Sample records for ultrafast laser irradiation

  1. Low damage electrical modification of 4H-SiC via ultrafast laser irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Minhyung; Cahyadi, Rico; Wendorf, Joseph; Bowen, Willie; Torralva, Ben; Yalisove, Steven; Phillips, Jamie

    2018-04-01

    The electrical properties of 4H-SiC under ultrafast laser irradiation in the low fluence regime (<0.50 J/cm2) are presented. The appearance of high spatial frequency laser induced periodic surface structures is observed at a fluence near 0.25 J/cm2 and above, with variability in environments like in air, nitrogen, and a vacuum. In addition to the formation of periodic surface structures, ultrafast laser irradiation results in possible surface oxidation and amorphization of the material. Lateral conductance exhibits orders of magnitude increase, which is attributed to either surface conduction or modification of electrical contact properties, depending on the initial material conductivity. Schottky barrier formation on ultrafast laser irradiated 4H-SiC shows an increase in the barrier height, an increase in the ideality factor, and sub-bandgap photovoltaic responses, suggesting the formation of photo-active point defects. The results suggest that the ultrafast laser irradiation technique provides a means of engineering spatially localized structural and electronic modification of wide bandgap materials such as 4H-SiC with relatively low surface damage via low temperature processing.

  2. Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation.

    PubMed

    Lv, Jinman; Shang, Zhen; Tan, Yang; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-08-07

    We report the surface cladding-like waveguide fabricated by the cooperation of the ultrafast laser writing and the ion irradiation. The ultrafast laser writes tracks near the surface of the Nd:YAG crystal, constructing a semi-circle columnar structure with a decreased refractive index of - 0.00208. Then, the Nd:YAG crystal is irradiated by the Carbon ion beam, forming an enhanced-well in the semi-circle columnar with an increased refractive index of + 0.0024. Tracks and the enhanced-well consisted a surface cladding-like waveguide. Utilizing this cladding-like waveguide as the gain medium for the waveguide lasing, optimized characterizations were observed compared with the monolayer waveguide. This work demonstrates the refractive index of the Nd:YAG crystal can be well tailored by the cooperation of the ultrafast laser writing and the ion irradiation, which provides an convenient way to fabricate the complex and multilayered photonics devices.

  3. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  4. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3 (Ln =Er -Lu )

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; Solomon, Jonathan M.; Asta, Mark; Mao, Wendy L.; Yalisove, Steven M.; Ewing, Rodney C.

    2018-01-01

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln =Er -Lu ), and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln =Tm -Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln =Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.

  5. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  6. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE PAGES

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; ...

    2018-01-10

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  7. Phase transformation pathways of Ln2O3 irradiated by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan; Solomon, Jonathan; Chen, Curtis; Tracy, Cameron; Yalisove, Steven; Asta, Mark; Mao, Wendy; Ewing, Rodney

    Ultrafast laser irradiation induces highly non-equilibrium conditions in materials through intense electronic excitation over very short timescales. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln = Er-Lu). A combination of grazing incidence X-ray diffraction and transmission electron microscopy is used to characterize the amount and depth-dependence of the phase transformation. Results indicate that-although all materials experience the same transformation-it is achieved through different damage mechanisms (pressure vs. thermal), and the short timescales associated with damage provides non-equilibrium routes of material modification. Ab initio molecular dynamics are used to isolate the effects of electronic excitations, and results are shown to be consistent with the trend in radiation resistance observed experimentally. Overall, this study provides a path to gain insight into the relationship between a material's equilibrium phase diagram and its behavior under highly non-equilibrium conditions. DOE/BES.

  8. Modelling ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.

    2017-05-01

    This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.

  9. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.

    2013-09-30

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ∼50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  10. Progress in ultrafast laser processing and future prospects

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  11. Distributed ultrafast fibre laser

    PubMed Central

    Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei

    2015-01-01

    A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454

  12. Ultra-fast movies of thin-film laser ablation

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  13. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  14. 3D microstructuring inside glass by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi

    2012-01-01

    We demonstrate three-dimensional (3D) microstructuring inside glass by ultrafast laser to fabricate microfluidic chips integrated with some functional microcomponents such as optical attenuators and optical waveguides. The fabricated microchips are applied to understand phenomena and functions of microorganisms and cyanobacteria. Ultrafast laser irradiation followed by thermal treatment and wet etching in dilute hydrofluoric acid solution resulted in fabrication of 3D microfludic structures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures clarified the mechanism of the gliding movement of Phormidium. We termed such integrated microchips nanoaquariums, realizing the highly efficient and functional observation and analysis of various microorganisms.

  15. Ultrafast fiber lasers: practical applications

    NASA Astrophysics Data System (ADS)

    Pastirk, Igor; Sell, Alexander; Herda, Robert; Brodschelm, Andreas; Zach, Armin

    2015-05-01

    Over past three decades ultrafast lasers have come a long way from the bulky, demanding and very sensitive scientific research projects to widely available commercial products. For the majority of this period the titanium-sapphire-based ultrafast systems were the workhorse for scientific and emerging industrial and biomedical applications. However the complexity and intrinsic bulkiness of solid state lasers have prevented even larger penetration into wider array of practical applications. With emergence of femtosecond fiber lasers, based primarily on Er-doped and Yb-doped fibers that provide compact, inexpensive and dependable fs and ps pulses, new practical applications have become a reality. The overview of current state of the art ultrafast fiber sources, their basic principles and most prominent applications will be presented, including micromachining and biomedical implementations (ophthalmology) on one end of the pulse energy spectrum and 3D lithography and THz applications on the other.

  16. Several new directions for ultrafast fiber lasers [Invited].

    PubMed

    Fu, Walter; Wright, Logan G; Sidorenko, Pavel; Backus, Sterling; Wise, Frank W

    2018-04-16

    Ultrafast fiber lasers have the potential to make applications of ultrashort pulses widespread - techniques not only for scientists, but also for doctors, manufacturing engineers, and more. Today, this potential is only realized in refractive surgery and some femtosecond micromachining. The existing market for ultrafast lasers remains dominated by solid-state lasers, primarily Ti:sapphire, due to their superior performance. Recent advances show routes to ultrafast fiber sources that provide performance and capabilities equal to, and in some cases beyond, those of Ti:sapphire, in compact, versatile, low-cost devices. In this paper, we discuss the prospects for future ultrafast fiber lasers built on new kinds of pulse generation that capitalize on nonlinear dynamics. We focus primarily on three promising directions: mode-locked oscillators that use nonlinearity to enhance performance; systems that use nonlinear pulse propagation to achieve ultrashort pulses without a mode-locked oscillator; and multimode fiber lasers that exploit nonlinearities in space and time to obtain unparalleled control over an electric field.

  17. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  18. Fiber Based Seed Laser for CO 2 Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuchuan

    A compact and effective 10-micron femtosecond laser with pulse duration <500fs and repetition rate of >100Hz or smaller is desirable by DOE for seeding CO 2 ultrafast laser systems to improve the stability, reliability and efficiency in generating 10-micron laser from GW up to 100TW peak power, which is irreplaceable in driving an accelerator for particle beam generation due to the efficiency proportional to the square of the laser wavelength. Agiltron proposes a fiber based ultrafast 10-micron seed laser that can provide the required specifications and high performance. Its success will directly benefit DOE’s compact proton and ion sources. Themore » innovative technology can be used for ultrafast laser generation over the whole mid-IR range, and speed up the development of mid-IR laser applications. Agiltron, Inc. has successfully completed all tasks and demonstrated the feasibility of a fiber based 10-micron ultrafast laser in Phase I of the Program. We built a mode-locked fiber laser that generated < 400fs ultrafast laser pulses and successfully controlled the repetition rate to be the required 100Hz. Using this mode-locked laser, we demonstrated the feasibility of parametric femtosecond laser generation based on frequency down conversion. The experimental results agree with our simulation results. The investigation results of Phase I will be used to optimize the design of the laser system and build a fully functional prototype for delivery to the DOE in the Phase II program. The prototype development in Phase II program will be in the collaboration with Professor Chandrashekhar Joshi, the leader of UCLA Laser-Plasma group. Prof. Joshi discovered a new mechanism for generation of monoenergetic proton/ion beams: Shock Wave Acceleration in a near critical density plasma and demonstrated that high-energy proton beams using CO 2 laser driven collisionless shocks in a gas jet plasma, which opened an opportunity to develop a rather compact high-repetition rate

  19. Modeling ultrafast laser-induced nanocavitation around plasmonic nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Dagallier, Adrien; Lachaine, Rémi; Boutopoulos, Christos; Boulais, Étienne

    2017-03-01

    Vapor nanobubbles generated around plasmonic nanoparticles (NPs) by ultrafast laser irradiation are efficient for inducing localized damage to living cells. Killing targeted cancer cells or gene delivery can therefore be envisioned using this new technology [1,2]. The extent of the damage and its non-lethal character are linked to the size of the nanobubble. Precise understanding of the mechanisms leading to bubble formation around plasmonic nanostructures is necessary to optimize the technique. In this presentation, we present a complete model that successfully describes all interactions occurring during the irradiation of plasmonics nanostructures by an ultrafast laser of various pulse widths and fluences. Nanoavitation is caused by the interplay between heat conduction at the NP-medium interface and non-linear plasmon-enhanced photoionization of a nanoplasma in the near-field [3-5], the former being dominant for in-resonance and the latter for off-resonance irradiation. Modeling of the whole laser-nanoparticle interaction, together with the help of the shadowgraphic imaging and scattering techniques [3-5], give valuable insight on the mechanisms of cavitation at the nanoscale, leading to possible optimization of the nanostructure for bubble-based nanomedicine applications. 1- E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 17, 26-49 (2013). 2- E. Bergeron, S. Patskovsky, D. Rioux, and M. Meunier, Nanoscale 7,17836-17847 (2015). 3- E. Boulais, R. Lachaine, and M. Meunier, Nano Letters 12, 4763-4769 (2012). 4- R. Lachaine, E. Boulais, and M. Meunier, ACS Photonics 1, 331-336 (2014). 5- C. Boutopoulos, A. Hatef, M. Fortin-Deschênes, and M. Meunier Nanoscale 7,11758-11765 (2015).

  20. Spatial and temporal laser pulse design for material processing on ultrafast scales

    NASA Astrophysics Data System (ADS)

    Stoian, R.; Colombier, J. P.; Mauclair, C.; Cheng, G.; Bhuyan, M. K.; Velpula, P. K.; Srisungsitthisunti, P.

    2014-01-01

    The spatio-temporal design of ultrafast laser excitation can have a determinant influence on the physical and engineering aspects of laser-matter interactions, with the potential of upgrading laser processing effects. Energy relaxation channels can be synergetically stimulated as the energy delivery rate is synchronized with the material response on ps timescales. Experimental and theoretical loops based on the temporal design of laser irradiation and rapid monitoring of irradiation effects are, therefore, able to predict and determine ideal optimal laser pulse forms for specific ablation objectives. We illustrate this with examples on manipulating the thermodynamic relaxation pathways impacting the ablation products and nanostructuring of bulk and surfaces using longer pulse envelopes. Some of the potential control factors will be pointed out. At the same time the spatial character can dramatically influence the development of laser interaction. We discuss spatial beam engineering examples such as parallel and non-diffractive approaches designed for high-throughput, high-accuracy processing events.

  1. Engineering model for ultrafast laser microprocessing

    NASA Astrophysics Data System (ADS)

    Audouard, E.; Mottay, E.

    2016-03-01

    Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.

  2. Filter-Based Dispersion-Managed Versatile Ultrafast Fibre Laser

    PubMed Central

    Peng, Junsong; Boscolo, Sonia

    2016-01-01

    We present the operation of an ultrafast passively mode-locked fibre laser, in which flexible control of the pulse formation mechanism is readily realised by an in-cavity programmable filter the dispersion and bandwidth of which can be software configured. We show that conventional soliton, dispersion-managed (DM) soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be reliably targeted by changing the filter’s dispersion and bandwidth only, while no changes are made to the physical layout of the laser cavity. Numerical simulations are presented which confirm the different nonlinear pulse evolutions inside the laser cavity. The proposed technique holds great potential for achieving a high degree of control over the dynamics and output of ultrafast fibre lasers, in contrast to the traditional method to control the pulse formation mechanism in a DM fibre laser, which involves manual optimisation of the relative length of fibres with opposite-sign dispersion in the cavity. Our versatile ultrafast fibre laser will be attractive for applications requiring different pulse profiles such as in optical signal processing and optical communications. PMID:27183882

  3. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  4. Applications of ultrafast laser direct writing: from polarization control to data storage

    NASA Astrophysics Data System (ADS)

    Donko, A.; Gertus, T.; Brambilla, G.; Beresna, M.

    2018-02-01

    Ultrafast laser direct writing is a fascinating technology which emerged more than two decades from fundamental studies of material resistance to high-intensity optical fields. Its development saw the discovery of many puzzling phenomena and demonstration of useful applications. Today, ultrafast laser writing is seen as a technology with great potential and is rapidly entering the industrial environment. Whereas, less than 10 years ago, ultrafast lasers were still confined within the research labs. This talk will overview some of the unique features of ultrafast lasers and give examples of its applications in optical data storage, polarization control and optical fibers.

  5. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers.

    PubMed

    Liu, X M; Yang, H R; Cui, Y D; Chen, G W; Yang, Y; Wu, X Q; Yao, X K; Han, D D; Han, X X; Zeng, C; Guo, J; Li, W L; Cheng, G; Tong, L M

    2016-05-16

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light-graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics.

  6. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers

    PubMed Central

    Liu, X. M.; Yang, H. R.; Cui, Y. D.; Chen, G. W.; Yang, Y.; Wu, X. Q.; Yao, X. K.; Han, D. D.; Han, X. X.; Zeng, C.; Guo, J.; Li, W. L.; Cheng, G.; Tong, L. M.

    2016-01-01

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light–matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light–graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics. PMID:27181419

  7. A new paradigm for use of ultrafast lasers in ophthalmology for enhancement of corneal mechanical properties and permanent correction of refractive errors

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Fomovsky, Mikhail; Hall, Jamie R.; Paik, David C.; Trokel, Stephen L.; Vukelic, Sinisa

    2017-02-01

    A new paradigm for strengthening of corneal tissue as well as permanent correction of refractive errors has been proposed. Ultrafast laser irradiation is confined to the levels below optical breakdown such that tissue damage is avoided while creating an ionization field responsible for subsequent photochemical modification of the stroma. The concept was assed using newly developed platform for precise application of a near-IR femtosecond laser irradiation to the cornea in in-vitro experiments. Targeted irradiation with tightly focused ultrafast laser pulses allows spatially resolved crosslinking in the interior of the porcine cornea in the absence of photosensitizers. The formation of intra- or interstromal covalent bonds in collagen matrix locally increases lamellar density. Due to high resolution, treatment is spatially resolved and therefore can be tailored to either enhance structure of corneal stroma or adjust corneal curvature towards correcting refractive errors. As the induced modification is primarily driven by nonlinear absorption, the treatment is essentially wavelength independent, and as such potentially less harmful than current method of choice, joint application of UVA light irradiation in conjunction with riboflavin. Potential applicability of a near-IR femtosecond laser for biomechanical stabilization of cornea and non-invasive refractive eye corrections is discussed.

  8. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  9. Unraveling shock-induced chemistry using ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, David Steven

    The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation offast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state ofmore » materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to microengineered interfaces in tunable energetic mixtures. Recent results will be presented, and future trends outlined.« less

  10. Spin-controlled ultrafast vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-05-01

    Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.

  11. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    NASA Astrophysics Data System (ADS)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  12. Compression of Ultrafast Laser Beams

    DTIC Science & Technology

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  13. Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond

    NASA Astrophysics Data System (ADS)

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheg; Xu, Zhizhan

    2009-03-01

    Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.

  14. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  15. Ultrafast dynamics of hard tissue ablation using fs-lasers.

    PubMed

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Huber, Heinz P; Sroka, Ronald

    2018-05-29

    Several studies on hard tissue laser ablation demonstrated that ultrafast lasers enable precise material removal without thermal side effects. Although the principle ablation mechanisms have been thoroughly investigated, there are still open questions regarding the influence of material properties on transient dynamics. In this investigation, we applied pump-probe microscopy to record ablation dynamics of biomaterials with different tensile strengths (dentin, chicken bone, gallstone, kidney stones) at delay times between 1 ps and 10 μs. Transient reflectivity changes, pressure and shock wave velocities, and elastic constants were determined. The result revealed that absorption and excitation show the typical well-known transient behaviour of dielectric materials. We observed for all samples a photomechanical laser ablation process, where ultrafast expansion of the excited volume generates pressure waves leading to fragmentation around the excited region. Additionally, we identified tensile-strength-related differences in the size of ablated craters and ejected particles. The elastic constants derived were in agreement with literature values. In conclusion, pressure-wave-assisted material removal seems to be a general mechanism for hard tissue ablation with ultrafast lasers. This photomechanical process increases ablation efficiency and removes heated material, thus ultrafast laser ablation is of interest for clinical application where heating of the tissue must be avoided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies.

    PubMed

    Li, Chen; Cheng, Guanghua; Sedao, Xxx; Zhang, Wei; Zhang, Hao; Faure, Nicolas; Jamon, Damien; Colombier, Jean-Philippe; Stoian, Razvan

    2016-05-30

    The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

  17. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    PubMed

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan

    2016-02-01

    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  18. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.

    PubMed

    McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy

    2017-04-20

    We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2  W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

  19. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  20. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  1. Mitigating intrinsic defects and laser damage using pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    McKinney, Luke; Frank, Felix; Graper, David; Dean, Jesse; Forrester, Paul; Rioblanc, Maxence; Nantel, Marc; Marjoribanks, Robin

    2005-09-01

    Ultrafast-laser micromachining has promise as an approach to trimming and 'healing' small laser-produced damage sites in laser-system optics--a common experience in state-of-the-art high-power laser systems. More-conventional approaches currently include mechanical micromachining, chemical modification, and treatment using cw and long-pulse lasers. Laser-optics materials of interest include fused silica, multilayer dielectric stacks for anti-reflection coatings or high-reflectivity mirrors, and inorganic crystals such as KD*P, used for Pockels cells and frequency-doubling. We report on novel efforts using ultrafast-laser pulsetrain-burst processing (microsecond bursts at 133 MHz) to mitigate damage in fused silica, dielectric coatings, and KD*P crystals. We have established the characteristics of pulsetrain-burst micromachining in fused silica, multilayer mirrors, and KD*P, and determined the etch rates and morphology under different conditions of fluence-delivery. From all of these, we have begun to identify new means to optimize the laser-repair of optics defects and damage.

  2. Ultrafast Laser System for Producing on-Demand Single-and Multi-Photon Quantum States

    DTIC Science & Technology

    2015-09-20

    14-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ultrafast laser system for producing on-demand single- and multi...Champaign, IL 61820 -7406 14-Mar-2015 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Ultrafast laser system for producing

  3. WS2 mode-locked ultrafast fiber laser

    PubMed Central

    Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin

    2015-01-01

    Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729

  4. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  5. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGES

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; ...

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 10 16 W/cm 2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, themore » experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  6. Morphological and chemical evolution on InP(1 0 0) surface irradiated with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Qian, H. X.; Zhou, W.; Zheng, H. Y.; Lim, G. C.

    2005-12-01

    Single crystalline InP was ablated in air with p-polarized Ti:sapphire femtosecond laser at a fixed laser fluence of 82 mJ/cm 2. Ripples parallel to the laser polarization direction were found by scanning electron microscopy and atomic force microscopy to form for laser pulses ranging from 50 to 1000, whereas flower-like structures appeared for laser pulses of 10 4 and above. Analysis by X-ray photoelectron spectroscopy showed formation of indium and phosphorus oxides on the irradiated surface and the amounts of oxides increased with increasing number of laser pulses. The oxide formation is attributed to chemical reaction between the ultrafast laser ablation plume and oxygen in air, and formation of the flower-like structures is shown to be related to deposition of the oxides on the irradiated surface.

  7. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSSmore » frequencies.« less

  8. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben

    2016-04-11

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  9. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan; Ji, Hantao; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ∼1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ∼3 × 10{sup 16 }W/cm{sup 2}. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ∼40–50 T magnetic fields at the center of the coil ∼3–4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim tomore » develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  10. Laser-driven ultrafast antiproton beam

    NASA Astrophysics Data System (ADS)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  11. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources

    PubMed Central

    Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon

    2017-01-01

    Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources. PMID:28067288

  12. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources

    NASA Astrophysics Data System (ADS)

    Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon

    2017-01-01

    Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.

  13. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources.

    PubMed

    Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon

    2017-01-09

    Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today's ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.

  14. Ultrafast magnetodynamics with free-electron lasers

    NASA Astrophysics Data System (ADS)

    Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio

    2018-02-01

    The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.

  15. Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Li, Heng; Luo, Ai-Ping; Cui, Hu; Xu, Wen-Cheng; Luo, Zhi-Chao

    2018-03-01

    Ultrafast fiber lasers have been demonstrated to be great platforms for the investigation of soliton dynamics. The soliton molecules, as one of the most fascinating nonlinear phenomena, have been a hot topic in the field of nonlinear optics in recent years. Herein, we experimentally observed the real-time evolving behavior of soliton molecule in an ultrafast fiber laser by using the dispersive Fourier transformation technology. Several types of evolving soliton molecules were obtained in our experiments, such as soliton molecules with monotonically or chaotically evolving phase, flipping and hopping phase. These results would be helpful to the communities interested in soliton nonlinear dynamics as well as ultrafast laser technologies.

  16. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  17. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  18. Morphological changes in ultrafast laser ablation plumes with varying spot size

    DOE PAGES

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; ...

    2015-06-04

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less

  19. Morphological changes in ultrafast laser ablation plumes with varying spot size.

    PubMed

    Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C

    2015-06-15

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.

  20. In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing

    PubMed Central

    Sriramoju, Vidyasagar; Alfano, Robert R.

    2015-01-01

    Abstract. Femtosecond (fs) pulse lasers in the near-infrared (NIR) range exhibit very distinct properties upon their interaction with biomolecules compared to the corresponding continuous wave (CW) lasers. Ultrafast NIR laser tissue bonding (LTB) was used to fuse edges of two opposing animal tissue segments in vivo using fs laser photoexcitation of the native vibrations of chomophores. The fusion of the incised tissues was achieved in vivo at the molecular level as the result of the energy–matter interactions of NIR laser radiation with water and the structural proteins like collagen in the target tissues. Nonthermal vibrational excitation from the fs laser absorption by water and collagen induced the formation of cross-links between tissue proteins on either sides of the weld line resulting in tissue bonding. No extrinsic agents were used to facilitate tissue bonding in the fs LTB. These studies were pursued for the understanding and evaluation of the role of ultrafast NIR fs laser radiation in the LTB and consequent wound healing. The fs LTB can be used for difficult to suture structures such as blood vessels, nerves, gallbladder, liver, intestines, and other viscera. Ultrafast NIR LTB yields promising outcomes and benefits in terms of wound closure and wound healing under optimal conditions. PMID:26465615

  1. In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing

    NASA Astrophysics Data System (ADS)

    Sriramoju, Vidyasagar; Alfano, Robert R.

    2015-10-01

    Femtosecond (fs) pulse lasers in the near-infrared (NIR) range exhibit very distinct properties upon their interaction with biomolecules compared to the corresponding continuous wave (CW) lasers. Ultrafast NIR laser tissue bonding (LTB) was used to fuse edges of two opposing animal tissue segments in vivo using fs laser photoexcitation of the native vibrations of chomophores. The fusion of the incised tissues was achieved in vivo at the molecular level as the result of the energy-matter interactions of NIR laser radiation with water and the structural proteins like collagen in the target tissues. Nonthermal vibrational excitation from the fs laser absorption by water and collagen induced the formation of cross-links between tissue proteins on either sides of the weld line resulting in tissue bonding. No extrinsic agents were used to facilitate tissue bonding in the fs LTB. These studies were pursued for the understanding and evaluation of the role of ultrafast NIR fs laser radiation in the LTB and consequent wound healing. The fs LTB can be used for difficult to suture structures such as blood vessels, nerves, gallbladder, liver, intestines, and other viscera. Ultrafast NIR LTB yields promising outcomes and benefits in terms of wound closure and wound healing under optimal conditions.

  2. Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel.

    PubMed

    Cerkauskaite, Ausra; Drevinskas, Rokas; Rybaltovskii, Alexey O; Kazansky, Peter G

    2017-04-03

    We compare a femtosecond laser induced modification in silica matrices with three different degrees of porosity. In single pulse regime, the decrease of substrate density from fused silica to high-silica porous glass and to silica aerogel glass results in tenfold increase of laser affected region with the formation of a symmetric cavity surrounded by the compressed silica shell with pearl like structures. In multi-pulse regime, if the cavity produced by the first pulse is relatively large, the subsequent pulses do not cause further modifications. If not, the transition from void to the anisotropic structure with the optical axis oriented parallel to the incident polarization is observed. The maximum retardance value achieved in porous glass is twofold higher than in fused silica, and tenfold greater than in aerogel. The polarization sensitive structuring in porous glass by two pulses of ultrafast laser irradiation is demonstrated, as well as no observable stress is generated at any conditions.

  3. Optimal control of laser-induced spin-orbit mediated ultrafast demagnetization

    NASA Astrophysics Data System (ADS)

    Elliott, P.; Krieger, K.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2016-01-01

    Laser induced ultrafast demagnetization is the process whereby the magnetic moment of a ferromagnetic material is seen to drop significantly on a timescale of 10-100 s of femtoseconds due to the application of a strong laser pulse. If this phenomenon can be harnessed for future technology, it offers the possibility for devices operating at speeds several orders of magnitude faster than at present. A key component to successful transfer of such a process to technology is the controllability of the process, i.e. that it can be tuned in order to overcome the practical and physical limitations imposed on the system. In this paper, we demonstrate that the spin-orbit mediated form of ultrafast demagnetization recently investigated (Krieger et al 2015 J. Chem. Theory Comput. 11 4870) by ab initio time-dependent density functional theory (TDDFT) can be controlled. To do so we use quantum optimal control theory (OCT) to couple our TDDFT simulations to the optimization machinery of OCT. We show that a laser pulse can be found which maximizes the loss of moment within a given time interval while subject to several practical and physical constraints. Furthermore we also include a constraint on the fluence of the laser pulses and find the optimal pulse that combines significant demagnetization with a desire for less powerful pulses. These calculations demonstrate optimal control is possible for spin-orbit mediated ultrafast demagnetization and lays the foundation for future optimizations/simulations which can incorporate even more constraints.

  4. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes

    PubMed Central

    Liu, Xueming; Han, Dongdong; Sun, Zhipei; Zeng, Chao; Lu, Hua; Mao, Dong; Cui, Yudong; Wang, Fengqiu

    2013-01-01

    Multi-wavelength lasers have widespread applications (e.g. fiber telecommunications, pump-probe measurements, terahertz generation). Here, we report a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550, and 1560 nm, which are tunable by stretching fiber Bragg gratings. The output pulse duration is around 6 ps with a spectral width of ~0.5 nm, agreeing well with the numerical simulations. The triple-laser system is controlled precisely and insensitive to environmental perturbations with <0.04% amplitude fluctuation. Our method provides a simple, stable, low-cost, multi-wavelength ultrafast-pulsed source for spectroscopy, biomedical research and telecommunications. PMID:24056500

  5. Shaping ultrafast laser inscribed optical waveguides using a deformable mirror.

    PubMed

    Thomson, R R; Bockelt, A S; Ramsay, E; Beecher, S; Greenaway, A H; Kar, A K; Reid, D T

    2008-08-18

    We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 mum light, the optimum waveguide exhibited coupling losses of approximately 0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of approximately 1.5 dB.cm(-1). This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.

  6. Ultrafast Bessel beams: advanced tools for laser materials processing

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  7. Patterning of OPV modules by ultra-fast laser

    NASA Astrophysics Data System (ADS)

    Kubiš, Peter; Lucera, Luca; Guo, Fei; Spyropolous, George; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    A novel production process combining slot-die coating, transparent flexible IMI (ITO-Metal-ITO) electrodes and ultra-fast laser ablation can be used for the realization of P3HT:PCBM based thin film flexible OPV modules. The fast and precise laser ablation allows an overall efficiency over 3 % and a device geometric fill factor (GFF) over 95 %. Three functional layers can be ablated using the same wavelength only with varying the laser fluence and overlap. Different OPV device architectures with multilayers utilizing various materials are challenging for ablation but can be structured by using a systematical approach.

  8. Experiments with trapped ions and ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Kale Gifford

    Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing

  9. Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy.

    PubMed

    Hu, Song; Yao, Jian; Liu, Meng; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng

    2016-05-16

    The ultrafast time-stretch microscopy has been proposed to enhance the temporal resolution of a microscopy system. The optical source is a key component for ultrafast time-stretch microscopy system. Herein, we reported on the gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. By virtue of the excellent characteristics of the gain-guided soliton, the output power and the 3-dB bandwidth of the stable mode-locked soliton could be up to 3 mW and 33.7 nm with a high-quality rectangle shape, respectively. With the proposed robust optical source, the ultrafast time-stretch microscopy with the 49.6 μm resolution and a scan rate of 11 MHz was achieved without the external optical amplification. The obtained results demonstrated that the gain-guided soliton fiber laser could be used as an alternative high-quality optical source for ultrafast time-stretch microscopy and will introduce some applications in fields such as biology, chemical, and optical sensing.

  10. PREFACE: Ultrafast biophotonics Ultrafast biophotonics

    NASA Astrophysics Data System (ADS)

    Gu, Min; Reid, Derryck; Ben-Yakar, Adela

    2010-08-01

    The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and

  11. Joining of thin glass with semiconductors by ultra-fast high-repetition laser welding

    NASA Astrophysics Data System (ADS)

    Horn, Alexander; Mingaeev, Ilja; Werth, Alexander; Kachel, Martin

    2008-02-01

    Lighting applications like OLED or on silicon for electro-optical applications need a reproducible sealing process. The joining has to be strong, the permeability for gasses and humidity very low and the process itself has to be very localized not affecting any organic or electronic parts inside the sealed region. The actual sealing process using glue does not fulfil these industrial needs. A new joining process using ultra-fast laser radiation offers a very precise joining with geometry dimensions smaller than 50 μm. Ultra-fast laser radiation is absorbed by multi-photon absorption in the glass. Due to the very definite threshold for melting and ablation the process of localized heating can be controlled without cracking. Repeating the irradiation at times smaller than the heat diffusion time the temperature in the focus is increased by heat accumulation reaching melting of the glass. Mowing the substrate relatively to the laser beam generates a seal of re-solidified glass. Joining of glass is achieved by positioning the laser focus at the interface. A similar approach is used for glass-silicon joining. The investigations presented will demonstrate the joining geometry by microscopy of cross-sections achieved by welding two glass plates (Schott D263 and AF45) with focused IR femtosecond laser radiation (wavelength λ = 1045nm, repetition rate f = 1 MHz, pulse duration t p = 500 fs, focus diameter w 0 = 4 μm, feeding velocity v= 1-10 mm/s). The strength of the welding seam is measured by tensile stress measurements and the gas and humidity is detected. A new diagnostic method for the on-line detection of the welding seam properties will be presented. Using a non-interferometric technique by quantitative phase microscopy the refractive index is measured during welding of glass in the time regime 0-2 μs. By calibration of the measured refractive index with a relation between refractive index and temperature a online-temperature detection can be achieved.

  12. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  13. Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser.

    PubMed

    Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bean, Richard; Koglin, Jason E; Messerschmidt, Marc; Ragazzon, Davide; Sokaras, Dimosthenis; Williams, Garth J; Hau-Riege, Stefan; Boutet, Sébastien; Chapman, Henry N; Tîmneanu, Nicuşor; Caleman, Carl

    2018-05-29

    The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 10 6 J/cm 2 These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

  14. Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.

    2018-04-01

    We present a theoretical study of the ultrafast electron dynamics in transition metals of large electron-phonon coupling constant using ultrashort pulsed laser beams. The significant influence of the dynamics of produced nonthermal electrons to electron thermalisation and electron-phonon interaction is thoroughly investigated for various values of the pulse duration (i.e., from 10 fs to 2.3 ps). The model correlates the role of nonthermal electrons, relaxation processes and induced stress-strain fields. Simulations are presented by choosing Nickel (Ni) as a test material to compute electron-phonon relaxation time due to its large electron-phonon coupling constant. We demonstrate that the consideration of the aforementioned factors leads to significant changes compared to the results the traditional two-temperature model provides. The proposed model predicts a substantially ( 33%) smaller damage threshold and a large increase of the stress ( 20%, at early times) which first underlines the role of the nonthermal electron interactions and second enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

  15. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  16. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle

  17. Transverse Mode Dynamics and Ultrafast Modulation of Vertical-Cavity Surface-Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We show that multiple transverse mode dynamics of VCSELs (Vertical-Cavity Surface-Emitting Lasers) can be utilized to generate ultrafast intensity modulation at a frequency over 100 GHz, much higher than the relaxation oscillation frequency. Such multimode beating can be greatly enhanced by taking laser output from part of the output facet.

  18. Intense Plasma Waveguide Terahertz Sources for High-Field THz Probe Science with Ultrafast Lasers for Solid State Physics

    DTIC Science & Technology

    2016-08-25

    AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a.  CONTRACT NUMBER 5b.  GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose

  19. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    NASA Astrophysics Data System (ADS)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (<50 femtosecond) laser pulses from a commercial regenerative amplifier, optical parametric amplifier, and a home-built non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  20. Ultrafast Phenomena XIV

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayoshi; Okada, Tadashi; Kobayashi, Tetsuro; Nelson, Keith A.; de Silvestri, Sandro

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology, and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics . This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  1. Plasma Heating and Ultrafast Semiconductor Laser Modulation Through a Terahertz Heating Field

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2000-01-01

    Electron-hole plasma heating and ultrafast modulation in a semiconductor laser under a terahertz electrical field are investigated using a set of hydrodynamic equations derived from the semiconductor Bloch equations. The self-consistent treatment of lasing and heating processes leads to the prediction of a strong saturation and degradation of modulation depth even at moderate terahertz field intensity. This saturation places a severe limit to bandwidth achievable with such scheme in ultrafast modulation. Strategies for increasing modulation depth are discussed.

  2. Ultraprecise medical applications with ultrafast lasers: corneal surgery with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Loesel, Frieder H.; Kurtz, Ron M.; Horvath, Christopher; Sayegh, Samir I.; Mourou, Gerard A.; Bille, Josef F.; Juhasz, Tibor

    1999-02-01

    We investigated refractive corneal surgery in vivo and in vitro by intrastromal photodisruption using a compact ultrafast femtosecond laser system. Ultrashort-pulsed lasers operating in the femtosecond time regime are associated with significantly smaller and deterministic threshold energies for photodisruption, as well as reduced shock waves and smaller cavitation bubbles than the nanosecond or picosecond lasers. Our reliable all-solid-state laser system was specifically designed for real world medical applications. By scanning the 5 micron focus spot of the laser below the corneal surface, the overlapping small ablation volumes of single pulses resulted in contiguous tissue cutting and vaporization. Pulse energies were typically in the order of a few microjoules. Combination of different scanning patterns enabled us to perform corneal flap cutting, femtosecond-LASIK, and femtosecond intrastromal keratectomy in porcine, rabbit, and primate eyes. The cuts proved to be highly precise and possessed superior dissection and surface quality. Preliminary studies show consistent refractive changes in the in vivo studies. We conclude that the technology is capable to perform a variety of corneal refractive procedures at high precision, offering advantages over current mechanical and laser devices and enabling entirely new approaches for refractive surgery.

  3. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide.

    PubMed

    McDaniel, Sean A; Lancaster, Adam; Evans, Jonathan W; Kar, Ajoy K; Cook, Gary

    2016-02-22

    We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

  4. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  5. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki; Sato, Masahiro

    2017-02-01

    Controlling electric and magnetic properties of matter by laser beams is actively explored in the broad region of condensed matter physics, including spintronics and magneto-optics. Here we theoretically propose an application of optical and electron vortex beams carrying intrinsic orbital angular momentum to chiral ferro- and antiferromagnets. We analyze the time evolution of spins in chiral magnets under irradiation of vortex beams by using the stochastic Landau-Lifshitz-Gilbert equation. We show that beam-driven nonuniform temperature leads to a class of ring-shaped magnetic defects, what we call skyrmion multiplex, as well as conventional skyrmions. We discuss the proper beam parameters and the optimal way of applying the beams for the creation of these topological defects. Our findings provide an ultrafast scheme of generating topological magnetic defects in a way applicable to both metallic and insulating chiral (anti-) ferromagnets.

  6. Ultrafast cavitation induced by an X-ray laser in water drops

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Willmott, Philip; Stone, Howard; Koglin, Jason; Liang, Mengning; Aquila, Andrew; Robinson, Joseph; Gumerlock, Karl; Blaj, Gabriel; Sierra, Raymond; Boutet, Sebastien; Guillet, Serge; Curtis, Robin; Vetter, Sharon; Loos, Henrik; Turner, James; Decker, Franz-Josef

    2016-11-01

    Cavitation in pure water is determined by an intrinsic heterogeneous cavitation mechanism, which prevents in general the experimental generation of large tensions (negative pressures) in bulk liquid water. We developed an ultrafast decompression technique, based on the reflection of shock waves generated by an X-ray laser inside liquid drops, to stretch liquids to large negative pressures in a few nanoseconds. Using this method, we observed cavitation in liquid water at pressures below -100 MPa. These large tensions exceed significantly those achieved previously, mainly due to the ultrafast decompression. The decompression induced by shock waves generated by an X-ray laser is rapid enough to continue to stretch the liquid phase after the heterogeneous cavitation occurs in water, despite the rapid growth of cavitation nanobubbles. We developed a nucleation-and-growth hydrodynamic cavitation model that explains our results and estimates the concentration of heterogeneous cavitation nuclei in water.

  7. The Effect of Varying Ultrafast Pulse Laser Energies on the Electrical Properties of Reduced Graphene Oxide Sheets in Solution

    NASA Astrophysics Data System (ADS)

    Ibrahim, Khaled H.; Irannejad, Mehrdad; Wales, Benjamin; Sanderson, Joseph; Musselman, Kevin P.; Yavuz, Mustafa

    2018-02-01

    Laser treatment of graphene oxide solution among other techniques is a well-established technique for producing reduced graphene sheets. However, production of high-quality ultra-low sheet resistance reduced graphene oxide (rGO) sheets in solution has been a challenge due to their high degree of randomness, defect-rich medium, and lack of controlability. Recent studies lack an in-depth analytic comparison of laser treatment parameters that yield the highest quality rGO sheets with a low defect ratio. Hence, in this study, we implement a comprehensive comparison of laser treatment parameters and their effect on the yielded rGO sheets from an electronic and physical standpoint. Ultra-low sheet resistance graphene oxide sheets were fabricated using ultrafast laser irradiation with different laser pulse energies in the range of 0.25-2 mJ. Laser treatment for 10 min using a pulse energy of 1 mJ resulted in an increase in the defect spacing, accompanied by a large red shift in the optical absorption of the C=C bond, indicating significant restoration of the s p 2 carbon bonds. These enhancements resulted in a significant reduction in the electrical resistance of the rGO flakes (up to 2 orders of magnitude), raising the electron mobility of the films produced using the irradiated graphene oxide a step closer to that of pristine graphene films. From this study, we can also deduce which exposure regimes result in the fabrication of quantum dots and continuous defect-free films.

  8. Ultrafast Pulse Generation in an Organic Nanoparticle-Array Laser.

    PubMed

    Daskalakis, Konstantinos S; Väkeväinen, Aaro I; Martikainen, Jani-Petri; Hakala, Tommi K; Törmä, Päivi

    2018-04-11

    Nanoscale coherent light sources offer potentially ultrafast modulation speeds, which could be utilized for novel sensors and optical switches. Plasmonic periodic structures combined with organic gain materials have emerged as promising candidates for such nanolasers. Their plasmonic component provides high intensity and ultrafast nanoscale-confined electric fields, while organic gain materials offer fabrication flexibility and a low acquisition cost. Despite reports on lasing in plasmonic arrays, lasing dynamics in these structures have not been experimentally studied yet. Here we demonstrate, for the first time, an organic dye nanoparticle-array laser with more than a 100 GHz modulation bandwidth. We show that the lasing modulation speed can be tuned by the array parameters. Accelerated dynamics is observed for plasmonic lasing modes at the blue side of the dye emission.

  9. Ablation of gold irradiated by femtosecond laser pulse: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Ashitkov, S. I.; Komarov, P. S.; Zhakhovsky, V. V.; Petrov, Yu V.; Khokhlov, V. A.; Yurkevich, A. A.; Ilnitsky, D. K.; Inogamov, N. A.; Agranat, M. B.

    2016-11-01

    We report on the ablation phenomena in gold sample irradiated by femtosecond laser pulses of moderate intensity. Dynamics of optical constants and expansion of a heated surface layer was investigated in a range from picosecond up to subnanosecond using ultrafast interferometry. Also morphology of the ablation craters and value of an ablation threshold (for absorbed fluence) were measured. The experimental data are compared with simulations of mass flows obtained by two-temperature hydrodynamics and molecular dynamics methods. Simulation shows evolution of a thin surface layer pressurized by a laser pulse. Unloading of the pressurized layer proceeds together with electron-ion thermalization, melting, cavitation and spallation of a part of surface liquid layer. The experimental and simulation results on two-temperature physics and on a fracture, surface morphology and strength of liquid gold at a strain rate ∼ 109 s-1 are discussed.

  10. Material processing with fiber based ultrafast pulse delivery

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Stockburger, R.; Führa, B.; Zoller, S.; Thum, S.; Moosmann, J.; Maier, D.; Kanal, F.; Russ, S.; Kaiser, E.; Budnicki, A.; Sutter, D. H.; Pricking, S.; Killi, A.

    2018-02-01

    We report on TRUMPF's ultrafast laser systems equipped with industrialized hollow core fiber laser light cables. Beam guidance in general by means of optical fibers, e.g. for multi kilowatt cw laser systems, has become an integral part of laser-based material processing. One advantage of fiber delivery, among others, is the mechanical separation between laser and processing head. An equally important benefit is given by the fact that the fiber end acts as an opto-mechanical fix-point close to successive optical elements in the processing head. Components like lenses, diffractive optical elements etc. can thus be designed towards higher efficiency which results in better material processing. These aspects gain increasing significance when the laser system operates in fundamental mode which is usually the case for ultrafast lasers. Through the last years beam guidance of ultrafast laser pulses by means of hollow core fiber technology established very rapidly. The combination of TRUMPF's long-term stable ultrafast laser sources, passive fiber coupling, connector and packaging forms a flexible and powerful system for laser based material processing well suited for an industrial environment. In this article we demonstrate common material processing applications with ultrafast lasers realized with TRUMPF's hollow core fiber delivery. The experimental results are contrasted and evaluated against conventional free space propagation in order to illustrate the performance of flexible ultrafast beam delivery.

  11. Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate.

    PubMed

    Tan, Xiao-Mei; Chen, Hong-Jie; Cui, Hu; Lv, Yao-Kun; Zhao, Guan-Kai; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2017-07-10

    We demonstrate a tunable and switchable dual-waveband 100 GHz high-repetition-rate (HRR) ultrafast fiber laser based on dissipative four-wave-mixing (DFWM) mode-locked technique. Each waveband maintains HRR operation. The DFWM effect was realized by combining a Fabry-Perot (F-P) filter and a piece of highly nonlinear fiber (HNLF). The tunable and switchable operations were achieved by nonlinear polarization rotation (NPR) technique. Through appropriately controlling the filtering effect induced by NPR, the laser could operate at two kinds of tunable regimes. One is that the spacing between these two wavebands could be tuned while keeping their center at 1559 nm. The other is that the central position of the entire dual-waveband is tunable while with the same separation between these two wavebands of 13.2 nm. Moreover, the laser could switch between these two wavebands. Correspondingly, the center of the single-waveband has a tuning range of 15.2 nm. This versatile ultrafast fiber laser may find applications in fields of optical frequency combs, high speed optical communications, where HRR pulses are necessary.

  12. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    PubMed

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

  13. Time of flight emission spectroscopy of laser produced nickel plasma: Short-pulse and ultrafast excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smijesh, N.; Chandrasekharan, K.; Joshi, Jagdish C.

    2014-07-07

    We report the experimental investigation and comparison of the temporal features of short-pulse (7 ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10⁻⁶Torr to 10²Torr, the plume intensity is found to increase rapidly as the pressure crosses 1 Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9 nm (3d⁹(²D) 4p → 3d⁹(²D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. Themore » fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5 nm (3p⁶3d⁸(³P) 4s→ 3p⁶3d⁹ 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2 mm and 4 mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.« less

  14. Roadmap on ultrafast optics

    NASA Astrophysics Data System (ADS)

    Reid, Derryck T.; Heyl, Christoph M.; Thomson, Robert R.; Trebino, Rick; Steinmeyer, Günter; Fielding, Helen H.; Holzwarth, Ronald; Zhang, Zhigang; Del'Haye, Pascal; Südmeyer, Thomas; Mourou, Gérard; Tajima, Toshiki; Faccio, Daniele; Harren, Frans J. M.; Cerullo, Giulio

    2016-09-01

    The year 2015 marked the 25th anniversary of modern ultrafast optics, since the demonstration of the first Kerr lens modelocked Ti:sapphire laser in 1990 (Spence et al 1990 Conf. on Lasers and Electro-Optics, CLEO, pp 619-20) heralded an explosion of scientific and engineering innovation. The impact of this disruptive technology extended well beyond the previous discipline boundaries of lasers, reaching into biology labs, manufacturing facilities, and even consumer healthcare and electronics. In recognition of such a milestone, this roadmap on Ultrafast Optics draws together articles from some of the key opinion leaders in the field to provide a freeze-frame of the state-of-the-art, while also attempting to forecast the technical and scientific paradigms which will define the field over the next 25 years. While no roadmap can be fully comprehensive, the thirteen articles here reflect the most exciting technical opportunities presented at the current time in Ultrafast Optics. Several articles examine the future landscape for ultrafast light sources, from practical solid-state/fiber lasers and Raman microresonators to exotic attosecond extreme ultraviolet and possibly even zeptosecond x-ray pulses. Others address the control and measurement challenges, requiring radical approaches to harness nonlinear effects such as filamentation and parametric generation, coupled with the question of how to most accurately characterise the field of ultrafast pulses simultaneously in space and time. Applications of ultrafast sources in materials processing, spectroscopy and time-resolved chemistry are also discussed, highlighting the improvements in performance possible by using lasers of higher peak power and repetition rate, or by exploiting the phase stability of emerging new frequency comb sources.

  15. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  16. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.

  17. Ultrafast laser machining of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Carter, R. M.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-07-01

    The use of ultrafast lasers (pulsed lasers with pulse lengths of a few picoseconds or less) offers the possibility for minimally invasive removal of soft ophthalmic tissue. The potential for using pico- and femtosecond pulses for modification of scleral tissue has been reported elsewhere [1-6] and has resulted in the introduction of new, minimally invasive, procedures into clinical practice [3, 5-10]. Our research is focused on finding optimal parameters for picosecond laser machining of scleral tissue without introducing any unwanted collateral damage to the tissue. Experiments were carried out on hydrated porcine sclera in vitro, which has similar collagen organization, histology and water content (~70%) to human tissue. In this paper we present a 2D finite element ablation model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. The use of a scan head allows flexibility in designing various scanning patterns. We show that picosecond pulses are capable of modifying scleral tissue without introducing collateral damage. This offers a possible route for minimally invasive sclerostomy. Many scanning patterns including single line ablation, square and circular cavity removal were tested.

  18. Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser.

    PubMed

    Buzzi, Michele; Makita, Mikako; Howald, Ludovic; Kleibert, Armin; Vodungbo, Boris; Maldonado, Pablo; Raabe, Jörg; Jaouen, Nicolas; Redlin, Harald; Tiedtke, Kai; Oppeneer, Peter M; David, Christian; Nolting, Frithjof; Lüning, Jan

    2017-08-03

    The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

  19. Environmentally stable seed source for high power ultrafast laser

    NASA Astrophysics Data System (ADS)

    Samartsev, Igor; Bordenyuk, Andrey; Gapontsev, Valentin

    2017-02-01

    We present an environmentally stable Yb ultrafast ring oscillator utilizing a new method of passive mode-locking. The laser is using all-fiber architecture which makes it insensitive to environmental factors, like temperature, humidity, vibrations, and shocks. The new method of mode-locking is utilizing crossed bandpass transmittance filters in ring architecture to discriminate against CW lasing. Broadband pulse evolves from cavity noise under amplification, after passing each filter, causing strong spectral broadening. The laser is self-starting. It generates transform limited spectrally flat pulses of 1 - 50 nm width at 6 - 15 MHz repetition rate and pulse energy 0.2 - 15 nJ at 1010 - 1080 nm CWL.

  20. Gold nanoparticle plasmonics enhanced ultrafast laser-induced optoporation and stimulation of targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Bergeron, Éric; Lavoie-Cardinal, Flavie; Boutopoulos, Christos; Salesse, Charleen; Winnik, Françoise M.; De Koninck, Paul

    2016-03-01

    Gold nanoparticles (AuNPs) have found numerous applications in nanomedicine in view of their robustness, ease of functionalization and low toxicity. Upon irradiation of AuNPs by a pulsed ultrafast laser, various highly localized phenomena can be obtained including a temperature rise, pressure wave, charge injection and production of nanobubbles close to the cellular membrane [1]. These phenomena can be used to manipulate, optoperforate, transfect and stimulate targeted cells [2-5]. Irradiating at 800 nm in the optically biological transparent window, we demonstrated local optoporation and transfection of cells as well as local stimulation of neurons. Two recent examples will be given: (i) Laser-induced selective optoporation of cells: The technique can be used on various types of cells and a proof of principle will be given on human cancer cells in a co-culture using functionalized AuNPs [6]. (ii) Laser-induced stimulation of neurons and monitoring of the localized Ca2+ signaling: This all optical method uses a standard confocal microscope to trigger a transient increase in free Ca2+ in neurons covered by functionalized AuNPs as well as to measure these local variations optically with the Ca2+ sensor GCaMP6s [7]. The proposed techniques provide a new complement to light-dependent methods in neuroscience. REFERENCES (by our group): (1) Boulais, J. Photochem. Photobiol. C Photochem. Rev. 17, 26 (2013); (2) Baumgart, Biomaterials 33, 2345 (2012); (3) Boulais, NanoLett. 12, 4763 (2012); (4) Boutopoulos, J. Biophotonics (2015); (5) Boutopoulos, Nanoscale 7, 11758 (2015); (6) Bergeron, Biomaterials, submitted (2015); (7) Lavoie-Cardinal, Nature Commun. submitted (2015).

  1. Ultrafast Science Opportunities with Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durr, Hermann

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less

  2. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations.

    PubMed

    Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne

    2009-12-07

    Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

  3. Physical mechanisms of SiN{sub x} layer structuring with ultrafast lasers by direct and confined laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.

    2015-03-14

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less

  4. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben

    2018-05-01

    Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

  5. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    PubMed Central

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-01-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  6. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  7. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-01

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a ``super pressing'' state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  8. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    PubMed Central

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-01-01

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions. PMID:25645258

  9. Quantum Hooke's law to classify pulse laser induced ultrafast melting.

    PubMed

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a "super pressing" state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  10. TDDFT investigation of excitation of water tetramer under femtosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Xu, Xuefen; Zhang, Fengshou; Qian, Chaoyi

    2018-04-01

    We study the static properties of water tetramer in ground state, the optical absorption spectra and ultrafast nonadiabatic dynamical response of water tetramer to short and intense laser pulses with different intensities by a real-space, real-time implementation of time-dependent density functional theory coupled to molecular dynamics (TDDFT-MD) nonadiabatically. The calculated results are in good agreement with available values in literature. Four typical irradiated scenarios of water tetramer in laser field, which are “normal vibration,” “break and reorganization,” “fragmentation and new formation” and “pure fragmentation”, are explored by discussing the ionization, the bond lengths of OH bonds and hydrogen bonds and the kinetic energy of ions. The dynamic simulation shows that the reaction channel of water tetramer can really be controlled by choosing appropriate laser parameters referring to the optical absorption spectra and hydrogen ions play an important role in the reaction channel. Furthermore, it is found that the laser intensity affects the kinetic energy of ejected protons more than that of the remaining fragments and all dynamic processes are somehow directly related to the velocity of departing protons.

  11. Ultrafast web inspection with hybrid dispersion laser scanner.

    PubMed

    Chen, Hongwei; Wang, Chao; Yazaki, Akio; Kim, Chanju; Goda, Keisuke; Jalali, Bahram

    2013-06-10

    We report an ultrafast web inspector that operates at a 1000 times higher scan rate than conventional methods. This system is based on a hybrid dispersion laser scanner that performs line scans at nearly 100 MHz. Specifically, we demonstrate web inspection with detectable resolution of 48.6 μm/pixel (scan direction) × 23 μm (web flow direction) within a width of view of 6 mm at a record high scan rate of 90.9 MHz. We demonstrate the identification and evaluation of particles on silicon wafers. This method holds great promise for speeding up quality control and hence reducing manufacturing costs.

  12. Electronic and structural response of nanomaterials to ultrafast and ultraintense laser pulses.

    PubMed

    Jiang, Chen-Wei; Zhou, Xiang; Lin, Zhibin; Xie, Rui-Hua; Li, Fu-Li; Allen, Roland E

    2014-02-01

    The interaction of materials with ultrafast and ultraintense laser pulses is a current frontier of science both experimentally and theoretically. In this review, we briefly discuss some recent theoretical studies by the present authors with our method of semiclassical electron-radiation-ion dynamics (SERID). In particular, Zhou et al. and Jiang et al. respectively, determined the optimal duration and optimal timing for a series of femtosecond scale laser pulses to excite a specific vibrational mode in a general chemical system. A set of such modes can be used as a "fingerprint" for characterizing a particular molecule or a complex in a solid. One can therefore envision many applications, ranging from fundamental studies to detection of chemical or biological agents. Allen et al. proved that dimers are preferentially emitted during photofragmentation of C60 under an ultrafast and ultraintense laser pulse. For interactions between laser pulses and semiconductors, e.g., GaAs, Si and InSb, besides experimentally accessible optical properties--epsilon(omega) and chi(2)-Allen et al. offered many other indicators to confirm the nonthermal nature of structural changes driven by electronic excitations and occurring during the first few hundred femtoseconds. Lin et al. found that, after the application of a femtosecond laser pulse, excited electrons in materials automatically equilibrate to a Fermi-Dirac distribution within roughly 100 fs, solely because of their coupling to the nuclear motion, even though the resulting electronic temperature is one to two orders of magnitude higher than the kinetic temperature defined by the nuclear motion.

  13. New developments in ophthalmic applications of ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Spooner, Greg J. R.; Juhasz, Tibor; Ratkay-Traub, Imola; Djotyan, Gagik P.; Horvath, Christopher; Sacks, Zachary S.; Marre, Gabrielle; Miller, Doug L.; Williams, A. R.; Kurtz, Ron M.

    2000-05-01

    The eye is potentially an ideal target for high precision surgical procedures utilizing ultrafast lasers. We present progress on corneal applications now being tested in humans and proof of concept ex vivo demonstrations of new applications in the sclera and lens. Two corneal refractive procedures were tested in partially sighted human eyes: creation of corneal flaps prior to excimer ablation (Femto- LASIK) and creation of corneal channels and entry cuts for placement of intracorneal ring segments (Femto-ICRS). For both procedures, results were comparable to standard treatments, with the potential for improved safety, accuracy and reproducibility. For scleral applications, we evaluated the potential of femtosecond laser glaucoma surgery by demonstrating resections in ex vivo human sclera using dehydrating agents to induce tissue transparency. For lens applications, we demonstrate in an ex vivo model the use of photodisruptively-nucleated ultrasonic cavitation for local and non-invasive tissue interaction.

  14. Towards endoscopic ultrafast laser microsurgery of vocal folds

    NASA Astrophysics Data System (ADS)

    Hoy, Christopher L.; Everett, W. Neil; Yildirim, Murat; Kobler, James; Zeitels, Steven M.; Ben-Yakar, Adela

    2012-03-01

    Vocal fold scarring is a predominant cause of voice disorders yet lacks a reliable treatment method. The injection of soft biomaterials to improve mechanical compliance of the vocal folds has emerged as a promising treatment. Here, we study the use of precise femtosecond laser microsurgery to ablate subsurface voids, with a goal of eventually creating a plane in dense subepithelial scar tissue into which biomaterials can be injected for their improved localization. Specifically, we demonstrate the ablation of small subepithelial voids in porcine vocal fold tissue up to 120 µm below the surface such that larger voids in the active area of vocal fold mucosa (~3×10 mm2) can eventually be ablated in about 3 min. We use sub-µJ, 776-nm pulses from a compact femtosecond fiber laser system operating at a 500-kHz repetition rate. The use of relatively high repetition rates, with a small number of overlapping pulses, is critical to achieving ablation in a very short time while still avoiding significant heat deposition. Additionally, we use the same laser for nonlinear optical imaging to provide visual feedback of tissue structure and to confirm successful ablation. The ablation parameters, including pulse duration, pulse energy, spot size, and scanning speed, are comparable to the specifications in our recently developed miniaturized femtosecond laser surgery probes, illustrating the feasibility of developing an ultrafast laser surgical instrument.

  15. Investigation of the efficacy of ultrafast laser in large bowel excision

    NASA Astrophysics Data System (ADS)

    Mohanan, Syam Mohan P. C.; Beck, Rainer J.; Góra, Wojciech S.; Perry, Sarah L.; Shires, Mike; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2017-02-01

    Local resection of early stage tumors in the large bowel via colonoscopy has been a widely accepted surgical modality for colon neoplasm treatment. The conventional electrocautery techniques used for the resection of neoplasia in the mucosal or submucosal layer of colon tissue has been shown to create obvious thermal necrosis to adjacent healthy tissues and lacks accuracy in resection. Ultrafast picosecond (ps) laser ablation using a wavelength of 1030 or 515 nm is a promising surgical tool to overcome the limitations seen with conventional surgical techniques. The purpose of this initial study is to analyze the depth of ablation or the extent of coagulation deployed by the laser as a function of pulse energy and fluence in an ex-vivo porcine model. Precise control of the depth of tissue removal is of paramount importance for bowel surgery where bowel perforation can lead to morbidity or mortality. Thus we investigate the regimes that are optimal for tissue resection and coagulation through plasma mediated ablation of healthy colon tissue. The ablated tissue samples were analyzed by standard histologic methods and a three dimensional optical profilometer technique. We demonstrate that ultrafast laser resection of colonic tissue can minimize the region of collateral thermal damage (<50 μm) with a controlled ablation depth. This surgical modality allows potentially easier removal of early stage lesions and has the capability to provide more control to the surgeon in comparison with a mechanical or electrocautery device.

  16. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    PubMed

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  17. Quantum Hooke's Law to classify pulse laser induced ultrafast melting

    DOE PAGES

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes ofmore » materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dT m/dP < 0, where T m is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.« less

  18. Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics.

    PubMed

    Terada, Yasuhiko; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi

    2010-07-07

    The development of time-resolved scanning tunnelling microscopy (STM), in particular, attempts to combine STM with ultrafast laser technology, is reviewed with emphasis on observed physical quantities and spatiotemporal resolution. Ultrashort optical pulse technology has allowed us to observe transient phenomena in the femtosecond range, which, however, has the drawback of a relatively low spatial resolution due to the electromagnetic wavelength used. In contrast, STM and its related techniques, although the time resolution is limited by the circuit bandwidth (∼100 kHz), enable us to observe structures at the atomic level in real space. Our purpose has been to combine these two techniques to achieve a new technology that satisfies the requirements for exploring the ultrafast transient dynamics of the local quantum functions in organized small structures, which will advance the pursuit of future nanoscale scientific research in terms of the ultimate temporal and spatial resolutions. © 2010 IOP Publishing Ltd

  19. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  20. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery

    PubMed Central

    Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela

    2014-01-01

    Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of

  1. Suppressing the memory state of floating gate transistors with repeated femtosecond laser backside irradiations

    NASA Astrophysics Data System (ADS)

    Chambonneau, Maxime; Souiki-Figuigui, Sarra; Chiquet, Philippe; Della Marca, Vincenzo; Postel-Pellerin, Jérémy; Canet, Pierre; Portal, Jean-Michel; Grojo, David

    2017-04-01

    We demonstrate that infrared femtosecond laser pulses with intensity above the two-photon ionization threshold of crystalline silicon induce charge transport through the tunnel oxide in floating gate Metal-Oxide-Semiconductor transistor devices. With repeated irradiations of Flash memory cells, we show how the laser-produced free-electrons naturally redistribute on both sides of the tunnel oxide until the electric field of the transistor is suppressed. This ability enables us to determine in a nondestructive, rapid and contactless way the flat band and the neutral threshold voltages of the tested device. The physical mechanisms including nonlinear ionization, quantum tunneling of free-carriers, and flattening of the band diagram are discussed for interpreting the experiments. The possibility to control the carriers in memory transistors with ultrashort pulses holds promises for fast and remote device analyses (reliability, security, and defectivity) and for considerable developments in the growing field of ultrafast microelectronics.

  2. Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan

    2015-07-01

    The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

  3. Generation of an ultrafast femtosecond soliton fiber laser by carbon nanotube as saturable absorber

    NASA Astrophysics Data System (ADS)

    Salim, M. A. M.; Ahmad, H.; Harun, S. W.; Bidin, N.; Krishnan, G.

    2018-05-01

    This paper reports the demonstration of ultrafast fiber laser in a simple erbium-doped fiber (EDF) laser that employed a carbon nanotube (CNT) thin film saturable absorber (SA) to generate a stable soliton pulse. The repetition rate of 10.8 MHz pulse consistently achieved has narrowest pulse width of 640 fs and 1555.78 nm central wavelength for an hour operation in room temperature. This proposed setup has the capability for reliable and stable system features.

  4. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    PubMed

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  5. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.

    PubMed

    Lin, C D; Xu, Junliang

    2012-10-14

    We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.

  6. Ultrafast laser-induced reproducible nano-gratings on a molybdenum surface

    NASA Astrophysics Data System (ADS)

    Dar, Mudasir H.; Saad, Nabil A.; Sahoo, Chakradhar; Naraharisetty, Sri Ram G.; Rao Desai, Narayana

    2017-02-01

    Wavelength-dependent reproducible nano-gratings were produced on a bulk molybdenum surface upon irradiation with femtosecond laser pulses at near normal incidence in ambient air and water environments. The surface morphology of the irradiated surfaces was characterized by field emission scanning electron microscopy. The ripple spacing was observed to decrease by half when the surface was irradiated with the second harmonic of the fundamental 800 nm radiation. Careful choice of the laser parameters such as fluence, scanning speed, polarization and wavelength were observed to be important for the formation of smooth periodic ripples. The mechanism of formation of polarization-dependent periodic ripples is explained based on the interference model. We also demonstrated the use of a laser direct writing technique for the fabrication of periodic subwavelength structures that have potential applications in photonic devices.

  7. Electron theory of fast and ultrafast dissipative magnetization dynamics.

    PubMed

    Fähnle, M; Illg, C

    2011-12-14

    For metallic magnets we review the experimental and electron-theoretical investigations of fast magnetization dynamics (on a timescale of ns to 100 ps) and of laser-pulse-induced ultrafast dynamics (few hundred fs). It is argued that for both situations the dominant contributions to the dissipative part of the dynamics arise from the excitation of electron-hole pairs and from the subsequent relaxation of these pairs by spin-dependent scattering processes, which transfer angular momentum to the lattice. By effective field theories (generalized breathing and bubbling Fermi-surface models) it is shown that the Gilbert equation of motion, which is often used to describe the fast dissipative magnetization dynamics, must be extended in several aspects. The basic assumptions of the Elliott-Yafet theory, which is often used to describe the ultrafast spin relaxation after laser-pulse irradiation, are discussed very critically. However, it is shown that for Ni this theory probably yields a value for the spin-relaxation time T(1) in good agreement with the experimental value. A relation between the quantity α characterizing the damping of the fast dynamics in simple situations and the time T(1) is derived. © 2011 IOP Publishing Ltd

  8. WS₂ as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers.

    PubMed

    Wu, Kan; Zhang, Xiaoyan; Wang, Jun; Li, Xing; Chen, Jianping

    2015-05-04

    Two-dimensional (2D) nanomaterials, especially the transition metal sulfide semiconductors, have drawn great interests due to their potential applications in viable photonic and optoelectronic devices. In this work, 2D tungsten disulfide (WS2) based saturable absorber (SA) for ultrafast photonic applications was demonstrated. WS2 nanosheets were prepared using liquid-phase exfoliation method and embedded in polyvinyl alcohol (PVA) thin film for the practical usage. Saturable absorption was discovered in the WS2-PVA SA at the telecommunication wavelength near 1550 nm. By incorporating WS2-PVA SA into a fiber laser cavity, both stable mode locking operation and Q-switching operation were achieved. In the mode locking operation, the laser obtained femtosecond output pulse width and high spectral purity in the radio frequency spectrum. In the Q-switching operation, the laser had tunable repetition rate and output pulse energy of a few tens of nano joule. Our findings suggest that few-layer WS2 nanosheets embedded in PVA thin film are promising nonlinear optical materials for ultrafast photonic applications as a mode locker or Q-switcher.

  9. Ultrafast laser control of backward superfluorescence towards standoff sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariunbold, Gombojav O.; National University of Mongolia, Ulaanbaatar 210646; Baylor University, Waco, Texas 76798

    2014-01-13

    We study infrared backward cooperative emission in a rubidium vapor induced by ultrafast two-photon optical excitations. The laser coherent control of the backward emission is demonstrated by using a pair of 100 fs pulses with a variable time delay. The temporal variation (quantum beat) of the backward beam intensity due to interference of atomic transitions in the rubidium atomic level system 5S-5P-5D is produced and controlled. Based on the obtained experimental results, we discuss possible applications of the developed approach for creation of an effective “guide star” in the sodium atomic layer in the upper atmosphere (mesosphere)

  10. Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations

    NASA Astrophysics Data System (ADS)

    Yang, Chii-Rong; Tseng, Shih-Feng; Chen, Yu-Ting

    2018-06-01

    This study aims to develop a laser-induced reduction approach for graphene oxide (GO) powders fabricated by using high pulsed ultraviolet laser irradiations. Before and after the laser irradiation with different fluences, the physical and electrical properties of homemade GO powders and reduced graphene oxide (rGO) powders were measured and analyzed using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area analyzer, and four-point probe instrument. The laser irradiation parameters included the pulse repetition frequency of 100 kHz, the scanning speed of galvanometers of 50 mm/s, the number of laser irradiated cycles of 10, and the laser fluences of ranging from 0.153 mJ/cm2 to 0.525 mJ/cm2. The laser reduction experiments of GO powders demonstrated that the largest relative intensity of the 2D peak and specific surface area were found at the laser fluence of 0.438 mJ/cm2. Moreover, the electrical resistance sharply decreased from 280 MΩ in the initial GO powders to 0.267 MΩ in rGO powders at a laser irradiation fluence of 0.438. The C/O ratio was increased from 0.232 in the initial GO powders to 1.86 in the rGO powders at a laser irradiation fluence of 0.525 mJ/cm2; furthermore, the C/O ratios increased with increasing the laser fluences.

  11. Surface separation investigation of ultrafast pulsed laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Carter, Richard M.; Thomson, Robert R.; Hand, Duncan P.

    2016-03-01

    Techniques for joining materials, especially optical materials such as glass to structural materials such as metals, or to other optical materials, while maintaining their surface and optical properties are essential for a wide range of industrial applications. Adhesive bonding is commonly used but leads to many issues including optical surface contamination and outgassing. It is possible to generate welds using an ultra-short pulsed laser process, whereby two flat material surfaces are brought into close contact and the laser is focused through the optical material onto the interface. Highly localised melting and rapid resolidification form a strong bond between the two surfaces whilst avoiding significant heating of the surrounding material, which is important for joining materials with different thermal expansion coefficients. Previous reports on ultrafast laser welding have identified a requirement for the surface separation gap to be less than 500nm in order to avoid cracking or ablation at the interface. We have investigated techniques for increasing this gap (to reduce weld fit-up problems), and tested by bonding two surfaces with a weld-controlled gap. These gaps were generated either by a series of etched grooves on the surface of one of the substrates, or by using a cylindrical lens as a substrate. By careful optimisation of parameters such as laser power, process speed and focal position, we were able to demonstrate successful welding with a gap of up to 3μm.

  12. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.

    PubMed

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-02-09

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.

  13. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    PubMed

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  14. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    PubMed

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  15. Study on Ultrafast Photodynamics of Novel Multilayered Thin Films for Device Applications

    DTIC Science & Technology

    2004-07-31

    study ultrafast phase-transition of VO2 thin film. This part of work was started right after the new laser installed. With better laser output...1-3]. With the purpose of combined effect that the proposed ultrafast phase-transition VO2 thin film deposited on a substrate of heavy metal...second point of focus was to study ultrafast phase-transition of VO2 thin film. This part of work was started right after the new laser installed

  16. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam.

    PubMed

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus

    2017-05-01

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The picosecond structure of ultra-fast rogue waves

    NASA Astrophysics Data System (ADS)

    Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Sulimani, Kfir; Lib, Ohad; Steinberg, Hadar; Kolpakov, Stanislav A.; Fridman, Moti

    2018-02-01

    We investigated ultrafast rogue waves in fiber lasers and found three different patterns of rogue waves: single- peaks, twin-peaks, and triple-peaks. The statistics of the different patterns as a function of the pump power of the laser reveals that the probability for all rogue waves patterns increase close to the laser threshold. We developed a numerical model which prove that the ultrafast rogue waves patterns result from both the polarization mode dispersion in the fiber and the non-instantaneous nature of the saturable absorber. This discovery reveals that there are three different types of rogue waves in fiber lasers: slow, fast, and ultrafast, which relate to three different time-scales and are governed by three different sets of equations: the laser rate equations, the nonlinear Schrodinger equation, and the saturable absorber equations, accordingly. This discovery is highly important for analyzing rogue waves and other extreme events in fiber lasers and can lead to realizing types of rogue waves which were not possible so far such as triangular rogue waves.

  18. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  19. Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser.

    PubMed

    Liu, Meng; Luo, Ai-Ping; Xu, Wen-Cheng; Luo, Zhi-Chao

    2016-09-01

    We reported on the observation of dissipative rogue waves (DRWs) induced by soliton explosions in an ultrafast fiber laser. It was found that the soliton explosions could be obtained in the fiber laser at a critical pump power level. During the process of the soliton explosion, the high-amplitude waves that fulfill the rogue wave criteria could be detected. The appearance of the DRWs was identified by characterizing the intensity statistics of the time-stretched soliton profile based on the dispersive Fourier-transform method. Our findings provide the first experimental demonstration that the DRWs could be observed in the soliton explosion regime and further enhance the understanding of the physical mechanism of optical RW generation.

  20. Practical Design and Applications of Ultrafast Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    Baker, Caleb W.

    Vertical External Cavity Surface Emitting Lasers (VECSELs) have become well established in recent years for their design flexibility and promising power scalability. Recent efforts in VECSEL development have focused heavily on expanding the medium into the ultrafast regime of modelocked operation. Presented in this thesis is a detailed discussion regarding the development of ultrafast VECSEL devices. Achievements in continuous wave (CW) operation will be highlighted, followed by several chapters detailing the engineering challenges and design solutions which enable modelocked operation of VECSELs in the ultrafast regime, including the design of the saturable absorbers used to enforce modelocking, management of the net group delay dispersion (GDD) inside the cavity, and the design of the active region to support pulse durations on the order of 100 fs. Work involving specific applications - VECSELs emitting on multiple wavelengths simultaneously and the use of VECSEL seed oscillators for amplification and spectral broadening - will also be presented. Key experimental results will include a novel multi-fold cavity design that produced record-setting peak powers of 6.3 kW from a modelocked VECSEL, an octave-spanning supercontinuum with an average power of 2 W generated using a VECSEL seed and a 2-stage Yb fiber amplifier, and two separate experiments where a VECSEL was made to emit on multiple wavelengths simultaneously in modelocked and highly stable CW operation, respectively. Further, many diagnostic and characterization measurements will be presented, most notably the in-situ probing of a VECSEL gain medium during stable modelocked operation with temporal resolution on the order of 100 fs, but also including characterization of the relaxation rates in different saturable absorber designs and the effectiveness of different methods for managing the net GDD of a device.

  1. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  2. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2014-03-01

    We investigate the ultrafast crystal-to-amorphous phase transition induced by femtosecond pulse laser excitation by exploiting the property of quantum electronic stress (QES) induced by the electron-hole plasma, which follows quantum Hooke's law. We demonstrates that two types of crystal-to-amorphous transitions occur in two distinct material classes: the faster nonthermal process, having a time scale shorter than one picosecond (ps), must occur in materials like ice having an anomalous phase diagram characterized with dTm/dP <0, where Tm is the melting temperature and P is pressure; while the slower thermal process, having a time scale of several ps, occurs preferably in other materials. The nonthermal process is driven by the QES acting like a negative internal pressure, which is generated predominantly by the holes in the electron-hole plasma that increases linearly with hole density. These findings significantly advance our fundamental understanding of physics underlying the ultrafast crystal-to-amorphous phase transitions, enabling quantitative a priori prediction. The work was supported by DOE-BES (Grant # DE-FG02-04ER46148), NSF MRSEC (Grant No. DMR-1121252) and DOE EFRC (Grant Number DE-SC0001061).

  3. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    PubMed

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  4. [The commonest therapeutic methods for laser irradiation of blood].

    PubMed

    Moskvin, S V; Konchugova, T V; Khadartsev, A А

    2017-12-05

    One of the most widely employed methods of laser therapy is laser irradiation of blood (LIB). There are two modifications of this technique, one being intravenous low-intensity laser irradiation of blood (ILIB), the other non-invasive blood irradiation(NLIB). The two methods have been developing independently since either has its advantages and disadvantages. The present article was designed to review the main currently available techniques for laser irradiation of blood which are presented in the form of tables (charts). Replacing the UV irradiation of blood with UV lamps by laser ultraviolet irradiation of blood (LUVIB®) has made it possible to significantly simplify the technique and enhanced its efficiency. The most effective options for ILIB are the combined techniques: ILIB-635 + LUVIB® and ILIB-525 + LUVIB. The most effective technique for ELIB is believed to be the use of low-intensity pulsed laser light with a wavelength of 635 nm and output power up to 40 W.

  5. Effects of laser-magnetic blood irradiation in vivo

    NASA Astrophysics Data System (ADS)

    Zalesskaya, Galina; Ulaschik, Vladimir; Kuchinsky, Andrej; Galay, Olga

    2007-06-01

    Laser-magnetic field action on blood in vivo was studied within a range 440-650 nm. The primary mechanisms of laser-magnetic blood irradiation in vivo were studied at (1) laser and non-laser irradiation with light of various wavelengths, (2) autohemo-magnetic-therapy, (3) multicolored over-vein irradiation of the blood, (4) the laser-magnetic field actions. Hemoglobin is considered as primary photoacceptor of radiation. The dependence of effectiveness of laser action on light wavelength was compared with known action spectra for blood photostimulation. Magnetic field enhancement of the laser- induced reactions was discussed as result of magnetic field influence on ferromagnetic hem inclusions and on a structure of hemoglobin peptide chains. Hemoglobin oxygenation or deoxygenation processes were analyzed as a first stage of the therapeutic effects depending on a preceding hemoglobin oxygenation degree at pathological state. The laser- magnetic irradiation causes tendency to the normalization of these process. It is proposed that the secondary reactions are initiated by reversible structural changes of erythrocytes membrane caused the strong hemoglobin absorption.

  6. Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil-Villalba, A.; Xie, C.; Salut, R.

    We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.

  7. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE PAGES

    Backus, Sterling; Durfee, Charles; Lemons, Randy; ...

    2017-02-10

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  8. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling; Durfee, Charles; Lemons, Randy

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  9. Sapphire capillary interstitial irradiators for laser medicine

    NASA Astrophysics Data System (ADS)

    Shikunova, I. A.; Dolganova, I. N.; Dubyanskaya, E. N.; Mukhina, E. E.; Zaytsev, K. I.; Kurlov, V. N.

    2018-04-01

    In this paper, we demonstrate instruments for laser radiation delivery based on sapphire capillary needles. Such sapphire irradiators (introducers) can be used for various medical applications, such as photodynamic therapy, laser hyperthermia, laser interstitial thermal therapy, and ablation of tumors of various organs. Unique properties of sapphire allow for effective redistribution of the heat, generated in biological tissues during their exposure to laser radiation. This leads to homogeneous distribution of the laser irradiation around the needle, and lower possibility of formation of the overheating focuses, as well as the following non-transparent thrombi.

  10. Intravascular low-level laser irradiation in the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Shi, Hong-Min; Zhang, Hui-Guo; Zhang, Mei-Jue; Xu, Jian; Zhou, Min; Hu, Guo-Qiang

    1998-11-01

    Liu TCY et al have put forward the biological information model on low intensity laser irradiation (BIML): low intensity laser irradiation couples with intracellular messenger through the chromophore absorption in the cell membrane: hot-color laser irradiation activates cAMP phosphodiestererase through Gi protein, or activates phosphoinositide phospholipase C through G protein, or activates one of receptor-associated kinases: cAMP; cold- color laser irradiation activates adenylate cyclase through Gs protein: cAMP$ARUP. In this paper, under the guidance of BIML, we applied the intravascular low intensity He-He laser irradiation on blood to a patient of idiopathic edema, and succeeded.

  11. Bacterial Adhesion on the Titanium and Stainless-Steel Surfaces Undergone Two Different Treatment Methods: Polishing and Ultrafast Laser Treatment

    NASA Astrophysics Data System (ADS)

    Chik, N.; Zain, W. S. Wan Md; Mohamad, A. J.; Sidek, M. Z.; Ibrahim, W. H. Wan; Reif, A.; Rakebrandt, J. H.; Pfleging, W.; Liu, X.

    2018-05-01

    Bacterial adhesion has become a significant problem in many industries causing billions of dollars for its complicated removal treatment and maintenance. In this study, metal surfaces undergone treatment with ultrafast laser with varies power. The microstructure produced on its original surfaces were expected to prevent the adhesion of Escherichia coli (E. coli) ATCC 8739 and Staphylococcus aureus (S. aureus) ATCC 6838. The laser treatment was performed at 380 fs pulse duration, 515 µm central wavelength and a repetition rate of 200 kHz. Stainless steel AISI 316L was treated with an average laser power of 0.04 W (SS-0.04) and 0.11 W (SS-0.11), while Grade 5 titanium alloy was tested with high laser power 0.11 W (T-0.11). The adhesion was observed after 16 hours and the number of adhering bacteria was counted per cm2. The result achieved shows that, increasing the average laser power is leading to an enhanced S. aureus adhesion while E. coli adhesion is reduced which is due to the hydrophobicity interaction and difference in surface texture. Meanwhile, the laser treatment showed significant reduction of the bacterial adhesion on its surface compared to the polished surfaces. Thus, ultrafast laser texturing can be suggested as a promising method to reduce the bacterial adhesion, which reduced the adhesion of >80% for E. coli and >20% for S. aureus.

  12. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.

    PubMed

    Boutopoulos, Christos; Hatef, Ali; Fortin-Deschênes, Matthieu; Meunier, Michel

    2015-07-21

    Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs laser pulses. We demonstrate that 100 nm AuNPs can generate multiple, highly confined (radius down to 550 nm) and transient (life time < 50 ns) nanobubbles. The latter is of significant importance for future development of in vivo AuNP-assisted laser nanosurgery and theranostic applications, where AuNP fragmentation should be avoided to prevent side effects, such as cytotoxicity and immune system's response. The experimental results have been correlated with theoretical modeling to provide an insight to the AuNP-safe cavitation mechanism as well as to investigate the deformation mechanism of the AuNPs at high laser fluences.

  13. Modeling 2D and 3D periodic nanostructuring of materials with ultrafast laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colombier, Jean-Philippe; Rudenko, Anton; Bévillon, Emile; Zhang, Hao; Itina, Tatiana E.; Stoian, Razvan

    2017-03-01

    Generation of periodic arrangements of matter on materials irradiated by laser fields of uniform and isotropic energy distribution is a key issue in controlling laser structuring processes below the diffractive limit. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface [1] and in bulk dielectric materials containing randomly distributed nano-inhomogeneities [2]. We show that both surface and volume patterns can be attributed to spatially ordered electromagnetic solutions of linear and nonlinear Maxwell equations. In particular, simulations revealed that anisotropic energy deposition results from the coherent superposition of the incident and the inhomogeneity-scattered light waves. Transient electronic response is also analyzed by kinetic equations of free electron excitation/relaxation processes for dielectrics and by ab initio calculations for metals. They show that for nonplasmonic metals, ultrafast carrier excitation can drastically affect electronic structures, driving a transient surface plasmonic state with high consequences for optical resonances generation [3]. Comparing condition formations of 2D laser-induced periodic surface structures (LIPSS) and 3D self-organized nanogratings, we will discuss the role of collective scattering of nanoroughness and the feedback-driven growth of the nanostructures. [1] H. Zhang, J.P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, Physical Review B 92, 174109 (2015). [2] A. Rudenko, J.P. Colombier, and T.E. Itina, Physical Review B 93 (7), 075427 (2016). [3] E. Bévillon, J.P. Colombier, V. Recoules, H. Zhang, C. Li and R. Stoian, Physical Review B 93 (16), 165416 (2016).

  14. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    PubMed

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  15. Quantum simulation of ultrafast dynamics using trapped ultracold atoms.

    PubMed

    Senaratne, Ruwan; Rajagopal, Shankari V; Shimasaki, Toshihiko; Dotti, Peter E; Fujiwara, Kurt M; Singh, Kevin; Geiger, Zachary A; Weld, David M

    2018-05-25

    Ultrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude. In these experiments, time-varying forces on neutral atoms in the ground state of a tunable optical trap emulate the electric fields of a pulsed laser acting on bound charged particles. We demonstrate the correspondence with ultrafast science by a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control of the excitation spectrum by potential shaping, observation of sub-cycle unbinding dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope phase dependence of the response to an ultrafast-equivalent pulse. These results establish cold-atom quantum simulation as a complementary tool for studying ultrafast dynamics.

  16. Effect of different laser irradiation on the dysentery bacilli

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Chen, Rong; Chen, Yanjiao; Li, Depin; Wen, Caixia

    1998-08-01

    The S. flexnesi, which have high drug-resistance especially in Cm, Sm, Tc, SD, were irradiated by Ar+ laser at 488 nm and semiconductor laser at 808 nm. The experiment results have shown that both Ar+ laser and semiconductor laser with power density of 1.7 w/cm2 and irradiation dose of 2000 J/cm2 can conduce to the bacterial lethality and increase the mutation rates of the bacterial drug-sensitivity, and 'Colony Count' method have the superiority over the 'Inhibacteria Ring' method. At the mean time it further indicate that the high power semiconductor laser would play an important role in the sciences of laser biological medicine. But the effect of the near infrared semiconductor laser is far lower than that of Ar+ laser of shorter wavelength at the same irradiation dose. It is clear that the output and irradiation dose of near infrared semiconductor laser shall be increased in order to get the same rates of the bacterial lethality and the drug-sensitivity mutation as Ar+ laser's.

  17. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy.

    PubMed

    Plemmons, Dayne A; Tae Park, Sang; Zewail, Ahmed H; Flannigan, David J

    2014-11-01

    The development of ultrafast electron microscopy (UEM) and variants thereof (e.g., photon-induced near-field electron microscopy, PINEM) has made it possible to image atomic-scale dynamics on the femtosecond timescale. Accessing the femtosecond regime with UEM currently relies on the generation of photoelectrons with an ultrafast laser pulse and operation in a stroboscopic pump-probe fashion. With this approach, temporal resolution is limited mainly by the durations of the pump laser pulse and probe electron packet. The ability to accurately determine the duration of the electron packets, and thus the instrument response function, is critically important for interpretation of dynamics occurring near the temporal resolution limit, in addition to quantifying the effects of the imaging mode. Here, we describe a technique for in situ characterization of ultrashort electron packets that makes use of coupling with photons in the evanescent near-field of the specimen. We show that within the weakly-interacting (i.e., low laser fluence) regime, the zero-loss peak temporal cross-section is precisely the convolution of electron packet and photon pulse profiles. Beyond this regime, we outline the effects of non-linear processes and show that temporal cross-sections of high-order peaks explicitly reveal the electron packet profile, while use of the zero-loss peak becomes increasingly unreliable. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, D.

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser

  19. Probing ultrafast proton induced dynamics in transparent dielectrics

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Coughlan, M.; Nersisyan, G.; Senje, L.; Jung, D.; Currell, F.; Riley, D.; Lewis, C. L. S.; Zepf, M.; Dromey, B.

    2018-05-01

    A scheme has been developed permitting the spatial and temporal characterisation of ultrafast dynamics induced by laser driven proton bursts in transparent dielectrics. Advantage is taken of the high degree of synchronicity between the proton bursts generated during laser-foil target interactions and the probing laser to provide the basis for streaking of the dynamics. Relaxation times of electrons (<10‑12 s) are measured following swift excitation across the optical band gap for various glass samples. A temporal resolution of <500 fs is achieved demonstrating that these ultrafast dynamics can be characterized on a single-shot basis.

  20. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser

    NASA Astrophysics Data System (ADS)

    Boutopoulos, Christos; Hatef, Ali; Fortin-Deschênes, Matthieu; Meunier, Michel

    2015-07-01

    Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs laser pulses. We demonstrate that 100 nm AuNPs can generate multiple, highly confined (radius down to 550 nm) and transient (life time < 50 ns) nanobubbles. The latter is of significant importance for future development of in vivo AuNP-assisted laser nanosurgery and theranostic applications, where AuNP fragmentation should be avoided to prevent side effects, such as cytotoxicity and immune system's response. The experimental results have been correlated with theoretical modeling to provide an insight to the AuNP-safe cavitation mechanism as well as to investigate the deformation mechanism of the AuNPs at high laser fluences.Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs

  1. Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Adamovich, Igor; Gord, James R.; Roy, Sukesh

    2017-10-01

    Reacting flows and plasmas are prevalent in a wide array of systems involving defense, commercial, space, energy, medical, and consumer products. Understanding the complex physical and chemical processes involving reacting flows and plasmas requires measurements of key parameters, such as temperature, pressure, electric field, velocity, and number densities of chemical species. Time-resolved measurements of key chemical species and temperature are required to determine kinetics related to the chemical reactions and transient phenomena. Laser-based, noninvasive linear and nonlinear spectroscopic approaches have proved to be very valuable in providing key insights into the physico-chemical processes governing reacting flows and plasmas as well as validating numerical models. The advent of kilohertz rate amplified femtosecond lasers has expanded the multidimensional imaging of key atomic species such as H, O, and N in a significant way, providing unprecedented insight into preferential diffusion and production of these species under chemical reactions or electric-field driven processes. These lasers not only provide 2D imaging of chemical species but have the ability to perform measurements free of various interferences. Moreover, these lasers allow 1D and 2D temperature-field measurements, which were quite unimaginable only a few years ago. The rapid growth of the ultrafast-laser-based spectroscopic measurements has been fueled by the need to achieve the following when measurements are performed in reacting flows and plasmas. They are: (1) interference-free measurements (collision broadening, photolytic dissociation, Stark broadening, etc), (2) time-resolved single-shot measurements at a rate of 1-10 kHz, (3) spatially-resolved measurements, (4) higher dimensionality (line, planar, or volumetric), and (5) simultaneous detection of multiple species. The overarching goal of this article is to review the current state-of-the-art ultrafast-laser-based spectroscopic

  2. [Histopathological study of wound healing process of rat tongue and femur by excimer laser irradiation--possibility of cutting of vital tissue by laser irradiation].

    PubMed

    Ochiai, S

    1990-12-01

    The possibilities of bone and soft tissue ablation without thermal damage by 248 nm KrF excimer laser irradiation were examined. A defect was made on the rat tongue by laser at pulse width: 15 nsec, power density: 12 W/cm2, pulse repetition rate: 20 Hz and irradiated time: 60 seconds. The same size defect was made by stainless steel surgical knife for control. The tongues were examined histopathologically at timed sequence from 1 hour to 7 days after operation. The rat femur was cut by laser at pulse width: 15 nsec, power density: 2.6 kW/cm2, pulse repetition rate: 30 Hz and irradiated time: 3 minutes. The femur was amputated by dental diamond disc for control. The femurs were examined histopathologically at timed sequence from 1 hour to 16 weeks after operation. The rat tongue was easily excised with little thermal injury by laser irradiation, and its healing process is almost the same as that of the control. The laser irradiation had no hemostatic effect. The femur could be amputated by laser irradiation but its wound healing was prolonged. The laser ablation stump showed massive necrosis probably due to the thermal injury and these necrotic bones likely disturbed the wound repair. The degree of the thermal injury by the excimer laser irradiation might depend on the irradiation condition because the condition of bone amputation was stronger than that of tongue excision.

  3. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti

    PubMed Central

    Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F.; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.; Di Fonzo, S.; D'Amico, F.; Di Cicco, A.; Gunnella, R.; Filipponi, A.; Giglia, A.; Nannarone, S.; Masciovecchio, C.

    2015-01-01

    High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs. PMID:26798835

  4. Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro

    2013-06-01

    Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.

  5. High-spatial-frequency periodic surface structures on steel substrate induced by subnanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hikage, Haruki; Nosaka, Nami; Matsuo, Shigeki

    2017-11-01

    By irradiation with 0.5 ns laser pulses at a wavelength λ = 1.064 µm, laser-induced periodic surface structures (LIPSS) were fabricated on a steel substrate. In addition to low-spatial-frequency LIPSS (LSFL), a high-spatial-frequency LIPSS (HSFL) of period Λ ∼ 0.4λ with two-dimensional expansion was formed, although it is generally recognized that HSFL are formed only by ultrafast laser pulses. The wavevector of the observed HSFL was perpendicular to the electric field of the irradiated laser pulse (each ridge/groove of the HSFL was parallel to the electric field). We discuss the relationship between the formation of HSFL and the pulse duration.

  6. In vitro laser nerve repair: protein solder strip irradiation or irradiation alone?

    PubMed

    Trickett, I; Dawes, J M; Knowles, D S; Lanzetta, M; Owen, E R

    1997-01-01

    This study investigated the potential of sutureless nerve repair using two promising laser fusion methods: direct 2 microns irradiation of the epineurium, and protein solder assisted epineurial fusion using a 800 nm laser. Laser anastomosis of the rat sciatic nerve was performed in vitro without stay sutures in two groups of six animals. In the first group, direct laser fusion used a pulsed Cr, Tm: YAG laser. In the second group an albumin-based fluid solder containing the dye indocyanine green was applied to the epineurium, then irradiated with a diode laser. These two techniques were compared with regards to coaptation success and axonal damage. Direct laser welding produced weak bonds despite microscopic investigation of the irradiated nerves showing fusion of the epineurium. The unsatisfactory bonding can be attributed to poor tissue overlap and insufficient protein in the thin epineurium denaturation of underlying axons was also observed. In contrast, the laser solder method produced successful welds with greatly reduced axonal damage, and significantly improved the tensile strength. This study confirmed the technical possibilities of sutureless nerve anastomosis. Laser activated solders enable stronger bonds, by the addition of protein to the anastomosis site, and less thermal damage to underlying tissue through selective absorption of laser energy by dye in the solder. Further in vivo studies are required before drawing final conclusions.

  7. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-04-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  8. Numerical simulations of self-focusing of ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Fibich, Gadi; Ren, Weiqing; Wang, Xiao-Ping

    2003-05-01

    Simulation of nonlinear propagation of intense ultrafast laser pulses is a hard problem, because of the steep spatial gradients and the temporal shocks that form during the propagation. In this study we adapt the iterative grid distribution method of Ren and Wang [J. Comput. Phys. 159, 246 (2000)] to solve the two-dimensional nonlinear Schrödinger equation with normal time dispersion, space-time focusing, and self-steepening. Our simulations show that, after the asymmetric temporal pulse splitting, the rear peak self-focuses faster than the front one. As a result, the collapse of the rear peak is arrested before that of the front peak. Unlike what has sometimes been conjectured, however, collapse of the two peaks is not arrested through multiple splittings, but rather through temporal dispersion.

  9. Unified Time and Frequency Picture of Ultrafast Atomic Excitation in Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Patchkovskii, S.; Ivanov, M.; Eichmann, U.

    2017-01-01

    Excitation and ionization in strong laser fields lies at the heart of such diverse research directions as high-harmonic generation and spectroscopy, laser-induced diffraction imaging, emission of femtosecond electron bunches from nanotips, self-guiding, filamentation and mirrorless lasing during propagation of light in atmospheres. While extensive quantum mechanical and semiclassical calculations on strong-field ionization are well backed by sophisticated experiments, the existing scattered theoretical work aiming at a full quantitative understanding of strong-field excitation lacks experimental confirmation. Here we present experiments on strong-field excitation in both the tunneling and multiphoton regimes and their rigorous interpretation by time dependent Schrödinger equation calculations, which finally consolidates the seemingly opposing strong-field regimes with their complementary pictures. Most strikingly, we observe an unprecedented enhancement of excitation yields, which opens new possibilities in ultrafast strong-field control of Rydberg wave packet excitation and laser intensity characterization.

  10. THz-driven demagnetization with perpendicular magnetic anisotropy: towards ultrafast ballistic switching

    NASA Astrophysics Data System (ADS)

    Polley, Debanjan; Pancaldi, Matteo; Hudl, Matthias; Vavassori, Paolo; Urazhdin, Sergei; Bonetti, Stefano

    2018-02-01

    We study THz-driven spin dynamics in thin CoPt films with perpendicular magnetic anisotropy. Femtosecond magneto-optical Kerr effect measurements show that demagnetization amplitude of about 1% can be achieved with a peak THz electric field of 300 kV cm-1, and a corresponding peak magnetic field of 0.1 T. The effect is more than an order of magnitude larger than observed in samples with easy-plane anisotropy irradiated with the same field strength. We also utilize finite-element simulations to design a meta-material structure that can enhance the THz magnetic field by more than an order of magnitude, over an area of several tens of square micrometers. Magnetic fields exceeding 1 Tesla, generated in such meta-materials with the available laser-based THz sources, are expected to produce full magnetization reversal via ultrafast ballistic precession driven by the THz radiation. Our results demonstrate the possibility of table-top ultrafast magnetization reversal induced by THz radiation.

  11. Ultrafast Manipulation of Magnetic Order with Electrical Pulses

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    During the last 30 years spintronics has been a very rapidly expanding field leading to lots of new interesting physics and applications. As with most technology-oriented fields, spintronics strives to control devices with very low energy consumption and high speed. The combination of spin and electronics inherent to spintronics directly tackles energy efficiency, due to the non-volatility of magnetism. However, speed of operation of spintronic devices is still rather limited ( nanoseconds), due to slow magnetization precessional frequencies. Ultrafast magnetism (or opto-magnetism) is a relatively new field that has been very active in the last 20 years. The main idea is that intense femtosecond laser pulses can be used in order to manipulate the magnetization at very fast time-scales ( 100 femtoseconds). However, the use of femtosecond lasers poses great application challenges such as diffraction limited optical spot sizes which hinders device density, and bulky and expensive integration of femtosecond lasers into devices. In this thesis, our efforts to combine ultrafast magnetism and spintronics are presented. First, we show that the magnetization of ferrimagnetic GdFeCo films can be switched by picosecond electronic heat current pulses. This result shows that a non-thermal distribution of electrons directly excited by laser is not necessary for inducing ultrafast magnetic dynamics. Then, we fabricate photoconductive switch devices on a LT-GaAs substrate, to generate picosecond electrical pulses. Intense electrical pulses with 10ps (FWHM) duration and peak current up to 3A can be generated and delivered into magnetic films. Distinct magnetic dynamics in CoPt films are found between direct optical heating and electrical heating. More importantly, by delivering picosecond electrical pulses into GdFeCo films, we are able to deterministically reverse the magnetization of GdFeCo within 10ps. This is more than one order of magnitude faster than any other electrically

  12. Central nervous system transplantation benefited by low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, Rachel; Wollman, Yoram; Simantov, Rabi; Nissan, Moshe; Barr-Nea, Lilian

    1990-06-01

    Effect of low-level laser irradiation on the central nervous system transplantation is reported. Ernbryonal brain allografts were transplanted into the brain of 20 adult rats and peripheral nerve graft transplanted into the severely injured spinal cord of 16 dogs. The operated wound of 10 rats and 8 dogs were exposed daily for 21 days to lowpower laser irradiation CW HeNe laser (35 mW, 632.8 run, energy density of 30 J/cm2 at each point for rats and 70 J/cm2 at each point for dogs). This study shows that (i) the low-level laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between embryonal transplants and host brain; (ii) Dogs made paraplegic by spinal cord injury were able to walk 3-6 months later. Recovery of these dogs was effected by the implantation of a fragment of autologous sciatic nerve at the site of injury and subsequently exposing the dogs to low-level laser irradiation. The effect of laser irradiation on the embryonal nerve cells grown in tissue culture was also observed. We found that low-level laser irradiation induced intensive migration of neurites outward of the aggregates 15-22 The results of the present study and our previous investigations suggest that low-level laser irradiation is a novel tool for treatment of peripheral and central nervous system injuries.

  13. Large-area tungsten disulfide for ultrafast photonics.

    PubMed

    Yan, Peiguang; Chen, Hao; Yin, Jinde; Xu, Zihan; Li, Jiarong; Jiang, Zike; Zhang, Wenfei; Wang, Jinzhang; Li, Irene Ling; Sun, Zhipei; Ruan, Shuangchen

    2017-02-02

    Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted significant interest in various optoelectronic applications due to their excellent nonlinear optical properties. One of the most important applications of TMDs is to be employed as an extraordinary optical modulation material (e.g., the saturable absorber (SA)) in ultrafast photonics. The main challenge arises while embedding TMDs into fiber laser systems to generate ultrafast pulse trains and thus constraints their practical applications. Herein, few-layered WS 2 with a large-area was directly transferred on the facet of the pigtail and acted as a SA for erbium-doped fiber laser (EDFL) systems. In our study, WS 2 SA exhibited remarkable nonlinear optical properties (e.g., modulation depth of 15.1% and saturable intensity of 157.6 MW cm -2 ) and was used for ultrafast pulse generation. The soliton pulses with remarkable performances (e.g., ultrashort pulse duration of 1.49 ps, high stability of 71.8 dB, and large pulse average output power of 62.5 mW) could be obtained in a telecommunication band. To the best of our knowledge, the average output power of the mode-locked pulse trains is the highest by employing TMD materials in fiber laser systems. These results indicate that atomically large-area WS 2 could be used as excellent optical modulation materials in ultrafast photonics.

  14. Digital micromirror device-based ultrafast pulse shaping for femtosecond laser.

    PubMed

    Gu, Chenglin; Zhang, Dapeng; Chang, Yina; Chen, Shih-Chi

    2015-06-15

    In this Letter, we present a new digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., DUPS. To the best of our knowledge, the DUPS is the first binary pulse shaper that can modulate high repetition rate laser sources at up to a 32 kHz rate (limited by the DMD pattern rate). Since pulse modulation occurs in the frequency domain through reflective two-dimensional micromirror arrays, i.e., DMD, the DUPS is not only compact and low in cost, but also possesses a high damage threshold that is critical for high pulse energy laser applications. In this work, a grating pair was introduced in the DUPS to compensate the DMD induced dispersion. Double pulses were generated to validate the effectiveness of the DUPS and calibrate the system. Subsequently, we demonstrated arbitrary phase shaping capability by continuous tuning of group velocity dispersion (GVD) and modulation of half-spectrum shifted by π. The overall efficiency was measured to be 1.7%, while an efficiency of up to 5% can be expected when high efficiency gratings and properly coated DMDs are used.

  15. Acute effects of pulsed-laser irradiation on the arterial wall

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Kvasnicka, Jan; Lu, Hanjiang; Geschwind, Herbert J.; Levame, Micheline; Bousbaa, Hassan; Lange, Francoise

    1992-08-01

    Pulsed laser coronary angioplasty with an excimer or a holmium-yttrium-aluminum-garnet (Ho:YAG) laser may become an alternative treatment for patients with coronary artery disease. However, little is known about its acute consequences on the normal arterial wall. This study was designed to examine the acute histologic consequences of these two pulsed lasers on the arterial wall of normal iliac arteries in rabbits. Irradiation with each laser was performed in 15 normal iliac sites on eight male New Zealand white rabbits. The excimer laser was operated at 308 nm, 25 Hz, 50 mJ/mm2/pulse, and 135 nsec/pulse and the Ho:YAG laser was operated at 2.1 micrometers , 3/5 Hz, 400 mJ/pulse, and 250 microsecond(s) ec/pulse. The excimer and Ho:YAG laser were coupled into a multifiber wire-guided catheter of 1.4 and 1.5 mm diameter, respectively. The sites irradiated with excimer or Ho:YAG laser had the same kinds of histologic features, consisting of exfoliation of the endothelium, disorganization of internal elastic lamina, localized necrosis of vascular smooth muscle cells, and fissures in the medial layer. However, the sites irradiated with excimer laser had lower grading scores than those irradiated with Ho:YAG laser (p < 0.05). Laser irradiation with excimer or Ho:YAG laser of normal arteries results in localized mechanical vascular injury.

  16. LIAD-fs scheme for studies of ultrafast laser interactions with gas phase biomolecules.

    PubMed

    Calvert, C R; Belshaw, L; Duffy, M J; Kelly, O; King, R B; Smyth, A G; Kelly, T J; Costello, J T; Timson, D J; Bryan, W A; Kierspel, T; Rice, P; Turcu, I C E; Cacho, C M; Springate, E; Williams, I D; Greenwood, J B

    2012-05-14

    Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities >10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency. This journal is © the Owner Societies 2012

  17. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    PubMed Central

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-01-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172

  18. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGES

    Gaudin, J.; Fourment, C.; Cho, B. I.; ...

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  19. Ultrastructural properties of laser-irradiated and heat-treated dentin.

    PubMed

    Rohanizadeh, R; LeGeros, R Z; Fan, D; Jean, A; Daculsi, G

    1999-12-01

    Previous studies using scanning electron microscopy and infrared absorption spectroscopy reported that laser irradiation causes compositional changes in enamel. The purpose of this study was to evaluate the ultrastructural and compositional changes in dentin caused by irradiation with a short-pulse laser (Q-switched Nd:YAG). The irradiated and non-irradiated areas of the lased dentin samples were investigated by scanning (SEM) and transmission electron microscopy (TEM), micro-micro electron diffraction, and electron microprobe analysis of dispersive energy (EDX). Heat-treated dentin was similarly investigated. This study demonstrated that laser irradiation resulted in the recrystallization of dentin apatite and in the formation of additional calcium phosphate phases consisting of magnesium-substituted beta-tricalcium phosphate, beta-TCMP, beta-(Ca,Mg)3(PO4)2, and tetracalcium phosphate, TetCP, Ca4(PO4)O. TEM analyses of the modified and unmodified zones of the irradiated areas showed two types of crystal populations: much larger crystals from the modified zone and crystals with size and morphology similar to those of dentin apatite in the unmodified zone. The morphology of crystals in the modified zones in the irradiated dentin resembled those of dentin sintered at 800 or 950 degrees C. In the irradiated areas (modified and unmodified zones), the Ca/P ratio was lower compared with that in the non-irradiated dentin. The Mg/Ca ratio in the modified zones was higher than that in the unmodified zones and in the non-irradiated dentin. In sintered dentin, the Mg/Ca ratio increased as a function of sintering temperature. The ultrastructural and compositional changes observed in laser-irradiated dentin may be attributed to high temperature and high pressure induced by microplasma during laser irradiation. These changes may alter the solubility of the irradiated dentin, making it less susceptible to acid dissolution or to the caries process.

  20. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, M. K.; Velpula, P. K.; Colombier, J. P.

    2014-01-13

    We report single-shot, high aspect ratio nanovoid fabrication in bulk fused silica using zeroth order chirp-controlled ultrafast laser Bessel beams. We identify a unique laser pulse length and energy dependence of the physical characteristics of machined structures over which nanovoids of diameter in the range 200–400 nm and aspect ratios exceeding 1000 can be fabricated. A mechanism based on the axial energy deposition of nonlinear ultrashort Bessel beams and subsequent material densification or rarefaction in fused silica is proposed, intricating the non-diffractive nature with the diffusing character of laser-generated free carriers. Fluid flow through nanochannel is also demonstrated.

  1. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    PubMed

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  2. Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses.

    PubMed

    Liu, Zeming; Siegel, Jan; Garcia-Lechuga, Mario; Epicier, Thierry; Lefkir, Yaya; Reynaud, Stéphanie; Bugnet, Matthieu; Vocanson, Francis; Solis, Javier; Vitrant, Guy; Destouches, Nathalie

    2017-05-23

    Controlling plasmonic systems with nanometer resolution in transparent films and their colors over large nonplanar areas is a key issue for spreading their use in various industrial fields. Using light to direct self-organization mechanisms provides high-speed and flexible processes to meet this challenge. Here, we describe a route for the laser-induced self-organization of metallic nanostructures in 3D. Going beyond the production of planar nanopatterns, we demonstrate that ultrafast laser-induced excitation combined with nonlinear feedback mechanisms in a nanocomposite thin film can lead to 3D self-organized nanostructured films. The process, which can be extended to complex layered composite systems, produces highly uniform large-area nanopatterns. We show that 3D self-organization originates from the simultaneous excitation of independent optical modes at different depths in the film and is activated by the plasmon-induced charge separation and thermally induced NP growth mechanisms. This laser color marking technique enables multiplexed optical image encoding and the generated nanostructured Ag NPs:TiO 2 films offer great promise for applications in solar energy harvesting, photocatalysis, or photochromic devices.

  3. Generation of nanoclusters by ultrafast laser ablation of Al: Molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miloshevsky, Alexander; Phillips, Mark C.; Harilal, Sivanandan S.

    The laser ablation of materials induced by an ultrashort femtosecond pulse is a complex phenomenon, which depends on both the material properties and the properties of the laser pulse. The unique capability of a combination of molecular dynamics (MD) and Momentum Scaling Model (MSM) methods is developed and applied to a large atomic system for studying the process of ultrafast laser-material interactions, behavior of matter in a highly non-equilibrium state, material disintegration, and formation of nanoparticles (NPs). Laser pulses with several fluences in the range from 500 J/m2 to 5000 J/m2 interacting with a large system of aluminum atoms aremore » simulated. The response of Al material to the laser energy deposition is investigated within the finite-size laser spot. It is found that the shape of the plasma plume is dynamically changing during an expansion process. At several tens of picoseconds it can be characterized as a long hollow ellipsoid surrounded by atomized and nano-clustered particles. The time evolution of NP clusters in the plume is investigated. The collisions between the single Al atoms and generated NPs and fragmentation of large NPs determine the fractions of different-size NP clusters in the plume. The MD-MSM simulations show that laser fluence greatly affects the size distribution of NPs, their polar angles, magnitude and direction vectors of NP velocities. These results and predictions are supported by the experimental data and previous MD simulations.« less

  4. Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation

    DOE PAGES

    Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun; ...

    2016-10-10

    We directly monitored the lattice dynamics in PbSe quantum dots induced by laser excitation using ultrafast electron di raction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any signi cant phonon bottleneck e ect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon- induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates signi cantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.

  5. Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun

    We directly monitored the lattice dynamics in PbSe quantum dots induced by laser excitation using ultrafast electron di raction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any signi cant phonon bottleneck e ect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon- induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates signi cantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.

  6. Effect of laser soldering irradiation on covalent bonds of pure collagen.

    PubMed

    Constantinescu, Mihai A; Alfieri, Alex; Mihalache, George; Stuker, Florian; Ducray, Angélique; Seiler, Rolf W; Frenz, Martin; Reinert, Michael

    2007-03-01

    Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined

  7. Compact ultrafast semiconductor disk laser for nonlinear imaging in living organisms

    NASA Astrophysics Data System (ADS)

    Aviles-Espinosa, Rodrigo; Filippidis, G.; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo

    2011-03-01

    Ultrashort pulsed laser systems (such as Ti:sapphire) have been used in nonlinear microscopy during the last years. However, its implementation is not straight forward as they are maintenance-intensive, bulky and expensive. These limitations have prevented their wide-spread use for nonlinear imaging, especially in "real-life" biomedical applications. In this work we present the suitability of a compact ultrafast semiconductor disk laser source, with a footprint of 140x240x70 mm, to be used for nonlinear microscopy. The modelocking mechanism of the laser is based on a quantumdot semiconductor saturable absorber mirror (SESAM). The laser delivers an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. Its center wavelength is 965 nm which is ideally suited for two-photon excitation of the widely used Green Fluorescent Protein (GFP) marker as it virtually matches its twophoton action cross section. We reveal that it is possible to obtain two photon excited fluorescence images of GFP labeled neurons and secondharmonic generation images of pharynx and body wall muscles in living C. elegans nematodes. Our results demonstrate that this compact laser is well suited for long-term time-lapse imaging of living samples as very low powers provide a bright signal. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its wide-spread adoption in "real-life" applications.

  8. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  9. Photobiomodulation of wound healing via visible and infrared laser irradiation.

    PubMed

    Solmaz, Hakan; Ulgen, Yekta; Gulsoy, Murat

    2017-05-01

    Fibroblast cells are known to be one of the key elements in wound healing process, which has been under the scope of research for decades. However, the exact mechanism of photobiomodulation on wound healing is not fully understood yet. Photobiomodulation of 635 and 809 nm laser irradiation at two different energy densities were investigated with two independent experiments; first, in vitro cell proliferation and then in vivo wound healing. L929 mouse fibroblast cell suspensions were exposed with 635 and 809 nm laser irradiations of 1 and 3 J/cm 2 energy densities at 50 mW output power separately for the investigation of photobiomodulation in vitro. Viabilities of cells were examined by means of MTT assays performed at the 24th, 48th, and 72nd hours following the laser irradiations. Following the in vitro experiments, 1 cm long cutaneous incisional skin wounds on Wistar albino rats (n = 24) were exposed with the same laser sources and doses in vivo. Wound samples were examined on 3rd, 5th, and 7th days of healing by means of mechanical tensile strength tests and histological examinations. MTT assay results showed that 635 nm laser irradiation of both energy densities after 24 h were found to be proliferative. One joule per square centimeter laser irradiation results also had positive effect on cell proliferation after 72 h. However, 809 nm laser irradiation at both energy densities had neither positive nor negative affects on cell viability. In vivo experiment results showed that, 635 nm laser irradiation of both energy densities stimulated wound healing in terms of tensile strength, whereas 809 nm laser stimulation did not cause any stimulative effect. The results of mechanical tests were compatible with the histological evaluations. In this study, it is observed that 635 nm laser irradiations of low energy densities had stimulative effects in terms of cell proliferation in vitro and mechanical strength of incisions in vivo. However, 809 nm laser

  10. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  11. X-ray Emission Characteristics of Ultra-High Energy Density Relativistic Plasmas Created by Ultrafast Laser Irradiation of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.

    2014-10-01

    Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  12. Understanding of the Formation of Micro/Nanoscale Structures on Metal Surfaces by Ultrafast Pulse Laser Processing

    NASA Astrophysics Data System (ADS)

    Peng, Edwin

    In the recent decades, there has been much interest in functionalized surfaces produced by ultrafast laser processing. Using pulse lasers with nanosecond to femtosecond time scale, a wide range of micro/nanoscale structures can be produced on virtually all metal surfaces. These surface structures create special optoelectronic, wetting, and tribological properties with a diverse range of potential applications. The formation mechanisms of these surface structures, especially microscale, mound-like structures, are not fully understood. There has been wide study of ultrafast laser processing of metals. Yet, the proposed formation models present in current literature often lack sufficient experimental verification. Specifically, many studies are limited to surface characterization, e.g. scanning electron microscopy of the surfaces of these micro/nanoscale structures. Valuable insight into the physical processes responsible for formation can be obtained if standard material science characterization methods are performed across the entire mound. In our study, we examined mound-like structures formed on three metal alloys. Using cross section and 3D slice and view operations by a dual beam scanning electron microscope-focused ion beam, the interior microstructures of these mounds are revealed. Taking advantage of amorphous phase formation during laser processing of Ni60Nb40, we verified the fluence-dependent formation model: mounds formed at low fluence are primarily the result of ablation while mounds formed at high fluence are formed by both ablation and rapid resolidification by hydrodynamical fluid flow. For the first time, we revealed the cross section of a wide variety of mound-like structures on titanium surfaces. The increased contribution to mound formation by fluid flow with increasing fluence was observed. Finally, a 3D scanning electron microscopy technique was applied for mounds produced on silver surface by delayed-pulse laser processing. The interior

  13. Histological observation on dental hard tissue irradiated by ultrashort-pulsed laser

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2006-04-01

    In the field of dentistry, effectiveness of USPL irradiation is researched because USPL has less thermal side effect to dental hard tissue. In this paper, we observed morphological change and optical change of dental hard tissue irradiated by USPL for discussing the safety and effectiveness of USPL irradiation to dental hard tissues. Irradiated samples were crown enamel and root dentin of bovine teeth. Lasers were Ti:sapphire laser, which had pulse duration (P d)of 130 fsec and pulse repetition rate (f) of 1kHz and wavelength (l) of 800nm, free electron laser (FEL), which had P d of 15 μsec and f of 10Hz and wavelength of 9.6μm, and Er:YAG laser, which had P d of 250 μsec and f of 10Hz and wavelength of 2.94μm. After laser irradiation, the sample surfaces and cross sections were examined with SEM and EDX. The optical change of samples was observed using FTIR. In SEM, the samples irradiated by USPL had sharp and accurate ablation with no crack and no carbonization. But, in FEL and Er:YAG laser, the samples has rough ablation with crack and carbonization. It was cleared that the P/Ca ratio of samples irradiated by USPL had same value as non-irradiated samples. There was no change in the IR absorption spectrum between samples irradiated by USPL and non-irradiated sample. But, they of samples irradiated by FEL and Er:YAG laser, however, had difference value as non-irradiated samples. These results showed that USPL might be effective to ablate dental hard tissue without thermal damage.

  14. Nonthermal ultrafast optical control of the magnetization in garnet films

    NASA Astrophysics Data System (ADS)

    Hansteen, Fredrik; Kimel, Alexey; Kirilyuk, Andrei; Rasing, Theo

    2006-01-01

    We demonstrate coherent optical control of the magnetization in ferrimagnetic garnet films on the femtosecond time scale through a combination of two different ultrafast and nonthermal photomagnetic effects and by employing multiple pump pulses. Linearly polarized laser pulses are shown to create a long-lived modification of the magnetocrystalline anisotropy via optically induced electron transfer between nonequivalent ion sites while circularly polarized pulses additionally act as strong transient magnetic field pulses originating from the nonabsorptive inverse Faraday effect. Due to the slow phonon-magnon interaction in these dielectrics, thermal effects of the laser excitation are clearly distinguished from the ultrafast nonthermal effects and can be seen only on the time scale of nanoseconds for sample temperatures near the Curie point. The reported effects open exciting possibilities for ultrafast manipulation of spins by light, and provide insight into the physics of magnetism on ultrafast time scales.

  15. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE PAGES

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.; ...

    2017-02-13

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  16. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  17. Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.

  18. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  19. Ultrafast gating of a mid-infrared laser pulse by a sub-pC relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesar, D. B.; Musumeci, P.; Alesini, D.

    In this paper we discuss a relative time-of-arrival measurement scheme between an electron beam and a mid-infrared laser pulse based on the electron-beam controlled transmission in semiconductor materials. This technique can be used as a time-stamping diagnostic in ultrafast electron diffraction or microscopy. In particular, our characterization of Germanium demonstrates that sub-ps time-of-arrival sensitivity could be achieved in a single shot and with very low charge beams (<1 pC). Detailed measurements as a function of the beam charge and the laser wavelength offer insights on the free carrier dynamics in the semiconductor upon excitation by the electron beam.

  20. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    NASA Astrophysics Data System (ADS)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  1. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaya, K.; Motomura, K.; Kukk, E.

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil.more » This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. Finally, this validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.« less

  2. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    DOE PAGES

    Nagaya, K.; Motomura, K.; Kukk, E.; ...

    2016-06-16

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil.more » This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. Finally, this validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.« less

  3. Thermal imaging of high power diode lasers subject to back-irradiance

    NASA Astrophysics Data System (ADS)

    Li, C.; Pipe, K. P.; Cao, C.; Thiagarajan, P.; Deri, R. J.; Leisher, P. O.

    2018-03-01

    CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying the relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.

  4. Ultrastructure observation of middle ear mucosa with laser irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Mengkui; Yang, Shulan; Fang, Yaoyun; Sun, Jianhe

    1998-08-01

    In order to study the effects of He-Ne laser on the mucosa of middle ear mucosa from 9 patients with chronic otitis media, all of who had slight damp eardrum, were irradiated by low power He-Ne laser ten minutes per day for ten days. Specimen was taken before and after irradiation and observed under scanning electron microscope. It was found that the surface structure of the mucosa was more integral, the arrangement of the epithelial cell was closer together and microvilli arose among the noncilliated cells after irradiation. The inflammatory cell disappeared arid the morphologic structure appeared normal. These data provided the therapeutic evidence for the lower power He-Ne laser irradiation on patients with chronic purulent otitis midia.

  5. Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Varma, G. Sreevidya; Chaturvedi, Abhishek; Sabapathy, Tamilarasan; Ramamurty, Upadrasta; Asokan, Sundarrajan

    2017-04-01

    Multi-scan waveguides have been inscribed in GeS2 glass sample with different pulse energies and translation speeds. Mechanical and structural changes on GeS2 binary glass in response to irradiation to 1047 nm femto-second laser pulses have been investigated. The optical characterization of these waveguides has been done at 1550 nm of laser wavelength and the material response to laser exposure is characterized by both nanoindentation studies and micro-Raman spectroscopy. Nanoindentation investigations show a decrease in hardness (H) and elastic modulus (E) upon laser irradiation. The change in E and H are found to be varying with the translational speed, pulse energy and hence the net-fluence at the sample. These changes are correlated with variations in the Raman response of photo-exposed glass which is interpreted in terms of structural modifications made by the laser inscriptions to the glassy network. The mechanical behavior and local structural changes on waveguide writing is found to be dependent on net-fluence and it is correlated with the preparation conditions like melt temperature and cooling rate.

  6. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  7. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  8. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  9. Wavelength Dependence of Excimer Laser Irradiation Effects on Ethylene-Tetrafluoroethylene Copolymer

    NASA Astrophysics Data System (ADS)

    Hamada, Yuji; Kawanishi, Shunichi; Nishii, Masanobu; Sugimoto, Shun'ichi; Yamamoto, Tadashi

    1994-08-01

    Irradiation with an ArF laser at wavelength of 193 nm formed diene in a whole ethylene-tetrafluoroethylene copolymer (ETFE) film and irradiation with a KrF and a XeCl laser at 248 and 308 nm induced the carbonization of ETFE. ArF-laser radiation at 193 nm formed diene in the bulk of ETFE via the process of single-photon absorption, and in case of KrF and XeCl-laser irradiation multiphoton absorption brought about the carbonization of ETFE. The surface analysis by X-ray photoelectron spectroscopy showed that excimer laser-induced elimination of fluorine atoms depended on the laser wavelength.

  10. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    PubMed

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ultrafast-laser dicing of thin silicon wafers: strategies to improve front- and backside breaking strength

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Egle, Bernadette; Stroj, Sandra; Bodea, Marius; Schwarz, Elisabeth; Fasching, Gernot

    2017-12-01

    Thin 50-µm silicon wafers are used to improve heat dissipation of chips with high power densities. However, mechanical dicing methods cause chipping at the edges of the separated dies that reduce the mechanical stability. Thermal load changes may then lead to sudden chip failure. Recent investigations showed that the mechanical stability of the cut chips could be increased using ultrashort-pulsed lasers, but only at the laser entrance (front) side and not at the exit (back) side. The goal of this study was to find strategies to improve both front- and backside breaking strength of chips that were cut out of an 8″ wafer with power metallization using an ultrafast laser. In a first experiment, chips were cut by scanning the laser beam in single lines across the wafer using varying fluencies and scan speeds. Three-point bending tests of the cut chips were performed to measure front and backside breaking strengths. The results showed that the breaking strength of both sides increased with decreasing accumulated fluence per scan. Maximum breaking strengths of about 1100 MPa were achieved at the front side, but only below 600 MPa were measured for the backside. A second experiment was carried out to optimize the backside breaking strength. Here, parallel line scans to increase the distance between separated dies and step cuts to minimize the effect of decreasing fluence during scribing were performed. Bending tests revealed that breaking strengths of about 1100 MPa could be achieved also on the backside using the step cut. A reason for the superior performance could be found by calculating the fluence absorbed by the sidewalls. The calculations suggested that an optimal fluence level to minimize thermal side effects and periodic surface structures was achieved due to the step cut. Remarkably, the best breaking strengths values achieved in this study were even higher than the values obtained on state of the art ns-laser and mechanical dicing machines. This is the first

  12. Thermal imaging of high power diode lasers subject to back-irradiance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.; Pipe, K. P.; Cao, C.

    In this study, CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying themore » relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.« less

  13. Thermal imaging of high power diode lasers subject to back-irradiance

    DOE PAGES

    Li, C.; Pipe, K. P.; Cao, C.; ...

    2018-03-07

    In this study, CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying themore » relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.« less

  14. Protective Effect of 940 nm Laser on Gamma-Irradiated Mice

    PubMed Central

    Efremova, Yulia; Navratil, Leos

    2015-01-01

    Abstract Objective: The purpose of this study was to investigate the radioprotective features of 940 nm laser on the life span of mice, and absolute counts of blood cells and their proportions in gamma-irradiated mice. Background data: An important feature of laser light is activation of mitotic division and differentiation of cells, which may be useful in activation of hematopoiesis in gamma-irradiated organisms. Materials and methods: Mice were randomly assigned to 11 groups according to the type(s) of influence. Generally, mice were irradiated in three different ways: with laser at different fluences, with gamma irradiation, or by combination of laser at different fluences and gamma irradiation in a different order. Mice were treated with 940 nm laser at 3, 12, or 18 J/cm2 and/or a lethal dose of gamma irradiation (8.7 Gy). Each group was randomly subdivided into two subgroups, in which the life span of the mice and blood cell counts (on 12th and 45th day after gamma irradiation) were analyzed. Results: Laser (940 nm) at a fluence of 3 J/cm2 significantly prolonged the life span of gamma-irradiated mice (p<0.05). In the same group, counts of white blood cells, lymphocytes, and neutrophils were higher on day 12 than in the gamma group. On day 45 after gamma irradiation, some signs of hematopoiesis repair were found in blood. There were no significant differences in counts of erythrocytes, monocytes, neutrophils, or the proportion of neutrophils between this group and the control group. Conclusions: In summary, 940 nm laser at a fluence of 3 J/cm2 demonstrates radioprotective features in an experiment with lethally irradiated mice. Mechanisms responsible for this effect will be investigated in further studies. PMID:25654740

  15. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  16. Heat profiles of laser-irradiated nails

    NASA Astrophysics Data System (ADS)

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A.; Kendler, Michael; Simon, Jan C.; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  17. Heat profiles of laser-irradiated nails.

    PubMed

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A; Kendler, Michael; Simon, Jan C; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  18. Cracking and Exfoliation of TiO2 Film Irradiated with Excimer Laser

    NASA Astrophysics Data System (ADS)

    Qian, H. X.; Zhou, W.; Zheng, H. Y.

    TiO2 film deposited on glass was irradiated in air with single-shot KrF excimer laser pulse. The surface roughened as the result of the laser ablation. It is further noted that single-pulse irradiation with fluence ranging from 400 to 1200 mJ/cm2 gave rise to protrusion of the irradiated surface above the original surface, which is in contrast to usual expectation that irradiated surface is below the unirradiated surface. The surface protrusion is mainly attributed to the effect of surface tension. At the laser fluence of 1000 mJ/cm2, cracks were formed in the irradiated area and severe film exfoliation was observed at the periphery of the irradiated area due to the release of internal stress. With higher laser fluence above 1000 mJ/cm2, patches of film were observed to peel off within the irradiated areas. Hydrodynamic ablation is proposed to account for film exfoliation. The observed phenomenon is useful for further understanding how TiO2 film reacts to strong UV laser irradiation.

  19. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  20. Ultrafast all-optical control of the magnetization in magnetic dielectrics

    NASA Astrophysics Data System (ADS)

    Kirilyuk, Andrei; Kimel, Alexey; Hansteen, Fredrik; Rasing, Theo; Pisarev, Roman V.

    2006-08-01

    The purpose of this review is to summarize the recent progress on laser-induced magnetization dynamics in magnetic dielectrics. Due to the slow phonon-magnon interaction in these materials, direct thermal effects of the laser excitation can only be seen on the time scale of almost a nanosecond and thus are clearly distinguished from the ultrafast nonthermal effects. However, laser pulses are shown to indirectly modify the magnetic anisotropy in rare-earth orthoferrites via the crystal field, and to bring about spin reorientation within a few picoseconds. More interesting, however, are the direct nonthermal effects of light on spin systems. We demonstrate coherent optical control of the magnetization in ferrimagnetic garnet films on a femtosecond time scale through a combination of two different ultrafast and nonthermal photomagnetic effects and by employing multiple pump pulses. Linearly polarized laser pulses are shown to create a long-lived modification of the magnetocrystalline anisotropy via optically induced electron transfer between nonequivalent ion sites. In addition, circularly polarized pulses are shown to act as strong transient magnetic field pulses originating from the nonabsorptive inverse Faraday effect. An all-optical scheme of excitation and detection of different antiferromagnetic resonance modes with frequencies of up to 500GHz will be discussed as well. The reported effects open new and exciting possibilities for ultrafast manipulation of spins by light and provide new insight into the physics of magnetism on ultrafast time scales.

  1. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  2. Ultrafast Beam Switching Using Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Goorjian, Peter

    2001-01-01

    We propose a new approach to performing ultrafast beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The strategy is demonstrated by numerical simulation, showing a beam switching of 10 deg at 42 GHz.

  3. Small-scale heat detection using catalytic microengines irradiated by laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  4. Effects of laser irradiation on immature olfactory neuroepithelial explants from the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mester, A.F.; Snow, J.B. Jr.

    1988-07-01

    The photobiological effect of low-output laser irradiation on the maturation and regeneration of immature olfactory bipolar receptor cells of the rat was studied. The maturation and regeneration of the receptor cells of rat fetuses were quantified in neuroepithelial explants with morphometric analysis. The number of explants with outgrowth and the number and length of neuritic outgrowths were determined on a regular basis for 12 days. Explants in the experimental group were irradiated with a helium-neon laser using different incident energy densities (IED). Explants in the fluorescent light control group were exposed to fluorescent light for the same periods of timemore » as those in the experimental group were exposed to laser irradiation. Explants in another control group were not exposed to laser or fluorescent light irradiation. The IED of 0.5 J/cm2 laser irradiation has been found to increase significantly the number of explants with outgrowth and the number and length of the outgrowths. Other laser IEDs or fluorescent light irradiation did not influence maturation or regeneration.« less

  5. Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing.

    PubMed

    Ródenas, Airán; Nejadmalayeri, Amir H; Jaque, Daniel; Herman, Peter

    2008-09-01

    We report on the confocal Raman characterization of the micro-structural lattice changes induced during the high-repetition rate ultrafast laser writing of buried optical waveguides in lithium niobate (LiNbO(3)) crystals. While the laser beam focal volume is characterized by a significant lattice expansion together with a high defect concentration, the adjacent waveguide zone is largely free of defects, undergoing only slight rearrangement of the oxygen octahedron in the LiNbO(3) lattice. The close proximity of these two zones has been found responsible for the propagation losses of the guided light. Subjacent laser-induced periodic micro-structures have been also observed inside the laser focal volume, and identified with a strong periodic distribution of lattice defects.

  6. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  7. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  8. Growth of ferroelectric Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} epitaxial films by ultraviolet pulsed laser irradiation of chemical solution derived precursor layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queraltó, A.; Pérez del Pino, A., E-mail: aperez@icmab.es; Mata, M. de la

    2015-06-29

    Highly crystalline epitaxial Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) thin-films are grown on (001)-oriented LaNiO{sub 3}-buffered LaAlO{sub 3} substrates by pulsed laser irradiation of solution derived barium-zirconium-titanium precursor layers using a UV Nd:YAG laser source at atmospheric conditions. The structural analyses of the obtained films, studied by X-ray diffractometry and transmission electron microscopy, demonstrate that laser processing allows the growth of tens of nm-thick BST epitaxial films with crystalline structure similar to that of films obtained through conventional thermal annealing methods. However, the fast pulsed nature of the laser employed leads to crystallization kinetic evolution orders of magnitude faster than inmore » thermal treatments. The combination of specific photothermal and photochemical mechanisms is the main responsible for the ultrafast epitaxial laser-induced crystallization. Piezoresponse microscopy measurements demonstrate equivalent ferroelectric behavior in laser and thermally annealed films, being the piezoelectric constant ∼25 pm V{sup −1}.« less

  9. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques.

    PubMed

    Lim, Hyun Soo

    2012-12-01

    General application of continuous-wave (CW) laser irradiation modes in photodynamic therapy can cause thermal damage to normal tissues in addition to tumors. A new photodynamic laser therapy system using a pulse irradiation mode was optimized to reduce nonspecific thermal damage. In in vitro tissue specimens, tissue energy deposition rates were measured in three irradiation modes, CW, pulse, and burst-pulse. In addition, methods were tested for reducing variations in laser output and specific wavelength shifts using a thermoelectric cooler and thermistor. The average temperature elevation per 10 J/cm2 was 0.27°C, 0.09°C, and 0.08°C using the three methods, respectively, in pig muscle tissue. Variations in laser output were controlled within ± 0.2%, and specific wavelength shift was limited to ± 3 nm. Thus, optimization of a photodynamic laser system was achieved using a new pulse irradiation mode and controlled laser output to reduce potential thermal damage during conventional CW-based photodynamic therapy.

  10. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    NASA Astrophysics Data System (ADS)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  11. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  12. Circularly polarized attosecond pulse generation and applications to ultrafast magnetism

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun

    2017-12-01

    Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.

  13. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  14. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE PAGES

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.; ...

    2018-04-27

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  15. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  16. Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms

    PubMed Central

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I.C.O; Artigas, David; Loza-Alvarez, Pablo

    2011-01-01

    We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser—VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices. PMID:21483599

  17. Experimental study on rat NK cell activity improvement by laser acupoint irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Dongxiao; Chen, Xiufeng; Ruan, Buqing; Yang, Feng

    1998-08-01

    To study the improvement of the natural killer (NK) cell activity by semiconductor laser acupoint irradiation, rats were used in this experiment and were injected immunosuppressant in their abdomen. The immunoassay was made after the surface irradiation and inner irradiation at Baihui point by semiconductor laser. The NK cell activity is an important index of immunologic function. The results showed that the NK cell activity after laser acupoint irradiation was enhanced. This enhancement is relatively important in the clinical therapy of tumor.

  18. Thermal Changes of Maize Seed by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.

    2015-09-01

    In this research, the thermal evolution in maize seeds ( Zea mays L.) was studied when low-intensity laser irradiation was applied during 60 s. The seeds were irradiated in three different conditions: suspended in air, placed on an aluminum surface, and finally placed on a cardboard; the evolution of the seed temperature was measured by an infrared camera. Photoacoustic spectroscopy and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient (β ) of the seeds. The results indicate that using 650 nm laser light and 27.4 mW, it is possible to produce temperature changes (up to 9.06°C after 1 min) on the seeds. Comparing the mean temperature of the seeds, during and after the incidence of light from a laser, it was found that there were statistically significant differences (P≤ 0.05) from time t1 to time t_{16} (t1 to t_{16}) and t3 to t_{16}, for the laser turned on and off, respectively. The seed condition that had the highest temperature variation, relative to the initial temperature (during the irradiation laser exposure), involved the seeds suspended in air. With regard to the stage of decay of the temperature, it was found that the seed condition that decays more slowly was the seed placed on the cardboard. It was also found that black-dyed maize seeds are optically opaque in the 300 nm to 700 nm range Also, the thermal diffusion length is smaller than the optical penetration length. In the present investigation, it was shown that there is a thermal component associated with the mechanisms of laser biostimulation, which is also a function of the container materials of the seed. In this way, the effects of laser treatment on maize seeds involve at least a temperature effect. It is important to know the temperature changes in the seeds that have been irradiated with a laser beam since they could have substantial practical and theoretical importance.

  19. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies

    PubMed Central

    Subramanian, Kaushik; Gabay, Ilan; Ferhanoğlu, Onur; Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, Adela

    2016-01-01

    We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber’s low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe’s energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation. PMID:27896003

  20. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies.

    PubMed

    Subramanian, Kaushik; Gabay, Ilan; Ferhanoğlu, Onur; Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, Adela

    2016-11-01

    We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber's low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm 2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm 2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe's energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF 2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation.

  1. Investigation of irradiation by different nonablative lasers on primary cultured skin fibroblasts.

    PubMed

    Weng, Y; Dang, Y; Ye, X; Liu, N; Zhang, Z; Ren, Q

    2011-08-01

    A variety of lasers with different wavelengths and biological effects are widely used for nonablative skin rejuvenation, but the underlying mechanisms have not been fully investigated. To investigate the effects of irradiation by different nonablative lasers on collagen synthesis and the antioxidant status of cultured fibroblasts to identify a possible mechanism for laser photorejuvenation. Cultured skin fibroblasts were irradiated with three different lasers: 532 nm potassium-titanyl phosphate (KTP), 1064 nm Q-switched neodymium:yttrium-aluminium-garnet (Nd:Yag) and 1064 nm long-pulse Nd:YAG, and production of collagen and changes in lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were assayed. Irradiation by all three lasers led to a marked increase in collagen production. Two major antioxidant enzymes, SOD and GSH, were significantly increased, whereas MDA was markedly reduced after laser irradiation. No change in LDH activity was found between nonirradiated and irradiated fibroblasts. This study indicates that the increased collagen synthesis by fibroblasts after laser treatment may be partly due to improved antioxidant capacity, which reduces oxidative stress and thus stimulates new collagen production. © The Author(s). CED © 2011 British Association of Dermatologists.

  2. Scattering properties of ultrafast laser-induced refractive index shaping lenticular structures in hydrogels

    NASA Astrophysics Data System (ADS)

    Wozniak, Kaitlin T.; Germer, Thomas A.; Butler, Sam C.; Brooks, Daniel R.; Huxlin, Krystel R.; Ellis, Jonathan D.

    2018-02-01

    We present measurements of light scatter induced by a new ultrafast laser technique being developed for laser refractive correction in transparent ophthalmic materials such as cornea, contact lenses, and/or intraocular lenses. In this new technique, called intra-tissue refractive index shaping (IRIS), a 405 nm femtosecond laser is focused and scanned below the corneal surface, inducing a spatially-varying refractive index change that corrects vision errors. In contrast with traditional laser correction techniques, such as laser in-situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), IRIS does not operate via photoablation, but rather changes the refractive index of transparent materials such as cornea and hydrogels. A concern with any laser eye correction technique is additional scatter induced by the process, which can adversely affect vision, especially at night. The goal of this investigation is to identify sources of scatter induced by IRIS and to mitigate possible effects on visual performance in ophthalmic applications. Preliminary light scattering measurements on patterns written into hydrogel showed four sources of scatter, differentiated by distinct behaviors: (1) scattering from scanned lines; (2) scattering from stitching errors, resulting from adjacent scanning fields not being aligned to one another; (3) diffraction from Fresnel zone discontinuities; and (4) long-period variations in the scans that created distinct diffraction peaks, likely due to inconsistent line spacing in the writing instrument. By knowing the nature of these different scattering errors, it will now be possible to modify and optimize the design of IRIS structures to mitigate potential deficits in visual performance in human clinical trials.

  3. Electrochemical and kinetic studies of ultrafast laser structured LiFePO4 electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Gotcu-Freis, P.; Seifert, H. J.; Pfleging, W.

    2015-03-01

    Due to a growing demand of cost-efficient lithium-ion batteries with an increased energy and power density as well as an increased life-time, the focus is set on intercalation cathode materials like LiFePO4. It has a high practical capacity, is environmentally friendly and has low material costs. However, its low electrical conductivity and low ionic diffusivity are major drawbacks for its use in electrochemical storage devices or electric vehicles. By adding conductive agents, the electrical conductivity can be enhanced. By increasing the surface of the cathode material which is in direct contact with the liquid electrolyte the lithium-ion diffusion kinetics can be improved. A new approach to increase the surface of the active material without changing the active particle packing density or the weight proportion of carbon black is the laser-assisted generation of 3D surface structures in electrode materials. In this work, ultrafast laser radiation was used to create a defined surface structure in LiFePO4 electrodes. It was shown that by using ultrashort laser pulses instead of nanosecond laser pulses, the ablation efficiency could be significantly increased. Furthermore, melting and debris formation were reduced. To investigate the diffusion kinetics, electrochemical methods such as cyclic voltammetry and galvanostatic intermittent titration technique were applied. It could be shown that due to a laser generated 3D structure, the lithium-ion diffusion kinetic, the capacity retention and cell life-time can be significantly improved.

  4. Modification of the amorphous carbon films by the ns-laser irradiation

    NASA Astrophysics Data System (ADS)

    Grigonis, Alfonsas; Marcinauskas, Liutauras; Vinciunaite, Vinga; Raciukaitis, Gediminas

    2011-10-01

    The effect of a nanosecond laser irradiation of thin (60 and 145 nm) amorphous, diamond-like carbon films deposited on Si substrate by an ion beam deposition (IBD) from pure acetylene and acetylene/hydrogen (1:2) gas mixture was analyzed in this work. The films were irradiated with the infrared (IR) and ultraviolet (UV) radiation of the nanosecond Nd:YAG lasers working at the first (1.16 eV) and the third (3.48 eV) harmonics, using a multi-shot regime. The IR laser irradiation stimulated a minor increase in the fraction of sp2 bonds, causing a slight decrease in the hardness of the films and initiated SiC formation. Irradiation with the UV laser caused the formation of carbides and increased hydrogenization of the Si substrate and the fraction of sp2 sites. Spalliation and ablation were observed at a higher energy density and with a large number of laser pulses per spot.

  5. Detection of chemical changes in bone after irradiation with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Santos, Moises O.; Rabelo, Jose S.; Ana, Patrícia A.; Correa, Paulo R.; Zezell, Denise M.

    2011-03-01

    The use of laser for bone cutting can be more advantageous than the use of drill. However, for a safe clinical application, it is necessary to know the effects of laser irradiation on bone tissues. In this study, the Fourier Transform Infrared spectroscopy (FTIR) was used to verify the molecular and compositional changes promoted by laser irradiation on bone tissue. Bone slabs were obtained from rabbit's tibia and analyzed using ATR-FTIR. After the initial analysis, the samples were irradiated using a pulsed Er,Cr:YSGG laser (2780nm), and analyzed one more time. In order to verify changes due to laser irradiation, the area under phosphate (1300-900cm-1), amides (1680-1200cm-1), water (3600-2400cm-1), and carbonate (around 870cm-1 and between 1600-1300cm-1) bands were calculated, and normalized by phosphate band area (1300-900cm-1). It was observed that Er,Cr:YSGG irradiation promoted a significant decrease in the content of water and amides I and III at irradiated bone, evidencing that laser procedure caused an evaporation of the organic content and changed the collagen structure, suggesting that these changes may interfere with the healing process. In this way, these changes should be considered in a clinical application of laser irradiation in surgeries.

  6. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  7. Low- and high-dose laser irradiation effects on cell migration and destruction

    NASA Astrophysics Data System (ADS)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  8. Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser

    NASA Astrophysics Data System (ADS)

    Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu

    2018-02-01

    Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.

  9. Development of functional materials by using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Shimotsuma, Y.; Sakakura, M.; Miura, K.

    2018-01-01

    The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.

  10. Designing an ultrafast laser virtual laboratory using MATLAB GUIDE

    NASA Astrophysics Data System (ADS)

    Cambronero-López, F.; Gómez-Varela, A. I.; Bao-Varela, C.

    2017-05-01

    In this work we present a virtual simulator developed using the MATLAB GUIDE environment based on the numerical resolution of the nonlinear Schrödinger equation (NLS) and using the split step method for the study of the spatial-temporal propagation of nonlinear ultrashort laser pulses. This allows us to study the spatial-temporal propagation of ultrafast pulses as well as the influence of high-order spectral phases such as group delay dispersion and third-order dispersion on pulse compression in time. The NLS can describe several nonlinear effects, in particular in this paper we consider the Kerr effect, cross-polarized wave generation and cubic-quintic propagation in order to highlight the potential of this equation combined with the GUIDE environment. Graphical user interfaces are commonly used in science and engineering teaching due to their educational value, and have proven to be an effective way to engage and motivate students. Specifically, the interactive graphical interfaces presented provide the visualization of some of the most important nonlinear optics phenomena and allows users to vary the values of the main parameters involved.

  11. Structure and Dynamics with Ultrafast Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley

    In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.

  12. Ultrafast FADC multiplexer

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Cortina, J.; Lorenz, E.; Martinez, M.; Ostankov, A.; Paneque, D.

    2002-10-01

    Ultrafast Flash amplitude-to-digital converters (FADCs) are still very expensive. Here we propose a multiplexing scheme allowing one in common trigger mode to read out multiple signal sources by using a single FADC channel. Usual coaxial cables can be used in the multiplexer as analog signal delay elements. The limited bandwidth of the coaxial cable, depending on its type and length will set an upper limit to the number of multiplexed channels. Better bandwidth and the correspondingly higher number of multiplexed channels one can obtain when using the technique of transmission of analog signals via optical fibers. Low-cost vertical cavity surface emitting laser (VCSEL) diodes can be used as converters of fast electrical signals into near infrared light. Multiplexing can be an economically priced solution when one needs ultrafast digitization of hundreds of fast signal channels.

  13. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range.

    PubMed

    Zhang, Yuxia; Yu, Haohai; Zhang, Rui; Zhao, Gang; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; Tonelli, Mauro; Wang, Jiyang

    2017-02-01

    Visible lasers are a fascinating regime, and their significance is illustrated by the 2014 Noble prizes in physics and chemistry. With the development of blue laser diodes (LDs), the LD-pumped solid-state visible lasers become a burgeoning direction today. Constrained by the scarce visible optical modulators, the solid-state ultrafast visible lasers are rarely realized. Based on the bandgap structure and optoelectronic properties of atomic-layer MoS2, it can be proposed that MoS2 has the potential as a visible optical modulator. Here, by originally revealing layer-dependent nonlinear absorption of the atomic-layer MoS2 in the visible range, broadband atomic-layer MoS2 optical modulators for the visible ultrafast pulse generation are developed and selected based on the proposed design criteria for novel two-dimensional (2D) optical modulators. By applying the selected MoS2 optical modulators in the solid-state praseodymium lasers, broadband mode-locked ultrafast lasers from 522 to 639 nm are originally realized. We believe that this Letter should promote the development of visible ultrafast photonics and further applications of 2D optoelectronic materials.

  14. Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation

    NASA Astrophysics Data System (ADS)

    Singh, N.; Sharma, S.

    2018-04-01

    Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.

  15. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    NASA Astrophysics Data System (ADS)

    Li, Xinlong; Reber, Melanie A. R.; Corder, Christopher; Chen, Yuning; Zhao, Peng; Allison, Thomas K.

    2016-09-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.

  16. Simulations of Foils Irradiated by Finite Laser Spots

    NASA Astrophysics Data System (ADS)

    Phillips, Lee

    2006-10-01

    Recent proposed designs (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities with lower laser energies combined with higher irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser is expected to minimize LPI, and this is being studied by experiments on NRL's NIKE laser. Here we report on simulations aimed at designing and interpreting these experiments. The 2d simulations employ a modification of the FAST code to ablate plasma from CH and DT foils using laser pulses with arbitrary spatial and temporal profiles. These include the customary hypergaussian NIKE profile, gaussian profiles, and combinations of these. The simulations model the structure of the ablating plasma and the absorption of the laser light, providing parameters for design of the experiment and indicating where the relevant LPI (two-plasmon, Raman) may be observed.

  17. Effects of erbium,chromium:YSGG laser irradiation on canine mandibular bone.

    PubMed

    Kimura, Y; Yu, D G; Fujita, A; Yamashita, A; Murakami, Y; Matsumoto, K

    2001-09-01

    Only relatively few reports have described the morphological effects on bone produced by erbium,chromium: yttrium,scandium,gallium,garnet (Er,Cr:YSGG) laser irradiation, and none has investigated the atomic changes or estimated the temperature increases involved. The objectives of this study were to investigate the morphological, atomic, and temperature changes in irradiated areas during and after laser irradiation, and to evaluate the cutting effect on canine mandibular bone in vitro. Two canine mandibular bones were cut into 3 to 5 cm pieces and irradiated by an Er,Cr:YSGG laser utilizing a water-air spray at 5 W and 8 Hz for 10 or 30 seconds. During and after laser irradiation, temperature increases in the irradiated areas were measured by thermography. The samples were then observed by stereoscopy and scanning electron microscopy to determine morphological changes and by energy dispersive x-ray spectroscopy to evaluate atomic alterations. Regular holes or grooves having sharp edges and smooth walls were produced, but no melting or carbonization was observed. The maximum temperature increase was an average 12.6 degrees C for 30-second irradiation. The continuous time of a temperature increase of more than 10 degrees C was consistently less than 10 seconds. An atomic analytical examination revealed that the calcium:phosphorus ratio was not significantly changed between the lased and unlased areas (P>0.0 1). These results showed that the Er,Cr:YSGG laser cuts canine mandibular bone effectively without burning, melting, or altering the calcium:phosphorus ratio of the irradiated bone.

  18. In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood

    NASA Astrophysics Data System (ADS)

    Fuad, Siti Sakinah Mohd; Suardi, N.; Mustafa, I. S.

    2018-04-01

    This experimental study was performed to investigate the effect of low level yellow laser of 589nm wavelength with various laser irradiation time. Human blood samples with random diseases are irradiated with yellow laser of power density of 450mW/cm2 from 10 minutes to 60 minutes at 10 minutes intervals. The morphology of the red blood cell were also observed for different irradiation time. The result shows that there is a significant different in the absorption of light with varying laser irradiation time (p<0.01). The maximum absorption recorded at 40 minutes of irradiation at 340nm peak. Blood smear of the samples reveals that there are observable changes in the morphology of the red blood cell at 40 minutes and 60 minutes of irradiation.

  19. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  20. Ultrafast Spreading Effect Induced Rapid Cell Trapping into Porous Scaffold with Superhydrophilic Surface.

    PubMed

    Wang, Chenmiao; Qiao, Chunyan; Song, Wenlong; Sun, Hongchen

    2015-08-19

    In this contribution, superhydrophilic chitosan-based scaffolds with ultrafast spreading property were fabricated and used to improve the trapped efficiency of cells. The ultrafast spreading property allowed cells to be trapped into the internal 3D porous structures of the prepared scaffolds more quickly and effectively. Cell adhesion, growth, and proliferation were also improved, which could be attributed to the combination of UV irradiation and ultrafast spreading property. The construction of ultrafast spreading property on the scaffold surface will offer a novel way to design more effective scaffold in tissue engineering that could largely shorten the therapeutic time for patients.

  1. Growth Twinning and Generation of High-Frequency Surface Nanostructures in Ultrafast Laser-Induced Transient Melting and Resolidification.

    PubMed

    Sedao, Xxx; Shugaev, Maxim V; Wu, Chengping; Douillard, Thierry; Esnouf, Claude; Maurice, Claire; Reynaud, Stéphanie; Pigeon, Florent; Garrelie, Florence; Zhigilei, Leonid V; Colombier, Jean-Philippe

    2016-07-26

    The structural changes generated in surface regions of single crystal Ni targets by femtosecond laser irradiation are investigated experimentally and computationally for laser fluences that, in the multipulse irradiation regime, produce sub-100 nm high spatial frequency surface structures. Detailed experimental characterization of the irradiated targets combining electron back scattered diffraction analysis with high-resolution transmission electron microscopy reveals the presence of multiple nanoscale twinned domains in the irradiated surface regions of single crystal targets with (111) surface orientation. Atomistic- and continuum-level simulations performed for experimental irradiation conditions reproduce the generation of twinned domains and establish the conditions leading to the formation of growth twin boundaries in the course of the fast transient melting and epitaxial regrowth of the surface regions of the irradiated targets. The observation of growth twins in the irradiated Ni(111) targets provides strong evidence of the role of surface melting and resolidification in the formation of high spatial frequency surface structures. This also suggests that the formation of twinned domains can be used as a sensitive measure of the levels of liquid undercooling achieved in short pulse laser processing of metals.

  2. Modeling of silicon in femtosecond laser-induced modification regimes: accounting for ambipolar diffusion

    NASA Astrophysics Data System (ADS)

    Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.

    2017-05-01

    During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.

  3. Effect of laser irradiation on the early-stage seed formation of laser-induced submicrometer-scale silica spheres

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Ha, S. Y.; Hong, Y. J.; Nam, S.; Oh, S. Y.; Lim, C.

    2014-04-01

    We describe the effect of irradiation on the early-stage seed formation of submicrometer-scale (SS) SiO2 spheres by a laser-induced process. A quartz cell containing chemical reagents was exposed to a pulsed laser (Nd:YAG, 532 nm) tuned to various energy densities, while SiO2 SS spheres are synthesized in the quartz cell by the Stöber, Fink, and Bohn method. Higher laser energy densities typically produce wider size distributions. In particular, bidisperse SiO2 spheres were obtained when the laser energy density was 1.15 J/cm2. The size distributions were widest with 1.15 J/cm2 and narrowest with 0.33 J/cm2 laser energy density. However, the compositions of the SiO2 SS spheres were not affected by laser irradiation, and we observed by the energy-dispersive X-ray spectroscopy that the compositions of the irradiated and nonirradiated SiO2 SS spheres were the same.

  4. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

  5. Tunable Broadband Radiation Generated Via Ultrafast Laser Illumination of an Inductively Charged Superconducting Ring

    PubMed Central

    Bulmer, John; Bullard, Thomas; Dolasinski, Brian; Murphy, John; Sparkes, Martin; Pangovski, Krste; O’Neill, William; Powers, Peter; Haugan, Timothy

    2015-01-01

    An electromagnetic transmitter typically consists of individual components such as a waveguide, antenna, power supply, and an oscillator. In this communication we circumvent complications associated with connecting these individual components and instead combine them into a non-traditional, photonic enabled, compact transmitter device for tunable, ultrawide band (UWB) radiation. This device is a centimeter scale, continuous, thin film superconducting ring supporting a persistent super-current. An ultrafast laser pulse (required) illuminates the ring (either at a point or uniformly around the ring) and perturbs the super-current by the de-pairing and recombination of Cooper pairs. This generates a microwave pulse where both ring and laser pulse geometry dictates the radiated spectrum’s shape. The transmitting device is self contained and completely isolated from conductive components that are observed to interfere with the generated signal. A rich spectrum is observed that extends beyond 30 GHz (equipment limited) and illustrates the complex super-current dynamics bridging optical, THz, and microwave wavelengths. PMID:26659022

  6. Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation

    PubMed Central

    Shibata, Akimichi; Yada, Shuhei; Terakawa, Mitsuhiro

    2016-01-01

    Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of a poly(lactic-co-glycolic acid) (PLGA) following irradiation with femtosecond laser pulses at different wavelengths. Microscopic observation as well as water absorption and mass change measurement revealed that the biodegradation of the PLGA varied significantly depending on the laser wavelength. There was a significant acceleration of the degradation rate upon 400 nm-laser irradiation, whereas 800 nm-laser irradiation did not induce a comparable degree of change. The X-ray photoelectron spectroscopy analysis indicated that laser pulses at the shorter wavelength dissociated the chemical bonds effectively, resulting in a higher degradation rate at an early stage of degradation. PMID:27301578

  7. Pulsed-Laser Irradiation Space Weathering of a Carbonaceous Chondrite

    NASA Astrophysics Data System (ADS)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-07-01

    We used pulsed laser irradiation of the Murchison meteorite to simulate space weathering processes in the laboratory. We analyzed changes in the spectral, chemical, and microstructural characteristics of the material after irradiation.

  8. Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kazama, Misato; Fujikawa, Takashi; Kishimoto, Naoki; Mizuno, Tomoya; Adachi, Jun-ichi; Yagishita, Akira

    2013-06-01

    We provide a molecular structure determination method, based on multiple-scattering x-ray photoelectron diffraction (XPD) calculations. This method is applied to our XPD data on several molecules having different equilibrium geometries. Then it is confirmed that, by our method, bond lengths and bond angles can be determined with a resolution of less than 0.1 Å and 10∘, respectively. Differently from any other scenario of ultrafast structure determination, we measure the two- or three-dimensional XPD of aligned or oriented molecules in the energy range from 100 to 200 eV with a 4π detection velocity map imaging spectrometer. Thanks to the intense and ultrashort pulse properties of x-ray free-electron lasers, our approach exhibits the most probable method for obtaining ultrafast real-time structural information on small to medium-sized molecules consisting of light elements, i.e., a “molecular movie.”

  9. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    PubMed

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  10. High-speed laser-launched flyer impacts studied with ultrafast photography and velocimetry

    DOE PAGES

    Banishev, Alexandr A.; Shaw, William L.; Bassett, Will P.; ...

    2016-02-16

    Pulsed lasers can launch thin metal foils at km s -1, but for precision measurements in shock compression science and shock wave spectroscopy, where one-dimensional shock compression is vital, flyer plate impacts with targets must have a high degree of flatness and minimal tilt, and the flyer speeds and impact times at the target must be highly reproducible. We have developed an apparatus that combines ultrafast stroboscopic optical microscopy with photon Doppler velocimetry to study impacts of laser-launched Al and Cu flyer plates with flat, transparent glass targets. The flyer plates were 0.5 mm in diameter, and ranged from 12-100more » μm thick, with flyer speeds up to 6.25 km s -1. The velocity variations over 30-60 launches from the same flyer plate optic can be as low as 0.6%, and the impact time variations can be as low as 0.8 ns. Stroboscopic image streams (reconstructed movies) show uniform, flat impacts with a glass target. As a result, these stroboscopic images can be used to estimate the tilt in the flyer-target impact to be <1mrad.« less

  11. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  12. Recombination emissions and spectral blueshift of pump radiation from ultrafast laser induced plasma in a planar water microjet

    NASA Astrophysics Data System (ADS)

    Anija, M.; Philip, Reji

    2009-09-01

    We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.

  13. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    NASA Astrophysics Data System (ADS)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  14. An instrumentation project for measuring weak and broadband ultrafast laser signals

    NASA Astrophysics Data System (ADS)

    Ellis, Armin T.

    From our everyday experiences, we know that as light travels through a medium it attenuates due to absorption and scattering. Absorption is the cause of color in tea or grape juice, and it is described by Beer's law. Scattering is the reason why scuba divers have a limited range of vision and why mountain peaks become harder to see the further away they are. Precursors, although not fully understood, are transient light transmission effects and have been shown to exhibit lower attenuation through media than that predicted by Beer's law for steady-state light. In this thesis we present an instrumentation based approach for studying precursors by measuring spectral evolution and pure attenuation over distance. We will also introduce a new instrument concept, RotaryFROG, capable of simultaneous measurement of intensity, phase, and polarization versus frequency of low-intensity broadband pulses for use with ultrafast lasers.

  15. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform tomore » a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less

  16. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    DOE PAGES

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; ...

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. We used high-speed photography to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a moremore » uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Lastly, finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less

  17. Laser treatment of cutaneous lesions with image-guided fine spot-scanning irradiation

    NASA Astrophysics Data System (ADS)

    Nitta, Isami; Zhao, Xuefeng; Kanno, Akihiro; Kan, Yasushi; Yoshimasa, Takezawa; Maruyama, Tomohiro; Maeda, Yoshitaka

    2007-11-01

    We propose a new laser irradiation method for the treatment of cutaneous lesions in plastic surgery. In general, lasers with a spot size of 1 to 10 mm are used in irradiation on diseased skin. Although the target absorbs more light energy according to the theory of selective photothermolysis, the surrounding tissue, however, is still somewhat damaged. In proposed method, an f-theta lens, which is assembled by a shrink fitter, focuses the irradiation laser beam to a very fine spot with the size of 125 μm. Guided by the captured object-image, such laser beam is conducted by a pair of galvanometer-driven mirrors to irradiate only the desired tissue target without thermal damage to surrounding tissue. Moreover, an optical coherence tomography, whose probe is capable of wide field of view, can be used to provide the guidance information for the best treatment. The usefulness of the developed laser therapy apparatus was demonstrated by performing an experiment on the removal of tattoo pigment.

  18. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Takahiro, E-mail: nakamu@tagen.tohoku.ac.jp; Sato, Shunichi; Herbani, Yuliati

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empiricalmore » equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.« less

  19. Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency.

    PubMed

    Li, Chi; Zhou, Xu; Zhai, Feng; Li, Zhenjun; Yao, Fengrui; Qiao, Ruixi; Chen, Ke; Cole, Matthew Thomas; Yu, Dapeng; Sun, Zhipei; Liu, Kaihui; Dai, Qing

    2017-08-01

    Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Perspective: Opportunities for ultrafast science at SwissFEL

    PubMed Central

    Abela, Rafael; Beaud, Paul; van Bokhoven, Jeroen A.; Chergui, Majed; Feurer, Thomas; Haase, Johannes; Ingold, Gerhard; Johnson, Steven L.; Knopp, Gregor; Lemke, Henrik; Milne, Chris J.; Pedrini, Bill; Radi, Peter; Schertler, Gebhard; Standfuss, Jörg; Staub, Urs; Patthey, Luc

    2018-01-01

    We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science. PMID:29376109

  1. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

    PubMed Central

    Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2018-01-01

    Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521

  2. The Investigation of New Magnetic Materials and Their Phenomena Using Ultrafast Fresnel Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Schliep, Karl B.

    the University of Minnesota and how I explored the application of it toward the investigation of magnetic materials. In my discussion of UEM, I have made a concerted effort to highlight the unique challenges faced when getting a UEM lab running so that new researchers may circumvent these challenges. Of note in my graduate studies, I assisted in the development of three different magnetic material systems, strained Fe nanoparticles for permanent magnetic applications, FePd for applications in spintronic devices, and a rare-earth transition-metal (RE-TM) alloy that exhibits new magneto-optic phenomena. In studying the morphological and magnetic effects of lasers on these RE-TM alloys using the in situ laser irradiation capabilities of UEM along with standard TEM techniques and computational modeling, I uncovered a possible limitation in their utility for memory applications. Furthermore, with the aid of particle tracing software, I was able to optimize our UEM system for magnetic imaging and demonstrate the resolution of ultrafast demagnetization using UEM.

  3. 4D multiple-cathode ultrafast electron microscopy

    PubMed Central

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.

    2014-01-01

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261

  4. 4D multiple-cathode ultrafast electron microscopy.

    PubMed

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H

    2014-07-22

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.

  5. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation.

    PubMed

    Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng

    2012-07-11

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.

  6. Control of intracellular ionic concentrations by mid-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Takebe, G.; Yamauchi, T.; Shimizu, Y.; Dougakiuchi, T.

    2018-02-01

    We successfully induced intracellular ion concentration changes in live culture cells using mid-infrared laser irradiation. The laser used for irradiation was a quantum cascade laser with a wavelength of 6.1 micrometers. We tuned the power of the laser to be between 30 to 60 mW at the sample. Cell lines, namely HeLa and Chinese hamster ovary cell lines, were used. They were cultured on specially fabricated silicon-bottom dishes. Live cells were stained using ion-sensitive dyes such as Calcium Green-1. The mid-infrared light was incident on the cell samples from the bottom of the dish through the silicon plate, and fluorescence imaging of the ion concentrations was performed using an upright fluorescence microscope placed on top of the sample stage. The mid-infrared lasers were operated in the continuous wave mode and light irradiations onto the cells were temporally controlled using a mechanical shutter in a periodical on-and-off pattern in the second timescale. The cells showed oscillations in their ionic concentration, which was synchronized with the periodical mid-infrared irradiation, and the threshold power needed for evoking the ion concentration change was dependent on the cell types and ion species. These results demonstrated that mid-infrared light directly changed the ionic response within cells and had the ability to change cell functions.

  7. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser

    PubMed Central

    Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan

    2017-01-01

    A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10−9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film. PMID:28128340

  8. Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Fang, Xiaodong

    2015-10-01

    The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.

  9. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoo, Masaki; Mori, Miho

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing ofmore » blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. - Highlights: • Irradiation of

  10. Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wong, Kenneth K. Y.

    2013-12-01

    Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.

  11. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE PAGES

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; ...

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore » a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  12. Progress In Developing Laser Based Post Irradiation Examination Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Scott, Clark L.; Benefiel, Brad C.

    To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an

  13. Design of refractive laser beam shapers to generate complex irradiance profiles

    NASA Astrophysics Data System (ADS)

    Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo

    2014-05-01

    A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to generate any rotational-symmetric irradiance profile, yet in literature ray mapping is mainly developed to transform a Gaussian irradiance profile to a uniform profile. For more complex profiles especially with low intensity in the inner region, like a Dark Hollow Gaussian (DHG) irradiance profile, ray mapping technique is not directly applicable in practice. In order to these complex profiles, the numerical effort of calculating the aspherical surface points and fitting a surface with sufficient accuracy increases considerably. In this work we evaluate different sampling approaches and surface fitting methods. This allows us to propose and demonstrate a comprehensive numerical approach to efficiently design refractive laser beam shapers to generate rotational-symmetric collimated beams with a complex irradiance profile. Ray tracing analysis for several complex irradiance profiles demonstrates excellent performance of the designed lenses and the versatility of our design procedure.

  14. Changes in surface morphology of enamel after Er:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.

  15. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    PubMed

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  16. Laser-induced retinal injury thresholds: variation with retinal irradiated area

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Schulmeister, Karl; Seiser, Bernhard; Edthofer, Florian

    2005-04-01

    The retinal injury threshold for exposure to a laser source varies as a function of the irradiated area on the retina. Currently accepted guidelines for the safe use of lasers provide that the MPE will increase as the diameter of the irradiated area for retinal diameters between 25 mm and 1700 mm, based on the ED50 data available in the late 1970s. Recent studies by Zuclich and Lund produced data showing that the ED50 for ns-duration exposures at 532 nm and ms duration exposures at 590 nm varied as the square of the diameter of the irradiated area on the retina. This paper will discuss efforts to resolve the disagreement between the new data and the earlier data though an analysis of all accessible data relating the retinal injury threshold to the diameter of the incident beam on the retina and through simulations using computer models of laser-induced injury. The results show that the retinal radiant exposure required to produce retinal injury is a function of both exposure duration and retinal irradiance diameter and that the current guidelines for irradiance diameter dependence do not accurately reflect the variation of the threshold data.

  17. Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.

    2018-04-01

    Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.

  18. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  19. Ultrafast X-Ray Coherent Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray freemore » electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.« less

  20. Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation.

    PubMed

    He, Zhengdi; Chen, Lingling; Hu, Xuejuan; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Ruan, Shuangchen

    2017-10-01

    The purpose of this study was to evaluate the chemical and mechanical modifications in subsurface dentin layer after Er: YAG (Erbium-Yttrium Aluminium Garnet) laser irradiation, as the guidance of new dental restorative materials specific for laser irradiated dentin. Dentin disks obtained from extracted human molars were prepared and exposed to a single pulse Er:YAG laser irradiation at 80mJ/pulse. After laser irradiation the mechanical and chemical characteristics of intertubular dentin in subsurface layer were studied using nanoindentation tester and micro-Raman spectromy (μ-RS). The dentin 5-50µm depth beneath the lased surface was determined as testing area. Two-way analysis of variance (ANOVA) were used to compare the mechanical values between lased and untreated subsurface dentin (P = 0.05). A laser affected subsurface dentin layer after Er:YAG laser treatment is present. The laser irradiation is considered to decrease the mechanical properties in the superficial subsurface layer (<15µm deep). There was no significant difference in nanohardness and Young's modulus between lased subsurface dentin and untreated dentin (p > 0.05) under the depth of 15µm. However, the dentin at 5µm and 10µm depth beneath the lased surface exhibited significantly lower (~ 47.8% and ~ 33.6% respectively) hardness (p < 0.05). Er:YAG laser irradiation affected both mineral and organic components in subsurface dentin layer, a higher degree of crystallinity and reduced organic compounds occurred in the lased subsurface dentin. Under the tested laser parameters, Er:YAG laser irradiation causes lower mechanical values and reduction of organic components in subsurface dentin, which has deleterious effects on resin adhesion to this area. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals.

    PubMed

    Cherukara, Mathew J; Sasikumar, Kiran; Cha, Wonsuk; Narayanan, Badri; Leake, Steven J; Dufresne, Eric M; Peterka, Tom; McNulty, Ian; Wen, Haidan; Sankaranarayanan, Subramanian K R S; Harder, Ross J

    2017-02-08

    Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behavior is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use X-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic "hard" or inhomogeneous and "soft" or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystal structure obtained from the ultrafast X-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.

  2. Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk

    Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less

  3. Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals

    DOE PAGES

    Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk; ...

    2016-12-27

    Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less

  4. Effect of laser irradiation on the functional activity of enzymes with different structural complexity

    NASA Astrophysics Data System (ADS)

    Ostrovtsova, Svetlana A.; Volodenkov, Alexander P.; Maskevich, Alexander A.; Artsukevich, Irina M.; Anufrik, Slavomir S.; Makarchikov, Alexander F.; Chernikevich, Ivan P.; Stepuro, Vitali I.

    1998-05-01

    Three enzymes differing in their structural composition were irradiated by UV lasers to study the effect of temperature, protein concentration and addition of small molecules on their sensitivity to radiation exposure. The laser-induced effects were due to the structural complexity of the protein molecules and depended on the dose applied, the wavelength and the density of irradiation. The multi-enzyme 2- oxoglutarate dehydrogenase complex was subjected to pronounced irradiation-induced changes whereas the response of the two other enzymes was less significant. Reduction of the protein levels in irradiated samples was important under the XeCl laser coercion and the effects depended on the doses applied. The laser irradiation effects are suggested to be realized by means of conformational changes in the protein molecules and intermolecular association- dissociation processes.

  5. Damage Threshold of In Vivo Rabbit Cornea by 2 micron Laser Irradiation

    DTIC Science & Technology

    2007-01-01

    in laser injury experiments? Implications for human exposure limits. Health Phys 2002; 82(3):335-347. 11. Siegman AE, Sasnett MW, Johnston TF. Choice... Laser Irradiation DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Conference on...part numbers comprise the compilation report: ADP023676 thru ADP023710 UNCLASSIFIED Damage Threshold of In Vivo Rabbit Cornea by 2 gm Laser Irradiation

  6. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    DOE PAGES

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less

  7. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    PubMed

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  8. Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS)

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor); Ning, Cun-Zheng (Inventor)

    2005-01-01

    Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.

  9. Ultrafast electronic relaxation in superheated bismuth

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2013-01-01

    Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.

  10. Single-electron pulses for ultrafast diffraction

    PubMed Central

    Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.

    2010-01-01

    Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681

  11. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    PubMed

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  12. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSSmore » depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.« less

  13. Colour changes by laser irradiation of reddish building limestones

    NASA Astrophysics Data System (ADS)

    Grossi, C. M.; Benavente, D.

    2016-10-01

    We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm-2. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm-2, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm-2) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.

  14. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  15. In Vitro Evaluation of Dentin Hydraulic Conductance After 980 nm Diode Laser Irradiation.

    PubMed

    Rizzante, Fabio A P; Maenosono, Rafael M; Duarte, Marco A H; Furuse, Adilson Y; Palma-Dibb, Regina G; Ishikiriama, Sérgio K

    2016-03-01

    Dentin hypersensitivity treatments are based on the physical obliteration of the dentinal tubules to reduce hydraulic conductance. The aim of the present study is to evaluate the hydraulic conductance of bovine root dentin after irradiation with a 980-nm diode laser, with or without associated fluoride varnish. Sixty bovine root dentin specimens were divided into six groups (n = 10 in each group): G1, G3, and G5 (0.5 W, 0.7 W, and 1 W diode laser, respectively); G2, G4, and G6 (fluoride varnish application + 0.5 W, 0.7 W, and 1 W diode laser, respectively). The dentin hydraulic conductance was evaluated at four time periods with a fluxmeter: 1) with smear layer, 2) after 37% phosphoric acid etching, 3) after the treatments, and 4) after 6% citric acid challenge. After the dentinal fluid flow measurements, specimens were also evaluated for mineral composition using energy dispersive X-ray spectroscopy (EDS). Analysis demonstrated a better result with increased irradiation power (P < 0.001), especially if the diode laser irradiation was associated with the application of fluoride varnish (P < 0.001), ensuring a greater reduction in permeability. Considering the groups treated only with laser irradiation, the 1 W group was superior when compared with the 0.5 W and 0.7 W irradiated groups immediately after treatment (P < 0.001). After citric acid testing, all groups showed similar results, except when comparing the 1 W groups with the 0.5 W groups (P = 0.04). EDS results of the irradiated groups showed an increase in the proportion of calcium and phosphorus ions, which demonstrates a superficial composition modification after laser treatments. Laser irradiation of exposed dentin promoted significant reduction in the dentin hydraulic conductance, mainly with higher energy densities and association with fluoride varnish.

  16. Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae

    2013-09-01

    Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.

  17. Using laser irradiation for the surgical treatment of periodontal disease

    NASA Astrophysics Data System (ADS)

    Vieru, Rozana D.; Lefter, Agafita; Herman, Sonia

    2002-10-01

    In the marginal pr ogressive profound periodontities, we associated low level laser therapy (LLLT) to the classical surgical treatment with implant of biovitroceramics. From a total of 50 patients, 37 where irradiated with the laser. We used a diode laser, =830 nm, energy density up to 2 J cm2, in Nogier pulsed mode. The laser treatment is used in a complex of therapeutic procedures: odontal, local anti-inflammatory -- as well as in the cabinet and at home --, prosthetic, and for the morphologic and functional rebalancing. The immediate effects where: an evolution without bleeding and without post-surgical complications, as can appear at the patients who didn't benefit of laser irradiation (hematom, pain, functional alteration in the first post-surgical week). Operated tissue is recovering faster. The percentage of recurrences decreases and the success depends less on the biological potential and the immunity of each individual.

  18. Elicitation of trans-resveratrol by laser resonant irradiation of table grapes

    NASA Astrophysics Data System (ADS)

    Jiménez Sánchez, J. B.; Crespo Corral, E.; Orea, J. M.; Santos Delgado, M. J.; González Ureña, A.

    2007-05-01

    Table grapes were irradiated with UV nanosecond laser pulses in searching for resonant photo-elicitation of trans-resveratrol, a known antioxidant compound naturally produced by grapevines and other plants. To this end, the irradiation time as well as the wavelength dependence of the induced trans-resveratrol content was investigated by comparing the elicitation level of this compound at two laser wavelengths. One wavelength was selected right at the maximum of the absorption band (302.1 nm, the resonant wavelength for this compound) while the second was selected (300 nm, a non-resonant wavelength) such that trans-resveratrol absorption is negligible. It was found that the resonant irradiation enhances the resveratrol content in grapes by up to six times more than that of non-resonant irradiation, the rest of the conditions being the same. This work demonstrates how selective laser excitation of fruits can open new possibilities for the development of functional foods with enhanced nutritional and beneficial properties.

  19. Ultrafast laser inscription of 3D components for spatial multiplexing

    NASA Astrophysics Data System (ADS)

    Thomson, Robert R.

    2016-02-01

    The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.

  20. Laser irradiation for central-type lung cancer

    NASA Astrophysics Data System (ADS)

    Sun, Kai

    1993-03-01

    Based on laser irradiation experiments on isolated lung specimens of animals done in 1989, 8 patients with central type lung cancer were treated with Nd:YAG laser irradiation via fiberoptic bronchoscope from January 1990 to August 1991 in our hospital. The patients recruited were all diagnosed by fiberoptic bronchoscopy and histology as having central type bronchopulmonary cancer without distal metastasis. All patients were male with a mean age of 64 (range 57 - 72). Of 8 patients, 4 had squamous cell carcinoma, 3 adenocarcinoma, and 1 undifferentiated small cell carcinoma, all being stage TUM 3. After laser treatment, 6 cases had a result of significant response and 2 had minor response. Among 6 cases of atelectasis, 4 were completely cured or partially improved and 4 recovered from their hemoptysis. The subjective symptoms in all cases remitted. A combined chemotherapy was carried out accompanying laser therapy for all, 6 of whom had a shrink of focus over 25%. Six cases were re-examined with fiberoptic bronchoscopy, showing a distinct reduction of the tumor. Four cases expectorated black charring tissues and residual tumorous tissues persistently as an outcome. Two typical cases are reported, the characteristics, indications, techniques, and side effects of laser therapy are analyzed and factors affecting efficacy discussed, indicating that the technique has such advantages as easy operation, accurate orientation, and safe outcome. The procedure is really an effective one for treating central type lung cancer in intermediate or late stage.

  1. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  2. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE PAGES

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon; ...

    2017-11-03

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  3. Laser pulse heating of steel mixing with WC particles in a irradiated region

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  4. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    PubMed Central

    Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). Results The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (p<0.5). There was no significant difference between the laser irradiated group and the ultrasonic irrigated group (p>0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. Conclusion The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated. PMID:28957407

  5. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser.

    PubMed

    Tian, Xiangling; Wei, Rongfei; Liu, Meng; Zhu, Chunhui; Luo, Zhichao; Wang, Fengqiu; Qiu, Jianrong

    2018-05-24

    Non-equilibrium electrons induced by ultrafast laser excitation in a correlated electron material can disturb the Fermi energy as well as optical nonlinearity. Here, non-equilibrium electrons translate a semiconductor TiS2 material into a plasma to generate broad band nonlinear optical saturable absorption with a sub-picosecond recovery time of ∼768 fs (corresponding to modulation frequencies over 1.3 THz) and a modulation response up to ∼145%. Based on this optical nonlinear modulator, a stable femtosecond mode-locked pulse with a pulse duration of ∼402 fs and a pulse train with a period of ∼175.5 ns is observed in the all-optical system. The findings indicate that non-equilibrium electrons can promote a TiS2-based saturable absorber to be an ultrafast switch for a femtosecond pulse output.

  6. Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite

    NASA Astrophysics Data System (ADS)

    Rodríguez-Beltrán, René I.; Hernandez, Margarita; Paszkiewicz, Sandra; Szymczyk, Anna; Rosłaniec, Zbigniew; Ezquerra, Tiberio A.; Castillejo, Marta; Moreno, Pablo; Rebollar, Esther

    2018-04-01

    We report on the formation of Laser Induced Periodic Surface Structures in poly (ethylene terephthalate) and poly (ethylene terephthalate)/Expanded Graphite films by laser irradiation with nanosecond pulses at 266 nm. The characterization studies show that the quality of the ripples depends strongly on the irradiation time and fluence and the optimal conditions for obtaining LIPSS are affected by the amount of the expanded graphite present in the film due to the differences in crystallinity, thermal conductivity and thermal diffusivity of the nanocomposites. Physicochemical modifications in the materials were inspected by Raman spectroscopy, the colloidal probe technique and contact angle measurements using different liquids. Results show that there is an increase of the hydrophilicity of the surfaces after laser irradiation together with an increase of the surface free energy and in particular of its polar component. Additionally, the adhesion force estimated by the colloidal probe technique increases after laser nanostructuring.

  7. Evaluation of irradiation effects of near-infrared free-electron-laser of silver alloy for dental application.

    PubMed

    Kuwada-Kusunose, Takao; Kusunose, Alisa; Wakami, Masanobu; Takebayashi, Chikako; Goto, Haruhiko; Aida, Masahiro; Sakai, Takeshi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu; Hayakawa, Ken; Suzuki, Kunihiro; Sakae, Toshiro

    2017-08-01

    In the application of lasers in dentistry, there is a delicate balance between the benefits gained from laser treatment and the heat-related damage arising from laser irradiation. Hence, it is necessary to understand the different processes associated with the irradiation of lasers on dental materials. To obtain insight for the development of a safe and general-purpose laser for dentistry, the present study examines the physical effects associated with the irradiation of a near-infrared free-electron laser (FEL) on the surface of a commonly used silver dental alloy. The irradiation experiments using a 2900-nm FEL confirmed the formation of a pit in the dental alloy. The pit was formed with one macro-pulse of FEL irradiation, therefore, suggesting the possibility of efficient material processing with an FEL. Additionally, there was only a slight increase in the silver alloy temperature (less than 0.9 °C) despite the long duration of FEL irradiation, thus inferring that fixed prostheses in the oral cavity can be processed by FEL without thermal damage to the surrounding tissue. These results indicate that dental hard tissues and dental materials in the oral cavity can be safely and efficiently processed by the irradiation of a laser, which has the high repetition rate of a femtosecond laser pulse with a wavelength around 2900 nm.

  8. Laser-irradiated drug chromatographic analysis and laser injection of drugs to treat staphyloccocal lesions of skin

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Latyshev, Alexei S.; Kovsh, Anna I.; Razumova, Svetlana A.; Masyukova, Svetlana A.; Volnukhin, Vladimir A.

    2001-05-01

    This article deals with further development of laser drug delivery methods. In order to estimate the effect of laser- drug interactions, we carried out the chromatographic fractionation of dexamethasone, hydrocortisone, and gentamicine, both prior to and after irradiating them by pulsed Er:YAG laser radiation. The laser radiation parameters were as follows: the wavelength, pulse energy, and pulse duration were, respectively, 2.94 micrometers , 0.7 J, and 100 microsecond(s) . The total laser radiation dose administered to a 100 (mu) l sample of these drug preparations amounted to 150 J. A chromatographic analysis revealed that drug samples exposed to Er:YAG laser radiation did not show any change. The results obtained made it possible to employ pulsed Er:YAG laser radiation to perform laser-acoustic injection of the above-mentioned drug preparations to study the treatment of staphylococcal lesions in 30 guinea pigs. The perforated channel depth was measured and the injected drug solution volume was calculated. It was found that laser injection enabled one to introduce therapeutic doses of drugs, and that it expedited the healing of lesions by 3 to 4 days, as compared to the control group that received the topical application of drugs without laser irradiation.

  9. Orientation of ripples induced by ultrafast laser pulses on copper in different liquids

    NASA Astrophysics Data System (ADS)

    Maragkaki, Stella; Elkalash, Abdallah; Gurevich, Evgeny L.

    2017-12-01

    Formation of laser-induced periodic surface structures (LIPSS or ripples) was studied on a metallic surface of polished copper using irradiation with multiple femtosecond laser pulses in different environmental conditions (air, water, ethanol and methanol). Uniform LIPSS have been achieved by controlling the peak fluence and the overlapping rate. Ripples in both orientations, perpendicular and parallel to laser polarization, were observed in all liquids simultaneously. The orientation of these ripples in the center of the ablated line was changing with the incident light intensity. For low intensities the orientation of the ripples is perpendicular to the laser polarization, whereas for high intensities it turns parallel to it without considerable changes in the period. Multi-directional LIPSS formation was also observed for moderate peak fluence in liquid environments.

  10. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, S. P.; Brown, G.; Chase, T. F.

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less

  11. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    NASA Astrophysics Data System (ADS)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  12. The intravascular low level laser irradiation (ILLLI) in treatment of psoriasis clinically

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Nie, Fan; Shi, Hong-Min

    2005-07-01

    Objective: The title is research curative effect of intravascular low level laser irradiation (ILLLI) in treatment of psoriasis. Method: 478 patients with psoriasis from five groups to observe their efficacy. Group1 were treated by He-Ne laser combined with drug. Group 2 were treated by semi-conductor laser combined with drug. Group 3 were treated only by He-He laser. Group 4 were treated by semi-conductor laser. Group 5 were treated only by drug. The Ridit statistical analysis was applied to all of these data. The treatment of intravascular low level laser irradiation is as follow: laser power:4-5mw, 1 hour per day and 10 days as a period combined with vit C 2.0 g iv and inhalation of O2. Results: The clinical results: the near efficient rate was 100%, in group1-4, if combined with drugs it would be better. Ridit statistical analysis showed no significant difference between group1-4, p>0.05. The efficient rate 72.97% in group5.There were showed very significant difference with group1-4, p<0.01. 2.There were no significant differences between He-Ne laser (632.8nm) and semiconductor laser(650nm); 3.The efficacy of ILLLI in psoriasis was positive correlation to the ILLLI times. Conclusions: It can improve curative effect of intravascular low levellaser irradiation (ILLLI) in treatment of psoriasis.

  13. Reaction of cells to local, regional, and general low-intensive laser irradiation

    NASA Astrophysics Data System (ADS)

    Baibekov, Iskander M.; Kasymov, A. S.; Musaev, Erkin S.; Vorojeikin, V. M.; Artikov, S. N.

    1993-07-01

    Local influence of low intensive laser irradiation (LILI) of Helium-Neon (HNL), Copper vapor (CVL), Nitrogen (UVL) and Arsenic Gallium (AGL) lasers cause stimulation of processes of physiological and reparative regeneration in intact skin, and mucous membrane of stomach and duodenum, dermatome wounds and gastroduodenal ulcers. Structural bases of these effects are the acceleration of cell proliferation and differentiation and also the activation of intracellular structures and intensification of cell secretion. Regional influence of the pointed types of LILI on hepar in cirrhosis and hepatitis causes decreasing of the inflammatory and cirrhotic changes. After endo- and exo-vascular laser irradiations of blood the decreasing of the number of pathological forms of erythrocytes and the increasing of their catalase activity, are indicated. General (total) laser irradiation of the organism--laser shower, increases the bone marrow cells proliferation, especially myeloid series. It is accompanied with acceleration of their differentiation and migration in circulation. It was revealed, that HNL to a considerable extent influences the epithelial cells and CVL the connective tissue cells. UVL increases the amount of microorganisms on cell surfaces (membrane bound microorganisms). Regional irradiation of the LILI causes both direct and indirect influence of cells. Structural changes of bone marrow cells and gut mucous membrane cells indicate intersystemic interaction.

  14. Antibacterial effects of Nd:YAG laser irradiation within root canal dentin.

    PubMed

    Klinke, T; Klimm, W; Gutknecht, N

    1997-02-01

    The microbial flora of the root canal dentin can cause failures in the conventional treatment of infected root canals if it cannot be sufficiently removed by preparation and chemical disinfection of the root canal. The aim of this study is to examine the bactericidal effects of neodymium:yttriumaluminum garnet (Nd:YAG) laser irradiation in the depth of the root canal dentin. Following sterilization, longitudinal section dentin slices of different thicknesses (100-1000 microns) were inoculated on one side with 4 microliters of a Streptococcus mutans suspension. The opposite sides of the dentin slices were then irradiated four times for 10-20 sec (according to the sample area) using the Nd:YAG laser at a setting of 1.5 W, 15 pps with a 200 microns glass fiber from an angle of about 5 degrees. The bacteria were then removed from the dentin using vibration and plated out on culture dishes that were selective for Streptococcus mutans. When compared with untreated control slices, counting of the colonies revealed a highly significant elimination of bacteria for all thicknesses following laser irradiation. Although the intensity of the laser irradiation decreased after penetration of a 1000-micron dentin slice, the bactericidal mode of action was still effective.

  15. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    PubMed Central

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; Terashita, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions. PMID:21991489

  16. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.

    2017-04-01

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  17. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.

    PubMed

    Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G

    2017-04-18

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  18. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    PubMed

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects. © 2014 Wiley Periodicals, Inc.

  19. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    NASA Astrophysics Data System (ADS)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  20. Surface changes of composite and compomer materials following irradiation with an Er:YAG laser and a frequency doubled alexandrite laser

    NASA Astrophysics Data System (ADS)

    Pilgrim, Christian G.; Rechmann, Peter; Hennig, Thomas; Goldin, Dan S.

    1999-05-01

    Er:YAG laser as well as the frequency doubled Alexandrite laser have been suggested for the use in periodontal therapy and so for the elimination of calculus and the treatment of infected root cement. Intended is the laser application inside the gingival pocket. In consequence, both these lasers may be used in areas close to cervical or approximal location, or even on the fillings' surfaces. Light cured composite and compomer materials are in use for these types of fillings among others. Aim of the study presented here was to compare the effect of an Er:YAG laser (wavelength 2.94 μm, pulse duration 250 μs, free running. fluence 4.5 J/cm2 and 21.4 J/cm2) on compomers and composites with the result following irradiation with a frequency doubled Alexandrite laser (wavelength 377 nm, pulse duration 200 ns, fluence 3 Jcm-2 and 6 J/cm2). The surface of standardized compomer and composite samples were irradiated with both laser wavelengths (either frequency doubled Alexandrite or Er:YAG laser) using the same standardized application protocol. Scanning electron microscopic investigation showed that irradiation with both lasers causes surface changes in composites and compomers removing calculus with these lasers.

  1. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    PubMed

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P < 0.05). The pulse repetition rate of the Er:YAG laser did not affect roughness of dental enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  2. Mechanical Strains Induced in Osteoblasts by Use of Point Femtosecond Laser Targeting

    PubMed Central

    Bomzon, Ze'ev; Day, Daniel; Gu, Min; Cartmell, Sarah

    2006-01-01

    A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond laser light was focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted cell. This contraction caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the monolayer. Quantification of the strain fields in the monolayer using digital image correlation revealed local strains much higher than threshold values typically reported to stimulate extracellular bone matrix production in vitro. This use of point targeting with femtosecond pulse lasers could provide a new method for stimulating cell activity in orthopaedic tissue engineering. PMID:23165014

  3. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    PubMed

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  4. Effect of pulsed laser irradiation on the structural and the magnetic properties of NiMn/Co exchange bias system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanan, Senthilnathan; Diebolder, Rolf; Hibst, Raimund

    2008-04-01

    We report about the influence of pulsed laser irradiation on the structural and magnetic properties of NiMn/Co thin films. Rocking curve measurements showed a significant improvement of the (111) texture of NiMn after laser irradiation which was accompanied by grain growth. We have studied the ordering transition in as-prepared and irradiated (laser fluence of 0.15 J/cm{sup 2}) samples during subsequent annealing. The onset of the fcc to fct phase transformation occurs at 325 deg. C irrespective of laser irradiation. Exchange bias fields for the laser irradiated samples are higher than those of the as-prepared samples. The observed increase in themore » exchange bias field for laser irradiated samples has been attributed to the increased grain size and the improved (111) texture of the NiMn layer after laser irradiation.« less

  5. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    NASA Astrophysics Data System (ADS)

    Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  6. Application of Laser Irradiation for Restorative Treatments.

    PubMed

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes.

  7. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehm, S.; Rosenfeld, A.; Krueger, J.

    2013-02-04

    The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons.

  8. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    NASA Astrophysics Data System (ADS)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  9. Laser-irradiated Kondo insulators: Controlling the Kondo effect and topological phases

    NASA Astrophysics Data System (ADS)

    Takasan, Kazuaki; Nakagawa, Masaya; Kawakami, Norio

    2017-09-01

    We investigate theoretically the nature of laser-irradiated Kondo insulators. Using Floquet theory and the slave-boson approach, we study a periodic Anderson model and derive an effective model that describes laser-irradiated Kondo insulators. In this model, we find two generic effects induced by laser light. One is dynamical localization, which suppresses hopping and hybridization. The other is laser-induced hopping and hybridization, which can be interpreted as synthetic spin-orbit coupling or a magnetic field. The first effect drastically changes the behavior of the Kondo effect. In particular, the Kondo effect under laser light qualitatively changes its character depending on whether the hybridization is on-site or off-site. The second effect triggers topological phase transitions. In topological Kondo insulators, linearly polarized laser light realizes phase transitions between trivial, weak topological, and strong topological Kondo insulators. Moreover, circularly polarized laser light breaks time-reversal symmetry and induces Weyl semimetallic phases. Our results make it possible to dynamically control the Kondo effect and topological phases in heavy-fermion systems. We also discuss experimental setups to detect the signatures.

  10. Morphological alterations of periodontal pocket epithelium following Nd:YAG laser irradiation.

    PubMed

    Ting, Chun-Chan; Fukuda, Mitsuo; Watanabe, Tomohisa; Sanaoka, Atsushi; Mitani, Akio; Noguchi, Toshihide

    2014-12-01

    The purpose of this in vivo study was to examine morphologic alterations in the periodontal pocket epithelium with presence or absence of clinical inflammation following the use of the Neodymium: Yttrium-Aluminum-Garnet (Nd:YAG) laser irradiation. Subgingival Nd:YAG laser irradiation has been proposed as an alternative technique for treatment of chronic periodontitis. Several published studies have reported the clinical outcomes of such treatment. Twenty patients, diagnosed with moderate chronic periodontitis, were selected for the study. A total of 32 sites was identified and divided into a control (n=18) and laser-treated test groups (n=14). Probing depth (PD) and bleeding on probing (BOP) were recorded for all sites. Test sites were irradiated with an Nd:YAG laser using parameters of 2 W, 200 mJ pulse energy, and 10 pps delivered through a 320 μm diameter tip. Total laser treatment time ranged from 1 to 2 min. Following treatment, all specimens were harvested via biopsy and processed for scanning electron microscopy (SEM) and histologic examination. Control group specimens, depending upon initial PD, exhibited either a relatively smooth and intact epithelium with little desquamation (PD≤3 mm), or increasing degrees of epithelial desquamation and leukocytic infiltration at a PD of ≥4 mm. In the laser-treated test group, the specimens with PD≤3 mm that were BOP negative (-) exhibited a thin layer of epithelium that was disrupted. In the specimens with initial PD of ≥4 mm, complete removal of the epithelium whose extent and degree were increasing, was observed in the inflamed portion, while epithelium remained in the uninflamed portion. The SEM and histologic findings demonstrated the feasibility of ablating pocket epithelium with an Nd:YAG laser irradiation using parameters of 2 W of power (200 mJ, 10 pps). Furthermore, the presence or absence of clinical inflammation appeared to have an impact on the degree of laser

  11. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation.

    PubMed

    Tamang, Rajesh; Varghese, Binni; Mhaisalkar, Subodh G; Tok, Eng Soon; Sow, Chorng Haur

    2011-03-18

    Photoresponse of isolated Nb(2)O(5) nanowires (NW) padded with platinum (Pt) at both ends were studied with global irradiation by a laser beam and localized irradiation using a focused laser beam. Global laser irradiation on individual NW in ambient and vacuum conditions revealed photocurrent contributions with different time characteristics (rapid and slowly varying components) arising from defect level excitations, thermal heating effect, surface states and NW-Pt contacts. With a spot size of < 1 µm, localized irradiation highlighted the fact that the measured photocurrent in this single NW device (with and without applied bias) depended sensitively on the photoresponse at the NW-Pt contacts. At applied bias, unidirectional photocurrent was observed and higher photocurrent was achieved with localized laser irradiation at reverse-biased NW-Pt contacts. At zero bias, the opposite polarity of photocurrents was detected when the two NW-Pt contacts were subjected to focused laser beam irradiation. A reduced Schottky barrier/width resulting from an increase in charge carriers and thermoelectric effects arising from the localized thermal heating due to focused laser beam irradiation were proposed as the mechanisms dictating the photocurrent at the NW-Pt interface. Comparison of photocurrents generated upon global and localized laser irradiation showed that the main contribution to the photocurrent was largely due to the photoresponse of the NW-Pt contacts.

  12. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos.

    PubMed

    Yokoo, Masaki; Mori, Miho

    2017-05-27

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing of blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. Copyright © 2017 Elsevier Inc. All rights

  13. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  14. Loss of structural water and carbonate of Nd:YAG laser-irradiated human enamel.

    PubMed

    Corrêa-Afonso, Alessandra Marques; Bachmann, Luciano; de Almeida, Cíntia Guimarães; Dibb, Regina Guenka Palma; Borsatto, Maria Cristina

    2015-05-01

    The objective of this study was to use Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) to assess whether Nd:YAG laser irradiation associated with a dye or not alters the chemical constitution of the enamel. Fourteen enamel sections were randomly divided into two groups: (1) Nd:YAG and (2) dye + Nd:YAG. First, the untreated enamel surfaces were analyzed by FTIR to acquire the control absorption spectrum. Next, Group 2 received a layer of inactivated coal diluted in deionized water before laser treatment. Enamel samples belonging to groups 1 and 2 were then irradiated with a 1,064-nm Nd:YAG laser (80 mJ, 10 Hz) in the contact mode; the carbonate absorption band and the water absorption band were measured in each sample after irradiation. The water band was measured again 24 h, 48 h, and 7 days after irradiation. Group 1 had statistically similar water and carbonate contents before and after irradiation. Group 2 displayed significantly lower (p < 0.05) water content after irradiation, which remained constant along time at 24 and 48 h. After 7 days, the water content increased slightly, being statistically higher than in the other experimental periods, except for the control. The carbonate/phosphate ratio was measured only at the beginning, and after irradiation, it decreased only in Group 2 indicating carbonate loss (p < 0.05). Irradiation with 1,064-nm Nd:YAG laser associated with a dye reduces the carbonate and structural water content in the enamel.

  15. Perspective: Ultrafast magnetism and THz spintronics

    NASA Astrophysics Data System (ADS)

    Walowski, Jakob; Münzenberg, Markus

    2016-10-01

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  16. Perspective: Ultrafast magnetism and THz spintronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walowski, Jakob; Münzenberg, Markus

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledgemore » the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.« less

  17. Development of Ultrafast Indirect Flash Heating Methods for RDX

    DTIC Science & Technology

    2014-02-01

    8 1 1. Introduction The mission of the Multiscale Response of Energetic Materials program is to establish...vinyl nitrate ) Films. J. Phys. Chem. A 2004, 108 (43), 9342–9347. 11 12. Gottfried, J. L.; de Lucia, F. C., Jr.; Piraino, S. M. Ultrafast Laser

  18. Indirect excitation of ultrafast demagnetization

    DOE PAGES

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; ...

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset andmore » at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.« less

  19. Indirect excitation of ultrafast demagnetization

    PubMed Central

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H.; Granitzka, Patrick W.; Jaouen, Nicolas; Dakovski, Georgi L.; Moeller, Stefan; Minitti, Michael P.; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions. PMID:26733106

  20. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    PubMed Central

    Shahabi, Sima; Fekrazad, Reza; Johari, Maryam; Chiniforoush, Nasim; Rezaei, Yashar

    2016-01-01

    Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group); Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1) exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1) area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention. PMID:28096945

  1. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Youngsang; Ha, Jeonghong; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-09-21

    In this work, we report substantially enhanced colloidal stability of aqueous nanoparticle suspensions by ultrashort laser pulse irradiation. A Ti:Sapphire femtosecond laser (wavelength: 800 nm; pulse duration: 50 fs at full width at half maximum) was used to modify the electrochemical properties of nanoparticle suspensions at laser fluences below the particle ablation threshold. The colloidal stability of the suspension was evaluated by zeta potential and dynamic light scattering (DLS). The DLS results along with the images from transmission electron microscopy revealed that the laser irradiation caused no distinct morphological change to the individual alumina particles, but a substantial portion of themore » clustered particles was fragmented by the laser pulses, decreasing the apparent size of the suspended particles. Also, X-ray photoelectron spectroscopy analysis indicates that the laser irradiation modified the surface chemistry of the alumina particles. The stabilizing capability of the proposed technique was turned out to be better than that of conventional ultrasonic treatments. The stability of the laser-treated sample with no added surfactant was maintained for up to 30 days, without requiring an additional homogenizing process such as magnetic stirring.« less

  2. Exploring Ultrafast Structural Dynamics for Energetic Enhancement or Disruption

    DTIC Science & Technology

    2016-03-01

    it. In a pump -push/ dump probe experiment, a secondary laser pulse (push/ dump ) is used after the initial perturbation due to the pump pulse. The...increased. The pump -push/ dump probe technique is a difficult experiment that requires a highly stable laser source. Ultrafast pump -probe experiments...decomposition of solids. Journal of Applied Physics. 2001;89:4156–4166. 17. Kee TW. Femtosecond pump -push-probe and pump - dump -probe spectroscopy of

  3. The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power.

    PubMed

    Corral-Baqués, M I; Rivera, M M; Rigau, T; Rodríguez-Gil, J E; Rigau, J

    2009-09-01

    Biological tissues respond to low-level laser irradiation and so do dog spermatozoa. Among the main parameters to be considered when a biological tissue is irradiated is the output power. We have studied the effects on sperm motility of 655 nm continuous wave diode laser irradiation at different output powers with 3.34 J (5.97 J/cm(2)). The second fraction of fresh dog sperm was divided into five groups: control, and four to be irradiated with an average output power of 6.8 mW, 15.4 mW, 33.1 mW and 49.7 mW, respectively. At 0 min and 45 min after irradiation, pictures were taken and a computer aided sperm analysis (CASA) performed to analyse different motility parameters. The results showed that different output powers affected dog semen motility parameters differently. The highest output power showed the most intense effects. Significant changes in the structure of the motile sperm subpopulation were linked to the different output powers used.

  4. Mass removal by oxidation and sublimation of porous graphite during fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Phillips, Grady T.; Bauer, William A.; Fox, Charles D.; Gonzales, Ashley E.; Herr, Nicholas C.; Gosse, Ryan C.; Perram, Glen P.

    2017-01-01

    The various effects of laser heating of carbon materials are key to assessing laser weapon effectiveness. Porous graphite plates, cylinders, and cones with densities of 1.55 to 1.82 g/cm3 were irradiated by a 10-kW fiber laser at 0.075 to 3.525 kW/cm2 for 120 s to study mass removal and crater formation. Surface temperatures reached steady state values as high as 3767 K. The total decrease in sample mass ranged from 0.06 to 6.29 g, with crater volumes of 0.52 to 838 mm3, and penetration times for 12.7-mm-thick plates as short as 38 s. Minor contaminants in the graphite samples produced calcium and iron oxide to be redeposited on the graphite surface. Dramatic graphite crystalline structures are also produced at higher laser irradiances. Significantly increased porosity of the sample is observed even outside the laser-irradiated region. Total mass removed increases with deposited laser energy at a rate of 4.83 g/MJ for medium extruded graphite with an apparent threshold of 0.15 MJ. At ˜3.5 kW/cm2, the fractions of the mass removed from the cylindrical samples in the crater, surrounding trench, and outer region of decreased porosity are 38%, 47%, and 15%, respectively. Graphite is particularly resistant to damage by high power lasers. The new understanding of graphite combustion and sublimation during laser irradiation is vital to the more complex behavior of carbon composites.

  5. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    DOE PAGES

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-12-06

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less

  6. Versatile gold based SERS substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Byram, Chandu; Moram, Sree Sathya Bharathi; Shaik, Abdul Kalam; Soma, Venugopal Rao

    2017-10-01

    We demonstrate the detection of picric acid (PA) and ammonium nitrate (AN) at μM concentrations by utilizing gold (Au) nanostructures (NSs) as surface enhanced Raman scattering (SERS) substrates fabricated using the technique of ultrafast laser ablation in liquids. Au NPs and NSs were also utilized for detecting Rhodamine 6G (Rh6G) and methylene blue (MB). Detection of all the molecules using the same substrates (NPs and NSs) demonstrated their versatility. Detection limits of 10-5, 10-6, 10-7, 10-8 M were achieved for AN, PA, Rh6G and MB, respectively. Reproducibility of the SERS intensity using NSs and NPs as substrates demonstrate their efficacy.

  7. Atomic-level study of a thickness-dependent phase change in gold thin films heated by an ultrafast laser.

    PubMed

    Gan, Yong; Shi, Jixiang; Jiang, Shan

    2012-08-20

    An ultrafast laser-induced phase change in gold thin films with different thicknesses has been simulated by the method of coupling the two-temperature model and the molecular dynamics, including transient optical properties. Numerical results show that the decrease of film thickness leads to faster melting in the early nonequilibrium time and a larger melting depth. Moreover, earlier occurrence and a higher rate of resolidification are observed for the thicker film. Further analysis reveals that the mechanism for the thickness-dependent phase change in the films is the fast electron thermal conduction in the nonequilibrium state.

  8. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    PubMed

    Brianezzi, Leticia Ferreira de Freitas; Maenosono, Rafael Massunari; Bim, Odair; Zabeu, Giovanna Speranza; Palma-Dibb, Regina Guenka; Ishikiriama, Sérgio Kiyoshi

    2017-01-01

    This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups - no laser irradiation) and SB-L and SU-L [SB and SU laser (L) - irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.

  9. Ultrafast photophysics of transition metal complexes.

    PubMed

    Chergui, Majed

    2015-03-17

    interest. With the emergence of new instruments such as X-ray free electron lasers (XFELs), it is now possible to perform ultrafast laser pump/X-ray emission probe experiments. In this case, one probes the density of occupied states. These core-level spectroscopies and other emerging ones, such as photoelectron spectroscopy of solutions, are delivering a hitherto unseen degree of detail into the photophysics of metal-based molecular complexes. In this Account, we will give examples of applications of the various methods listed above to address specific photophysical processes.

  10. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  11. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less

  12. Pyrolysis responses of kevlar/epoxy composite materials on laser irradiating

    NASA Astrophysics Data System (ADS)

    Liu, Wei-ping; Wei, Cheng-hua; Zhou, Meng-lian; Ma, Zhi-liang; Song, Ming-ying; Wu, Li-xiong

    2017-05-01

    The pyrolysis responses of kevlar/epoxy composite materials are valuable to study in a case of high temperature rising rate for its widely application. Distinguishing from the Thermal Gravimetric Analysis method, an apparatus is built to research the pyrolysis responses of kevlar/epoxy composite materials irradiated by laser in order to offer a high temperature rising rate of the sample. By deploying the apparatus, a near real-time gas pressure response can be obtained. The sample mass is weighted before laser irradiating and after an experiment finished. Then, the gas products molecular weight and the sample mass loss evolution are derived. It is found that the pressure and mass of the gas products increase with the laser power if it is less than 240W, while the molecular weight varies inversely. The variation tendency is confusing while the laser power is bigger than 240W. It needs more deeper investigations to bring it to light.

  13. Low Level Laser Irradiation of Nerve Cells In Vitro

    DTIC Science & Technology

    1996-01-01

    Advisor Michael Miloro, D.M.D., M.D. College of Dentistry ABSTRACT Low energy laser treatment of patients with nerve injuries has been reported to achieve...Isolation and Culture 15 vii Cell Lines 17 Cell Expansion 19 Cell Freezing 20 Experimental Design 20 GaA1As Laser Diode 22 Radiation Schedule 23...of 1 six well plate. Two groups served as controls. The remaining groups were irradiated with a 70 mW GaA1As laser diode , wavelength 820-830 nm

  14. Non-contact profilometry of eroded and abraded enamel irradiated with an Er:YAG laser

    PubMed Central

    Scatolin, Renata Siqueira; Colucci, Vivian; Lepri, Taísa Penazzo; de Alexandria, Adílis Kalina; Maia, Lucianne Cople; Galo, Rodrigo; Borsatto, Maria Cristina; Corona, Silmara Aparecida Milori

    2018-01-01

    Abstract Literature has reported positive results regarding the use of lasers in the control of erosive lesions; however, evaluating whether they are effective in the control of the progression of erosive/abrasive lesions is important. Objectives This study aimed to evaluate the effect of the Er:YAG laser irradiation in controlling the progression of erosion associated with abrasive lesions in enamel. Material and methods Bovine incisors were sectioned, flattened and polished. Forty-eight enamel slabs were subjected to treatment in an intraoral phase. Twelve volunteers used an intraoral appliance containing one slab that was irradiated with an Er:YAG laser (5.2 J/cm2, 85 mJ, 2 Hz) and another non-irradiated slab on each side of the appliance, during one phase of 5 d, under a split-mouth design. Devices were subjected to erosive challenges (1% citric acid, 5 min, 3 times a day) and abrasive challenges one h after (brushing force of 1.5 N for 15 s) randomly and independently on each side of the device. Measurements of enamel loss were performed via 3D optical profilometry (μm). We analyzed data using the Kruskal-Wallis and Mann-Whitney tests and morphological characteristics via scanning electron microscopy. Results Following erosive and abrasive challenges, the group that was irradiated with the Er:YAG laser presented less loss of structure than the non-irradiated group. The group that underwent erosion and irradiation did not exhibit a significant difference from the non-irradiated group. Conclusion Irradiation with the Er:YAG laser did not control the loss of structure of enamel subjected to erosion but did control abrasion after erosion. PMID:29742259

  15. Non-contact profilometry of eroded and abraded enamel irradiated with an Er:YAG laser.

    PubMed

    Scatolin, Renata Siqueira; Colucci, Vivian; Lepri, Taísa Penazzo; Alexandria, Adílis Kalina de; Maia, Lucianne Cople; Galo, Rodrigo; Borsatto, Maria Cristina; Corona, Silmara Aparecida Milori

    2018-01-01

    Literature has reported positive results regarding the use of lasers in the control of erosive lesions; however, evaluating whether they are effective in the control of the progression of erosive/abrasive lesions is important. Objectives This study aimed to evaluate the effect of the Er:YAG laser irradiation in controlling the progression of erosion associated with abrasive lesions in enamel. Material and methods Bovine incisors were sectioned, flattened and polished. Forty-eight enamel slabs were subjected to treatment in an intraoral phase. Twelve volunteers used an intraoral appliance containing one slab that was irradiated with an Er:YAG laser (5.2 J/cm2, 85 mJ, 2 Hz) and another non-irradiated slab on each side of the appliance, during one phase of 5 d, under a split-mouth design. Devices were subjected to erosive challenges (1% citric acid, 5 min, 3 times a day) and abrasive challenges one h after (brushing force of 1.5 N for 15 s) randomly and independently on each side of the device. Measurements of enamel loss were performed via 3D optical profilometry (μm). We analyzed data using the Kruskal-Wallis and Mann-Whitney tests and morphological characteristics via scanning electron microscopy. Results Following erosive and abrasive challenges, the group that was irradiated with the Er:YAG laser presented less loss of structure than the non-irradiated group. The group that underwent erosion and irradiation did not exhibit a significant difference from the non-irradiated group. Conclusion Irradiation with the Er:YAG laser did not control the loss of structure of enamel subjected to erosion but did control abrasion after erosion.

  16. Angiogenic response in the chick chorioallantoic membrane model to laser-irradiated cartilage

    NASA Astrophysics Data System (ADS)

    Karamzadeh, Amir M.; Wong, Brian J.; Milner, Thomas E.; Wilson, Marie; Liaw, Lih-Huei L.; Nelson, J. Stuart

    1999-06-01

    Laser radiation can be used to reshape cartilage grafts via thermally mediated stress relaxation. While several studies have addressed the biophysical changes accompanying reshaping, cartilage viability following laser irradiation has not been extensively investigated. The objective of this study was to determine the extent of angioinvasion of irradiated cartilage explant placed onto the chick chorioallantoic membrane (CAM) model. Angioinvasion of the tissue matrix does not occur in viable cartilage tissue, whereas denatured tissue is readily vasculairzed and/or resorbed in vivo. Porcine septal cartilage specimens were removed from freshly sacrificed animals and divided into three protocols (n=10 each group) consisting of an untreated control, cartilage boiled in saline solution for one hour, and a laser irradiated group (Nd:YAG, λ=1.32 μm, 30.8 W/cm2, irradiation time = 10 sec). Following laser irradiation, tissue specimens were washed in antibiotic solution sand cut into small cubes (~1.5 mm3). The cartilage specimens were placed onto the surface of twenty CAMs, six of which, survived the entire 14 days incubation period. After incubation, the membranes and specimens were fixed in situ with formaldehyde, an then photographed using a dissection microscope. Cartilage specimens were prepared for histologic evaluation and stained with hematoxylin and eosin. Examination with a dissecting microscope showed no obvious vascular invasion of the cartilage or loss of gross tissue integrity in both the control and laser treated groups. In contrast, boiled specimens appeared to be partially or completely resorbed by the surrounding CAM vascular network. These gross findings were also confirmed by histological examination. In summary, our preliminary studies suggest that cartilage specimens treated using the present laser parameters remain resistant to angioinvasion or metabolism by the CAM, whereas boiled tissue undergoes resorption. Clinically, uncontrolled heating may

  17. Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals

    DTIC Science & Technology

    2004-07-01

    NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES

  18. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  19. Basic study of charring detection at the laser catheter-tip using back scattering light measurement during therapeutic laser irradiation in blood.

    PubMed

    Takahashi, Mei; Ito, Arisa; Kajihara, Takuro; Matsuo, Hiroki; Arai, Tsunenori

    2010-01-01

    The purpose of this study is to investigate transient process of the charring at the laser catheter-tip in blood during therapeutic laser irradiation by the back scattering light measurement to detect precursor state of the charring. We took account of using photodynamic therapy for arrhythmia in blood through the laser catheter. We observed the influence of the red laser irradiation (λ=663 nm) upon the shape of red blood cells (RBCs). The RBCs aggregation, round formation, and hemolysis were took place sequentially before charring. With a model blood sandwiched between glass plates simulated as a catheter-tip boundary, we measured diffuse-reflected-light power and transmitted-light power simultaneously and continuously by a microscopic optics during the laser irradiation. We found that measured light power changes were originated with RBCs shape change induced by temperature rise due to the laser irradiation. A gentle peak following a slow descending was observed in the diffuse-reflected-light power history. This history might indicate the precursor state of the charring, in which the hemolysis might be considered to advance rapidly. We think that the measurement of diffuse-reflected-light power history might be able to detect precursor state of charring at the catheter-tip in blood.

  20. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  1. Femtosecond laser induced nanostructuring of graphite for the fabrication of quasi-periodic nanogratings and novel carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Saikiran, V.; Dar, Mudasir H.; Rao, D. Narayana

    2018-01-01

    Here we have experimentally studied ultrafast femtosecond laser ablation of graphite in air and water environments for the fabrication of promising nanostructures on the graphite surface and also nanographite flakes, graphene quantum dots in water. After the fs laser irradiation in air quasi-periodic nanogratings were found on the graphite surface and when the irradiation is done in water we observed graphene quantum dots (GQDs) and graphitic flakes dispersed in the solution. The sheets consist of few layers of spongy kind of porous graphene, which form an irregular 3D porous structure. The field emission scanning electron microscopy reveals the formation of fluence dependent quasi-periodic deep-subwavelength nanogratings (Ʌ = 130-230 nm) on the surface. Several characterization methods have confirmed the formation of layered graphene and quantum dots. The studies on the solution confirmed the presence of GQDs with dimensions ranging about 2-4 nm. It is found that the formation of subwavelength structures and GQDs depends on the fs-laser energy and vary with different laser parameters such as fluence, energy, laser polarization.

  2. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    PubMed

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  3. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  4. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  5. Ablation of dentin by irradiation of violet diode laser

    NASA Astrophysics Data System (ADS)

    Hatayama, H.; Kato, J.; Akashi, G.; Hirai, Y.; Inoue, A.

    2006-02-01

    Several lasers have been used for clinical treatment in dentistry. Among them, diode lasers are attractive because of their compactness compared with other laser sources. Near-infrared diode lasers have been practically used for cutting soft tissues. Because they penetrate deep to soft tissues, they cause sufficiently thick coagulation layer. However, they aren't suitable for removal of carious dentin because absorption by components in dentin is low. Recently, a violet diode laser with a wavelength of 405nm has been developed. It will be effective for cavity preparation because dentin contains about 20% of collagen whose absorption coefficient at a violet wavelength is larger than that at a near-infrared wavelength. In this paper, we examined cutting performance of the violet diode laser for dentin. To our knowledge, there have been no previous reports on application of a violet laser to dentin ablation. Bovine teeth were irradiated by continuous wave violet diode laser with output powers in a range from 0.4W to 2.4W. The beam diameter on the sample was about 270μm and an irradiation time was one second. We obtained the crater ablated at more than an output power of 0.8W. The depth of crater ranged from 20μm at 0.8W to 90μm at 2.4W. Furthermore, the beam spot with an output power of 1.7W was scanned at a speed of 1mm/second corresponding to movement of a dentist's hand in clinical treatment. Grooves with the depth of more than 50μm were also obtained. From these findings, the violet diode laser has good potential for cavity preparation. Therefore, the violet diode laser may become an effective tool for cavity preparation.

  6. Effect of Doping on the Properties of Hydrogenated Amorphous Silicon Irradiated with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Denisova, K. N.; Il'in, A. S.; Martyshov, M. N.; Vorontsov, A. S.

    2018-04-01

    A comparative analysis of the effect of femtosecond laser irradiation on the structure and conductivity of undoped and boron-doped hydrogenated amorphous silicon ( a-Si: H) is performed. It is demonstrated that the process of nanocrystal formation in the amorphous matrix under femtosecond laser irradiation is initiated at lower laser energy densities in undoped a-Si: H samples. The differences in conductivity between undoped and doped a-Si: H samples vanish almost completely after irradiation with an energy density of 150-160 mJ/cm2.

  7. Microhardness evaluations of CAD/CAM ceramics irradiated with CO2 or Nd:YAP laser

    PubMed Central

    Rocca, Jean Paul; Fornaini, Carlo; Medioni, Etienne; Brulat-Bouchard, Nathalie

    2017-01-01

    Background and aims The aim of this study was to measure the microhardness values of irradiated computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics surfaces before and after thermal treatment. Materials and Methods Sixty CAD/CAM ceramic discs were prepared and grouped by material, i.e. lithium disilicate ceramic (Emax CAD) and zirconia ceramic (Emax ZirCAD). Laser irradiation at the material surface was performed with a carbon dioxide laser at 5 Watt (W) or 10 W power in continuous mode (CW mode), or with a neodymium:yttrium aluminum perovskite (Nd:YAP) laser at 10 W on graphite and non-graphite surfaces. Vickers hardness was tested at 0.3 kgf for lithium disilicate and 1 kgf for zirconia. Results Emax CAD irradiated with CO2 at 5 W increased microhardness by 6.32 GPa whereas Emax ZirCAD irradiated with Nd:YAP decreased microhardness by 17.46 GPa. Conclusion CO2 laser effectively increases the microhardness of lithium disilicate ceramics (Emax CAD). PMID:28740324

  8. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    PubMed Central

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  9. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  10. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats.

    PubMed

    Gunji, Hidemi; Kunimatsu, Ryo; Tsuka, Yuji; Yoshimi, Yuki; Sumi, Keisuke; Awada, Tetsuya; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Hirose, Naoto; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-02-05

    Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. This study demonstrates that high-frequency near-infrared diode laser

  11. Excimer laser irradiation of metal surfaces

    NASA Astrophysics Data System (ADS)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  12. Ultrafast Directional Beam Switching in Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Goorjian, Peter

    2001-01-01

    We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.

  13. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    PubMed

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  14. Effects of erbium, chromium:YSGG laser irradiation on root surface: morphological and atomic analytical studies.

    PubMed

    Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K

    2001-04-01

    The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.

  15. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F.

    We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency ofmore » the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.« less

  16. Optothermal transfer simulation in laser-irradiated human dentin.

    PubMed

    Moriyama, Eduardo H; Zangaro, Renato A; Lobo, Paulo D C; Villaverde, Antonio Balbin; Pacheco, Marcos T; Watanabe, Ii-Sei; Vitkin, Alex

    2003-04-01

    Laser technology has been studied as a potential replacement to the conventional dental drill. However, to prevent pulpal cell damage, information related to the safety parameters using high-power lasers in oral mineralized tissues is needed. In this study, the heat distribution profiles at the surface and subsurface regions of human dentine samples irradiated with a Nd:YAG laser were simulated using Crank-Nicolson's finite difference method for different laser energies and pulse durations. Heat distribution throughout the dentin layer, from the external dentin surface to the pulp chamber wall, were calculated in each case, to investigate the details of pulsed laser-hard dental tissue interactions. The results showed that the final temperature at the pulp chamber wall and at the dentin surface are strongly dependent on the pulse duration, exposure time, and the energy contained in each pulse.

  17. Melting in Superheated Silicon Films Under Pulsed-Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Jin Jimmy

    This thesis examines melting in superheated silicon films in contact with SiO2 under pulsed laser irradiation. An excimer-laser pulse was employed to induce heating of the film by irradiating the film through the transparent fused-quartz substrate such that most of the beam energy was deposited near the bottom Si-SiO2 interface. Melting dynamics were probed via in situ transient reflectance measurements. The temperature profile was estimated computationally by incorporating temperature- and phase-dependent physical parameters and the time-dependent intensity profile of the incident excimer-laser beam obtained from the experiments. The results indicate that a significant degree of superheating occurred in the subsurface region of the film. Surface-initiated melting was observed in spite of the internal heating scheme, which resulted in the film being substantially hotter at and near the bottom Si-SiO2 interface. By considering that the surface melts at the equilibrium melting point, the solid-phase-only heat-flow analysis estimates that the bottom Si-SiO2 interface can be superheated by at least 220 K during excimer-laser irradiation. It was found that at higher laser fluences (i.e., at higher temperatures), melting can be triggered internally. At heating rates of 1010 K/s, melting was observed to initiate at or near the (100)-oriented Si-SiO2 interface at temperatures estimated to be over 300 K above the equilibrium melting point. Based on theoretical considerations, it was deduced that melting in the superheated solid initiated via a nucleation and growth process. Nucleation rates were estimated from the experimental data using Johnson-Mehl-Avrami-Kolmogorov (JMAK) analysis. Interpretation of the results using classical nucleation theory suggests that nucleation of the liquid phase occurred via the heterogeneous mechanism along the Si-SiO2 interface.

  18. Determination of scattering properties and damage thresholds in tissue using ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Martin, Chris; Ben-Yakar, Adela

    2016-11-01

    Ultrafast laser surgery of tissue requires precise knowledge of the tissue's optical properties to control the extent of subsurface ablation. Here, we present a method to determine the scattering lengths, ℓs, and fluence thresholds, Fth, in multilayered and turbid tissue by finding the input energies required to initiate ablation at various depths in each tissue layer. We validated the method using tissue-mimicking phantoms and applied it to porcine vocal folds, which consist of an epithelial (ep) layer and a superficial lamina propia (SLP) layer. Across five vocal fold samples, we found ℓ=51.0±3.9 μm, F=1.78±0.08 J/cm2, ℓ=26.5±1.6 μm, and F=1.14±0.12 J/cm2. Our method can enable personalized determination of tissue optical properties in a clinical setting, leading to less patient-to-patient variability and more favorable outcomes in operations, such as femto-LASIK surgery.

  19. Effect of damping on the laser induced ultrafast switching in rare earth-transition metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oniciuc, Eugen; Stoleriu, Laurentiu; Cimpoesu, Dorin

    2014-06-02

    In this paper, we present simulations of thermally induced magnetic switching in ferrimagnetic systems performed with a Landau-Lifshitz-Bloch (LLB) equation for damping constant in a wide range of values. We have systematically studied the GdFeCo ferrimagnet with various concentrations of Gd and compared for some values of parameters the LLB results with atomistic simulations. The agreement is remarkably good, which shows that the dynamics described by the ferrimagnetic LLB is a reasonable approximation of this complex physical phenomenon. As an important element, we show that the LLB is able to also describe the intermediate formation of a ferromagnetic state whichmore » seems to be essential to understand laser induced ultrafast switching. The study reveals the fundamental role of damping during the switching process.« less

  20. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses

    NASA Astrophysics Data System (ADS)

    Wong-Campos, J. D.; Moses, S. A.; Johnson, K. G.; Monroe, C.

    2017-12-01

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ˜20 ps duration, and demonstrate an entangled Bell state with (76 ±1 )% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  1. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses.

    PubMed

    Wong-Campos, J D; Moses, S A; Johnson, K G; Monroe, C

    2017-12-08

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ∼20  ps duration, and demonstrate an entangled Bell state with (76±1)% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  2. Analyses of surface coloration on TiO 2 film irradiated with excimer laser

    NASA Astrophysics Data System (ADS)

    Zheng, H. Y.; Qian, H. X.; Zhou, W.

    2008-01-01

    TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2. Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters.

  3. The neuroprotective effects of intravascular low level laser irradiation on cerebral ischemia rats

    NASA Astrophysics Data System (ADS)

    Qiu, Yongming; Lu, Zhaofeng; Wang, Zhongguang; Jiang, Jiyao

    2005-07-01

    The effects of intravascular low level laser irradiation of He-Ne on rat MCAo-induced cerebral injury were studied. The results showed that control rats (subjected to MCAo injury without laser treatment) at 7d exhibited striatal and cortical brain infarction in the right hemisphere from approximately 3 to 11mm from the front pole. the total infarct volume in this group was 34.5+/-8.1mm3. For experimental rats (with laser management), the total infarct volume was 29.0+/-9.0mm3. P was gained less than 0.05. The neurological score of control group was 4.7+/-0.6 and it was 5.2+/-1.0 in experimental group, comparison by statistical analysis showed P less than 0.05. The cerebral pathological damages in the control group were more severe than in experimental group. We concluded that the intravascular low level laser irradiation has no remarked complication and is helpful to reduce ischemic damage. There is clinically potential for the application of intravascular He-Ne low level laser irradiation in ischemia stroke.

  4. Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity

    NASA Astrophysics Data System (ADS)

    Buccheri, Maria A.; D'Angelo, Daniele; Scalese, Silvia; Spanò, Simon F.; Filice, Simona; Fazio, Enza; Compagnini, Giuseppe; Zimbone, Massimo; Brundo, Maria V.; Pecoraro, Roberta; Alba, Anna; Sinatra, Fulvia; Rappazzo, Giancarlo; Privitera, Vittorio

    2016-06-01

    The antibacterial activity and possible toxicity of graphene oxide and laser-irradiated graphene oxide (iGO) were investigated. Antibacterial activity was tested on Escherichia coli and shown to be higher for GO irradiated for at least three hours, which seems to be correlated to the resulting morphology of laser-treated GO and independent of the kind and amount of oxygen functionalities. X-ray photoelectron spectroscopy, Raman spectroscopy, dynamic light scattering and scanning electron microscopy (SEM) show a reduction of the GO flakes size after visible laser irradiation, preserving considerable oxygen content and degree of hydrophilicity. SEM images of the bacteria after the exposure to the iGO flakes confirm membrane damage after interaction with the laser-modified morphology of GO. In addition, a fish embryo toxicity test on zebrafish displayed that neither mortality nor sublethal effects were caused by the different iGO solutions, even when the concentration was increased up to four times higher than the one effective in reducing the bacteria survival. The antibacterial properties and the absence of toxicity make the visible laser irradiation of GO a promising option for water purification applications.

  5. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  6. Effects of Er:YAG laser irradiation on human cartilage

    NASA Astrophysics Data System (ADS)

    Glinkowski, Wojciech; Brzozowska, Malgorzata; Ciszek, Bogdan; Rowinski, Jan; Strek, Wieslaw

    1996-03-01

    Irradiation of the hyaline or fibrous cartilage excised from the body of a human cadaver with Er:YAG laser beam, single pulse with a dose of 1 J, produces a crater with a depth of approximately 500 micrometers and a diameter varying from 5 to 300 micrometers. Histological examination has revealed that the laser-made craters were surrounded by a thin rim (2-10 micrometer) of charred and coagulated tissue. No damage was observed in the cartilage surrounding the rim. The presence of sharp demarcation between the tissue areas ablated by laser energy and the undamaged areas argues for the potential usefulness of the Er:YAG laser in surgery of cartilages.

  7. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation.

    PubMed

    Kiro, N E; Hamblin, M R; Abrahamse, H

    2017-06-01

    Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.

  8. Low-intensity laser irradiation use for oral and lip precancer treatment

    NASA Astrophysics Data System (ADS)

    Kunin, Anatoly A.; Podolskaya, Elana E.; Stepanov, Nicolay N.; Petrov, Anatoly; Erina, Stanislava V.; Pankova, Svetlana N.

    1996-09-01

    Precancer and background diseases of the oral mucosa and lips, such as lichen planus, chronic ulcers and fissures, meteorological heilit, lupus erythematosus, after radiation heilit were treated by low-intensity laser irradiation. Laser therapy of the over-mentioned diseases was combined with medicinal treatment. All the patients were selected and treated in the limits of dispensary system. THe choice of diagnostic methods were made according to each concrete nosological form. A great attention was paid to the goal- directly sanitation of the oral cavity and treatment of attended internal diseases. The etiological factors were revealed and statistically analyzed. The results received during our researches demonstrated high effectiveness of laser irradiation combined with medicinal therapy in the treatment of oral mucosa and lips precancer diseases.

  9. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  10. Reversible ultrafast melting in bulk CdSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenzhi; Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712; He, Feng

    2016-02-07

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm{sup 2}, ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe.

  11. Patterning and reduction of graphene oxide using femtosecond-laser irradiation

    NASA Astrophysics Data System (ADS)

    Kang, SeungYeon; Evans, Christopher C.; Shukla, Shobha; Reshef, Orad; Mazur, Eric

    2018-07-01

    Graphene has emerged as one of the most versatile materials ever discovered due to its extraordinary electronic, optical, thermal, and mechanical properties. However, device fabrication is a well-known challenge and requires novel fabrication methods to realize the complex integration of graphene-based devices. Here, we demonstrate direct laser writing of reduced graphene oxide using femtosecond-laser irradiation at λ = 795 nm. We perform a systematic study of the reduction process of graphene oxide to graphene by varying both the laser fluence and the pulse repetition rate. Our observations show that the reduction has both thermal and non-thermal features, and suggest that we can achieve better resolution and conductivity using kHz pulse trains than using MHz pulse trains or a continuous wave laser. Our reduced graphene oxide lines written at 10-kHz exhibit a 5 order-of-magnitude decrease in resistivity compared to a non-irradiated control sample. This study provides new insight into the reduction process of graphene oxide and opens doors to achieving a high degree of flexibility and control in the fabrication of graphene layers.

  12. Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics.

    PubMed

    Wu, Shuwen; Li, Jinhui; Zhang, Guoping; Yao, Yimin; Li, Gang; Sun, Rong; Wong, Chingping

    2017-01-25

    The continuous evolution toward flexible electronics with mechanical robust property and restoring structure simultaneously places high demand on a set of polymeric material substrate. Herein, we describe a composite material composed of a polyurethane based on Diels-Alder chemistry (PU-DA) covalently linked with functionalized graphene nanosheets (FGNS), which shows mechanical robust and infrared (IR) laser self-healing properties at ambient conditions and is therefore suitable for flexible substrate applications. The mechanical strength can be tuned by varying the amount of FGNS and breaking strength can reach as high as 36 MPa with only 0.5 wt % FGNS loading. On rupture, the initial mechanical properties are restored with more than 96% healing efficiency after 1 min irradiation time by 980 nm IR laser. Especially, this is the highest value of healing efficiency reported in the self-healable materials based on DA chemistry systems until now, and the composite exhibits a high volume resistivity up to 5.6 × 10 11 Ω·cm even the loading of FGNS increased to 1.0 wt %. Moreover, the conductivity of the broken electric circuit which was fabricated by silver paste drop-cast on the healable composite substrate was completely recovered via IR laser irradiating bottom substrate mimicking human skin. These results demonstrate that the FGNS-PU-DA nanocomposite can be used as self-healing flexible substrate for the next generation of intelligent flexible electronics.

  13. Increased viability of odontoblast-like cells subjected to low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, C. F.; Basso, F. G.; Lins, E. C.; Kurachi, C.; Hebling, J.; Bagnato, V. S.; de Souza Costa, C. A.

    2010-07-01

    Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm2 were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO2 at 37°C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm2 + 5% FBS; G2: 1.5 J/cm2 + 10% FBS; G3: 5 J/cm2 + 5% FBS; G4: 5 J/cm2 + 10% FBS; G5: 19 J/cm2 + 5% FBS; G6: 19 J/cm2 + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm2. These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.

  14. Laboratory investigation of the efficacy of holmium:YAG laser irradiation in removing intracanal debris

    NASA Astrophysics Data System (ADS)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    Current endodontic therapy involves debridement and disinfection of the root canal by means of mechanical instrumentation and chemical irrigation. However, several studies have shown that these techniques fail to achieve complete cleansing. Recently, lasers have been suggested for use within root canals. This study was conducted to determine the efficacy of Holmium:YAG laser irradiation in removing intracanal debris and smear layer. Root canal surfaces of freshly-extracted human teeth were exposed to pulsed Ho:YAG laser radiation. Subsequently, laser induced structural changes were investigated using scanning electron microscopy. Temperature measurements during irradiation were performed by means of thermocouples. The result of this survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment modalities. However, limitations exist with regard to circumscribed and well-quantified irradiation of root canal surfaces, due to the lack of perpendicular delivery of the laser beam. Additional studies will be required to develop suitable optical transmission systems, in order to achieve complete cleansing and to avoid damage to the periradicular tissues, respectively.

  15. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    NASA Astrophysics Data System (ADS)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  16. Ultrafast photoelectron spectroscopy of small molecule organic films

    NASA Astrophysics Data System (ADS)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  17. Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation.

    PubMed

    Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi

    2017-08-01

    Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems.

  18. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    PubMed Central

    BRIANEZZI, Leticia Ferreira de Freitas; MAENOSONO, Rafael Massunari; BIM, Odair; ZABEU, Giovanna Speranza; PALMA-DIBB, Regina Guenka; ISHIKIRIAMA, Sérgio Kiyoshi

    2017-01-01

    Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups – no laser irradiation) and SB-L and SU-L [SB and SU laser (L) – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility. PMID:28877276

  19. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.

    PubMed

    Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki

    2004-12-01

    Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.

  20. Is there a stimulation of blood microcirculation at low level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rogatkin, Dmitry; Dunaev, Andrey

    2014-05-01

    In 1980-2000 besides the laser surgery an intensive evolution of Low Level Laser Therapy (LLLT) had started in medicine, especially in Russia as well as in several other East-European countries. At the same time the biophysical mechanisms of LLLT are still the subject of disputes. One of the most popular clinical effects at Low Level Laser Irradiation (LLLI) being mentioned in medical publications for justification of the LLLT healing outcome is a stimulation of blood microcirculation in irradiated area. It was declared a priori at a dawn of LLLT and is now a basis of medical interpretation of healing mechanisms of LLLT at least in Russia. But in past 20 years a lot of investigation was carried out on optical registration of microhaemodynamic parameters in vivo as well as a number of noninvasive diagnostic tools was created for that. So, today it is possible to experimentally check the blood microcirculation stimulation hypothesis. Our study was aimed on that during the past 10 years. The most precision and accurate experiments we have carried out recently using simultaneously three different noninvasive diagnostic techniques: Laser Doppler Flowmetry, Tissue Reflectance Oximetry and Infrared Thermography. All these methods didn't confirm the effect on the blood microcirculation stimulation in skin or mucosa at irradiation with the power density below 50 mW/cm2 and irradiation time up to 5-6 minutes. Above this threshold the heating on 0,8…1 °C of tissue in the field of irradiation and the corresponding synchronous increase of all parameters of microhemodynamics were observed.

  1. Effect of laser irradiation on crystalline structure of enamel surface during whitening treatment with hydrogen peroxide.

    PubMed

    Son, Jung-Hyun; An, Ji-Hae; Kim, Byung-Kuk; Hwang, In-Nam; Park, Yeong-Joon; Song, Ho-Jun

    2012-11-01

    This study is to evaluate the effect of laser activation on the whitening and crystalline structure of enamel surface during whitening treatment with hydrogen peroxide. Bovine teeth were treated with whitening gel containing 35% hydrogen peroxide. A whitening gel was applied on the enamel surface for a period of 5 min, and then irradiated using a diode laser (740 nm) during whitening treatment for 0, 30, 60, 120 and 180s for the GL0-W, GL30-W, GL60-W, GL120-W and GL180-W groups, respectively. The total whitening application time was 30 min for all groups. Laser-irradiated enamel groups showed a similar lightness compared to the GL0-W group. The thickness of porous layer observed on the enamel surface of GL0-W group was decreased by increasing the laser irradiation time. While the Ca and P contents of the GL0-W group were lower than those of the non-whitening treated group (GL0-C), the Ca and P contents of the GL180-W group were similar to those of the GL180-C group. The enamel crystallinity was dramatically decreased by whitening treatment without laser irradiation. However, the decrease of crystallinity was protected by laser irradiation during whitening treatment. Raman measurement verified that laser irradiation could prevent the loss of mineral compositions on enamel and maintain its crystalline structure. The professional whitening treatment with hydrogen peroxide and diode laser activation improves not only the whitening effect but also protects the change of enamel structure compared to the treatment with only gel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. In Situ analysis of CO2 laser irradiation on controlling progression of erosive lesions on dental enamel.

    PubMed

    Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2014-08-01

    The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.

  3. Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study.

    PubMed

    Leja, Chris; Geminiani, Alessandro; Caton, Jack; Romanos, Georgios E

    2013-11-01

    Lasers have been proposed for various applications involving dental implants, including uncovering implants and treating peri-implantitis. However, the effect of laser irradiation on the implant surface temperature is only partially known. The aim of this pilot study was to determine the effect of irradiation with diode, carbon dioxide, and Er:YAG lasers on the surface temperature of dental implants placed in bone, in vitro. For this study, one dental implant was placed in a bovine rib. A trephine bur was used to create a circumferential defect to simulate peri-implantitis, and thermocouples were placed at the coronal and apical aspect of the implant. The implant was irradiated for 60 s using four different lasers independently and change in temperature as well as time to reach a 10 °C increase in temperature were recorded. There was wide variability in results among the lasers and settings. Time for a 10 °C increase ranged from 0.9 to over 60 s for the coronal thermocouple and from 18 to over 60 s for the apical thermocouple. Maximum temperature ranged from 5.9 to 70.9 °C coronally and from 1.4 to 23.4 °C apically. During laser irradiation of dental implants, a surface temperature increase beyond the "critical threshold" of 10 °C can be reached after only 18 s.

  4. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts.

    PubMed

    Kunimatsu, Ryo; Gunji, Hidemi; Tsuka, Yuji; Yoshimi, Yuki; Awada, Tetsuya; Sumi, Keisuke; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Abe, Takaharu; Naoto, Hirose; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-07-01

    Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm 2 . Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt ® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm 2 . Laser irradiation at a dose of 2.85 J/cm 2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm 2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm 2 . Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.

  5. Lattice-level measurement of material strength with LCLS during ultrafast dynamic compression

    NASA Astrophysics Data System (ADS)

    Milathianaki, Despina; Boutet, Sebastien; Ratner, Daniel; White, William; Williams, Garth; Gleason, Arianna; Swift, Damian; Higginbotham, Andrew; Wark, Justin

    2013-10-01

    An in-depth understanding of the stress-strain behavior of materials during ultrafast dynamic compression requires experiments that offer in-situ observation of the lattice at the pertinent temporal and spatial scales. To date, the lattice response under extreme strain-rate conditions (>108 s-1) has been inferred predominantly from continuum-level measurements and multi-million atom molecular dynamics simulations. Several time-resolved x-ray diffraction experiments have captured important information on plasticity kinetics, while limited to nanosecond timescales due to the lack of high brilliance ultrafast x-ray sources. Here we present experiments at LCLS combining ultrafast laser-shocks and serial femtosecond x-ray diffraction. The high spectral brightness (~1012 photons per pulse, ΔE/E = 0.2%) and subpicosecond temporal resolution (<100 fs pulsewidth) of the LCLS x-ray free electron laser allow investigations that link simulations and experiments at the fundamental temporal and spatial scales for the first time. We present movies of the lattice undergoing rapid shock-compression, composed by a series of single femtosecond x-ray snapshots, demonstrating the transient behavior while successfully decoupling the elastic and plastic response in polycrystalline Cu.

  6. Particle characteristics of different materials after ultra-short pulsed laser (USPL) irradiation

    NASA Astrophysics Data System (ADS)

    Meister, Joerg; Schelle, Florian; Kowalczyk, Philip; Frentzen, Matthias

    2012-01-01

    The exposition of nanoparticles caused by laser application in dental health care is an open discussion. Based on the fact that nanoparticles can penetrate through the mucosa, the knowledge about particle characteristics after irradiation with an USPL is of high importance. Therefore, the aim of this study was to investigate the particle characteristics, especially the size of the ablated debris after USPL irradiation. The irradiation was carried out with an USP Nd:YVO4 laser with a center wavelength of 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. The materials investigated were dental tissues and dental restorative materials (composite and amalgam), ceramic and different metals (gold and aluminium). The samples were irradiated with a power density in the order of 300 GW/cm2 at distances of 5, 10, 15, and 20 mm. The debris was collected on an object plate. SEM pictures were used for analysis of the ablation debris. Depending on the irradiated material, we observed different kinds of structures: vitreous, flocculent, and pellet-like. The mean particle sizes were 10 x 10 up to 30 x 30 μm2. In addition, a cluster of ablated matter (nanometer range) distributed over the whole irradiated area was found. With increasing distances the cluster structure reduced from multi-layer to mono-layer clusters. Particle sizes in the micrometer and nanometer range were found after irradiation with an USPL. The nanoparticles create a cluster structure which is influenced by increasing distances.

  7. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  8. Effect of laser irradiance and wavelength on the analysis of gold- and silver-bearing minerals with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Díaz, Daniel; Molina, Alejandro; Hahn, David

    2018-07-01

    The influence of laser irradiance and wavelength on the analysis of gold and silver in ore and surrogate samples with laser-induced breakdown spectroscopy (LIBS) was evaluated. Gold-doped mineral samples (surrogates) and ore samples containing naturally-occurring gold and silver were analyzed with LIBS using 1064 and 355 nm laser wavelengths at irradiances from 0.36 × 109 to 19.9 × 109 W/cm2 and 0.97 × 109 to 4.3 × 109 W/cm2, respectively. The LIBS net, background and signal-to-background signals were analyzed. For all irradiances, wavelengths, samples and analytes the calibration curves behaved linearly for concentrations from 1 to 9 μg/g gold (surrogate samples) and 0.7 to 47.0 μg/g silver (ore samples). However, it was not possible to prepare calibration curves for gold-bearing ore samples (at any concentration) nor for gold-doped surrogate samples with gold concentrations below 1 μg/g. Calibration curve parameters for gold-doped surrogate samples were statistically invariant at 1064 and 355 nm. Contrary, the Ag-ore analyte showed higher emission intensity at 1064 nm, but the signal-to-background normalization reduced the effect of laser wavelength of silver calibration plots. The gold-doped calibration curve metrics improved at higher laser irradiance, but that did not translate into lower limits of detection. While coefficients of determination (R2) and limits of detection did not vary significantly with laser wavelength, the LIBS repeatability at 355 nm improved up to a 50% with respect to that at 1064 nm. Plasma diagnostics by the Boltzmann and Stark broadening methods showed that the plasma temperature and electron density did not follow a specific trend as the wavelength changed for the delay and gate times used. This research presents supporting evidence that the LIBS discrete sampling features combined with the discrete and random distribution of gold in minerals hinder gold analysis by LIBS in ore samples; however, the use of higher laser

  9. Normal-mode selectivity in ultrafast Raman excitations in C60

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; George, Thomas F.

    2006-01-01

    Ultrafast Raman spectra are a powerful tool to probe vibrational excitations, but inherently they are not normal-mode specific. For a system as complicated as C60 , there is no general rule to target a specific mode. A detailed study presented here aims to investigate normal-mode selectivity in C60 by an ultrafast laser. To accurately measure mode excitation, we formally introduce the kinetic-energy-based normal-mode analysis which overcomes the difficulty with the strong lattice anharmonicity and relaxation. We first investigate the resonant excitation and find that mode selectivity is normally difficult to achieve. However, for off-resonant excitations, it is possible to selectively excite a few modes in C60 by properly choosing an optimal laser pulse duration, which agrees with previous experimental and theoretical findings. Going beyond the phenomenological explanation, our study shines new light on the origin of the optimal duration: The phase matching between the laser field and mode vibration determines which mode is strongly excited or suppressed. This finding is very robust and should be a useful guide for future experimental and theoretical studies in more complicated systems.

  10. Normal mode selectivity in ultrafast Raman excitations in C60

    NASA Astrophysics Data System (ADS)

    Zhang, Guoping; George, Thomas F.

    2006-05-01

    Ultrafast Raman spectra are a powerful tool to probe vibrational excitations, but inherently they are not normal-mode specific. For a system as complicated as C60, there is no general rule to target a specific mode. A detailed study presented here aims to investigate normal mode selectivity in C60 by an ultrafast laser. To accurately measure mode excitation, we formally introduce the kinetic energy-based normal mode analysis which overcomes the difficulty with the strong lattice anharmonicity and relaxation. We first investigate the resonant excitation and find that mode selectivity is normally difficult to achieve. However, for off-resonant excitations, it is possible to selectively excite a few modes in C60 by properly choosing an optimal laser pulse duration, which agrees with previous experimental and theoretical findings. Going beyond the phenomenological explanation, our study shines new light on the origin of the optimal duration: The phase matching between laser field and mode vibration determines which mode is strongly excited or suppressed. This finding is very robust and may be a useful guide for future experimental and theoretical studies in more complicated systems.

  11. Efficient monoenergetic proton beam from ultra-fast laser interaction with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Fazeli, R.

    2018-03-01

    The broad energy spectrum of laser-accelerated proton beams is the most important difficulty associated with such particle sources on the way to future applications such as medical therapy, proton imaging, inertial fusion, and high-energy physics. The generation of proton beams with enhanced monoenergetic features through an ultra-intense laser interaction with optimized nanostructured targets is reported. Targets were irradiated by 40 fs laser pulses of intensity 5.5 ×1020 W c m -2 and wavelength 1 μm. The results of multi-parametric Particle-in-Cell calculations showed that proton beams with considerably reduced energy spread can be obtained by using the proposed nanostructured target. At optimized target dimensions, the proton spectrum was found to exhibit a narrow peak at about 63 MeV with a relative energy spread of ΔE /Epeak˜ 5 % which is efficiently lower than what is expected for unstructured double layer targets (˜70%).

  12. Effects Of Continuous Argon Laser Irradiation On Canine And Autopsied Human Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Ben-Shachar, Giora; Sivakoff, Mark; Bernard, Steven L.; Dahms, Beverly B.; Riemenschneider, Thomas A.

    1984-10-01

    In eight human formalin preserved cardiac specimens, various cardiac and vascular obstructions were relieved by argon laser irradiation. Interatrial communication was also produced by a transar'rial approach in a live dog. In-vivo fresh canine cardiac tissues required power density of at feast 80, 90, and 110 watts/cm2 for vaporization of myocardial, vascular and valvular tissues respectively. The fiber tip to tissue distance (effective irradiation distance) for effective vaporization was less than I mm for vascular and valvular tissues and less than 4 mm for myocardium. Light microscopy showed four zones of histological damage common to all tissues - central crater surrounded by layers of charring, vacuolization and coagulation necorsis. Myocardium showed additionally a layer of normal appearing muscle cells (skip area) surrounded by a peripheral coagulation halo. Laser irradiation effects on valvular tissue showed the most lateral extension of coagulation necrosis. It is concluded that palliation and treatment of certain congenital heart defects by laser irradiation is anatomi-cally feasible and may be safe for in vivo application when low power output and short exposure time are used from a very short irradiation distance.

  13. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.

    PubMed

    Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R

    2017-09-05

    Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.

  14. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    PubMed

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P<0.05). No statistical significance among the laser groups (P>0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as

  15. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    PubMed Central

    Yao, Cuiping; Rudnitzki, Florian; Hüttmann, Gereon; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2017-01-01

    Purpose Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell–AuNP incubation time. PMID:28848345

  16. The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth.

    PubMed

    Bahar, A; Tagomori, S

    1994-01-01

    The effects of normal pulsed Nd-YAG laser irradiation on the acid resistance of human dental enamel of pits and fissures, the cleaning of the pit and fissure contents and fluoride uptake into deep pits and fissures were examined. The acid resistance of the pit and fissure enamel was evaluated by the amount of dissolved calcium per square millimeter of the surface area. The pit and fissure enamel treated with laser irradiation obtained an acid resistance 30% higher than that of the unlased controls. The cleaning effect of laser irradiation on the pit and fissure contents was compared with chemicomechanical and mechanical methods. The laser irradiation was found to clean the pits and fissures to a greater depth without alterating the shape of pits and fissures, compared with the other two methods. The distribution of calcium, phosphorus and fluoride in the enamel of the pits and fissures was then measured by electron probe microanalyzer. At the entrance and in the deep part of the pits and fissures, the fluoride content of the enamel treated with acidulated phosphate fluoride after laser irradiation was higher than that of the enamel treated with acidulated phosphate fluoride alone. These results thus suggest that Nd-YAG laser irradiation might be effective in increasing the acid resistance of the pit and fissure enamel, while removing the pit and fissure debris contents and increasing the fluoride uptake into the pit and fissure enamel.

  17. Ultrafast Magnetization Manipulation Using Single Femtosecond Light and Hot-Electron Pulses.

    PubMed

    Xu, Yong; Deb, Marwan; Malinowski, Grégory; Hehn, Michel; Zhao, Weisheng; Mangin, Stéphane

    2017-11-01

    Current-induced magnetization manipulation is a key issue for spintronic applications. This manipulation must be fast, deterministic, and nondestructive in order to function in device applications. Therefore, single- electronic-pulse-driven deterministic switching of the magnetization on the picosecond timescale represents a major step toward future developments of ultrafast spintronic systems. Here, the ultrafast magnetization dynamics in engineered Gd x [FeCo] 1- x -based structures are studied to compare the effect of femtosecond laser and hot-electron pulses. It is demonstrated that a single femtosecond hot-electron pulse causes deterministic magnetization reversal in either Gd-rich and FeCo-rich alloys similarly to a femtosecond laser pulse. In addition, it is shown that the limiting factor of such manipulation for perpendicular magnetized films arises from the formation of a multidomain state due to dipolar interactions. By performing time-resolved measurements under various magnetic fields, it is demonstrated that the same magnetization dynamics are observed for both light and hot-electron excitation, and that the full magnetization reversal takes place within 40 ps. The efficiency of the ultrafast current-induced magnetization manipulation is enhanced due to the ballistic transport of hot electrons before reaching the GdFeCo magnetic layer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimal dye concentration and irradiance for laser-assisted vascular anastomosis.

    PubMed

    Ren, Zhen; Xie, Hua; Lagerquist, Kathryn A; Burke, Allen; Prahl, Scott; Gregory, Kenton W; Furnary, Anthony P

    2004-04-01

    This investigation was done in order to find optimal indocyanine green (ICG) concentration and energy irradiance in laser vascular welding. Many studies have shown that laser tissue welding with albumin solder/ICG may be an effective technique in surgical reconstruction. However, there are few reports regarding optimal laser settings and concentrations of ICG within the albumin solder in laser-assisted vascular anastomosis. Porcine carotid artery strips (n = 120) were welded in end-to-end by diode laser with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG at irradiance of 27.7, 56.7, and 76.9 W/cm(2), respectively. Temperature was measured by inserting thermocouples outside and inside the vessel. Tensile strength and histology were studied. Temperature and strength of the anastomosis significantly decreased (all p < 0.05) with increasing ICG concentration at 56.7 W/cm(2). Histological study showed minimal thermal injury limited to adventitia and no appreciable difference between all groups. ICG concentration within solder is the most important factor affecting both vascular temperature and tensile strength. The optimal balance between strength and minimal thermal injury may be achieved primarily at 56.7 W/cm(2) and 0.01 mM ICG.

  19. Mathematical simulation of the thermal diffusion in dentine irradiated with Nd:YAG laser using finite difference method

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.

    2002-06-01

    Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.

  20. Effects of laser acupoint irradiation on energy metabolism of brain tissue of rats with cerebral ischemia-reperfusion

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Li, Xinzhong

    2017-12-01

    The protective effect and mechanism of low-intensity laser acupoint irradiation on focal cerebral ischemia-reperfusion (CIR) injury in rats were investigated. Male Sprague-Dawley rats were randomly divided into a sham group, a CIR model (model) group, and a model plus laser irradiation (laser) group. The focal CIR model was induced by middle cerebral artery occlusion in all except the rats in the sham group. After modeling, the Baihui, Mingmen, and left Zusanli points of the rats in the laser group were irradiated with 15 mW using a semiconductor laser, and each point was irradiated for 15 min once a day for 7 d. The treatments used in the sham and model groups were the same as in the laser group except that the laser output power was zero. After treatment, the expressions of serum superoxide dismutase (SOD) activity and serum malonaldehyde (MDA) content, the expression of growth-associated protein (GAP-43), the activities of succinic dehydrogenase and lactic dehydrogenase in brain tissue, were measured. The results showed that acupoint irradiation with a semiconductor laser can improve energy metabolism, enhance the expression of GAP-43, increase the levels of expression of serum SOD, and decrease the serum MDA content in a rat model of focal CIR, suggesting the mechanism for reduction of CIR injury.

  1. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation

    PubMed Central

    Zhang, Peng; Lau, Y. Y.

    2016-01-01

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710

  2. Photon-assisted electron energy loss spectroscopy and ultrafast imaging.

    PubMed

    Howie, Archie

    2009-08-01

    A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.

  3. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers.

    PubMed

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n = 168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz); diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p < 0.05). Both adaptation and sealer penetration in root canals were not affected by the laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p < 0.05). It can be concluded that intracanal laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  4. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H.; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n=168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p<0.05). Both adaptation and sealer penetration in root canals were not affected by the laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p<0.05). It can be concluded that intracanal laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  5. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    NASA Astrophysics Data System (ADS)

    Scoby, Cheyne Matthew

    This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the

  6. Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation

    PubMed Central

    2014-01-01

    We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT–polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics. PMID:24735347

  7. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  8. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    PubMed

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the

  9. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  10. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  11. Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas

    PubMed Central

    Takei, Nobuyuki; Sommer, Christian; Genes, Claudiu; Pupillo, Guido; Goto, Haruka; Koyasu, Kuniaki; Chiba, Hisashi; Weidemüller, Matthias; Ohmori, Kenji

    2016-01-01

    Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast evolution of its electronic coherence by time-domain Ramsey interferometry with attosecond precision. The observed electronic coherence shows an ultrafast oscillation with a period of 1 femtosecond, whose phase shift on the attosecond timescale is consistent with many-body correlations among Rydberg atoms beyond mean-field approximations. This coherent and ultrafast many-body dynamics is actively controlled by tuning the orbital size and population of the Rydberg state, as well as the mean atomic distance. Our approach will offer a versatile platform to observe and manipulate non-equilibrium dynamics of quantum many-body systems on the ultrafast timescale. PMID:27849054

  12. Morphological alterations of radicular dentine pretreated with different irrigating solutions and irradiated with 980-nm diode laser.

    PubMed

    Alfredo, Edson; Souza-Gabriel, Aline E; Silva, Silvio Rocha C; Sousa-Neto, Manoel D; Brugnera-Junior, Aldo; Silva-Sousa, Yara T C

    2009-01-01

    The topographical features of intraradicular dentine pretreated with sodium hypochlorite (NaOCl) or ethylenediamine tetraacetic acid (EDTA) followed by diode laser irradiation have not yet been determined. To evaluate the alterations of dentine irradiated with 980-nm diode laser at different parameters after the surface treatment with NaOCl and EDTA. Roots of 60 canines were biomechanically prepared and irrigated with NaOCl or EDTA. Groups were divided according to the laser parameters: 1.5 W/CW; 1.5 W/100 Hz; 3.0 W/CW; 3.0 W/100 Hz and no irradiation (control). The roots were splited longitudinally and analyzed by scanning electron microscopy (SEM) in a quali-quatitative way. The scores were submitted to two-way Kruskal-Wallis and Dunn's tests. The statistical analysis demonstrated that the specimens treated only with NaOCl or EDTA (control groups) were statistically different (P < 0.05) from the laser-irradiated specimens, regardless of the parameter setting. The specimens treated with NaOCl showed a laser-modified surface with smear layer, fissures, and no visible tubules. Those treated with EDTA and irradiated by laser presented absence of smear layer, tubules partially exposed and melting areas. The tested parameters of 980-nm diode laser promoted similar alterations on dentine morphology, dependent to the type of surface pretreatment. Copyright 2008 Wiley-Liss, Inc.

  13. Platelet derived growth factor secretion and bone healing after Er:YAG laser bone irradiation.

    PubMed

    Kesler, Gavriel; Shvero, Dana Kesler; Tov, Yariv Siman; Romanos, George

    2011-03-01

    Er:YAG laser irradiation has been reported to enhance wound healing. However, no studies have evaluated the synthesis of growth factors after laser irradiation. The present study investigated the effects of laser irradiation on the amount of secretion of platelet derived growth factor (PDGF) in the wound, clarifying the effects of the Er:YAG laser on the bone healing. Osteotomies were prepared in the tibiae of 28 rats using an Er:YAG laser (test group). Maximum power of 8 watts, energy per pulse of 700 mJ, and frequency up to 50 Hz were used. The laser was used with external water irrigation, a spot size of 2 mm, energy per pulse of 500 to 1000 mJ/pulse, and energy density of 32 J/cm(2). Twenty eight additional rats served as a control group and their osteotomies were prepared with a drill 1.3 mm in diameter at 1000 rpm, with simultaneous saline irrigation. Two rats from the tested group and 2 from the control group were sacrificed on each day following surgery (1-14 days), and the tissue specimens were prepared for histologic evaluation. Immunohistochemical staining with anti-PDGF was performed after histologic examination. The difference between the PDGF staining intensities of the 2 treatment groups was analyzed using a multivariate logistic regression test. A significant rise in PDGF staining occurred in both groups 2-3 days following surgery. However, while high PDGF counts remained for the 2-week experimental period in the laser group, PDGF levels in the control group returned to baseline levels 8 days post surgery. The 2 groups (laser and control) were found to be different throughout the experiment, and the rat type was found to be a significant predictor (P  =  .000011). The present study demonstrated that Er:YAG laser irradiation seems to stimulate the secretion of PDGF in osteotomy sites in a rat model. It is possible that the high levels of PDGF are part of the mechanism that Er:YAG irradiation enhances and improves the healing of

  14. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    NASA Astrophysics Data System (ADS)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  15. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    PubMed

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  16. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Hasanjee, Aamr M.; Bahavar, Cody F.; Zhou, Fefian; Liu, Hong; Howard, Eric W.; Bullen, Liz C.; Silvy, Ricardo P.; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is being developed as a treatment modality for metastatic cancer which can destroy primary tumors and induce effective systemic anti-tumor responses by using a targeted treatment approach in conjunction with the use of a novel immunoadjuvant, glycated chitosan (GC). In this study, Non-invasive Laser Immunotherapy (NLIT) was used as the primary treatment mode. We incorporated single-walled carbon nanotubes (SWNTs) into the treatment regimen to boost the tumor-killing effect of LIT. SWNTs and GC were conjugated to create a completely novel, immunologically modified carbon nanotube (SWNT-GC). To determine the efficacy of different laser irradiation durations, 5 minutes or 10 minutes, a series of experiments were performed. Rats were inoculated with DMBA-4 cancer cells, a highly aggressive metastatic cancer cell line. Half of the treatment group of rats receiving laser irradiation for 10 minutes survived without primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 minutes had no survivors. Thus, Laser+SWNT-GC treatment with 10 minutes of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  17. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells.

    PubMed

    Mvula, B; Moore, T J; Abrahamse, H

    2010-01-01

    The study investigated the effects of low-level laser radiation and epidermal growth factor (EGF) on adult adipose-derived stem cells (ADSCs) isolated from human adipose tissue. Isolated cells were cultured to semi-confluence, and the monolayers of ADSCs were exposed to low-level laser at 5 J/cm(2) using 636 nm diode laser. Cell viability and proliferation were monitored using adenosine triphosphate (ATP) luminescence and optical density at 0 h, 24 h and 48 h after irradiation. Application of low-level laser irradiation at 5 J/cm(2) on human ADSCs cultured with EGF increased the viability and proliferation of these cells. The results indicate that low-level laser irradiation in combination with EGF enhances the proliferation and maintenance of ADSCs in vitro.

  18. rf streak camera based ultrafast relativistic electron diffraction.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  19. Mono-energetic ions emission by nanosecond laser solid target irradiation

    NASA Astrophysics Data System (ADS)

    Muoio, A.; Tudisco, S.; Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Trifirò, A.

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser-matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  20. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha, E-mail: schaefer@ph4.physik.uni-goettingen.de

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  1. Modulation of ultrafast laser-induced magnetization precession in BiFeO3-coated La0.67Sr0.33MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Wan, Qian; Jin, KuiJuan; Wang, JieSu; Yao, HongBao; Gu, JunXing; Guo, HaiZhong; Xu, XiuLai; Yang, GuoZhen

    2017-04-01

    The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.

  2. Effect of laser irradiation conditions on the laser welding strength of cobalt-chromium and gold alloys.

    PubMed

    Kikuchi, Hisaji; Kurotani, Tomoko; Kaketani, Masahiro; Hiraguchi, Hisako; Hirose, Hideharu; Yoneyama, Takayuki

    2011-09-01

    Using tensile tests, this study investigated differences in the welding strength of casts of cobalt-chromium and gold alloys resulting from changes in the voltage and pulse duration in order to clarify the optimum conditions of laser irradiation for achieving favorable welding strength. Laser irradiation was performed at voltages of 150 V and 170 V with pulse durations of 4, 8, and 12 ms. For cobalt-chromium and gold alloys, it was found that a good welding strength could be achieved using a voltage of 170 V, a pulse duration of 8 ms, and a spot diameter of 0.5 mm. However, when the power density was set higher than this, defects tended to occur, suggesting the need for care when establishing welding conditions.

  3. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  4. Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.

    PubMed

    Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-09-14

    We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.

  5. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy.

    PubMed

    Weppelman, I G C; Moerland, R J; Hoogenboom, J P; Kruit, P

    2018-01-01

    We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Characteristics of surface modified Ti-6Al-4V alloy by a series of YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Zeng, Xian; Wang, Wenqin; Yamaguchi, Tomiko; Nishio, Kazumasa

    2018-01-01

    In this study, a double-layer Ti (C, N) film was successfully prepared on Ti-6Al-4V alloy by a series of YAG laser irradiation in nitrogen atmosphere, aiming at improving the wear resistance. The effects of laser irradiation pass upon surface chemical composition, microstructures and hardness were investigated. The results showed that the surface chemicals were independent from laser irradiation pass, which the up layer of film was a mixture of TiN and TiC0.3N0.7, and the down layer was nitrogen-rich α-Ti. Both the surface roughness and hardness increased as raising the irradiation passes. However, surface deformation and cracks happened in the case above 3 passes' irradiation. The wear resistance of laser modified sample by 3 passes was improved approximately by 37 times compared to the as received substrate. Moreover, the cytotoxic V ion released from laser modified sample was less than that of as received Ti-6Al-4V alloy in SBF, suggesting the potentiality of a new try to modify the sliding part of Ti-based hard tissue implants in future biomedical application.

  7. Laser irradiation of mouse spermatozoa enhances in-vitro fertilization and Ca2+ uptake via reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Cohen, Natalie; Lubart, Rachel; Rubinstein, Sara; Breitbart, Haim

    1996-11-01

    630 nm He-Ne laser irradiation was found to have a profound influence on Ca2+ uptake in mouse spermatozoa and the fertilizing potential of these cells. Laser irradiation affected mainly the mitochondrial Ca2+ transport mechanisms. Furthermore, the effect of light was found to be Ca2+-dependent. We demonstrate that reactive oxygen species (ROS) are involved in the cascade of biochemical events evoked by laser irradiation. A causal association between laser irradiation, ROS generation, and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. SOD treatment resulted in increased Ca2+ uptake and in enhanced fertilization rate. Catalase treatment impaired the light-induced stimulation in Ca2+ uptake and fertilization rate. Exogenous hydrogen peroxide was found to enhance Ca2+ uptake in mouse spermatozoa and the fertilizing capability of these cells in a dose-dependent manner. These results suggest that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of hydrogen peroxide by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase II-arrested eggs in-vitro.

  8. Ultrafast electron transport across nano gaps in nanowire circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potma, Eric O.

    In this Program we aim for a closer look at electron transfer through single molecules. To achieve this, we use ultrafast laser pulses to time stamp an electron tunneling event in a molecule that is connected between two metallic electrodes, while reading out the electron current. A key aspect of this project is the use of metallic substrates with plasmonic activity to efficiently manipulate the tunneling probability. The first Phase of this program is concerned with developing highly sensitive tools for the ultrafast optical manipulation of tethered molecules through the evanescent surface field of plasmonic substrates. The second Phase ofmore » the program aims to use these tools for exercising control over the electron tunneling probability.« less

  9. The Behavior of Translucent Composite Laminates under Highly Energetic Laser Irradiations

    NASA Astrophysics Data System (ADS)

    Allheily, Vadim; Merlat, Lionel; Lacroix, Fabrice; Eichhorn, Alfred; L'Hostis, Gildas

    With the emergence of composite materials in the last decades, the interaction between light and diffusive materials has become a challenging topic in many key manufacturing areas (laser welding, laser surface treatment, engraving, etc.). In this paper, the behavior of laminated glass fiber-reinforced plastic composites (GFRP) under 1.07 μm-wavelength irradiations is investigated. Optical parameters are first assessed to build up a basic analytical interaction model involving internal refraction and reflection. The scattering effect due to the presence of oriented glass fibers is also a topic of interest. A thermodynamic analysis is then carried out from the induced volume heat source until the degradation temperature of the material is reached out. The study finally results in a one-dimensional model describing the optical and thermo-dynamical behavior of GFRP under high-power laser irradiations up to ignition of the chemical degradation phenomena.

  10. Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy.

    PubMed

    Yuan, Xiaofei; Song, Yanqing; Song, Yizhi; Xu, Jiabao; Wu, Yinhu; Glidle, Andrew; Cusack, Maggie; Ijaz, Umer Z; Cooper, Jonathan M; Huang, Wei E; Yin, Huabing

    2018-04-15

    Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to

  11. Study of the Conditions of Irradiating Laser for Removal of Toner from Used Paper

    NASA Astrophysics Data System (ADS)

    Ihori, Haruo; Inagawa, Yuki; Ito, Naohiro; Fujii, Masaharu; Ninomiya, Hideki

    Though it is said to the paper-less age with the spread of personal computer, amount of office papers to be used doesn't have tendency to decrease. In general, used papers are recovered and recycled in order to preserve the environment. The labor and costs are required for the recovery of used papers and a recycled paper is lower in quality. If we could reuse used papers repeatedly without withdrawing those, for example, by copying machine that could print again with removing toner on used paper, it is very convenient and ecological. So, we studied about removing toner from used papers by application of the laser ablation technique. As an optical source, SHG-YAG laser was chosen. For removal of toner from used papers, the energy density to irradiate them with SHG-YAG laser was examined. When approximately 12mJ/mm2 of the energy density, which was average value, toner was removed so much as to be able to reuse again. Moreover, conditions of the laser irradiation, concretely, the velocity scanning the laser and the number of the irradiation, were studied.

  12. Effect of infrared laser irradiation on amino acid neurotransmitters in an epileptic animal model induced by pilocarpine.

    PubMed

    Radwan, Nasr Mahmoud; El Hay Ahmed, Nawal Abd; Ibrahim, Khayria Mansour; Khedr, Mona Emam; Aziz, Mona A; Khadrawy, Yasser Ashry

    2009-06-01

    The aim of the present study was to investigate the effect of daily laser irradiation on the levels of amino acid neurotransmitters in the cortex and hippocampus in an epileptic animal model induced by pilocarpine. It has been claimed that at specific wavelengths and energy densities, laser irradiation is a novel and useful tool for the treatment of peripheral and central nervous system injuries and disorders. Adult male albino rats were divided into three groups: control rats, pilocarpinized rats (epileptic animal model), and pilocarpinized rats treated daily with laser irradiation (90 mW at 830 nm) for 7 d. The following parameters were assayed in cortex and hippocampus: amino acid neurotransmitters (excitatory: glutamic acid and aspartate; and inhibitory: gamma-aminobutyric acid [GABA], glycine, and taurine) by high-performance liquid chromatography (HPLC), glucose content, and the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), using a spectrophotometer. Significant increases in the concentrations of glutamic acid, glutamine, glycine, and taurine were recorded in the cortices of pilocarpinized rats, and they returned to initial levels after laser treatment. In the hippocampus, a moderate increase in aspartate accompanied by a significant increase in glycine were observed in the epileptic animal model, and these dropped to near-control values after laser treatment. In addition, a significant increase in cortical AST activity and a significant decrease in ALT activity and glucose content were obtained in the pilocarpinized animals and pilocarpinized rats treated with laser irradiation. In the hippocampus, significant decreases in the activity of AST and ALT and glucose content were recorded in the epileptic animals and in the epileptic animals treated with laser irradiation. Based on the results obtained in this study, it may be suggested that nearinfrared laser irradiation may reverse the neurochemical changes in amino acid

  13. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less

  14. Role of temperature dependence of optical properties in laser irradiation of biological tissue

    NASA Astrophysics Data System (ADS)

    Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.

    1992-08-01

    Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.

  15. SEM investigations of the cementum surface after irradiation with a frequency-doubled Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1996-04-01

    During prior studies it could be demonstrated while engaging a frequency doubled Alexandrite-laser (wavelength 380 nm, pulse duration 100 ns, fluence 1 J/cm2, pulse repetition rate 110 Hz) a fast and strictly selective ablation of supra- and subgingival calculus is possible. Even the removal of unstained microbial plaque was observed. First conclusions were drawn after light microscopical investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a Scanning Electron Microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.

  16. Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs.

    PubMed

    Ren, Zhong; Yang, Xiaojing

    2016-07-01

    X-ray crystallography promises direct insights into electron-density changes that lead to and arise from structural changes such as electron and proton transfer and the formation, rupture and isomerization of chemical bonds. The ultrashort pulses of hard X-rays produced by free-electron lasers present an exciting opportunity for capturing ultrafast structural events in biological macromolecules within femtoseconds after photoexcitation. However, shot-to-shot fluctuations, which are inherent to the very process of self-amplified spontaneous emission (SASE) that generates the ultrashort X-ray pulses, are a major source of noise that may conceal signals from structural changes. Here, a new approach is proposed to angularly split a single SASE pulse and to produce a temporal delay of picoseconds between the split pulses. These split pulses will allow the probing of two distinct states before and after photoexcitation triggered by a laser pulse between the split X-ray pulses. The split pulses originate from a single SASE pulse and share many common properties; thus, noise arising from shot-to-shot fluctuations is self-canceling. The unambiguous interpretation of ultrafast structural changes would require diffraction data at atomic resolution, as these changes may or may not involve any atomic displacement. This approach, in combination with the strategy of serial crystallography, offers a solution to study ultrafast dynamics of light-initiated biochemical reactions or biological processes at atomic resolution.

  17. Ultrafast Laser Techniques

    DTIC Science & Technology

    1991-06-05

    2 Prism Dye Amplifiers .................................................................................. 2 Axicon...carried out under this project. PRISM DYE AMPLIFIERS A first effort was devoted to setting up an amplifier system for the output of a short pulse dye laser...For amplification up to pulse energies of approximately 500 p.J/pulse we chose three stages of prism amplifier cells, with diameters of 1 m, 3 mm

  18. Low energy laser irradiation treatment for second intention wound healing in horses

    PubMed Central

    Fretz, Peter B.; Li, Zhong

    1992-01-01

    Low energy helium-neon laser irradiation was administered to full thickness skin wounds (3 cm × 3 cm) on the dorsal surface of the metacarpophalangeal/metatarsophalangeal joints and cranial surface of the tarsocrural joints of eight horses. The effects on wound healing were analyzed statistically. There were no differences (p > 0.55) observed in the rate of wound healing between the low energy laser irradiated wounds and the control wounds. There was a significant difference (p < 0.006) observed in the rate of healing between the anatomical sites. Tarsal wounds healed more rapidly than fetlock wounds. PMID:17424089

  19. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    NASA Astrophysics Data System (ADS)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  20. Microbial contamination of the environment after the irradiation of Er:YAG laser in infected root canals

    NASA Astrophysics Data System (ADS)

    Brugnera, Aldo, Jr.; Zanin, Fatima A. A.; Sampaio Moura, Marcelo; Heredia Seixas, Fabio; Rodrigues de Araujo Estrela, Cyntia; Estrela, Carlos; Djalma Pecora, Jesus

    2003-06-01

    The purpose of this study was to analyze the environment microbial contamination produced by Er:YAG laser irradiation in infected root canals. A total of 20 human anterior teeth were prepared, sterilized and, then, inoculated with a mixture of the following microorganisms: S. Aureus, E. Faecalis, P. Aeruginosa, B. Subtilis and C. Albicans. After the contamination period (28 days), the teeth were irrigated with sterile distilled water or 1% sodium hypochlorite and, then, irradiated with an Er:YAG laser with two different laser parameters: 52 mJ or 110 mJ output at the fiber tip. Eighteen Petri dishes with 20 ml of BHI Agar were used in the study. For each group, 3 plates with BHIA were used for the analysis of the microbial contamination of the environment during the activation of the laser in infected root canals. The plates were positioned in differing distances away from the irradiated tooth (plate 1 - distance of 15 cm, plate 2 - distance of 50 cm and plate 3 - distance of 3 meters). After the analysis of the results, it was observed that the larger microbial contamination occurred in Group 1 (teeth irrigated with sterile distilled water and irradiated with Er:YAG laser with 52 mJ output at the fiber tip), plate 1 (positioned 15 cm away from the irradiated tooth), with values greater than 30 Colony-Forming Units (CFU).

  1. Effects of CO2 laser irradiation on matrix-rich biofilm development formation-an in vitro study.

    PubMed

    Zancopé, Bruna Raquel; Dainezi, Vanessa B; Nobre-Dos-Santos, Marinês; Duarte, Sillas; Pardi, Vanessa; Murata, Ramiro M

    2016-01-01

    A carbon dioxide (CO 2 ) laser has been used to morphologically and chemically modify the dental enamel surface as well as to make it more resistant to demineralization. Despite a variety of experiments demonstrating the inhibitory effect of a CO 2 laser in reduce enamel demineralization, little is known about the effect of surface irradiated on bacterial growth. Thus, this in vitro study was preformed to evaluate the biofilm formation on enamel previously irradiated with a CO 2 laser (λ = 10.6 µM). For this in vitro study, 96 specimens of bovine enamel were employed, which were divided into two groups (n = 48): 1) Control-non-irradiated surface and 2) Irradiated enamel surface. Biofilms were grown on the enamel specimens by one, three and five days under intermittent cariogenic condition in the irradiated and non-irradiated surface. In each assessment time, the biofilm were evaluated by dry weigh, counting the number of viable colonies and, in fifth day, were evaluated by polysaccharides analysis, quantitative real time Polymerase Chain Reaction (PCR) as well as by contact angle. In addition, the morphology of biofilms was characterized by fluorescence microscopy and field emission scanning electron microscopy (FESEM). Initially, the assumptions of equal variances and normal distribution of errors were conferred and the results are analyzed statistically by t-test and Mann Whitney test. The mean of log CFU/mL obtained for the one-day biofilm evaluation showed that there is statistical difference between the experimental groups. When biofilms were exposed to the CO 2 laser, CFU/mL and CFU/dry weight in three day was reduced significantly compared with control group. The difference in the genes expression (Glucosyltransferases (gtfB) and Glucan-binding protein (gbpB)) and polysaccharides was not statically significant. Contact angle was increased relative to control when the surface was irradiated with the CO 2 laser. Similar morphology was also visible with both

  2. Lasers for nonlinear microscopy.

    PubMed

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  3. Corneal tissue welding with infrared laser irradiation after clear corneal incision.

    PubMed

    Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat

    2010-09-01

    The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.

  4. Morphology alterations of skin and subcutaneous fat at NIR laser irradiation combined with delivery of encapsulated indocyanine green

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Navolokin, Nikita A.; Svenskaya, Yulia I.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Gorin, Dmitry A.; Sukhorukov, Gleb B.; Tuchin, Valery V.

    2017-05-01

    The goal of this study is to quantify the impact of the in vivo photochemical treatment of rats with obesity using indocyanine green (ICG) dissolved in saline or dispersed in an encapsulated form at NIR laser irradiation, which was monitored by tissue sampling and histochemistry. The subcutaneous injection of the ICG solution or ICG encapsulated into polyelectrolyte microcapsules, followed by diode laser irradiation (808 nm, 8 W/cm2, 1 min), resulted in substantial differences in lipolysis of subcutaneous fat. Most of the morphology alterations occurred in response to the laser irradiation if a free-ICG solution had been injected. In such conditions, membrane disruption, stretching, and even delamination in some cases were observed for a number of cells. The encapsulated ICG aroused similar morphology changes but with weakly expressed adipocyte destruction under the laser irradiation. The Cochran Q test rendered the difference between the treatment alternatives statistically significant. By this means, laser treatment using the encapsulated form of ICG seems more promising and could be used for safe layerwise laser treatment of obesity and cellulite.

  5. Morphology alterations of skin and subcutaneous fat at NIR laser irradiation combined with delivery of encapsulated indocyanine green.

    PubMed

    Yanina, Irina Yu; Navolokin, Nikita A; Svenskaya, Yulia I; Bucharskaya, Alla B; Maslyakova, Galina N; Gorin, Dmitry A; Sukhorukov, Gleb B; Tuchin, Valery V

    2017-05-01

    The goal of this study is to quantify the impact of the in vivo photochemical treatment of rats with obesity using indocyanine green (ICG) dissolved in saline or dispersed in an encapsulated form at NIR laser irradiation, which was monitored by tissue sampling and histochemistry. The subcutaneous injection of the ICG solution or ICG encapsulated into polyelectrolyte microcapsules, followed by diode laser irradiation (808 nm, 8 ?? W / cm 2 , 1 min), resulted in substantial differences in lipolysis of subcutaneous fat. Most of the morphology alterations occurred in response to the laser irradiation if a free-ICG solution had been injected. In such conditions, membrane disruption, stretching, and even delamination in some cases were observed for a number of cells. The encapsulated ICG aroused similar morphology changes but with weakly expressed adipocyte destruction under the laser irradiation. The Cochran Q test rendered the difference between the treatment alternatives statistically significant. By this means, laser treatment using the encapsulated form of ICG seems more promising and could be used for safe layerwise laser treatment of obesity and cellulite.

  6. Investigation of field emission properties of laser irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Rafique, Muhammad Shahid; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm2. Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I- V characteristics and plotting corresponding electric field ( E) versus emission current density ( J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/µm, 1300 to 3490 and 107 to 350 µA/cm2, respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences.

  7. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5.

    PubMed

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G

    2015-08-28

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization.

  8. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5

    PubMed Central

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G.

    2015-01-01

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization. PMID:26314613

  9. Research of epidermal cellular vegetal cycle of intravascular low level laser irradiation in treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Bao, Xiaoqing; Zhang, Mei-Jue

    2005-07-01

    Objective: To research epidermal cellular vegetal cycle and the difference of DNA content between pre and post Intravascular Low Level Laser Irradiation treatment of psoriasis. Method: 15 patients suffered from psoriasis were treated by intravascular low level laser irradiation (output power: 4-5mw, 1 hour per day, a course of treatment is 10 days). We checked the different DNA content of epidermal cell between pre and post treatment of psoriasis and 8 natural human. Then the percentage of each phase among the whole cellular cycle was calculated and the statistical analysis was made. Results: The mean value of G1/S phase is obviously down while G2+M phase increased obviously. T test P<0.05.The related statistical analysis showed significant difference between pre and post treatments. Conclusions: The Intravascular Low Level Laser Irradiation (ILLLI) in treatment of psoriasis is effective according to the research of epidermal cellular vegetal cycle and the difference DNA content of Intravascular Low Level Laser Irradiation between pre and post treatment of psoriasis

  10. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment

    PubMed Central

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J.

    2015-01-01

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm2, respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer’s surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm2 and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si–(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals. PMID:26575362

  11. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    PubMed

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  12. Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: a concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin).

    PubMed

    Smitienko, Olga; Nadtochenko, Victor; Feldman, Tatiana; Balatskaya, Maria; Shelaev, Ivan; Gostev, Fedor; Sarkisov, Oleg; Ostrovsky, Mikhail

    2014-11-11

    Ultrafast reverse photoreaction of visual pigment rhodopsin in the femtosecond time range at room temperature is demonstrated. Femtosecond two-pump probe experiments with a time resolution of 25 fs have been performed. The first рump pulse at 500 nm initiated cis-trans photoisomerization of rhodopsin chromophore, 11-cis retinal, which resulted in the formation of the primary ground-state photoproduct within a mere 200 fs. The second pump pulse at 620 nm with a varying delay of 200 to 3750 fs relative to the first рump pulse, initiated the reverse phototransition of the primary photoproduct to rhodopsin. The results of this photoconversion have been observed on the differential spectra obtained after the action of two pump pulses at a time delay of 100 ps. It was found that optical density decreased at 560 nm in the spectral region of bathorhodopsin absorption and increased at 480 nm, where rhodopsin absorbs. Rhodopsin photoswitching efficiency shows oscillations as a function of the time delay between two рump pulses. The quantum yield of reverse photoreaction initiated by the second pump pulse falls within the range 15%±1%. The molecular mechanism of the ultrafast reversible photoreaction of visual pigment rhodopsin may be used as a concept for the development of an ultrafast optical molecular switch.

  13. Magnetic-Force-Assisted Straightening of Bent Mild Steel Strip by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Dutta, Polash P.; Kalita, Karuna; Dixit, Uday S.; Liao, Hengcheng

    2017-12-01

    This study proposes a technique to straighten bent metallic strips with magnetic-force-assisted laser irradiation. Experiments were conducted for three different types of mechanically-bent mild strips. The first type was bent strips without any heat treatment. The second type was stress-relieved and third type was subcritical-annealed bent strips. These strips were straightened following different schemes of laser irradiation sequence to understand the performance of straightening. A parametric study was conducted by varying laser power and scanning speed. Micro-hardness, tensile test, Charpy impact test and microstructure after straightening were also studied. Different scanning schemes provided different microstructures and mechanical properties. Any serious deterioration in the quality of straightened strips was not noticed. Overall, subcritical-annealed bent strips provided the best performance in straightening. The proposed straightening scheme has potential of becoming an industrial practice.

  14. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Laser—ultrasonic formation of melts of high-speed tool steels

    NASA Astrophysics Data System (ADS)

    Gureev, D. M.

    1994-09-01

    A study was made of the influence of ultrasonic vibrations on the processes of heat and mass transfer, and of structure formation during ultrafast crystallisation of laser melts of T1 high-speed tool steel. Acoustic flows which appeared in laser melts effectively smoothed out the temperature inhomogeneities and flattened the relief of the molten surface even when the laser radiation acted for just ~1 ms. The transformation of the mechanical energy of ultrasonic vibrations into heat increased the depth of the laser melt baths and suppressed crack formation. The observed changes in the structural and phase composition appeared as a change in the microhardness of the solidified laser melts. The geometry of coupling of ultrasound into a laser melt influenced the changes in the microhardness, suggesting a need for a more detailed analysis of the structure formation processes in the course of ultrafast crystallisation of laser melts in an ultrasonic field.

  15. Laser etching of groove structures with micro-optical fiber-enhanced irradiation

    PubMed Central

    2012-01-01

    A microfiber is used as a laser-focusing unit to fabricate a groove structure on TiAlSiN surfaces. After one laser pulse etching, a groove with the minimum width of 265 nm is manufactured at the area. This technique of microfabricating the groove in microscale is studied. Based on the near-field intensity enhancement at the contact area between the fiber and the surface during the laser irradiation, simulation results are also presented, which agree well with the experimental results. PMID:22713521

  16. Trends in laser micromachining

    NASA Astrophysics Data System (ADS)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  17. Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon.

    PubMed

    Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A

    2012-09-01

    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.

  18. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  19. Clean sub-8-fs pulses at 400 nm generated by a hollow fiber compressor for ultraviolet ultrafast pump-probe spectroscopy.

    PubMed

    Liu, Jun; Okamura, Kotaro; Kida, Yuichiro; Teramoto, Takahiro; Kobayashi, Takayoshi

    2010-09-27

    Clean 7.5 fs pulses at 400 nm with less than 3% energy in tiny satellite pulses were obtained by spectral broadening in a hollow fiber and dispersive compensating using a prism pair together with a deformable mirror system. As an example, this stable and clean pulse was used to study the ultrafast pump-probe spectroscopy of photoactive yellow protein. Moreover, the self-diffraction signal shows a smoothed and broadened laser spectrum and is expected to have a further clean laser pulse, which makes it more useful in the ultrafast pump-probe spectroscopy in the future.

  20. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.