaneously fitting for the velocities and stellar parameters of both components. We additionally identify and fit ˜200 triple systems, as well as ˜700 velocity-variable systems in which the secondary does not contribute detectably to the spectrum. Our model simplifies the process of simultaneously fitting single- or multi-epoch spectra with composite models and does not depend on a velocity offset between the two components of a binary, making it sensitive to traditionally undetectable systems with periods of hundreds or thousands of years. In agreement with conventional expectations, almost all the spectrally identified binaries with measured parallaxes fall above the main sequence in the colour-magnitude diagram. We find excellent agreement between spectrally and dynamically inferred mass ratios for the ˜600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchical triples. We make available catalogues of stellar parameters, abundances, mass ratios, and orbital parameters.

  20. A Constraint on the Formation Timescale of the Young Open Cluster NGC 2264: Lithium Abundance of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon

    2016-11-01

    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.

  1. Constraints on pre-main-sequence evolution from stellar pulsations

    NASA Astrophysics Data System (ADS)

    Casey, M. P.; Zwintz, K.; Guenther, D. B.

    2014-02-01

    Pulsating pre-main-sequence (PMS) stars afford the earliest opportunity in the lifetime of a star to which the concepts of asteroseismology can be applied. PMS stars should be structurally simpler than their evolved counterparts, thus (hopefully!) making any asteroseismic analysis relatively easier. Unfortunately, this isn't necessarily the case. The majority of these stars (around 80) are δ Scuti pulsators, with a couple of γ Doradus, γ Doradus - δ Scuti hybrids, and slowly pulsating B stars thrown into the mix. The majority of these stars have only been discovered within the last ten years, with the community still uncovering the richness of phenomena associated with these stars, many of which defy traditional asteroseismic analysis. A systematic asteroseismic analysis of all of the δ Scuti PMS stars was performed in order to get a better handle on the properties of these stars as a group. Some strange results have been found, including one star pulsating up to the theoretical acoustic cut-off frequency of the star, and a number of stars in which the most basic asteroseismic analysis suggests problems with the stars' positions in the Hertzsprung-Russell diagram. From this we get an idea of the\\break constraints - or lack thereof - that these results can put on PMS stellar evolution.

  2. The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel David

    2015-08-01

    Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that =2/T, and Sig[SFR/M]=. Note that this relative scatter is independent of mass and time. This derived correlation between SFR and stellar mass, and its evolution, matches published data to z=10 with sufficient accuracy to constrain cosmological parameters from the data. This statistical approach to the diversity of star-formation histories reproduces several important observables, including: the scatter in SSFR at fixed mass; the forms of SFHs of nearby dwarf galaxies and the Milky Way. At least one additional process beyond a single one responsible for in situ stellar mass growth will be required to match the evolution of the stellar mass function, and we discuss ways to generalize the framework. The implied dispersion in SFHs, and the SFMS's insensitivity to timescales of stochasticity, thus substantially limits the ability to connect massive galaxies to their progenitors over long cosmic baselines. Such analytical work shows promise for

  3. Tracing the potential planet-forming regions around seven pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Schegerer, A. A.; Wolf, S.; Hummel, C. A.; Quanz, S. P.; Richichi, A.

    2009-07-01

    Aims: We investigate the nature of the innermost regions with radii of several AUs of seven circumstellar disks around pre-main-sequence stars, T Tauri stars in particular. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects (YSOs). When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10 μm feature should additionally be investigated. Methods: We performed interferometric observations in N band (8-13 μm) with the Mid-Infrared Interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) using baseline lengths of between 54 m and 127 m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the spectral energy distribution (SED), N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Results: Spatially resolved mid-infrared (MIR) emission was detected in all objects. For four objects (DR Tau, RU Lup, S CrA N, and S CrA S), the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active disk-model. For the more evolved objects of our sample, HD 72106 and HBC 639, a purely passive disk-model provides the closest fit. The visibilities inferred for the source RU Lup allow the presence of an inner disk gap. For the YSO GW Ori, one of two visibility measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10 μm silicate emission feature. In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack of small silicates in the inner versus the outer

  4. High-precision Radio and Infrared Astrometry of LSPM J1314+1320AB. II. Testing Pre-main-sequence Models at the Lithium Depletion Boundary with Dynamical Masses

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Forbrich, Jan; Rizzuto, Aaron; Mann, Andrew W.; Aller, Kimberly; Liu, Michael C.; Kraus, Adam L.; Berger, Edo

    2016-08-01

    We present novel tests of pre-main-sequence models based on individual dynamical masses for the M7 binary LSPM J1314+1320AB. Joint analysis of Keck adaptive optics astrometric monitoring along with Very Long Baseline Array radio data from a companion paper yield component masses of 92.8 ± 0.6 M Jup (0.0885 ± 0.0006 M ⊙) and 91.7 ± 1.0 M Jup (0.0875 ± 0.0010 M ⊙) and a parallactic distance of 17.249 ± 0.013 pc. We find component luminosities consistent with the system being coeval at 80.8 ± 2.5 Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model predictions, marking the first test of the theoretical lithium depletion boundary using ultracool dwarfs of known mass. However, we find that the evolutionary model-derived average effective temperature (2950 ± 5 K) is 180 K hotter than that given by a spectral type-{T}{eff} relation based on BT-Settl models (2770 ± 100 K). We suggest that the dominant source of this discrepancy is model radii being too small by ≈13%. In a test mimicking the typical application of models by observers, we derive masses on the H-R diagram using luminosity and BT-Settl temperature. The estimated masses are lower by {46}-19+16 % (2.0σ) than we measure dynamically and would imply that this is a system of ≈50 M Jup brown dwarfs, highlighting the large systematic errors possible in H-R diagram properties. This is the first time masses have been measured for ultracool (≥M6) dwarfs displaying spectral signatures of low gravity. Based on features in the infrared, LSPM J1314+1320AB appears to have higher gravity than typical Pleiades and AB Dor members, opposite the expectation given its younger age. The components of LSPM J1314+1320AB are now the nearest, lowest mass pre-main-sequence stars with direct mass measurements. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  5. LSPM J1314+1320: An Oversized Magnetic Star with Constraints on the Radio Emission Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, James; Mullan, D. J.

    LSPM J1314+1320 (=NLTT 33370) is a binary star system consisting of two nearly identical pre-main-sequence stars of spectral type M7. The system is remarkable among ultracool dwarfs for being the most luminous radio emitter over the widest frequency range. Masses and luminosities are at first sight consistent with the system being coeval at age ∼80 Myr according to standard (nonmagnetic) evolutionary models. However, these models predict an average effective temperature of ∼2950 K, which is 180 K hotter than the empirical value. Thus, the empirical radii are oversized relative to the standard models by ≈13%. We demonstrate that magnetic stellarmore » models can quantitatively account for the oversizing. As a check on our models, we note that the radio emission limits the surface magnetic field strengths: the limits depend on identifying the radio emission mechanism. We find that the field strengths required by our magnetic models are too strong to be consistent with gyrosynchrotron emission but are consistent with electron cyclotron maser emission.« less

  6. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il

    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retentionmore » of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.« less

  7. Galactic ΔY/ΔZ from the analysis of solar neighborhood main sequence stars

    NASA Astrophysics Data System (ADS)

    Gennaro, M.; Moroni, P. G. Prada; Degl'Innocenti, S.

    2009-05-01

    We discuss the reliability of one of the most used method to determine the helium-to-metals enrichment ratio (ΔY/ΔZ), i.e. the photometric comparison of a selected data set of local disk low main sequence (MS) stars observed by Hipparcos with a new grid of stellar models with up-to-date input physics. Most of the attention has been devoted to evaluate the effects on the final results of different sources of uncertainty (observational errors, evolutionary effects, selection criteria, systematic uncertainties of the models, numerical errors). As a check of the result the procedure has been repeated using another, independent, data set: the low-MS of the Hyades cluster. The obtained ΔY/ΔZ for the Hyades, together with spectroscopic determinations of [Fe/H] ratio, have been used to obtain the Y and Z values for the cluster. Isochrones have been calculated with the estimated chemical composition, obtaining a very good agreement between the predicted position of the Hyades MS and the observational data in the color-magnitude diagram.

  8. Secular Resonances During Main-Sequence and Post-Main-Sequence Planetary System Dynamics

    NASA Astrophysics Data System (ADS)

    Smallwood, Jeremy L.

    We investigate gravitational perturbations of an asteroid belt by secular resonances. We ap- ply analytic and numerical models to main-sequence and post-main-sequence planetary systems. First, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the nu6 resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the solar system is somewhat special in its lack of a super-Earth mass planet in the inner solar system. We therefore consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M_{Earth} and a separation greater than about 0.7 AU. These results have implications for the habitability of exoplanetary systems. Secondly, we model white dwarf pollution by asteroids from secular resonances. In the past few decades, observations have revealed signatures of metals polluting the atmospheres of white dwarfs that require a continu- ous accretion of asteroids. We show that secular resonances driven by two outer companions can provide a source of pollution if an inner terrestrial planet is engulfed during the red-giant branch phase. Secular resonances may be a viable mechanism for the pollution of white dwarfs in a variety of exoplanetary system architectures including systems with two giant planets and systems with one giant planet and a binary star companion.

  9. Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning

    NASA Astrophysics Data System (ADS)

    Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabeth

    2016-10-01

    Owing to the remarkable photometric precision of space observatories like Kepler, stellar and planetary systems beyond our own are now being characterized en masse for the first time. These characterizations are pivotal for endeavors such as searching for Earth-like planets and solar twins, understanding the mechanisms that govern stellar evolution, and tracing the dynamics of our Galaxy. The volume of data that is becoming available, however, brings with it the need to process this information accurately and rapidly. While existing methods can constrain fundamental stellar parameters such as ages, masses, and radii from these observations, they require substantial computational effort to do so. We develop a method based on machine learning for rapidly estimating fundamental parameters of main-sequence solar-like stars from classical and asteroseismic observations. We first demonstrate this method on a hare-and-hound exercise and then apply it to the Sun, 16 Cyg A and B, and 34 planet-hosting candidates that have been observed by the Kepler spacecraft. We find that our estimates and their associated uncertainties are comparable to the results of other methods, but with the additional benefit of being able to explore many more stellar parameters while using much less computation time. We furthermore use this method to present evidence for an empirical diffusion-mass relation. Our method is open source and freely available for the community to use.6

  10. Dust discs around low-mass main-sequence stars

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Walker, Helen J.

    1988-01-01

    The current understanding of the formation of circumstellar disks as a natural accompaniment to the process of low-mass star formation is examined. Models of the thermal emission from the dust disks around the prototype stars Alpha Lyr, Alpha PsA, Beta Pic, and Epsilon Eri are discussed, which indicate that the central regions of three of these disks are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest zone lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud which sweeps up grains crossing its orbit.

  11. Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo

    2017-09-01

    We report on the properties of the low-mass stars that recently formed in the central ˜ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ˜ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5< m/{M}⊙ < 1.5 and t< 16 {Myr} in six star-forming regions in the Large and Small Magellanic Clouds and Milky Way with metallicities in the range of 0.1-1.0 {{Z}}⊙ . We find a=-0.59+/- 0.02 and b=0.78+/- 0.08. The residuals are systematically different between the six regions and reveal a strong correlation with metallicity Z, of the type c=(-3.69+/- 0.02)-(0.30+/- 0.04)× {log}Z/{Z}⊙ . A possible interpretation of this trend is that when the metallicity is higher so is the radiation pressure, and this limits the accretion process, in both its rate and duration. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by

  12. The Benchmark Ultracool Subdwarf HD 114762B: A Test of Low-metallicity Atmospheric and Evolutionary Models

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Cushing, Michael C.

    2009-12-01

    We present a near-infrared spectroscopic study of HD 114762B, the latest-type metal-poor companion discovered to date and the only ultracool subdwarf with a known metallicity, inferred from the primary star to be [Fe/H] = -0.7. We obtained a medium-resolution (R ~ 3800) Keck/OSIRIS 1.18-1.40 μm spectrum and a low-resolution (R ~ 150) Infrared Telescope Facility/SpeX 0.8-2.4 μm spectrum of HD 114762B to test atmospheric and evolutionary models for the first time in this mass-metallicity regime. HD 114762B exhibits spectral features common to both late-type dwarfs and subdwarfs, and we assign it a spectral type of d/sdM9 ± 1. We use a Monte Carlo technique to fit PHOENIX/GAIA synthetic spectra to the observations, accounting for the coarsely gridded nature of the models. Fits to the entire OSIRIS J-band and to the metal-sensitive J-band atomic absorption features (Fe I, K I, and Al I lines) yield model parameters that are most consistent with the metallicity of the primary star and the high surface gravity expected of old late-type objects. The effective temperatures and radii inferred from the model atmosphere fitting broadly agree with those predicted by the evolutionary models of Chabrier & Baraffe, and the model color-absolute magnitude relations accurately predict the metallicity of HD 114762B. We conclude that current low-mass, mildly metal-poor atmospheric and evolutionary models are mutually consistent for spectral fits to medium-resolution J-band spectra of HD 114762B, but are inconsistent for fits to low-resolution near-infrared spectra of mild subdwarfs. Finally, we develop a technique for estimating distances to ultracool subdwarfs based on a single near-infrared spectrum. We show that this "spectroscopic parallax" method enables distance estimates accurate to lsim10% of parallactic distances for ultracool subdwarfs near the hydrogen burning minimum mass. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated

  13. A near infrared classification of pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Alonso-Martínez, M.; Meeus, G.; Eiroa, C.

    2017-03-01

    T Tauri stars are young solar analogues (M ≤ 1.5M_{⊙}), harbouring a disc and with ongoing accretion. The T Tauri phase has been estimated to last around 10 Myr. We have obtained J and K band spectra with WHT/LIRIS and NOT/NOTCam of 112 T Tauri stars in the Taurus star forming region. By measuring the equivalent widths of common and strong spectral features, known to follow a tight relation with temperature, we aim at providing a direct and fast method to derive stellar effective temperatures. Line ratios of strong absorption features relatively close in wavelength are used to overcome the effects of veiling. Besides, the Al I (1.313μm) line is strongly gravity-dependent and used to discern between surface gravities. Finally, we estimate accretion rates using the H-lines Pa-β and Br-γ.

  14. Kepler-4b: A Hot Neptune-like Planet of a G0 Star Near Main-sequence Turnoff

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, David G.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B.; Jenkins, Jon M.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Monet, David; Rowe, Jason F.; Sasselov, Dimitar

    2010-04-01

    Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19h02m27.s68, δ = +50°08'08farcs7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 × 10-3 and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3+1.1 -1.9 m s-1, consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223+0.053 -0.091 M sun and 1.487+0.071 -0.084 R sun. We estimate the planet mass and radius to be {M P, R P} = {24.5 ± 3.8 M ⊕, 3.99 ± 0.21 R ⊕}. The planet's density is near 1.9 g cm-3 it is thus slightly denser and more massive than Neptune, but about the same size. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  15. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  16. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  17. How Dusty Is Alpha Centauri? Excess or Non-excess over the Infrared Photospheres of Main-sequence Stars

    NASA Technical Reports Server (NTRS)

    Wiegert, J.; Liseau, R.; Thebault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; hide

    2014-01-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the Cen system. This requires knowledge of their photospheres.Having already detected the temperature minimum, Tmin, of CenA at far-infrared wavelengths, we here attempt to do the same for the moreactive companion Cen B. Using the Cen stars as templates, we study the possible eects that Tmin may have on the detectability of unresolveddust discs around other stars. Methods.We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in thefar infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunctionwith radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than Cen, a fractional dust luminosity fd LdustLstar 2 107 could account for SEDs that do not exhibit the Tmin eect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared,slight excesses at the 2:5 level are observed at 24 m for both CenA and B, which, if interpreted as due to zodiacal-type dust emission, wouldcorrespond to fd (13) 105, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dustgrains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the Cen stars, viz.4106 M$ of 4 to 1000 msize grains, distributed according to n(a) a3:5. Similarly, for filled-in Tmin

  18. Testing Ultracool Models with Precise Luminosities and Masses

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent; Cushing, Michael; Liu, Michael; Burningham, Ben; Leggett, Sandy; Albert, Loic; Delorme, Philippe

    2011-05-01

    After years of patient orbital monitoring, there is a growing sample of brown dwarfs with well-determined dynamical masses, representing the gold standard for testing substellar models. A key element of our model tests to date has been the use of integrated-light photometry to provide accurate total luminosity measurements for these binaries. However, some of the ultracool binaries with the most promising orbit motion for yielding dynamical in the masses lack the mid-infrared photometry needed to constrain their SEDs. This is especially crucial for the latest type binaries (spectral types >T5) that will probe the coldest temperature regimes previously untested with dynamical masses. We propose to use IRAC to obtain the needed mid-infrared photometry for a sample of binaries that are part of our ongoing orbital monitoring program with Keck laser guide star adaptive optics. The observational effort needed to characterize these binaries' luminosities using Spitzer is much less daunting in than the years of orbital monitoring needed to measure precise dynamical masses, but it is equally vital for robust tests of theory.

  19. Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Tacchella, S.; Carollo, C. M.; Förster Schreiber, N. M.; Renzini, A.; Dekel, A.; Genzel, R.; Lang, P.; Lilly, S. J.; Mancini, C.; Onodera, M.; Tacconi, L. J.; Wuyts, S.; Zamorani, G.

    2018-05-01

    We derive 2D dust attenuation maps at ∼1 kpc resolution from the UV continuum for 10 galaxies on the z ∼ 2 star-forming main sequence (SFMS). Comparison with IR data shows that 9 out of 10 galaxies do not require further obscuration in addition to the UV-based correction, though our sample does not include the most heavily obscured, massive galaxies. The individual rest-frame V-band dust attenuation (A V) radial profiles scatter around an average profile that gently decreases from ∼1.8 mag in the center down to ∼0.6 mag at ∼3–4 half-mass radii. We use these maps to correct UV- and Hα-based star formation rates (SFRs), which agree with each other. At masses ≲ {10}11 {M}ȯ , the dust-corrected specific SFR (sSFR) profiles are on average radially constant at a mass-doubling timescale of ∼300 Myr, pointing at a synchronous growth of bulge and disk components. At masses ≳ {10}11 {M}ȯ , the sSFR profiles are typically centrally suppressed by a factor of ∼10 relative to the galaxy outskirts. With total central obscuration disfavored, this indicates that at least a fraction of massive z ∼ 2 SFMS galaxies have started their inside-out star formation quenching that will move them to the quenched sequence. In combination with other observations, galaxies above and below the ridge of the SFMS relation have, respectively, centrally enhanced and centrally suppressed sSFRs relative to their outskirts, supporting a picture where bulges are built owing to gas “compaction” that leads to a high central SFR as galaxies move toward the upper envelope of the SFMS. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated under NASA contract NAS 5‑26555 (programs GO9822, GO10092, GO10924, GO11694, GO12578, GO12060, GO12061, GO12062, GO12063, GO12064, GO12440, GO12442, GO12443, GO12444, GO12445, GO13669), and at the Very Large Telescope of the European Southern Observatory

  20. Testing Ultracool Atmospheres with Mass Benchmarks

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Liu, Michael C.

    2011-08-01

    After years of patient orbital monitoring, there is now a sample of ~10 very low-mass stars and brown dwarfs with precise (~5%) dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to obtain narrow-band imaging with Keck/OSIRIS LGS to measure resolved SEDs for this first sizable sample of ultracool binaries with well-determined dynamical masses. This multi- band photometry will enable us to precisely estimate spectral types and effective temperatures of individual binary components, providing the strongest constraints to date on widely used evolutionary and atmospheric models. Our proposed Keck observations are much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these data are equally vital for robust tests of theory. (Note: Our proposed time is intended to replace the 1 night awarded by NOAO to carry out this program in 2010B, which was completely lost due to weather.)

  1. The SFR-M∗ main sequence archetypal star-formation history and analytical models

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Elbaz, D.; Fensch, J.

    2017-12-01

    The star-formation history (SFH) of galaxies is a key assumption to derive their physical properties and can lead to strong biases. In this work, we derive the SFH of main sequence (MS) galaxies and show how the peak SFH of a galaxy depends on its seed mass at, for example, z = 5. This seed mass reflects the galaxy's underlying dark matter (DM) halo environment. We show that, following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundance matching, these masses correspond to hot and massive DM halos which state could result in less efficient gas inflows on the galaxies and thus could be the origin of limited stellar mass growth. As a result, we show that galaxies, still on the MS, can enter the passive region of the UVJ diagram while still forming stars. The best fit to the MS SFH is provided by a right skew peak function for which we provide parameters depending on the seed mass of the galaxy. The ability of the classical analytical SFHs to retrieve the star-formation rate (SFR) of galaxies from spectral energy distribution (SED) fitting is studied. Due to mathematical limitations, the exponentially declining and delayed SFH struggle to model high SFR, which starts to be problematic at z > 2. The exponentially rising and log-normal SFHs exhibit the opposite behavior with the ability to reach very high SFR, and thus model starburst galaxies, but they are not able to model low values such as those expected at low redshift for massive galaxies. By simulating galaxies SED from the MS SFH, we show that these four analytical forms recover the SFR of MS galaxies with an error dependent on the model and the redshift. They are, however, sensitive enough to probe small variations of SFR within the MS, with an error ranging from 5 to 40% depending on the SFH assumption and redshift; but all the four fail to recover the SFR of rapidly quenched galaxies. However, these SFHs lead to an artificial

  2. Orbital motion in pre-main sequence binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, G. H.; Prato, L.; Simon, M.

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five othermore » binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.« less

  3. Low-resolution spectroscopy of main sequence stars belonging to 12 Galactic globular clusters. I. CH and CN band strength variations

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Rejkuba, M.; Zoccali, M.; Carrera, R.

    2010-12-01

    Context. Globular clusters show star-to-star abundance variations for light elements that are not yet well understood. The preferred explanation involves a self-enrichment scenario, within which two subsequent generations of stars co-exist in globular clusters. Observations of chemical abundances in the main sequence and sub-giant branch stars allow us to investigate the signature of this chemically processed material without the complicating effects caused by stellar evolution and internal mixing. Aims: Our main goal is to investigate the carbon-nitrogen anti-correlation with low-resolution spectroscopy of 20-50 stars fainter than the first dredge-up in seven Galactic globular clusters (NGC 288, NGC 1851, NGC 5927, NGC 6352, NGC 6388, and Pal 12) with different properties. We complemented our observations with 47 Tuc archival data, with four additional clusters from the literature (M 15, M 22, M 55, NGC 362), and with additional literature data on NGC 288. Methods: In this first paper, we measured the strengh of the CN and CH band indices, which correlate with the N and C abundances, and we investigated the anti-correlation and bimodality of these indices. We compared rCN, the ratio of stars belonging to the CN-strong and weak groups, with 15 different cluster parameters. Results: We clearly see bimodal anti-correlation of the CH and CN band stregths in the metal-rich clusters (Pal 12, 47 Tuc, NGC 6352, NGC 5927). Only M 15 among the metal-poor clusters shows a clearly bimodal anti-correlation. We found weak correlations (sligthly above 1σ) of rCN with the cluster orbital parameters, present-day total mass, cluster concentration, and age. Conclusions: Our findings support the self-enrichment scenario, and suggest that the occurrence of more than two major generations of stars in a GGC should be rare. Small additional generations (<10-20% of the total) would be difficult to detect with our samples. The first generation, which corresponds to the CN-weak stars

  4. New Insights into the Formation of the Blue Main Sequence in NGC 1850

    NASA Astrophysics Data System (ADS)

    Yang, Yujiao; Li, Chengyuan; Deng, Licai; de Grijs, Richard; Milone, Antonino P.

    2018-06-01

    Recent discoveries of bimodal main sequences (MSs) associated with young clusters (with ages ≲1 Gyr) in the Magellanic Clouds have drawn a lot of attention. One of the prevailing formation scenarios attributes these split MSs to a bimodal distribution in stellar rotation rates, with most stars belonging to a rapidly rotating population. In this scenario, only a small fraction of stars populating a secondary blue sequence are slowly or non-rotating stars. Here, we focus on the blue MS in the young cluster NGC 1850. We compare the cumulative number fraction of the observed blue-MS stars to that of the high-mass-ratio binary systems at different radii. The cumulative distributions of both populations exhibit a clear anti-correlation, characterized by a highly significant Pearson coefficient of ‑0.97. Our observations are consistent with the possibility that blue-MS stars are low-mass-ratio binaries, and therefore their dynamical disruption is still ongoing. High-mass-ratio binaries, on the other hand, are more centrally concentrated.

  5. A Search for Coronal Emission at the Bottom of the Main-Sequence: Stars and Brown Dwarf Candidates with Spectral Types Later than M7 and the Rotation-Activity Relation

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy

    2004-01-01

    This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.

  6. The evolution of massive stars and their spectra. I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril

    2014-04-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at

  7. AK Sco: a tidally induced atmospheric dynamo in a pre-main sequence binary?

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, A. I.

    2009-02-01

    AK Sco is a unique source: a 10-30 Myrs old pre-main sequence spectroscopic binary composed by two nearly equal F5 stars that at periastron are separated by barely eleven stellar radii so, the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes of AK Sco, the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during pre-main sequence evolution. Evidence of this effect is reported in this contribution.

  8. Radio Properties of the BAT AGNs: the FIR-radio Relation, the Fundamental Plane, and the Main Sequence of Star Formation

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T.; Miller, Neal

    2016-12-01

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift-BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR-radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L R/L X relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.

  9. (Fe II) 1.53 and 1.64 micron emission from pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Hamann, Fred; Simon, Michal; Carr, John S.; Prato, Lisa

    1994-01-01

    We present flux-calibrated profiles of the (Fe II) 1.53 and 1.64 micron lines in five pre-main-sequence stars, PV Cep, V1331 Cyg, R Mon, and DG and HL Tau. The line centroids are blueshifted in all five sources, and four of the five have only blueshifted flux. In agreement with previous studies, we attribute the line asymmetries to local obscuration by dusty circumstellar disks. The absence of redshifted flux implies a minimum column density of obscuring material. The largest limit, N(sub H) greater than 3 x 10(exp 22)/sq cm, derived for V1331 Cyg, suggests disk surface densities greater than 0.05 g/sq cm and disk masses greater than 0.001 solar mass within a radius of approximately 200 AU. The narrow high-velocity lines in PV Cep, V1331 Cyg, and HL Tau require formation in well collimated winds. The maximum full opening angles of their winds range from less than 20 deg in V1331 Cyg to less than 40 deg in HL Tau. The (Fe II) data also yield estimates of the electron densities (n(sub e) approximately 10(exp 4)/cu cm), hydrogen ionization fractions (f(sub H(+)) approximately 1/3), mass-loss rates (approximately 10(exp -7) to 2 x 10(exp -6) solar mass/yr), and characteristic radii of the emitting regions (approximately 32 to approximately 155 AU). The true radial extents will be larger, and the mass-loss rates smaller, by factors of a few for the outflows with limited opening angles. In our small sample the higher mass stars have stronger lines, larger emitting regions, and greater mass-loss rates. These differences are probably limited to the scale and energetics of the envelopes, because the inferred geometries, kinematics and physical conditions are similar. The measured (Fe II) profiles samples both 'high'- and 'low'-velocity environments. Recent studies indicate that these regions have some distinct physical properties and may be spatially separate. The (Fe II) data show that similar sizes and densities can occur in both environments.

  10. (Fe II) 1.53 and 1.64 micron emission from pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Simon, Michal; Carr, John S.; Prato, Lisa

    1994-11-01

    We present flux-calibrated profiles of the (Fe II) 1.53 and 1.64 micron lines in five pre-main-sequence stars, PV Cep, V1331 Cyg, R Mon, and DG and HL Tau. The line centroids are blueshifted in all five sources, and four of the five have only blueshifted flux. In agreement with previous studies, we attribute the line asymmetries to local obscuration by dusty circumstellar disks. The absence of redshifted flux implies a minimum column density of obscuring material. The largest limit, NH greater than 3 x 1022/sq cm, derived for V1331 Cyg, suggests disk surface densities greater than 0.05 g/sq cm and disk masses greater than 0.001 solar mass within a radius of approximately 200 AU. The narrow high-velocity lines in PV Cep, V1331 Cyg, and HL Tau require formation in well collimated winds. The maximum full opening angles of their winds range from less than 20 deg in V1331 Cyg to less than 40 deg in HL Tau. The (Fe II) data also yield estimates of the electron densities (ne approximately 104/cu cm), hydrogen ionization fractions (fH(+) approximately 1/3), mass-loss rates (approximately 10-7 to 2 x 10-6 solar mass/yr), and characteristic radii of the emitting regions (approximately 32 to approximately 155 AU). The true radial extents will be larger, and the mass-loss rates smaller, by factors of a few for the outflows with limited opening angles. In our small sample the higher mass stars have stronger lines, larger emitting regions, and greater mass-loss rates. These differences are probably limited to the scale and energetics of the envelopes, because the inferred geometries, kinematics and physical conditions are similar. The measured (Fe II) profiles samples both 'high'- and 'low'-velocity environments. Recent studies indicate that these regions have some distinct physical properties and may be spatially separate. The (Fe II) data show that similar sizes and densities can occur in both environments.

  11. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0

    NASA Astrophysics Data System (ADS)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.

    2015-08-01

    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  12. The threshold for stellar winds in hot main-sequence stars

    NASA Technical Reports Server (NTRS)

    Grigsby, James A.; Morrison, Nancy D.

    1995-01-01

    The profiles of ultraviolet resonance lines of C IV were surveyed in a sample of 29 cluster and association members in the spectral type range O9-B2 III-V, together with a few field stars of interest. The temperatures and gravities of the stars were taken from the model atmosphere analysis by Grigsby, Morrison, & Anderson (1992), and the luminosities were estimated on the basis of cluster and association distances from the recent literature. A parameter P(sub w) was defined in order to describe the degree and assymetry of the C IV profile. This parameter, together with total C IV equivalent width, was found to be well correlated with stellar luminosity and temperature. A few anomalous stars were noted: tau Sco, HD 66665, HD 13621, and the ON stars HD12323 and HD 201345. The results suggest a sudden onset of observable mass loss at T(effective) = 27,500 +/- 500 K, log (L/solar luminosity) = 4.4 +/- 0.12, in agreement with the previous study by Prinja (1989). At T(effective) = 28,000 K and log g = 4, our non-LTE model atmospheres show an enhancement in the ground-state population of C(+3) in their topmost layer, which could be responsible for initiation of the winds via radiation pressure on the C(+3) ions, or for the onset of visibility of C(+3) ions in the wind because of an increase in the optical depth in the C IV lines in the outermost layers.

  13. The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence

    NASA Astrophysics Data System (ADS)

    Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.

    2014-10-01

    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and

  14. How dusty is α Centauri?. Excess or non-excess over the infrared photospheres of main-sequence stars

    NASA Astrophysics Data System (ADS)

    Wiegert, J.; Liseau, R.; Thébault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; Augereau, J. C.; Bayo Aran, A.; Danchi, W. C.; del Burgo, C.; Ertel, S.; Fridlund, M. C. W.; Hajigholi, M.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; White, G. J.; Wolf, S.

    2014-03-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary α Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims: We aim to determine the level of emission from debris around the stars in the α Cen system. This requires knowledge of their photospheres. Having already detected the temperature minimum, Tmin, of α Cen A at far-infrared wavelengths, we here attempt to do the same for the more active companion α Cen B. Using the α Cen stars as templates, we study the possible effects that Tmin may have on the detectability of unresolved dust discs around other stars. Methods: We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in the far infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around α Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunction with radiative transfer calculations, were used to estimate the amount of debris around these stars. Results: For solar-type stars more distant than α Cen, a fractional dust luminosity fd ≡ Ldust/Lstar 2 × 10-7 could account for SEDs that do not exhibit the Tmin effect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared, slight excesses at the 2.5σ level are observed at 24 μm for both α Cen A and B, which, if interpreted as due to zodiacal-type dust emission, would correspond to fd (1-3) × 10-5, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dust grains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the α Cen stars, viz. ≲4 × 10-6 M≤ftmoon of 4 to 1000 μm size

  15. Accretion in Close Pre-Main-Sequence Binaries

    NASA Astrophysics Data System (ADS)

    Ardila, David

    2010-09-01

    We propose to use COS to observe the circumbinary accretion flow in pre-main sequence binaries as a function of orbital phase. These observations will help us understand how the magnetosphere captures circumbinary gas, test model predictions regarding the importance of the mass ratio in directing the accretion flows, and study the kinematics of the gas filling the circumbinary gap. We will observe UZ Tau E {mass ratio q=0.3, e=0.33} and DQ Tau {q=1, e=0.58} in four phases, over three orbital periods, using G160M and G230L. The targets are Classical T Tauri stars for which the circumstellar disks are severely truncated. Our primary observables will be the CIV {1550 A} lines, formed at the footpoints of the accretion flow onto the star. We expect to observe the ebb and flow of the line shape, centroid, and flux as a function of orbital phase. The low-resolution NUV continuum observations will provide an independent measurement of the total accretion rate.

  16. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2000-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we: (1) Developed detailed calculations of disk structure to study physical conditions and investigate the observational effects of grain growth in T Tauri disks; (2) Studied the dusty emission and accretion rates in older disk systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr, and (3) Began a project to develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution.

  17. RADIO PROPERTIES OF THE BAT AGNs: THE FIR–RADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics inmore » the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.« less

  18. An Introduction to the Sun and Stars

    NASA Astrophysics Data System (ADS)

    Green, Simon F.; Jones, Mark H.

    2015-02-01

    Introduction; 1. Seeing the Sun; 2. The working Sun; 3. Measuring stars; 4. Comparing stars; 5. The formation of stars; 6. The main sequence life of stars; 7. The life of stars beyond the main sequence; 8. The death of stars; 9. The remnants of stars; Conclusion; Answers and comments; Appendices; Glossary; Further reading; Acknowledgements; Figure references; Index.

  19. A Pan-STARRS1 Proper-Motion Survey for Young Brown Dwarfs in the Nearest Star-Forming Regions and a Reddening-Free Classification Method for Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene; Aller, Kimberly

    2018-01-01

    Young brown dwarfs are of prime importance to investigate the universality of the initial mass function (IMF). Based on photometry and proper motions from the Pan-STARRS1 (PS1) 3π survey, we are conducting the widest and deepest brown dwarf survey in the nearby star-forming regions, Taurus–Auriga (Taurus) and Upper Scorpius (USco). Our work is the first to measure proper motions, a robust proxy of membership, for brown dwarf candidates in Taurus and USco over such a large area and long time baseline (≈ 15 year) with such high precision (≈ 4 mas yr-1). Since extinction complicates spectral classification, we have developed a new approach to quantitatively determine reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (≈ 100–5 MJup), using low-resolution near-infrared spectra. So far, our IRTF/SpeX spectroscopic follow-up has increased the substellar and planetary-mass census of Taurus by ≈ 50% and almost doubled the substellar census of USco, constituting the largest single increases of brown dwarfs and free-floating planets found in both regions to date. Most notably, our new discoveries reveal an older (> 10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. In addition, the mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes. Upon completion, our survey will establish the most complete substellar and planetary-mass census in both Taurus and USco associations, make a significant addition to the low-mass IMF in both regions, and deliver more comprehensive pictures of star formation histories.

  20. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2002-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we plan to: (1) Develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; (2) Study the dusty emission and accretion rates in these systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr; and (3) Develop detailed model disk structures consistent with observations to infer physical conditions in protoplanetary disks and to constrain possible grain growth as the first stage of planetesimal formation.

  1. SEARCHING FOR YOUNG JUPITER ANALOGS AROUND AP COL: L-BAND HIGH-CONTRAST IMAGING OF THE CLOSEST PRE-MAIN-SEQUENCE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quanz, Sascha P.; Avenhaus, Henning; Meyer, Michael R.

    2012-08-01

    The nearby M-dwarf AP Col was recently identified by Riedel et al. as a pre-main-sequence star (age 12-50 Myr) situated only 8.4 pc from the Sun. The combination of its youth, distance, and intrinsically low luminosity make it an ideal target to search for extrasolar planets using direct imaging. We report deep adaptive optics observations of AP Col taken with VLT/NACO and Keck/NIRC2 in the L band. Using aggressive speckle suppression and background subtraction techniques, we are able to rule out companions with mass m {>=} 0.5-1 M{sub Jup} for projected separations a > 4.5 AU, and m {>=} 2more » M{sub Jup} for projected separations as small as 3 AU, assuming an age of 40 Myr using the COND theoretical evolutionary models. Using a different set of models, the mass limits increase by a factor of {approx}>2. The observations presented here are the deepest mass-sensitivity limits yet achieved within 20 AU on a star with direct imaging. While Doppler radial velocity surveys have shown that Jovian bodies with close-in orbits are rare around M-dwarfs, gravitational microlensing studies predict that 17{sup +6}{sub -9}% of these stars host massive planets with orbital separations of 1-10 AU. Sensitive high-contrast imaging observations, like those presented here, will help to validate results from complementary detection techniques by determining the frequency of gas giant planets on wide orbits around M-dwarfs.« less

  2. Solar Luminosity on the Main Sequence, Standard Model and Variations

    NASA Astrophysics Data System (ADS)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  3. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  4. Too Cool for Stellar Rules: A Bayesian Exploration of Trends in Ultracool Magnetism

    NASA Astrophysics Data System (ADS)

    Cruz, Kelle L.; Schwab, Ellianna; Williams, Peter K. G.; Hogg, David W.; Rodriguez, David R.; BDNYC

    2017-01-01

    Ultracool dwarfs, the lowest mass red dwarfs and brown dwarfs (spectral types M7-Y9), are fully convective objects with electrically neutral atmospheres due to their extremely cool temperatures (500-3000 K). Radio observations of ultracool dwarfs indicate the presence of magnetic field strengths on the order of ~kG, however the dynamo driving these fields is not fully understood. To better understand ultracool dwarf magnetic behavior, we analyze photometric radio detections of 196 dwarfs (spectral types M7-T8), observed in the 4.5-8.5 GHz range on the Karl G. Jansky Very Large Array (VLA) and the Australia Telescope Compact Array (ATCA). The measurements in our sample are mostly upper limits, along with a small percentage of confirmed detections. The detections have both large uncertainties and high intrinsic scatter. Using Bayesian analysis to fully take advantage of the information available in these inherently uncertain measurements, we search for trends in radio luminosity as a function of several fundamental parameters: spectral type, effective temperature, and rotation rate. In this poster, we present the preliminary results of our efforts to investigate the possibility of subpopulations with different magnetic characteristics using Gaussian mixture models.

  5. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider thanmore » that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.« less

  6. The Role Of Rejuvenation In Shaping The High-Mass End Of The Main Sequence

    NASA Astrophysics Data System (ADS)

    Mancini, Chiara

    2017-06-01

    We investigate the nature of star forming galaxies with reduced specific SFRs and high stellar masses, those that seemingly cause the so-called bending of the main sequence. The fact that such objects host large bulges recently lead some to suggest that the internal formation of the bulges, via compaction or disk instabilities, was the late event that induced sSFRs of massive galaxies to drop in a slow downfall and thus the main sequence to bend. We have studied in detail a sample of 16 galaxies at 0.5main sequence' are virtually all maximally old, with ages approaching the age of the Universe at the time of observation, while disks are very young (t50 1-2 Gyr). We conclude that the bending of the main sequence is likely due to rejuvenation, disfavouring mechanisms that postulate the internal formation of bulges at late times.

  7. On the Statistical Properties of the Lower Main Sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelou, George C.; Bellinger, Earl P.; Hekker, Saskia

    Astronomy is in an era where all-sky surveys are mapping the Galaxy. The plethora of photometric, spectroscopic, asteroseismic, and astrometric data allows us to characterize the comprising stars in detail. Here we quantify to what extent precise stellar observations reveal information about the properties of a star, including properties that are unobserved, or even unobservable. We analyze the diagnostic potential of classical and asteroseismic observations for inferring stellar parameters such as age, mass, and radius from evolutionary tracks of solar-like oscillators on the lower main sequence. We perform rank correlation tests in order to determine the capacity of each observablemore » quantity to probe structural components of stars and infer their evolutionary histories. We also analyze the principal components of classic and asteroseismic observables to highlight the degree of redundancy present in the measured quantities and demonstrate the extent to which information of the model parameters can be extracted. We perform multiple regression using combinations of observable quantities in a grid of evolutionary simulations and appraise the predictive utility of each combination in determining the properties of stars. We identify the combinations that are useful and provide limits to where each type of observable quantity can reveal information about a star. We investigate the accuracy with which targets in the upcoming TESS and PLATO missions can be characterized. We demonstrate that the combination of observations from GAIA and PLATO will allow us to tightly constrain stellar masses, ages, and radii with machine learning for the purposes of Galactic and planetary studies.« less

  8. On the Statistical Properties of the Lower Main Sequence

    NASA Astrophysics Data System (ADS)

    Angelou, George C.; Bellinger, Earl P.; Hekker, Saskia; Basu, Sarbani

    2017-04-01

    Astronomy is in an era where all-sky surveys are mapping the Galaxy. The plethora of photometric, spectroscopic, asteroseismic, and astrometric data allows us to characterize the comprising stars in detail. Here we quantify to what extent precise stellar observations reveal information about the properties of a star, including properties that are unobserved, or even unobservable. We analyze the diagnostic potential of classical and asteroseismic observations for inferring stellar parameters such as age, mass, and radius from evolutionary tracks of solar-like oscillators on the lower main sequence. We perform rank correlation tests in order to determine the capacity of each observable quantity to probe structural components of stars and infer their evolutionary histories. We also analyze the principal components of classic and asteroseismic observables to highlight the degree of redundancy present in the measured quantities and demonstrate the extent to which information of the model parameters can be extracted. We perform multiple regression using combinations of observable quantities in a grid of evolutionary simulations and appraise the predictive utility of each combination in determining the properties of stars. We identify the combinations that are useful and provide limits to where each type of observable quantity can reveal information about a star. We investigate the accuracy with which targets in the upcoming TESS and PLATO missions can be characterized. We demonstrate that the combination of observations from GAIA and PLATO will allow us to tightly constrain stellar masses, ages, and radii with machine learning for the purposes of Galactic and planetary studies.

  9. Exozodiacal clouds: hot and warm dust around main sequence stars

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Krivov, Alexander V.; Defrère, Denis; van Lieshout, Rik; Bonsor, Amy; Augereau, Jean-Charles; Thébault, Philippe; Ertel, Steve; Lebreton, Jérémy; Absil, Olivier

    2017-04-01

    A warm/hot dust component (at temperature $>$ 300K) has been detected around $\\sim$ 20% of stars. This component is called "exozodiacal dust" as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical properties and spatial distribution can be significantly different. Understanding the origin and evolution of this dust is of crucial importance, not only because its presence could hamper future detections of Earth-like planets in their habitable zones, but also because it can provide invaluable information about the inner regions of planetary systems. In this review, we present a detailed overview of the observational techniques used in the detection and characterisation of exozodiacal dust clouds ("exozodis") and the results they have yielded so far, in particular regarding the incidence rate of exozodis as a function of crucial parameters such as stellar type and age, or the presence of an outer cold debris disc. We also present the important constraints that have been obtained, on dust size distribution and spatial location, by using state-of-the-art radiation transfer models on some of these systems. Finally, we investigate the crucial issue of how to explain the presence of exozodiacal dust around so many stars (regardless of their ages) despite the fact that such dust so close to its host star should disappear rapidly due to the coupled effect of collisions and stellar radiation pressure. Several potential mechanisms have been proposed to solve this paradox and are reviewed in detail in this paper. The review finishes by presenting the future of this growing field.

  10. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, D.; Bedding, T. R.; Stello, D.

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen andmore » Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.« less

  11. Ultracool Dwarfs in the Ukirt Infrared Deep Sky Survey (UKIDSS)

    NASA Astrophysics Data System (ADS)

    Burningham, Ben; Pinfield, D.; Leggett, S. K.; Lodieu, N.; Warren, S. J.; Lucas, P. W.; Tamura, M.; Mortlock, D.; Kendall, T. R.; Jones, H. R.; Jameson, R. F.; Richard, M.; Martin, E. L.; UKIDSS Cool Dwarf Science Working Group

    2007-05-01

    The UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) presents an unparallelled resource for the study of field brown dwarfs. The UKIDSS Cool Dwarf Science Working Group (CDSWG) is carrying out a search for the lowest temperature brown dwarfs ever discovered, with the possibility of identifying a new spectral class of ultracool dwarf: the Y dwarf. CDSWG members identified 10 new T dwarfs in the early and first data releases of the LAS, including 2 objects with spectral types later than T7.5. One of these is thought to be the coolest T dwarf ever found with a spectral type of T8.5, and an estimated temperature of 650K. Data release 2 (DR2) took place on 1st March 2007, and already the most promising objects have been selected and followed-up photometrically and spectroscopically. In this contribution I will discuss the capabilities of UKIDSS for identifying ultracool dwarfs and summarise our latest results.

  12. Coronal Activity in Low-Mass Pre-Main Sequence Stars: NGC 2264

    NASA Technical Reports Server (NTRS)

    Tebbe, H. J.; Patten, B. M.

    2000-01-01

    We present the preliminary results of an analysis of ROSAT images in the region of the populous young (age approx. 3 Myr) star-forming region NGC 2264. The cluster was imaged with the ROSAT HRI in two sets of pointings -- one set near the central region of the cluster, centered on the star LW Mon, and the other set in the southern part of the cluster, centered near the star V428 Mon, just south of the Cone Nebula. In total 113 unique X-ray sources have been identified in the ROSAT images with signal-to-noise ratios greater than 3. The limiting luminosities (log Lx(ergs/sec)) for 3-sigma detections are estimated to be 30.18, 30.23, and 30.08 for the northern field, southern field, and overlap region between the two fields respectively. Extensive optical photometry, classification spectroscopy, and proper motions, obtained from recent ground-based surveys of this region, were used to identify the most likely optical counterpart to each X-ray source. Although most of our X-ray selected sample appears to be associated with NGC 2264 members, we find that the vast majority of the cluster membership was undetected in the ROSAT HRI survey. The X-ray cumulative luminosity function for solar-mass stars in NGC 2264 shows that most of the low-mass members probably have X-ray luminosities similar to those seen for the X-ray brightest members of older clusters such as IC 2391/IC 2602 (age approx. 50 Myr) and the Pleiades (age approx. 100 Myr). This research was funded in part by the SAO Summer Intern Program and NASA grant NAG5-8120.

  13. MAGNETIC ACTIVITY ANALYSIS FOR A SAMPLE OF G-TYPE MAIN SEQUENCE KEPLER TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrabi, Ahmad; He, Han; Khosroshahi, Habib, E-mail: mehrabi@basu.ac.ir

    2017-01-10

    The variation of a stellar light curve owing to rotational modulation by magnetic features (starspots and faculae) on the star’s surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation as two proxies to study the stellar magnetic properties for a large sample of G-type main sequence Kepler targets, for which the rotation periods were recently determined. By analyzing the correlation between the two magnetic proxies, it is found that: (1) the two proxies are positively correlated for most of the stars in ourmore » sample, and the percentages of negative, zero, and positive correlations are 4.27%, 6.81%, and 88.91%, respectively; (2) negative correlation stars cannot have a large magnitude of light-curve variation; and (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlation one increases. These results indicate that stars with shorter rotation period tend to have positive correlation between the two proxies, and a good portion of the positive correlation stars have a larger magnitude of light-curve variation (and hence more intense magnetic activities) than negative correlation stars.« less

  14. VizieR Online Data Catalog: Lower main-sequence stars fundamental param. (Casagrande+, 2006)

    NASA Astrophysics Data System (ADS)

    Casagrande, L.; Portinari, L.; Flynn, C.

    2007-06-01

    To recover accurate bolometric fluxes and temperatures for the stars, we have obtained accurate and homogeneous Johnson-Cousins BV(RI)C and JHKs photometry for all the 186 stars in our initial sample. For most of the stars in our sample with declination north of DE=-25°, we have made our own photometric observations from April to December 2004. Observations were done from Finland in full remote mode, using the 35-cm telescope piggybacked on the Swedish 60-cm telescope located at La Palma in the Canary Islands. A SBIG charge-coupled device was used through all the observations. Johnson-Cousins BV(RI)C colours were obtained for all stars. Infrared JHKs photometry for the sample has been taken from the Two-Micron All-Sky Survey (2MASS) catalogue. (1 data file).

  15. VizieR Online Data Catalog: Lower main-sequence stars fundamental param. (Casagrande+, 2006)

    NASA Astrophysics Data System (ADS)

    Casagrande, L.; Portinari, L.; Flynn, C.

    2007-06-01

    To recover accurate bolometric fluxes and temperatures for the stars, we have obtained accurate and homogeneous Johnson-Cousins BV(RI)C and JHKs photometry for all the 186 stars in our initial sample. For most of the stars in our sample with declination north of DE=-25{deg}, we have made our own photometric observations from April to December 2004. Observations were done from Finland in full remote mode, using the 35-cm telescope piggybacked on the Swedish 60-cm telescope located at La Palma in the Canary Islands. A SBIG charge-coupled device was used through all the observations. Johnson-Cousins BV(RI)C colours were obtained for all stars. Infrared JHKs photometry for the sample has been taken from the Two-Micron All-Sky Survey (2MASS) catalogue. (1 data file).

  16. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Luan; Johnson, John Asher, E-mail: lghezzi@cfa.harvard.edu

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a samplemore » of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.« less

  17. Are sdAs helium core stars?

    NASA Astrophysics Data System (ADS)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, Detlev

    2017-12-01

    Evolved stars with a helium core can be formed by non-conservative mass exchange interaction with a companion or by strong mass loss. Their masses are smaller than 0.5 M⊙. In the database of the Sloan Digital Sky Survey (SDSS), there are several thousand stars which were classified by the pipeline as dwarf O, B and A stars. Considering the lifetimes of these classes on the main sequence, and their distance modulus at the SDSS bright saturation, if these were common main sequence stars, there would be a considerable population of young stars very far from the galactic disk. Their spectra are dominated by Balmer lines which suggest effective temperatures around 8 000-10 000 K. Several thousand have significant proper motions, indicative of distances smaller than 1 kpc. Many show surface gravity in intermediate values between main sequence and white dwarf, 4.75 < log g < 6.5, hence they have been called sdA stars. Their physical nature and evolutionary history remains a puzzle. We propose they are not H-core main sequence stars, but helium core stars and the outcomes of binary evolution. We report the discovery of two new extremely-low mass white dwarfs among the sdAs to support this statement.

  18. Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Damiani, F.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-10-01

    Context. NGC 6611 and its parental cloud, the Eagle Nebula (M 16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. In our previous studies of the Eagle Nebula, we identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 μ m. Aims: In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. Methods: We confirm the membership of these stars to M 16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T Tauri stars with disks and envelopes. Results: We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. Conclusions: The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of Class II stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light. Table with the

  19. 2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander

    2015-08-01

    We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.

  20. Zodiacal Exoplanets in Time (ZEIT). III. A Short-period Planet Orbiting a Pre-main-sequence Star in the Upper Scorpius OB Association

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Newton, Elisabeth R.; Rizzuto, Aaron C.; Irwin, Jonathan; Feiden, Gregory A.; Gaidos, Eric; Mace, Gregory N.; Kraus, Adam L.; James, David J.; Ansdell, Megan; Charbonneau, David; Covey, Kevin R.; Ireland, Michael J.; Jaffe, Daniel T.; Johnson, Marshall C.; Kidder, Benjamin; Vanderburg, Andrew

    2016-09-01

    We confirm and characterize a close-in ({P}{{orb}} = 5.425 days), super-Neptune sized ({5.04}-0.37+0.34 {R}\\oplus ) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (\\lt 20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet’s properties and constrain the host star’s density. We determine K2-33’s bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within ˜10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planet-planet scattering is not responsible for all short-period planets.

  1. A spectroscopic and photometric study of the unique pre- main sequence system KH 15D

    NASA Astrophysics Data System (ADS)

    Hamilton, Catrina Marie

    2004-09-01

    As a class, T Tauri stars are YSOs, some which are surrounded by circumstellar disks, and are recognized as the final stage of low-mass star formation. They also represent the earliest stage of stellar evolution that is optically visible, and, therefore, can be easily studied in detail. Understanding the processes through which these young stars interact with and eventually disperse their circumstellar disks is critical for understanding how they evolve from the T Tauri phase to the zero age main sequence (ZAMS), and how this affects the formation of planets, as well as their rotational evolution. KH 15D is a unique eclipsing system that could provide invaluable insight into the evolution of circumstellar disk material, as well as clues to the close stellar environment. Discovered in 1997, this star system has been observed to undergo an eclipse every 48 days in which the star's light is diminished by 3.5 magnitudes. What is so unusual about the eclipse is that the length of the eclipse has evolved over time, growing in length from 16 days initially, to ˜25 days in 2002/2003. Evolution of disk material on these timescales has never been observed before, and therefore provides us with a unique opportunity to refine our theories about remnant disks around young stars, how they transition, possibly into planets, and what role they play as the star matures and arrives on the zero age main sequence. Additionally, high resolution spectra obtained at specific phases during the December 2001 eclipse showed that as the obscuring matter cut across the star, dramatic spectral changes in the Hα and Hβ lines were seen. Its unique eclipse produces a “natural coronographic” effect in which the stellar photosphere is occulted, revealing details of its magnetosphere and surroundings during eclipse. There is evidence that the weak-lined T Tauri star (WTTS) central to the system is actively accreting gas, although probably not at the rate of a typical classical T Tauri star

  2. Tidal Disruptions of Main Sequence Stars: Inferences from the Composition of the Fallback Material

    NASA Astrophysics Data System (ADS)

    Gallegos, Monica; Law-Smith, Jamie; Ramírez-Ruiz, Enrico

    2018-01-01

    We study black holes within galactic nuclei by analyzing the motions of stars swarming around them. When the conditions are right we can observe and analyze characteristics of the black hole’s destructive power. In this paper we analyze the case when a star lurks close enough to these gravity giants to be ripped apart. After disruption, material that is bound to the supermassive black hole accretes onto it and creates a powerful flare. The standard light curve of these flares is classically described by a t-5/3 power law in time. In this paper we adopt an analytical method to calculate the fallback rate and use Modules for Experiments in Stellar Astrophysics (MESA) to study the disruption of stars with masses between 0.8-3 M⊙ at various evolutionary stages. We move beyond the analysis of the light curve and peer into the interiors of the disrupted stars by studying the compositional features of the fallback material. With this work we can begin to constrain the nature of the stars that are tidally disrupted. We find that most stars develop nitrogen (14N) enhancements with carbon (12C) and oxygen (16O) depletion relative to solar abundance and find that these features are more pronounced for higher mass stars. We also find that these features become prominent only after the time of maximum fallback rate, tpeak, and are observed to appear at earlier times for stars of increasing mass. This work provides a clear spectral method to help classify the transient events we observe at the centers of galaxies.

  3. Mass loss from solar-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1985-01-01

    The present picture of mass loss from solar-type (low-mass) stars is described, with special emphasis on winds from pre-main-sequence stars. Attention is given to winds from T Tauri stars and to angular momentum loss. Prospects are good for further advances in our understanding of the powerful mass loss observed from young stars; ultraviolet spectra obtainable with the Space Telescope should provide better estimates of mass loss rates and a clearer picture of physical conditions in the envelopes of these stars. To understand the mass ejection from old, slowly rotating main-sequence stars, we will have to study the sun.

  4. Probing Ultracool Atmospheres and Substellar Interiors with Dynamical Masses

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent

    2010-09-01

    After years of patient orbital monitoring, there is now a large sample of very low-mass stars and brown dwarfs with precise { 5%} dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to use NICMOS and STIS to characterize this first large sample of ultracool binaries with well-determined dynamical masses. We will use NICMOS multi-band photometry to measure the SEDs of the binary components and thereby precisely estimate their spectral types and effective temperatures. We will use STIS to obtain resolved spectroscopy of the Li I doublet at 6708 A for a subset of three binaries whose masses lie very near the theoretical mass limit for lithium burning. The STIS data will provide the first ever resolved lithium measurements for brown dwarfs of known mass, enabling a direct probe of substellar interiors. Our proposed HST observations to characterize the components of these binaries is much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these HST data are equally vital for robust tests of theory.

  5. Main-Sequence CMEs as Magnetic Explosions: Compatibility with Observed Kinematics

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2004-01-01

    We examine the kinematics of 26 CMEs of the morphological main sequence of CMEs, those having the classic three-part bubble structure of (1) a bright front eveloping (2) a dark cavity within which rides (3) a bright blob/filamentary feature. Each CME is observed in Yohkoh/SXT images to originate from near the limb (> or equal to 0.7 R(sub Sun) from disk center). The basic data (from the SOHO LASCO CME Catalog) for the kinematics of each CME are the sequence of LASCO images of the CME, the time of each image, the measured radial distance of the front edge of the CME in each image, and the measured angular extent of the CME. About half of our CMEs (12) occur with a flare, and the rest (14) occur without a flare. While the average linear-fit speed of the flare CMEs (1000 km/s) is twice that of the non-flare CMEs (510 km/s), the flare CMEs and the non-flare CMEs are similar in that some have nearly flat velocity-height (radial extent) profiles (little acceleration), some have noticeably falling velocity profiles (noticeable deceleration), and the rest have velocity profiles that rise considerably through the outer corona (blatant acceleration). This suggests that in addition to sharing similar morphology, main-sequence CMEs all have basically the same driving mechanism. The observed radial progression of each of our 26 CMEs is fit by a simple model magnetic plasmoid that is in pressure balance with the radial magnetic field in the outer corona and that propels itself outward by magnetic expansion, doing no net work on its surroundings. On average over the 26 CMEs, this model fits the observations as well as the assumption of constant acceleration. This is compatible with main-sequence CMEs being magnetically driven, basically magnetic explosions, with the velocity profile in the outer corona being largely dictated by the initial Alfien speed in the CME (when the front is at approx. 3 (sub Sun), analogous to the mass of a main-sequence star dictating the luminosity.

  6. Stellar Variability at the Main-sequence Turnoff of the Intermediate-age LMC Cluster NGC 1846

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Pajkos, M. A.; Vivas, A. K.; Strader, J.; Contreras Ramos, R.

    2018-04-01

    Intermediate-age (IA) star clusters in the Large Magellanic Cloud (LMC) present extended main-sequence turn-offs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequences can also be produced by ill-characterized stellar variability. Here we present Gemini-S/Gemini Multi-Object Spectrometer (GMOS) time series observations of the IA cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects, we estimate the number of δ Sct belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single δ Sct within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher-resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of δ Sct makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results present a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its δ Sct population. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  7. A Main Sequence For Quasars

    NASA Astrophysics Data System (ADS)

    Marziani, Paola; Sulentic, J. W.; Dultzin, D.; Negrete, A.; del Olmo, A.; Martínez-Carballo, M. A.; Stirpe, G. M.; D'Onofrio, M.; Perea, J.

    2016-10-01

    The 4D eigenvector 1 parameter space defined by Sulentic et al. may be seen as a surrogate H-R diagram for quasars. As in the stellar H-R diagram, a source sequence can be easily identified. In the case of quasars, the main sequence appears to be mainly driven by Eddington ratio. A transition Eddington ratio may in part explain the striking observational differences between quasars at opposite ends of the main sequence. The eigenvector-1 approach opens the door towards properly contextualized models of quasar physics, geometry and kinematics. We review some of the progress that has been made over the past 15 years, and point out still unsolved issues.

  8. Stars of type MS with evidence of white dwarf companions. [IUE, Main Sequence (MS)

    NASA Technical Reports Server (NTRS)

    Peery, Benjamin F., Jr.

    1986-01-01

    A search for white dwarf companions of MS-type stars was conducted, using IUE. The overendowments of these stars in typical S-process nuclides suggest that they, like the Ba II stars, may owe their peculiar compositions to earlier mass transfer. Short-wavelength IUE spectra show striking emission line variability in HD35155, HD61913, and 4 Ori; HD35155 and 4 Ori show evidence of white dwarf companions.

  9. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  10. High Resolution X-ray Spectroscopy and Star Formation: HETG Observations of the Pre-Main Sequence Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Principe, David; Huenemoerder, David P.; Schulz, Norbert; Kastner, Joel H.; Weintraub, David; Preibisch, Thomas

    2018-01-01

    We present Chandra High Energy Transmission Grating (HETG) observations of the ∼3 Myr old pre-main sequence (pre-MS) stellar cluster IC 348. With 400-500 cluster members at a distance of ∼300 pc, IC 348 is an ideal target to observe a large number of X-ray sources in a single pointing and is thus an extremely efficient use of Chandra-HETG. High resolution X-ray spectroscopy offers a means to investigate detailed spectral characteristic of X-ray emitting plasmas and their surrounding environments. We present preliminary results where we compare X-ray spectral signatures (e.g., luminosity, temperature, column density, abundance) of the X-ray brightest pre-MS stars in IC 348 with spectral type, multiwavelength signatures of accretion, and the presence of circumstellar disks at multiple stages of pre-MS stellar evolution. Assuming all IC 348 members formed from the same primordial molecular cloud, any disparity between coronal abundances of individual members, as constrained by the identification and strength of emission lines, will constrain the source(s) of coronal chemical evolution at a stage of pre-MS evolution vital to the formation of planets.

  11. The Evolution of Rotation and Activity in Young Open Clusters: the Zero-Age Main Sequence.

    NASA Astrophysics Data System (ADS)

    Patten, Brian Michael

    1995-01-01

    I have undertaken a program of ground- and space -based observations to measure photometric rotation periods and X-ray luminosities for late-type stars in the young open clusters IC 2391 and IC 2602. With cluster ages of ~30 Myr, IC 2391 and IC 2602 are ideal sites in which to observe conditions at the ZAMS since the solar-type stars in these clusters have not been on the main sequence long enough to undergo significant magnetic braking. The ROSAT survey of IC 2391 revealed 80 X-ray sources, 44 of which were found to be associated with stars which are now classified as new cluster members. Among the solar-type stars in both IC 2391 and IC 2602, I find a factor of ~25 spread in the distribution of rotation periods, which range from 0.21 to 4.86 day. I also find a factor of ~10-20 spread in the range of LX about a median LX value of ~10^{30 } erg s^{-1} for both clusters. These results show conclusively that stars arrive on the ZAMS with a wide range of rotation rates and coronal activity levels. When compared to data from older clusters, such as the Pleiades and the Hyades, there is an overall decline observed in both the rotation rates and median X-ray luminosity of cluster members with increasing age, however, while the spread in the range of rotation rates decreases to a small value, the spread in the range of LX values as a fraction of the median is observed to increase with age. This behavior is best explained through a dependence of LX on P rot which is weak in the young clusters and strong in the older clusters. The Rossby diagram shows there is a tight correlation between L X/Lbol and the Rossby number, Prot divided by the convective turnover time. Young, rapidly rotating, main sequence stars lie along a plateau of magnetic saturation, where LX has a weak dependence on rotation period, while older, more slowly rotating stars lie in a region on the Rossby diagram where LX has a strong dependence on rotation period.

  12. A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence

    NASA Astrophysics Data System (ADS)

    Kovtyukh, V. V.; Soubiran, C.; Belik, S. I.

    2004-12-01

    Highly precise temperatures (σ = 10-15 K) have been determined from line depth ratios for a set of 248 F-K field dwarfs of about solar metallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42 000), high S/N echelle spectra. A new gap has been discovered in the distribution of stars on the Main Sequence in the temperature range 5560 to 5610 K. This gap coincides with a jump in the microturbulent velocity Vt and the well-known Li depression near 5600 K in field dwarfs and open clusters. As the principal cause of the observed discontinuities in stellar properties we propose the penetration of the convective zone into the inner layers of stars slightly less massive than the Sun and related to it, a change in the temperature gradient. Based on spectra collected with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute-Provence (France). Full Table 1 is only available in electronic form at http://www.edpsciences.org

  13. Lifestyles of the Stars.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  14. Absolute Ages and Distances of 22 GCs Using Monte Carlo Main-sequence Fitting

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; Gilligan, Christina; Chaboyer, Brian

    2017-04-01

    The recent Gaia Data Release 1 of stellar parallaxes provides ample opportunity to find metal-poor main-sequence stars with precise parallaxes. We select 21 such stars with parallax uncertainties better than σ π /π ≤ 0.10 and accurate abundance determinations suitable for testing metal-poor stellar evolution models and determining the distance to Galactic globular clusters (GCs). A Monte Carlo analysis was used, taking into account uncertainties in the model construction parameters, to generate stellar models and isochrones to fit to the calibration stars. The isochrones that fit the calibration stars best were then used to determine the distances and ages of 22 GCs with metallicities ranging from -2.4 dex to -0.7 dex. We find distances with an average uncertainty of 0.15 mag and absolute ages ranging from 10.8 to 13.6 Gyr with an average uncertainty of 1.6 Gyr. Using literature proper motion data, we calculate orbits for the clusters, finding six that reside within the Galactic disk/bulge, while the rest are considered halo clusters. We find no strong evidence for a relationship between age and Galactocentric distance, but we do find a decreasing age-[Fe/H] relation.

  15. IN-SYNC. II. Virial Stars from Subvirial Cores—the Velocity Dispersion of Embedded Pre-main-sequence Stars in NGC 1333

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan B.; Cottaar, Michiel; Covey, Kevin R.; Arce, Héctor G.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Rebull, Luisa; Frinchaboy, Peter M.; Majewski, Steven R.; Skrutskie, Michael; Wilson, John C.; Zasowski, Gail

    2015-02-01

    The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s-1 after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s-1. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse.

  16. STAR: an integrated solution to management and visualization of sequencing data

    PubMed Central

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei

    2013-01-01

    Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702

  17. STAR: an integrated solution to management and visualization of sequencing data.

    PubMed

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei

    2013-12-15

    Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.

  18. NASA’s Spitzer Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around a Single Star

    NASA Image and Video Library

    2017-02-22

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the Spitzer Space Telescope of seven Earth-sized planets around a tiny, nearby, ultra-cool dwarf star. Three of these planets are in the habitable zone, the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone, and the first time so many Earth-sized planets have been found around the same star. The finding of this planetary system, called TRAPPIST-1, is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds

  19. Understanding the Accretion Engine in Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.

    2009-05-01

    Planetary systems are angular momentum reservoirs generated during star formation as a result of the joint action of gravity and angular momentum conservation. The accretion process drives to the generation of powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating the circumstellar plasma to temperatures between 3000 K to 10 MK depending on the plasma location and density. There are very important unsolved problems concerning the nature of the engine, its evolution and its impact in the chemical evolution of the disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ought to be studied in the UV.

  20. The brightest pure-H ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Catalán, S.; Tremblay, P.-E.; Pinfield, D. J.; Smith, L. C.; Zhang, Z. H.; Napiwotzki, R.; Marocco, F.; Day-Jones, A. C.; Gomes, J.; Forde, K. P.; Lucas, P. W.; Jones, H. R. A.

    2012-10-01

    We report the identification of LSR J0745+2627 in the United Kingdom InfraRed Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) as a cool white dwarf with kinematics and age compatible with the thick-disk/halo population. LSR J0745+2627 has a high proper motion (890 mas/yr) and a high reduced proper motion value in the J band (HJ = 21.87). We show how the infrared-reduced proper motion diagram is useful for selecting a sample of cool white dwarfs with low contamination. LSR J0745+2627 is also detected in the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We have spectroscopically confirmed this object as a cool white dwarf using X-Shooter on the Very Large Telescope. A detailed analysis of its spectral energy distribution reveals that its atmosphere is compatible with a pure-H composition model with an effective temperature of 3880 ± 90 K. This object is the brightest pure-H ultracool white dwarf (Teff < 4000 K) ever identified. We have constrained the distance (24-45 pc), space velocities and age considering different surface gravities. The results obtained suggest that LSR J0745+2627 belongs to the thick-disk/halo population and is also one of the closest ultracool white dwarfs. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 088.C-0048(B).FITS version of the reduced spectrum is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/L3

  1. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction inmore » Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.« less

  2. A surprise at the bottom of the main sequence: Rapid rotation and NO H-alpha emission

    NASA Technical Reports Server (NTRS)

    Basri, Gibor; Marcy, Geoffrey W.

    1995-01-01

    We report Kech Observatory high-resolution echelle spectra from 640-850 nm for eight stars near the faint end of the main sequence. These spectra are the highest resolution spectra of such late-type stars, and clearly resolve the TiO, VO, and atomic lines. The sample includes the field brown-dwarf candidate, BRI 0021-0214 (M9.5+). Very unexpectedly, it shows the most rapid rotation in the entire samples, v sin i approximately 40 km/s, which is 20x faster than typical field nonemission M stars. Equally surprising is that BRI 0021 exhibits no emission or absorptionat H-alpha. We argue that this absence is not simply due to its cool photosphere, but that stellar activity declines in a fundamental way at the end of the main sequence. As it is the first very late M dwarf observed at high spectral resolution, BRI 0021 may be signaling a qualitative change in the angular momentum loss rate among the lowest mass stars. Conventionally, its rapid rotation would have marked BRI 0021 as very young, consistent with the selection effect which arises if the latest-type dwarfs are really brown dwarfs on cooling curves. In any case, it is unprecedented to find no sign of stellar activity in such a rapidly rotating convective star. We also discuss the possible conflict between this observation and the extremely strong H-alpha seen in another very cool star, PC 0025+0447. Extrapolation of M-L relations for BRI 0021 yields M approximately 0.065 solar mass, and the other sample objects have expected masses near the H-burning limit. These include two Pleiades brown-dwarf candidates, four field M6 dwarfs and one late-type T Tauri star. The two Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades membership. Similarly, the late-type T Tauri star has v sin i approximately 30 km/s and H alpha emission indicate of its

  3. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1.

    PubMed

    Gillon, Michaël; Triaud, Amaury H M J; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M; Lederer, Susan M; de Wit, Julien; Burdanov, Artem; Ingalls, James G; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R; Carey, Sean J; Chaushev, Aleksander; Copperwheat, Chris M; Delrez, Laetitia; Fernandes, Catarina S; Holdsworth, Daniel L; Kotze, Enrico J; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-02-22

    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

  4. Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

    NASA Astrophysics Data System (ADS)

    Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena

    2016-01-01

    Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes

  5. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai

    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color–magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet–visual CMDs of four Large and Smallmore » Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35–50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.« less

  6. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Milone, Antonino P.

    2017-08-01

    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color-magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet-visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35-50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.

  7. Galactic helium-to-metals enrichment ratio (Delta Y/ Delta Z) from the analysis of local main sequence stars observed by HIPPARCOS

    NASA Astrophysics Data System (ADS)

    Gennaro, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    We discuss the reliability of one of the most used method to determine the Helium-to-metals enrichment ratio, Delta Y / Delta Z, i.e. the photometric comparison of a selected data set of local disk low Main Sequence (MS) stars observed by HIPPARCOS and a new grid of stellar models with up-to-date input physics. Most of the attention has been devoted to evaluate the effects on the final results of different sources of uncertainty (observational errors, evolutionary effects, selection criteria, systematic uncertainties of the models, numerical errors). As a check of the result the procedure has been repeated using another, independent, data set: the low-MS of the Hyades cluster. The obtained of Delta Y/ Delta Z for the Hyades, together with spectroscopic determinations of [Fe/H] ratio, have been used to obtain the Y and Z values for the cluster. Isochrones have been calculated with the estimated chemical composition, obtaining a very good agreement between the predicted position of the Hyades MS and the observational data in the Color - Magnitude Diagram (CMD).

  8. Post-main-sequence debris from rotation-induced YORP break-up of small bodies

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Jacobson, Seth A.; Gänsicke, Boris T.

    2014-12-01

    Although discs of dust and gas have been observed orbiting white dwarfs, the origin of this circumstellar matter is uncertain. We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to this debris. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

  9. Rotation-induced YORP break-up of small bodies to produce post-main-sequence debris

    NASA Astrophysics Data System (ADS)

    Veras, D.; Jacobson, S. A.; Gänsicke, B. T.

    2017-09-01

    We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to the debris orbiting and ultimately polluting white dwarfs. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

  10. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

    PubMed Central

    Gillon, Michaël; Triaud, Amaury H. M. J.; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M.; Lederer, Susan M.; de Wit, Julien; Burdanov, Artem; Ingalls, James G.; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N.; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R.; Carey, Sean J.; Chaushev, Aleksander; Copperwheat, Chris M.; Delrez, Laetitia; Fernandes, Catarina S.; Holdsworth, Daniel L.; Kotze, Enrico J.; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-01-01

    One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star just 8% the mass of the Sun 12 parsecs away1. Indeed, the transiting configuration of these planets combined with the Jupiter-like size of their host star - named TRAPPIST-1 - makes possible in-depth studies of their atmospheric properties with current and future astronomical facilities1,2,3. Here we report the results of an intensive photometric monitoring campaign of that star from the ground and with the Spitzer Space Telescope. Our observations reveal that at least seven planets with sizes and masses similar to the Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.21, 12.35 days) are near ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inward4,5. The seven planets have equilibrium temperatures low enough to make possible liquid water on their surfaces6,7,8. PMID:28230125

  11. Revising Star and Planet Formation Timescales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-07-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: 2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); 6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  12. Photometry of Standard Stars and Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Jefferies, Amanda; Frinchaboy, Peter

    2010-10-01

    Photometric CCD observations of open star clusters and standard stars were carried out at the McDonald Observatory in Fort Davis, Texas. This data was analyzed using aperture photometry algorithms (DAOPHOT II and ALLSTAR) and the IRAF software package. Color-magnitude diagrams of these clusters were produced, showing the evolution of each cluster along the main sequence.

  13. The SCUBA-2 Cosmology Legacy Survey: galaxies in the deep 850 μm survey, and the star-forming `main sequence'

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Roseboom, I.; Geach, J. E.; Cirasuolo, M.; Aretxaga, I.; Bowler, R. A. A.; Banerji, M.; Bourne, N.; Coppin, K. E. K.; Chapman, S.; Hughes, D. H.; Jenness, T.; McLure, R. J.; Symeonidis, M.; Werf, P. van der

    2016-06-01

    We investigate the properties of the galaxies selected from the deepest 850-μm survey undertaken to date with (Submillimetre Common-User Bolometer Array 2) SCUBA-2 on the James Clerk Maxwell Telescope as part of the SCUBA-2 Cosmology Legacy Survey. A total of 106 sources (>5σ) were uncovered at 850 μm from an area of ≃150 arcmin2 in the centre of the COSMOS/UltraVISTA/Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field, imaged to a typical depth of σ850 ≃ 0.25 mJy. We utilize the available multifrequency data to identify galaxy counterparts for 80 of these sources (75 per cent), and to establish the complete redshift distribution for this sample, yielding bar{z} = 2.38± 0.09. We have also been able to determine the stellar masses of the majority of the galaxy identifications, enabling us to explore their location on the star formation rate:stellar mass (SFR:M*) plane. Crucially, our new deep 850-μm-selected sample reaches flux densities equivalent to SFR ≃ 100 M⊙ yr-1, enabling us to confirm that sub-mm galaxies form the high-mass end of the `main sequence' (MS) of star-forming galaxies at z > 1.5 (with a mean specific SFR of sSFR = 2.25 ± 0.19 Gyr-1 at z ≃ 2.5). Our results are consistent with no significant flattening of the MS towards high masses at these redshifts. However, our results add to the growing evidence that average sSFR rises only slowly at high redshift, resulting in log10sSFR being an apparently simple linear function of the age of the Universe.

  14. Periodic optical variability of radio-detected ultracool dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, L. K.; Golden, A.; Singh, Navtej

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring,more » delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.« less

  15. VizieR Online Data Catalog: WISE IR excesses among main sequence stars (Da Costa+, 2017)

    NASA Astrophysics Data System (ADS)

    da Costa, A. D.; Canto Martins, B. L.; Leao, I. C.; Lima, J. E., Jr.; Freire da Silva, D.; de Freitas, D. B.; de Medeiros, J. R.

    2017-10-01

    This study presents a search for infrared (IR) excess in the 3.4, 4.6, 12, and 22μm bands in a sample of 216 targets, composed of solar sibling, twin, and analog stars observed by the Wide-field Infrared Survey Explorer (WISE) mission. In general, an IR excess suggests the existence of warm dust around a star. We detected 12μm and/or 22μm excesses at the 3σ level of confidence in five solar analog stars, corresponding to a frequency of 4.1% of the entire sample of solar analogs analyzed, and in one out of 29 solar sibling candidates, confirming previous studies. The estimation of the dust properties shows that the sources with IR excesses possess circumstellar material with temperatures that, within the uncertainties, are similar to that of the material found in the asteroid belt in our solar system. No photospheric flux excess was identified at the W1 (3.4μm) and W2 (4.6μm) WISE bands, indicating that, in the majority of stars of the present sample, no detectable dust is generated. Interestingly, among the 60 solar twin stars analyzed in this work, no WISE photospheric flux excess was detected. However, a null-detection excess does not necessarily indicate the absence of dust around a star because different causes, including dynamic processes and instrument limitations, can mask its presence. (1 data file).

  16. WNL Stars - the Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.

    2001-08-01

    We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  17. WNLh Stars - The Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric

    2002-08-01

    We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  18. An Observational Study of Accretion Dynamics in Short-Period Pre-Main Sequence Binaries

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin; Mathieu, Robert; Herczeg, Greg; Johns-Krull, Christopher; Akeson, Rachel; Ciardi, David

    2018-01-01

    Over the past thirty years, a detailed picture of star formation has emerged that highlights the importance of the interaction between a pre-main sequence (pre-MS) star and its protoplanetary disk. The properties of an emergent star, the lifetime of a protoplanetary disk, and the formation of planets are all, in part, determined by this star-disk interaction. Many stars, however, form in binary or higher-order systems where orbital dynamics are capable of fundamentally altering this star-disk interaction. Orbital resonances, especially in short-period systems, are capable of clearing the central region of a protoplanetary disk, leaving the possibility for three stable accretion disks: a circumstellar disk around each star and a circumbinary disk. In this model, accretion onto the stars is predicted to proceed in periodic streams that form at the inner edge of the circumbinary disk, cross the dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars themselves. This pulsed-accretion paradigm predicts bursts of accretion that are periodic with the orbital period, where the duration, amplitude, location in orbital phase, and which star if preferentially fed, all depend on the orbital parameters. To test these predictions, we have carried out intensive observational campaigns combining time-series, optical and near-infrared photometry with time-series, optical spectroscopy. These data are capable of monitoring the stellar accretion rate, the properties of warm circumstellar dust, and the kinematics of accretion flows, all as a function of orbital phase. In our sample of 9 pre-MS binaries with diverse orbital parameters, we search for evidence of periodic accretion events and seek to determine the role orbital parameters have on the characteristics of accretion events. Two results from our campaign will be highlighted: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the

  19. Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis.

    PubMed

    Long, Kyle A; Nossa, Carlos W; Sewell, Mary A; Putnam, Nicholas H; Ryan, Joseph F

    2016-01-01

    There are five major extant groups of Echinodermata: Crinoidea (feather stars and sea lillies), Ophiuroidea (brittle stars and basket stars), Asteroidea (sea stars), Echinoidea (sea urchins, sea biscuits, and sand dollars), and Holothuroidea (sea cucumbers). These animals are known for their pentaradial symmetry as adults, unique water vascular system, mutable collagenous tissues, and endoskeletons of high magnesium calcite. To our knowledge, the only echinoderm species with a genome sequence available to date is Strongylocentrotus pupuratus (Echinoidea). The availability of additional echinoderm genome sequences is crucial for understanding the biology of these animals. Here we present assembled draft genomes of the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis from Illumina sequence data with coverages of 12.5x, 22.5x, and 21.4x, respectively. These data provide a resource for mining gene superfamilies, identifying non-coding RNAs, confirming gene losses, and designing experimental constructs. They will be important comparative resources for future genomic studies in echinoderms.

  20. Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology)

    NASA Astrophysics Data System (ADS)

    Barnes, S. A.; Spada, F.; Weingrill, J.

    2016-09-01

    Rotation periods for cool stars can be measured with good precision by monitoring starspot light modulation. Observations have shown that the rotation periods of dwarf stars of roughly solar metallicity have such systematic dependencies on stellar age and mass that they can be used to derive reliable ages, a procedure called gyrochronology. We review the method and show illustrative cases, including recent ground- and space-based data. The age uncertainties approach 10 % in the best cases, making them a valuable complement to, and constraint on, asteroseismic or other ages. Edited, updated, and refereed version of a presentation at the WE-Heraeus-Seminar in Bad Honnef, Germany: Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

  1. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission

  2. Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Geier, Stephan; Heber, Uli

    2014-09-01

    The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.

  3. A Spatially Resolved Investigation on the Influence of AGN and Star Formation in a Lensed Main-Sequence Galaxy at z = 2.39

    NASA Astrophysics Data System (ADS)

    Fischer, Travis; Rigby, Jane; Gladders, Michael; Sharon, Keren q.; Barrientos, L. Felipe; Bayliss, Matt; Dahle, Håkon; Florian, Michael; Johnson, Traci Lin; Wuyts, Eva

    2018-01-01

    We present rest-frame optical SINFONI integral field spectroscopy and rest-frame UV HST imaging of a lensed galaxy hosting an active galactic nucleus (AGN) at z = 2.39. Galactic wind feedback is widely acknowledged to play a critical role in the evolution of galaxies, however, the physical mechanisms involved and the relative importance of AGN and star formation as the main feedback drivers remain poorly understood. AGN-driven feedback has been evident in very luminous but rare quasars and radio galaxies, but observational evidence remains lacking for less extreme, “normal” star-forming galaxies. We report, for the first time at high redshift, spatially resolved velocity profiles and geometries of an AGN-driven outflow in a normal star-forming galaxy and spatial extents and morphologies of Lyα emission and stellar UV continuum. Analyzing these measurements in tandem, we determine the physical conditions, geometry, and excitation sources of the interstellar medium in a star-forming, AGN-hosting galaxy at cosmic noon.

  4. Differential rotation in main-sequence solar-like stars: Qualitative inference from asteroseismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Mikkel N.; Christensen-Dalsgaard, Jørgen; Miesch, Mark S., E-mail: mikkelnl@phys.au.dk

    2014-08-01

    Understanding differential rotation of Sun-like stars is of great importance for insight into the angular momentum transport in these stars. One means of gaining such information is that of asteroseismology. By a forward modeling approach we analyze in a qualitative manner the impact of different differential rotation profiles on the splittings of p-mode oscillation frequencies. The optimum modes for inference on differential rotation are identified along with the best value of the stellar inclination angle. We find that in general it is not likely that asteroseismology can be used to make an unambiguous distinction between a rotation profile such asmore » a conical Sun-like profile and a cylindrical profile. In addition, it seems unlikely that asteroseismology of Sun-like stars will result in inferences on the radial profile of the differential rotation, such as can be done for red giants. At best, one could possibly obtain the sign of the radial differential rotation gradient. Measurements of the extent of the latitudinal differential from frequency splitting are, however, more promising. One very interesting aspect that could likely be tested from frequency splittings is whether the differential rotation is solar-like or anti-solar-like in nature, in the sense that a solar-like profile has an equator rotating faster than the poles.« less

  5. The rate and efficiency of high-mass star formation along the Hubble sequence

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Young, Judith S.

    1991-01-01

    Data obtained with IRAS are used to compare and contrast the global star formation rates for a galactic sample which represents essentially all known noninteracting spiral and lenticular galaxies within 40 Mpc. The distribution of 60 micron luminosity is similar for spirals of types Sa-Scd inclusively, although the luminosities of the very early and very late types are, on average, one order of magnitude lower. High-mass star formation rates are similar for early, intermediate, and late type spirals, and the average high-mass star formation rate per unit molecular gas mass is independent of type for spiral galaxies. A remarkable homogeneity exists in the high-mass star-forming capabilities of spiral galaxies, particularly among the Sa-Scd types. The Hubble sequence is therefore not a sequence in the present-day rate or production efficiency of high-mass stars.

  6. Modelling the Dust Around Vega-Like Stars

    NASA Technical Reports Server (NTRS)

    Sylvester, Roger J.; Skinner, C. J.; Barlow, M. J.

    1996-01-01

    Models are presented of four Vega-like stars: main-sequence stars with infrared emission from circumstellar dust. The dusty environments of the four stars are rather diverse, as shown by their spectral energy distributions. Good fits to the observations were obtained for all four stars.

  7. X-Ray Properties of Low-mass Pre-main Sequence Stars in the Orion Trapezium Cluster

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Huenemoerder, David P.; Günther, Moritz; Testa, Paola; Canizares, Claude R.

    2015-09-01

    The Chandra HETG Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster that provides high-resolution X-ray spectra of very young stars over a wide mass range (0.7-2.3 {M}⊙ ). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts that are well-characterized at optical and infrared wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction, indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above 1031 erg s-1, in some cases exceeding 1032 erg s-1 for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total emission measures range between 3-8 × 1054 cm-3 and are comparable to active coronal sources. The fits to the Ne ix He-Like K-shell lines indicate forbidden to inter-combination line ratios consistent with the low-density limit. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6-2.3 {M}⊙ classical T Tauri stars shows that coronal activity increases significantly between ages 0.1 and 10 Myr. The results demonstrate the power of X-ray line diagnostics to study coronal properties of T Tauri stars in young stellar clusters.

  8. Observation and modelling of main-sequence stellar chromospheres - VII. Rotation and metallicity of dM1 stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2008-11-01

    We have measured v sini and metallicity from high-resolution spectroscopic observations of a selected sample of dM1-type stars. To measure v sini, we first selected three template stars known for their slow rotation or their very low activity levels and then cross-correlated their spectra with those of our target stars. The excess broadening of the cross-correlation peaks gives v sini. For metallicity, we compiled all available measurements from the literature and correlated them with the stellar radius. Provided the parallax is known, this new method allows us to derive metallicities for all our target stars. We measured v sini to an accuracy of 2 kms-1. These values were combined with other measurements taken from the literature. We have detected rotation in seven dM1e stars and 11 dM1 stars and upper limits for 20 other dM1 stars. Our results show that the distribution of the rotation period may be bimodal for dM1 stars, i.e. there are two groups of stars: the fast rotators with Prot ~ 6 d and the slow rotators with Prot ~ 24 d. There is a gap between these two groups. We obtained a correlation between metallicity and stellar radius which allows us to derive metallicities for all stars in our sample and more generally for all dM1 stars with [M/H] in the range -1.5 to 0.5 dex, with a reasonable accuracy. We compare this correlation to models and find a significant disagreement in radii. However, the observed shape of the correlation is globally reproduced by the models. We derive the metallicity for 87 M1 dwarfs and subdwarfs. Based on observations collected at Observatoire de Haute Provence and the European Southern Observatory and on Hipparcos parallax measurements. E-mail: eric_houdebine@yahoo.fr

  9. The Magnetic Properties of Galactic OB Stars from the Magnetism in Massive Stars Project

    NASA Astrophysics Data System (ADS)

    Wade, Gregg A.; Grunhut, Jason; Petit, Veronique; Neiner, Coralie; Alecian, Evelyne; Landstreet, John; MiMeS Collaboration

    2013-06-01

    The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Comprising nearly 4500 high resolution polarised spectra of nearly 550 Galactic B and O-type stars, the MiMeS survey aims to address interesting and fundamental questions about the magnetism of hot, massive stars: How and when are massive star magnetic fields generated, and how do they evolve throughout stellar evolution? How do magnetic fields couple to and interact with the powerful winds of OB stars, and what are the consequences for the wind structure, momentum flux and energetics? What are the detailed physical mechanisms that lead to the anomalously slow rotation of many magnetic massive stars? What is the ultimate impact of stellar magnetic fields -- both direct and indirect -- on the evolution of massive stars? In this talk we report results from the analysis of the B-type stars observed within the MiMeS survey. The sample consists of over 450 stars ranging in spectral type from B9 to B0, and in evolutionary stage from the pre-main sequence to the post-main sequence. In addition to general statistical results concerning field incidence, strength and topology, we will elaborate our conclusions for subsamples of special interest, including the Herbig and classical Be stars, pulsating B stars and chemically peculiar B stars.

  10. COSMIC-LAB: Double BSS sequences as signatures of the Core Collapse phenomenon in star clusters.

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2011-10-01

    Globular Clusters {GCs} are old stellar systems tracing key stages of the star formation and chemical enrichment history of the early Universe and the galaxy assembly phase. As part of a project {COSMIC-LAB} aimed at using GCs as natural laboratories to study the complex interplay between dynamics and stellar evolution, here we present a proposal dealing with the role of Blue Straggler Stars {BSS}.BSS are core-hydrogen burning stars more massive than the main-sequence turnoff population. The canonical scenarios for BSS formation are either the mass transfer between binary companions, or stellar mergers induced by collisions. We have recently discovered two distinct and parallel sequences of BSS in the core of M30 {Ferraro et al. 2009, Nature 462, 1082}. We suggested that each of the two sequences is populated by BSS formed by one of the two processes, both triggered by the cluster core collapse, that, based on the observed BSS properties, must have occurred 1-2 Gyr ago. Following this scenario, we have identified a powerful "clock" to date the occurrence of this key event in the GC history.Here we propose to secure WFC3 images of 4 post-core collapse GCs, reaching S/N=200 at the BSS magnitude level, in order to determine the ubiquity of the BSS double sequence and calibrate the "dynamical clock". This requires very high spatial resolution and very high precision photometry capabilities that are unique to the HST. The modest amount of requested time will have a deep impact on the current and future generations of dynamical evolutionary models of collisional stellar systems.

  11. VizieR Online Data Catalog: Main-sequence A, F, G, and K stars photometry (Boyajian+, 2013)

    NASA Astrophysics Data System (ADS)

    Boyajian, T. S.; von Braun, K.; van Belle, G.; Farrington, C.; Schaefer, G.; Jones, J.; White, R.; McAlister, H. A.; Ten Brummelaar, T. A.; Ridgway, S.; Gies, D.; Sturmann, L.; Sturmann, J.; Turner, N. H.; Goldfinger, P. J.; Vargas, N.

    2016-07-01

    Akin to the observing outlined in DT1 and DT2, observations for this project were made with the CHARA Array, a long-baseline optical/infrared interferometer located on Mount Wilson Observatory in southern California. The target stars were selected based on their approximate angular size (a function of their intrinsic linear size and distance to the observer). We limit the selection to stars with angular sizes >0.45mas, in order to adequately resolve their sizes to a few percent precision with the selected instrument setup. Note that all stars that meet this requirement are brighter than the instrumental limits of our detector by several magnitudes. The stars also have no known stellar companion within 3-arcsec to avoid contamination of incoherent light in the interferometers' field of view. From 2008 to 2012, we used the CHARA Classic beam combiner operating in the H band (λH=1.67um) and the K' band (λK'=2.14um) to collect observations of 23 stars using CHARA's longest baseline combinations. (5 data files).

  12. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.

    2017-12-01

    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin i ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin i and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin i ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  13. Return to [Log-]Normalcy: Rethinking Quenching, The Star Formation Main Sequence, and Perhaps Much More

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Gladders, Michael D.; Dressler, Alan; Oemler, Augustus, Jr.; Poggianti, Bianca; Vulcani, Benedetta

    2016-11-01

    Knowledge of galaxy evolution rests on cross-sectional observations of different objects at different times. Understanding of galaxy evolution rests on longitudinal interpretations of how these data relate to individual objects moving through time. The connection between the two is often assumed to be clear, but we use a simple “physics-free” model to show that it is not and that exploring its nuances can yield new insights. Comprising nothing more than 2094 loosely constrained lognormal star formation histories (SFHs), the model faithfully reproduces the following data it was not designed to match: stellar mass functions at z≤slant 8; the slope of the star formation rate/stellar mass relation (the SFR “Main Sequence”) at z≤slant 6; the mean {sSFR}(\\equiv {SFR}/{M}* ) of low-mass galaxies at z≤slant 7; “fast-” and “slow-track” quenching; downsizing; and a correlation between formation timescale and {sSFR}({M}* ,t) similar to results from simulations that provides a natural connection to bulge growth. We take these findings—which suggest that quenching is the natural downturn of all SFHs affecting galaxies at rates/times correlated with their densities—to mean that: (1) models in which galaxies are diversified on Hubble timescales by something like initial conditions rival the dominant grow-and-quench framework as good descriptions of the data; or (2) absent spatial information, many metrics of galaxy evolution are too undiscriminating—if not inherently misleading—to confirm a unique explanation. We outline future tests of our model but stress that, even if ultimately incorrect, it illustrates how exploring different paradigms can aid learning and, we hope, more detailed modeling efforts.

  14. Space Science in Action: Stars [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording shows students the many ways scientists look at the stars and how they can use what they see to answer questions such as What are stars made of?, How far away are they?, and How old are the stars? Students learn about the life span of stars and the various stages they pass through from protostar to main sequence star to…

  15. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  16. K2 Ultracool Dwarfs Survey. III. White Light Flares Are Ubiquitous in M6-L0 Dwarfs

    NASA Astrophysics Data System (ADS)

    Paudel, Rishi R.; Gizis, John E.; Mullan, D. J.; Schmidt, Sarah J.; Burgasser, Adam J.; Williams, Peter K. G.; Berger, Edo

    2018-05-01

    We report the white light flare rates for 10 ultracool dwarfs using Kepler K2 short-cadence data. Among our sample stars, two have spectral type M6, three are M7, three are M8, and two are L0. Most of our targets are old low-mass stars. We identify a total of 283 flares in all of the stars in our sample, with Kepler energies in the range log E Kp ∼ (29–33.5) erg. Using the maximum-likelihood method of line fitting, we find that the flare frequency distribution (FFD) for each star in our sample follows a power law with slope ‑α in the range ‑(1.3–2.0). We find that cooler objects tend to have shallower slopes. For some of our targets, the FFD follows either a broken power law, or a power law with an exponential cutoff. For the L0 dwarf 2MASS J12321827-0951502, we find a very shallow slope (‑α = ‑1.3) in the Kepler energy range (0.82–130) × 1030 erg: this L0 dwarf has flare rates which are comparable to those of high-energy flares in stars of earlier spectral types. In addition, we report photometry of two superflares: one on the L0 dwarf 2MASS J12321827-0951502 and another on the M7 dwarf 2MASS J08352366+1029318. In the case of 2MASS J12321827-0951502, we report a flare brightening by a factor of ∼144 relative to the quiescent photospheric level. Likewise, for 2MASS J08352366+1029318, we report a flare brightening by a factor of ∼60 relative to the quiescent photospheric level. These two superflares have bolometric (ultraviolet/optical/infrared) energies 3.6 × 1033 erg and 8.9 × 1033 erg respectively, while the full width half maximum timescales are very short, ∼2 min. We find that the M8 star TRAPPIST-1 is more active than the M8.5 dwarf 2M03264453+1919309, but less active than another M8 dwarf (2M12215066-0843197).

  17. General properties of magnetic CP stars

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2017-07-01

    We present the review of our previous studies related to observational evidence of the fossil field hypothesis of formation and evolution of magnetic and non-magnetic chemically peculiar stars. Analysis of the observed data shows that these stars acquire their main properties in the process of gravitational collapse. In the non-stationary Hayashi phase, a magnetic field becomes weakened and its configuration complicated, but the fossil field global orientation remains. After a non-stationary phase, relaxation of young star's tangled field takes place and by the time of joining ZAMS (Zero Age Main Sequence) it is generally restored to a dipole structure. Stability of dipole structures allows them to remain unchanged up to the end of their life on the Main Sequence which is 109 years at most.

  18. Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick

    2018-01-01

    A significant number of ultracool (<600K) extrasolar objects have been unearthed in the past decade thanks to wide-field surveys such as WISE. These objects present a perfect testbed for examining the evolution of atmospheric structure as we transition from typically hot extrasolar temperatures to the temperatures found within our Solar System.By examining these types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a self-consistent Mie scattering cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.

  19. Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick

    2017-10-01

    A significant number of ultracool (<600K) extrasolar objects have been discovered in the past decade thanks to wide-field surveys such as WISE. These objects present a perfect testbed for examining the evolution of atmospheric structure as we transition from typically hot extrasolar temperatures to the temperatures found within our Solar System.By examining these types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a gray cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.

  20. Differential rotation in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.

    2018-01-01

    Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.

  1. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  2. A frozen super-Earth orbiting a star at the bottom of the main sequence

    NASA Astrophysics Data System (ADS)

    Kubas, D.; Beaulieu, J. P.; Bennett, D. P.; Cassan, A.; Cole, A.; Lunine, J.; Marquette, J. B.; Dong, S.; Gould, A.; Sumi, T.; Batista, V.; Fouqué, P.; Brillant, S.; Dieters, S.; Coutures, C.; Greenhill, J.; Bond, I.; Nagayama, T.; Udalski, A.; Pompei, E.; Nürnberger, D. E. A.; Le Bouquin, J. B.

    2012-04-01

    Context. Microlensing is a unique method to probe low mass exoplanets beyond the snow line. However, the scientific potential of the new microlensing planet discovery is often unfulfilled due to lack of knowledge of the properties of the lens and source stars. The discovery light curve of the super Earth MOA-2007-BLG-192Lb suffers from significant degeneracies that limit what can be inferred about its physical properties. Aims: High resolution adaptive optics images allow us to solve this problem by resolving the microlensing target from all unrelated background stars, yielding the unique determination of magnified source and lens fluxes. This estimation permits the solution of our microlens model for the mass of the planet and its host and their physical projected separation. Methods: We observed the microlensing event MOA-2007-BLG-192 at high angular resolution in JHKs with the NACO adaptive optics system on the VLT while the object was still amplified by a factor 1.23 and then at baseline 18 months later. We analyzed and calibrated the NACO photometry in the standard 2MASS system in order to accurately constrain the source and the lens star fluxes. Results: We detect light from the host star of MOA-2007-BLG-192Lb, which significantly reduces the uncertainties in its characteristics as compared to earlier analyses. We find that MOA-2007-BLG-192L is most likely a very low mass late type M-dwarf (0.084-0.012+0.015 M⊙) at a distance of 660-70+100 pc orbited by a 3.2-1.8+5.2 M⊕ super-Earth at 0.66-0.22+0.51 AU. We then discuss the properties of this cold planetary system. Based on observations under ESO Prog.IDs: 279.C-5044(A) and 383-C.0495(A).

  3. Photometric search for variable stars in the young open cluster Berkeley 59

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period <15 d. The classical T Tauri stars are found to have a larger amplitude than the weak-line T Tauri stars. There is an indication that the amplitude decreases with an increase in mass, which could be due to the dispersal of the discs of relatively massive stars.

  4. Delayed Gratification Habitable Zones: When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan

    2003-06-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >105 objects >=50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, ~109 Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.

  5. Delayed gratification habitable zones: when deep outer solar system regions become balmy during post-main sequence stellar evolution.

    PubMed

    Stern, S Alan

    2003-01-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.

  6. Multiple stellar populations in Magellanic Cloud clusters - III. The first evidence of an extended main sequence turn-off in a young cluster: NGC 1856

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Bedin, L. R.; Piotto, G.; Marino, A. F.; Cassisi, S.; Bellini, A.; Jerjen, H.; Pietrinferni, A.; Aparicio, A.; Rich, R. M.

    2015-07-01

    Recent studies have shown that the extended main-sequence turn-off (eMSTO) is a common feature of intermediate-age star clusters in the Magellanic Clouds (MCs). The most simple explanation is that these stellar systems harbour multiple generations of stars with an age difference of a few hundred million years. However, while an eMSTO has been detected in a large number of clusters with ages between ˜1-2 Gyr, several studies of young clusters in both MCs and in nearby galaxies do not find any evidence for a prolonged star formation history, i. e. for multiple stellar generations. These results have suggested alternative interpretation of the eMSTOs observed in intermediate-age star clusters. The eMSTO could be due to stellar rotation mimicking an age spread or to interacting binaries. In these scenarios, intermediate-age MC clusters would be simple stellar populations, in close analogy with younger clusters. Here, we provide the first evidence for an eMSTO in a young stellar cluster. We exploit multiband Hubble Space Telescope photometry to study the ˜300-Myr old star cluster NGC 1856 in the Large Magellanic Cloud and detected a broadened MSTO that is consistent with a prolonged star formation which had a duration of about 150 Myr. Below the turn-off, the main sequence (MS) of NGC 1856 is split into a red and blue component, hosting 33 ± 5 and 67 ± 5 per cent of the total number of MS stars, respectively. We discuss these findings in the context of multiple-stellar-generation, stellar-rotation, and interacting-binary hypotheses.

  7. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  8. The chromospheres and coronae of five G-K main-sequence stars

    NASA Technical Reports Server (NTRS)

    Jordan, C.; Ayres, T. R.; Brown, A.; Linsky, J. L.; Simon, T.

    1987-01-01

    Previous data and high and low dispersion IUE observations of Chi 1 Ori, Alpha Cen A, Xi Boo A, Alpha Cen B, and Epsilon Eri are used to model the atmospheres of these stars from the high chromosphere to the corona. The energy lost by radiation and transferred by thermal conduction is investigated to establish the heating requirements, and results similar to those found for the solar atmosphere are found. The observed emission measurement distribution below 100,000 K can be described by a model in which Alfven wave energy input, observed through nonthermal line broadening, is balanced by radiation losses. Comparison of the coronal, transition region, and chromospheric pressures shows scaling relations which are compatible with previous flux correlations.

  9. Barium Stars: Theoretical Interpretation

    NASA Astrophysics Data System (ADS)

    Husti, Laura; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio

    2009-09-01

    Barium stars are extrinsic Asymptotic Giant Branch (AGB) stars. They present the s-enhancement characteristic for AGB and post-AGB stars, but are in an earlier evolutionary stage (main sequence dwarfs, subgiants, red giants). They are believed to form in binary systems, where a more massive companion evolved faster, produced the s-elements during its AGB phase, polluted the present barium star through stellar winds and became a white dwarf. The samples of barium stars of Allen & Barbuy (2006) and of Smiljanic et al. (2007) are analysed here. Spectra of both samples were obtained at high-resolution and high S/N. We compare these observations with AGB nucleosynthesis models using different initial masses and a spread of 13C-pocket efficiencies. Once a consistent solution is found for the whole elemental distribution of abundances, a proper dilution factor is applied. This dilution is explained by the fact that the s-rich material transferred from the AGB to the nowadays observed stars is mixed with the envelope of the accretor. We also analyse the mass transfer process, and obtain the wind velocity for giants and subgiants with known orbital period. We find evidence that thermohaline mixing is acting inside main sequence dwarfs and we present a method for estimating its depth.

  10. Additional Ultracool White Dwarfs Found In The Sloan Digital Sky Survey

    DTIC Science & Technology

    2008-05-20

    Anderson,4 Patrick B . Hall,5 Jeffrey A. Munn,1 James Liebert,6 Gillian R. Knapp,7 D. Bizyaev,8 E. Malanushenko,8 V. Malanushenko,8 K . Pan,8 Donald P...ADDITIONAL ULTRACOOL WHITE DWARFS FOUND IN THE SLOAN DIGITAL SKY SURVEY Hugh C. Harris,1 Evalyn Gates,2 Geza Gyuk,2,3 Mark Subbarao ,2,3 Scott F...effective temperature of roughly 4000 K , the density of gas in the photosphere increases to a point where models of the atmosphere must include effects not

  11. Evolutionary status of isolated B[e] stars

    NASA Astrophysics Data System (ADS)

    Lee, Chien-De; Chen, Wen-Ping; Liu, Sheng-Yuan

    2016-08-01

    Aims: We study a sample of eight B[e] stars with uncertain evolutionary status to shed light on the origin of their circumstellar dust. Methods: We performed a diagnostic analysis on the spectral energy distribution beyond infrared wavelengths, and conducted a census of neighboring region of each target to ascertain its evolutionary status. Results: In comparison to pre-main sequence Herbig stars, these B[e] stars show equally substantial excess emission in the near-infrared, indicative of existence of warm dust, but much reduced excess at longer wavelengths, so the dusty envelopes should be compact in size. Isolation from star-forming regions excludes the possibility of their pre-main sequence status. Six of our targets, including HD 50138, HD 45677, CD-24 5721, CD-49 3441, MWC 623, and HD 85567, have been previously considered as FS CMa stars, whereas HD 181615/6 and HD 98922 are added to the sample by this work. We argue that the circumstellar grains of these isolated B[e] stars, already evolved beyond the pre-main sequence phase, should be formed in situ. This is in contrast to Herbig stars, which inherit large grains from parental molecular clouds. It has been thought that HD 98922, in particular, is a Herbig star because of its large infrared excess, but we propose it being in a more evolved stage. Because dust condenses out of stellar mass loss in an inside-out manner, the dusty envelope is spatially confined, and anisotropic mass flows, or anomalous optical properties of tiny grains, lead to the generally low line-of-sight extinction toward these stars.

  12. Carbon, nitrogen and oxygen abundances in atmospheres of the 5-11 M⊙ B-type main-sequence stars

    NASA Astrophysics Data System (ADS)

    Lyubimkov, Leonid S.; Lambert, David L.; Poklad, Dmitry B.; Rachkovskaya, Tamara M.; Rostopchin, Sergey I.

    2013-02-01

    Fundamental parameters and the carbon, nitrogen and oxygen abundances are determined for 22 B-type stars with distances d ≤ 600 pc and slow rotation (v sin i ≤ 66 km s-1). The stars are selected according to their effective temperatures Teff and surface gravities log g, namely: Teff is between 15 300 and 24 100 K and log g is mostly greater than 3.75; therefore, stars with medium masses of 5-11 M⊙ are selected. Theory predicts for the stars with such parameters that the C, N and O abundances in their atmospheres should correspond to their initial values. Non-local thermodynamic equilibrium (non-LTE) analysis of C ii, N ii and O ii lines is implemented. The following mean C, N and O abundances are obtained: log ɛ(C) = 8.31 ± 0.13, log ɛ(N) = 7.80 ± 0.12 and log ɛ(O) = 8.73 ± 0.13. These values are in very good agreement with recent data on the C, N and O abundances for nearby B stars from other authors; it is important that different techniques are applied by us and other authors. When excluding for the stars HR 1810 and HR 2938, which can be mixed, we obtain the following mean abundances for the remaining 20 stars: log ɛ(C) = 8.33 ± 0.11, log ɛ(N) = 7.78 ± 0.09 and log ɛ(O) = 8.72 ± 0.12; these values are in excellent agreement with a present-day cosmic abundance standard (CAS) of Nieva & Przybilla. The derived mean N and O abundances in unevolved B stars are very close to the solar photospheric abundances, as well as to the protosolar ones. However, the mean C abundance is somewhat lower than the solar one; this small but stable carbon deficiency is confirmed by other authors. One may suggest two possibilities to explain the observed C deficiency. First, current non-LTE computations of C ii lines are still partially inadequate. In this case the C deficiency is invalid, so one may conclude that the Sun and the local unevolved B stars have the same metallicity. This would mean that during the Sun's life (i.e. for the past 4.5 × 109 yr) the

  13. ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosokawa, Takashi; Offner, Stella S. R.; Krumholz, Mark R., E-mail: Takashi.Hosokawa@jpl.nasa.gov, E-mail: hosokwtk@gmail.com

    2011-09-10

    We revisit the problem of low-mass pre-main-sequence stellar evolution and its observational consequences for where stars fall on the Hertzsprung-Russell diagram (HRD). In contrast to most previous work, our models follow stars as they grow from small masses via accretion, and we perform a systematic study of how the stars' HRD evolution is influenced by their initial radius, by the radiative properties of the accretion flow, and by the accretion history, using both simple idealized accretion histories and histories taken from numerical simulations of star cluster formation. We compare our numerical results to both non-accreting isochrones and to the positionsmore » of observed stars in the HRD, with a goal of determining whether both the absolute ages and the age dispersions inferred from non-accreting isochrones are reliable. We show that non-accreting isochrones can sometimes overestimate stellar ages for more massive stars (those with effective temperatures above {approx}3500 K), thereby explaining why non-accreting isochrones often suggest a systematic age difference between more and less massive stars in the same cluster. However, we also find the only way to produce a similar overestimate for the ages of cooler stars is if these stars grow from {approx}0.01 M{sub sun} seed protostars that are an order of magnitude smaller than predicted by current theoretical models, and if the size of the seed protostar correlates systematically with the final stellar mass at the end of accretion. We therefore conclude that, unless both of these conditions are met, inferred ages and age spreads for cool stars are reliable, at least to the extent that the observed bolometric luminosities and temperatures are accurate. Finally, we note that the time dependence of the mass accretion rate has remarkably little effect on low-mass stars' evolution on the HRD, and that such time dependence may be neglected for all stars except those with effective temperatures above {approx}4000

  14. Detection of [O III] at z ∼ 3: A Galaxy Above the Main Sequence, Rapidly Assembling Its Stellar Mass

    NASA Astrophysics Data System (ADS)

    Vishwas, Amit; Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Schoenwald, Justin P.; Stacey, Gordon J.; Higdon, Sarah J. U.; Higdon, James L.; Weiss, Axel; Güsten, Rolf; Menten, Karl M.

    2018-04-01

    We detect bright emission in the far-infrared (far-IR) fine structure [O III] 88 μm line from a strong lensing candidate galaxy, H-ATLAS J113526.3-014605, hereafter G12v2.43, at z = 3.127, using the second-generation Redshift (z) and Early Universe Spectrometer (ZEUS-2) at the Atacama Pathfinder Experiment Telescope (APEX). This is only the fifth detection of this far-IR line from a submillimeter galaxy at the epoch of galaxy assembly. The observed [O III] luminosity of 7.1 × 109 ≤ft(\\tfrac{10}{μ }\\right) L ⊙ likely arises from H II regions around massive stars, and the amount of Lyman continuum photons required to support the ionization indicate the presence of (1.2–5.2) × 106 ≤ft(\\tfrac{10}{μ }\\right) equivalent O5.5 or higher stars, where μ would be the lensing magnification factor. The observed line luminosity also requires a minimum mass of ∼2 × 108 ≤ft(\\tfrac{10}{μ }\\right) M ⊙ in ionized gas, that is 0.33% of the estimated total molecular gas mass of 6 × 1010 ≤ft(\\tfrac{10}{μ }\\right) M ⊙. We compile multi-band photometry tracing rest-frame ultraviolet to millimeter continuum emission to further constrain the properties of this dusty high-redshift, star-forming galaxy. Via SED modeling we find G12v2.43 is forming stars at a rate of 916 ≤ft(\\tfrac{10}{μ }\\right) M ⊙ yr‑1 and already has a stellar mass of 8 × 1010 ≤ft(\\tfrac{10}{μ }\\right) M ⊙. We also constrain the age of the current starburst to be ≤slant 5 Myr, making G12v2.43 a gas-rich galaxy lying above the star-forming main sequence at z ∼ 3, undergoing a growth spurt, and it could be on the main sequence within the derived gas depletion timescale of ∼66 Myr.

  15. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  16. End of the Line for a Star like Ours

    ERIC Educational Resources Information Center

    Riddle, Bob

    2010-01-01

    Stars of different masses have varying life spans, with the more massive stars "burning out" more quickly than stars of lower masses. How or what they do when they burn out also varies, depending on the mass of the star. All stars are called "main sequence stars" as they continue fusing hydrogen and staying in a state of equilibrium--a balance…

  17. Star Formation in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  18. The `DODO' survey - I. Limits on ultra-cool substellar and planetary-mass companions to van Maanen's star (vMa2)

    NASA Astrophysics Data System (ADS)

    Burleigh, M. R.; Clarke, F. J.; Hogan, E.; Brinkworth, C. S.; Bergeron, P.; Dufour, P.; Dobbie, P. D.; Levan, A. J.; Hodgkin, S. T.; Hoard, D. W.; Wachter, S.

    2008-05-01

    We report limits in the planetary-mass regime for companions around the nearest single white dwarf to the Sun, van Maanen's star (vMa2), from deep J-band imaging with Gemini North and Spitzer Infrared Array Camera (IRAC) mid-IR photometry. We find no resolved common proper motion companions to vMa2 at separations from 3 to 45 arcsec, at a limiting magnitude of J ~ 23. Assuming a total age for the system of 4.1 +/- 1Gyr, and utilizing the latest evolutionary models for substellar objects, this limit is equivalent to companion masses >7 +/- 1MJup(Teff ~ 300K). Taking into account the likely orbital evolution of very low mass companions in the post-main-sequence phase, these J-band observations effectively survey orbits around the white dwarf progenitor from 3 to 50au. There is no flux excess detected in any of the complimentary Spitzer IRAC mid-IR filters. We fit a white dwarf model atmosphere to the optical BVRI, JHK and IRAC photometry. The best solution gives Teff = 6030 +/- 240K, logg = 8.10 +/- 0.04 and, hence, M = 0.633 +/- 0.022Msolar. We then place a 3σ upper limit of 10 +/- 2MJup on the mass of any unresolved companion in the 4.5μm band.

  19. Hot Evolved Companions to Intermediate-Mass Main-Sequence Stars: Solving the Mystery of KOI-81

    NASA Astrophysics Data System (ADS)

    Gies, Douglas

    2010-09-01

    The NASA Kepler Science Team recently announced the discovery of twotransiting binaries that have "planets" hotter than their host stars.These systems probably represent the first known examples of white dwarfsformed through mass loss and transfer among intermediate mass, closebinary stars. Here we propose to obtain COS FUV spectroscopy of one ofthese systems, KOI-81, in order to detect the hot companion in a part of the spectrum where it is relatively bright. The spectral flux and Doppler shift measurements will yield the temperatures, masses, radii, and compositions of both components. These observations will provide our first opportunity to explore this previously hidden stage of close binary evolution.

  20. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Massive stars can be considered as cosmic engines. With their high luminosities, strong stellar winds and violent deaths they drive the evolution of galaxies through-out the history of the universe. Despite the importance of massive stars, their evolution is still poorly understood. Two major issues have plagued evolutionary models of massive stars until today: mixing and mass loss On the main sequence, the effects of mass loss remain limited in the considered mass and metallicity range, this thesis concentrates on the role of mixing in massive stars. This thesis approaches this problem just on the cross road between observations and simulations. The main question: Do evolutionary models of single stars, accounting for the effects of rotation, reproduce the observed properties of real stars. In particular we are interested if the evolutionary models can reproduce the surface abundance changes during the main-sequence phase. To constrain our models we build a population synthesis model for the sample of the VLT-FLAMES Survey of Massive stars, for which star-formation history and rotational velocity distribution are well constrained. We consider the four main regions of the Hunter diagram. Nitrogen un-enriched slow rotators and nitrogen enriched fast rotators that are predicted by theory. Nitrogen enriched slow rotators and nitrogen unenriched fast rotators that are not predicted by our model. We conclude that currently these comparisons are not sufficient to verify the theory of rotational mixing. Physical processes in addition to rotational mixing appear necessary to explain the stars in the later two regions. The chapters of this Thesis have been published in the following Journals: Ch. 2: ``Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones'', I. Brott, S. E. de Mink, M. Cantiello, N. Langer, A. de Koter, C. J. Evans, I. Hunter, C. Trundle, J.S. Vink submitted to Astronomy & Astrop hysics Ch. 3: ``The VLT-FLAMES Survey of Massive

  1. High-Resolution Spectroscopy of some very Active Southern Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; King, Jeremy R.; Henry, Todd J.

    1998-01-01

    We have obtained high-resolution echelle spectra of 18 solar-type stars that an earlier survey showed to have very high levels of Ca II H and K emission. Most of these stars belong to close binary systems, but five remain as probable single stars or well-separated binaries that are younger than the Pleiades on the basis of their lithium abundances and H.alpha emission. Three of these probable single stars also lie more than 1 mag above the main sequence in a color-magnitude diagram, and appear to have ages of 10 to 15 Myr. Two of them, HD 202917 and HD 222259, also appear to have a kinematic association with the pre-main-sequence multiple system HD 98800.

  2. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  3. A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Correia, S.; Zinnecker, H.; Ratzka, Th.; Sterzik, M. F.

    2006-12-01

    Aims.This paper describes a systematic search for high-order multiplicity among wide visual Pre-Main Sequence (PMS) binaries. Methods: .We conducted an Adaptive Optics survey of a sample of 58 PMS wide binaries from various star-forming regions, which include 52 T Tauri systems with mostly K- and M-type primaries, with the NIR instrument NACO at the VLT. Results: .Of these 52 systems, 7 are found to be triple (2 new) and 7 quadruple (1 new). The new close companions are most likely physically bound based on their probability of chance projection and, for some of them, on their position on a color-color diagram. The corresponding degree of multiplicity among wide binaries (number of triples and quadruples divided by the number of systems) is 26.9 ± 7.2% in the projected separation range ~0.07 arcsec -12'', with the largest contribution from the Taurus-Auriga cloud. We also found that this degree of multiplicity is twice in Taurus compared to Ophiuchus and Chamaeleon for which the same number of sources are present in our sample. Considering a restricted sample composed of systems at distance 140-190 pc, the degree of multiplicity is 26.8 ± 8.1%, in the separation range 10/14 AU-1700/2300 AU (30 binaries, 5 triples, 6 quadruples). The observed frequency agrees with results from previous multiplicity surveys within the uncertainties, although a significant overabundance of quadruple systems compared to triple systems is apparent. Tentatively including the spectroscopic pairs in our restricted sample and comparing the multiplicity fractions to those measured for solar-type main-sequence stars in the solar neighborhood leads to the conclusion that both the ratio of triples to binaries and the ratio of quadruples to triples seems to be in excess among young stars. Most of the current numerical simulations of multiple star formation, and especially smoothed particles hydrodynamics simulations, over-predict the fraction of high-order multiplicity when compared to our

  4. Tracking the Obscured Star Formation Along the Complete Evolutionary Merger Sequence of LIRGs

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, Tanio

    2014-10-01

    We propose to obtain WFC3 narrow-band Pa-beta imaging of a sample of 24 nearby luminous infrared (IR) galaxies (LIRGs) from the Great Observatories All-sky LIRG survey (GOALS) selected to be in advanced stages of interaction. LIRGs account for half of the obscured star formation of the Universe at z ~ 1-2, and they represent a key population in galaxy formation and evolution. We will use the Pa-beta images to trace the ionized gas in LIRGs and study its spatial distribution from scales of ~ 100 pc to up to several kpc, probing the youngest, massive stars formed in the most buried environments of LIRGs due to the interaction process. This will allow us to measure how the gas in the center of mergers is converted into stars, which eventually leads to the build-up of a nuclear stellar cusp and the "inside-out" growth of bulges. We will also create spatially-resolved Pa-beta equivalent width maps to search for age gradients across the galaxies and correlate the distribution of Pa-beta emission with that of un-obscured star clusters detected in the UV and optical with HST on the same spatial scales. Finally, we will combine our data with previous studies mainly focused on isolated and early-stage interacting LIRG systems to analyze the size and compactness of the starburst along the complete merger sequence of LIRGs. The requested data represent a critical missing piece of information that will allow us to understand both the physics of merger-induced star formation and the applicability of local LIRGs as templates for high-z interacting starburst galaxies.

  5. The 100 brigthest Blue Straggler Stars.

    NASA Astrophysics Data System (ADS)

    Morales Durán, C.; Llorente de Andrés, F.; Ahumada, J. A.

    2015-05-01

    Blue straggler stars (BSS) are characterized by their appearance in the CMD of globular and open clusters, in the Main Sequence extension, above the turn-off and blueward of this. In accordance with the Standard Theory of stellar evolution, BSS should be out of the Main Sequence and over the Giant Branch if they really belong to the cluster and are formed at the same time than the rest of cluster stars. There are several theories that try to explain the existence of BSS but at present prevails the idea that they can be the product of mass transfer in binaries (McCrea, 1964), and the luminosity of the receiver star is incremented in such a way that now it is over the Main Sequence turn-off point of its cluster. Also it is believed that they are the result of stellar fussion of two or several stars, specially in dense systems as the globular cluster nucleus. This work is focalised in all the BSS brihgter the V = 10 mag. that we have been able to identify in open clusters. It is a sample unprecedented by its number and as well it is a sample with plentiful observational information, it is why we hope to be able to assure their membership to the parent cluster and obtain reliable information about their possible origin.

  6. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  7. Observations of suspected low-mass post-T Tauri stars and their evolutionary status

    NASA Technical Reports Server (NTRS)

    Mundt, R.; Walter, F. M.; Feigelson, E. D.; Finkenzeller, U.; Herbig, G. H.; Odell, A. P.

    1983-01-01

    The results of a study of five X-ray discovered weak emission pre-main-sequence stars in the Taurus-Auriga star formation complex are presented. All are of spectral type K7-M0, and about 1-2 mag above the main sequence. One is a double-lined spectroscopic binary, the first spectroscopic binary PMS star to be confirmed. The ages, masses, and radii of these stars as determined by photometry and spectroscopy are discussed. The difference in emission strength between these and the T Tauri stars is investigated, and it is concluded that these 'post-T Tauri' stars do indeed appear more evolved than the T Tauri stars, although there is no evidence of any significant difference in ages.

  8. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution

    PubMed Central

    2012-01-01

    Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678

  9. Convective overshooting in the evolution of very massive stars

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1981-01-01

    Possible convective overshooting in stars of 30-120 solar masses are considered, including a merger between the convective core and the intermediate zone, and penetration by the outer convection zone into the hydrogen-shell region when the star is a supergiant. Convective mixing between the core and inner envelopes is found to lead to a brief renewal of hydrogen burning in the core, and a moderate widening of the main sequence bond in the H-R diagram. Deep penetration by the outer convection zone is found to force the star out of the red supergiant configuration and into a configuration near the main sequence. This would account for the apparent spread of the uppermost part of the main sequence and the concentration of luminous supergiants towards earlier spectral types. In addition, heavy mass loss need not be assumed to achieve the points of agreement, and are tentatively considered unimportant from an evolutionary point of view.

  10. K2 Ultracool Dwarfs Survey. II. The White Light Flare Rate of Young Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Gizis, John E.; Paudel, Rishi R.; Mullan, Dermott; Schmidt, Sarah J.; Burgasser, Adam J.; Williams, Peter K. G.

    2017-08-01

    We use Kepler K2 Campaign 4 short-cadence (one-minute) photometry to measure white light flares in the young, moving group brown dwarfs 2MASS J03350208+2342356 (2M0335+23) and 2MASS J03552337+1133437 (2M0355+11), and report on long-cadence (thirty-minute) photometry of a superflare in the Pleiades M8 brown dwarf CFHT-PL-17. The rotation period (5.24 hr) and projected rotational velocity (45 km s-1) confirm 2M0335+23 is inflated (R≥slant 0.20 {R}⊙ ) as predicted for a 0.06 {M}⊙ , 24 Myr old brown dwarf βPic moving group member. We detect 22 white light flares on 2M0335+23. The flare frequency distribution follows a power-law distribution with slope -α =-1.8+/- 0.2 over the range 1031 to 1033 erg. This slope is similar to that observed in the Sun and warmer flare stars, and is consistent with lower-energy flares in previous work on M6-M8 very-low-mass stars; taking the two data sets together, the flare frequency distribution for ultracool dwarfs is a power law over 4.3 orders of magnitude. The superflare (2.6× {10}34 erg) on CFHT-PL-17 shows higher-energy flares are possible. We detect no flares down to a limit of 2× {10}30 erg in the nearby L5γ AB Dor moving group brown dwarf 2M0355+11, consistent with the view that fast magnetic reconnection is suppressed in cool atmospheres. We discuss two multi-peaked flares observed in 2M0335+23, and argue that these complex flares can be understood as sympathetic flares, in which fast-mode magnetohydrodynamic waves similar to extreme-ultraviolet waves in the Sun trigger magnetic reconnection in different active regions.

  11. The Pan-STARRS1 Proper-motion Survey for Young Brown Dwarfs in Nearby Star-forming Regions. I. Taurus Discoveries and a Reddening-free Classification Method for Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2018-05-01

    We are conducting a proper-motion survey for young brown dwarfs in the Taurus-Auriga molecular cloud based on the Pan-STARRS1 3π Survey. Our search uses multi-band photometry and astrometry to select candidates, and is wider (370 deg2) and deeper (down to ≈3 M Jup) than previous searches. We present here our search methods and spectroscopic follow-up of our high-priority candidates. Since extinction complicates spectral classification, we have developed a new approach using low-resolution (R ≈ 100) near-infrared spectra to quantify reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (≲100–3 M Jup in Taurus). We have discovered 25 low-gravity (VL-G) and the first 11 intermediate-gravity (INT-G) substellar (M6–L1) members of Taurus, constituting the largest single increase of Taurus brown dwarfs to date. We have also discovered 1 new Pleiades member and 13 new members of the Perseus OB2 association, including a candidate very wide separation (58 kau) binary. We homogeneously reclassify the spectral types and extinctions of all previously known Taurus brown dwarfs. Altogether our discoveries have thus far increased the substellar census in Taurus by ≈40% and added three more L-type members (≲5–10 M Jup). Most notably, our discoveries reveal an older (>10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. The mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes.

  12. An unbiased study of debris discs around A-type stars with Herschel

    NASA Astrophysics Data System (ADS)

    Thureau, N. D.; Greaves, J. S.; Matthews, B. C.; Kennedy, G.; Phillips, N.; Booth, M.; Duchêne, G.; Horner, J.; Rodriguez, D. R.; Sibthorpe, B.; Wyatt, M. C.

    2014-12-01

    The Herschel DEBRIS (Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre) survey brings us a unique perspective on the study of debris discs around main-sequence A-type stars. Bias-free by design, the survey offers a remarkable data set with which to investigate the cold disc properties. The statistical analysis of the 100 and 160 μm data for 86 main-sequence A stars yields a lower than previously found debris disc rate. Considering better than 3σ excess sources, we find a detection rate ≥24 ± 5 per cent at 100 μm which is similar to the debris disc rate around main-sequence F/G/K-spectral type stars. While the 100 and 160 μm excesses slowly decline with time, debris discs with large excesses are found around some of the oldest A stars in our sample, evidence that the debris phenomenon can survive throughout the length of the main sequence (˜1 Gyr). Debris discs are predominantly detected around the youngest and hottest stars in our sample. Stellar properties such as metallicity are found to have no effect on the debris disc incidence. Debris discs are found around A stars in single systems and multiple systems at similar rates. While tight and wide binaries (<1 and >100 au, respectively) host debris discs with a similar frequency and global properties, no intermediate separation debris systems were detected in our sample.

  13. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.

    2014-10-20

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less

  14. IN-SYNC I: Homogeneous Stellar Parameters from High-resolution APOGEE Spectra for Thousands of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail

    2014-10-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  15. The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Pilachowski, Catherine A.; Fedele, Stephen B.; Jones, Burton F.

    1993-01-01

    We draw upon a recent study of the membership of the Ursa Major Group (UMaG) to examine lithium among 0.3 Gyr old solar-type stars. For most G and K dwarfs, Li confirms the conclusions about membership in UMaG reached on the basis of kinematics and chromospheric activity. G and K dwarfs in UMaG have less Li than comparable stars in the Pleiades. This indicates that G and K dwarfs undergo Li depletion while they are on the main sequence, in addition to any pre-main-sequence depletion they may have experienced. Moreover, the Li abundances of the Pleiades K dwarfs cannot be attributed to main-sequence depletion alone, demonstrating that pre-main-sequence depletion of Li also takes place. The sun's Li abundance implies that the main-sequence mechanism becomes less effective with age. The hottest stars in UMaG have Li abundances like those of hot stars in the Pleiades and Hyades and in T Tauris, and the two genuine UMaG members with temperatures near Boesgaard's Li chasm have Li abundances consistent with that chasm developing fully by 0.3 Gyr for stars with UMaG's metallicity. We see differences in the abundance of Li between UMaG members of the same spectral types, indicating that a real spread in the lithium abundance exists within this group.

  16. Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets Around Main Sequence M Stars

    NASA Technical Reports Server (NTRS)

    Nava-Sedeno, J. Manik; Ortiz-Cervantes, Adrian; Segura, Antigona; Domagal-Goldman, Shawn D.

    2016-01-01

    Lifeless planets with CO2 atmospheres produce CO by CO2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the stars chromospheric activity lasts, and the sink of CO and O2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO2-rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal- Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawaet al. (2002) and Schlesinger and Miller (1983a, 1983b). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H2CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin.

  17. Solar-Type Stars with the Suppression of Convection at an Early Stage of Evolution

    NASA Astrophysics Data System (ADS)

    Oreshina, A. V.; Baturin, V. A.; Ayukov, S. V.; Gorshkov, A. B.

    2017-12-01

    The evolution of a solar-mass star before and on the main sequence is analyzed in light of the diminished efficiency of convection in the first 500 Myr. A numerical simulation has been performed with the CESAM2k code. It is shown that the suppression of convection in the early stages of evolution leads to a somewhat higher lithium content than that predicted by the classical solar model. In addition, the star's effective temperature decreases. Ignoring this phenomenon may lead to errors in age and mass determinations for young stars (before the main sequence) from standard evolutionary tracks in the temperature-luminosity diagram. At a later stage of evolution, after 500 Myr, the efficiency of convection tends to the solar value. At this stage, the star's inner structure becomes classical; it does not depend on the previous history. On the contrary, the photospheric lithium abundance contains information about the star's past. In other words, there may exist main-sequence solar-mass stars of the same age (above 500 Myr), radius, and luminosity, yet with different photospheric lithium contents. The main results of this work add considerably to the popular method for determining the age of solar-type stars from lithium abundances.

  18. On the apparent positions of T Tauri stars in the H-R diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, S.J.; Hartmann, L.W.

    1990-01-01

    The spread in apparent luminosities of T Tauri stars caused by occultation and emission from protostellar disks is investigated. A random distribution of disk inclination angles, coupled with a plausible range of accretion rates, introduces a significant scatter in apparent luminosities for intrinsically identical stars. The observed dispersion of luminosities for K7-M1 Hayashi track stars thought to have disks in Taurus-Auriga is similar to predictions of the simple accretion disk model, which suggets that age determinations form many pre-main-sequence stars are uncertain. The results also suggest that Stahler's birthline for convective track pre-main-sequence stars may be located at slightly lowermore » luminosities than previously thought. 38 refs.« less

  19. No Evidence for Protoplanetary Disk Destruction By OB Stars in the MYStIX Sample

    NASA Astrophysics Data System (ADS)

    Richert, Alexander J. W.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.

    2015-09-01

    Hubble Space Telescope images of proplyds in the Orion Nebula, as well as submillimeter/radio measurements, show that the dominant O7 star {θ }1Ori C photoevaporates nearby disks around pre-main-sequence stars. Theory predicts that massive stars photoevaporate disks within distances of the order of 0.1 pc. These findings suggest that young, OB-dominated massive H ii regions are inhospitable to the survival of protoplanetary disks and, subsequently, to the formation and evolution of planets. In the current work, we test this hypothesis using large samples of pre-main-sequence stars in 20 massive star-forming regions selected with X-ray and infrared photometry in the MYStIX survey. Complete disk destruction would lead to a deficit of cluster members with an excess in JHKS and Spitzer/IRAC bands in the vicinity of O stars. In four MYStIX regions containing O stars and a sufficient surface density of disk-bearing sources to reliably test for spatial avoidance, we find no evidence for the depletion of inner disks around pre-main-sequence stars in the vicinity of O-type stars, even very luminous O2-O5 stars. These results suggest that massive star-forming regions are not very hostile to the survival of protoplanetary disks and, presumably, to the formation of planets.

  20. Two distinct sequences of blue straggler stars in the globular cluster M 30.

    PubMed

    Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S

    2009-12-24

    Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

  1. Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets around Main Sequence M Stars.

    PubMed

    Nava-Sedeño, J Manik; Ortiz-Cervantes, Adrian; Segura, Antígona; Domagal-Goldman, Shawn D

    2016-10-04

    Lifeless planets with CO 2 atmospheres produce CO by CO 2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the star's chromospheric activity lasts, and the sink of CO and O 2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO 2 -rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal-Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawa et al. (2002) and Schlesinger and Miller ( 1983a , 1983b ). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H 2 CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO 2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin. Key Words: Prebiotic chemistry-M dwarfs-Habitable planets-Cosmic rays-Lightning-Stellar activity. Astrobiology 16, 744-754.

  2. Stellar model chromospheres. IX - Chromospheric activity in dwarf stars

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.; Worden, S. P.; Linsky, J. L.

    1979-01-01

    High-resolution Ca II K line profiles are used to model the upper photospheres and lower chromospheres of eight main-sequence stars ranging in spectral type from F0 to M0 and exhibiting different degrees of chromospheric activity. The model chromospheres are studied as a function of spectral type and activity for stars of similar spectral type in order to obtain evidence of enhanced nonradiative heating in the upper-photospheric models and in the ratio of minimum temperature at the base of the chromosphere to effective temperature, a correlation between activity and temperature in the lower chromospheres, and a correlation of the width at the base of the K-line emission core and at the K2 features with activity. Chromospheric radiative losses are estimated for the modelled stars and other previously analyzed main-sequence stars. The results obtained strengthen the argument that dMe flare stars exhibit fundamentally solar-type activity but on an increased scale.

  3. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oemler, Augustus Jr; Dressler, Alan; Abramson, Louis E.

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescentmore » population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.« less

  4. The mean star formation rates of unobscured QSOs: searching for evidence of suppressed or enhanced star formation

    NASA Astrophysics Data System (ADS)

    Stanley, F.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; Wang, L.; Aird, J. A.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Knudsen, K. K.; Michałowski, M. J.; Valiante, E.; De Zotti, G.; Furlanetto, C.; Ivison, R.; Maddox, S.; Smith, M. W. L.

    2017-12-01

    We investigate the mean star formation rates (SFRs) in the host galaxies of ∼3000 optically selected quasi-stellar objects (QSOs) from the Sloan Digital Sky Survey within the Herschel-ATLAS fields, and a radio-luminous subsample covering the redshift range of z = 0.2-2.5. Using Wide-field Infrared Survey Explorer (WISE) and Herschel photometry (12-500 μm) we construct composite spectral energy distributions (SEDs) in bins of redshift and active galactic nucleus (AGN) luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies.

  5. Lithium and age of pre-main sequence stars: the case of Parenago 1802

    NASA Astrophysics Data System (ADS)

    Giarrusso, M.; Tognelli, E.; Catanzaro, G.; Degl'Innocenti, S.; Dell'Omodarme, M.; Lamia, L.; Leone, F.; Pizzone, R. G.; Prada Moroni, P. G.; Romano, S.; Spitaleri, C.

    2016-04-01

    With the aim to test the present capability of the stellar surface lithium abundance in providing an estimation for the age of PMS stars, we analyze the case of the detached, double-lined, eclipsing binary system PAR 1802. For this system, the lithium age has been compared with the theoretical one, as estimated by applying a Bayesian analysis method on a large grid of stellar evolutionary models. The models have been computed for several values of chemical composition and mixing length, by means of the code FRANEC updated with the Trojan Horse reaction rates involving lithium burning.

  6. A NEAR-INFRARED STUDY OF THE STAR-FORMING REGION RCW 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Walt, D. J.; De Villiers, H. M.; Czanik, R. J.

    2012-07-15

    We report the results of a near-infrared imaging study of a 7.8 Multiplication-Sign 7.8 arcmin{sup 2} region centered on the 6.7 GHz methanol maser associated with the RCW 34 star-forming region using the 1.4 m IRSF telescope at Sutherland. A total of 1283 objects were detected simultaneously in J, H, and K for an exposure time of 10,800 s. The J - H, H - K two-color diagram revealed a strong concentration of more than 700 objects with colors similar to what is expected of reddened classical T Tauri stars. The distribution of the objects on the K versus Jmore » - K color-magnitude diagram is also suggestive that a significant fraction of the 1283 objects is made up of lower mass pre-main-sequence stars. We also present the luminosity function for the subset of about 700 pre-main-sequence stars and show that it suggests ongoing star formation activity for about 10{sup 7} years. An examination of the spatial distribution of the pre-main-sequence stars shows that the fainter (older) part of the population is more dispersed over the observed region and the brighter (younger) subset is more concentrated around the position of the O8.5V star. This suggests that the physical effects of the O8.5V star and the two early B-type stars on the remainder of the cloud out of which they formed could have played a role in the onset of the more recent episode of star formation in RCW 34.« less

  7. Stellar Clusters in the NGC 6334 Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-01

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  8. A Detailed Far-ultraviolet Spectral Atlas of O-type Stars

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188 Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for

  9. Analysis of surface structures of chemically peculiar stars with modern and future interferometers

    NASA Astrophysics Data System (ADS)

    Shulyak, D.; Perraut, K.; Paladini, Claudia; Li Causi, G.; Sacuto, Stephane; Kochukhov, O.

    2014-07-01

    Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.

  10. Orbital Decay in Binaries with Evolved Stars

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  11. Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Weiss, Jake; Newberg, Heidi Jo; Arsenault, Matthew; Bechtel, Torrin; Desell, Travis; Newby, Matthew; Thompson, Jeffery M.

    2016-01-01

    Statistical photometric parallax is a method for using the distribution of absolute magnitudes of stellar tracers to statistically recover the underlying density distribution of these tracers. In previous work, statistical photometric parallax was used to trace the Sagittarius Dwarf tidal stream, the so-called bifurcated piece of the Sagittaritus stream, and the Virgo Overdensity through the Milky Way. We use an improved knowledge of this distribution in a new algorithm that accounts for the changes in the stellar population of color-selected stars near the photometric limit of the Sloan Digital Sky Survey (SDSS). Although we select bluer main sequence turnoff stars (MSTO) as tracers, large color errors near the survey limit cause many stars to be scattered out of our selection box and many fainter, redder stars to be scattered into our selection box. We show that we are able to recover parameters for analogues of these streams in simulated data using a maximum likelihood optimization on MilkyWay@home. We also present the preliminary results of fitting the density distribution of major Milky Way tidal streams in SDSS data. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.

  12. Radio-flaring Ultracool Dwarf Population Synthesis

    NASA Astrophysics Data System (ADS)

    Route, Matthew

    2017-08-01

    Over a dozen ultracool dwarfs (UCDs), low-mass objects of spectral types ≥M7, are known to be sources of radio flares. These typically several-minutes-long radio bursts can be up to 100% circularly polarized and have high brightness temperatures, consistent with coherent emission via the electron cyclotron maser operating in approximately kilogauss magnetic fields. Recently, the statistical properties of the bulk physical parameters that describe these UCDs have become described adequately enough to permit synthesis of the population of radio-flaring objects. For the first time, I construct a Monte Carlo simulator to model the population of these radio-flaring UCDs. This simulator is powered by Intel Secure Key (ISK), a new processor technology that uses a local entropy source to improve random number generation that has heretofore been used to improve cryptography. The results from this simulator indicate that only ˜5% of radio-flaring UCDs within the local interstellar neighborhood (<25 pc away) have been discovered. I discuss a number of scenarios that may explain this radio-flaring fraction and suggest that the observed behavior is likely a result of several factors. The performance of ISK as compared to other pseudorandom number generators is also evaluated, and its potential utility for other astrophysical codes is briefly described.

  13. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant z< 2.0. Our sample consists of ≈ {{18,000}} galaxies, allowing us to probe galaxies with 0.1{M}⊙ {{yr}}-1≲ {SFR}≲ 100 {M}⊙ {{yr}}-1 and/or {10}8{M}⊙ ≲ {M}* ≲ {10}11 {M}⊙ . We use sample-mean BHAR to approximate long-term average BHAR. Our sample-mean BHARs are derived from the Chandra Deep Field-South 7 Ms observations, while the SFRs and M * have been estimated by the CANDELS team through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  14. The Most Earth Size, Habitable Zone Planets around a Single Star on This Week @NASA – 02/24/2017

    NASA Image and Video Library

    2017-02-24

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the agency’s Spitzer Space Telescope of seven Earth-sized planets around a tiny, relatively nearby, ultra-cool dwarf star. Three of the planets in this system, known as TRAPPIST-1, are in the habitable zone – the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone outside our solar system, and is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds. Also, Kennedy’s Pad 39A, Back in Business, Russian Cargo Ship Arrives at Space Station, RS-25 Engine Tests Resume at Stennis, Structural Testing Begins on SLS Hardware, and 55th Anniversary of Friendship 7 Flight!

  15. Fundamental Parameters Of The Lowest Mass Stars To The Highest Mass Planets

    NASA Astrophysics Data System (ADS)

    Filippazzo, Joseph C.

    2016-09-01

    The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of funda- mental parameters for a wide diversity of objects at the low end of the initial mass function (IMF) is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 234 M, L, T, and Y dwarfs using published parallaxes and (0.3-40 \\mu m) spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity ((L_\\text{bol})), effective temperature ((T_\\text{off})), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive (L_\\text{bol}), (T_\\text{eff}), and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared (NIR) into the mid-infrared (MIR). Consequently we find the SED flux pivots at K-band, making BCK as a function of spectral type a reliable, age-independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. These findings are used to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs using heterogeneous and limited spectral data.

  16. Stars caught in the braking stage in young Magellanic Cloud clusters

    NASA Astrophysics Data System (ADS)

    D'Antona, Francesca; Milone, Antonino P.; Tailo, Marco; Ventura, Paolo; Vesperini, Enrico; di Criscienzo, Marcella

    2017-08-01

    The colour-magnitude diagrams of many Magellanic Cloud clusters (with ages up to 2 billion years) display extended turnoff regions where the stars leave the main sequence, suggesting the presence of multiple stellar populations with ages that may differ even by hundreds of millions of years 1,2,3 . A strongly debated question is whether such an extended turnoff is instead due to populations with different stellar rotations3,4,5,6 . The recent discovery of a 'split' main sequence in some younger clusters (~80-400 Myr) added another piece to this puzzle. The blue side of the main sequence is consistent with slowly rotating stellar models, and the red side consistent with rapidly rotating models7,8,9,10. However, a complete theoretical characterization of the observed colour-magnitude diagram also seemed to require an age spread9. We show here that, in the three clusters so far analysed, if the blue main-sequence stars are interpreted with models in which the stars have always been slowly rotating, they must be ~30% younger than the rest of the cluster. If they are instead interpreted as stars that were initially rapidly rotating but have later slowed down, the age difference disappears, and this 'braking' also helps to explain the apparent age differences of the extended turnoff. The age spreads in Magellanic Cloud clusters are thus a manifestation of rotational stellar evolution. Observational tests are suggested.

  17. ROTATING STARS FROM KEPLER OBSERVED WITH GAIA DR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, James R. A.

    2017-01-20

    Astrometric data from the recent Gaia Data Release 1 have been matched against the sample of stars from Kepler with known rotation periods. A total of 1299 bright rotating stars were recovered from the subset of Gaia sources with good astrometric solutions, most with temperatures above 5000 K. From these sources, 894 were selected as lying near the main sequence using their absolute G -band magnitudes. These main-sequence stars show a bimodality in their rotation period distribution, centered roughly around a 600 Myr rotation isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler , butmore » was previously undetected for solar-type stars due to sample contamination by subgiants. A tenuous connection between the rotation period and total proper motion is found, suggesting that the period bimodality is due to the age distribution of stars within ∼300 pc of the Sun, rather than a phase of rapid angular momentum loss. This work emphasizes the unique power for understanding stellar populations that is created by combining temporal monitoring from Kepler with astrometric data from Gaia .« less

  18. Copernicus observations of the N v resonance doublet in 53 early-type stars

    NASA Technical Reports Server (NTRS)

    Abbott, D. C.; Bohlin, R. C.; Savage, B. D.

    1982-01-01

    UV spectra in the wavelength interval 1170-1270 A are presented for 53 early-type stars ranging in spectral type from O6.5 V to B2.5 IV. The sample includes four Wolf-Rayet stars, seven known Oe-Be stars, and six galactic halo OB stars. A qualitative analysis of the stellar N v doublet reveals that: (1) N v is present in all stars hotter and more luminous than type B0 for the main sequence, B1 for giants, and B2 for supergiants; (2) shell components of N v and an unidentified absorption feature at 1230 A are present in about half of the stars; (3) the column density of N v is well correlated with bolometric luminosity over the spectral range O6 to B2; and (4) the ratio of emission to absorption equivalent width is a factor of 2 smaller in the main sequence stars than in supergiants, which suggests that the wind structure changes as a star evolves. For several stars, this ratio is too small to be explained by traditional wind models.

  19. The Origin Of Cosmic Rays And The Stars Of Berkeley 87

    NASA Astrophysics Data System (ADS)

    Turner, David G.; Majaess, D. J.; Lane, D. J.; Balam, D. D.

    2010-01-01

    Spectroscopic observations and the results of photometric monitoring are presented for members of the heavily-reddened, young, 1.2 kpc-distant, open cluster Berkeley 87, which is spatially coincident with the strongest source of cosmic rays in the northern sky. Many cluster members exhibit evidence for extreme loss of mass over their lifetimes: the M3 Ia supergiant BC Cyg has an evolutionary mass half that of stars at the main-sequence turnoff, the B2 Iabe emission-line supergiant HDE 229059 also has an evolutionary mass smaller than that of the main-sequence turnoff, the WO2 star WR 142, the only example of an oxygen sequence Wolf-Rayet star in an open cluster, displays evidence for variable, high velocity winds in its spectrum, the curious object V439 Cyg (B0: Vnne) appears to be an example of a recent binary merger, and Vatican Emission Star VES 203 (B0.5 Ve) displays a strong P Cygni signature in its Balmer line emission. It appears that heavy mass loss is a common factor associated with cluster stars. Could that be associated with the location of a cosmic ray production factory from the vicinity of Berkeley 87?

  20. The onset of chromospheric activity among the A and F stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1991-01-01

    Results are reported from a search for an upper boundary for the onset of main-sequence star activity based on a quest for high-temperature UV line emission in a large collection of IUE spectra. It is shown that strong chromospheric emission is common among early F dwarf and subgiant stars. At its brightest, the emission is equal to that of the most active solar-type stars and is exceeded only by that of the spotted RS CVn and BY Dra variables. It is suggested that the emission from the main-sequence stars reaches a peak near B-V = 0.28, in the vicinity of spectral type F0 V, before it declines to lower flux levels among the late A stars. Emission is seen in some dwarf stars as early as B-V = 0.25. It is demonstrated that the C II emission of stars earlier than the spectral type F5 is uncorrelated with rotation. Previous findings that the coronal X-ray:chromospheric UV flux ratio is lower for stars earlier than spectral type F5 than for those later than F5 are confirmed.

  1. Which of Kepler's Stars Flare?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  2. Weighing in on the masses of retired A stars with asteroseismology: K2 observations of the exoplanet-host star HD 212771

    NASA Astrophysics Data System (ADS)

    Campante, Tiago L.; Veras, Dimitri; North, Thomas S. H.; Miglio, Andrea; Morel, Thierry; Johnson, John A.; Chaplin, William J.; Davies, Guy R.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Elsworth, Yvonne P.; Rodrigues, Thaíse S.; Vanderburg, Andrew

    2017-08-01

    Doppler-based planet surveys point to an increasing occurrence rate of giant planets with stellar mass. Such surveys rely on evolved stars for a sample of intermediate-mass stars (so-called retired A stars), which are more amenable to Doppler observations than their main-sequence progenitors. However, it has been hypothesized that the masses of subgiant and low-luminosity red-giant stars targeted by these surveys - typically derived from a combination of spectroscopy and isochrone fitting - may be systematically overestimated. Here, we test this hypothesis for the particular case of the exoplanet-host star HD 212771 using K2 asteroseismology. The benchmark asteroseismic mass (1.45^{+0.10}_{-0.09} M_{⊙) is significantly higher than the value reported in the discovery paper (1.15 ± 0.08 M⊙), which has been used to inform the stellar mass-planet occurrence relation. This result, therefore, does not lend support to the above hypothesis. Implications for the fates of planetary systems are sensitively dependent on stellar mass. Based on the derived asteroseismic mass, we predict the post-main-sequence evolution of the Jovian planet orbiting HD 212771 under the effects of tidal forces and stellar mass-loss.

  3. On the determination of age and mass functions of stars in young open star clusters from the analysis of their luminosity functions

    NASA Astrophysics Data System (ADS)

    Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.

    2004-04-01

    We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.

  4. A main sequence for quasars

    NASA Astrophysics Data System (ADS)

    Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.

    2018-03-01

    The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  5. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi

  6. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 k

  7. Automated Quantitative Spectral Classification of Stars in Areas of the main Meridional Section of the Galaxy

    NASA Astrophysics Data System (ADS)

    Shvelidze, T. D.; Malyuto, V. D.

    Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for 333 stars in four areas. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre and the main meridional section of the Galaxy. The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.

  8. The metal-rich abundance pattern - spectroscopic properties and abundances for 107 main-sequence stars

    NASA Astrophysics Data System (ADS)

    Ivanyuk, O. M.; Jenkins, J. S.; Pavlenko, Ya. V.; Jones, H. R. A.; Pinfield, D. J.

    2017-07-01

    We report results from the high-resolution spectral analysis of the 107 metal-rich (mostly [Fe/H] ≥ 7.67 dex) target stars from the Calan-Hertfordshire Extrasolar Planet Search programme observed with HARPS. Using our procedure of finding the best fit to the absorption line profiles in the observed spectra, we measure the abundances of Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Ni, Cu and Zn, and then compare them with known results from different authors. Most of our abundances agree with these works at the level of ±0.05 dex or better for the stars we have in common. However, we do find systematic differences that make direct inferences difficult. Our analysis suggests that the selection of line lists and atomic line data along with the adopted continuum level influence these differences the most. At the same time, we confirm the positive trends of abundances versus metallicity for Na, Mn, Ni and, to a lesser degree, Al. A slight negative trend is observed for Ca, whereas Si and Cr tend to follow iron. Our analysis allows us to determine the positively skewed normal distribution of projected rotational velocities with a maximum peaking at 3 km s-1. Finally, we obtained a Gaussian distribution of microturbulent velocities that has a maximum at 1.2 km s-1 and a full width at half-maximum Δv1/2 = 0.35 km s-1, indicating that metal-rich dwarfs and subgiants in our sample have a very restricted range in microturbulent velocity.

  9. A Critical Assessment of Ages Derived Using Pre-Main-Sequence Isochrones in Colour-Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.

    2012-11-01

    In this thesis a critical assessment of the ages derived using theoretical pre-main-sequence (pre-MS) stellar evolutionary models is presented by comparing the predictions to the low-mass pre-MS population of 14 young star-forming regions (SFRs) in colour-magnitude diagrams (CMDs). Deriving pre-MS ages requires precise distances and estimates of the reddening. Therefore, the main-sequence (MS) members of the SFRs have been used to derive a self-consistent set of statistically robust ages, distances and reddenings with associated uncertainties using a maximum-likelihood fitting statistic and MS evolutionary models. A photometric method for de-reddening individual stars - known as the Q-method - in regions where the extinction is spatially variable has been updated and is presented. The effects of both the model dependency and the SFR composition on these derived parameters are also discussed. The problem of calibrating photometric observations of red pre-MS stars is examined and it is shown that using observations of MS stars to transform the data into a standard photometric system can introduce significant errors in the position of the pre-MS locus in CMD space. Hence, it is crucial that precise photometric studies - especially of pre-MS objects - be carried out in the natural photometric system of the observations. This therefore requires a robust model of the system responses for the instrument used, and thus the calculated responses for the Wide-Field Camera on the Isaac Newton Telescope are presented. These system responses have been tested using standard star observations and have been shown to be a good representation of the photometric system. A benchmark test for the pre-MS evolutionary models is performed by comparing them to a set of well-calibrated CMDs of the Pleiades in the wavelength regime 0.4-2.5 μm. The masses predicted by these models are also tested against dynamical masses using a sample of MS binaries by calculating the system magnitude in a

  10. Evolved stars and the origin of abundance trends in planet hosts

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Villaver, E.

    2016-04-01

    Context. Detailed chemical abundance studies have revealed different trends between samples of planet and non-planet hosts. Whether these trends are related to the presence of planets or not is strongly debated. At the same time, tentative evidence that the properties of evolved stars with planets may be different from what we know for main-sequence hosts has recently been reported. Aims: We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. Methods: In a consistent way, we determine the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and main-sequence stars that are with and without known planetary companions, and discuss their metallicity distribution and trends. Our methodology is based on the analysis of high-resolution échelle spectra (R ≳ 57 000) from 2-3 m class telescopes. It includes the calculation of the fundamental stellar parameters, as well as individual abundances of C, O , Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. Results: No differences in the ⟨[X/Fe]⟩ vs. condensation temperature (TC) slopes are found between the samples of planet and non-planet hosts when all elements are considered. However, if the analysis is restricted to only refractory elements, differences in the TC-slopes between stars with and without known planets are found. This result is found to be dependent on the stellar evolutionary stage, as it holds for main-sequence and subgiant stars, while there seems to be no difference between planet and non-planet hosts among the sample of giants. A search for correlations between the TC-slope and the stellar properties reveals significant correlations with the stellar mass and the stellar age. The data also suggest that differences in terms of mass and age between main-sequence planet and non-planet hosts may be present. Conclusions: Our results are well explained by radial mixing in the

  11. Multiple stellar populations in Magellanic Cloud clusters - VI. A survey of multiple sequences and Be stars in young clusters

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Di Criscienzo, M.; D'Antona, F.; Bedin, L. R.; Da Costa, G.; Piotto, G.; Tailo, M.; Dotter, A.; Angeloni, R.; Anderson, J.; Jerjen, H.; Li, C.; Dupree, A.; Granata, V.; Lagioia, E. P.; Mackey, A. D.; Nardiello, D.; Vesperini, E.

    2018-06-01

    The split main sequences (MSs) and extended MS turnoffs (eMSTOs) detected in a few young clusters have demonstrated that these stellar systems host multiple populations differing in a number of properties such as rotation and, possibly, age. We analyse Hubble Space Telescope photometry for 13 clusters with ages between ˜40 and ˜1000 Myr and of different masses. Our goal is to investigate for the first time the occurrence of multiple populations in a large sample of young clusters. We find that all the clusters exhibit the eMSTO phenomenon and that MS stars more massive than ˜1.6 M_{⊙} define a blue and a red MS, with the latter hosting the majority of MS stars. The comparison between the observations and isochrones suggests that the blue MSs are made of slow-rotating stars, while the red MSs host stars with rotational velocities close to the breakup value. About half of the bright MS stars in the youngest clusters are H α emitters. These Be stars populate the red MS and the reddest part of the eMSTO, thus supporting the idea that the red MS is made of fast rotators. We conclude that the split MS and the eMSTO are a common feature of young clusters in both Magellanic Clouds. The phenomena of a split MS and an eMSTO occur for stars that are more massive than a specific threshold, which is independent of the host-cluster mass. As a by-product, we report the serendipitous discovery of a young Small Magellanic Cloud cluster, GALFOR 1.

  12. AK Sco, First Detection of a Highly Disturbed Atmosphere in a Pre-Main-Sequence Close Binary

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.

    2009-06-01

    AK Sco is a unique source: a ~10 Myr old pre-main-sequence (PMS) spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely 11 stellar radii, so the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes AK Sco the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during PMS evolution. In this Letter, the detection of a highly disturbed (σ sime 100 km s-1) and very dense atmosphere (n e = 1.6 × 1010 cm-3) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative losses cannot be accounted for solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere or by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a PMS close binary.

  13. The G305 star-forming complex: the central star clusters Danks 1 and Danks 2

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Clark, J. S.; Trombley, Christine; Figer, Donald F.; Najarro, Francisco; Crowther, Paul A.; Kudritzki, Rolf-Peter; Thompson, Mark; Urquhart, James S.; Hindson, Luke

    2012-01-01

    The G305 H II complex (G305.4+0.1) is one of the most massive star-forming structures yet identified within the Galaxy. It is host to many massive stars at all stages of formation and evolution, from embedded molecular cores to post-main-sequence stars. Here, we present a detailed near-infrared analysis of the two central star clusters Danks 1 and Danks 2, using Hubble Space Telescope+NICMOS imaging and Very Large Telescope+ISAAC spectroscopy. We find that the spectrophotometric distance to the clusters is consistent with the kinematic distance to the G305 complex, an average of all measurements giving a distance of 3.8 ± 0.6 kpc. From analysis of the stellar populations and the pre-main-sequence stars, we find that Danks 2 is the elder of the two clusters, with an age of 3+3- 1 Myr. Danks 1 is clearly younger with an age of 1.5+1.5- 0.5 Myr, and is dominated by three very luminous H-rich Wolf-Rayet stars which may have masses ≳100 M⊙. The two clusters have mass functions consistent with the Salpeter slope, and total cluster masses of 8000 ± 1500 and 3000 ± 800 M⊙ for Danks 1 and Danks 2, respectively. Danks 1 is significantly the more compact cluster of the two, and is one of the densest clusters in the Galaxy with log (ρ/M⊙ pc-3) = 5.5+0.5- 0.4. In addition to the clusters, there is a population of apparently isolated Wolf-Rayet stars within the molecular cloud's cavity. Our results suggest that the star-forming history of G305 began with the formation of Danks 2, and subsequently Danks 1, with the origin of the diffuse evolved population currently uncertain. Together, the massive stars at the centre of the G305 region appear to be clearing away what is left of the natal cloud, triggering a further generation of star formation at the cloud's periphery.

  14. An effective temperature calibration for main-sequence B- to F-type stars using VJHK_{s} colors

    NASA Astrophysics Data System (ADS)

    Paunzen, Ernst; Netopil, Martin; Herdin, Andreas

    2017-01-01

    The effective temperature is an important parameter that is needed for numerous astrophysical studies, in particular to place stars in the Hertzsprung-Russell diagram, for example. Although the availability of large spectroscopic surveys increased significantly in the last decade, photometric data are still much more frequent. Homogeneous photometric (all-sky) surveys provide the basis to derive the effective temperature with reasonable accuracy also for objects that are not covered by spectroscopic surveys, or are out of range for the current spectroscopic instrumentations because of too faint magnitudes. We use data of the Two Micron All Sky Survey (2MASS) and broadband visual photometric measurements to derive effective temperature calibrations for the intrinsic colors (V-J), (V-H), (V-K_{s}), and (J-K_{s}), valid for B2 to F9 stars. The effective temperature calibrations are tied to the Strömgren-Crawford uvbyβ photometric system and do not depend on metallicity or rotational velocity.

  15. Pre-main sequence sun: a dynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, M.J.; Winkler, K.H.A.

    1979-01-01

    The classical pre-main sequence evolutionary behavior found by Hayashi and his coworkers for the Sun depends crucially on the choice of initial conditions. The Hayashi picture results from beginning the calculation with an already centrally condensed, highly Jeans unstable object not terribly far removed from the stellar state initially. The present calculation follows the work of Larson in investigating the hydrodynamic collapse and self-gravitational accretion of an initially uniform, just Jeans unstable interstellar gas-dust cloud. The resulting picture for the early history of the Sun is quite different from that found by Hayashi. A rather small (R approx. = 2more » R/sub sun/), low-luminosity (L greater than or equal to L/sub sun/) protostellar core develops. A fully convective stellar core, characteristic of Hayashi's work, is not found during the accretion process, and can only develop, if at all, in the subsequent pre-main sequence Kelvin-Helmholtz contraction of the core. 3 figures, 1 table.« less

  16. WR and LBV stars

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Beradze, Sophie; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana

    Evolutionary scenarios of massive stars were revised in recent decades, after finding "unusual", blue progenitor of SN 1987A and after detecting the more massive stars than the accepted 120 M ⊙ maximum limit of stellar masses. A very important relation exists between WR and LBV stars. They represent the earlier, pre-SN evolutionary states of massive stars. WR and LBV stars and "classic" evolutionary scheme of the relation between the different type massive stars are discussed in this article. There also exist the newest evolutionary scenarios for low metallicity massive stars, which give us a different picture of their post main-sequence evolution. There is a rather good tradition of observations and investigations of massive stars at Abastumani Astrophysical Observatory. The authors discuss the new findings on the fate of P Cygni, the LBV star. These results on the reddening of the star and about its next possible outburst in the near future were obtained on the basis of UBV long-term electrophotometric observations of P Cygni by Eugene Kharadze and Nino Magalashvili. The observations were held in 1951-1983 at Abastumani Observatory using 33-cm and 48-cm reflectors.

  17. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    NASA Astrophysics Data System (ADS)

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims: In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods: We used the products of the Gaia-ESO Survey analysis of 12 young regions (age < 100 Myr), covering Galactocentric distances from 6.67 to 8.70 kpc. For the first time, we derived the metal content of star forming regions farther than 500 pc from the Sun. Median metallicities were determined through samples of reliable cluster members. For ten clusters the membership analysis is discussed in the present paper, while for other two clusters (I.e. Chamaeleon I and Gamma Velorum) we adopted the members identified in our previous works. Results: All the pre-main-sequence clusters considered in this paper have close-to-solar or slightly sub-solar metallicities. The radial metallicity distribution traced by these clusters is almost flat, with the innermost star forming regions having [Fe/H] values that are 0.10-0.15 dex lower than the majority of the older clusters located at similar Galactocentric radii. Conclusions: This homogeneous study of the present-day radial metallicity distribution in the Galactic thin disc favours models that predict a flattening of the radial gradient over time. On the other hand, the decrease of the average [Fe/H] at young ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. Based on observations

  18. Radio-flaring Ultracool Dwarf Population Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Route, Matthew, E-mail: mroute@purdue.edu

    Over a dozen ultracool dwarfs (UCDs), low-mass objects of spectral types ≥M7, are known to be sources of radio flares. These typically several-minutes-long radio bursts can be up to 100% circularly polarized and have high brightness temperatures, consistent with coherent emission via the electron cyclotron maser operating in approximately kilogauss magnetic fields. Recently, the statistical properties of the bulk physical parameters that describe these UCDs have become described adequately enough to permit synthesis of the population of radio-flaring objects. For the first time, I construct a Monte Carlo simulator to model the population of these radio-flaring UCDs. This simulator ismore » powered by Intel Secure Key (ISK), a new processor technology that uses a local entropy source to improve random number generation that has heretofore been used to improve cryptography. The results from this simulator indicate that only ∼5% of radio-flaring UCDs within the local interstellar neighborhood (<25 pc away) have been discovered. I discuss a number of scenarios that may explain this radio-flaring fraction and suggest that the observed behavior is likely a result of several factors. The performance of ISK as compared to other pseudorandom number generators is also evaluated, and its potential utility for other astrophysical codes is briefly described.« less

  19. A deep x-ray survey of the Pleiades cluster and the B6-A3 main sequence stars in Orion

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre

    1993-01-01

    We have obtained deep ROSAT images of three regions within the Pleiades open cluster. We have detected 317 X-ray sources in these ROSAT PSPC images, 171 of which we associate with certain probable members of the Pleiades cluster. We detect nearly all Pleiades members with spectral types later than G0 and within 25 arcminutes of our three field centers where our sensitivity is highest. This has allowed us to derive for the first time the luminosity function for the G, K, and M dwarfs of an open cluster without the need to use statistical techniques to account for the presence of upper limits in the data sample. Because of our high X-ray detection frequency down to the faint limit of the optical catalog, we suspect that some of our unidentified X-ray sources are previously unknown, very low-mass members of the Pleiades. A large fraction of the Pleiades members detected with ROSAT have published rotational velocities. Plots of L(sub x)/L(sub bol) versus spectroscopic rotational velocity show tightly correlated 'saturation' type relations for stars with (B - V)(sub O) greater than 0.60. For each of several color ranges, X-ray luminosities rise rapidly with increasing rotation rate until v sin i approximately equals 15 km/s, and then remain essentially flat for rotation rates up to at least v sin i approximately equal to 100 km/s. The dispersion in rotation among low-mass stars in the Pleiades is by far the dominant contributor to the dispersion in L(subx) at a given mass. Only about 35 percent of the B.A. and early F stars in the Pleiades are detected as X-ray sources in our survey. There is no correlation between X-ray flux and rotation for these stars. The X-ray luminosity function for the early-type Pleiades stars appears to be bimodal, with only a few exceptions. We either detect these stars at fluxes in the range found for low-mass stars or we derive X-ray limits below the level found for most Pleiades dwarfs. The X-ray spectra for the early-type Pleiades stars

  20. ASCA Observations of the T Tauri Star SU Aurigae and the Surrounding L1517 Dark Cloud

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Walter, Frederick M.

    1998-01-01

    We present the results of a approximately equals 40 ks pointed Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of the L1517 star-forming region, centered on the X-ray-bright T Tauri star SU Aurigae. This star has the highest X-ray luminosity of any classical T Tauri star in the Taurus-Auriga region, and its optical spectra show evidence for both mass inflow and outflow. Strong X-ray emission was detected from SU Aur (L(sub x) = 10(exp 30.9) ergs s(exp -1)) as well as weaker emission from five other pre-main-sequence stars. Although no large-amplitude flares were detected, the X-ray emission of SU Aur showed clear variability in the form of a slow decline in count rate during the 1.3 day observation. We provide the first direct comparison of the coronal differential emission measure (DEM) distribution of a classical T Tauri star with that of a young main-sequence star of similar spectral type. The DEM distributions of SU Aur (G2; age 3 Myr) and the young solar-like star EK Draconis (GO V; age 70 Myr) are qualitatively similar, with both showing a bimodal temperature distribution characterized by a cool plasma component peaking at approximately 8-9 MK and a hot component peaking at approximately 20-21 MK. However, there is a striking difference in the relative proportion of plasma at high temperatures in the two stars, with hot plasma (>20 MK) accounting for approximately equals 80% of the volume emission measure of SU Aur, compared to only approximately equals 40% in EK Dra. These results provide new insight into the changes that will occur in the corona of a T Tauri star as it descends onto the main sequence. A sharp decline in the fraction of coronal plasma at flarelike temperatures will occur during the late-T Tauri and post-T Tauri phases, and other recent X-ray studies have shown that this decline will continue after the young solar-like star reaches the main sequence.

  1. Time-series Photometry of the Pre-Main Sequence Binary V4046 Sgr: Testing the Accretion Stream Theory

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Ciardi, David R.

    2015-01-01

    Most stars are born in binaries, and the evolution of protostellar disks in pre-main sequence (PMS) binary stars is a current frontier of star formation research. PMS binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces. Thus, accretion in PMS binaries is controlled by not only radiation, disk viscosity, and magnetic fields, but also by orbital dynamics.As part of a larger, ongoing effort to characterize mass accretion in young binary systems, we test the predictions of the binary accretion stream theory through continuous, multi-orbit, multi-color optical and near-infrared (NIR) time-series photometry. Observations such as these are capable of detecting and characterizing these modulated accretion streams, if they are generally present. Broad-band blue and ultraviolet photometry trace the accretion luminosity and photospheric temperature while NIR photometry provide a measurement of warm circumstellar material, all as a function of orbital phase. The predicted phase and magnitude of enhanced accretion are highly dependent on the binary orbital parameters and as such, our campaign focuses on 10 PMS binaries of varying periods and eccentricities. Here we present multi-color optical (U, B,V, R), narrowband (Hα), and multi-color NIR (J, H) lightcurves of the PMS binary V4046 Sgr (P=2.42 days) obtained with the SMARTS 1.3m telescope and LCOGT 1m telescope network. These results act to showcase the quality and breadth of data we have, or are currently obtaining, for each of the PMS binaries in our sample. With the full characterization of our sample, these observations will guide an extension of the accretion paradigm from single young stars to multiple systems.

  2. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    NASA Astrophysics Data System (ADS)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  3. The Age Related Properties of Solar Type Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David

    1999-01-01

    The studies of lithium in solar-type stars in clusters of a wide range of ages has provided critical information on a tracer of convective processes, especially among very young stars. Our most recent work has been on a pre-main sequence cluster (NGC 2264) that took place after this grant expired, but was founded on it. The spread seen in Li in Zero-Age Main Sequence clusters like the Pleiades is huge and possibly related to rotation. No clear spread in seen in NGC 2264, so it does not have its origins in the conditions of formation but is instead a result of processes occurring during PMS evolution. Our observations of M67 were particularly interesting because this cluster is the same age as the Sun, i.e.,very old. Clear evidence was seen for a spread in Li there too, indicating that the spread seen in very young stars perpetuates itself into old age.

  4. Dust-enshrouded asymptotic giant branch stars in the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Jura, M.; Kleinmann, S. G.

    1989-01-01

    Using available infrared catalogs, an inventory is taken of the AGB star losing large amounts of mass within about 1 kpc of the sun. A surface density of these stars is estimated of about 25/sq kpc projected onto the plane of the Galaxy. Of these stars, about one-half are oxygen-rich while the other half are carbon-rich. The total mass-loss rate from AGB stars into the interstellar medium is probably between 3 and 6 x 10 to the -4th solar mass/sq kpc/yr. Within the uncertainties, this is in reasonable agreement with an estimated net loss rate of about 8 x 10 to the -4th solar mass/sq kpc/yr for main-sequence stars with initial masses between 1 and 5 solar masses as they evolve to white dwarfs. However, it is possible that there are important sources of mass loss which have not yet been identified. In the solar neighborhood, about one-half of all about 1.2 solar mass main-sequence stars spend greater than 30,000 yr in a carbon-star phase where they lose 1-2 x 10 to the -5th solar mass/yr and then become white dwarfs with about 0.7 solar mass.

  5. The Structure of the Young Star Cluster NGC 6231. I. Stellar Population

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Medina, Nicolás; Getman, Konstantin V.; Feigelson, Eric D.; Gromadzki, Mariusz; Borissova, Jordanka; Kurtev, Radostin

    2017-09-01

    NGC 6231 is a young cluster (age ˜2-7 Myr) dominating the Sco OB1 association (distance ˜1.59 kpc) with ˜100 O and B stars and a large pre-main-sequence stellar population. We combine a reanalysis of archival Chandra X-ray data with multiepoch near-infrared (NIR) photometry from the VISTA Variables in the Vía Lactéa (VVV) survey and published optical catalogs to obtain a catalog of 2148 probable cluster members. This catalog is 70% larger than previous censuses of probable cluster members in NGC 6231. It includes many low-mass stars detected in the NIR but not in the optical and some B stars without previously noted X-ray counterparts. In addition, we identify 295 NIR variables, about half of which are expected to be pre-main-sequence stars. With the more complete sample, we estimate a total population in the Chandra field of 5700-7500 cluster members down to 0.08 {M}⊙ (assuming a universal initial mass function) with a completeness limit at 0.5 {M}⊙ . A decrease in stellar X-ray luminosities is noted relative to other younger clusters. However, within the cluster, there is little variation in the distribution of X-ray luminosities for ages less than 5 Myr. The X-ray spectral hardness for B stars may be useful for distinguishing between early-B stars with X-rays generated in stellar winds and B-star systems with X-rays from a pre-main-sequence companion (>35% of B stars). A small fraction of catalog members have unusually high X-ray median energies or reddened NIR colors, which might be explained by absorption from thick or edge-on disks or being background field stars.

  6. The Evolutionary Status of Be Stars: Results from a Photometric Study of Southern Open Clusters

    NASA Astrophysics Data System (ADS)

    McSwain, M. Virginia; Gies, Douglas R.

    2005-11-01

    Be stars are a class of rapidly rotating B stars with circumstellar disks that cause Balmer and other line emission. There are three possible reasons for the rapid rotation of Be stars: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence (MS) evolution of B stars. To test the various formation scenarios, we have conducted a photometric survey of 55 open clusters in the southern sky. Of these, five clusters are probably not physically associated groups and our results for two other clusters are not reliable, but we identify 52 definite Be stars and an additional 129 Be candidates in the remaining clusters. We use our results to examine the age and evolutionary dependence of the Be phenomenon. We find an overall increase in the fraction of Be stars with age until 100 Myr, and Be stars are most common among the brightest, most massive B-type stars above the zero-age main sequence (ZAMS). We show that a spin-up phase at the terminal-age main sequence (TAMS) cannot produce the observed distribution of Be stars, but up to 73% of the Be stars detected may have been spun-up by binary mass transfer. Most of the remaining Be stars were likely rapid rotators at birth. Previous studies have suggested that low metallicity and high cluster density may also favor Be star formation. Our results indicate a possible increase in the fraction of Be stars with increasing cluster distance from the Galactic center (in environments of decreasing metallicity). However, the trend is not significant and could be ruled out due to the intrinsic scatter in our data. We also find no relationship between the fraction of Be stars and cluster density.

  7. An Investigation into the Periodic Optical Variability of Radio Detected Ultracool Dwarfs using the GUFI Photometer

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Harding, L. K.; Hallinan, G.; Butler, R. F.; Golden, A.

    2011-05-01

    In the past ten years or so, radio observations of ultracool dwarfs have yielded the detection of both quiescent and time-variable radio emission in the late-M and L dwarf regime. Four of these dwarfs have been found to produce periodic pulses, determined to be associated with the dwarf's rotation. More recently, two of these radio pulsing dwarfs have been shown to be periodically variable in broadband optical photometry, where the detected periods match the periods of the radio pulses. For one of these dwarfs in particular, it has been established that the mechanism which is driving the optical and radio periodic variability are possibly linked, being a consequence of a magnetically-driven auroral process. We therefore undertook a campaign to investigate the ubiquity of optical periodicity for known radio detected ultracool dwarfs, via multi-color photometric monitoring. To facilitate this research, the GUFI instrument (Galway Ultra Fast Imager) was commissioned on the 1.8m VATT observatory, on Mt. Graham, Arizona. We present the recently published results from this observation campaign, where we have confirmed periodic variability for five of these dwarfs, three of which have been detected for the first time by GUFI. These data provide an insight into the cause of this optical emission, its connection to the radio processes, and most importantly determine whether optical periodic signals are present only in radio pulsing dwarfs.

  8. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-07-20

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Limore » abundance at fixed T{sub eff} is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.« less

  9. JUPITER WILL BECOME A HOT JUPITER: CONSEQUENCES OF POST-MAIN-SEQUENCE STELLAR EVOLUTION ON GAS GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Madhusudhan, Nikku, E-mail: dave@ias.edu, E-mail: Nikku.Madhusudhan@yale.edu

    When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to {approx}1000 K or more. Furthermore, massive planets around post-main-sequence starsmore » could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.« less

  10. The Lesser Role of Starbursts in Star Formation at z = 2

    NASA Astrophysics Data System (ADS)

    Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; Cava, A.; Elbaz, D.; Feltre, A.; Fontana, A.; Förster Schreiber, N. M.; Franceschini, A.; Genzel, R.; Grazian, A.; Gruppioni, C.; Ilbert, O.; Le Floch, E.; Magdis, G.; Magliocchetti, M.; Magnelli, B.; Maiolino, R.; McCracken, H.; Nordon, R.; Poglitsch, A.; Santini, P.; Pozzi, F.; Riguccini, L.; Tacconi, L. J.; Wuyts, S.; Zamorani, G.

    2011-10-01

    Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 < z < 2.5, i.e., at the cosmic peak of the star formation activity. The logarithmic distributions of galaxy SFRs at fixed stellar mass are well described by Gaussians, with starburst galaxies representing only a relatively minor deviation that becomes apparent for SFRs more than four times higher than on the main sequence. Such starburst galaxies represent only 2% of mass-selected star-forming galaxies and account for only 10% of the cosmic SFR density at z ~ 2. Only when limited to SFR > 1000 M sun yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.

  11. A search for strong, ordered magnetic fields in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.

    2007-04-01

    The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAe

  12. STELLAR BORON ABUNDANCES NEAR THE MAIN-SEQUENCE TURNOFF OF THE OPEN CLUSTER NGC 3293 AND IMPLICATIONS FOR THE EFFICIENCY OF ROTATIONALLY DRIVEN MIXING IN STELLAR ENVELOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, Charles R.; Lennon, Daniel J.; Langer, Norbert

    2016-06-10

    Spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph covering the B iii resonance line have been obtained for 10 early-B stars near the turnoff of the young Galactic open cluster NGC 3293. This is the first sample of boron abundance determinations in a single, clearly defined population of early-B stars that also covers a substantial range of projected rotational velocities. In most of these stars we detect partial depletion of boron at a level consistent with that expected for rotational mixing in single stars, but inconsistent with expectations for depletion from close binarymore » evolution. However, our results do suggest that the efficiency of rotational mixing is at or slightly below the low end of the range predicted by the available theoretical calculations. The two most luminous targets observed have a very large boron depletion and may be the products of either binary interactions or post-main-sequence evolution.« less

  13. Star Formation in Galaxies at z ˜ 4-5 from the SMUVS Survey: A Clear Starburst/Main-sequence Bimodality for Hα Emitters on the SFR-M* Plane

    NASA Astrophysics Data System (ADS)

    Caputi, K. I.; Deshmukh, S.; Ashby, M. L. N.; Cowley, W. I.; Bisigello, L.; Fazio, G. G.; Fynbo, J. P. U.; Le Fèvre, O.; Milvang-Jensen, B.; Ilbert, O.

    2017-11-01

    We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 μ {{m}} fluxes indicative of strong Hα emission at z=3.9{--}4.9. We find that the percentage of “Hα excess” sources reaches 37%-40% for galaxies with stellar masses {{log}}10({M}* /{M}⊙ )≈ 9{--}10 and decreases to < 20 % at {{log}}10({M}* /{M}⊙ )˜ 10.7. At higher stellar masses, however, the trend reverses, although this is likely due to active galactic nucleus contamination. We derive star formation rates (SFR) and specific SFR (sSFR) from the inferred Hα equivalent widths of our “Hα excess” galaxies. We show, for the first time, that the “Hα excess” galaxies clearly have a bimodal distribution on the SFR-M* plane: they lie on the main sequence of star formation (with {{log}}10({sSFR}/{{yr}}-1)< -8.05) or in a starburst cloud (with {{log}}10({sSFR}/{{yr}}-1)> -7.60). The latter contains ˜ 15 % of all the objects in our sample and accounts for > 50 % of the cosmic SFR density at z=3.9{--}4.9, for which we derive a robust lower limit of 0.066 {M}⊙ {{yr}}-1 {{Mpc}}-3. Finally, we identify an unusual > 50σ overdensity of z=3.9{--}4.9 galaxies within a 0.20× 0.20 arcmin2 region. We conclude that the SMUVS unique combination of area and depth at mid-IR wavelengths provides an unprecedented level of statistics and dynamic range that are fundamental to revealing new aspects of galaxy evolution in the young universe.

  14. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  15. Radio and infrared properties of young stars

    NASA Technical Reports Server (NTRS)

    Panagia, Nino

    1987-01-01

    Observing young stars, or more appropriately, pre-main-sequence (PMS) stars, in the infrared and at radio frequencies has the advantage over optical observation in that the heavy extinction associated with a star forming region is only a minor problem, so that the whole region can be studied thoroughly. Therefore, it means being able to: (1) search for stars and do statistical studies on the rate of star formation; (2) determine their luminosity, hence, to study luminosity functions and initial mass functions down to low masses; and (3) to study their spectra and, thus, to determine the prevailing conditions at and near the surface of a newly born star and its relations with the surrounding environment. The third point is of principal interest. The report limits itself to a consideration of the observations concerning the processes of outflows from, and accretion onto, PMS stars and the theory necessary to interpret them. Section 2 discusses the radiative processes relevant in stellar outflows. The main observational results are presented in Section 3. A discussion of the statistical properties of stellar winds from PMS stars are given in Section 4.

  16. Making Sense of Atmospheric Models and Fundamental Stellar Properties at the Bottom of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio; Henry, Todd; Jao, W.-C.; Washington, Robert; Silverstein, Michele; Winters, J.; RECONS

    2018-01-01

    We present a detailed comparison of atmospheric model predictions and photometric observations for late M and L dwarfs. We discuss which wavelength regions are best for determining the fundamental properties of these cool stellar and substellar atmospheres and use this analysis to refine the HR diagram for the hydrogen burning limit first presented in 2014. We also add several new objects to the HR diagram and find little qualitative difference in the HR diagram's overall morphology when compared to our 2014 results. The L2 dwarf 2MASS 0523-1403 remains the smallest hydrogen burning star for which we calculated a radius, thus likely indicating the end of the stellar main sequence. This work is supported by the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through grant AST-1400680.

  17. The embedded population around Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Testi, L.; Stanga, R. M.; Natta, A.; Palla, F.; Prusti, T.; Baffa, C.; Hunt, L. K.; Lisi, F.

    Herbig Ae/Be stars are intermediate mass young stars in the pre-main sequence phase of evolution. There are only few stars of this type known so far, and all of them seem to be relatively isolated, in contrast to their low mass counterparts, the T Tauri stars. A possible explanation of this fact is that other young stars formed near the known YSO are deeply embedded in the molecular cloud environment and are not detectable at optical wavelengths. We used the new ARcetri Near Infrared CAmera (ARNICA) to survey in the J, H and K bands the regions of sky around Herbig stars. The aim of this work is to identify embedded YSO and investigate the clustering properties of these young stars.

  18. A Search for Periodic Optical Variability in Radio Detected Ultracool Dwarfs: A Consequence of a Magnetically-Driven Auroral Process?

    NASA Astrophysics Data System (ADS)

    Harding, L. K.; Hallinan, G.; Boyle, R. P.; Butler, R. F.; Sheehan, B.; Golden, A.

    2011-12-01

    A number of ultracool dwarfs have been unexpectedly detected as radio sources in the last decade, four of which have been found to be producing periodic pulses. More recently, two of these pulsing dwarfs have also been found to be periodically variable in broadband optical photometry. The detected periods match the periods of the radio pulses which have previously been associated with the rotation period of the dwarf. For one of these objects, it has also been established that the optical and radio periodic variability are possibly linked, being a consequence of magnetically-driven auroral processes. In order to investigate the ubiquity of the periodic optical variability in radio detected sources, the GUFI instrument (Galway Ultra Fast Imager) was commissioned on the 1.8m Vatican Advanced Technology Telescope, on Mt. Graham, Arizona, and has been obtaining data for the past eighteen months. More than two hundred hours of multi-epoch photometric monitoring observations of radio detected ultracool dwarfs have been completed. We present initial results confirming optical periodic variability for four of this sample, three of which have been newly confirmed using GUFI.

  19. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    NASA Astrophysics Data System (ADS)

    Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.

    2012-12-01

    Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr

  20. Einstein Observatory coronal temperatures of late-type stars

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  1. Discovery of a New Nearby Star

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Pravdo, S. H.; Covey, K.; Frazier, O.; Hawley, S. L.; Hicks, M.; Lawrence, K.; McGlynn, T.; Reid, I. N.; Shaklan, S. B.

    2003-01-01

    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions greater than 5 arcsec/yr. We have determined a preliminary value for the parallax of pi = 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbours. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.

  2. Sizing up the stars

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.

    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~ 12%, while in turn they overestimate the effective temperature by ~ 1.5-4%, when compared to my directly measured values, with no apparent correlation to the star's metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 [Special characters omitted.] . Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively. INDEX WORDS: Interferometry, Infrared, Stellar Astronomy, Fundamental Properties, Effective Temperatures, Stellar Radii

  3. About Exobiology: The Case for Dwarf K Stars

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Guinan, E. F.

    2016-08-01

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray-UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray-far-UV irradiances for G0 V-M5 V stars over a wide range of ages.

  4. VizieR Online Data Catalog: G0-G3 main-sequence stars with V<15 (Lopez-Valdivia+, 2014)

    NASA Astrophysics Data System (ADS)

    Lopez-Valdivia, R.; Bertone, E.; Chavez, M.; Tapia-Schiavon, C.; Hernandez-Aguila, J. B.; Valdes, J. R.; Chavushyan, V.

    2015-04-01

    We selected in late 2008 a sample of stars from the Set of Identifications, Measurements, and Bibliography for Astronomical Data (SIMBAD) data base using the following criteria: (i) spectral type between G0 and G3; (ii) luminosity class V; (iii) visible magnitude V<15mag; (iv) declination δ>-10°. The selection resulted in about 1200 objects. We report here the results for 233 stars. We carried out the spectroscopic observations at the 2.12-m telescope of the Observatorio Astrofisico Guillermo Haro (Sonora, Mexico) between 2008 and 2013, with a Boller & Chivens spectrograph, equipped with a Versarray 1300x1340 CCD. (3 data files).

  5. Chemical and Kinematical Properties of Blue Straggler Stars and Horizontal Branch Stars in NGC 6397

    NASA Astrophysics Data System (ADS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Gratton, R.; Dalessandro, E.; Contreras Ramos, R.

    2012-08-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i < 10 km s-1), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ~70 km s-1. For HB stars with T < 10,500 K there is a clear temperature-oxygen anticorrelation that can be understood if the star position along the HB is mainly determined by the He content. The hottest BSSs and HB stars (with temperatures T > 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = -2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes. Based on FLAMES observations collected at the European Southern Observatory, proposal numbers 073.D-0058, 075.D-0125, and 081.D-0356.

  6. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  7. Deciphering the X-ray Emission of the Nearest Herbig Ae Star

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2004-01-01

    In this research program, we obtained and analyzed an X-ray observation of the young nearby intermediate mass pre-main sequence star HD 104237 using the XMM-Newton space-based observatory. The observation was obtained on 17 Feb. 2002. This observation yielded high-quality X-ray images, spectra, and timing data which provided valuable information on the physical processes responsible for the X-ray emission. This star is a member of the group of so-called Herbig Ae/Be stars, which are young intermediate mass (approx. 2 - 4 solar masses) pre-main sequence (PMS) stars a few million years old that have not yet begun core hydrogen burning. The objective of the XMM-Newton observation was to obtain higher quality data than previously available in order to constrain possible X-ray emission mechanisms. The origin of the X-ray emission from Herbig Ae/Be stars is not yet known. These intermediate mass PMS stars lie on radiative tracks and are not expected to emit X-rays via solar-like magnetic processes, nor are their winds powerful enough to produce X-rays by radiative wind shocks as in more massive O-type stars. The emission could originate in unseen low-mass companions, or it may be intrinsic to the Herbig stars themselves if they still have primordial magnetic fields or can sustain magnetic activity via a nonsolar dynamo.

  8. Dust and gas around young stars

    NASA Astrophysics Data System (ADS)

    Chen, Christine Hsiao-Ching

    To understand how asteroids, planets, and comets form in circumstellar disks of gas and dust, we have carried out a high resolution mid-infrared imaging study and a high resolution ultra violet spectroscopic study of the dust and gas around nearby pre-main sequence Herbig Ae stars and dusty main sequence stars. We have used the Keck I telescope to image at 11.7 μm and 17.9 μm the dust emission around ζ Lep, a main sequence A-type star with an infrared excess, 21.5 pc from the Sun. The excess is at most marginally resolved at 17.9 μm. The dust distance from the star is probably ≤6 AU, although some dust may extend to 9 AU. The mass of observed dust is ˜10 22 g. Since the lifetime of dust particles is about 104 yr because of the Poynting- Robertson effect, we robustly estimate at least 4 × 1026 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ˜300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system. We have obtained FUSE spectra of σ Her, a nearby binary system, with a main sequence primary, that has a Vega-like infrared excess. We observe absorption in the excited fine structure lines C II* at 1037 Å, N II* at 1085 Å, and N II** at 1086 Å that are blueshifted by as much as ˜30 km/sec with respect to the star. Since these features are considerably narrower than the stellar lines and broader than interstellar features, the C II and N II are circumstellar. Since σ Her has a high luminosity, we suggest that there is a radiatively driven wind, arising from the circumstellar matter, rather than accretion as occurs around β Pic. Assuming that the gas is liberated by collisions between parent bodies at 20 AU, the approximate distance at which blackbody grains are in radiative equilibrium with the star and at which 3-body orbits become unstable, we infer dM/dt ˜6 × 10-12 M⊙ yr-1. This wind depletes the minimum mass of parent bodies in less than

  9. Kinematics of Stars from the TGAS (Gaia DR1) Catalogue

    NASA Astrophysics Data System (ADS)

    Vityazev, V. V.; Popov, A. V.; Tsvetkov, A. S.; Petrov, S. D.; Trofimov, D. A.; Kiyaev, V. I.

    2018-04-01

    Based on the stellar proper motions of the TGAS (Gaia DR1) catalogue, we have analyzed the velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc. We have obtained four variants of kinematic parameters corresponding to different methods of calculating the distances from the parallaxes of stars measured with large relative errors. We have established that within the Ogorodnikov-Milne model changing the variant of distances affects significantly only the solar velocity components relative to the chosen centroid of stars, provided that the solution is obtained in narrow ranges of distances (0.1 kpc). The estimates of all the remaining kinematic parameters change little. This allows the Oort coefficients and related Galactic rotation parameters as well as all the remaining Ogorodnikov-Milne model parameters (except for the solar terms) to be reliably estimated irrespective of the parallax measurement accuracy. The main results obtained from main-sequence stars in the range of distances from 0.1 to 1.5 kpc are: A = 16.29 ± 0.06 km s-1 kpc-1, B = -11.90 ± 0.05 km s-1 kpc-1, C = -2.99 ± 0.06 km s-1 kpc-1, K = -4.04 ± 0.16 km s-1 kpc-1, and the Galactic rotation period P = 217.41 ± 0.60 Myr. The analogous results obtained from red giants in the range from 0.2 to 1.6 kpc are: the Oort constants A = 13.32 ± 0.09 km s-1 kpc-1, B = -12.71 ± 0.06 km s-1 kpc-1, C = -2.04 ± 0.08 km s-1 kpc-1, K = -2.72 ± 0.19 km s-1 kpc-1, and the Galactic rotation period P = 236.03 ± 0.98 Myr. The Galactic rotation velocity gradient along the radius vector (the slope of the Galactic rotation curve) is -4.32 ± 0.08 km s-1 kpc-1 for main-sequence stars and -0.61 ± 0.11 km s-1 kpc-1 for red giants. This suggests that the Galactic rotation velocity determined from main-sequence stars decreases with increasing distance from the Galactic center faster than it does for red giants.

  10. Nearly simultaneous observations of chromospheric and coronal radiative losses of cool stars

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Dobson, A. K.; Radick, R. R.

    1992-01-01

    The flux-flux relationships of cool stars are studied on the basis of nearly simultaneous measurements of Ca II H+K, Mg II h+k, and soft X-ray fluxes. A linear relationship is derived between IUE Mg II h+k fluxes and Mount Wilson Ca II H+K fluxes which were obtained within 36 hr of each other for a sample of 26 F5-K3 main-sequence stars. Nearly simultaneous EXOSAT soft X-ray fluxes are compared with Ca II H+K fluxes for a sample of 20 dwarfs and gaints with spectral types ranging from F6 to K2, and 72 additional cool stars for which noncontemporaneous Ca II H+K and EINSTEIN soft X-ray fluxes are available are compared. It is confirmed that a nonradiatively heated chromosphere exists on even the least active main-sequence stars. This basal chromosphere is probably independent of stellar magnetic activity.

  11. WISE Detections of Dust in the Habitable Zones of Planet-Bearing Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa Y.; Padgett, Deborah L.; Bryden, Geoffrey; Werner, M. W.; Furlan, E.

    2012-01-01

    We use data from the Wide-field Infrared Survey Explorer (WISE) all-sky release to explore the incidence of warm dust in the habitable zones around exoplanet-host stars. Dust emission at 12 and/or 22 microns (T(sub dust) approx.300 and/or approx.150 K) traces events in the terrestrial planet zones; its existence implies replenishment by evaporation of comets or collisions of asteroids, possibly stirred by larger planets. Of the 591 planetary systems (728 extrasolar planets) in the Exoplanet Encyclopedia as of 2012 January 31, 350 are robustly detected by WISE at > or = 5(sigma) level. We perform detailed photosphere subtraction using tools developed for Spitzer data and visually inspect all the WISE images to confirm bona fide point sources. We find nine planet-bearing stars show dust excess emission at 12 and/or 22 microns at > or = 3(sigma) level around young, main-sequence, or evolved giant stars. Overall, our results yield an excess incidence of approx.2.6% for stars of all evolutionary stages, but approx.1% for planetary debris disks around main-sequence stars. Besides recovering previously known warm systems, we identify one new excess candidate around the young star UScoCTIO 108.

  12. B Stars with and without emission lines, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Underhill, A. (Editor); Doazan, V. (Editor)

    1982-01-01

    The spectra for B stars for which emission lines occur not on the main sequence, but only among the supergiants, and those B stars for which the presence of emission in H ahlpa is considered to be a significant factor in delineating atmospheric structure are examined. The development of models that are compatible with all known facts about a star and with the laws of physics is also discussed.

  13. IUE observations of new A star candidate proto-planetary systems

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1994-01-01

    As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.

  14. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  15. Chromospherically Active Stars in the RAVE Survey. II. Young Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Grebel, E. K.; Kordopatis, G.; Munari, U.; Seabroke, G.; Steinmetz, M.; Wojno, J.; Bienaymé, O.; Bland-Hawthorn, J.; Conrad, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kunder, A.; Navarro, J.; Parker, Q. A.; Reid, W.; Siviero, A.; Watson, F. G.; Wyse, R. F. G.

    2017-01-01

    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age-activity relation for main-sequence dwarfs in a range from a few 10 {Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 {Gyr} and ˜2000 younger than 100 {Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J - K versus {N}{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J - K versus {W}1-{W}2 diagram, and very cool temperatures (J-K> 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE’s radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database.

  16. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  17. ABOUT EXOBIOLOGY: THE CASE FOR DWARF K STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuntz, M.; Guinan, E. F., E-mail: cuntz@uta.edu, E-mail: edward.guinan@villanova.edu

    2016-08-10

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3)more » the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray–UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray–far-UV irradiances for G0 V–M5 V stars over a wide range of ages.« less

  18. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  19. Formation environment of Pop II stars affected by the feedbacks from Pop III stars

    NASA Astrophysics Data System (ADS)

    Chiaki, G.; Susa, H.; Hirano, S.

    Stars with metallicities abH Fe < -3 are called extremely metal-poor (EMP) stars, and considered to be formed in clouds enriched with metal from a single or several supernovae (SNe) of the first-generation (Pop III) stars. To confirm this, we numerically follow the enrichment process of minihalos (MHs) which have hosted Pop III stars. During their main-sequence (MS), the ionizing photons can not or partly break the gas around the Pop III stars because the halo binding energy is marginally larger than the radiation energy. After SN explosions, the gas continues to accrete along filaments of the large-scale structures, and the gas collapses again in the MHs within ˜ 10 Myr for low-mass MHs (3E 5 M⊙) while ˜ 1 Myr for massive MHs (3E 6 M⊙). The metallicity in the recollapsing regions is 10-4-10-2 Z⊙ /SUB and 10-6-10-5 Z⊙, respectively. This indicates that EMP stars are formed in the clouds enriched by a single SN in low-mass MHs.

  20. Variability of Disk Emission in Pre-Main Sequence and Related Stars. I. HD 31648 and HD 163296 - Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; hide

    2007-01-01

    Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 pm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 pm region throughout this span of time. In both stars the changes in the 1-5 pm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.

  1. The great escape - III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Evans, N. Wyn; Wyatt, Mark C.; Tout, Christopher A.

    2014-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galenvironment before, during and after asymptotic giant branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass-loss, Galactic tidal perturbations and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass-loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass-loss will shrink a planetary system's Hill ellipsoid axes by about 20 to 40 per cent, Oort clouds orbiting WDs are likely to be more depleted and dynamically excited than on the MS.

  2. Water loss from terrestrial planets orbiting ultracool dwarfs: Implications for the planets of TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Selsis, Franck; Owen, James E.; Ribas, Ignasi; Raymond, Sean N.; Leconte, Jérémy; Gillon, Michael

    2016-10-01

    Ultracool dwarfs (UCDs) encompass the population of extremely low mass stars (later than M6-type) and brown dwarfs.Because UCDs cool monotonically, their habitable zone (HZ) sweeps inward in time.Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to entering the HZ.It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry, inhospitable worlds.Here we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations.We address the whole range of UCDs but also focus on the planets b, c and d recently found around the 0.08 M⊙ dwarf TRAPPIST-1.Despite assumptions maximizing the FUV-photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amounts of water in the HZ of UCDs, with a sweet spot in the 0.04-0.06 M⊙ range.We also studied the TRAPPIST-1 system using observed constraints on the XUV-flux.We found that TRAPPIST-1b and c can lose as much as 15 Earth Ocean and planet d -- which may be inside the HZ depending on its actual period -- may have lost less than 1 Earth Ocean.Depending on its initial content, they could have enough water to remain habitable.TRAPPIST-1 planets are key targets for atmospheric characterization and could provide strong constraints on the water erosion around UCDs.

  3. Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51 Main

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Ginsburg, A.; Zhang, Q.

    2016-05-01

    Context. This paper is the third in a series of NH3 multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. Aims: We want to map at subarcsecond resolution highly excited inversion lines of NH3 in the high-mass star-forming region W51 Main (distance = 5.4 kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Methods: Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2 arcsec-0.3 arcsec angular resolution in five metastable (J = K) inversion transitions of ammonia (NH3): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400 K and ~1700 K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36 GHz. Results: We have identified and characterized two main centers of high-mass star formation in W51 Main, which excite hot cores and host one or multiple high-mass young stellar objects (YSOs) at their centers: the W51e2 complex and the W51e8 core (~6'' southward of W51e2). The former breaks down into three further subcores: W51e2-W, which surrounds the well-known hypercompact (HC) HII region, where hot NH3 is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 arcsec to the East) and W51e2-NW (~1'' to the North), where hot NH3 is observed in emission. The velocity maps toward the HC HII region show a clear velocity gradient along the east-west in all lines. The gradient may indicate rotation, although any Keplerian motion must be on smaller scales (<1000 AU) as we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of molecular gas available for accretion (~5 M⊙, assuming [NH3]/[H2] = 10-7) with respect to the mass of the central

  4. ATLASGAL - towards a complete sample of massive star forming clumps

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Moore, T. J. T.; Csengeri, T.; Wyrowski, F.; Schuller, F.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Menten, K. M.; Walmsley, C. M.; Bronfman, L.; Pfalzner, S.; König, C.; Wienen, M.

    2014-09-01

    By matching infrared-selected, massive young stellar objects (MYSOs) and compact H II regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ˜1000 embedded young massive stars between 280° < ℓ < 350° and 10° < ℓ < 60° with | b | < 1.5°. Combined with an existing sample of radio-selected methanol masers and compact H II regions, the result is a catalogue of ˜1700 massive stars embedded within ˜1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and H II-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and H II-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources.

  5. Chromospherically Active Stars in the RAVE Survey

    NASA Astrophysics Data System (ADS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Strassmeier, K. G.

    2014-01-01

    We present a qualitative characterization of activity levels of a large database of ~44,000 candidate RAVE stars (unbiased, magnitude limited medium resolution survey) that show chromospheric emission in the Ca II infrared triplet and this vastly enlarges previously known samples. Our main motivation to study these stars is the anti-correlation of chromospheric activity and stellar ages that could be calibrated using stellar clusters with known ages. Locally linear embedding used for a morphological classification of spectra revealed 53,347 cases with a suggested emission component in the calcium lines. We analyzed a subsample of ~44,000 stars with S/N>20 using a spectral subtraction technique where observed reference spectra of inactive stars were used as templates instead of synthetic ones. Both the equivalent width of the excess emission for each calcium line and their sum is derived for all candidate active stars with no respect to the origin of their emission flux. ~17,800 spectra show a detectable chromospheric flux with at least 2 σ confidence level. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with inactive stars and the second with the pre-main-sequence cases.

  6. The Structure of the Star-forming Cluster RCW 38

    NASA Astrophysics Data System (ADS)

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Megeath, S. T.; Gutermuth, R.; Spitzbart, B.

    2011-12-01

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 μm) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N H and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  7. Dynamical investigations of the multiple stars

    NASA Astrophysics Data System (ADS)

    Kiyaeva, Olga V.; Zhuchkov, Roman Ya.

    2017-11-01

    Two multiple stars - the quadruple star - Bootis (ADS 9173) and the triple star T Taury were investigated. The visual double star - Bootiswas studied on the basis of the Pulkovo 26-inch refractor observations 1982-2013. An invisible satellite of the component A was discovered due to long-term uniform series of observations. Its orbital period is 20 ± 2 years. The known invisible satellite of the component B with near 5 years period was confirmed due to high precision CCD observations. The astrometric orbits of the both components were calculated. The orbits of inner and outer pairs of the pre-main sequence binary T Taury were calculated on the basis of high precision observations by the VLT and on the Keck II Telescope. This weakly hierarchical triple system is stable with probability more than 70%.

  8. A survey of chromospheric Ca II H and K emission in field stars of the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Vaughan, A. H.; Preston, G. W.

    1980-01-01

    Fluxes in 1 A bands at the centers of the H and K lines are being measured in main-sequence F-G-K-M stars in the northern half of the Woolley et al. (1970) 'Catalog of stars within twenty-five parsecs of the sun', in a survey not yet completed. Results for 486 stars are presented in the form of flux-color diagrams and discussed in light of evidence that chromospheric activity declines with age in main-sequence stars. Support is noted for the reality of the Sirius moving group. The relative numbers of more-active (Hyades-like) and less-active (solar-like) F-G stars are tolerably in agreement with a nearly constant rate of formation, but there exists an apparent deficiency in the number of F-G stars exhibiting intermediate activity. The possibility that the gap is an accidental characteristic of the sample will be investigated by extending the survey to southern declinations and greater distances.

  9. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  10. Magnetic fields driven by tidal mixing in radiative stars

    NASA Astrophysics Data System (ADS)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  11. KEPLER RAPIDLY ROTATING GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surfacemore » rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.« less

  12. Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System

    NASA Astrophysics Data System (ADS)

    Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan

    2018-01-01

    To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http

  13. Prospects for the Detection of Earths Orbiting Other Stars

    NASA Technical Reports Server (NTRS)

    Bourcki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth's atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.

  14. Prospects for the Detection of Earths Orbiting Other Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.

    2001-01-01

    Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth#s atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.

  15. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    NASA Astrophysics Data System (ADS)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff < 2700 K and has a significant effect on the structure and the spectrum of the atmosphere for Teff < 2400 K. We have compared the synthetic spectra of our models with observed spectra and found that they fit the spectra of mid- to late-type M-dwarfs and early-type L-dwarfs well. The geometrical extension of the atmospheres (at τ = 1) changes with wavelength resulting in a flux variation of 10%. This translates into a change in geometrical extension of the atmosphere of about 50 km, which is the quantitative basis for exoplanetary transit spectroscopy. We also test DRIFT-MARCS for an example exoplanet and demonstrate that our simulations reproduce the Spitzer observations for WASP-19b rather well for Teff = 2600 K, log (g) = 3.2 and solar abundances. Our model points at an exoplanet with a deep cloud-free atmosphere with a substantial

  16. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    NASA Astrophysics Data System (ADS)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  17. Variability of Disk Emission in Pre-Main-Sequence and Related Stars. I. HD 31648 and HD 163296: Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Wilde, J. Leon; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; Polomski, Elisha F.; Wisnewski, John P.; Brafford, Suellen M.; Hammel, H. B.; Perry, R. Brad

    2008-05-01

    Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 μm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 μm region throughout this span of time. In both stars, the changes in the 1-5 μm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.

  18. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Spear, G. G.; Kondo, Y.; Henize, K. G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600-3600 A is reported for the bright early-type stars beta, eta, gamma, delta, iota, epsilon, sigma, zeta, and kappa Ori. The results are in good agreement with other observations, and, with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori.

  19. Magnetic Dynamos and X-Ray Activity in Ultracool Dwarfs (UCDs): Surprises in the Radio Band

    NASA Astrophysics Data System (ADS)

    Williams, Peter K.; Cook, B. A.; Berger, E.

    2014-01-01

    Radio observations established early on that some brown dwarfs host kilogauss magnetic fields, despite their low temperatures and the absence of the shearing tachocline that is believed to be key to the solar dynamo. The observed radio emission is often surprisingly bright, exceeding the standard magnetic radio/X-ray (Güdel-Benz) relation by as much as five orders of magnitude. This effect is still not satisfactorily explained. In an attempt to improve matters, we have constructed and analyzed a comprehensive database of ultracool dwarfs with both radio and X-ray data, including new observations of seven targets with Chandra and the upgraded VLA. While all of the newly-observed objects were detected in the X-ray, only one was detected in the radio. These new targets are thus consistent with the standard relation, in striking contrast with some previous data. Some pairs of dwarfs with outwardly similar characteristics (spectral type, v sin i) have dramatically different emission properties, with radio/X-ray ratios that differ by two orders of magnitude. These results suggest that there is dramatic variance in ultracool magnetic activity. As we also discuss in a companion poster examining the relation between rotation and activity, variation in the topology of the magnetic field may explain the data. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. We also acknowledge support from the NSF through Grant AST-1008361 and from NASA through Chandra Award Number G02-13007A issued by the Chandra X-ray Observatory Center, operated by the Smithsonian Astrophysical Observatory and NASA under contract NAS8-03060.

  20. The nature of the F str lambda 4077 stars. 3: Spectroscopy of the barium dwarfs and other CP stars

    NASA Technical Reports Server (NTRS)

    North, P.; Berthet, S.; Lanz, T.

    1994-01-01

    The abundances of C, O, Al, Ca, iron-peak and s-process elements have been derived from high-resolution spectra for a sample of stars classified as F str lambda 4077 by Bidelman. Among the 20 stars mentioned by Bidelman, we have discovered 8 barium dwarfs (or CH subgiants, according to Bond's terminology), while a 9th star, HD 182274, was already known as a CH subgiant. In addition, we have analyzed three barium stars taken from the list of Lu et al. (1983) which are probably dwarfs rather than giants, and three CH subgiants. The other 11 F str lambda 4077 stars resemble either the delta Delphini stars, since their iron abundance is enhanced while Ca is normal, or are probably spectrum composites. A few Am, Ap, lambda Bootis and normal stars have been analyzed for comparison. In particular, we have included three lambda Boo candidates, selected from their photometric properties, and their iron deficiency is confirmed. The spectroscopic, photometric and statistical evidences concerning the Ba dwarfs, support the idea that these stars may be the main sequence counterparts, and possibly the progenitors of the Ba giants. The C/O ratio varies in these stars from normal values to a maximum of 1.5, but mostly within 0.6 and 1.2. Some of these objects may therefore be considered, in this sense, as carbon stars. On the other hand, the abundances of carbon and s-process elements relative to iron are inversely correlated with metallicity, and may even exceed significantly those of typical, solar-metallicity carbon stars. Metal-deficient C stars must therefore have (C/Fe) greater than or approximately equal to 1 and (s/Fe) greater than or approximately equal to 1.5 as soon as (Fe/H) less than or approximately equal to -1. The neutron exposure is shown to increase when the metallicity decreases, which is compatible with the C-13 (alpha, n) O-16 neutron source, but not with the Ne-22 (alpha, n) Mg-25 one. The evolutionary state (within the main sequence) of the Ba dwarfs, is

  1. HUBBLE TARANTULA TREASURY PROJECT. V. THE STAR CLUSTER HODGE 301: THE OLD FACE OF 30 DORADUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cignoni, M.; Sabbi, E.; Marel, R. P. van der

    Based on color–magnitude diagrams (CMDs) from the Hubble Space Telescope  Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 andmore » 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800  M {sub ⊙} and average reddening E ( B − V ) ≈ 0.22–0.24 mag, with a differential reddening δE ( B − V ) ≈ 0.04 mag.« less

  2. Hubble Tarantula Treasury Project V. The Star Cluster Hodge 301: The Old Face of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Lennon, D. J.; Tosi, M.; Grebel, E. K.; Gallagher, J. S., III; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Larsen, S.; Panagia, N.; Smith, L. J.

    2016-12-01

    Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800 M ⊙ and average reddening E(B - V) ≈ 0.22-0.24 mag, with a differential reddening δE(B - V) ≈ 0.04 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  3. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  4. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  5. The star forming universe after z=1

    NASA Astrophysics Data System (ADS)

    Harker, Justin J.

    This dissertation explores three projects in the field of galaxy formation and evolution: the formation of the red sequence via quenching, the detection, characterization, and frequency of starbursts in the DEEP2 sample, and the behavior of a main sequence of star forming galaxies whose behavior is determined by baryonic mass, referred to as staged star formation. The first section, in Chapter 2, presents a breakdown of several population synthesis models designed to probe the history of the red sequence. Known from measurements at low redshift to be composed of objects with a large range of ages, the red sequence is not well-modeled as being the result of a single monolithic event in the distant past. By combining information on restframe color, Balmer absorption line strengths, and the number density of L* galaxies as a function of redshift, we find evidence that the red sequence is built up over time. The second section, in Chapter 3 and 4, presents a novel method for determining simultaneously the absorption line and emission line contributions to the total measured equivalent width of Balmer lines. Relying on the predictable behavior of both absorption lines, which are to first order equivalent to one another, and emission lines, which follow a predictable decrement toward shorter wavelengths, a single measurement of total line strength for Hb and Hd yield uncoupled emission and absorption line components. Using the measurement of Hd in absorption against D n 4000 and Hb in emission, we isolate a population of potential starbursts in the DEEP2 sample. The final section, in Chapter 5, explores the regularity of star formation as a function of redshift, using the staged star formation prescription of Noeske et al. (2007a). We compute a set of t-models using the prescription, and compare them to the data in a number of parameters in addition to mass and star formation. While the staged star formation model is a good match in a number of parameters, we find

  6. Star Masses and Star-Planet Distances for Earth-like Habitability.

    PubMed

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ < M < 1.04 M ⊙ , and the range for planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  7. Star Masses and Star-Planet Distances for Earth-like Habitability

    PubMed Central

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  8. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    NASA Astrophysics Data System (ADS)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  9. Substantial reservoirs of molecular hydrogen in the debris disks around young stars.

    PubMed

    Thi, W F; Blake, G A; van Dishoeck, E F; van Zadelhoff, G J; Horn, J M; Becklin, E E; Mannings, V; Sargent, A I; van Den Ancker, M E; Natta, A

    2001-01-04

    Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.

  10. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.

    2017-08-01

    Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main

  11. The SpeX Prism Library for Ultracool Dwarfs: A Resource for Stellar, Exoplanet and Galactic Science and Student-Led Research

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam

    The NASA Infrared Telescope Facility's (IRTF) SpeX spectrograph has been an essential tool in the discovery and characterization of ultracool dwarf (UCD) stars, brown dwarfs and exoplanets. Over ten years of SpeX data have been collected on these sources, and a repository of low-resolution (R 100) SpeX prism spectra has been maintained by the PI at the SpeX Prism Spectral Libraries website since 2008. As the largest existing collection of NIR UCD spectra, this repository has facilitated a broad range of investigations in UCD, exoplanet, Galactic and extragalactic science, contributing to over 100 publications in the past 6 years. However, this repository remains highly incomplete, has not been uniformly calibrated, lacks sufficient contextual data for observations and sources, and most importantly provides no data visualization or analysis tools for the user. To fully realize the scientific potential of these data for community research, we propose a two-year program to (1) calibrate and expand existing repository and archival data, and make it virtual-observatory compliant; (2) serve the data through a searchable web archive with basic visualization tools; and (3) develop and distribute an open-source, Python-based analysis toolkit for users to analyze the data. These resources will be generated through an innovative, student-centered research model, with undergraduate and graduate students building and validating the analysis tools through carefully designed coding challenges and research validation activities. The resulting data archive, the SpeX Prism Library, will be a legacy resource for IRTF and SpeX, and will facilitate numerous investigations using current and future NASA capabilities. These include deep/wide surveys of UCDs to measure Galactic structure and chemical evolution, and probe UCD populations in satellite galaxies (e.g., JWST, WFIRST); characterization of directly imaged exoplanet spectra (e.g., FINESSE), and development of low

  12. A search for T Tauri stars and related objects: Archival photometry of candidate variables in V733 Cep field

    NASA Astrophysics Data System (ADS)

    Jurdana-Šepić, R.; Poljančić Beljan, I.

    Searching for T Tauri stars or related early type variables we carried out a BVRI photometric measurements of five candidates with positions within the field of the pre-main sequence object V733 Cephei (Persson's star) located in the dark cloud L1216 near to Cepheus OB3 Association: VES 946, VES 950, NSV 14333, NSV 25966 and V385 Cep. Their magnitudes are determined on the plates from Asiago Observatory historical photographic archive exposed 1971 - 1978. We provide finding charts for program stars and comparison sequence stars, magnitude estimations, magnitude mean values and BVR_cI_c light curves of program stars.

  13. The VMC Survey. XXVII. Young Stellar Structures in the LMC’s Bar Star-forming Complex

    NASA Astrophysics Data System (ADS)

    Sun, Ning-Chen; de Grijs, Richard; Subramanian, Smitha; Bekki, Kenji; Bell, Cameron P. M.; Cioni, Maria-Rosa L.; Ivanov, Valentin D.; Marconi, Marcella; Oliveira, Joana M.; Piatti, Andrés E.; Ripepi, Vincenzo; Rubele, Stefano; Tatton, Ben L.; van Loon, Jacco Th.

    2017-11-01

    Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(τ/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(τ/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300 pc, suggesting that the young stellar structures are completely dispersed on a timescale of ˜100 Myr. These results are consistent with the characteristics of the 30 Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.

  14. VizieR Online Data Catalog: Far-UV spectral atlas of O-type stars (Smith, 2012)

    NASA Astrophysics Data System (ADS)

    Smith, M. A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas (Cat. J/ApJS/186/175), to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. (4 data files).

  15. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that allmore » these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.« less

  16. Multifrequency observations of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    1988-01-01

    The discovery of symbiotic stars is described, and the results of multifrequency observations made during the past two decades are presented. Observational data identify symbiotic stars as long-period binary systems that can be divided into two basic physical classes: detached symbiotics containing a red giant (or a Mira variable), and semidetached symbiotics containing a lobe-filling red giant and a solar-type main sequence star. Three components are typically observed: (1) the cool giant component with an effective temperature of 2500-4000 K, which can be divided by the IR spectral classification into normal M giants (S-types) and heavily reddened Mira variables (D-types); (2) the hot companion displaying a bright blue continuum at UV wavelengths, which is sometimes also an X-ray source; and (3) a gaseous nebula enveloping the binary.

  17. Revolution evolution: tracing angular momentum during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the

  18. FIRE Spectroscopy Of The Ultracool Brown Dwarf, UGPS 0722-05

    NASA Astrophysics Data System (ADS)

    Bochanski, John J.; Burgasser, A. J.; Simcoe, R. A.

    2011-05-01

    We present FIRE spectroscopic observations of the ultracool (T ˜ 520 K) brown dwarf, UGPS 0722-05, obtained during instrument commissioning on the 6.5m Baade Magellan Telescope at Las Campanas Observatory. At a distance of 4.1 pc, this cool brown dwarf is well-suited for detailed followup, and represents a keystone at the transition between the lowest-mass brown dwarfs and exoplanets. Our spectrum of UGPS 0722-05 covers the 0.8-2.5 micron bandpasses at a resolution of R ˜ 6,000, and is measured to high signal-to-noise, peaking at 80 near 1.27 microns. We derive radial and rotational velocities for the isolated brown dwarf, and examine its space motion and Galactic orbit. The spectrum of UGPS 0722-05 is also compared to theoretical spectral models to constrain its atmospheric parameters. Finally, we comment on the presence of unidentified absorption features reported in the discovery spectrum of Lucas et al. (2010). We thank Mauricio Martinez and the entire Magellan staff for assistance during FIRE commissioning and observations. JJB acknowledges the support of Kevin Luhman.

  19. Monitoring of rotational period variations in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.

    2016-12-01

    A majority part of magnetic chemically peculiar (mCP) stars of the upper main sequence exhibits strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by the model of a rigidly rotating main-sequence star with persistent surface structures and stable global magnetic field frozen into the body of the star. Nevertheless, there is an inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades, while the shapes of their phase curves remain nearly unchanged. Alternations in the rotational period variations, proven in the case of some of them, offer new insight on this theoretically unpredicted phenomenon. We present a novel and generally applicable method of period analysis based on the simultaneous exploitation of all available observational data containing phase information. This phenomenological method can monitor gradual changes in the observed instantaneous period very efficiently and reliably. We present up to date results of the period monitoring of V901 Ori, CU Vir, σ Ori E, and BS Cir, known to be mCP stars changing their observed periods and discuss the physics of this unusual behaviour. To compare the period behavior of those stars, we treated their data with an orthogonal polynomial model, which was specifically developed for this purpose. We confirmed period variations in all stars and showed that they reflect real changes in the angular velocity of outer layers of the stars, fastened by their global magnetic fields. However, the nature of the observed rotational instabilities has remained elusive up to now. The discussed group of mCP stars is inhomogeneous to such extent that each of the stars may experience a different cause for its period variations.

  20. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools. I. UKIDSS LAS DR5 vs. SDSS DR7

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.

    2012-06-01

    Aims: The aim of the project is to improve our knowledge of the low-mass and low-metallicity population to investigate the influence of metallicity on the stellar (and substellar) mass function. Methods: We present the results of a photometric and proper motion search aimed at discovering ultracool subdwarfs in large-scale surveys. We employed and combined the Fifth Data Release (DR5) of the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) and the Sloan Digital Sky Survey (SDSS) Data Release 7 complemented with ancillary data from the Two Micron All-Sky Survey (2MASS), the DEep Near-Infrared Survey (DENIS) and the SuperCOSMOS Sky Surveys (SSS). Results: The SDSS DR7 vs. UKIDSS LAS DR5 search returned a total of 32 ultracool subdwarf candidates, only two of which are recognised as a subdwarf in the literature. Twenty-seven candidates, including the two known ones, were followed-up spectroscopically in the optical between 600 and 1000 nm, thus covering strong spectral features indicative of low metallicity (e.g., CaH), 21 with the Very Large Telescope, one with the Nordic Optical Telescope, and five were extracted from the Sloan spectroscopic database to assess (or refute) their low-metal content. We confirm 20 candidates as subdwarfs, extreme subdwarfs, or ultra-subdwarfs with spectral types later than M5; this represents a success rate of ≥ 60%. Among those 20 new subdwarfs, we identify two early-L subdwarfs that are very likely located within 100 pc, which we propose as templates for future searches because they are the first examples of their subclass. Another seven sources are solar-metallicity M dwarfs with spectral types between M4 and M7 without Hα emission, suggesting that they are old M dwarfs. The remaining five candidates do not have spectroscopic follow-up yet; only one remains as a bona-fide ultracool subdwarf after revision of their proper motions. We assigned spectral types based on the current classification schemes and, when

  1. Socket stars: UBVRJIK radial profiles

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    1995-05-01

    Visual inspectin of stars embedded in H II nebulae has shown a significant fraction to be surrounded by nearly symmetric extended regions within which the nebular brightness is apparently significantly fainter than is typical for the surrounding area. These 'socket stars' might be caused by a bubble in the nebula blown out by a stellar wind or they might be caused by a circumstellar envelope of dust hiding the emission behind the star. As such, the sockets could be the first manifestation of a previously unknown component of pre-main-sequence stars. Unfortunately, no quantitative proof of the existence of sockets has been presented. To fill this need, I have imaged 10 socket stars and six background stars with CCD cameras and infrared array cameras. From these images, I have constructed radial plots which should reveal dips in brightness immediately outside the seeing disk. The radial plots do not show any evidence for the existence of sockets. A detailed examination of the photographs orginally used to identify the sockets show that the causes of these reports are (1) artifacts resulting from the photographic process of dodging and (2) random coincidence of stars with local minima in nebular brightness. Thus, I conclude that 'socket stars' do not exist.

  2. The Infrared Spectral Region of Stars

    NASA Astrophysics Data System (ADS)

    Jaschek, Carlos; Andrillat, Y.

    1991-09-01

    1. Stars in the infrared: results from IRAS H. J. G. L. M. Lamers and L. B. F. M. Watera; 2. What is expected from ISO J. P. Baluteau; 3. New infrared instrumentation S. Bensammar; 4. High resolution atomic spectroscopy in the infrared and its application to astrophysics S. Johansson; 5. Spectroscopy of early -type stars C. Jaschek; 6. Spectroscopy of late type stars U. F. Jøgensen; 7. Dust formation and evolution in circumstellar media J. P. J. Lafon; 8. The infrared solar spectrum N. Grevesse; 9. Symbiotic and related objects M. Hack; 10. Stellar photometry and spectrophotometry in the infrared R. F. Wing; 11. Stellar variability in the infrared A. Evans; 12. Circumstellar material in main sequence H. H. Aamann.

  3. The Breakthrough Listen Search for Intelligent Life: Target Selection of Nearby Stars and Galaxies

    NASA Astrophysics Data System (ADS)

    Isaacson, Howard; Siemion, Andrew P. V.; Marcy, Geoffrey W.; Lebofsky, Matt; Price, Danny C.; MacMahon, David; Croft, Steve; DeBoer, David; Hickish, Jack; Werthimer, Dan; Sheikh, Sofia; Hellbourg, Greg; Enriquez, J. Emilio

    2017-05-01

    We present the target selection for the Breakthrough Listen search for extraterrestrial intelligence during the first year of observations at the Green Bank Telescope, Parkes Telescope, and Automated Planet Finder. On the way to observing 1,000,000 nearby stars in search of technological signals, we present three main sets of objects we plan to observe in addition to a smaller sample of exotica. We chose the 60 nearest stars, all within 5.1 pc from the Sun. Such nearby stars offer the potential to observe faint radio signals from transmitters that have a power similar to those on Earth. We add a list of 1649 stars drawn from the Hipparcos catalog that span the Hertzprung-Russell diagram, including all spectral types along the main sequence, subgiants, and giant stars. This sample offers diversity and inclusion of all stellar types, but with thoughtful limits and due attention to main sequence stars. Our targets also include 123 nearby galaxies composed of a “morphological-type-complete” sample of the nearest spirals, ellipticals, dwarf spherioidals, and irregulars. While their great distances hamper the detection of technological electromagnetic radiation, galaxies offer the opportunity to observe billions of stars simultaneously and to sample the bright end of the technological luminosity function. We will also use the Green Bank and Parkes telescopes to survey the plane and central bulge of the Milky Way. Finally, the complete target list includes several classes of exotica, including white dwarfs, brown dwarfs, black holes, neutron stars, and asteroids in our solar system.

  4. The evolution of rotating stars. III - Predicted surface rotation velocities for stars which conserve total angular momentum

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  5. Rates and delay times of Type Ia supernovae in the helium-enriched main-sequence donor scenario

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Stancliffe, Richard J.

    2018-04-01

    The nature of the progenitors of Type Ia supernovae (SNe Ia) remains a mystery. Comparing theoretical rates and delay-time distributions of SNe Ia with those inferred observationally can constrain their progenitor models. In this work, taking thermohaline mixing into account in the helium-enriched main-sequence (HEMS) donor scenario, we address rates and delay times of SNe Ia in this channel by combining the results of self-consistent binary evolution calculations with population synthesis models. We find that the Galactic SN Ia rate from the HEMS donor scenario is around 0.6-1.2 × 10-3 yr-1, which is about 30 per cent of the observed rate. Delay times of SNe Ia in this scenario cover a wide range of 0.1-1.0 Gyr. We also present the pre-explosion properties of companion stars in the HEMS donor scenario, which will be helpful for placing constraints on SN Ia progenitors through analysing their pre-explosion images.

  6. Monitoring solar-type stars for luminosity variations

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Skiff, B. A.

    1988-01-01

    Since 1984, researchers have made more than 1500 differential photometric b (471 nm) and y (551 nm) measurements of three dozen solar-like lower main sequence stars whose chromospheric activity was previosly studied by O. C. Wilson. Here, researchers describe their methodology and the statistical tests used to distinguish intrinsic stellar variability from observational and instrument errors. The incidence of detected variability among the program and comparison stars is summarized. Among the 100 plus pairs of stars measured differentially, only a dozen were found that were unusually constant, with peak-to-peak amplitudes of seasonal mean brightness smaller than 0.3 percent (0.003 mag) over a two-to-three-year interval.

  7. Automated Quantitative Spectral Classification of Stars in Areas of the main Meridional Section of the Galaxy

    NASA Astrophysics Data System (ADS)

    Shvelidze, Teimuraz; Malyuto, Valeri

    2015-08-01

    Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for several hundred stars. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre, the main meridional section of the Galaxy and etc. Very rich collection of photographic objective spectral plates (30,000 were accumulated during last 60 years) is available at Abastumani Observatory-wavelength range 3900-4900 A, about 2A resolution. Availability of new devices for automatic registration of spectra from photographic plates as well as some recently developed classification techniques may allow now to create a modern system of automatic spectral classification and with expension of classification techniques to additional types (B-A, M spectral classes). The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.

  8. StarScan: a web server for scanning small RNA targets from degradome sequencing data.

    PubMed

    Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2015-07-01

    Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Searching for Ultra-cool Objects at the Limits of Large-scale Surveys

    NASA Astrophysics Data System (ADS)

    Pinfield, D. J.; Patel, K.; Zhang, Z.; Gomes, J.; Burningham, B.; Day-Jones, A. C.; Jenkins, J.

    2011-12-01

    We have made a search (to Y=19.6) of the UKIDSS Large Area Survey (LAS DR7) for objects detected only in the Y-band. We have identified and removed contamination due to solar system objects, dust specs in the WFCAM optical path, persistence in the WFCAM detectors, and other sources of spurious single source Y-detections in the UKIDSS LAS data-base. In addition to our automated selection procedure we have visually inspected the ˜600 automatically selected candidates to provide an additional level of quality filtering. This has resulted in 55 good candidates that await follow-up observations to confirm their nature. Ultra-cool LAS Y-only objects would have blue Y-J colours combined with very red optical-NIR SEDs - characteristics shared by Jupiter, and suggested by an extrapolation of the Y-J colour trend seen for the latest T dwarfs currently known.

  10. VLA and ALMA Imaging of Intense Galaxy-wide Star Formation in z ˜ 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Rujopakarn, W.; Dunlop, J. S.; Rieke, G. H.; Ivison, R. J.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Silverman, J. D.; Alexander, D. M.; Biggs, A. D.; Bhatnagar, S.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.; McLure, R. J.; Michałowski, M. J.; Miller, N. A.; Narayanan, D.; Owen, F. N.; Pannella, M.; Papovich, C.; Pope, A.; Rau, U.; Robertson, B. E.; Scott, D.; Swinbank, A. M.; van der Werf, P.; van Kampen, E.; Weiner, B. J.; Windhorst, R. A.

    2016-12-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z = 1.3-3.0. These galaxies are selected from sensitive blank-field surveys of the 2‧ × 2‧ Hubble Ultra-Deep Field at λ = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z ˜ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z ˜ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr-1 kpc-2, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3-8 times larger, providing a constraint on the characteristic SFR (˜300 M ⊙ yr-1) above which a significant population of more compact SFGs appears to emerge.

  11. THE FORMATION AND EVOLUTION OF YOUNG LOW-MASS STARS WITHIN HALOS WITH HIGH CONCENTRATION OF DARK MATTER PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casanellas, Jordi; Lopes, IlIDio, E-mail: jordicasanellas@ist.utl.p, E-mail: ilidio.lopes@ist.utl.p

    2009-11-01

    The formation and evolution of low-mass stars within dense halos of dark matter (DM) leads to evolution scenarios quite different from the classical stellar evolution. As a result of our detailed numerical work, we describe these new scenarios for a range of DM densities on the host halo, for a range of scattering cross sections of the DM particles considered, and for stellar masses from 0.7 to 3 M {sub sun}. For the first time, we also computed the evolution of young low-mass stars in their Hayashi track in the pre-main-sequence phase and found that, for high DM densities, thesemore » stars stop their gravitational collapse before reaching the main sequence, in agreement with similar studies on first stars. Such stars remain indefinitely in an equilibrium state with lower effective temperatures (|DELTAT{sub eff}|>10{sup 3} K for a star of one solar mass), the annihilation of captured DM particles in their core being the only source of energy. In the case of lower DM densities, these protostars continue their collapse and progress through the main-sequence burning hydrogen at a lower rate. A star of 1 M{sub sun} will spend a time period greater than the current age of the universe consuming all the hydrogen in its core if it evolves in a halo with DM density rho{sub c}hi = 10{sup 9} GeV cm{sup -3}. We also show the strong dependence of the effective temperature and luminosity of these stars on the characteristics of the DM particles and how this can be used as an alternative method for DM research.« less

  12. Evidence of the evolved nature of the B[e] star MWC 137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratore, M. F.; Arias, M. L.; Cidale, L.

    2015-01-01

    The evolutionary phase of B[e] stars is difficult to establish due to the uncertainties in their fundamental parameters. For instance, possible classifications for the Galactic B[e] star MWC 137 include pre-main-sequence and post-main-sequence phases, with a large range in luminosity. Our goal is to clarify the evolutionary stage of this peculiar object, and to study the CO molecular component of its circumstellar medium. To this purpose, we modeled the CO molecular bands using high-resolution K-band spectra. We find that MWC 137 is surrounded by a detached cool (T=1900±100 K) and dense (N=(3±1)×10{sup 21} cm{sup −2}) ring of CO gas orbitingmore » the star with a rotational velocity, projected to the line of sight, of 84 ± 2 km s{sup −1}. We also find that the molecular gas is enriched in the isotope {sup 13}C, excluding the classification of the star as a Herbig Be. The observed isotopic abundance ratio ({sup 12}C/{sup 13}C = 25 ± 2) derived from our modeling is compatible with a proto-planetary nebula, main-sequence, or supergiant evolutionary phase. However, based on some observable characteristics of MWC 137, we propose that the supergiant scenario seems to be the most plausible. Hence, we suggest that MWC 137 could be in an extremely short-lived phase, evolving from a B[e] supergiant to a blue supergiant with a bipolar ring nebula.« less

  13. T-ReX Spies the Stars of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Broos, Patrick; Townsley, Leisa K.; Pollock, Andrew; Crowther, Paul

    2017-08-01

    30 Doradus (the Tarantula Nebula) is the Local Group's most massive young star-forming complex. At its heart is R136, the most massive resolved stellar cluster; R136 contains, in turn, the most massive stars known. The Chandra X-ray Observatory has recently observed 30 Dor for the 2-megasecond X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX). This deep observation exploits Chandra's fine spatial resolution to study the full complement of massive stars and the brightest pre-main sequence stars that trace 25 Myrs of star formation in this incomparable nearby starburst. Here we give preliminary results from the ongoing analyses of the data, focusing on the massive stars. While many remain undetected even in this deep ACIS-I observation, a few show dramatic X-ray lightcurves and/or high luminosities befitting this amazing starburst cluster.

  14. The C and N abundances in disk stars

    NASA Astrophysics Data System (ADS)

    Shi, J. R.; Zhao, G.; Chen, Y. Q.

    2002-01-01

    Abundance analysis of carbon and nitrogen has been performed for a sample of 90 F and G type main-sequence disk stars with a metallicity range of -1.0 < [Fe/H] <+0.2 using the \\ion{C} i and N I lines. We confirm a moderate carbon excess in the most metal-poor disk dwarfs found in previous investigations. Our results suggest that carbon is enriched by superwinds of metal-rich massive stars at the beginning of the disk evolution, while a significant amount of carbon is contributed by low-mass stars in the late stage. The observed behavior of [N/Fe] is about solar in the disk stars, irrespective of the metallicity. This result suggests that nitrogen is produced mostly by intermediate-mass stars. Based on observations carried out at National Astrono- mical Observatories (Xinglong, China).

  15. The initial mass function and star formation law in the outer disc of NGC 2915

    NASA Astrophysics Data System (ADS)

    Bruzzese, S. M.; Meurer, G. R.; Lagos, C. D. P.; Elson, E. C.; Werk, J. K.; Blakeslee, John P.; Ford, H.

    2015-02-01

    Using Hubble Space Telescope (HST) Advanced Camera for Surveys/Wide Field Camera data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended H I disc. These observations reveal an elliptical distribution of red giant branch stars, and a clumpy distribution of main-sequence stars that correlate with the H I gas distribution. We constrain the upper-end initial mass function (IMF) and determine the star formation law (SFL) in this field, using the observed main-sequence stars and an assumed constant star formation rate. Previously published Hα observations of the field, which show one faint H II region, are used to provide further constraints on the IMF. We find that the main-sequence luminosity function analysis alone results in a best-fitting IMF with a power-law slope α = -2.85 and upper-mass limit M_u = 60 M_{⊙}. However, if we assume that all Hα emission is confined to H II regions then the upper-mass limit is restricted to M_u ≲ 20 M_{⊙}. For the luminosity function fit to be correct, we have to discount the Hα observations implying significant diffuse ionized gas or escaping ionizing photons. Combining the HST photometry with H I imaging, we find the SFL has a power-law index N = 1.53 ± 0.21. Applying these results to the entire outer H I disc indicates that it contributes 11-28 per cent of the total recent star formation in NGC 2915, depending on whether the IMF is constant within the disc or varies from the centre to the outer region.

  16. Accreting Planets in the Habitable Zones of M-Stars Are Too Hot to Retain Liquid Water

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.; Kopparapu, R. K.; Kasting, J. F.

    2014-12-01

    Previous studies1,2 have shown that young accreting planets in the habitable zones (HZ) of pre-main sequence M-stars face major dynamical hurdles in both the retention and acquisition of volatiles. High collision rates with other bodies, short planetary formation timescales, and inefficient radial mixing are among the major problems encountered. However, another equally-important concern is the high temperatures predicted within the circumstellar disk, greatly hindering volatile delivery. We use a 1-D radiative-convective climate model to demonstrate that the fluxes received by accreting planets orbiting late K-M stars exceed the runaway greenhouse threshold. Given that M-stars are disproportionately brighter in their pre main-sequence lifetimes as compared to Sun-like stars (i.e. G-class insolation), planets orbiting M-stars are especially susceptible to the runaway, with intensity and duration increasing for cooler M-stars. Thus, accreting planetesimals in the HZs of M-stars could be too hot to maintain liquid water on their surfaces. In contrast, accreting planets located at Earth's distance (or farther) from a pre-main sequence solar analogue (i.e. G2 spectral class) receive stellar fluxes well below that of the runaway point. Our results suggest that future missions and surveys can improve their prospects of finding alien life by targeting HZ planets orbiting Sun-like stars. Moreover, our findings support recent claims that Venus may have lost its water during accretion3. REFERENCES1. Lissauer, Jack J. "Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles." The Astrophysical Journal Letters 660.2 (2007): L149. 2. Raymond, Sean N., John Scalo, and Victoria S. Meadows. "A decreased probability of habitable planet formation around low-mass stars." The Astrophysical Journal 669.1 (2007): 606. 3. Hamano, Keiko, Yutaka Abe, and Hidenori Genda. "Emergence of two types of terrestrial planet on solidification of magma ocean." Nature

  17. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential

  18. Resolved photometry of extragalactic young massive star clusters

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; de Mink, S. E.; Eldridge, J. J.; Langer, N.; Bastian, N.; Seth, A.; Smith, L. J.; Brodie, J.; Efremov, Yu. N.

    2011-08-01

    Aims: We present colour-magnitude diagrams (CMDs) of young massive star clusters in several galaxies located well beyond the Local Group. The richness of these clusters allows us to obtain large samples of post-main sequence stars and test how well the observed CMDs are reproduced by canonical stellar isochrones. Methods: We use imaging of seven clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793 obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope and carry out PSF-fitting photometry of individual stars in the clusters. The clusters have ages in the range ~(5-50) × 106 years and masses of ~105 M⊙-106 M⊙. Although crowding prevents us from obtaining photometry in the inner regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. Results: In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. We find that this spread can be reproduced by including an age spread of ~(10-30) × 106 years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role. Conclusions: Colour-magnitude diagrams can be successfully obtained for massive star

  19. β Cephei and SPB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kołaczkowski, Z.; Pigulski, A.; Soszyński, I.; Udalski, A.; Szymański, M.; Kubiak, M.; Żebruń, K.; Pietrzyński, G.; Woźniak, P. R.; Szewczyk, O.; Wyrzykowski, L.; Ogle Team

    2004-05-01

    This is a progress report of the study of pulsating main-sequence stars in the LMC. Using the OGLE-II photometry supplemented by the MACHO photometry, we find 64 β Cephei stars in the LMC. Their periods are generally much longer than observed in the stars of this type in the Galaxy (the median value is 0.27 d compared with the 0.17 d in the Galaxy). In 20 stars with short periods attributable to the β Cephei-type instability, we also find modes with periods longer than ~0.4d. They are likely low-order g modes, which means that in these stars both kinds of variability, β Cephei and SPB, are observed. We also show examples of the multiperiodic SPB stars in the LMC, the first beyond our Galaxy.

  20. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  1. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the

  2. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less

  3. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    NASA Astrophysics Data System (ADS)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z < 0.3, star-forming galaxies we show that high ionisation parameters are directly linked to high sSFRs and are not simply the byproduct of an evolution in metallicity. Our results are physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  4. A young star takes centre stage

    NASA Image and Video Library

    2015-03-02

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this new NASA/ESA Hubble Space Telescope image. The star in the centre, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the Sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a verylow-mass object in the outer circumstellar disc.

  5. On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Shulyak, D.

    2015-04-01

    During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, δ Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars—π Cet, 21 Peg, and Procyon—the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.

  6. A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, David R.; Zuckerman, B.; Marois, Christian

    2012-03-20

    With adaptive optics imaging at Keck observatory, we have discovered a substellar companion to the F6 Pleiades star HD 23514, one of the dustiest main-sequence stars known to date (L{sub IR}/L{sub *} {approx} 2%). This is one of the first brown dwarfs discovered as a companion to a star in the Pleiades. The 0.06 M{sub Sun} late-M secondary has a projected separation of {approx}360 AU. The scarcity of substellar companions to stellar primaries in the Pleiades combined with the extremely dusty environment make this a unique system to study.

  7. Stellar Evolution with Rotation: Mixing Processes in AGB Stars

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Blöcker, T.

    We included diffusive angular momentum transport and rotationally induced mixing processes in our stellar evolution code and studied the influence of rotation on the evolution of intermediate mass stars (M*=2dots6 Msolar) towards and along the asymptotic giant branch (AGB). The calculations start in the fully convective pre-main sequence phase and the initial angular momentu m was adjusted such that on the zero-age main sequence vrot=200 km/ s is achieved. The diffusion coefficients for the five rotational instabilities considered (dynamical shear, secular shear, Eddington-Sweet (ES) circulation, Solberg-Høiland-instability and Goldreich-Schubert-Fricke (GSF) instability) were adopted from Heger et al. (2000, ApJ 528, 368). Mixing efficiency and sensitivity of these processes against molecular weight gradients have been determined by calibration of the main sequence width. In this study we focus on the abundance evolution of carbon. On the one hand, the surface abundance ratios of 12C/13C a nd 12C/16O at the base of the AGB were found to be ≈ 7dots 10 and ≈ 0.1, resp., being a factor of two lower than in non-rotating models. This results from the slow but continuously operating rotationally induced mixing due to the ES-circulation and the GSF-instability during the long main sequence phase. On the other hand, 13C serves as neutron source for interior s-process nucleosynthesis in AGB stars vi a 13C(α,n)16O. Herwig et al. (1997, A&A 324, L81) found that a 13C pocket is forme d in the intershell region of 3 Msolar AGB star if diffusive overshoot is considered. Our calculations show, that mixing processes due to rotation open an alternative channel for the formation of a 13C pocket as found by Langer et al. (1999, A&A 346, L37). Again, ES-circulation and GSF-instability are the predominant rotational mixing processes.

  8. Multiband Lightcurve of Tabby’s Star: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Yin, Yao; Wilcox, Alejandro; Boyajian, Tabetha S.

    2018-06-01

    Since March 2017, The Thacher Observatory in California has been monitoring changes in brightness of KIC 8462852 (Tabby's Star), an F-type main sequence star whose irregular dimming behavior was first discovered by Tabetha Boyajian by examining Kepler data. We obtained over 20k observations over 135 nights in 2017 in 4 photometric bands, and detected 4 dip events greater than 1%. The relative magnitude of each dip compared across our 4 different photometric bands provides critical information regarding the nature of the obscuring material, and we present a preliminary analysis of these events. The Thacher Observatory is continuing its monitoring of Tabby’s Star in 2018.

  9. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  10. Mapping RNA-seq Reads with STAR

    PubMed Central

    Dobin, Alexander; Gingeras, Thomas R.

    2015-01-01

    Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, signal visualization, and so forth. In this unit we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is Open Source software that can be run on Unix, Linux or Mac OS X systems. PMID:26334920

  11. Röntgen spheres around active stars

    NASA Astrophysics Data System (ADS)

    Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista

    2018-01-01

    X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.

  12. GUM 48d: AN EVOLVED H II REGION WITH ONGOING STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karr, J. L.; Ohashi, N.; Manoj, P.

    2009-05-20

    High-mass star formation and the evolution of H II regions have a substantial impact on the morphology and star formation history of molecular clouds. The H II region Gum 48d, located in the Centaurus Arm at a distance of 3.5 kpc, is an old, well evolved H II region whose ionizing stars have moved off the main sequence. As such, it represents a phase in the evolution of H II regions that is less well studied than the earlier, more energetic, main-sequence phase. In this paper, we use multiwavelength archive data from a variety of sources to perform a detailedmore » study of this interesting region. Morphologically, Gum 48d displays a ring-like faint H II region associated with diffuse emission from the associated photodissociation region, and is formed from part of a large, massive molecular cloud complex. There is extensive ongoing star formation in the region, at scales ranging from low to high mass, which is consistent with triggered star formation scenarios. We investigate the dynamical history and evolution of this region, and conclude that the original H II region was once larger and more energetic than the faint region currently seen. The proposed history of this molecular cloud complex is one of multiple, linked generations of star formation, over a period of 10 Myr. Gum 48d differs significantly in morphology and star formation from the other H II regions in the molecular cloud; these differences are likely the result of the advanced age of the region, and its different evolutionary status.« less

  13. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cargile, P. A.; Pepper, J.; Siverd, R.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age ofmore » 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.« less

  14. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-01-01

    Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.

  15. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main

  16. The development of the red giant branch. I - Theoretical evolutionary sequences

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Greggio, Laura; Renzini, Alvio

    1989-01-01

    A grid of 100 evolutionary sequences extending from the zero-age main sequence to the onset of helium burning has been computed for stellar masses between 1.4 and 3.4 solar masses, helium abundances of 0.20 and 0.30, and heavy-element abundances of 0.004, 0.01, and 0.04. Using these computations the transition in the morphology of the red giant branch (RGB) between low-mass stars, which have an extended and luminous first RGB phase prior to helium ignition, and intermediate-mass stars, which do not, is investigated. Extensive tabulations of the numerical results are provided to aid in applying these sequences. The effects of the first dredge-up on the surface helium and CNO abundances of the sequences is discussed.

  17. Mapping RNA-seq Reads with STAR.

    PubMed

    Dobin, Alexander; Gingeras, Thomas R

    2015-09-03

    Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates, providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, and signal visualization. In this unit, we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is open source software that can be run on Unix, Linux, or Mac OS X systems. Copyright © 2015 John Wiley & Sons, Inc.

  18. Evidence for a Significant Intermediate-Age Population in the M31 Halo from Main Sequence Photometry

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Ferguson, Henry C.; Smith, Ed; Kimble, Randy A.; Sweigart, Allen V.; Renzini, Alvio; Rich, R. Michael; Vandenberg, Don A.

    2003-01-01

    We present a color-magnitude diagram (CMD) for a minor-axis field in the halo of the Andromeda galaxy (M3l), 51 arcmin (11 kpc) from the nucleus. These observations, taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, are the deepest optical images yet obtained, attaining 50% completeness at m(sub v) = 30.7 mag. The CMD, constructed from approx. 3 x 10(exp 5) stars, reaches more than 1.5 mag fainter than the old main-sequence turnoff. Our analysis is based on direct comparisons to ACS observations of four globular clusters through the same filters, as well as chi square fitting to a finely-spaced grid of calibrated stellar-population models. We find that the M31 halo contains a major (approx. 30% by mass) intermediate-age (6-8 Gyr) metal-rich ([Fe/H] greater than -0.5) population, as well as a significant globular-cluster age (11-13.5 Gyr) metal-poor population. These findings support the idea that galaxy mergers played an important role in the formation of the M31 halo.

  19. I-Love-Q relations: from compact stars to black holes

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-05-01

    The relations between most observables associated with a compact star, such as the mass and radius of a neutron star or a quark star, typically depend strongly on their unknown internal structure. The recently discovered I-Love-Q relations (between the moment of inertia, the tidal deformability and the quadrupole moment) are however approximately insensitive to this structure. These relations become exact for stationary black holes (BHs) in General Relativity as shown by the no-hair theorems, mainly because BHs are vacuum solutions with event horizons. In this paper, we take the first steps toward studying how the approximate I-Love-Q relations become exact in the limit as compact stars become BHs. To do so, we consider a toy model for compact stars, i.e. incompressible stars with anisotropic pressure, which allows us to model an equilibrium sequence of stars with ever increasing compactness that approaches the BH limit arbitrarily closely. We numerically construct such a sequence in the slow-rotation and in the small-tide approximations by extending the Hartle-Thorne formalism, and then extract the I-Love-Q trio from the asymptotic behavior of the metric tensor at spatial infinity. We find that the I-Love-Q relations approach the BH limit in a nontrivial way, with the quadrupole moment and the tidal deformability changing sign as the compactness and the amount of anisotropy are increased. Through a generalization of Maclaurin spheroids to anisotropic stars, we show that the multipole moments also change sign in the Newtonian limit as the amount of anisotropy is increased because the star becomes prolate. We also prove analytically that the stellar moment of inertia reaches the BH limit as the compactness reaches a critical BH value in the strongly anisotropic limit. Modeling the BH limit through a sequence of anisotropic stars, however, can fail when considering other theories of gravity. We calculate the scalar dipole charge and the moment of inertia in a

  20. Aging jets from low-mass stars

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Chen, W. P.

    1994-01-01

    An extended faint optical jet is associated with the compact emission region plus faint star known as HH 55. HH 55 is located in the Lupus 2 cloud 2 min SW of the well studied T Tauri star RU Lupi. The HH 55 jet extends 55 sec N and 35 sec S in PA 160 deg. The HH 55 star is an emission line star of spectral type M3.5. Its image in the emission lines of H-alpha and (S II) is slightly elongated by 2 sec - 3 sec to the S but in continuum light is symmetrical and pointlike ((full width at half maximum) (FWHM) = 1.7 sec). The star and jet have several features in common with the star and jet known as Sz 102 = Th 28 in the nearby Lupus 3 cloud. We suggest that these objects are representative of the late evolutionary stage of the HH jet-outflow phenomenon and point out that such objects may be quite common although difficult to detect. With L(sub bol) approximately = 0.005 solar luminosity, and log T(sub e) approximately = 3.5, the HH 55 star is close to the main sequence and evolutionary tracks suggest an age of 3 x 10(exp 7) yr.

  1. STANDARD STARS AND EMPIRICAL CALIBRATIONS FOR Hα AND Hβ PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joner, Michael D.; Hintz, Eric G., E-mail: joner@byu.edu, E-mail: hintz@byu.edu

    2015-12-15

    We define an Hα photometric system that is designed as a companion to the well established Hβ index. The new system is built on spectrophotometric observations of field stars as well as stars in benchmark open clusters. We present data for 75 field stars, 12 stars from the Coma star cluster, 24 stars from the Hyades, 17 stars from the Pleiades, and 8 stars from NGC 752 to be used as primary standard stars in the new systems. We show that the system transformations are relatively insensitive to the shape of the filter functions. We make comparisons of the Hαmore » index to the Hβ index and illustrate the relationship between the two systems. In addition, we present relations that relate both hydrogen indices to equivalent width and effective temperature. We derive equations to calibrate both systems for Main Sequence stars with spectral types in the range O9 to K2 for equivalent width and A2 to K2 for effective temperature.« less

  2. Identifying Young, Nearby Stars

    NASA Technical Reports Server (NTRS)

    Webb, Rich; Song, Inseok; Zuckerman, Ben; Bessell, Mike

    2001-01-01

    Young stars have certain characteristics, e.g., high atmospheric abundance of lithium and chromospheric activity, fast rotation, distinctive space motion and strong X-ray flux compared to that of older main sequence stars. We have selected a list of candidate young (<100Myr) and nearby (<60pc) stars based on their space motion and/or strong X-ray flux. To determine space motion of a star, one needs to know its coordinates (RA, DEC), proper motion, distance, and radial velocity. The Hipparcos and Tycho catalogues provide all this information except radial velocities. We anticipate eventually searching approx. 1000 nearby stars for signs of extreme youth. Future studies of the young stars so identified will help clarify the formation of planetary systems for times between 10 and 100 million years. Certainly, the final output of this study will be a very useful resource, especially for adaptive optics and space based searches for Jupiter-mass planets and dusty proto-planetary disks. We have begun spectroscopic observations in January, 2001 with the 2.3 m telescope at Siding Spring Observatory (SSO) in New South Wales, Australia. These spectra will be used to determine radial velocities and other youth indicators such as Li 6708A absorption strength and Hydrogen Balmer line intensity. Additional observations of southern hemisphere stars from SSO are scheduled in April and northern hemisphere observations will take place in May and July at the Lick Observatory of the University of California. AT SSO, to date, we have observed about 100 stars with a high resolution spectrometer (echelle) and about 50 stars with a medium spectral resolution spectrometer (the "DBS"). About 20% of these stars turn out to be young stars. Among these, two especially noteworthy stars appear to be the closest T-Tauri stars ever identified. Interestingly, these stars share the same space motions as that of a very famous star with a dusty circumstellar disk--beta Pictoris. This new finding better

  3. From protostellar to pre-main-sequence evolution

    NASA Astrophysics Data System (ADS)

    D'Antona, F.

    I summarize the status of pre-main-sequence evolutionary tracks starting from the first steps dating back to the concept of Hayashi track. Understanding of the dynamical protostellar phase in the vision of Palla & Stahler, who introduced the concept of the deuterium burning thermostat and of stellar birthline, provided for a long time a link between the dynamical and hydrostatic evolution. Disk accretion however changed considerably the view, but re-introducing some ambiguities which must still be solved. The limitations and uncertainties in the mass and age determination from models for young stellar objects are summarized, but the burning of light elements is still a powerful observational signature.

  4. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    NASA Astrophysics Data System (ADS)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  5. Rosat detections of X-ray emission from young B-type stars

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Zinnecker, H.; Cruddace, R.; Harnden, F. R., Jr.

    1993-01-01

    We present first results of a series of pointings of the Rosat HRI at visual binaries consisting of a B-star with a later-type companion. The binaries selected for this study are very likely physical pairs. Dating of the B-type stars with respect to the zero-age main sequence, as well as spectroscopic observations of the late-type stars, provides evidence for the extreme youth of these systems with ages typically near or below 10 exp 8 yr. Surprisingly, the late-B component was in many cases detected as an X-ray source, in contrast to previous findings that X-ray emission among late-B field stars is rather uncommon.

  6. Magnetic cycles and rotation periods of late-type stars from photometric time series

    NASA Astrophysics Data System (ADS)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  7. Do all barium stars have a white dwarf companion?

    NASA Technical Reports Server (NTRS)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  8. Magnetic fields in non-convective regions of stars.

    PubMed

    Braithwaite, Jonathan; Spruit, Henk C

    2017-02-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields.

  9. Magnetic fields in non-convective regions of stars

    PubMed Central

    Braithwaite, Jonathan

    2017-01-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields. PMID:28386410

  10. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rujopakarn, W.; Silverman, J. D.; Dunlop, J. S.

    2016-12-10

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs),more » thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M {sub ⊙} yr{sup −1} kpc{sup −2}, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M {sub ⊙} yr{sup −1}) above which a significant population of more compact SFGs appears to emerge.« less

  11. Gaia's view of the λ Boo star puzzle

    NASA Astrophysics Data System (ADS)

    Murphy, Simon J.; Paunzen, Ernst

    2017-04-01

    The evolutionary status of the chemically peculiar class of λ Boo stars has been intensely debated. It is now agreed that the λ Boo phenomenon affects A stars of all ages, from star formation to the terminal age main sequence, but the cause of the chemical peculiarity is still a puzzle. We revisit the debate of their ages and temperatures in order to shed light on the phenomenon, using the new parallaxes in Gaia Data Release 1 with existing Hipparcos parallaxes and multicolour photometry. We find that no single formation mechanism is able to explain all the observations, and suggest that there are multiple channels producing λ Boo spectra. The relative importance of these channels varies with age, temperature and environment.

  12. Very Low Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Takuma, Suda; Honda, Satoshi; Lee, Young Sun

    2015-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) have yet to be well explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013, AJ, 145, 13). The effective temperatures of these stars are 4500--5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres have obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010, ApJL 723, L201), and the other exhibits low abundances of the alpha-elements and odd-Z elements, suggested to be the signatures of the yields of very massive stars ( >100 solar masses; Aoki et al. 2014, Science 345, 912). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  13. Star/Galaxy Separation in Hyper Suprime-Cam and Mapping the Milky Way with Star Counts

    NASA Astrophysics Data System (ADS)

    Garmilla, Jose Antonio

    We study the problem of separating stars and galaxies in the Hyper Suprime-Cam (HSC) multi-band imaging data at high galactic latitudes. We show that the current separation technique implemented in the HSC pipeline is unable to produce samples of stars with i 24 without a significant contamination from galaxies (> 50%). We study various methods for measuring extendedness in HSC with simulated and real data and find that there are a number of available techniques that give nearly optimal results; the extendedness measure HSC is currently using is among these. We develop a star/galaxy separation method for HSC based on the Extreme Deconvolution (XD) algorithm that uses colors and extendedness simultaneously, and show that with it we can generate samples of faint stars keeping contamination from galaxies under control to i ≤ 25. We apply our star/galaxy separation method to carry out a preliminary study of the structure of the Milky Way (MW) with main sequence (MS) stars using photometric parallax relations derived for the HSC photometric system. We show that it will be possible to generate a tomography of the MW stellar halo to galactocentric radii ˜ 100 kpc with ˜ 106 MS stars in the HSC Wide layer once the survey has been completed. We report two potential detections of the Sagittarius tidal stream with MS stars in the XMM and GAMA15 fields at ≈ 20 kpc and ≈ 40 kpc respectively.

  14. The ionization parameter of star-forming galaxies evolves with the specific star formation rate

    NASA Astrophysics Data System (ADS)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-07-01

    We investigate the evolution of the ionization parameter of star-forming galaxies using a high-redshift (z˜ 1.5) sample from the FMOS-COSMOS (Fibre Multi-Object Spectrograph-COSMic evOlution Survey) and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR), and specific star formation rate (sSFR) are matched to the high-redshift sample, we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionization parameter of each sample. We find an evolution in the ionization parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z< 0.3, star-forming galaxies we show that high ionization parameters are directly linked to high sSFRs and are not simply the by-product of an evolution in metallicity. Our results are physically consistent with the definition of the ionization parameter, a measure of the hydrogen ionizing photon flux relative to the number density of hydrogen atoms.

  15. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  16. Hot H2O Emission and Evidence for Turbulence in the Disk of a Young Star

    DTIC Science & Technology

    2004-03-01

    matter — infrared: stars — planetary systems: protoplanetary disks — stars: formation — stars: pre–main-sequence 1. INTRODUCTION The presence of hot...in disk gaps . Molecules other than CO are expected to exist at the temperatures and densities in the inner few AU of disks . Water should be very... protoplanetary disks . In addition, non-Gaussian line profiles might be ex- pected, given that a characteristic of turbulence seen in both laboratory experiments

  17. Alignment in star-debris disc systems seen by Herschel

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Kennedy, G. M.; Thureau, N.; Eiroa, C.; Marshall, J. P.; Maldonado, J.; Matthews, B. C.; Olofsson, G.; Barlow, M. J.; Moro-Martín, A.; Sibthorpe, B.; Absil, O.; Ardila, D. R.; Booth, M.; Broekhoven-Fiene, H.; Brown, D. J. A.; Cameron, A. Collier; del Burgo, C.; Di Francesco, J.; Eislöffel, J.; Duchêne, G.; Ertel, S.; Holland, W. S.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Lestrade, J.-F.; Vican, L.; Wilner, D. J.; Wolf, S.; Wyatt, M. C.

    2014-02-01

    Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A-M where the stellar inclination is known and can be compared to that of the spatially resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ≲ 10°. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of au are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.

  18. Accretion shocks in the laboratory: Design of an experiment to study star formation

    DOE PAGES

    Young, Rachel P.; Kuranz, C. C.; Drake, R. P.; ...

    2017-02-13

    Here, we present the design of a laboratory-astrophysics experiment to study magnetospheric accretion relevant to young, pre-main-sequence stars. Spectra of young stars show evidence of hotspots created when streams of accreting material impact the surface of the star and create shocks. The structures that form during this process are poorly understood, as the surfaces of young stars cannot be spatially resolved. Our experiment would create a scaled "accretion shock" at a major (several kJ) laser facility. The experiment drives a plasma jet (the "accretion stream") into a solid block (the "stellar surface"), in the presence of a parallel magnetic fieldmore » analogous to the star's local field.« less

  19. A Multi-Fiber Spectroscopic Search for Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Loerincs, Jacqueline; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2017-01-01

    We present here results of a low resolution spectroscopic followup of candidate low-mass pre-main sequence stars in the Orion OB1 association. Our targets were selected from the CIDA Variability Survey of Orion (CVSO), and we used the Michigan/Magellan Fiber Spectrograph (M2FS) on the Magellan Clay 6.5m telescope to obtain spectra of 500 candidate T Tauri stars distributed in seven 0.5 deg diameter fields, adding to a total area of ~5.5 deg2. We identify young stars by looking at the distinctive Hα 6563 Å emission and Lithium Li I 6707 Å absorption features characteristic of young low mass pre-main sequence stars. Furthermore, by measuring the strength of their Hα emission lines, confirmed T Tauri stars can be classified as either Classical T Tauris (CTTS) or Weak-line T Tauris (WTTS), which give indication of whether the star is actively accreting material from a gas and dust disk surrounding the star, which may be the precursor of a planetary system. We confirm a total of 90 T Tauri stars, of which 50% are newly identified young members of Orion; out of the 49 new detections,15 are accreting CTTS, and of these all but one are found in the OB1b sub-region. This result is in line with our previous findings that this region is much younger than the more extended Orion OB1a sub-association. The M2FS results add to our growing census of young stars in Orion, that is allowing us to characterize in a systematic and consistent way the distribution of stellar ages across the entire complex, in order to building a complete picture of star formation in this, one of nearest most active sites of star birth.

  20. Star formation history: Modeling of visual binaries

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.