Sample records for ultrafiltration gel filtration

  1. Gel filtration of sialoglycoproteins.

    PubMed Central

    Alhadeff, J A

    1978-01-01

    The role of sialic acid in the gel-filtration behaviour of sialoglycoproteins was investigated by using the separated isoenzymes of purified human liver alpha-L-fucosidase and several other well-known sialic acid-containing glycoproteins (fetuin, alpha1-acid glycoprotein, thyroglobulin and bovine submaxillary mucin). For each glycoprotein studied, gel filtration of its desialylated derivative gave an apparent molecular weights much less than that expected just from removal of sialic acid. For the lower-molecular-weight glycoproteins (fetuin and alpha1-acid glyocprotein), gel filtration of the sialylated molecules led to apparent molecular weights much larger than the known values. The data indicate that gel filtration cannot be used for accurately determining the molecular weights of at least some sialoglycoproteins. Images Fig. 1. PMID:356853

  2. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance

    PubMed Central

    Winter, Joerg; Bérubé, Pierre

    2017-01-01

    Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended. PMID:28671604

  3. Polyethersulfone/polyacrylonitrile blended ultrafiltration membranes: preparation, morphology and filtration properties.

    PubMed

    Pasaoglu, Mehmet Emin; Guclu, Serkan; Koyuncu, Ismail

    Polyethersulfone (PES)/polyacrylonitrile (PAN) membranes have been paid attention among membrane research subjects. However, very few studies are included in the literature. In our study, asymmetric ultrafiltration (UF) membranes were prepared from blends of PES/PAN with phase inversion method using water as coagulation bath. Polyvinylpyrrolidone (PVP) with Mw of 10,000 Da was used as pore former agent. N,N-dimethylformamide was used as solvent. The effects of different percentage of PVP and PES/PAN composition on morphology and water filtration properties were investigated. Membrane performances were examined using pure water and lake water filtration studies. Performances of pure water were less with the addition of PAN into the PES polymer casting solutions. However, long-term water filtration tests showed that PES/PAN blend membranes anti-fouling properties were much higher than the neat PES membranes. The contact angles of PES/PAN membranes were lower than neat PES membranes because of PAN addition in PES polymer casting solutions. Furthermore, it was found that PES/PAN blend UF membranes' dynamic mechanical analysis properties in terms of Young's modules were less than neat PES membrane because of decreasing amount of PES polymer.

  4. Automated in-line gel filtration for native state mass spectrometry.

    PubMed

    Waitt, Greg M; Xu, Robert; Wisely, G Bruce; Williams, Jon D

    2008-02-01

    Characterization of protein-ligand complexes by nondenaturing mass spectrometry provides direct evidence of drug-like molecules binding with potential therapeutic targets. Typically, protein-ligand complexes to be analyzed contain buffer salts, detergents, and other additives to enhance protein solubility, all of which make the sample unable to be analyzed directly by electrospray ionization mass spectrometry. This work describes an in-line gel-filtration method that has been automated and optimized. Automation was achieved using commercial HPLC equipment. Gel column parameters that were optimized include: column dimensions, flow rate, packing material type, particle size, and molecular weight cut-off. Under optimal conditions, desalted protein ions are detected 4 min after injection and the analysis is completed in 20 min. The gel column retains good performance even after >200 injections. A demonstration for using the in-line gel-filtration system is shown for monitoring the exchange of fatty acids from the pocket of a nuclear hormone receptor, peroxisome proliferator activator-delta (PPARdelta) with a tool compound. Additional utilities of in-line gel-filtration mass spectrometry system will also be discussed.

  5. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    PubMed

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  6. Liquid Whey Protein Concentrates Produced by Ultrafiltration as Primary Raw Materials for Thermal
Dairy Gels

    PubMed Central

    2017-01-01

    Summary The aim of this work is to study the gelation properties of liquid whey protein concentrates (LWPC) produced by ultrafiltration (UF) as raw material for thermally induced gels intended for food applications. LWPC thermal gelation was performed using different types of LWPC (non-
-defatted, defatted and diafiltered) of different protein mass fractions and pH. Most of the produced gels showed viscoelastic behaviour. Non-defatted LWPC gave stronger heat-induced gels with a more cohesive microstructure, a higher water holding capacity and also higher elastic modulus (G’) and viscous modulus (G’’). Gel properties were not improved in products with lower content of non-protein compounds. As expected, the increase in protein mass fraction positively influences protein interactions. However, the pH is responsible for the equilibrium between attraction and repulsion forces in the gel components that influence gel hardness and water holding capacity. PMID:29540980

  7. Liquid Whey Protein Concentrates Produced by Ultrafiltration as Primary Raw Materials for Thermal
Dairy Gels.

    PubMed

    Henriques, Marta; Gomes, David; Pereira, Carlos

    2017-12-01

    The aim of this work is to study the gelation properties of liquid whey protein concentrates (LWPC) produced by ultrafiltration (UF) as raw material for thermally induced gels intended for food applications. LWPC thermal gelation was performed using different types of LWPC (non-
-defatted, defatted and diafiltered) of different protein mass fractions and pH. Most of the produced gels showed viscoelastic behaviour. Non-defatted LWPC gave stronger heat-induced gels with a more cohesive microstructure, a higher water holding capacity and also higher elastic modulus (G') and viscous modulus (G''). Gel properties were not improved in products with lower content of non-protein compounds. As expected, the increase in protein mass fraction positively influences protein interactions. However, the pH is responsible for the equilibrium between attraction and repulsion forces in the gel components that influence gel hardness and water holding capacity.

  8. Water hammer reduces fouling during natural water ultrafiltration.

    PubMed

    Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M

    2012-03-15

    Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 1314-36-9). (4) Ultrafiltration membranes that consist of a microporous poly(vinylidene fluoride... gallons of potable water prior to their first use in contact with food. (g) Acrylonitrile copolymers...

  10. Sol-gel applications for ceramic membrane preparation

    NASA Astrophysics Data System (ADS)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  11. Ceramic membrane by tape casting and sol-gel coating for microfiltration and ultrafiltration application

    NASA Astrophysics Data System (ADS)

    Das, Nandini; Maiti, H. S.

    2009-11-01

    Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane

  12. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    PubMed Central

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  13. Influence of gas-liquid two-phase flow on angiotensin-I converting enzyme inhibitory peptides separation by ultra-filtration.

    PubMed

    Charoenphun, Narin; Youravong, Wirote

    2017-01-01

    Membrane fouling is a major problem in ultra-filtration systems and two-phase flow is a promising technique for permeate flux enhancement. The objective of this research was to study the use of an ultra-filtration (UF) system to enrich angiotensin-I converting enzyme (ACE) inhibitory peptides from tilapia protein hydrolysate. To select the most appropriate membrane and operating condition, the effects of membrane molecular weight cut-off (MWCO), transmembrane pressure (TMP) and cross-flow velocity (CFV) on permeate flux and ACE inhibitory peptide separation were studied. Additionally, the gas-liquid two-phase flow technique was applied to investigate its effect on the process capability. The results showed that the highest ACE inhibitory activity was obtained from permeate of the 1 kDa membrane. In terms of TMP and CFV, the permeate flux tended to increase with TMP and CFV. The use of gas-liquid two-phase flow as indicated by shear stress number could reduce membrane fouling and increase the permeate flux up to 42%, depending on shear stress number. Moreover, the use of a shear stress number of 0.039 led to an augmentation in ACE inhibitory activity of permeates. Operating conditions using a shear stress number of 0.039 were recommended for enrichment of ACE inhibitory peptides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  15. A Laboratory Exercise for Visible Gel Filtration Chromatography Using Fluorescent Proteins

    ERIC Educational Resources Information Center

    Zhang, Wenqiang; Cao, Yibin; Xu, Lishan; Gong, Jufang; Sun, Meihao

    2015-01-01

    Gel filtration chromatography (GFC) separates molecules according to size and is one of the most widely used methods for protein purification. Here, red fluorescent protein (RFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), and/or their fusion proteins were prokaryotically expressed, purified,…

  16. Xanthan gum recovery from fermentation broth using ultrafiltration: Kinetics and process evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Y.M.; Yang, S.T.; Min, D.B.

    1995-12-01

    Ultrafiltration of xanthan gum solution as an alternative method to alcohol precipitation for xanthan gum recovery from dilute fermentation broth was studied. A polysulfone membrane (with 500,000 MWCO) hollow fiber (106 mil fiber diameter) tubular cartridge was used to concentrate xanthan broth from less than 3 (w/v) % to {approximately}13.5 (w/v) %, with the xanthan recovery yield of {approximately}95 % or higher. During ultrafiltration, the filtrate flux was one order of magnitude lower for xanthan broth than for water, However, the flux remained almost constant for xanthan concentrations up to {approximately}8%. It was then reduced dramatically as the xanthan concentrationmore » increased beyond 8%. The reduced filtrate flux was caused by the reduced pumping (shear) rate and higher viscosities at higher xanthan concentrations. At constant xanthan concentration, the filtrate flux remained almost unchanged for the entire period studied, suggesting that the process is not subject to membrane fouling. In general, the filtrate flux decreased with increasing the xanthan concentration and increased with increasing the pumping (shear) rate and the trans-membrane pressure difference. Changing the solution pH had a slight effect on the viscosity of xanthan solution, but did not affect the filtration performance. Even under high-shear-rate conditions, ultrafiltration did not give any adverse effects on the rheological properties and molecular weight of the xanthan polymer. Thus, ultra filtration can be used to concentrate xanthan broth from fermentation by a factor of four or higher and to reduce the subsequent alcohol recovery costs by at least 75 %.« less

  17. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    NASA Astrophysics Data System (ADS)

    Kowalska, Izabela; Klimonda, Aleksandra

    2017-11-01

    The aim of the study was to assess the usefulness of micellar-enhanced ultrafiltration (MEUF) for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi-pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration)). Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L), the average concentration of copper ions in the permeate ranged from 1.2-4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  18. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production.

    PubMed

    Jermann, D; Pronk, W; Meylan, S; Boller, M

    2007-04-01

    Ultrafiltration is an emerging technology for drinking water production, but a main challenge remains the lack of understanding about fouling. This paper investigates the impact of molecular interactions between different natural organic matter (NOM) compounds on ultrafiltration fouling mechanisms. We performed dead-end filtration experiments with individual and mixed humic acid and alginate (polysaccharide). Alginate showed detrimental, but mostly reversible, flux decline and high solute retention. Our results indicate that this was caused by pore blocking transformed into cake building and weak molecular foulant-membrane and foulant-foulant interactions. In the presence of calcium, aggravated fouling was observed, related to complexation of alginate and its subsequently induced gel formation. With humic acid, more severe irreversible fouling occurred due to humic acid adsorption. Minor adsorption of alginate onto the membrane was also observed, which probably caused the substantial irreversible flux decline. The fouling characteristics in the mixtures reflected a combination of the individual humic acid and alginate experiments and we conclude, that the individual fouling mechanisms mutually influence each other. A model elucidates this interplay of the individual fouling mechanisms via hydrophobic and electrostatic interactions. In our study such an interplay resulted in an alginate cake, or gel in the presence of calcium, which is relatively irreversibly adsorbed onto the membrane by humic acid associations. This study shows the importance of mutual influences between various foulants for improved understanding of fouling phenomena. Furthermore it shows that substances with a minor individual influence might have a large impact in mixed systems such as natural water.

  19. Flexographic newspaper deinking : treatment of wash filtrate effluent by membrane technology

    Treesearch

    B. Chabot; G.A. Krishnagopalan; S. Abubakr

    1999-01-01

    Ultrafiltration was investigated as a means to remove flexographic ink pigments from wash filtrate effluent generated from various mixtures of flexographic and offset old newspapers from deinking operations. Membrane separation efficiency was assessed from permeate flux, fouling rate, and ease of membrane regeneration (cleaning). Ultrafiltration was capable of...

  20. Evaluation of Hollow-Fiber Ultrafiltration Primary Concentration of Pathogens and Secondary Concentration of Viruses from Water

    EPA Science Inventory

    In this study, tangential hollow-fiber ultrafiltration (HFUF) was evaluated for virus and Cryptosporidium parvum concentration. Recovery of viruses at a low filtration rate was found to be significantly greater than at a higher filtration rate, with the recoveries of bacteriopha...

  1. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

    PubMed Central

    2009-01-01

    An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful. PMID:19495910

  2. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    groups in the PEGylated proteins. Ultrafiltration experiments were performed using PEGylated alpha-lactalbumin, ovalbumin, and bovine serum albumin. In contrast to the size exclusion chromatography data, the sieving coefficient of the PEGylated proteins depended upon both the number and size of the attached PEG chains due to the elongation or deformation of the PEG associated with the filtrate flux. Sieving coefficients at low filtrate flux were in good agreement with predictions of available hydrodynamic models, with significant elongation occurring when the Deborah number for the PEG chain exceeded 0.001. The effects of electrostatic interactions on the ultrafiltration of PEGylated proteins were examined using electrically-charged membranes generated by covalent attachment of sulphonic acid groups to the base cellulosic membrane. Transmission of PEGylated proteins through charged membranes was dramatically reduced at low ionic strength due to strong electrostatic interactions, despite the presence of the neutral PEG. The experimental results were in good agreement with model calculations developed for the partitioning of charged spheres into charged cylindrical pores. The experimental and theoretical results provide the first quantitative analysis of the effects of PEGylation on transport through semipermeable ultrafiltration membranes. The results from small-scale ultrafiltration experiments were used to develop a two-stage diafiltration process to purify PEGylated alpha-lactalbumin. The first-stage used a neutral membrane to remove the unreacted protein by exploiting differences in size. The second stage used a negatively-charged membrane to remove hydrolyzed PEG, with the PEGylated product retained by strong electrostatic interactions. This process provided a purification factor greater than 1000 with respect to the unreacted protein and greater than 20-fold with respect to the PEG with an overall yield of PEGylated alpha-lactalbumin of 78%. These results provide

  3. Coagulation pretreatment for ultrafiltration of deinking effluents containing flexographic inks

    Treesearch

    Bruno Chabot; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    This study was carried out to determine the potential of coagulation pretreatment with organic or inorganic coagulants to improve ultrafiltration performance during processing of wash deinking effluents containing flexographic inks. Wash filtrate effluents generated from mixtures of old flexographic and offset newspapers and old magazines were pretreated with a...

  4. Gel filtration applied to the study of lipases and other esterases

    PubMed Central

    Downey, W. K.; Andrews, P.

    1965-01-01

    1. Sephadex G-100 and G-200 gel-filtration columns were calibrated for molecular-weight estimation with proteins of known molecular weights, and used to study the composition of several lipase or esterase preparations. 2. Enzymes from cow's milk, rat adipose tissue and pig pancreas were detected in the column effluents by their ability to liberate free acid from emulsified tributyrin at pH 8·5. 3. Four tributyrinases were detected in preparations from individual cow's milks. Molecular weights 62000, 75000 and 112000 were estimated for three of them, but although the fourth may be of unusually low molecular weight an estimate was not possible. 4. Extracts of rat adipose tissue apparently contained six tributyrinases (molecular weights 39000, 47000, 55000, 68000, 75000 and 200000) but the relative amounts of these enzymes varied widely from rat to rat. 5. Tributyrinase activity in juice expressed from pig pancreatic tissue was due mainly to one enzyme (molecular weight 42000). On the other hand, activity in extracts of acetone-dried pancreas was confined to material of molecular weight > 106, which may be an aggregated form of the lower-molecular-weight enzyme. 6. Activity in fractionated wheat-germ extracts was assayed with emulsified triacetin substrate, and was evidently due to one enzyme (molecular weight 51000). 7. Some problems arising in the application of gel filtration to the study of lipase–esterase systems were indicated. PMID:14340054

  5. Evaluation of Ultrafiltration Performance for Phospholipid Separation

    NASA Astrophysics Data System (ADS)

    Aryanti, N.; Wardhani, D. H.; Maulana, Z. S.; Roberto, D.

    2017-11-01

    Ultrafiltration membrane for degumming of crude palm oil has been applied as an alternative method since the membrane process required less procedure than the conventional degumming. This research focused on the examination of ultrafiltration performance for phospholipid separation from model crude palm oil degumming. Specifically, profile flux and rejection, as well as blocking mechanism, were investigated. Feed consisting of Refined Crude Palm Oil - Isopropanol - Lecithin mixtures were represented as crude palm oil degumming. Lecithin was denoted a phospholipid component, and the concentrations of lecithin in feed were varied to 0.1%, 0.2%, and 0.3%. The concentration of phospholipid was determined as phosphor content. At the concentration of lecithin in feed representing phospholipid concentration of 8,45 mg/kg, 8,45 mg/kg, 24,87 mg/kg and 57,58 mg/kg, respectively. Flux profiles confirmed that there was a flux decline during filtration. In addition, the lecithin concentrations do not significantly effect on further flux decline. Rejection characteristic and phospholipid concentration in the permeate showed that the phospholipid rejections by ultrafiltration were in the range of 23-79,5% representing permeate’s phospholipid concentration of 1,73 - 44,25 mg/kg. Evaluation of fouling mechanism by Hermia’s blocking model confirmed that the standard blocking is the dominant mechanism in the ultrafiltration of lecithin mixture.

  6. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    PubMed Central

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives. PMID:27338487

  7. Study on an integrated process combining ozonation with ceramic ultra-filtration for decentralized supply of drinking water.

    PubMed

    Zhu, Jia; Fan, Xiao J; Tao, Yi; Wei, De Q; Zhang, Xi H

    2014-09-19

    An integrated process was specifically developed for the decentralized supply of drinking water from micro-polluted surface water in the rural areas of China. The treatment process combined ozonation with ceramic ultra-filtration (UF), coagulation for pre-treatment and granular activated carbon filtration. A flat-sheet ceramic membrane was used with a cut-off of 60 nm and the measurement of 254 mm (length) × 240 mm (width) × 6 mm (thickness). Ozonation and ceramic UF was set up whthin one reactor. The experimental results showed that the removal efficiencies of the dissolved organic carbon (DOC) and the formation potential of trihalomethanes (THMs), haloacetic acids (HAAs) and ammonia were 80%, 76%, 70% and 90%, respectively; that the turbidity of the product water was below 0.2 NTU and the particle count number (particles larger than 2 μm) was less than 50 counts per mL. The result also showed that all the pathogenic microorganisms were retained by the ceramic and that UF. Ozonation played a critical role in the control of membrane fouling and the removal of contaminants. Exactly, the membrane fouling can be controlled in situ with 3 mg L(-1) ozone at the permeate flux of 80 L m(-2) h(-1), yet the required dosage of ozone was dependent on the quality of the raw water. Therefore, this study is able to provide a highly compacted system for decentralized supply of high-quality drinking water in terms of both chemical and microbiological safety for the rural areas in China.

  8. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    PubMed

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-06-21

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  9. Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process.

    PubMed

    Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Zhao, Qiang; Li, Chang; Xie, Ming-Yong

    2014-01-30

    In this study, ultrafiltration membrane process was employed to separate polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus) to simulate industrial production. Meanwhile, the molecular weight distribution of C. paliurus polysaccharides was investigated by gel permeation chromatography. Four fractions were obtained and named as CPPS-A, CPPS-B, CPPS-C and CPPS-D, respectively. CPPS-A and CPPS-B contained approximately 69.5% and 12.7% of polysaccharides, whose molecular weight were in the range of 100-300 kDa and 120 kDa, respectively. CPPS-C was comprised of two polysaccharides with average molecular weight of 40 kDa and 15 kDa. Results showed that ultrafiltration resulted in the removal of parts of small molecule weight polysaccharides, the increase of proportion of high molecule weight ones and the obvious improvement of quality of products. Compared with ethanol precipitation and gel permeation chromatography techniques, ultrafiltration showed many advantages, and also provided theoretical support for industrial manufacturing of C. paliurus polysaccharides in separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes.

    PubMed

    Zhang, Liyong; Zhang, Penghui; Wang, Meng; Yang, Kai; Liu, Junliang

    2016-09-01

    The processes and effects of coagulation-ultrafiltration (C-UF) and coagulation sedimentation-ultrafiltration (CS-UF) process used in the treatment of Dalangdian Reservoir water were compared. The experiment data indicated that 99% of turbidity removal and basically 100% of microorganism and algae removal were achieved in both C-UF and CS-UF process. The organic removal effect of CS-UF? process was slightly better than C-UF process. However, the organic removal effect under different processes was not obvious due to limitation of ultrafiltration membrane aperture. Polyaluminium chloride was taken as a coagulant in water plant. The aluminum ion removal result revealed that coagulant dosage was effectively saved by using membrane technology during megathermal high algae laden period. Within the range of certain reagent concentration and soaking time, air-water backwashing of every filtration cycle of membrane was conducted to effectively reduce membrane pollution. Besides, maintenance cleaning was conducted every 60 min. whether or not restorative cleaning was conducted depends on the pollution extent. After cleaning, recovery of membrane filtration effect was obvious.

  11. Effect of filtration rates on hollow fiber ultrafilter concentration of viruses and protozoans from large volumes of water

    EPA Science Inventory

    Aims: To describe the ability of tangential flow hollow-fiber ultrafiltration to recover viruses from large volumes of water when run either at high filtration rates or lower filtration rates and recover Cryptosporidium parvum at high filtration rates. Methods and Results: Wate...

  12. An affinity chromatography-gel filtration device for preparing thyroid microsomal antigen.

    PubMed

    Wang, L; Zheng, W F

    1987-09-24

    On the basis of conventional differential centrifugation for preparing crude thyroid microsomal antigen (TMAg), we have employed Sepharose 4B gel filtration and affinity chromatography separately to study the elution pattern in terms of absorbance and antigenic activity. The result indicates that thyroglobulin (TG) exists in two forms in crude TMAg, i.e., 'free TG' and 'membrane-bound TG'. TMAg is present in two forms in the eluate: (1) the TM fragment or TMAg polymer, which is produced at a higher rate and has greater antigenic activity, but which is less pure; (2) soluble TMAg, which is produced at a lower rate and has less antigenic activity, but which is more pure. We have developed an affinity chromatography-gel filtration (AC-GF) device which is a combination of affinity chromatography and a Sepharose 4B column. Sephadex G-50 is placed between the rubber stopper and Sepharose 4B in the GF column to ensure intactness of the entire system. With such a device, the AC removes the contaminated TG from TM homogenate, and allows the latter to pass directly from AC to GF for rechromatography. This device extracts the full advantages of both methods and each compensates for any deficiency of the other. Using this one-step procedure, one has the greatest chance of removing TG and obtaining TM fragments of TMAg polymers of higher antigenic activity, as well as separating small amounts of more purified soluble TMAg. Thus, the newly developed method meets the need of large quantities of TMAg for practical application, and at the same time the more purified preparations can be used for analytical purposes.

  13. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    NASA Astrophysics Data System (ADS)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  14. Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes.

    PubMed

    Schwermer, Carsten Ulrich; Krzeminski, Pawel; Wennberg, Aina Charlotte; Vogelsang, Christian; Uhl, Wolfgang

    2018-02-01

    The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.

  15. Performance of ultrafiltration membrane process combined with coagulation/sedimentation.

    PubMed

    Jang, N Y; Watanabe, Y; Minegishi, S

    2005-01-01

    Effects of coagulation/sedimentation as a pre-treatment on the dead-end ultrafiltration (UF) membrane process were studied in terms of membrane fouling and removal efficiency of natural dissolved organic matter, using Chitose River water. Two types of experiment were carried out. One was a bench scale membrane filtration with jar-test and the other was membrane filtration pilot plant combined with the Jet Mixed Separator (JMS) as a pre-coagulation/sedimentation unit. In the bench scale experiment, the effects of coagulant dosage, pH and membrane operating pressure on the membrane fouling and removal efficiency of natural dissolved organic matter were investigated. In the pilot plant experiment, we also investigated the effect of pre-coagulation/sedimentation on the membrane fouling and the removal efficiency of natural dissolved organic matter. Coagulation/sedimentation prior to membrane filtration process controlled the membrane fouling and increased the removal efficiency of natural dissolved organic matter.

  16. Demonstrated technology for high-rate filtration of oily wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danzberger, A.H.; Nebolsine, R.

    1980-01-01

    A discussion covers the various techniques (gravity separation, air or gas flotation, and ultrafiltration) used to remove oil from wastewater; their relative advantages; the satisfactory performance of ultrahigh-rate (UHR) filters in various applications, including in a Standard Oil Co. (Ohio) refinery; the development of UHR filtration plants by Hydrotechnic Corp.; the design and advantages of Hydrotechnic's filters; filtration; flow control and head loss; the backwash process; and the capital, construction, and operating costs of UHR filters (1000 to 7000 cu m/hr).

  17. Irradiation of industrial enzyme preparations. II. Characterization of fungal pectinase by thin-layer isoelectric focusing and gel filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delincee, H.

    1978-01-01

    Industrial dry fungal pectinase from A. niger was irradiated with doses (up to 1 Mrad) of /sup 60/Co-..gamma..rays effective in reducing microbial contamination. The pectinase was characterized by thin-layer isoelectric focusing and gel filtration in order to detect possible radiation-induced structural alterations. Thin-layer isoelectric focusing revealed at least fifteen multiple forms with pectin-depolymerizing activity, with isoelectric points in the range pH 4.5 to 7. Heterogeneity of pectinesterase was also demonstrated, the main band occurring around pH 4. By thin-layer gel filtration the molecular weight of the pectin-depolymerase was estimated as being about 36,000, and that of pectinesterase as about 33,000.more » Radiation-induced changes of the charge properties or molecular size of the irradiated pectinase preparation were not observed. The feasibility of using ionizing radiation for the reduction of microbial contamination of industrial enzyme preparations looks promising.« less

  18. Harvesting microalgal biomass using crossflow membrane filtration: critical flux, filtration performance, and fouling characterization.

    PubMed

    Elcik, Harun; Cakmakci, Mehmet

    2017-06-01

    The purpose of this study was to investigate the efficient harvesting of microalgal biomass through crossflow membrane filtration. The microalgal biomass harvesting experiments were performed using one microfiltration membrane (pore size: 0.2 µm, made from polyvinylidene fluoride) and three ultrafiltration membranes (molecular weight cut-off: 150, 50, and 30 kDa, made from polyethersulfone, hydrophilic polyethersulfone, and regenerated cellulose, respectively). Initially, to minimize membrane fouling caused by microalgal cells, experiments with the objective of determining the critical flux were performed. Based on the critical flux calculations, the best performing membrane was confirmed to be the UH050 membrane, produced from hydrophilic polyethersulfone material. Furthermore, we also evaluated the effect of transmembrane pressure (TMP) and crossflow velocity (CFV) on filtration flux. It was observed that membrane fouling was affected not only by the membrane characteristics, but also by the TMP and CFV. In all the membranes, it was observed that increasing CFV was associated with increasing filtration flux, independent of the TMP.

  19. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    NASA Astrophysics Data System (ADS)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  20. Concentrating membrane proteins using ultrafiltration without concentrating detergents.

    PubMed

    Feroz, Hasin; Vandervelden, Craig; Ikwuagwu, Bon; Ferlez, Bryan; Baker, Carol S; Lugar, Daniel J; Grzelakowski, Mariusz; Golbeck, John H; Zydney, Andrew L; Kumar, Manish

    2016-10-01

    Membrane proteins (MPs) are of rapidly growing interest in the design of pharmaceutical products, novel sensors, and synthetic membranes. Ultrafiltration (UF) using commercially available centrifugal concentrators is typically employed for laboratory-scale concentration of low-yield MPs, but its use is accompanied by a concomitant increase in concentration of detergent micelles. We present a detailed analysis of the hydrodynamic processes that control detergent passage during ultrafiltration of MPs and propose methods to optimize detergent passage during protein concentration in larger-scale membrane processes. Experiments were conducted using nonionic detergents, octyl-β-D glucoside (OG), and decyl-β-D maltoside (DM) with the bacterial water channel protein, Aquaporin Z (AqpZ) and the light driven chloride pump, halorhodopsin (HR), respectively. The observed sieving coefficient (So ), a measure of detergent passage, was evaluated in both stirred cell and centrifugal systems. So for DM and OG increased with increasing filtrate flux and decreasing shear rates in the stirred cell, that is, with increasing concentration polarization (CP). Similar effects were observed during filtration of MP-detergent (MPD) micelles. However, lower transmission was observed in the centrifugal system for both detergent and MPD systems. This is attributed to free convection-induced shear and hence reduced CP along the membrane surface during centrifugal UF. Thus to concentrate MPs without retention of detergent, design of UF systems that promote CP is required. Biotechnol. Bioeng. 2016;113: 2122-2130. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. INVESTIGATION OF CONVENTIONAL MEMBRANE AND TANGENTIAL FLOW ULTRAFILTRATION ARTIFACTS AND THEIR APPLICATION TO THE CHARACTERIZATION OF FRESHWATER COLLOIDS

    EPA Science Inventory

    Artifacts associated with the fractionation of colloids in a freshwater sample were investigated for conventional membrane filtration (0.45 micron cutoff), and two tangential flow ultrafiltration cartridges (0.1 micron cutoff and 3000 MW cutoff). Membrane clogging during conventi...

  2. Effect of Mannitol on Glomerular Ultrafiltration in the Hydropenic Rat

    PubMed Central

    Blantz, Roland C.

    1974-01-01

    The effect of mannitol upon glomerular ultrafiltration was examined in hydropenic Munich-Wistar rats. Superficial nephron filtration rate (sngfr) rose from 32.0±0.9 nl/min/g kidney wt to 42.0±1.6 (P < 0.001) in eight rats. Hydrostatic pressure gradients acting across the glomerular capillary (ΔP) were measured in glomerular capillaries and Bowman's space with a servo-nulling device, systemic (πA) and efferent arteriolar oncotic pressures (πE) were determined by microprotein analysis. These data were applied to a computer-based mathematical model of glomerular ultrafiltration to determine the profile of effective filtration pressure (EFP = ΔP — π) and total glomerular permeability (LpA) in both states. Filtration equilibrium obtained in hydropenia (LpA ≥ 0.099±0.006 nl/s/g kidney wt/mm Hg) and sngfr rose because EFP increased from a maximum value of 4.2±1.1 to 12.8±0.5 mm Hg after mannitol (P <0.01). This increase was due to both increased nephron plasma flow and decreased πA. Computer analysis of these data revealed that more than half (>58%) of this increase was due to decreased πA, consequent to dilution of protein. Since EFP was disequilibrated after mannitol, LpA could be calculated accurately (0.065 ± 0.003 nl/s/g kidney wt/mm Hg) and was significantly lower than the minimum estimate in hydropenia. Therefore, sngfr does increase with mannitol and this increase is not wholly dependent upon an increase in nephron plasma flow since the major factor increasing EFP was decreased πA. PMID:4418509

  3. Removal of Surrogate Bacteriophages and Enteric Viruses from Seeded Environmental Waters Using a Semi-technical Ultrafiltration Unit.

    PubMed

    Frohnert, Anne; Kreißel, Katja; Lipp, Pia; Dizer, Halim; Hambsch, Beate; Szewzyk, Regine; Selinka, Hans-Christoph

    2015-03-19

    Experiments to determine the removal of viruses in different types of water (surface water from two reservoirs for drinking water treatment, treated groundwater and groundwater contaminated with either 5 or 30 % of wastewater) by ultrafiltration were performed with a semi-technical ultrafiltration unit. Concentrations of human adenoviruses (HAdVs), murine norovirus (MNV), and the bacteriophages MS2, ΦX174 and PRD1 were measured in the feed water and the filtrate, and log removal values were calculated. Bacteria added to the feed water were not detected in the filtrates. In contrast, in most cases viruses and bacteriophages were still present in the filtrates: log removal values were in the range of 1.4-6.3 depending on virus sizes and water qualities. Best removals were observed with bacteriophage PRD1 and HAdVs, followed by MNV and phages MS2 and ΦX174. Virus size, however, was not the only criterion for efficient removal. In diluted wastewater as compared to drinking water and uncontaminated environmental waters, virus removal was clearly higher for all viruses, most likely due to higher membrane fouling. For quality assessment purposes of membrane filtration efficiencies with regard to the elimination of human viruses the small bacteriophages MS2 and ΦX174 should be used as conservative viral indicators.

  4. Ultrafiltration and modified ultrafiltration in pediatric open heart operations.

    PubMed

    Elliott, M J

    1993-12-01

    The capillary leak associated with cardiopulmonary bypass results in an increase in content of water in the tissues measurable by an increase in total body water after cardiac operation. Following work by Magilligan in the 1970s, ultrafiltration was introduced during bypass as a means of hemoconcentrating patients and potentially removing water from the tissues. Conventional methods proved inconsistent; thus, we modified the technique to ultrafilter the patients immediately after cessation of bypass. Modified ultrafiltration takes 10 minutes and results in an elevation of the on-bypass hematocrit to about 35% or 40%. In pilot studies comparing bypass in absence of ultrafiltration with conventional ultrafiltration and modified ultrafiltration, only the modified technique was seen reliably to reduce the elevation in total body water to only 4%, within a narrow range. Subsequent prospective studies confirmed the reduction in accumulation of total body water and also demonstrated a reduction in blood loss and in requirements for blood transfusion. Systolic blood pressure was observed to increase uniformly in all patients undergoing modified ultrafiltration. This effect was investigated and found to be associated with a marked increase in cardiac index, no change in systemic vascular resistance, a decrease in heart rate, and a marked decrease in pulmonary vascular resistance. Recently, we have demonstrated an increase in contractility and a decrease in myocardial wall volume. The modified technique of ultrafiltration has been employed successfully in more than 400 patients in our institution, and represents an excellent option for perioperative management of both accumulation of fluid in the tissues and hemodynamics after hypothermic bypass.

  5. The Dynamics of Glomerular Ultrafiltration in the Rat

    PubMed Central

    Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.

    1971-01-01

    Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578

  6. Gel Filtration Of Dilute Human Embryonic Hemoglobins Reveals Basis For Their Increased Oxygen Binding

    PubMed Central

    Manning, Lois R.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, James M.

    2016-01-01

    This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. PMID:27965062

  7. Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance.

    PubMed

    Fang, Xiaofeng; Li, Jiansheng; Li, Xin; Pan, Shunlong; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun; Van der Bruggen, Bart

    2017-11-01

    In this work, an iron-tannin-framework (ITF) complex was introduced to a poly (ether sulfone) (PES) casting solution as a hydrophilic additive to fabricate ITF/PES ultrafiltration (UF) membranes via non-solvent-induced phase separation (NIPS). The structure and performance of the PES membranes with ITF concentrations ranging from 0 to 0.9wt.% were systematically investigated by scanning electron microscopy, water contact angle, permeability, protein rejection and fouling resistance measurements. The results indicate that the pore structure and surface properties of PES UF membranes can be regulated by incorporating the ITF complex. Compared with classical PES membranes, ITF/PES membranes were found to have an increased hydrophilicity and porosity and reduced surface pore size. Importantly, a simultaneous enhancement of permeability and separation performance was observed for the blend membranes, which indicates that the introduction of the ITF complex can break through the trade-off between permeability and selectivity of UF membranes.When the ITF content was 0.3wt.%, the permeability reached a maximum of 319.4(L/m 2 h) at 0.1MPa, which is 1.6 times higher than that of the classical PES membrane. Furthermore, the BSA rejection increased from 25.9% for the PES membrane to 95.9% for the enhanced membrane. In addition, the same membrane showed an improved fouling resistance (higher flux recovery and lower adhesion force) and stable hydrophilicity (unchanged after incubation in deionized water for 30days). The simple, green and cost-effective preparation process and the outstanding filtration performance highlight the potential of ITF/PES membranes for practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Membraneless water filtration using CO2

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick B.; Stone, Howard A.

    2017-05-01

    Water purification technologies such as microfiltration/ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles. Due to the large diffusion potential generated by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas-liquid interface depending on their surface charge. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits low energy consumption, three orders of magnitude lower than conventional microfiltration/ultrafiltration processes, and is essentially free from fouling.

  9. Membraneless water filtration using CO2

    PubMed Central

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick B.; Stone, Howard A.

    2017-01-01

    Water purification technologies such as microfiltration/ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles. Due to the large diffusion potential generated by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas–liquid interface depending on their surface charge. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits low energy consumption, three orders of magnitude lower than conventional microfiltration/ultrafiltration processes, and is essentially free from fouling. PMID:28462929

  10. The mechanism of the increase in glomerular filtration rate in the twelve-day pregnant rat.

    PubMed Central

    Baylis, C

    1980-01-01

    1. Whole kidney and micropuncture techniques were employed to investigate the determinants of glomerular ultrafiltration in virgin and 12-day pregnant rats. 2. A significant increase in whole kidney glomerular filtration rate (g.f.r.) and superficial cortical single nephron g.f.r. was noted in pregnant rats compared to virgins. 3. Increases in whole kidney and glomerular plasma flow rate also occurred in pregnancy which were in proportion to the increase in rate of filtration. No differences were noted in the hydrostatic and oncotic pressures which influence formation of glomerular ultrafiltrate in the superficial nephron population. 4. Reduction in arterial haematocrit and no change in mean red cell volume indicate that a plasma volume expansion has occurred by day 12 of pregnancy in the rat. 5. It is concluded that the increased g.f.r. seen in 12-day pregnant rats is exclusively the result of an increase in renal plasma flow rate (r.p.f.) since the other determinants of glomerular ultrafiltration are unaffected by pregnancy. The plasma volume expansion which also occurs must be, at least in part, responsible for the increase in r.p.f. PMID:7441561

  11. Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding.

    PubMed

    Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C; Chait, Brian T; Manning, James M

    2017-02-15

    This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. New aspects of the possible sites of ultrafiltration in annelids (oligochaeta).

    PubMed

    Hansen, U

    1995-02-01

    Electron microscopic investigations of blood vessels were conducted to show sites of filtration such as podocytes or fenestrated endothelia. The endothelia of the blood vessels of Aelosoma hemprichi, Nais elinguis, Dero obtusa and Enchytraeus buchholzi consist of myoendothelial cells, chloragocytes and podocytes. The podocytes form large archs over a considerable area of the vessels. On the lumen side of the vessel there are several columnar processes which split into numerous small pedicels. The gaps between the adjacent pedicles are bridged by slit membranes. The podocytes are restricted to the front part of the ventral vessel. They are presumed to form a filtration surface. Furthermore, some parts of the ventral vessel are formed by a fenestrated endothelium, mainly in Enchytraeus buchholzi. In the vascular system of E. buchholzi two separate filtration sites were found. Additionally to the filtration site between ventral vessel and coelomic cavity a second filtration site was found in the front part of the body between blood sinus and coelomic cavity. In such areas the basement membrane is the only continuous layer between the blood vessel and the coelomic cavity. Its thickness is in the range of 40 nm. Possible filtration sites in the form of podocytes and irregular fenestrations could be localized at the border between the blood compartment and the coelomic compartment. It can be presumed that the primary urine may be formed by ultrafiltration of blood.

  13. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes.

    PubMed

    Sumisha, A; Arthanareeswaran, G; Lukka Thuyavan, Y; Ismail, A F; Chakraborty, S

    2015-11-01

    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Solution of Algebraic Equations in the Analysis, Design, and Optimization of Continuous Ultrafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2011-01-01

    Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PHYSICAL REMOVAL OF PARTICULATE CONTAMINANTS IN DRINKING WATER: POLYMEM UF 120 S2 ULTRAFILTRATION MEMBRANE MODULE, LUXENBURG, WISCONSIN

    EPA Science Inventory

    Verification testing of the Polymem UF120 S2 Ultrafiltration Membrane Module was conducted over a 46-day period at the Green Bay Water Utility Filtration Plant, Luxemburg, Wisconsin. The ETV testing described herein was funded in conjunction with a 12-month membrane pilot study f...

  16. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.

    PubMed

    Lee, Seung-Jin; Kim, Jae-Hong

    2014-01-01

    Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Hollow-Fiber Ultrafiltration and PCR Detection of Human-Associated Genetic Markers from Various Types of Surface Water in Florida ▿

    PubMed Central

    Leskinen, Stephaney D.; Brownell, Miriam; Lim, Daniel V.; Harwood, Valerie J.

    2010-01-01

    Hollow-fiber ultrafiltration (HFUF) and PCR were combined to detect human-associated microbial source tracking marker genes in large volumes of fresh and estuarine Florida water. HFUF allowed marker detection when membrane filtration did not, demonstrating HFUF's ability to facilitate detection of diluted targets by PCR in a variety of water types. PMID:20435774

  18. Comparison of antimicrobial peptide purification via free-flow electrophoresis and gel filtration chromatography.

    PubMed

    Xia, Zhi-Jun; Liu, Zhen; Kong, Fan-Zhi; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2017-12-01

    Antimicrobial peptides (AMPs) are usually small and cationic biomolecules with broad-spectrum antimicrobial activities against pathogens. Purifying them from complex samples is essential to study their physiochemical properties. In this work, free-flow zone electrophoresis (FFZE) was utilized to purify AMPs from yeast fermentation broth. Meanwhile, gel filtration chromatography (GFC) was conducted for comparison. The separation efficiency was evaluated by SDS-PAGE analysis of the fractions from both methods. Our results demonstrated as follows: (i) FFZE had more than 30-fold higher processing capacity as compared with GFC; (ii) FFZE could achieve 87% purity and 89% recovery rate while in GFC these parameters were about 93 and 82%, respectively; (iii) the former had ∼2-fold dilution but the latter had ∼13-fold dilution. Furthermore, Tricine-SDS-PAGE, Native-PAGE, and gel IEF were carried out to characterize the purified AMPs. We found that two peptides existed as a pair with the molecular mass of ∼5.5 and 7.0 kDa, while the same pI 7.8. These two peptides were proved to have the antimicrobial activity through the standardized agar diffusion method. Therefore, FFZE could be used to continuously purify AMPs with high bioactivity, which will lead to its wide application in the clinical and pharmaceutical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    PubMed

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    2017-02-01

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  20. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide

    NASA Astrophysics Data System (ADS)

    Huang, Haitao; Yu, Jiayu; Guo, Hanxiang; Shen, Yibo; Yang, Fan; Wang, Han; Liu, Rong; Liu, Yang

    2018-01-01

    On the basis of the outstanding fouling resistance of zwitterionic polymers, an antifouling ultrafiltration membrane was fabricated through phase inversion induced by immersion precipitation method, directly using the novel zwitterionic polyimide (Z-PI), which was synthesized via a two-step procedure including polycondensation and quaternary amination reaction, as membrane material. The chemical structure and composition of the obtained polymer were confirmed by using FTIR, 1H NMR and XPS analysis, and its thermal stability was thoroughly characterized by TGA measurement, respectively. The introduction of zwitterionic groups into polyimide could effectively increase membrane pore size, porosity and wettability, and convert the membrane surface from hydrophobic to highly hydrophilic. As a result, Z-PI membrane displayed significantly improved water permeability compared with that of the reference polyimide (R-PI) membrane without having an obvious compromise in protein rejection. According to the static adsorption and dynamic cycle ultrafiltration experiments of bovine serum albumin (BSA) solution, Z-PI membrane exhibited better fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling property and long-term performance stability. Moreover, Z-PI membrane had a water flux recovery ratio of 93.7% after three cycle of BSA solution filtration, whereas only about 68.5% was obtained for the control R-PI membrane. These findings demonstrated the advantages of Z-PI membrane material and aimed to provide a facile and scalable method for the large-scale preparation of low fouling ultrafiltration membranes for potential applications.

  1. Purification of adenoviral vectors by combined anion exchange and gel filtration chromatography.

    PubMed

    Eglon, Marc N; Duffy, Aoife M; O'Brien, Timothy; Strappe, Padraig M

    2009-11-01

    Adenoviral vectors are used extensively in human gene therapy trials and in vaccine development. Large-scale GMP production requires a downstream purification process, and liquid chromatography is emerging as the most powerful mode of purification, enabling the production of vectors at a clinically relevant scale and quality. The present study describes the development of a two-step high-performance liquid chromatography (HPLC) process combining anion exchange (AIEX) and gel filtration (GF) in comparison with the caesium chloride density gradient method. HEK-293 cells were cultured in ten-layer CellStacks() and infected with 10 pfu/cell of adenoviral vector expressing green fluorescent protein (Ad5-GFP). Cell-bound virus was harvested and benzonase added to digest DNA, crude lysate was clarified by centrifugation and filtration prior to HPLC. Chromatography fractions were added to HEK-293 cells and GFP expression measured using a fluorescent plate reader. Using AIEX then GF resulted in an adenoviral vector with purity comparable to Ad5-GFP purified by CsCl, whereas the reverse process (GF-AIEX) showed a reduced purity by electrophoresis and required further buffer exchange of the product. The optimal process (AIEX-GF) resulted in a vector yield of 2.3 x 10(7) pfu/cm(2) of cell culture harvested compared to 3.3 x 10(7) pfu/cm(2) for CsCl. The process recovery for the HPLC process was 36% compared to 27.5% for CsCl and total virion to infectious particle ratios of 18 and 11, respectively, were measured. We present a simple two-step chromatography process that is capable of producing high-quality adenovirus at a titre suitable for scale-up and clinical translation.

  2. Fouling mechanisms of gel layer in a submerged membrane bioreactor.

    PubMed

    Hong, Huachang; Zhang, Meijia; He, Yiming; Chen, Jianrong; Lin, Hongjun

    2014-08-01

    The fouling mechanisms underlying gel layer formation and its filtration resistance in a submerged membrane bioreactor (MBR) were investigated. It was found that gel layer rather than cake layer was more easily formed when soluble microbial products content in sludge suspension was relatively high. Thermodynamic analyses showed that gel layer formation process should overcome a higher energy barrier as compared with cake layer formation process. However, when separation distance <2.3 nm, attractive interaction energy of gelling foulant-membrane combination was remarkably higher than that of sludge floc-membrane combination. The combined effects were responsible for gel layer formation. Filtration tests showed that specific filtration resistance (SFR) of gel layer was almost 100 times higher than that of cake layer. The unusually high SFR of gel layer could be ascribed to the gelling propensity and osmotic pressure mechanism. These findings shed significant light on fouling mechanisms of gel layer in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography.

    PubMed

    Yue, Daran; Yang, Lei; Liu, Shouxin; Li, Jian; Li, Wei; Ma, Chunhui

    2016-02-06

    In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis) anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin), and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h). After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v) ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h). After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS) as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP) and 1.7-fold (ABTS).

  4. Characterization of ultrafiltration of undiluted and diluted stored urine.

    PubMed

    Ouma, J; Septien, S; Velkushanova, K; Pocock, J; Buckley, C

    2016-11-01

    Urine ultrafiltration (UF) was studied in terms of flux, permeability, resistance and fouling. Two types of samples were used: stored urine representing the feedstock obtained from urine diversion dry toilets; and diluted stored urine representing the feedstock obtained from urinals. Three different filtration experiment sets were adopted in this study. For the first case, pressure was set in an ascending order, i.e. from 10 to 60 kPa during filtration of stored urine. For the second case, pressure was set in a descending order, i.e. from 60 to 10 kPa for the same feed stream. The third case involved filtration of diluted urine with pressure in ascending order, i.e. from 10 to 60 kPa. The results indicated that diluted urine had higher flux than undiluted urine with maximum values of 43 and 26 L·m -2 ·h -1 respectively. Cake formation was the dominating fouling mechanism during urine filtration with a contribution of about 90% to the total hydraulic resistance. The contribution of chemically irreversible fouling was low (-2%), unless operating from high to low pressures. Indeed, irreversible fouling appeared to be greater during the experiments starting at higher pressure. Although undiluted urine had a higher fouling potential compared to diluted urine, the specific cake resistance was higher for diluted urine, probably due to a denser cake caused by lower particle sizes in that sample. The permeate obtained after urine filtration had much lower suspended solids content compared to the feedstock, with rejections up to 99%. The concentration of the ionic species remained unchanged, and 75% of the organic compounds and dissolved solids remained in the permeate. Urine UF could then be used as pre-treatment to remove suspended solids.

  5. Concentration of infectious aquatic rhabdoviruses from freshwater and seawater using ultrafiltration.

    PubMed

    Grant, Amelia A M; Jakob, Eva; Richard, Jon; Garver, Kyle A

    2011-12-01

    Infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus, and spring viremia of carp virus were concentrated and detected from freshwater and seawater samples by using hollow-fiber ultrafiltration. Within 60 min, virus in a 50-L freshwater or saltwater sample was concentrated more than 70-fold, and virus retention efficiencies were consistently greater than 88%. Retention efficiency was highly dependent upon concentrations of column blocking and sample stabilization solutions. A large column with a surface area of 1.15 m2 and a filtration capacity of 5-200 L exhibited optimal viral retention when blocked with 2% fetal bovine serum (FBS) and when the samples were supplemented with 0.1% FBS. Conversely, a small column with 100-fold less surface area and a filtering capacity of 0.5-2.0 L was optimized when blocked with 1% FBS and when the samples were supplemented with 0.1% FBS. The optimized ultrafiltration procedure was further validated with water from a tank that contained IHNV-exposed juvenile sockeye salmon Oncorhynchus nerka, resulting in an average virus retention efficiency of 91.6 +/- 4.1% (mean +/- SE). Virus quantification of concentrated samples demonstrated that IHNV shedding in sockeye salmon preceded mortality; shedding of the virus was observed to increase significantly as early as 7 d postchallenge and peaked at day 14, when virus levels reached 4.87 x 10(3) plaque-forming units/mL. We conclude that ultrafiltration is a reliable and effective method for concentrating viable aquatic rhabdoviruses from large volumes of water and has application for the analysis of environmental water samples.

  6. Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater.

    PubMed

    Ozgun, Hale; Tao, Yu; Ersahin, Mustafa Evren; Zhou, Zhongbo; Gimenez, Juan B; Spanjers, Henri; van Lier, Jules B

    2015-10-15

    The objective of this study was to assess the operational feasibility of an anaerobic membrane bioreactor (AnMBR), consisting of an upflow anaerobic sludge blanket (UASB) reactor coupled to an ultrafiltration membrane unit, at two operational temperatures (25°C and 15°C) for the treatment of municipal wastewater. The results showed that membrane fouling at 15°C was more severe than that at 25°C. Higher chemical oxygen demand (COD) and soluble microbial products (SMP) concentrations, lower mean particle diameter, and higher turbidity in the UASB effluent at lower temperature aggravated membrane fouling compared to the 25°C operation. However, the overall AnMBR treatment performance was not significantly affected by temperature, which was attributed to the physical membrane barrier. Cake resistance was found responsible for over 40% of the total fouling in both cases. However, an increase was observed in the contribution of pore blocking resistance at 15°C related to the larger amount of fine particles in the UASB effluent compared to 25°C. Based on the overall results, it is concluded that an AnMBR, consisting of a UASB coupled membrane unit, is not found technically feasible for the treatment of municipal wastewater at 15°C, considering the rapid deterioration of the filtration performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    NASA Astrophysics Data System (ADS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  8. A multiphase approach to model ultrafiltration of deformable colloids

    NASA Astrophysics Data System (ADS)

    Haribabu, Malavika; Dunstan, Dave; Davidson, Malcolm; Harvie, Dalton

    2017-11-01

    Ultrafiltration (UF) is widely used in the dairy industry to fractionate and concentrate proteins, during the manufacture of milk protein concentrate and cheese. The protein build-up, comprising casein micelles (CM) and whey proteins, at the membrane surface during UF increases the resistance of the membrane system, thereby decreasing the performance of the process unit. CM have a complex structure that hydrodynamically behaves as a hard-sphere when dilute, but deforms beyond the random packing limit, forming a shear-thinning gel. This study employs a mixture model, based on the mixture phase continuity, Navier-Stokes equations, and solids continuity equation, to predict the solid concentration and velocity distribution during UF of CM. Micelle deformation is modelled as a function of volume fraction and dependent on its elastic modulus and particle size. The effect of deformation on gel permeability is implemented via Happel's permeability for hard spheres. Under crossflow conditions, the gel thickness is observed to increase along the membrane length, followed by a decrease towards the end of the membrane, resulting in an increase in flux at the latter section of the membrane. This study demonstrates that the membrane end-effects are important in determining UF performance.

  9. Establishment and application of milk fingerprint by gel filtration chromatography.

    PubMed

    Gao, P; Li, J; Li, Z; Hao, J; Zan, L

    2016-12-01

    Raw milk adulteration frequently occurs in undeveloped countries. It not only reduces the nutritional value of milk, but it is also harmful to consumers. In this paper, we focused on investigating an efficient method for the quality control of raw milk protein. A gel filtration chromatography (GFC) fingerprint method combined with chemometrics was developed for fingerprint analysis of raw milk. To optimize the GFC conditions, milk fat was removed by centrifugation, and GFC analysis was performed on a Superdex 75 10/300GL column (Just Scientific, Shanghai, China) with 0.2 M NaH 2 PO 4 -Na 2 HPO 4 buffer (pH 7.0) as the mobile phase. The flow rate was 0.5mL/min, and the detection wavelength was set at 280 nm. Ten batches of 120 raw milk samples were analyzed to establish the GFC fingerprint under optimal conditions. Six major peaks common to the chromatogram of each raw milk sample were selected for fingerprint analysis, and the characteristic peaks were used to establish a standard chromatographic fingerprint. Principal component analysis was then applied to classify GFC information of adulterated milk and raw milk, allowing adulterated samples to be effectively screened out from the raw milk in principal component analysis scores plot. The fingerprint method demonstrates promising features in detecting milk protein adulteration. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Printing-assisted surface modifications of patterned ultrafiltration membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less

  11. Printing-assisted surface modifications of patterned ultrafiltration membranes

    DOE PAGES

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less

  12. Estimation of single-kidney glomerular filtration rate without exogenous contrast agent.

    PubMed

    He, Xiang; Aghayev, Ayaz; Gumus, Serter; Ty Bae, K

    2014-01-01

    Measurement of single-kidney filtration fraction and glomerular filtration rate (GFR) without exogenous contrast is clinically important to assess renal function and pathophysiology, especially for patients with comprised renal function. The objective of this study is to develop a novel MR-based tool for noninvasive quantification of renal function using conventional MR arterial spin labeling water as endogenous tracer. The regional differentiation of the arterial spin labeling water between the glomerular capsular space and the renal parenchyma was characterized and measured according to their MR relaxation properties (T1ρ or T2 ), and applied to the estimation of filtration fraction and single-kidney GFR. The proposed approach was tested to quantify GFR in healthy volunteers at baseline and after a protein-loading challenge. Biexponential decay of the cortical arterial spin labeling water MR signal was observed. The major component decays the same as parenchyma water; the minor component decays much slower as expected from glomerular ultra-filtrates. The mean single-kidney GFR was estimated to be 49 ± 9 mL/min at baseline and increased by 28% after a protein-loading challenge. We developed an arterial spin labeling-based MR imaging method that allows us to estimate renal filtration fraction and singe-kidney GFR without use of exogenous contrast. Copyright © 2013 Wiley Periodicals, Inc.

  13. Ultrafiltration and nanofiltration in the pulp and paper industry using cross-rotational (CR) filters.

    PubMed

    Mänttäri, M; Nyström, M

    2004-01-01

    Ultra- and nanofiltration with high shear CR-filters have been utilized for cleaning of clear filtrates and effluents from the pulp and paper industry. The aim was to find out how different nanofiltration membranes operate at high shear conditions. The filtration efficiency of the membranes was evaluated by measuring flux, retention and fouling at various recovery and pH conditions. High fluxes (approximately 100 L/(m2h)) for nanofiltration membranes were measured when circulation waters from the paper machine were filtered at neutral conditions. In the filtration of discharge of external activated sludge treatment plants we measured fluxes around 150 L/(m2h) even at a concentration factor of 12. The best NF membranes removed over 80% of the organic carbon and of the conductivity and almost completely eliminated the color. With acidic waters fluxes and retentions were significantly lower. The NF270 membrane from Dow and the Desal-5 membranes from Osmonics had the highest flux and retention properties. However, the Desal-5 membrane lost its retention properties slowly, which restricts its use in the high shear CR-filter. CR-nanofiltration can be used in the pulp and paper industry without feed pre-treatment by ultrafiltration. This increases the attractiveness of high shear CR-nanofiltration.

  14. Improvement of municipal wastewater pretreatment by direct membrane filtration.

    PubMed

    Nascimento, Thiago A; Mejía, Fanny R; Fdz-Polanco, Fernando; Peña Miranda, Mar

    2017-10-01

    The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m 2  h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.

  15. Polyethersulfone - barium chloride blend ultrafiltration membranes for dye removal studies

    NASA Astrophysics Data System (ADS)

    Rambabu, K.; Srivatsan, N.; Gurumoorthy, Anand V. P.

    2017-11-01

    A series of Polyethersulfone (PES) - barium chloride (BaCl2) blend ultra filtration membrane was developed by varying the BaCl2 concentration in the dope solution. Prepared membranes were subjected to membrane characterization and their performance was studied through dye rejection tests. Morphological studies through SEM and AFM showed that the composite membranes exhibited differences in morphologies, porosities and properties due to the BaCl2 addition as compared with pristine PES membrane. Addition of the inorganic modifier enhanced the hydrophilicity and water permeability of the blend membrane system. Polymer enhanced ultrafiltration of dye solutions showed that the proposed blend system had better performance in terms of flux and rejection efficiency than the pure polymer membrane. The performance of the 2 wt% BaCl2 blend membrane was more promising for application to real time dye wastewater studies.

  16. Renal ultrafiltration changes induced by focused US.

    PubMed

    Fischer, Krisztina; McDannold, Nathan J; Zhang, Yongzhi; Kardos, Magdolna; Szabo, Andras; Szabo, Antal; Reusz, Gyorgy S; Jolesz, Ferenc A

    2009-12-01

    To determine if focused ultrasonography (US) combined with a diagnostic microbubble-based US contrast agent can be used to modulate glomerular ultrafiltration and size selectivity. The experiments were approved by the animal care committee. The left kidney of 17 healthy rabbits was sonicated by using a 260-kHz focused US transducer in the presence of a microbubble-based US contrast agent. The right kidney served as the control. Three acoustic power levels were applied: 0.4 W (six rabbits), 0.9 W (six rabbits), and 1.7 W (five rabbits). Three rabbits were not treated with focused US and served as control animals. The authors evaluated changes in glomerular size selectivity by measuring the clearance rates of 3000- and 70,000-Da fluorescence-neutral dextrans. The creatinine clearance was calculated for estimation of the glomerular filtration rate. The urinary protein-creatinine ratio was monitored during the experiments. The authors assessed tubular function by evaluating the fractional sodium excretion, tubular reabsorption of phosphate, and gamma-glutamyltransferase-creatinine ratio. Whole-kidney histologic analysis was performed. For each measurement, the values obtained before and after sonication were compared by using the paired t test. Significant (P < .05) increases in the relative (ratio of treated kidney value/nontreated kidney value) clearance of small- and large-molecule agents and the urine flow rates that resulted from the focused US treatments were observed. Overall, 1.23-, 1.23-, 1.61-, and 1.47-fold enhancement of creatinine clearance, 3000-Da dextran clearance, 70 000-Da dextran clearance, and urine flow rate, respectively, were observed. Focal tubular hemorrhage and transient functional tubular alterations were observed at only the highest (1.7-W) acoustic power level tested. Glomerular ultrafiltration and size selectivity can be temporarily modified with simultaneous application of US and microbubbles. This method could offer new opportunities for

  17. Ultrafiltration and endotoxin removal from dialysis fluids.

    PubMed

    Di Felice, A; Cappelli, G; Facchini, F; Tetta, C; Cornia, F; Aimo, G; Lusvarghi, E

    1993-06-01

    Biocompatibility in hemodialysis is now regarded as a multifactorial problem and dialysate represents a main risk. Pyrogenic fractions mostly coming from gram-negative bacteria easily pass through dialysis membrane, either by backdiffusion or by backfiltration, and induce blood cell activation. To demonstrate the long-term efficiency of a 2 m2 polyamide ultrafilter in producing a pyrogen free solution, we used an experimental circuit ultrafiltering for 240 hours (500 ml/min) a bicarbonate dialysate contaminated (5 to 48 EU/ml) by a Pseudomonas aeruginosa filtrate. The efficiency was monitored by LAL-test and IL-1 PBMC so to detect not only lipid A containing endotoxins but also other cytokines inducing bacterial fractions. At the post-ultrafilter sampling port the LAL-test was < 0.005 to 0.034 EU/ml; IL-1 PBMC was below the detection limit (20 pg/ml) being 27 to 63 pg/ml at the pre-ultrafilter level. Polyamide ultrafiltration represents an efficient system to obtain an endotoxin-free dialysate and a single filter works up to 240 hours.

  18. Towards sustainable membrane filtration of palm oil mill effluent: analysis of fouling phenomena from a hybrid PAC-UF process

    NASA Astrophysics Data System (ADS)

    Amosa, Mutiu Kolade

    2017-10-01

    Sustainability of a membrane process depends on many factors of which fouling mitigation is the most central. Because membrane fouling phenomenon is very complex, extent of fouling potential of a feedwater with respect to a membrane has to be identified right from the design stage. This will acquaint engineers with the proper fouling mitigation measures during operation. This study presents a preliminary fouling data from the ultrafiltration of biotreated palm oil mill effluent (POME) after an upstream adsorption process. The flux decline is studied in a typical constant-pressure experiments with a cross-flow ultrafiltration of biotreated POME through Sartocon® polyethersulfone membranes (MWCOs 1, 5 and 10 kDa) at applied pressures of 40, 80 and 120 kPa. Results are examined, within the frame of the common blocking mechanisms and it was found that the blocking index η decreased from 2 to 0. Pore blocking phenomenon was successively observed from complete blocking ( η = 2) down to cake filtration ( η = 0), and the early blockage of the pores and a formation of a cake resulted in a limiting cake height. Thus, cake filtration could be best used to explain the fouling mechanisms of biotreated POME on the ultrafiltration membranes based on the R 2 values at all applied pressures. This demonstrates that the fouling was as a result of gradual reversible cake deposition which could easily be removed by less onerous cleaning methods. In addition, it could be concluded that the upstream adsorption reduced the particulate deposition on the membrane surface.

  19. Extracorporeal Ultrafiltration for Fluid Overload in Heart Failure

    PubMed Central

    Costanzo, Maria Rosa; Ronco, Claudio; Abraham, William T.; Agostoni, Piergiuseppe; Barasch, Jonathan; Fonarow, Gregg C.; Gottlieb, Stephen S.; Jaski, Brian E.; Kazory, Amir; Levin, Allison P.; Levin, Howard R.; Marenzi, Giancarlo; Mullens, Wilfried; Negoianu, Dan; Redfield, Margaret M.; Tang, W.H. Wilson; Testani, Jeffrey M.; Voors, Adriaan A.

    2017-01-01

    More than 1 million heart failure hospitalizations occur annually, and congestion is the predominant cause. Rehospitalizations for recurrent congestion portend poor outcomes independently of age and renal function. Persistent congestion trumps serum creatinine increases in predicting adverse heart failure outcomes. No decongestive pharmacological therapy has reduced these harmful consequences. Simplified ultrafiltration devices permit fluid removal in lower-acuity hospital settings, but with conflicting results regarding safety and efficacy. Ultrafiltration performed at fixed rates after onset of therapy-induced increased serum creatinine was not superior to standard care and resulted in more complications. In contrast, compared with diuretic agents, some data suggest that adjustment of ultrafiltration rates to patients’ vital signs and renal function may be associated with more effective decongestion and fewer heart failure events. Essential aspects of ultrafiltration remain poorly defined. Further research is urgently needed, given the burden of congestion and data suggesting sustained benefits of early and adjustable ultrafiltration. PMID:28494980

  20. From lab to full-scale ultrafiltration in microalgae harvesting

    NASA Astrophysics Data System (ADS)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  1. A Review of Ultrafiltration and Forward Osmosis:application and modification

    NASA Astrophysics Data System (ADS)

    Chao, Gong; Shuili, Yu; Yufei, Shangguan; Zhengyang, Gu; Wangzhen, Yang; Liumo, Ren

    2018-03-01

    As a new treatment, membrane filtration is playing a more prominent role in treating many kinds of wastewater. Among all the membrane technologies, ultrafiltration(UF) and forward osmosis(FO) technology has been widely utilized and developed in oil field and refinery produced water. However, the reports about the differences between the two kinds of membrane technology used in oily wastewater are not yet available. In this review, at first we introduce the advantages, shortcomings and applications of UF and FO membranes. Among these, we mainly illustrate the membrane fouling, which now is a big problem because it increases costs and decreases membrane life to limit the industrialization of the membrane, and the different modification methods of membranes are discussed to figure out how these ways can ease the membrane fouling. Next we make a comparison of the two membranes. Finally we illustrate the future research topics.

  2. An integrated wastewater reuse concept combining natural reclamation techniques, membrane filtration and metal oxide adsorption.

    PubMed

    Sperlich, A; Zheng, X; Ernst, M; Jekel, M

    2008-01-01

    In a Sino-German research project, a sustainable water reclamation concept was developed for different applications of municipal water reuse at the Olympic Green 2008 in Beijing, China. Results from pilot-scale experiments in Beijing and Berlin show that selective nutrient removal by adsorption onto granular ferric hydroxide (GFH) after a membrane bioreactor (MBR) can maintain a total phosphorus concentration of <0.03 microg L(-1) P, thus preventing eutrophication of artificial lakes. Operation time of GFH adsorption columns can be extended by regeneration using sodium hydroxide solution. A subsequent ultrafiltration (UF) membrane after bank filtration creates an additional barrier for pathogens and allows for further urban reuse applications such as toilet flushing. Short term bank / bio-filtration prior to UF is shown to effectively remove biopolymers and reduce membrane fouling. Copyright IWA Publishing 2008.

  3. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming

    2017-04-01

    In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m2 h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the goal of long term usage without compromising flux.

  4. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    PubMed

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High Concentration Protein Ultrafiltration: a Comparative Fouling Assessment

    NASA Astrophysics Data System (ADS)

    Lim, Y. P.; Mohammad, A. W.

    2018-05-01

    In this paper, the predominant fouling mechanism via pH manipulation in gelatin ultrafiltration (UF) at constant operating pressure was studied. Two 30 kDa molecular weight cut off (MWCO) UF membranes with different hydrophilic/hydrophobic properties were tested at solution pH near gelatin isoelectric point (IEP), pH below and above gelatin’s IEP. The resistance-in-series model was used to determine quantitatively the contribution of each filtration resistance occurred during gelatin UF. The governing fouling mechanisms were investigated using classical blocking laws. The results demonstrated that concentration polarization remain as dominant fouling resistance in gelatin UF, but exceptional case was observed at pH away from gelatin’s IEP, showing that combined reversible and irreversible fouling resistances contributed around 57% and 37%, respectively to the overall fouling resistances. Under all experimental condition tested, permeate flux decline was accurately predicted by all the models studied. Fouling profile was fitted well with “Standard Blocking”, “Intermediate Blocking” and “Cake Filtration” model for regenerated cellulose acetate (RCA) membrane and “Cake Filtration” model for polyethersulphone (PES) membrane.

  6. Impact of ozonation, anion exchange resin and UV/H2O2 pre-treatments to control fouling of ultrafiltration membrane for drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-06-01

    The effects of ozonation, anion exchange resin (AER) and UV/H 2 O 2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H 2 O 2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H 2 O 2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

  7. Fouling mechanism in ultrafiltration of vegetable oil

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Wardani, A. K.; Widodo, S.; Aryanti, Putu T. P.; Wenten, I. G.

    2018-03-01

    Energy efficient and cost-effective separation of impurities from vegetable oil is a great challenge for vegetable oil processing. Several technologies have been developed, including pressurized membrane, chemical treatment, and chemical free separation methods. Among those technologies, ultrafiltration membrane is one of the most attractive processes with low operating pressure and temperature. In this work, hydrophobic polypropylene ultrafiltration membrane was used to remove impurities such as non-dissolved solids from palm kernel oil. Unfortunately, the hydrophobicity of polypropylene membrane leads to significant impact on the reduction of permeate flux due to membrane fouling. This fouling is associated with the accumulation of substances on the membrane surface or within the membrane pores. For better understanding, fouling mechanism that occurred during palm kernel oil ultrafiltration using hydrophobic polypropylene membrane was investigated. The effect of trans-membrane pressure and feed temperature on fouling mechanism was also studied. The result showed that cake formation became the dominant fouling mechanism up to 50 min operation of palm kernel oil ultrafiltration. Furthermore, the fouling mechanism was not affected by the increase of trans-membrane pressure and feed temperature.

  8. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review.

    PubMed

    Zazouli, Mohammad Ali; Kalankesh, Laleh R

    2017-01-01

    Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.

  9. An improved method for purification of recombinant truncated heme oxygenase-1 by expanded bed adsorption and gel filtration.

    PubMed

    Hu, Hong-Bo; Wang, Wei; Han, Ling; Zhou, Wen-Pu; Zhang, Xue-Hong

    2007-03-01

    Recombinant truncated human heme oxygenase-1 (hHO-1) expressed in Escherichia coli was efficiently separated and purified from feedstock by DEAE-ion exchange expanded bed adsorption. Protocol optimization of hHO-1 on DEAE adsorbent resulted in adsorption in 0 M NaCl and elution in 150 mM NaCl at a pH of 8.5. The active enzyme fractions separated from the expanded bed column were further purified by a Superdex 75 gel filtration step. The specific hHO-1 activity increased from 0.82 +/- 0.05 to 24.8 +/- 1.8 U/mg during the whole purification steps. The recovery and purification factor of truncated hHO-1 of the whole purification were 72.7 +/- 4.7 and 30.2 +/- 2.3%, respectively. This purification process can decrease the demand on the preparation of feedstock and simplify the purification process.

  10. The Ultra-filtration of Macromolecules with Different Conformations and Configurations through Nanopores

    NASA Astrophysics Data System (ADS)

    Ge, Hui

    This Ph. D. thesis presents our study on the ultrafiltration of polymers with different configurations and conformations; namly, theoretically, the passing of polymer chains through a nanopore under an elongational flow filed has been studied for years, but experimental studies are rare because of two following reasons: (1) lacks a precise method to investigate how individual single polymer chain pass through a nanopore; (2) it is difficult, if not impossible, to obtain a set of polymer samples with a narrow molar mass distribution and a uniform structures; except for linear chains. The central question in this study is to find the critical (minimum) flow rate (qc) for each kind of chains, at which the chains can pass through a given nanopore. A comparison of the measured and calculated qc leads to a better understanding how different chains are deformed, stretched and pulled through a nanopore. We have developed a novel method of combinating static and dynamic laser light scattering (LLS) to precisely measure the relative retention concentration ((C0 - C)/C0). Chapter 1 briefly introduces the theoretical background of how applications and lists some of resent research progresses in this area. Polymer with various configurations and conformations pass through nanopores; including polymer linear chains, stars polymer, branched polymers, polymer micelles are introduced. Among them, the de Gennes and Brochard-Wyart's predictions of polymer linear and star chains passing through nanopores are emphasized, in which they predicted that qc of linear chain is qc ≃ kBT/(3pieta), where kB, T and eta are the Boltzmann constant, the absolutely temperature, and the viscosity of solvent, respectively, independent of both the chain length and the pore size; and for star chains passing through nanopores, there exist a optimal entering arm numbers, namely, the star chains passing through nanopores. Chapter 2 details basic theory of static and dynamic laser light scattering (LLS

  11. Characterisation of Maillard reaction products derived from LEKFD--a pentapeptide found in β-lactoglobulin sequence, glycated with glucose--by tandem mass spectrometry, molecular orbital calculations and gel filtration chromatography coupled with continuous photodiode array.

    PubMed

    Yamaguchi, Keiko; Homma, Takeshi; Nomi, Yuri; Otsuka, Yuzuru

    2014-02-15

    Maillard reaction peptides (MRPs) contribute to taste, aroma, colour, texture and biological activity. However, peptide degradation or the cross-linking of MRPs in the Maillard reaction has not been investigated clearly. A peptide of LEKFD, a part of β-lactoglobulin, was heated at 110 °C for 24h with glucose and the reaction products were analysed by HPLC with ODS, ESI-MS, ESI-MS/MS and HPLC with gel-filtration column and DAD detector. In the HPLC fractions, an imminium ion of LEK*FD, a pyrylium ion or a hydroxymethyl furylium ion of LEK*FD, and KFD and EK were detected by ESI-MS. Therefore, those products may be produced by the Maillard reaction. The molecular orbital of glycated LEKFD at the lysine epsilon-amino residue with Schiff base form was calculated by MOPAC. HPLC with gel-filtration column showed cross-linking and degradation of peptides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration.

    PubMed

    Wang, Ruican; Guo, Shuntang

    2016-11-15

    This study aims to clarify the roles played by endogenous small molecular components in soymilk coagulation process and the properties of gels. Soymilk samples with decreasing levels of small molecules were prepared by ultrafiltration, to reduce the amount of phytate and salts. CaSO4-induced coagulation process was analyzed using rheological methods. Results showed that removal of free small molecules decreased the activation energy of protein coagulation, resulting in accelerated reaction and increased gel strength. However, too fast a reaction led to the drop in storage modulus (G'). Microscopic observation suggested that accelerated coagulation generated a coarse and non-uniform gel network with large pores. This network could not hold much water, leading to serious syneresis. Endogenous small molecules in soymilk were vital in the fine gel structure. Coagulation rate could be controlled by adjusting the amount of small molecules to obtain tofu products with the optimal texture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quantification and clinical application of carboplatin in plasma ultrafiltrate.

    PubMed

    Downing, Kim; Jensen, Berit Packert; Grant, Sue; Strother, Matthew; George, Peter

    2017-05-10

    Carboplatin is a chemotherapy drug used in a variety of cancers with the primary toxicity being exposure-dependant myelosuppression. We present the development and validation of a simple, robust inductively coupled plasma mass spectrometry (ICP-MS) method to measure carboplatin in plasma ultrafiltrate. Plasma ultrafiltrates samples were prepared using Amicon Ultra 30,000da cut-off filters and then diluted with ammonia EDTA before ICP-MS analysis. The assay was validated in the range 0.19-47.5mg/L carboplatin in ultrafiltrate. The assay was linear (r 2 >0.9999), accurate (<6% bias, 12% bias at LLOQ) and precise (intra- and inter-day precision of <3% coefficient of variation). No matrix effects were observed between plasma ultrafiltrate and aqueous platinum calibrators and recovery was complete. The assay was applied to 10 clinical samples from patients receiving carboplatin. Incurred sample reanalysis showed reproducible values over 3 analysis days (<6% CV). As plasma stability prior to ultrafiltration has been a major concern in previous clinical studies this was studied extensively at room temperature (22°C) over 24h. Carboplatin was found to be stable in both spiked plasma (n=3) and real patient samples (n=10) at room temperature for up to 8h before ultrafiltration. This makes routine measurement of carboplatin concentrations in clinical settings feasible. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Drawbacks of Dialysis Procedures for Removal of EDTA

    PubMed Central

    Mónico, Andreia; Martínez-Senra, Eva; Cañada, F. Javier; Zorrilla, Silvia

    2017-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent commonly used in protein purification, both to eliminate contaminating divalent cations and to inhibit protease activity. For a number of subsequent applications EDTA needs to be exhaustively removed. Most purification methods rely in extensive dialysis and/or gel filtration in order to exchange or remove protein buffer components, including metal chelators. We report here that dialysis protocols, even as extensive as those typically employed for protein refolding, may not effectively remove EDTA, which is reduced only by approximately two-fold and it also persists after spin-column gel filtration, as determined by NMR and by colorimetric methods. Remarkably, the most efficient removal was achieved by ultrafiltration, after which EDTA became virtually undetectable. These results highlight a potentially widespread source of experimental variability affecting free divalent cation concentrations in protein applications. PMID:28099451

  15. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing.

    PubMed

    Wardrip, Nathaniel C; Arnusch, Christopher J

    2016-02-13

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.

  16. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing

    PubMed Central

    Wardrip, Nathaniel C.; Arnusch, Christopher J.

    2016-01-01

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.  PMID:26968008

  17. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  18. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse.

    PubMed

    Moazzem, Shamima; Wills, Jamie; Fan, Linhua; Roddick, Felicity; Jegatheesan, Veeriah

    2018-03-01

    Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.

  19. Effects of steam sterilization on thermogelling chitosan-based gels.

    PubMed

    Jarry, C; Chaput, C; Chenite, A; Renaud, M A; Buschmann, M; Leroux, J C

    2001-01-01

    A new thermogelling chitosan-glycerophosphate system has been recently proposed for biomedical applications such as drug and cell delivery. The objectives of this work were to characterize the effect of steam sterilization on the in vitro and in vivo end performances of the gel and to develop a filtration-based method to assess its sterility. Autoclaving 2% (w/v) chitosan solutions for as short as 10 min resulted in a 30% decrease in molecular weight, 3-5-fold decrease in dynamic viscosity, and substantial loss of mechanical properties of the resulting gel. However, sterilization did not impair the ability of the system to form a gel at 37 degrees C. The antimicrobial activity of chitosan against several microorganisms was evaluated after inoculation of chitosan solutions and removal of the cells by filtration. It was found that, although chitosan was bacteriostatic against the heat sterilization bioindicator Bacillus stearothermophilus, the bacteria could rapidly grow after separation from the chitosan solution by filtration. This indicated that B. stearothermophilus is an adequate strain to validate a heat sterilization method on chitosan preparations, and accordingly this strain was used to assess the sterility of chitosan solution following a 10 min autoclaving time. Copyright 2001 John Wiley & Sons, Inc.

  20. Organic colloids and their influence on low-pressure membrane filtration.

    PubMed

    Laabs, C; Amy, G; Jekel, M

    2004-01-01

    Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.

  1. Venoarterial modified ultrafiltration versus conventional arteriovenous modified ultrafiltration during cardiopulmonary bypass surgery.

    PubMed

    Mohanlall, Rakesh; Adam, Jamila; Nemlander, Arto

    2014-01-01

    Different types of modified ultrafiltration (MUF) systems evaluated showed that none of the MUF techniques adhered to the normal venous to arterial blood flow dynamics. This study compared a conventional arteriovenous modified ultrafiltration (AVMUF) system to a custom- designed venoarterial modified ultrafiltration (VAMUF) system. Randomized, controlled clinical study conducted at the Northwest Armed Forces Military hospital in Tabuk, Saudi Arabia. Sixty patients who underwent MUF during the years 2007 and 2009 were divided into 2 groups: the AVMUF (n=30) and the VAMUF (n=30) groups. MUF was performed for a mean time of 12 minutes in both groups. In AVMUF, blood was removed from the aorta, hemoconcentrated, and infused into the right atrium (RA). In VAMUF, blood flow was from the RA through a hemoconcentrator and re-infused into the aorta. Results of the study showed that the VAMUF group required a shorter ventilation time (P < .001), in.tensive care unit (ICU) (P=.003), and hospital stay (P=.007) than the AVMUF group. Results also demonstrated a lower percentage of fluid balance (P=.008) in the VAMUF group. The systolic (P < .001) and mean blood pres.sures (P < .001) were significantly higher after VAMUF, with a decrease in heart rate (P < .001) and central venous pressure (P=.002). The VAMUF group showed a significantly greater decrease of creatinine (P < .001), serum lactacte (P < .001), and uric acid (P < .027) over time with no significant differences in oximetry. Results prove that VAMUF is a more physiological technique than AVMUF.

  2. Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration.

    PubMed

    Zheng, Xing; Ernst, Mathias; Jekel, Martin

    2010-05-01

    Natural biofiltration processes have been verified as effective pre-treatment choice improving the performance of low-pressure membranes (MF/UF) in wastewater reclamation. In the present work, pilot-scale slow sand filtration (SSF) was used to simulate bank filtration at high filtration rates (from 0.25m/h to 0.5m/h) to filter secondary effluent prior to UF. The results showed that SSF improved the performance of UF to a large extent. Related to previous work biopolymers are considered as major dissolved organic foulants in treated wastewater. The removal of these organic foulants in slow sand filters and factors affecting the performance of SSF were investigated. It was observed that the removal of biopolymers took place mainly at the upper sand layer and was related to biological degradation. Tests on the degradability of biopolymers verified that they are biodegradable. Sixteen months monitoring of biopolymer concentration in the secondary effluent indicated that it varied seasonally. In winter season the concentration was much higher than during the summer months. Higher temperature and lower biopolymer concentration led to more effective foulants removal and more sustainable operation of SSF. During the whole experimental period, the performance of SSF was always better at filtration rate of 0.25m/h than at 0.5m/h. Under the present experimental conditions, SSF exhibited stable and effective biopolymer removal at temperatures higher than 15 degrees C, at biopolymer concentrations lower than 0.5mg C/L and with sufficient oxygen available.

  3. Ultrafiltrative deinking of flexographic ONP : the role of surfactants

    Treesearch

    Bradley H. Upton; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    Ultrafiltration is a potentially viable method of removing finely dispersed flexographic pigments from the deinking water loop. This work examines the effects of surface-active materials on ultrafiltration efficiency. A logarithmic relationship between permeate flax and pigment concentration was demonstrated at ink concentrations above 0.4%, permeation rates becoming...

  4. Ceramic ultrafiltration membranes with photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Bell, Deborah Wildman

    The photocatalytic properties of ceramic ultrafilters have been utilized in the development of a novel in-situ membrane cleaning process for ultrafiltration membranes fabricated from titania. The use of the photoactive membrane layer mitigates the effects of foulants in the system, thereby yielding an increase in the observed overall flux without sacrificing rejection of the solute by the membrane. Photocatalytic membranes of titania supported on porous tubes of alpha-alumina were fabricated using sol-gel techniques. These membranes were developed on the basis of the results of two-level factorial experimental designs. Electron microscopy and x-ray spectrometry were employed to evaluate coverage of the support by the membrane, the thickness of the membrane, and the presence of defects in the membrane. The photocatalytic membrane system was characterized to determine both morphological and performance parameters. Morphological parameters included the pore diameters, Darcy coefficients, and the individual resistances associated with each of the porous layers comprising the composite photocatalytic membrane. Performance parameters included the nominal molecular weight cutoff values of the ceramic membranes, the rate of permeation of pure solvent in the presence and the absence of UV illumination through the porous layers of interest, and the ability of the photocatalytic membrane to resist fouling and maintain permselectivity in the presence of UV illumination. The photocatalytic membranes were used to ultrafilter aqueous solutions of polymeric organic foulants present at an initial concentration of 1 x 10-3 M. Formation of a gel layer of foulant on the surface of the membrane was observed in the presence and in the absence of UV radiation; however, the results of permeability experiments indicated that formation of this foulant layer was significantly retarded (by a factor of two) in the presence of UV radiation. Improvement in the flow rate of permeate through the

  5. Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane.

    PubMed

    Li, Ting; Zhang, Weiming; Zhai, Shu; Gao, Guandao; Ding, Jie; Zhang, Wenbin; Liu, Yang; Zhao, Xin; Pan, Bingcai; Lv, Lu

    2018-06-15

    The development of highly efficient membranes, especially those aimed at the removal of trace (ppm, 10 -6 ) heavy metals from high salinity wastewater, is one of the principal challenges in the wastewater treatment field. In this study, a new metal-organic frameworks-based hybrid ultrafiltration membrane (PAA/ZIF-8/PVDF membrane) was prepared, which outperformed some other adsorption materials and owned the first and highest reported nickel ion (Ni(II)) adsorption capacity (219.09 mg/g) in high salinity ([Na + ] = 15000 mg/L) wastewater. Novel and highly efficient hybrid ultrafiltration membrane was facilely fabricated by physically immobilizing zeolitic imidazolate framework-8 (ZIF-8) particles onto the surface of trimesoyl chloride (TMC)-modified polyvinylidene fluoride (PVDF) membrane under the protection of polyacrylic acid (PAA) layer, and possessed a relatively high water flux of ∼460 L m -2 h -1 . The XPS studies revealed that the Ni(II) uptake was mainly attributed to the specific hydrogen bonding interaction between Ni(II) and hydroxyl on ZIF-8 frameworks as well as the electrostatic adsorption by carboxyl groups in PAA layer. Especially, compared to PAA, ZIF-8 could selectively bind with Ni(II) effectively, which was almost not affected by concentrated sodium ion. The filtration study showed that the membrane with an area of 12.56 cm 2 could treat 5.76 L of Ni(II)-contained high salinity wastewater ([Ni(II) = 2 mg/L, [Na + ] = 15000 mg/L) to meet the maximum contaminant level of 0.1 mg/L Ni(II). Moreover, the hybrid membrane can be regenerated several times by HCl-NaCl solution (pH = 5.5) for repeated use under direct current electric field. Thus, the newly developed ZIF-8 hybrid ultrafiltration membrane showed a promising potential for heavy metals containing wastewater treatment. This work provides a worthy reference for designing highly efficient ultrafiltration membranes modified by metal-organic frameworks

  6. Reexamining ultrafiltration and solute transport in groundwater

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  7. Reexamining ultrafiltration and solute transport in groundwater

    USGS Publications Warehouse

    Neuzil, Christopher E.; Person, Mark

    2017-01-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ∼3 g L−1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  8. Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to bemore » performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.« less

  9. Structure and rheological behavior of casein micelle suspensions during ultrafiltration process

    NASA Astrophysics Data System (ADS)

    Pignon, F.; Belina, G.; Narayanan, T.; Paubel, X.; Magnin, A.; Gésan-Guiziou, G.

    2004-10-01

    The stability and mechanism underlying the formation of deposits of casein micelles during ultrafiltration process were investigated by small-angle and ultra small-angle x-ray scattering (SAXS and USAXS). The casein micelle dispersions consisted of phospho-caseinate model powders and the measurements probed length scales ranging from 1 to 2000 nm. Rheometric and frontal filtration measurements were combined with SAXS to establish the relationship between the rheological behavior of deposits (shear and/or compression) and the corresponding microstructure. The results revealed two characteristic length scales for the equilibrium structure with radius of gyrations Rg, about 100 and 5.6 nm pertaining to the globular micelles and their non-globular internal structure, respectively. The SAXS measurements further indicated that the increase of temperature from 20 to 70 °C or the decrease of pH from 6.6 to 6 lead to agglomeration of the globular micelles. In situ scattering measurements showed that the decrease of permeation flows is directly related to the deformation and compression of the micelles in the immediate vicinity of the membrane.

  10. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    NASA Astrophysics Data System (ADS)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  11. Capillary isoelectric focusing with whole column imaging detection (iCIEF): A new approach to the characterization and quantification of salivary α-amylase.

    PubMed

    Zarabadi, Atefeh S; Huang, Tiemin; Mielke, John G

    2017-05-15

    Saliva is an easily collected biological fluid with potentially important diagnostic value. While gel electrophoresis is generally used for salivary analysis, we employed the capillary isoelectric focusing technique to allow for a rapid, automated mode of electrophoresis. Capillary isoelectric focusing coupled with UV whole column imaging detection (iCIEF) was used to develop a robust protocol to characterize salivary α-amylase collected from various glands. Notably, three sample preparation methods were examined: ultrafiltration, gel-filtration, and starch affinity interaction with salivary amylase. Salivary α-amylase separated into two major peaks before sample treatment; while both filtration methods and starch affinity interaction of salivary amylase enhanced the resolution of isozymes, desalting with gel-filtration displayed the best recovery and the highest resolution of isozymes. Good agreement existed between the observed isoelectric points and the values reported in the literature. In addition, a high level of precision was apparent, and the relative standard deviation for replicates was less than 0.5% for pIs (peak positions) and below 10% for peak area. Furthermore, saliva secreted from the parotid gland proved to have a higher amylase content compared to either secretions from the submandibular/sublingual complex, or whole saliva, as well as amylase enhancement under stimulation. The results suggest that the iCIEF technique can be used to accurately resolve and quantitate amylase isozymes in a rapid and automated fashion, and that gel-filtration should be applied to saliva samples beforehand to allow for optimal purification and characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein

    PubMed Central

    Pan, Timothy; Tzeng, Huey-Fen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification. PMID:28328957

  13. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein.

    PubMed

    Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.

  14. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.

    PubMed

    Oh, H K; Yu, M J; Gwon, E M; Koo, J Y; Kim, S G; Koizumi, A

    2004-01-01

    This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.

  15. A modified method for determining tannin-protein precipitation capacity using accelerated solvent extraction (ASE) and microplate gel filtration.

    PubMed

    McArt, Scott H; Spalinger, Donald E; Kennish, John M; Collins, William B

    2006-06-01

    The protein precipitation assay used by Robbins et al., (1987) Ecology 68:98-107 has been shown to predict successfully the reduction in protein availability to some ruminants due to tannins. The procedure, however, is expensive and laborious, which limits its utility, especially for quantitative ecological or nutritional applications where large numbers of assays may be required. We have modified the method to decrease its cost and increase laboratory efficiency by: (1) automating the extraction by using Accelerated Solvent Extraction (ASE); and (2) by scaling and automating the precipitation reaction, chromatography, and spectrometry with microplate gel filtration and an automated UV-VIS microplate spectrometer. ASE extraction is shown to be as effective at extracting tannins as the hot methanol technique. Additionally, the microplate assay is sensitive and precise. We show that the results from the new technique correspond in a nearly 1:1 relationship to the results of the previous technique. Hence, this method could reliably replace the older method with no loss in relevance to herbivore protein digestion. Moreover, the ASE extraction technique should be applicable to other tannin-protein precipitation assays and possibly other phenolic assays.

  16. Embedding memories in colloidal gels though oscillatory shear

    NASA Astrophysics Data System (ADS)

    Schwen, Eric; Ramaswamay, Meera; Jan, Linda; Cheng, Chieh-Min; Cohen, Itai

    While gels are ubiquitous in applications from food products to filtration, their mechanical properties are usually determined by self-assembly. We use oscillatory shear to train colloidal gels, embedding memories of the training protocol in rheological responses such as the yield strain and the gel network structures. When our gels undergo shear, the particles are forced to rearrange until they organize into structures that can locally undergo reversible shear cycles. We utilize a high-speed confocal microscope and a shear cell to image a colloidal gel while simultaneously straining the gel and measuring its shear stresses. By comparing stroboscopic images of the gel, we quantify the decrease in particle rearrangement as the gel develops reversible structures. We analyze and construct a model for the rates at which different regions in the gel approach reversible configurations. Through characterizing the gel network, we determine the structural origins of these shear training memories in gels. These results may allow us to use shear training protocols to produce gels with controllable yield strains and to better understand changes in the microstructure and rheology of gels that undergo repeated shear through mixing or flowing. This research was supported in part by NSF CBET 1509308 and Xerox Corporation.

  17. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    PubMed Central

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-01-01

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda. PMID:26516883

  18. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda.

    PubMed

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-10-27

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  19. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments.

    PubMed

    Boleda, M A Rosa; Galceran, M A Teresa; Ventura, Francesc

    2011-06-01

    The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies ≥ 94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration.

    PubMed

    Ates, Nuray; Uzal, Nigmet

    2018-05-27

    Aluminum manufacturing has been reported as one of the largest industries and wastewater produced from the aluminum industry may cause significant environmental problems due to variable pH, high heavy metal concentration, conductivity, and organic load. The management of this wastewater with a high pollution load is of great importance for practitioners in the aluminum sector. There are hardly any studies available on membrane treatment of wastewater originated from anodic oxidation. The aim of this study is to evaluate the best treatment and reuse alternative for aluminum industry wastewater using membrane filtration. Additionally, the performance of chemical precipitation, which is the existing treatment used in the aluminum facility, was also compared with membrane filtration. Wastewater originated from anodic oxidation coating process of an aluminum profile manufacturing facility in Kayseri (Turkey) was used in the experiments. The characterization of raw wastewater was in very low pH (e.g., 3) with high aluminum concentration and conductivity values. Membrane experiments were carried out with ultrafiltration (PTUF), nanofiltration (NF270), and reverse osmosis (SW30) membranes with MWCO 5000, 200-400, and 100 Da, respectively. For the chemical precipitation experiments, FeCl 3 and FeSO 4 chemicals presented lower removal performances for aluminum and chromium, which were below 35% at ambient wastewater pH ~ 3. The membrane filtration experimental results show that, both NF and RO membranes tested could effectively remove aluminum, total chromium and nickel (>90%) from the aluminum production wastewater. The RO (SW30) membrane showed a slightly higher performance at 20 bar operating pressure in terms of conductivity removal values (90%) than the NF 270 membrane (87%). Although similar removal performances were observed for heavy metals and conductivity by NF270 and SW30, significantly higher fluxes were obtained in NF270 membrane filtration at any pressure

  1. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  2. Role of electrostatic interactions during protein ultrafiltration.

    PubMed

    Rohani, Mahsa M; Zydney, Andrew L

    2010-10-15

    A number of studies over the last decade have clearly demonstrated the importance of electrostatic interactions on the transport of charged proteins through semipermeable ultrafiltration membranes. This paper provides a review of recent developments in this field with a focus on the role of both protein and membrane charge on the rate of protein transport. Experimental results are analyzed using available theoretical models developed from the solution of the Poisson-Boltzmann equation for the partitioning of a charged particle into a charged pore. The potential of exploiting these electrostatic interactions for selective protein separations and for the development of ultrafiltration membranes with enhanced performance characteristics is also examined. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    PubMed

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis.

    PubMed

    Ferrer, O; Casas, S; Galvañ, C; Lucena, F; Bosch, A; Galofré, B; Mesa, J; Jofre, J; Bernat, X

    2015-10-15

    The feasibility of substituting a conventional pre-treatment, consisting of dioxi-chlorination, coagulation/flocculation, settling and sand filtration, of a drinking water treatment plant (DWTP) by direct ultrafiltration (UF) has been assessed from a microbiological standpoint. Bacterial indicators, viral indicators and human viruses have been monitored in raw river, ultrafiltered and conventionally pre-treated water samples during two years. Direct UF has proven to remove bacterial indicators quite efficiently and to a greater extent than the conventional process does. Nevertheless, the removal of small viruses such as some small bacteriophages and human viruses (e.g. enteroviruses and noroviruses) is lower than the current conventional pre-treatment. Membrane integrity has been assessed during two years by means of tailored tests based on bacteriophages with different properties (MS-2, GA and PDR-1) and bacterial spores (Bacillus spores). Membrane integrity has not been compromised despite the challenging conditions faced by directly treating raw river water. Bacteriophage PDR-1 appears as a suitable microbe to test membrane integrity, as its size is slightly larger than the considered membrane pore size. However, its implementation at full scale plant is still challenging due to difficulties in obtaining enough phages for its seeding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration.

    PubMed

    Laabs, Claudia N; Amy, Gary L; Jekel, Martin

    2006-07-15

    Stirred cell tests with microfiltration (MF) and ultrafiltration (UF) membranes show high flux decline for WWTP effluents. For the MF membrane, for example, the flux declines within 15 min to 70-80% of the initial flux (J0 is in the range of 1000 L/m2h to 1500 L/m2h). This time corresponds to the filtration of a cumulative volume of 110 L/m2. Feed and permeate samples of the stirred cell tests are analyzed by size-exclusion chromatography (SEC) with on-line organic carbon and UVA254 detection. The resulting chromatograms exhibit a clear difference between the feed and permeate samples in the so-called polysaccharide (PS) peak. The substances eluting in the PS peak (organic colloids, polysaccharides, and proteins) are retained completely by UF membranes and partly by MF membranes, and are responsible for the observed fouling. By sequential filtration experiments the sizes of these macromolecules are determined to be in the range of 10 to 100 nm.

  6. Treatment of silica effluents: ultrafiltration or coagulation-decantation.

    PubMed

    Ndiaye, P I; Moulin, P; Dominguez, L; Millet, J C; Charbit, F

    2004-12-10

    In the electronics industry, the preparation of silicon plates generates effluents that contain a great amount of colloidal silica. Two processes--decantation and ultrafiltration--are studied with in view the treatment of the effluents released by the firm Rockwood Electronic Materials. The feasibility of each of the two processes is studied separately and their operating parameters optimized. Both processes allow the recovery of a great proportion of the initial effluent (over 89%) as transparent and colorless water that can be reused at the start of a line. In view of the results and of the compared advantages and disadvantages of the two processes, ultrafiltration will be selected for the industrial unit.

  7. Tangential flow ultrafiltration for detection of white spot syndrome virus (WSSV) in shrimp pond water.

    PubMed

    Alavandi, S V; Ananda Bharathi, R; Satheesh Kumar, S; Dineshkumar, N; Saravanakumar, C; Joseph Sahaya Rajan, J

    2015-06-15

    Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters

    NASA Astrophysics Data System (ADS)

    Vaulina, E.; Widyaningsih, S.; Kartika, D.; Romdoni, M. P.

    2018-04-01

    Cellulose acetate is one of material in produce ultrafiltration membrane. Many efforts have been done to produce cellulose acetate from natural product to replace commercial one. In this research, ultrafiltration membrane has been produced from coconut flower water (nira). Ultrafiltration membrane is widely used in separation processes. This research aims to determine the characteristics of ultrafiltration membrane at a various concentration of cellulose acetate. The ultrafiltration membrane is conducted by phase inversion method at various concentration of cellulose acetate. The cellulose acetate concentration was 20%, 23% and 25% (w/w) with formamide as additives. The results showed that the greater the concentration of cellulose acetate, the smaller the flux value. The highest flux was a membrane with 20% cellulose acetate concentration with water flux value 55.34 L/(m2. h). But the greater the concentration of cellulose acetate the greater the rejection. The highest rejection value was on a membrane with 25% cellulose acetate concentration of 82.82%. While from the tensile strength test and the pore size analysis, the greater the cellulose acetate concentration the greater the tensile strength and the smaller the pore size

  9. Water Filtration

    ERIC Educational Resources Information Center

    Jacobsen, Erica K.

    2004-01-01

    A water filtration column is devised by students using a two-liter plastic bottle containing gravel, sand, and activated charcoal, to test the filtration potential of the column. Results indicate that the filtration column eliminates many of the contaminating materials, but does not kill bacteria.

  10. The substitution of sand filtration by immersed-UF for surface water treatment: pilot-scale studies.

    PubMed

    Lihua, Sun; Xing, Li; Guoyu, Zhang; Jie, Chen; Zhe, Xu; Guibai, Li

    2009-01-01

    The newly issued National Drinking Water Standard required that turbidity should be lower than 1 NTU, and the substitution of sand filtration by immersed ultrafiltration (immersed-UF) is feasible to achieve the standard. This study aimed to optimise the operational processes (i.e. aeration, backwashing) through pilot scale studies, to control membrane fouling while treating the sedimentation effluent. Results indicated that the immersed-UF was promising to treat the sedimentation effluent. The turbidity was below 0.10 NTU, bacteria and E. coli were not detected in the permeate water. The intermittent filtration with aeration is beneficial to inhibit membrane fouling. The critical aeration intensity is observed to be 60.0 m(3) m(-2) h(-1). At this aeration intensity, the decline rate of permeate flux in one period of backwashing was 1.94% and 7.03% for intermittent filtration and sustained filtration respectively. The different membrane backwashing methods (i.e. aeration 1.5 min, synchronous aeration and water backwashing 2 min, water backwashing 1.5 min; synchronous aeration and water backwashing 3 min, water backwashing 2 min; aeration 3 min, single water backwashing 2 min; synchronous aeration and water backwashing 5 min; single water backwashing 5 min) on the recovery of permeate flux were compared, indicating that the synchronous aeration and water backwashing exhibited best potential for permeate flux recovery. The optimal intensity of water backwashing is shown to be 90.0 L m(-2) h(-1). When the actual water intensity was below or exceeded the value, the recovery rate of permeate flux would be reduced. Additionally, the average operating cost for the immersed UF membrane, including the power, the chemical cleaning reagents, and membrane modules replacement, was about 0.31 RMB/m(3).

  11. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm

    PubMed Central

    Weavers, Helen; Prieto-Sánchez, Silvia; Grawe, Ferdinand; Garcia-López, Amparo; Artero, Ruben; Wilsch-Braeuninger, Michaela; Ruiz-Gómez, Mar; Skaer, Helen; Denholm, Barry

    2009-01-01

    The nephron is the basic structural and functional unit of the vertebrate kidney. It is composed of a glomerulus, the site of ultrafiltration, and a renal tubule, along which the filtrate is modified. Although widely regarded as a vertebrate adaptation1 ‘nephron-like’ features can be found in the excretory systems of many invertebrates, raising the possibility that components of the vertebrate excretory system were inherited from their invertebrate ancestors2. Here we show that the insect nephrocyte has remarkable anatomical, molecular and functional similarity with the glomerular podocyte, a cell in the vertebrate kidney that forms the main size-selective barrier as blood is ultrafiltered to make urine. In particular, both cell types possess a specialised filtration diaphragm, known as the slit diaphragm in podocytes or the nephrocyte diaphragm in nephrocytes. We find that fly orthologues of the major constituents of the slit diaphragm, including nephrin, neph1, CD2AP, ZO-1 and podocin are expressed in the nephrocyte and form a complex of interacting proteins that closely mirrors the vertebrate slit diaphragm complex. Furthermore, we find the nephrocyte diaphragm is completely lost in flies mutant for nephrin or neph1 orthologues, a phenotype resembling loss of the slit diaphragm in the absence of either nephrin (as in the human kidney disease NPHS1) or neph1. These changes drastically impair filtration function in the nephrocyte. The similarities we describe between invertebrate nephrocytes and vertebrate podocytes provide evidence suggesting the two cell types are evolutionarily related and establish the nephrocyte as a simple model in which to study podocyte biology and podocyte-associated diseases. PMID:18971929

  12. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  13. Biodegradation of Microcystins during Gravity-Driven Membrane (GDM) Ultrafiltration

    PubMed Central

    Kohler, Esther; Villiger, Jörg; Posch, Thomas; Derlon, Nicolas; Shabarova, Tanja; Morgenroth, Eberhard; Pernthaler, Jakob; Blom, Judith F.

    2014-01-01

    Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L−1 MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified. PMID:25369266

  14. Proteomic analysis of the kidney filtration barrier--Problems and perspectives.

    PubMed

    Rinschen, Markus M; Benzing, Thomas; Limbutara, Kavee; Pisitkun, Trairak

    2015-12-01

    Diseases of the glomerular filter of the kidney are a leading cause of end-stage renal failure. The kidney filter is localized within the renal glomeruli, small microvascular units that are responsible for ultrafiltration of about 180 liters of primary urine every day. The renal filter consists of three layers, fenestrated endothelial cells, glomerular basement membrane, and the podocytes, terminally differentiated, arborized epithelial cells. This review demonstrates the use of proteomics to generate insights into the regulation of the renal filtration barrier at a molecular level. The advantages and disadvantages of different glomerular purification methods are examined, and the technical limitations that have been significantly improved by in silico or biochemical approaches are presented. We also comment on phosphoproteomic studies that have generated considerable molecular-level understanding of the physiological regulation of the kidney filter. Lastly, we conclude with an analysis of urinary exosomes as a potential filter-derived resource for the noninvasive discovery of glomerular disease mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microfiltration and Ultrafiltration Membranes for Drinking Water

    EPA Science Inventory

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  16. Identification of novel proteins in culture filtrates of Mycobacterium bovis bacillus Calmette-Guérin in the isoelectric point range 6-11.

    PubMed

    Florio, Walter; Batoni, Giovanna; Esin, Semih; Bottai, Daria; Maisetta, Giuseppantonio; Pardini, Manuela; Campa, Mario

    2003-05-01

    Two-dimensional gel electrophoresis and mass spectrometry were used to identify proteins in the isoelectric point range 6-11 in culture filtrates of Mycobacterium bovis bacillus Calmette-Guérin (BCG). Twelve proteins were identified, three of which had not been described previously. The expression of the identified proteins was comparatively analyzed in culture filtrates of BCG in different growth phases and culture conditions. For some of these proteins, the relative protein abundance in the different culture filtrate preparations was significantly different. The differential expression of the identified proteins is discussed in relation to their putative localization and/or biological function.

  17. Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes.

    PubMed

    Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo

    2017-02-01

    Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2011-05-01

    We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.

  19. 8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING SOUTHWEST, SHOWING MEZZANINE WITH FILTER TANKS AT REAR - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  20. 7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST, SHOWING PUMP NO. 1 AND METERING EQUIPMENT - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  1. Rotary filtration system

    DOEpatents

    Herman, David T [Aiken, SC; Maxwell, David N [Aiken, SC

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  2. High-pressure size exclusion chromatography analysis of dissolved organic matter isolated by tangential-flow ultra filtration

    USGS Publications Warehouse

    Everett, C.R.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.

  3. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  4. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  5. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  6. Effect of Ultrafiltration on Pulmonary Function and Interleukins in Patients Undergoing Cardiopulmonary Bypass.

    PubMed

    Kosour, Carolina; Dragosavac, Desanka; Antunes, Nilson; Almeida de Oliveira, Rosmari Aparecida Rosa; Martins Oliveira, Pedro Paulo; Wilson Vieira, Reinaldo

    2016-08-01

    To evaluate the effect of ultrafiltration on interleukins, TNF-α levels, and pulmonary function in patients undergoing coronary artery bypass grafting (CABG). Prospective, randomized, controlled trial. University hospital. Forty patients undergoing CABG were randomized into a group assigned to receive ultrafiltration (UF) during cardiopulmonary bypass (CPB) or into another group (control) that underwent the same procedure but without ultrafiltration. Interleukins and TNF-α levels, pulmonary gas exchange, and ventilatory mechanics were measured in the preoperative, intraoperative, and postoperative periods. Interleukins and TNF-α also were analyzed in the perfusate of the test group. There were increases in IL-6 and IL-8 at 30 minutes after CPB and 6, 12, 24, and 36 hours after surgery, along with an increase in TNF-α at 30 minutes after CPB and 24, 36, and 48 hours after surgery in both groups. IL-1 increased at 30 minutes after CPB and 12 hours after surgery, while IL-6 increased 24 and 36 hours after surgery in the UF group. The analysis of the ultrafiltrate showed the presence of TNF-α and traces of IL-1β, IL-6, and IL-8. There were alterations in the oxygen index, alveolar-arterial oxygen difference, deadspace, pulmonary static compliance and airway resistance after anesthesia and sternotomy, as well as in airway resistance at 6 hours after surgery in both groups, with no difference between them. Ultrafiltration increased the serum level of IL-1 and IL-6, while it did not interfere with gas exchange and pulmonary mechanics in CABG. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Identification of the Allergenic Ingredients in Reduning Injection by Ultrafiltration and High-Performance Liquid Chromatography.

    PubMed

    Wang, Fang; Li, Cun-yu; Zheng, Yun-feng; Li, Hong-yang; Xiao, Wei; Peng, Guo-ping

    2016-01-01

    Reduning injection is a traditional Chinese medicine injection which has multiple functions such as clearing heat, dispelling wind, and detoxification. Although Reduning injection was widely utilized, reports of its allergenicity emerged one after another. However, there is little research on its allergenic substances. The aim of this study is to evaluate the sensitization of Reduning injection and explore the underlying cause of the anaphylactic reaction. The main ingredients in Reduning injection were analyzed before and after ultrafiltration. Ultrafiltrate Reduning injection, unfiltered Reduning injection, egg albumin, Tween-80, and nine effective components in Reduning injection were utilized to sensitize guinea pigs. The serum 5-hydroxytryptamine level was used to assess the sensitization effect of Reduning injection. We found a significant decrease in Tween-80 content comparing to other components in the injection after ultrafiltration. Unfiltered Reduning injection, Tween-80, chlorogenic acid, and cryptochlorogenin acid caused remarkable anaphylactoid reaction on guinea pigs while ultrafiltration Reduning resulted in a significantly lower degree of sensitization. Our results suggest that ultrafiltration could significantly reduce the sensitization of Reduning injection, which is likely due to the decrease of Tween-80. We also conjectured that the form of chlorogenic acid and cryptochlorogenin acid within the complex solution mixture may also affect the sensitizing effect.

  8. Ultrafiltration by a compacted clay membrane-II. Sodium ion exclusion at various ionic strengths

    USGS Publications Warehouse

    Hanshaw, B.B.; Coplen, T.B.

    1973-01-01

    Several recent laboratory studies and field investigations have indicated that shales and compacted clay minerals behave as semipermeable membranes. One of the properties of semipermeable membranes is to retard or prevent the passage of charged ionic species through the membrane pores while allowing relatively free movement of uncharged species. This phenomenon is termed salt filtering, reverse osmosis, or ultrafiltration. This paper shows how one can proceed from the ion exchange capacity of clay minerals and, by means of Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane. Reasonable agreement between theory and laboratory results were found. The concentration of the ultrafiltrate was always greater than predicted because of uncertainty in values of some parameters in the equations. Ultrafiltration phenomena may be responsible for the formation of some subsurface brines and mineral deposits. The effect should also be taken into consideration in any proposal for subsurface waste emplacement in an environment containing large quantities of clay minerals. ?? 1973.

  9. Partial purification of a toxin found in hamsters with antibiotic-associated colitis. Reversible binding of the toxin by cholestyramine.

    PubMed

    Humphrey, C D; Condon, C W; Cantey, J R; Pittman, F E

    1979-03-01

    A toxin with cytotoxic and enterotoxic activities was isolated from cecal contents of hamsters receiving lincomycin. The toxin was partially purified by ultracentrifugation, ultrafiltration, (NH4)2SO4 precipitation, and gel filtration. Cytotoxic activity, assayed on monolayers of HeLa cells, was restricted to material that eluted in the molecular weight range of 107,000 +/- 6,000 daltons. Cytotoxicity of crude AAC toxin could be demonstrated at concentrations as low as 0.04 microgram/ml. The toxin was heat labile (55 degrees-60 degrees C for 0.5 hr) and sensitive to trypsinization, acidification at pH 3, or alkalinization at pH 9. Cytotoxic activity was inhibited by Clostridium sordellii antitoxin. Enterotoxic activity of the crude toxin and the cytotoxic fraction from gel filtration was demonstrated by fluid secretion in ligated rabbit ileal loops. Studies were done in vitro with cholestyramine resin, vancomycin, or gentamicin to determine if the toxin was bound or denatured by these drugs. It was demonstrated that cholestyramine bound the toxin, significantly reducing its cytotoxicity. Reversible binding of the cytotoxic material was demonstrated by salt gradient elution. Neither vancomycin nor gentamicin had any effect on the in vitro cytotoxic activity of the toxin.

  10. Thin stillage fractionation using ultrafiltration: resistance in series model.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2009-02-01

    The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).

  11. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    PubMed Central

    Yousr, Marwa; Howell, Nazlin

    2015-01-01

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk. PMID:26690134

  12. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins.

    PubMed

    Yousr, Marwa; Howell, Nazlin

    2015-12-07

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  13. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    NASA Astrophysics Data System (ADS)

    Suryani, Puput Eka; Purnama, Herry; Susanto, Heru

    2015-12-01

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  14. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  15. [Pilot study on the treatment of ultrafiltration for laundry wastewater recycling and reuse].

    PubMed

    Wang, Jin; Jiang, Jin-Hui

    2007-02-01

    A pilot study of the treatment for laundry wastewater recycling and reuse on the spot was carried out by ultrafiltration (UF) with different membrane material of PAN, PS and PP. According to the analysis of membrane fouling combined with UF effluent quality, PAN membrane was superior to the others. It removed the turbidity, suspended solid, fat oil and grease effectively, but kept anionic surfactant (LAS) to a certain degree in the UF effluent which is beneficial to recycling and reuse. By correlation analysis, it was found the high COD concentration of effluent was caused by LAS remained. The whiteness and softness of cotton cloth washed by UF effluent for a long-term was not different with that washed by tap water. The removal of bacteria and E. coli by UF membrane was not very high, and so UF effluent was disinfected by ultraviolet (UV) further. As the dosage of UV was not less than 3 750 J/m2, the microbial level reached the China national standard of drinking water. The optimal UF operation condition is to backwash two minutes every thirty minutes' filtration. Adopted alkali liquor of pH 11 to 13 to carry out chemical cleaning, the membrane flux was recovered completely.

  16. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    PubMed

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. p-Nitrophenol removal by combination of powdered activated carbon adsorption and ultrafiltration - comparison of different operational modes.

    PubMed

    Ivancev-Tumbas, Ivana; Hobby, Ralph; Küchle, Benjamin; Panglisch, Stefan; Gimbel, Rolf

    2008-09-01

    Ultrafiltration is classified as a low-pressure membrane technology which effectively removes particulate matter and microorganisms and to a certain extent dissolved organic matter (15-25%) and colour. The technology has been optimized and is becoming competitive compared to conventional processes for larger scale plant capacities. In combination with activated carbon it is an effective barrier regarding the removal of synthetic organic chemicals. Growing interest in ultrafiltration raises the question of better usage of the adsorption capacity of powdered activated carbon (PAC) used in combination with this low-pressure membrane technique. This paper presents a pilot plant study of different PAC dosing procedures within a combined hybrid membrane IN/OUT process for removal of p-nitrophenol (PNP) from water (c(0)=1mg/L) under real case conditions (e.g. usage of the same module for the whole duration of the experiment, backwashing with permeate water, no separate saturation of the membrane with substance without presence of carbon). p-Nitrophenol was chosen as an appropriate test substance to assess the efficiency of different operation modes. Dead-end and cross-flow filtration were compared with respect to different PAC dosing procedures: continuous dosing into a continuously stirred tank reactor (CSTR) in front of the module and direct dosing into the pipe in front of the module (continuous, single-pulse and multi-pulse dosing). There was no advantage in cross-flow mode over dead-end referring to PNP concentration in the permeate. Relating to the carbon dosing procedure, the best results were obtained for continuous PAC addition. The option of dosing directly into the pipe has the advantage of no additional tank being necessary. In the case of single-pulse dosing, the formation of a carbon layer on the membrane surface was assumed and an LDF model applied for a simplified estimation of the "breakthrough behaviour" in the thus formed "PAC filter layer".

  18. Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples.

    PubMed

    Kuhn, Ryan C; Oshima, Kevin H

    2002-06-01

    An optimized hollow-fiber ultrafiltration system (50 000 MWCO) was developed to concentrate Cryptosporidium oocysts from 10-L samples of environmental water. Seeded experiments were conducted using a number of surface-water samples from the southwestern U.S.A. and source water from four water districts with histories of poor oocyst recovery. Ultrafiltration produced a mean recovery of 47.9% from 19 water samples (55.3% from 39 individual tests). We also compared oocyst recoveries using the hollow-fiber ultrafiltration system with those using the Envirochek filter. In limited comparison tests, the hollow-fiber ultrafiltration system produced recoveries similar to those of the Envirochek filter (hollow fiber, 74.1% (SD = 2.8); Envirochek, 71.9% (SD = 5.2)) in low-turbidity (3.9 NTU) samples and performed better than the Envirochek filter in high-turbidity (159.0 NTU) samples (hollow fiber, 27.5%; Envirochek, 0.4%). These results indicate that hollow-fiber ultrafiltration can efficiently recover oocysts from a wide variety of surface waters and may be a cost-effective alternative for concentrating Cryptosporidium from water, given the reusable nature of the filter.

  19. The determination of ultrafiltrable calcium and magnesium in serum.

    PubMed

    Danielson, B G; Pallin, E; Sohtell, M

    1982-01-01

    Ultrafiltrate of human serum was investigated in order to evaluate the serum content of calcium and magnesium. The acid and base concentrations and pH of the serum was altered through titration with HCl- or NaOH-solutions. The Pco2 was varied in the titrated serum using different carbon dioxide tensions. This was performed when serum was filtered in a recycling system. It is shown that the analysis of calcium and magnesium have to be done under anaerobic conditions or at standardized pH and Pco2 situations, as the concentrations vary with both pH and Pco2. The concentration ratio between ultrafiltrate and serum for calcium and magnesium was found to be 0.56 and 0.74 respectively at pH=7.41 and Pco2=40 mmHg.

  20. Effect of gamma-ray irradiation at low doses on the performance of PES ultrafiltration membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Niu, Lixia; Li, Fuzhi; Yu, Suping; Zhao, Xuan; Hu, Hongying

    2016-10-01

    The influence of gamma irradiation on the performance of polyether sulfone (PES) ultrafiltration (UF) membrane was investigated at low absorbed doses (0-75 kGy) using a cobalt source. The performance of the UF membranes was tested using low level radioactive wastewater (LLRW) containing three types of surfactants (anionic, cationic and nonionic surfactants). The physical and chemical properties of membrane surface were analyzed, and relationships between these properties and separation performance and fouling characteristics were determined. At 10-75 kGy irradiation, there were no significant changes observed in the membrane surface roughness or polymer functional groups, however the contact angle decreased sharply from 92° to ca. 70° at irradiation levels as low as 10 kGy. When membranes were exposed to the surfactant-containing LLRW, the flux decreased more sharply for higher dosed irradiated membranes, while flux in virgin membranes increased during the filtration processes. The study highlights that fouling properties of membrane may be changed due to the changes of surface hydrophilicity at low dose irradiation, while other surface properties and retentions remain stable. Therefore, a membrane fouling test with real or simulated wastewater is recommended to fully evaluate the membrane irradiation resistance.

  1. Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration.

    PubMed

    Zhou, Kequan; Sun, Shi; Canning, Corene

    2012-12-01

    Corn protein was hydrolysed by three microbial proteases and further separated by sequential ultra-filtration to 12 hydrolysate fractions which were investigated for free radical scavenging capacity and chelating activity. The oxygen radical absorbance capacity (ORAC) of the hydrolysates varied significantly between 65.6 and 191.4μmoles Trolox equivalents (TE)/g dried weight with a small peptide fraction (NP-F3) produced by neutral protease (NP) possessing the highest antioxidant activity. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH()) scavenging activities of the hydrolysate fractions also varied significantly between 18.4 and 38.7μmoles TE/g. Two fractions (AP-F2 and AP-F3) produced by alkaline protease (AP) showed the strongest activity. However, no significant difference was detected on the chelating activity of the fractions. NP-F3, AP-F2, and AP-F3 were incorporated into ground beef to determine their effects on lipid oxidation during 15-day storage period. NP-F3 was the only fraction that inhibited lipid oxidation at both 250 and 500μg/g levels by as much as 52.9%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis.

    PubMed

    Miernyk, Ján A; Jett, Alissa A; Johnston, Mark L

    2016-01-01

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transferred to fresh medium at 7-day intervals. Cultures were harvested by filtration five days (early log phase) or eight days (late log phase) after transfer. In order to evaluate dynamic changes, both intracellular and extracellular proteins were analyzed by 2-dimensional difference gel electrophoresis. Selected spots were subjected to in-gel tryptic-digestion and the resultant peptides were analyzed by nLC-MS/MS. In follow-up studies gel-free shot-gun analyses led to identification of 367 intracellular proteins and 188 extracellular proteins. The significance of the described research is two-fold. First a gel-based proteomics method was applied to the study of the dynamics of the secretome (extracellular proteins). Second, results of a shot-gun non-gel based proteomic survey of both cellular and extracellular proteins are presented. Published by Elsevier B.V.

  3. Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator

    NASA Astrophysics Data System (ADS)

    Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.

    2018-02-01

    The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.

  4. Flux enhancement during ultrafiltration of produced water using turbulence promoter.

    PubMed

    Zhen, Xiang-hua; Yu, Shui-li; Wang, Bei-fu; Zheng, Hai-feng

    2006-01-01

    Concentration polarization and membrane fouling remain one of the major hurdles for the implementation of ultrafiltration of produced water. Although many applications for ultrafiltration were already suggested, only few were implemented on an industrial scale. Among those techniques, turbulence promoter can be more simple and effective in overcoming membrane fouling and enhancing membrane flux. As for the result that turbulence promoter increase fluid velocity, wall shear rates and produce secondary flows or instabilities, the influence of turbulence promoter was investigated on permeate flux during produced water ultrafiltration and the potential application of this arrangement for an industrial development. Experimental investigations were performed on 100 KDa molecular weight cut-off PVDF single-channel tubular membrane module using four kinds of turbulence promoters. It is observed that the significant flux enhancement in the range of 83%-164% was achieved while the hydraulic dissipated power per unit volume of permeate decreased from 31%-42%, which indicated that the using of turbulence promoter is more efficient than operation without the turbulence promoter. The effects of transmembrane pressure and cross-flow velocity with and without turbulence promoter were studied as well. Among the four kinds of turbulence promoters, winding inserts with 20.0 mm pitch and 1.0 mm wire diameter showed better performances than the others did.

  5. Experimental comparison of point-of-use filters for drinking water ultrafiltration.

    PubMed

    Totaro, M; Valentini, P; Casini, B; Miccoli, M; Costa, A L; Baggiani, A

    2017-06-01

    Waterborne pathogens such as Pseudomonas spp. and Legionella spp. may persist in hospital water networks despite chemical disinfection. Point-of-use filtration represents a physical control measure that can be applied in high-risk areas to contain the exposure to such pathogens. New technologies have enabled an extension of filters' lifetimes and have made available faucet hollow-fibre filters for water ultrafiltration. To compare point-of-use filters applied to cold water within their period of validity. Faucet hollow-fibre filters (filter A), shower hollow-fibre filters (filter B) and faucet membrane filters (filter C) were contaminated in two different sets of tests with standard bacterial strains (Pseudomonas aeruginosa DSM 939 and Brevundimonas diminuta ATCC 19146) and installed at points-of-use. Every day, from each faucet, 100 L of water was flushed. Before and after flushing, 250 mL of water was collected and analysed for microbiology. There was a high capacity of microbial retention from filter C; filter B released only low Brevundimonas spp. counts; filter A showed poor retention of both micro-organisms. Hollow-fibre filters did not show good micro-organism retention. All point-of-use filters require an appropriate maintenance of structural parameters to ensure their efficiency. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. [Investigation on the phenomena of bacteria exceeding standards in rural pit water treated by ultrafiltration membrane].

    PubMed

    Yue, Yinling; Zhang, Lan; Ling, Bo

    2011-11-01

    To investigate the phenomenon of bacteria exceeding standards in rural pit water, which was intermittently operated by water pump equipped with ultrafiltration membrane, and to explore the solutions. Polyvinyl chloride (PVC) alloy capillary membranes combined with UV, disinfectant, one-way valve, water-seal, high water level-water tank and direct outlet were tested. The operation on water treatment was intermittent, simulating the ways of treating pit water in the rural. The combination modes of ultrafiltration membrane with UV, disinfectant and high water level-water tank are valid in solving the problem of high turbidity and microorganism of pit water stored in cellars, the quality of effluents was consistent with the requirements of the national standards. While the combination modes of ultrafiltration membrane with one-way valve or water-seal were less desirable, more bacteria in treated water than raw water were observed because of bacteria breeding on the membrane component. In order to avoid excessive bacteria in filtered pit water caused by intermittent operation, it is recommended that for the pit water in high water level water tanks, the ultrafiltration membranes should be cleaned with disinfectants on a regular basis. The effluent pit water from underground cellars should be disinfected with UV after ultrafiltration.

  7. Metal Ion Interactions with Immunoglobulin G (IgG). 1. Preliminary Studies with Electron Paramagnetic Resonance (EPR) Spectroscopy and Ultrafiltration

    DTIC Science & Technology

    1978-12-12

    EPR and ultrafiltration studies are recommceided to conduct luture metal ion- IgG binding research. Using Scatchard plots, bind.ng levels can be...of the binding sites can be best pursued by EPR and ultrafiltration using the fragments of IgG . This report noted some difference in the binding...immunoelectrophoresis, ultrafiltration, UV spectroscopy, atomic absorption spectroscopy, and electron paramagnetic resonance (EPR). IgG used ,- ,is non

  8. [Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].

    PubMed

    Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan

    2004-09-02

    To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.

  9. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    NASA Astrophysics Data System (ADS)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is

  10. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  11. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  12. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  13. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  14. Laboratory and Pilot Scale Evaluation of Coagulation, Clarification, and Filtration for Upgrading Sewage Lagoon Effluents.

    DTIC Science & Technology

    1980-08-01

    AD-AGAB 906 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC FIG 14/2 LABORATORY AND PILOT SCALE EVALUATION OF COAGULATION, CLARIFICA -ETC U...FILTRATION FOR LWGRADING JEWAGE LAGOON EFFLUENTS~ w IL j0 ( M John ullinane, Jr., Richard A. hafer (0 Environmental Laboratory gel U. S. Army Engineer ...Shafer 9. PERFORMING ORGANIZATION NAME AND ADORESS SO. PROGRAM ELEMENT, PROJECT, TASK AREA a WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment

  15. Rennet-induced gelation of concentrated milk in the presence of sodium caseinate: differences between milk concentration using ultrafiltration and osmotic stressing.

    PubMed

    Krishnankutty Nair, P; Corredig, M

    2015-01-01

    Concentrating milk is a common unit operation in the dairy industry. With the reduction of water, the particles interact more frequently with each other and the functionality of the casein micelles may depend on the interactions occurring during concentration. The objective of this research was to investigate the effect of concentration on the renneting properties of the casein micelles by comparing 2 concentration methods: ultrafiltration and osmotic stressing. Both methods selectively concentrate the protein fraction of milk, while the composition of the soluble phase is unaltered. To evaluate possible differences in the rearrangements of the casein micelles during concentration, renneting properties were evaluated with or without the addition of soluble caseins, added either before or after concentration. The results indicate that casein micelles undergo rearrangements during concentration and that shear during membrane filtration may play a role in affecting the final properties of the milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Use of Ceramic Membranes in a Membrane Filtration Supported by Coagulation for the Treatment of Dairy Wastewater.

    PubMed

    Zielińska, Magdalena; Galik, Maciej

    2017-01-01

    A membrane filtration system was used to remove organic compounds, suspended solids, colour and turbidity from anaerobically treated dairy wastewater. Direct microfiltration (MF), ultrafiltration (UF), MF-UF and a combination of UF with coagulation using two conventional coagulants were investigated. The installation with ceramic membranes was operated at a pressure of 0.15 MPa (MF) and 0.3 MPa (UF). COD removal was 89 ± 2% in MF, 95 ± 1% in UF and 99% in MF-UF. Apart from size exclusion, removal was also the result of adsorption of organics on the membrane; 3-18% of COD removal was attributed to adsorption. In all these membrane systems, colour removal was 96-98%. Coagulation removed 63-72% of COD at all coagulant doses. In combination with UF, 96-97% of COD was removed. The use of coagulants was ineffective for colour removal; further treatment by UF resulted in above 98% removal. Because of complete rejection of suspended solids, turbidity removal exceeded 99% under all conditions. The use of increased coagulant doses did not have an effect on total efficiency of pollutant removal and on the permeate flux. Coagulation pre-treatment enhanced the performance of filtration only by lengthening the filtration cycle by about 12% as compared to direct UF. Not only was pollutant removal highest in MF-UF, but also the average permeate flux was about 80% higher in this two-stage system than in direct UF. This study shows that the most effective strategy to mitigate membrane fouling is the use of MF as a pre-treatment preceding UF.

  17. Research Regarding Membrane Filtration Capacity of Water Collected from Siret River

    NASA Astrophysics Data System (ADS)

    Mihalache, I.; Pintilie, Ş. C.; Bîrsan, I. G.; Dănăila, E.; Baltă, Ş.

    2018-06-01

    In the past decade, the high demand and strict legislations regarding pure and potable water production and quality require finding new treatment technologies with higher effectiveness. When compared with conventional treatment technologies, membrane technology is a viable option in water and wastewater treatment due to high performance, ease in implementation, cost-efficiency among other advantages, also, leading to a rapid expansion in use in almost all areas of industry. Polymeric ultrafiltration membranes have been successfully used in various industries since 1969, and in later years they were studied in the water purification sector, mainly as a pre-treatment step to reduce severe fouling that could occur in reverse osmosis filtration stage. Polysulfone (PSf) was the polymer of choice in this study with two concentrations, 25 wt.% and 30 wt.%. Surface SEM morphology, roughness and water affinity were analyzed for the studied membranes. Water from Siret river was used in the permeation tests in order to analyze the retention capacity and anti-fouling ability. The present study revealed higher retention for the 30 wt.% PSf membranes, from the physico-chemical and microbiological point-of-view and lower fouling, also.

  18. An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii

    PubMed Central

    2012-01-01

    The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation. PMID:22217315

  19. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    PubMed

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  20. Improvement on the freeze-thaw stability of corn starch gel by the polysaccharide from leaves of Corchorus olitorius L.

    PubMed

    Yamazaki, Eiji; Sago, Toru; Kasubuchi, Yoshiaki; Imamura, Kazuhito; Matsuoka, Toshio; Kurita, Osamu; Nambu, Hironobu; Matsumura, Yasuki

    2013-04-15

    Effect of the polysaccharide from leaves of Corchorus olitorius L. (PLC) on the freeze-thaw (FT) stability of corn starch gel was studied. PLC was incorporated into the starch gel at 0.7% and total solid was adjusted to 6.0%. The syneresis was measured by the centrifugal-filtration method and, as a result, addition of PLC reduced effectively the syneresis of the starch gel even after 5 FT cycles, which was less than one third that of the normal starch gel. The rheological changes of the starch/PLC gel during the FT treatments were evaluated while the gel remained on the rheometer plate. The starch/PLC gel had less significant changes in the rheological parameters during the FT cycles than starch/guar gum or xanthan gum gel systems. SEM images showed that PLC stabilized the gel matrix surrounding pores, which would contribute to both a lower syneresis production and a higher stability in the rheological behavior at FT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Making equipment to process paddy water for providing drinking water by using Ozone-UVC& Ultrafiltration

    NASA Astrophysics Data System (ADS)

    Styani, E.; Dja'var, N.; Irawan, C.; Hanafi

    2018-01-01

    This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.

  2. Networks that link cytoskeletal regulators and diaphragm proteins underpin filtration function in Drosophila nephrocytes.

    PubMed

    Muraleedharan, Simi; Sam, Aksah; Skaer, Helen; Inamdar, Maneesha S

    2018-03-15

    Insect nephrocytes provide a valuable model for kidney disease, as they are structurally and functionally homologous to mammalian kidney podocytes. They possess an exceptional macromolecular assembly, the nephrocyte diaphragm (ND), which serves as a filtration barrier and helps maintain tissue homeostasis by filtering out wastes and toxic products. However, the elements that maintain nephrocyte architecture and the ND are not understood. We show that Drosophila nephrocytes have a unique cytoplasmic cluster of F-actin, which is maintained by the microtubule cytoskeleton and Rho-GTPases. A balance of Rac1 and Cdc42 activity as well as proper microtubule organization and endoplasmic reticulum structure, are required to position the actin cluster. Further, ND proteins Sns and Duf also localize to this cluster and regulate organization of the actin and microtubule cytoskeleton. Perturbation of any of these inter-dependent components impairs nephrocyte ultrafiltration. Thus cytoskeletal components, Rho-GTPases and ND proteins work in concert to maintain the specialized nephrocyte architecture and function. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Further insight into the roles of the chemical composition of dissolved organic matter (DOM) on ultrafiltration membranes as revealed by multiple advanced DOM characterization tools.

    PubMed

    Ly, Quang Viet; Hur, Jin

    2018-06-01

    This study assessed the relative contributions of different constitutes in dissolved organic matter (DOM) with two different sources (i.e., urban river and effluent) to membrane fouling on three types of ultrafiltration (UF) membranes via excitation emission matrix - parallel factor analysis (EEM-PARAFAC), size exclusion chromatography (SEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Two polyethersulfone membranes with different pore sizes and one regenerated cellulose membrane were used as representative hydrophobic (HPO) and hydrophilic (HPI) UF membranes, respectively. Although size exclusion effect was found to be the most prevailing rejection mechanism, the behaviors of individual fluorescent components (one tryptophan-like, one microbial-humic-like, and terrestrial humic-like) and different size fractions upon the UF filtration revealed that chemical interactions (e.g., hydrophobic interactions and hydrogen bonding) between DOM and membrane might play important roles in UF membrane fouling, especially for small sized DOM molecules. Based on the molecular level composition determined by FT-ICR-MS, the CHOS formula group showed a greater removal tendency toward the HPO membrane, while the CHONS group was prone to be removed by the HPI membrane. The changes in the overall molecular composition of DOM upon UF filtration were highly dependent on the sources of DOM. The molecules of more acidic nature tended to remain in the permeate of effluent DOM, while the river DOM was shifted into more nitrogen-enriched composition after filtration. Regardless of the DOM sources, the HPO membrane with a smaller pore size led to the most pronounced changes in the molecular composition of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends

    PubMed Central

    Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong

    2015-01-01

    The objective of this study was to develop yogurt-cheese using cow’s milk, ultrafiltrated cow’s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow’s milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow’s milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow’s milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food. PMID:26761829

  5. A tetrodotoxin-binding protein in the hemolymph of shore crab Hemigrapsus sanguineus: purification and properties.

    PubMed

    Nagashima, Yuji; Yamamoto, Kazuhiko; Shimakura, Kuniyoshi; Shiomi, Kazuo

    2002-06-01

    The shore crab Hemigrapsus sanguineus hemolymph contains soluble proteins that bind tetrodotoxin (TTX) and are responsible for high resistance of the crab to TTX. The TTX-binding protein was purified from the hemolymph by ultrafiltration, lectin affinity chromatography and gel filtration HPLC. The purified protein gave only one band in native-polyacrylamide gel electrophoresis (PAGE), confirming its homogeneity. Its molecular weight was estimated to be about 400k by gel filtration HPLC, while it was estimated to be about 82k under non-reducing conditions and about 72 and 82k under reducing conditions by SDS-PAGE, indicating that the TTX-binding protein was composed of at least two distinct subunits. The TTX-binding protein was an acidic glycoprotein with pI 3.5, abundant in Asp and Glu but absent in Trp, and contained 6% reducing sugar and 12% amino sugar. The protein selectively bound to TTX, with a neutralizing ability of 6.7 mouse unit TTX/mg protein, but not to paralytic shellfish poisoning toxins. However, its neutralizing activity was almost lost by treatments with enzymes (protease XIV, thermolysin, trypsin, amyloglucosidase and alpha-amylase) and denaturing agents (1% SDS, 1% dithiothreitol, 8 M urea and 6 M guanidine hydrochloride), suggesting the involvement of both proteinaceous and sugar moieties in the binding to TTX and the importance of the steric conformation of the TTX-binding protein. Copright 2002 Elsevier Science Ltd.

  6. [Effect of mitomycin C dissolved in a reversible thermosetting gel on outcome of filtering surgery in the rabbit].

    PubMed

    Ichien, K; Sawada, A; Yamamoto, T; Kitazawa, Y; Shiraki, R; Yoh, M

    1999-04-01

    Based on our previous report that showed enhanced transfer of mitomycin C to the sclera and the conjunctiva by dissolving the antiproliferative in a reversible thermo-setting gel, we conducted a study to investigate the efficacy of the mitomycin C-gel in the rabbit. We subconjunctivally injected 0.1 ml of the mitomycin C-gel solution containing several amounts of the drug. Trephination was performed in the injected region 24 hours later. Intraocular pressure measurement, and photography and ultrasound biomicroscopic examination of the filtering bleb were done 1, 2, and 4 weeks postoperatively. The gel containing 3.0 micrograms or more mitomycin C significantly enhanced bleb formation in addition to reducing the intraocular pressure. The reversible thermo-setting gel seems to facilitate filtration following glaucoma filtering surgery in the rabbit and deserves further investigation as a new method of mitomycin C application.

  7. Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system.

    PubMed

    Wilding, Andrew; Liu, Ruixia; Zhou, John L

    2005-07-01

    Through cross-flow filtration (CFF) with a 1-kDa regenerated cellulose Pellicon 2 module, the ultrafiltration characteristics of river organic matter from Longford Stream, UK, were investigated. The concentration of organic carbon (OC) in the retentate in the Longford Stream samples increased substantially with the concentration factor (cf), reaching approximately 40 mg/L at cf 15. The results of dissolved organic carbon (DOC) and colloidal organic carbon (COC) analysis, tracking the isolation of colloids from river waters, show that 2 mg/L of COC was present in those samples and good OC mass balance (77-101%) was achieved. Fluorescence measurements were carried out for the investigation of retentate and permeate behaviour of coloured dissolved organic materials (CDOM). The concentrations of CDOM in both the retentate and permeate increased with increasing cf, although CDOM were significantly more concentrated in the retentate. The permeation model expressing the correlation between log[CDOM] in the permeate and logcf was able to describe the permeation behaviour of CDOM in the river water with regression coefficients (r(2)) of 0.94 and 0.98. Dry weight analysis indicated that the levels of organic colloidal particles were from 49 to 71%, and between 29 and 51% of colloidal particles present were inorganic. COC as a percentage of DOC was found to be 10-16% for Longford Stream samples.

  8. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment.

    PubMed

    Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai

    2018-06-02

    This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.

  9. Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system.

    PubMed

    Sheng, Chenguang; Nnanna, A G Agwu; Liu, Yanghe; Vargo, John D

    2016-04-15

    In this study, the efficacy of water treatment technologies: ultra-filtration (UF), powdered activated carbon (PAC), coagulation (COA) and a combination of these technologies (PAC/UF and COA/UF) to remove target pharmaceuticals (Acetaminophen, Bezafibrate, Caffeine, Carbamazepine, Cotinine, Diclofenac, Gemfibrozil, Ibuprofen, Metoprolol, Naproxen, Sulfadimethoxine, Sulfamethazine, Sulfamethoxazole, Sulfathiazole, Triclosan and Trimethoprim) was investigated. Samples of wastewater from municipal WWTPs were analyzed using direct aqueous injection High Performance Liquid Chromatography with Tandem Quadrupole Mass Spectrometric (LC/MS/MS) detection. On concentration basis, results showed an average removal efficiency of 29%, 50%, and 7%, respectively, for the UF, PAC dosage of 50ppm, and COA dosage of 10ppm. When PAC dosage of 100ppm was used as pretreatment to the combined PAC and UF in-line membrane system, a 90.3% removal efficiency was achieved. The removal efficiency of UF in tandem with COA was 33%, an increase of 4% compared with the single UF treatment. The adsorption effect of PAC combined with the physical separation process of UF revealed the best treatment strategy for removing pharmaceutical contaminant from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery.

    PubMed

    Han, Qian; Wang, Yuqi; Li, Xiabin; Peng, Ribo; Li, Ailing; Qian, Zhiyong; Yu, Ling

    2015-08-01

    PEG-PCL-PEG (PECE) hydrogel for intracameral injection as a sustained delivery system can get a stable release of the medication and achieve an effective local concentration. The injectable PECE hydrogel is thermosensitive nano-material which is flowing sol at low temperature and can shift to nonflowing gel at body temperature. This study evaluated the intracameral injection of bevacizumab combined with a PECE hydrogel drug release system on postoperative scarring and bleb survival after experimental glaucoma filtration surgery. The best result was achieved in the bevacizumab loaded PECE hydrogels group, which presented the lowest IOP values after surgery. And the blebs were significantly more persistent in this group. Histology, Massion trichrome staining and immunohistochemistry further demonstrated that glaucoma filtration surgery in combination with bevacizumab loaded PECE hydrogel resulted in good bleb survival due to scar formation inhibition. In conclusions, this study demonstrated that bevacizumab-loaded PECE hydrogel for intracameral injection as a sustained delivery system provide a great opportunity to increase the therapeutic efficacy of glaucoma filtration surgery.

  11. [Ultrafiltration versus intravenous diuretics in decompensated heart failure: a meta-analysis of randomized controlled trials].

    PubMed

    Zhao, Yu-liang; Zhang, Ling; Yang, Ying-ying; Tang, Yi; Liu, Fang; Fu, Ping

    2013-08-13

    To explore whether ultrafiltration is superior to intravenous diuretics in ameliorating fluid overload and preserving renal functions in decompensated heart failure patients. By searching in Pubmed, Cochrane Library, Embase, Springer, WanFang, CQVIP, CNKI and CBM database as well as related Chinese journals, qualified randomized controlled trials (RCTs) were included for meta-analysis by Revman 5.0 and STATA 10.0. Six RCTs were included with 241 patients in ultrafiltration group and 240 patients in intravenous diuretics group. Pooled analyses demonstrated ultrafiltration was superior to intravenous diuretics in the aspects of weight loss (WMD = 1.44 kg, 95%CI:0.33-2.55 kg, P = 0.01) and fluid removal (WMD = 1.23 kg, 95%CI:0.63-1.82 kg, P < 0.01) while no significant difference was observed in serum creatinine level (WMD = -5.70 µmol/L, 95%CI: -35.02-23.61 µmol/L, P = 0.70), serum creatinine change from baseline (WMD = 4.74 µmol/L, 95%CI:-13.72-23.20 µmol/L, P = 0.61), mortality (RR = 1.09, 95%CI: 0.69-1.70, P = 0.72) or rehospitalization (RR = 0.92, 95%CI:0.53-1.61, P = 0.78). For decompensated heart failure patients, ultrafiltration is superior to intravenous diuretics in mitigating fluid overload. No intergroup difference was observed in renal function preservation, mortality or rehospitalization.

  12. Effect of electrostatic interactions on the ultrafiltration behavior of charged bacterial capsular polysaccharides.

    PubMed

    Hadidi, Mahsa; Buckley, John J; Zydney, Andrew L

    2016-11-01

    Charged polysaccharides are used in the food industry, as cosmetics, and as vaccines. The viscosity, thermodynamics, and hydrodynamic properties of these charged polysaccharides are known to be strongly dependent on the solution ionic strength because of both inter- and intramolecular electrostatic interactions. The goal of this work was to quantitatively describe the effect of these electrostatic interactions on the ultrafiltration behavior of several charged capsular polysaccharides obtained from Streptococcus pneumoniae and used in the production of Pneumococcus vaccines. Ultrafiltration data were obtained using various Biomax™ polyethersulfone membranes with different nominal molecular weight cutoffs. Polysaccharide transmission decreased with decreasing ionic strength primarily because of the expansion of the charged polysaccharide associated with intramolecular electrostatic repulsion. Data were in good agreement with a simple theoretical model based on solute partitioning in porous membranes, with the effective size of the different polysaccharide serotypes evaluated using size exclusion chromatography at the same ionic conditions. These results provide fundamental insights and practical guidelines for exploiting the effects of electrostatic interactions during the ultrafiltration of charged polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1531-1538, 2016. © 2016 American Institute of Chemical Engineers.

  13. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    NASA Astrophysics Data System (ADS)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  14. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    PubMed

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  15. Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer.

    PubMed

    Zheng, Xiaoyang; Baker, Haven; Hancock, William S

    2006-07-07

    Advances in proteomics are continuing to expand the ability to analyze the serum proteome. In recent years, it has been realized that in addition to the circulating proteins, human serum also contains a large number of peptides. Many of these peptides are believed to be fragments of larger proteins that have been at least partially degraded by various enzymes such as metalloproteases. Identifying these peptides from a small amount of serum/plasma is difficult due to the complexity of the sample, the low levels of these peptides, and the difficulties in getting a protein identification from a single peptide. In this study, we modified previously published protocols for using centrifugal ultrafiltration, and unlike past studies did not digest the filtrate with trypsin with the intent of identifying endogenous peptides with this method. The filtrate fraction was concentrated and analyzed by a reversed phase-high performance liquid chromatography system connected to a nanospray ionization hybrid ion trap-Fourier transform mass spectrometer (LTQ-FTMS). The mass accuracy of this instrument allows confidence for identifying the protein precursors by a single peptide. The utility of this approach was demonstrated by the identification of over 300 unique peptides with 2 ppm or better mass accuracy per serum sample. With confident identifications, the origin and function of native serum peptides can be more seriously explored. Interestingly, over 34 peptide ladders were observed from over 17 serum proteins. This indicates that a cascade of proteolytic processes affects the serum peptidome. To examine whether this result was an artifact of serum, matched plasma and serum samples were analyzed with similar peptide ladders found in each.

  16. Structure and Activity of a New Low Molecular Weight Heparin Produced by Enzymatic Ultrafiltration

    PubMed Central

    FU, LI; ZHANG, FUMING; LI, GUOYUN; ONISHI, AKIHIRO; BHASKAR, UJJWAL; SUN, PEILONG; LINHARDT, ROBERT J.

    2014-01-01

    The standard process for preparing the low molecular weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield due to the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin’s core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. PMID:24634007

  17. Application of ultrafiltration in the pulp and paper industry: metals removal and whitewater reuse.

    PubMed

    Oliveira, C R; Silva, C M; Milanez, A F

    2007-01-01

    In the pulp and paper industry, the water use minimization is a constant target. One way to reduce water use is to recycle the effluent in a closed-cycle concept. In paper mills, the main source of liquid effluent is the so-called whitewater, which is the excess water, originated from pulp stock dewatering and other fibre contaminated water. This research studied the reuse of paper mill whitewater after membrane ultrafiltration (UF) in the paper machine and in the pulp bleach plant of an integrated mill. Contaminant removal and flux behaviour of the UF system were evaluated. The treatment by ultrafiltration was technically feasible and the treated whitewater had good potential to be reused in some processes in the paper machine. The reuse of ultrafiltered whitewater in the bleaching plant was not recommended because of the high level of soluble calcium present in this stream. Therefore, a combined treatment of the whitewater using the principle of precipitation and ultrafiltration was proposed showing good results and enabling the use of the treated whitewater in the bleach plant.

  18. Screening a fragment cocktail library using ultrafiltration

    PubMed Central

    Shibata, Sayaka; Zhang, Zhongsheng; Korotkov, Konstantin V.; Delarosa, Jaclyn; Napuli, Alberto; Kelley, Angela M.; Mueller, Natasha; Ross, Jennifer; Zucker, Frank H.; Buckner, Frederick S.; Merritt, Ethan A.; Verlinde, Christophe L. M. J.; Van Voorhis, Wesley C.; Hol, Wim G. J.; Fan, Erkang

    2011-01-01

    Ultrafiltration provides a generic method to discover ligands for protein drug targets with millimolar to micromolar Kd, the typical range of fragment-based drug discovery. This method was tailored to a 96-well format, and cocktails of fragment-sized molecules, with molecular masses between 150 and 300 Da, were screened against medical structural genomics target proteins. The validity of the method was confirmed through competitive binding assays in the presence of ligands known to bind the target proteins. PMID:21750879

  19. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    DOEpatents

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  20. [Molecular cloning and expression of Nattokinase gene in Bacillus subtilis].

    PubMed

    Liu, B Y; Song, H Y

    2002-05-01

    In order to characterize biochemically the nattokinase,the nucleotide sequence of the nattokinase gene was amplified from the chromosomal DNA of B.subtilis (natto) by PCR. The expression plasmid pBL NK was constructed and was used to transform Bacillus subtilis containing a chromosomal deletion in its subtilisin gene. The supernatant of the culture was collected after 15 h culture. The target proteins were identified by SDS-PAGE. Nattokinase was purified by a method including ultrafiltration, Sephacryl S-100 gel filtration and S-Sepharose ion-exchange chromatography, and 100 mg of purified nattokinase was obtained from one liter of culture. The purity of the protein and the specific activity were 95% and 12 000 u/mg (compared to tPA), respectively.

  1. Ultrafiltrate and microdialysis DL probe in vitro recoveries: electrolytes and metabolites

    NASA Technical Reports Server (NTRS)

    Janle, E. M.; Cregor, M.

    1996-01-01

    UF ultrafiltration and DL microdialysis probes are well-suited for sampling interstitial concentrations of ions and metabolites in peripheral tissue. The first step in utilization of membrane sampling techniques is to determine the recovery characteristics of the probes in vitro.

  2. Marine microalgae Nannochloropsis oculata biomass harvesting using ultrafiltration in cross-flow mode

    NASA Astrophysics Data System (ADS)

    Devianto, L. A.; Aprilia, D. N.; Indriani, D. W.; Sukarni, S.; Sumarlan, S. H.; Wibisono, Y.

    2018-03-01

    Microalgae is a potential bioenergy source. It can grows rapidly, even it could be harvested within 7 days. Harvesting is an important part of microalgae cultivation due to the method used. It should be undamaging toward essential content of microalgae and should produces high yields of biomass. In this study, the harvesting of Nannochloropsis oculata was carried out using capillary ultrafiltration in cross flow mode. This study aims to test ultrafiltration membrane performance in Nannochloropsis oculata harvesting accompanied by Backwash and Non-Backwash modes and to analyse its total lipid content. The harvest was done under 1; 1.5; and 2 bar of trans membrane pressure. Some observed parameters were permeate flux, cell density, biomass recovery, microalgae’s dry weight, yield, and total lipid content. The application of high pressure and backwashed treatment have boosted slurry production time which lead to microalgae’s biomass abundance. The result showed that the best treatment of Nannochloropsis oculata harvesting using capillary ultrafiltration membrane in cross flow mode is under 2 bar of pressure with backwashed treatment. This is the fastest condition to produce slurry within 1800 s with the highest recovery percentage 79.50%, 16.05 × 106 cell/ml of post-treatment cell density, 6.8 grams of biomass’ dry weight, 22.66 % of yield, and 2.52 % of total lipid content.

  3. Nutrient recovery from the dry grind process using sequential micro and ultrafiltration of thin stillage.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2010-06-01

    The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1microm pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45L/m(2)/h (LMH), fat increased and ash content decreased. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Permeate flux profiles were evaluated for regenerated cellulose membranes (YM1, YM10 and YM100) with molecular weight cut offs of 1, 10 and 100kDa. UF increased total solids, protein and fat and decreased ash in retentate stream. When permeate streams from MF were subjected to UF, retentate total solids concentrations similar to those of commercial syrup (23-28.8%) were obtained. YM100 had the highest percent permeate flux decline (70% of initial flux) followed by YM10 and YM1 membranes. Sequential filtration improved permeate flux rates of the YM100 membrane (32.6-73.4LMH) but the percent decline was also highest in a sequential MF+YM100 system. Protein recovery was the highest in YM1 retentate. Removal of solids, protein and fat from thin stillage may generate a permeate stream that may improve water removal efficiency and increase water recycling. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  5. Uranium aqueous speciation in the vicinity of the former uranium mining sites using the diffusive gradients in thin films and ultrafiltration techniques.

    PubMed

    Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Elskens, Marc; Phrommavanh, Vannapha; Descostes, Michael

    2016-03-24

    The performance of the Diffusive Gradients in Thin films (DGT) technique with Chelex(®)-100, Metsorb™ and Diphonix(®) as binding phases was evaluated in the vicinity of the former uranium mining sites of Chardon and L'Ecarpière (Loire-Atlantique department in western France). This is the first time that the DGT technique with three different binding agents was employed for the aqueous U determination in the context of uranium mining environments. The fractionation and speciation of uranium were investigated using a multi-methodological approach using filtration (0.45 μm, 0.2 μm), ultrafiltration (500 kDa, 100 kDa and 10 kDa) coupled to geochemical speciation modelling (PhreeQC) and the DGT technique. The ultrafiltration data showed that at each sampling point uranium was present mostly in the 10 kDa truly dissolved fraction and the geochemical modelling speciation calculations indicated that U speciation was markedly predominated by CaUO2(CO3)3(2-). In natural waters, no significant difference was observed in terms of U uptake between Chelex(®)-100 and Metsorb™, while similar or inferior U uptake was observed on Diphonix(®) resin. In turn, at mining influenced sampling spots, the U accumulation on DGT-Diphonix(®) was higher than on DGT-Chelex(®)-100 and DGT-Metsorb™, probably because their performance was disturbed by the extreme composition of the mining waters. The use of Diphonix(®) resin leads to a significant advance in the application and development of the DGT technique for determination of U in mining influenced environments. This investigation demonstrated that such multi-technique approach provides a better picture of U speciation and enables to assess more accurately the potentially bioavailable U pool. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Residual blood processing by centrifugation, cell salvage or ultrafiltration in cardiac surgery: effects on clinical hemostatic and ex-vivo rheological parameters.

    PubMed

    Vonk, Alexander B; Muntajit, Warayouth; Bhagirath, Pranav; van Barneveld, Laurentius J; Romijn, Johannes W; de Vroege, Roel; Boer, Christa

    2012-10-01

    The study compared the effects of three blood concentration techniques after cardiopulmonary bypass on clinical hemostatic and ex-vivo rheological parameters. Residual blood of patients undergoing elective cardiac surgery was processed by centrifugation, cell salvage or ultrafiltration, and retransfused (n = 17 per group). Study parameters included blood loss, (free) hemoglobin, hematocrit, fibrinogen and erythrocyte aggregation, deformability and 2,3-diphosphoglycerate content. Patient characteristics were similar between groups. Ultrafiltration was associated with the highest weight of the transfusion bag [649 ± 261 vs. 320 ± 134 g (centrifugation) and 391 ± 158 g (cell salvage); P < 0.01]. Cell salvage resulted in the lowest hemolysis levels in the transfusion bag. Retransfusion of cell saver blood induced the largest gain in postoperative patient hemoglobin levels when compared to centrifugation and ultrafiltration, and was associated with the largest increase in 2,3-diphosphoglycerate when compared to ultrafiltration (Δ2,3-diphosphoglycerate 1.34 ± 1.92 vs. -0.77 ± 1.56 mmol/l; P = 0.03). Cell salvage is superior with respect to postoperative hemoglobin gain and washout of free hemoglobin when compared to centrifugation or ultrafiltration.

  7. Evaluation of biochar-ultrafiltration membrane processes for humic acid removal under various hydrodynamic, pH, ionic strength, and pressure conditions.

    PubMed

    Shankar, Vaibhavi; Heo, Jiyong; Al-Hamadani, Yasir A J; Park, Chang Min; Chu, Kyoung Hoon; Yoon, Yeomin

    2017-07-15

    The performance of an ultrafiltration (UF)-biochar process was evaluated in comparison with a UF membrane process for the removal of humic acid (HA). Bench-scale UF experiments were conducted to study the rejection and flux trends under various hydrodynamic, pH, ionic strength, and pressure conditions. The resistance-in-series model was used to evaluate the processes and it showed that unlike stirred conditions, where low fouling resistance was observed (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ), higher values and comparable trends were obtained for UF-biochar and UF alone for unstirred conditions (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ). Thus, the processes were further evaluated under unstirred conditions. Additionally, total fouling resistance was decreased in the presence of biochar by 6%, indicating that HA adsorption by biochar could diminish adsorption fouling on the UF membrane and thus improve the efficiency of the UF-biochar process. The rejection trends of UF-biochar and UF alone were similar in most cases, whereas UF-biochar showed a noticeable increase in flux of around 18-25% under various experimental conditions due to reduced membrane fouling. Three-cycle filtration tests further demonstrated that UF-biochar showed better membrane recovery and antifouling capability by showing more HA rejection (3-5%) than UF membrane alone with each subsequent cycle of filtration. As a result of these findings, the UF-biochar process may potentially prove be a viable treatment option for the removal of HA from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a microporous poly(vinylidene fluoride) membrane with a hydrophilic surface modifier consisting of... washing with a minimum of 8 gallons of potable water prior to their first use in contact with food. (g...

  9. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a microporous poly(vinylidene fluoride) membrane with a hydrophilic surface modifier consisting of... washing with a minimum of 8 gallons of potable water prior to their first use in contact with food. (g...

  10. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a microporous poly(vinylidene fluoride) membrane with a hydrophilic surface modifier consisting of... washing with a minimum of 8 gallons of potable water prior to their first use in contact with food. (g...

  11. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of a sintered carbon support that is coated with zirconium oxide (CAS Reg. No. 1314-23-4) containing... of an aluminum oxide support that is coated with zirconium oxide (CAS Reg. No. 1314-23-4) containing...

  12. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.

    PubMed

    Fu, Li; Zhang, Fuming; Li, Guoyun; Onishi, Akihiro; Bhaskar, Ujjwal; Sun, Peilong; Linhardt, Robert J

    2014-05-01

    The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-06-01

    Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.

  14. Quantification of Internal Filtration in Hollow Fiber Hemodialyzers with Medium Cut-Off Membrane.

    PubMed

    Lorenzin, Anna; Neri, Mauro; Lupi, Andrea; Todesco, Martina; Santimaria, Monica; Alghisi, Alberta; Brendolan, Alessandra; Ronco, Claudio

    2018-06-08

    Inadequate removal of molecules between 5 and 50 KDa may cause long-term complication in chronic hemodialysis. Medium cut-off (MCO) is a new class of membranes with enhanced sieving properties and negligible albumin loss. MCO membrane makes it possible to perform expanded hemodialysis (HDx), a technique based on high internal filtration (IF).The present study is designed to quantify IF in 2 MCO dialyzers (Theranova 400 and 500, Baxter, Deerfield, USA) using a nuclear imaging technique previously validated. Blood and dialysate compartment pressure drop along with transmembrane pressure; they were measured in a closed in vitro circuit with human blood (blood flow [QB] = 300 and 400 mL/min; dialysate flow 500 mL/min; net ultrafiltration rate 0 mL/min). A non-diffusible marker molecule (albumin macro-aggregates labeled with 99Tc metastable) was injected in the blood compartment and nuclear emission was recorded by a gamma camera. Relative variations in the concentration of the marker molecule along the length of the filter were used to calculate local cross filtration. Based on marker concentration profiles, IF was estimated. For Theranova 400, IF were 29.7 and 41.6 mL/min for QB of 300 and 400 mL/min. For Theranova 500, IF were 31.6 and 53.1 mL/min for QB of 300 and 400 mL/min respectively. MCO membrane provides significant amounts of IF due to the particular combination between hydraulic permeability of the membrane and reduced inner diameter of the fibers. High IF combined with enhanced sieving profile of MCO membrane leads to improved removal of a wider spectrum of uremia retention molecules in HDx, without requiring complex equipment. © 2018 S. Karger AG, Basel.

  15. Plasma ultrafiltrates from Fanconi Anemia patients induces chromosomal breakages in donor lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerit, I.; Levy, A.; Pagano, G.

    1994-09-01

    The present study investigated the occurrence, if any, of transferable clastogenic activity in the plasma from Fanconi Anemia (FA) patients and their families. A total of 13 FA homozygotes, 25 parents, and 12 siblings were studied for their: (a) spontaneous and DEB-induced chromosomal instability, and (b) induction of chromosomal breaks in peripheral blood lymphocytes (PBL) from healthy donors, following exposure to plasma ultrafiltrates from FA subjects, their parents or siblings. Plasma was ultrafiltered through membranes with a cutoff at 10,000 daltons (YM 10 Amicon) and 0.25 ml-aliquote added to PBL from 14 healthy donors. DEB test provided FA confirmatory diagnosis.more » The occurrence of clastogenic factors (CF) was evident in all FA patients, except for one. In two out of three patients, who died during this study, very high CF levels were observed. Clastogenic activity was significantly higher in male than in female patients (p<0.05). No correlation was observed between CF data and spontaneous or DEB-induced chromosomal instability. Ultrafiltrates from parents and siblings showed less CF than FA homozygotes; however, concentration by ultrafiltration through YM 2 (3x to 5x) led to excess clastogenic activity. The control plasmas were lacking CF even after an 8x concentration. The present data suggest that CF formation in the plasma of FA patients is consistent with an in vivo prooxident state in FA.« less

  16. Water Filtration Products

    NASA Technical Reports Server (NTRS)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  17. Evaluation of Isolated Fractions of Aloe vera Gel Materials on Indinavir Pharmacokinetics: In vitro and in vivo Studies.

    PubMed

    Wallis, Lonette; Malan, Maides; Gouws, Chrisna; Steyn, Dewald; Ellis, Suria; Abay, Efrem; Wiesner, Lubbe; Otto, Daniel P; Hamman, Josias

    2016-01-01

    Aloe vera is a plant with a long history of traditional medicinal use and is consumed in different products, sometimes in conjunction with prescribed medicines. A. vera gel has shown the ability to modulate drug absorption in vitro. The aim of this study was to fractionate the precipitated polysaccharide component of A. vera gel based on molecular weight and to compare their interactions with indinavir pharmacokinetics. Crude polysaccharides were precipitated from a solution of A. vera gel and was fractionated by means of centrifugal filtration through membranes with different molecular weight cut-off values (i.e. 300 KDa, 100 KDa and 30 KDa). Marker molecules were quantified in the aloe leaf materials by means of nuclear magnetic resonance spectroscopy and the average molecular weight was determined by means of gel filtration chromatography linked to multi-angle-laser-light scattering and refractive index detection. The effect of the aloe leaf materials on the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers as well as indinavir metabolism in LS180 cells was measured. The bioavailability of indinavir in the presence and absence of the aloe leaf materials was determined in Sprague-Dawley rats. All the aloe leaf materials investigated in this study reduced the TEER of Caco-2 cell monolayers, inhibited indinavir metabolism in LS 180 cells to different extents and changed the bioavailability parameters of indinavir in rats compared to that of indinavir alone. These indinavir pharmacokinetic modulation effects were not dependent on the presence of aloverose and also not on the average molecular weight of the isolated fractions.

  18. Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes.

    PubMed

    Oliva, Jose; Payá, Paula; Cámara, Miguel Angel; Barba, Alberto

    2007-01-01

    The effects of six clarification agents [egg albumin, blood albumin, bentonite + gelatine, charcoal, polyvinylpolypyrrolidine (PVPP) and silica gel] on the removal of residues of three fungicides (famoxadone, fluquinconazole and trifloxystrobin) applied directly to a racked red wine, elaborated from Monastrell variety grapes from the D.O. Region of Jumilla (Murcia, Spain) were studied. The clarified wines were filtered with 0.45 microm nylon filters to determine the influence of this winemaking process in the disappearance of fungicide residues. Analytical determination of fluquinconazole and trifloxystrobin was performed by gas chromatography with electron captor detector (ECD), while that of famoxadone using an HPLC equipped with a diode array detector (DAD). Generally, trifloxystrobin is the fungicide that is the lowest persistent one in wines, except in the egg albumin study whereas, the most persistent one is fluquinconazole. The elimination depends on the nature of the active ingredient, though the water stability in the presence of light within it has more influence than the solubility and polarity of the product itself. The most effective clarifying agents were the charcoal and PVPP. The silica gel and bentonite plus gelatine were not enough to reduce considerably the residual contents in the wine clarified with them. In general terms, filtration is not an effective step in the elimination of wine residues. The greatest removal after filtration is obtained in wines clarified with egg albumine and bentonite plus gelatine, and the lowest in those clarified with PVPP.

  19. WATER FILTRATION AT DULUTH

    EPA Science Inventory

    After partial completion of the Lakewood Filtration Plant at Duluth, studies were begun with funding provided by the demonstration grant. Research covered a variety of topics and was done with a 10 gpm pilot plant located at the filtration plant, with the full scale plant operati...

  20. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    PubMed

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  1. Class and Home Problems. The Lambert W Function in Ultrafiltration and Diafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2016-01-01

    Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.

  2. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  3. Laboratory Tests on Post-Filtration Precipitation in the WTP Pretreatment Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan (Barnes et al. 2006). The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, andmore » slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF).« less

  4. Comparison of 2 ultrafiltration systems for the concentration of seeded viruses from environmental waters.

    PubMed

    Olszewski, John; Winona, Linda; Oshima, Kevin H

    2005-04-01

    The use of ultrafiltration as a concentration method to recover viruses from environmental waters was investigated. Two ultrafiltration systems (hollow fiber and tangential flow) in a large- (100 L) and small-scale (2 L) configuration were able to recover greater than 50% of multiple viruses (bacteriophage PP7 and T1 and poliovirus type 2) from varying water turbidities (10-157 nephelometric turbidity units (NTU)) simultaneously. Mean recoveries (n = 3) in ground and surface water by the large-scale hollow fiber ultrafiltration system (100 L) were comparable to recoveries observed in the small-scale system (2 L). Recovery of seeded viruses in highly turbid waters from small-scale tangential flow (2 L) (screen and open channel) and hollow fiber ultrafilters (2 L) (small pilot) were greater than 70%. Clogging occurred in the hollow fiber pencil module and when particulate concentrations exceeded 1.6 g/L and 5.5 g/L (dry mass) in the screen and open channel filters, respectively. The small pilot module was able to filter all concentrates without clogging. The small pilot hollow fiber ultrafilter was used to test recovery of seeded viruses from surface waters from different geographical regions in 10-L volumes. Recoveries >70% were observed from all locations.

  5. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation.

    PubMed

    Liu, Yang; Huang, Haitao; Huo, Pengfei; Gu, Jiyou

    2017-06-01

    This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling.

    PubMed

    Liu, Guicai; Yu, Shuili; Yang, Haijun; Hu, Jun; Zhang, Yi; He, Bo; Li, Lei; Liu, Zhiyuan

    2016-02-02

    Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.

  7. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices

    EPA Pesticide Factsheets

    The data to support the evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matricesThis dataset is associated with the following publication:Rhodes , E., E. Huff, D. Hamilton, and J. Jones. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices. JOURNAL OF VIROLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 228(2): 31-38, (2016).

  8. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation.

    PubMed

    Wang, Hui; Park, Minkyu; Liang, Heng; Wu, Shimin; Lopez, Israel J; Ji, Weikang; Li, Guibai; Snyder, Shane A

    2017-11-15

    Wastewater reclamation has increasingly become popular to secure potable water supply. Low-pressure membrane processes such as microfiltration (MF) and ultrafiltration (UF) play imperative roles as a barrier of macromolecules for such purpose, but are often limited by membrane fouling. Effluent organic matter (EfOM), including biopolymers and particulates, in secondary wastewater effluents have been known to be major foulants in low-pressure membrane processes. Hence, the primary aim of this study was to investigate the effects of pre-ozonation as a pre-treatment for UF on the membrane fouling caused by EfOM in secondary wastewater effluents for hydrophilic regenerated cellulose (RC) and hydrophobic polyethersulfone (PES) UF membranes. It was found that greater fouling reduction was achieved by pre-ozonation for the hydrophilic RC membrane than the hydrophobic PES membrane at increasing ozone doses. In addition, the physicochemical property changes of EfOM, including biopolymer fractions, by pre-ozonation were systemically investigated. The classical pore blocking model and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories were employed to scrutinize the fouling alleviation mechanism by pre-ozonation. As a result, the overarching mechanisms of fouling reduction were attributed to the following key reasons: (1) Ozone degraded macromolecules such as biopolymers like proteins and polysaccharides into smaller fractions, thereby increasing free energy of cohesion of EfOM and rendering them more hydrophilic and stable; (2) pre-ozonation augmented the interfacial free energy of adhesion between foulants and the RC/PES membranes, leading to the increase of repulsions and/or the decrease of attractions; and (3) pre-ozonation prolonged the transition from pore blocking to cake filtration that was a dominant fouling mechanism, thereby reducing fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Comparison of essential oil enriched with ultrafiltration method and extraction method respectively from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by GC-MS].

    PubMed

    Yin, Ailing; Han, Zhifeng; Shen, Jie; Guo, Liwei; Cao, Guiping

    2011-10-01

    To study on the separation from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by ultrafiltration and acetoacetate extraction methods respectively, and the comparison of the oil yields and chemical compositions. Essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride was separated by ultrafiltration and acetoacetate extraction methods respectively, and the chemical compositions were analyzed and compared by GC-MS. Ultrafiltration method could enrich essential oil more and its chemical compositions were more similar to the essential oil prepared by steam distillation method. Ultrafiltration method is a good medium to separate essential oil from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride.

  10. Health benefits of particle filtration.

    PubMed

    Fisk, W J

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. Published 2013. This article is a US Government work and is in the public domain in the USA.

  11. Pig manure treatment by filtration.

    PubMed

    Kowalski, Zygmunt; Makara, Agnieszka; Matýsek, Dalibor; Hoffmann, Józef; Hoffmann, Krystyna

    2013-01-01

    A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m(2)/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.

  12. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays.

    PubMed

    Fitremann, Juliette; Lonetti, Barbara; Fratini, Emiliano; Fabing, Isabelle; Payré, Bruno; Boulé, Christelle; Loubinoux, Isabelle; Vaysse, Laurence; Oriol, Luis

    2017-10-15

    A new low molecular weight hydrogelator with a saccharide (lactobionic) polar head linked by azide-alkyne click chemistry was prepared in three steps. It was obtained in high purity without chromatography, by phase separation and ultrafiltration of the aqueous gel. Gelation was not obtained reproducibly by conventional heating-cooling cycles and instead was obtained by shearing the aqueous solutions, from 2 wt% to 0.25 wt%. This method of preparation favored the formation of a quite unusual network of interconnected large but thin 2D-sheets (7nm-thick) formed by the association side-by-side of long and aligned 7nm diameter wormlike micelles. It was responsible for the reproducible gelation at the macroscopic scale. A second network made of helical fibres with a 10-13nm diameter, more or less intertwined was also formed but was scarcely able to sustain a macroscopic gel on its own. The gels were analysed by TEM (Transmission Electronic Microscopy), cryo-TEM and SAXS (Small Angle X-ray Scattering). Molecular modelling was also used to highlight the possible conformations the hydrogelator can take. The gels displayed a weak and reversible transition near 20°C, close to room temperature, ascribed to the wormlike micelles 2D-sheets network. Heating over 30°C led to the loss of the gel macroscopic integrity, but gel fragments were still observed in suspension. A second transition near 50°C, ascribed to the network of helical fibres, finally dissolved completely these fragments. The gels showed thixotropic behaviour, recovering slowly their initial elastic modulus, in few hours, after injection through a needle. Stable gels were tested as scaffold for neural cell line culture, showing a reduced biocompatibility. This new gelator is a clear illustration of how controlling the pathway was critical for gel formation and how a new kind of self-assembly was obtained by shearing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mechanisms of filtration failure during postischemic injury of the human kidney. A study of the reperfused renal allograft.

    PubMed

    Alejandro, V; Scandling, J D; Sibley, R K; Dafoe, D; Alfrey, E; Deen, W; Myers, B D

    1995-02-01

    Postischemic filtration failure in experimental animals results primarily from depression of the transcapillary hydraulic pressure difference (delta P), a quantity that cannot be determined in humans. To circumvent this limitation we determined the GFR and each of its remaining determinants in transplanted kidneys. Findings in 12 allografts that exhibited subsequent normofiltration (group 1) were compared with those in 11 allografts that exhibited persistent hypofiltration (group 2). Determinations were made intraoperatively in the exposed graft after 1-3 h of reperfusion. GFR (6 +/- 2 vs 29 +/- 5 ml/min) and renal plasma flow by Doppler flow meter (140 +/- 30 vs 315 +/- 49 ml/min) were significantly lower in group 2 than group 1. Morphometric analysis of glomeruli obtained by biopsy and a structural hydrodynamic model of viscous flow revealed the glomerular ultrafiltration coefficient to be similar, averaging 3.5 +/- 0.6 and 3.1 +/- 0.2 ml/(min.mmHg) in group 2 vs 1, respectively. Corresponding values for plasma oncotic pressure were also similar, averaging 19 +/- 1 vs 21 +/- 1 mmHg. We next used a mathematical model of glomerular ultrafiltration and a sensitivity analysis to calculate the prevailing range for delta P from the foregoing measured quantities. This revealed delta P to vary from only 20-21 mmHg in group 2 vs 34-45 mmHg in group 1 (P < 0.001). Further morphometric analysis revealed the diameters of Bowman's space and tubular lumens, as well as the percentage of tubular cells that were necrotic or devoid of brush border, to be similar in the two groups. We thus conclude (a) that delta P depression is the predominant cause of hypofiltration in this form of postischemic injury; and (b) that afferent vasoconstriction rather than tubular obstruction is the proximate cause of the delta P depression.

  14. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  15. Study of different pretreatments for reverse osmosis reclamation of a petrochemical secondary effluent.

    PubMed

    Benito-Alcázar, C; Vincent-Vela, M C; Gozálvez-Zafrilla, J M; Lora-García, J

    2010-06-15

    Conventionally treated petrochemical wastewaters contain substantial quantities of hazardous pollutants. In addition, wastewater reuse is being enhanced as a consequence of the shortage of fresh water. Advanced petrochemical wastewater treatment for water reuse will reduce hazardous pollutants discharges as well as water consumption. Reverse osmosis is a suitable technology to obtain pure water. This work studies the adequacy of different pretreatments applied to a petrochemical secondary effluent to produce a suitable feeding for reverse osmosis treatment. The permeate obtained can be used in the petrochemical industry for different processes. In this work, several experiments (granulated activated carbon filtration, ultrafiltration, nanofiltration and granulated activated carbon filtration coupled with nanofiltration) were performed to improve the conventional pretreatment. Total organic carbon, chemical oxygen demand, turbidity and silt density index were used to evaluate water quality for reverse osmosis feeding. In granulated activated carbon filtration, all the measured parameters but silt density index indicated a good filtrate quality to feed reverse osmosis membranes. Although the ultrafiltration permeate obtained was suitable for reverse osmosis, nanofiltration and granulated activated carbon filtration coupled with NF provided a better effluent quality for reverse osmosis than the other pretreatments studied. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Sorption Behavior of Eu(III) into CSH Gel in Imitated Saline Groundwater - 12145

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funabashi, Taihei; Niibori, Yuichi; Mimura, Hitoshi

    2012-07-01

    The sorption behavior of Eu(III) (europium (III)) into CSH (Calcium Silicate Hydrate) gel without dried processes was examined in imitated saline groundwater by using the spectro-fluorometer, Raman spectrophotometer and ICP-AES (Inductively Coupled Plasma- Atomic Emission Spectrometry). Ca/Si ratio was set to 0.4, 0.8, 1.2 and 1.6, and NaCl concentration was also set to 0.6, 0.06 and 0.006. The synthesis of each sample was conducted in a glove box saturated with nitrogen gas. The sealed sample tubes were gently shaken with 120 strokes/min. The time-period to contact Eu(III) with the CSH gel was set to 60 days. The fluorescence emission spectramore » suggested the incorporation of Eu{sup 3+} into CSH gel in the high Ca/Si ratio samples. On the other hand, from the decay behavior of fluorescence emission spectra, even in the low Ca/Si ratio samples, sorption behavior of Eu{sup 3+} into CSH gel was confirmed. Besides, the Raman spectra showed that the degree of polymerization of Si-O in CSH gel was raised with increasing Na ions concentration. These results suggest that the CSH gel, formed as secondary mineral, would retard the migration of radionuclides even in saline groundwater. Considering the inflow of saline groundwater into repository, this study examined the interaction between CSH gel (without dry processes) and Eu{sup 3+} by using the fluorescence emission spectra, the decay behavior of fluorescence and the Raman spectra. As a result, the fluorescence emission spectra of the sample of more than 0.8 Ca/Si ratio confirmed the intensity split into two peaks around 618 nm (5D0→7F2 transition). Furthermore, even in relatively low Ca/Si ratio samples, the fluorescence lifetimes both of the surface sorption sample and the co-precipitated samples exceeded that of the filtrate sample. These suggested that Eu{sup 3+} is not only hydrolyzed to form Eu(OH){sub 3} colloid, but is also stably incorporated into CSH gel (in Ca/Si ratio>1.2) or is forming complex on the

  17. The processing of used cooking oil (yellow grease) using combination of adsorption and ultrafiltration membrane processes

    NASA Astrophysics Data System (ADS)

    Rosnelly, C. M.; Sofyana; Amalia, D.; Sarah, S.

    2018-03-01

    Yellow grease is used cooking oil whose quality has degraded due to the oxidation, polymerization, or hydrolysis process. In previous studies, yellow grease refining had been conducted either by adsorption or by using membrane. In this study, adsorption process using adsorbent from bagasse activated with H3PO4 12.5%, and ultrafiltration using Polyethersulfone (PES) membrane were combined. In adsorption stage, several variation of bagasse mass was fed into 200 ml of yellow grease and stirred for 60 minutes at 60 rpm. Yellow grease produced from adsorption with best condition was then processed using ultrafiltration membran that is PES membran with concentration by 15 wt % with transmembrane pressure variation by 0.5; 1; 1.5; 2; and 2.5 Bar. Analysis of yellow grease characteristics before refined showed its acid number, peroxide number, iodine number, and water content respectively by 2.68 mgKOH/Kg; 5.97 Meq/Kg; 51,48; and 1.29%. Characteristics of yellow grease after adsorption at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 2.55 mgKOH/Kg; 4.19 Meq/Kg; 40,02; and 0.27%. Characteristics of yellow grease after ultrafiltration at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 1.12 mgKOH/Kg; 1.8 Meq/Kg; 41,36; and 0.02%. Combination of adsorption and ultrafiltration processes for yellow grease processing showed decreasing value on the parameters of acid number, peroxide number, and water content that conforms to the SNI quality standard, but has not been able to increase the iodine number.

  18. Reducing bottom anti-reflective coating (BARC) defects: optimizing and decoupling the filtration and dispense process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Martin, Gary; Simmons, Sean; Batchelder, Traci

    2006-03-01

    Semiconductor device manufacturing is one of the cleanest manufacturing operations that can be found in the world today. It has to be that way; a particle on a wafer today can kill an entire device, which raises the costs, and therefore reduces the profits, of the manufacturing company in two ways: it must produce extra wafers to make up for the lost die, and it has less product to sell. In today's state-of-the-art fab, everything is filtered to the lowest pore size available. This practice is fairly easy for gases because a gas molecule is very small compared to the pore size of the filter. Filtering liquids, especially photochemicals such as photoresists and BARCs, can be much harder because the molecules that form the polymers used to manufacture the photochemicals are approaching the filter pore size. As a result, filters may plug up, filtration rates may drop, pressure drops across the filter may increase, or a filter may degrade. These conditions can then cause polymer shearing, microbubble formation, gel particle formation, and BARC chemical changes to occur before the BARC reaches the wafer. To investigate these possible interactions, an Entegris(R) IntelliGen(R) pump was installed on a TEL Mk8 TM track to see if the filtration process would have an effect on the BARC chemistry and coating defects. Various BARC chemicals such as DUV112 and DUV42P were pumped through various filter media having a variety of pore sizes at different filtration rates to investigate the interaction between the dispense process and the filtration process. The IntelliGen2 pump has the capability to filter the BARC independent of the dispense process. By using a designed experiment to look at various parameters such as dispense rate, filtration rate, and dispense volume, the effects of the complete pump system can be learned, and appropriate conditions can be applied to yield the cleanest BARC coating process. Results indicate that filtration rate and filter pore size play a

  19. Fluctuation of Ultrafiltration Coefficient of Hemodialysis Membrane During Reuse

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Christin

    2010-12-01

    Hemodialysis treatment for patient with kidney failure is to regulate body fluid and to excrete waste products of metabolism. The patient blood and the dialyzing solution (dialysate) are flowed counter currently in a dialyzer to allow volume flux of fluid and diffusion of solutes from the blood to the dialysate through a semipermiable membrane. The volume flux of fluid depends on the hydrostatic and the osmotic pressure difference between the blood and the dialysate. It also depends on the membrane parameter that represents how the membrane allows the fluid and the solutes to move across as a result of the pressure difference, known as the ultrafiltration coefficient Kuf. The coefficient depends on the number and the radius of membrane pores for the movement of the fluids and the solutes across the membrane. The measured membrane ultrafiltration coefficient of reused dialyzer shows fluctuation between one uses to another without any significant trend of change. This indicates that the cleaning process carried out before reuse does not cause perfect removal of clots that happen in the previous use. Therefore the unblocked pores are forced to work hardly to obtain targeted volume flux in a certain time of treatment. This may increase the unblocked pore radius. Reuse is stopped when there is indication of blood leakage during the hemodialysis treatment.

  20. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  1. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  2. High-throughput protein concentration and buffer exchange: comparison of ultrafiltration and ammonium sulfate precipitation.

    PubMed

    Moore, Priscilla A; Kery, Vladimir

    2009-01-01

    High-throughput protein purification is a complex, multi-step process. There are several technical challenges in the course of this process that are not experienced when purifying a single protein. Among the most challenging are the high-throughput protein concentration and buffer exchange, which are not only labor-intensive but can also result in significant losses of purified proteins. We describe two methods of high-throughput protein concentration and buffer exchange: one using ammonium sulfate precipitation and one using micro-concentrating devices based on membrane ultrafiltration. We evaluated the efficiency of both methods on a set of 18 randomly selected purified proteins from Shewanella oneidensis. While both methods provide similar yield and efficiency, the ammonium sulfate precipitation is much less labor intensive and time consuming than the ultrafiltration.

  3. Worsening renal function in patients with acute decompensated heart failure treated with ultrafiltration: predictors and outcomes.

    PubMed

    Raichlin, Eugenia; Haglund, Nicholas A; Dumitru, Ioana; Lyden, Elizabeth R; Johnston, Michael D; Mack, Joan M; Windle, John R; Lowes, Brian D

    2014-05-01

    Ultrafiltration (UF) is used to treat patients with diuretic-resistant acute decompensated heart failure. The aim of this study was to identify predictors and the effect of worsening renal failure(WRF) on mortality in patients treated with UF. Based on changes in serum creatinine, 99 patients treated with UF were divided into WRF and control groups. Overall creatinine increased from 1.9 ± 0.7 to 1.2 ± 1.0 mg/dL (P!.001),and WRF developed in 41% of the subjects. The peak UF rate was higher in the WRF group in univariate analysis (174 ± 75 vs 144 ± 52 mL/h; P = .03). Based on multivariate analysis, aldosterone antagonist treatment (odds ratio [OR] 3.38, 95% confidence interval [CI] 1.17-13.46, P = .04), heart rate ≤65 beats/min (OR 6.03, 95% CI 1.48-48.42; P = .03), and E/E0 ≥ 15 (OR 3.78, 95% CI 1.26-17.55; P 5 .04) at hospital admission were associated with WRF. Patients with baseline glomerular filtration rate (GFR) ≤60mg/dL who developed WRF during UF had a 75% 1-year mortality rate. WRF occurred frequently during UF. Increased LV filling pressures, lower heart rate, and treatment with aldosterone antagonist at hospital admission can identify patients at increased risk for WRF. Patients with baseline GFR ≤60 mg/dL and WRF during UF have an extremely high 1-year mortality rate.

  4. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface water...

  5. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis.

    PubMed

    Knutsen, Jeffrey S; Davis, Robert H

    2004-01-01

    Technologies suitable for the separation and reuse of cellulase enzymes during the enzymatic saccharification of pretreated corn stover are investigated to examine the economic and technical viability of processes that promote cellulase reuse while removing inhibitory reaction products such as glucose and cellobiose. The simplest and most suitable separation is a filter with relatively large pores on the order of 20-25 mm that retains residual corn stover solids while passing reaction products such as glucose and cellobiose to form a sugar stream for a variety of end uses. Such a simple separation is effective because cellulase remains bound to the residual solids. Ultrafiltration using 50-kDa polyethersulfone membranes to recover cellulase enzymes in solution was shown not to enhance further the saccharification rate or overall conversion. Instead, it appears that the necessary cellulase enzymes, including beta-glucosidase, are tightly bound to the substrate; when fresh corn stover is contacted with highly washed residual solids, without the addition of fresh enzymes, glucose is generated at a high rate. When filtration was applied multiple times, the concentration of inhibitory reaction products such as glucose and cellobiose was reduced from 70 to 10 g/L. However, an enhanced saccharification performance was not observed, most likely because the concentration of the inhibitory products remained too high. Further reduction in the product concentration was not investigated, because it would make the reaction unnecessarily complex and result in a product stream that is much too dilute to be useful. Finally, an economic analysis shows that reuse of cellulase can reduce glucose production costs, especially when the enzyme price is high. The most economic performance is shown to occur when the cellulase enzyme is reused and a small amount of fresh enzyme is added after each separation step to replace lost or deactivated enzyme.

  6. Environmental Technology Verification--Baghouse Filtration Products: GE Energy QG061 Filtration Media (Tested September 2008)

    EPA Science Inventory

    This report reviews the filtration and pressure drop performance of GE Energy's QG061 filtration media. Environmental Technology Verification (ETV) testing of this technology/product was conducted during a series of tests in September 2008. The objective of the ETV Program is to ...

  7. MIGS: therapeutic success of combined Xen Gel Stent implantation with cataract surgery.

    PubMed

    Hohberger, Bettina; Welge-Lüßen, Ulrich-Christoph; Lämmer, Robert

    2018-03-01

    Glaucoma, a common disease in the elderly population, is frequently coexistent with cataract. While the combination of filtration surgery and cataract surgery is a challenging topic with limited success, minimal invasive glaucoma surgery (MIGS), such as Xen Gel Stents, seems to provide promising results. The aim of this study was to investigate the complete and qualified therapeutic success of Xen Gel Stent implantation with (XenPhaco) and without cataract surgery. One hundred and eleven open-angle glaucoma eyes underwent implantation of Xen45 Gel Stent (AqueSys, Inc.) with or without cataract operation. Complete therapeutic success was defined as target intraocular pressure (IOP) < 18 mmHg at any time point within 6 months of follow-up without local antiglaucomatous therapy or further surgical interventions. Qualified success was defined as target IOP <18 mmHg with additional 1-2 local antiglaucomatous eye drops. Failure included all cases with the necessity of at least three local antiglaucomatous eye drops or additional glaucoma surgery. Combined implantation of Xen Gel Stent with cataract surgery was performed in 30 eyes and stand-alone Xen Gel Stent implantation was performed in 81 eyes. A complete therapeutic success was achieved in 46.9% of single Xen Gel Stent implantation, whereas 53.3% was reached with combined XenPhaco. Qualified success was seen in 2.5% in the eyes of the single Xen Gel Stent implantation group and in 3.3% of the combined surgery group. Therapeutic failure rate was 49.4% in the stand-alone group vs 46.7% in the combined group. Data were not significantly different for group and subgroup analyses. Complete and qualified therapeutic success is similar for the combination of Xen Gel Stent implantation with and without cataract surgery in open-angle glaucoma patients. MIGS using Xen Gel Stent can be recommended in situations if glaucoma surgery is indicated besides coexisting cataract.

  8. Robust cross-links in molluscan adhesive gels: Testing for contributions from hydrophobic and electrostatic interactions

    PubMed Central

    Smith, A.M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R.

    2009-01-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism. PMID:18952190

  9. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.

    PubMed

    Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R

    2009-02-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.

  10. A PERSPECTIVE OF RIVERBANK FILTRATION

    EPA Science Inventory

    Riverbank filtration is a process in which pumping of wells located along riverbanks induce a portion of the river water to flow toward the pumping wells. The process has many similarities to the slow sand filtration process. River water contaminants are attenuated due to a combi...

  11. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    PubMed Central

    Monteiro, Paulo S.; Guimarães, Valéria M.; de Melo, Ricardo R.; de Rezende, Sebastião T.

    2015-01-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 5 s −1 and 4.7 × 10 6 s −1 .M −1 , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg 2+ , Cd 2+ , K + and Ca 2+ , and it was drastically inhibited by F − . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  12. Stabilization of flux during dead-end ultra-low pressure ultrafiltration.

    PubMed

    Peter-Varbanets, Maryna; Hammes, Frederik; Vital, Marius; Pronk, Wouter

    2010-06-01

    Gravity driven ultrafiltration was operated in dead-end mode without any flushing or cleaning. In contrary to general expectations, the flux value stabilized after about one week of operation and remained constant during an extended period of time (several months). Different surface water types and diluted wastewater were used as feed water and, depending on the feed water composition, stable flux values were in the range of 4-10 L h(-1) m(-2). When sodium azide was added to the feed water to diminish the biological activity, no stabilization of flux occurred, indicating that biological processes play an important role in the flux stabilization process. Confocal laser scanning microscopy revealed the presence of a biofouling layer, of which the structure changed over time, leading to relatively heterogeneous structures. It is assumed that the stabilization of flux is related to the development of heterogeneous structures in the fouling layer, due to biological processes in the layer. The phenomenon of flux stabilization opens interesting possibilities for application, for instance in simple and low-cost ultrafiltration systems for decentralized drinking water treatment in developing and transition countries, independent of energy supply, chemicals, or complex process control. 2010 Elsevier Ltd. All rights reserved.

  13. Effect of hydraulically reversible and hydraulically irreversible fouling on the removal of MS2 and φX174 bacteriophage by an ultrafiltration membrane.

    PubMed

    ElHadidy, Ahmed M; Peldszus, Sigrid; Van Dyke, Michele I

    2014-09-15

    The effect of membrane fouling on the removal of enteric virus surrogates MS2 and φX174 bacteriophage by an ultrafiltration membrane was assessed under simulated full-scale drinking water treatment operating conditions. Filtration experiments of up to 8 days using either river or lake water ascertained how the membrane fouling layer affected virus removal. Organic carbon fractionation techniques identified potential foulants, including biopolymers, in the feed water and in the permeate. Hydraulically irreversible fouling could greatly improve the removal of both viruses at moderate and severe fouling conditions by up to 2.5 logs. Hydraulically reversible fouling increased virus removal only slightly, and increased removal of >0.5 log for both phage were only obtained under severe fouling conditions. The increase in virus removal due to irreversible and reversible fouling differed between the two water sources. As the degree of fouling increased, differences between the removal of the two phage decreased. Maintenance cleaning partially removed membrane foulants, however virus removal following maintenance cleaning was lower than that of the fouled membrane, it remained higher than that of the clean membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Filtration by eyelashes

    NASA Astrophysics Data System (ADS)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  15. Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2014-10-01

    Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs).

  16. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum

    PubMed Central

    Kornilov, Roman; Puhka, Maija; Mannerström, Bettina; Hiidenmaa, Hanna; Peltoniemi, Hilkka; Siljander, Pia; Seppänen-Kaijansinkko, Riitta; Kaur, Sippy

    2018-01-01

    ABSTRACT Fetal bovine serum (FBS) is the most commonly used supplement in studies involving cell-culture experiments. However, FBS contains large numbers of bovine extracellular vesicles (EVs), which hamper the analyses of secreted EVs from the cell type of preference and, thus, also the downstream analyses. Therefore, a prior elimination of EVs from FBS is crucial. However, the current methods of EV depletion by ultracentrifugation are cumbersome and the commercial alternatives expensive. In this study, our aim was to develop a protocol to completely deplete EVs from FBS, which may have wide applicability in cell-culture applications. We investigated different EV-depleted FBS prepared by our novel ultrafiltration-based protocol, by conventionally used overnight ultracentrifugation, or commercially available depleted FBS, and compared them with regular FBS. All sera were characterized by nanoparticle tracking analysis, electron microscopy, Western blotting and RNA quantification. Next, adipose-tissue mesenchymal stem cells (AT-MSCs) and cancer cells were grown in the media supplemented with the three different EV-depleted FBS and compared with cells grown in regular FBS media to assess the effects on cell proliferation, stress, differentiation and EV production. The novel ultrafiltration-based protocol depleted EVs from FBS clearly more efficiently than ultracentrifugation and commercial methods. Cell proliferation, stress, differentiation and EV production of AT-MSCs and cancer cell lines were similarly maintained in all three EV-depleted FBS media up to 96 h. In summary, our ultrafiltration protocol efficiently depletes EVs, is easy to use and maintains cell growth and metabolism. Since the method is also cost-effective and easy to standardize, it could be used in a wide range of cell-culture applications helping to increase comparability of EV research results between laboratories. PMID:29410778

  17. COMPARATIVE EVALUATION OF R3f GARNET BEAD FILTRATION AND MULTIMEDIA FILTRATION SYSTEMS; FINAL REPORT

    EPA Science Inventory

    This report summarizes the results of tests conducted to date at the EPA T&E Facility on the R3f filtration system utilizing fine beads (such as garnet beads or glass beads) and a conventional multimedia filtration system. Both systems have been designed and built by Enprotec, a...

  18. Modelling technological process of ion-exchange filtration of fluids in porous media

    NASA Astrophysics Data System (ADS)

    Ravshanov, N.; Saidov, U. M.

    2018-05-01

    Solution of an actual problem related to the process of filtration and dehydration of liquid and ionic solutions from gel particles and heavy ionic compounds is considered in the paper. This technological process is realized during the preparation and cleaning of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. For the analysis, research, determination of the main parameters of the technological process and operating modes of filter units and for support in managerial decision-making, a mathematical model is developed. Using the developed model, a series of computational experiments on a computer is carried out. The results of numerical calculations are illustrated in the form of graphs. Based on the analysis of numerical experiments, the conclusions are formulated that serve as the basis for making appropriate managerial decisions.

  19. Biofilm Formation on Reverse Osmosis Membranes Is Initiated and Dominated by Sphingomonas spp.▿ †

    PubMed Central

    Bereschenko, L. A.; Stams, A. J. M.; Euverink, G. J. W.; van Loosdrecht, M. C. M.

    2010-01-01

    The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces. PMID:20190090

  20. Purification, immobilization and characterization of tannase from Penicillium variable.

    PubMed

    Sharma, Shashi; Agarwal, Lata; Saxena, Rajendra Kumar

    2008-05-01

    Tannase from Penicillium variable IARI 2031 was purified by a two-step purification strategy comprising of ultra-filtration using 100 kDa molecular weight cutoff and gel-filtration using Sephadex G-200. A purification fold of 135 with 91% yield of tannase was obtained. The enzyme has temperature and pH optima of 50 degrees C and 5 degrees C, respectively. However, the functional temperature range is from 25 to 80 degrees C and functional pH range is from 3.0 to 8.0. This tannase could successfully be immobilized on Amberlite IR where it retains about 85% of the initial catalytic activity even after ninth cycle of its use. Based on the Michaelis-Menten constant (Km) of tannase, tannic acid is the best substrate with Km of 32 mM and Vmax of 1.11 micromol ml(-1)min(-1). Tannase is inhibited by phenyl methyl sulphonyl fluoride (PMSF) and N-ethylmaleimide retaining only 28.1% and 19% residual activity indicating that this enzyme belongs to the class of serine hydrolases. Tannase in both crude and crude lyophilized forms is stable for one year retaining more than 60% residual activity.

  1. Multistate Evaluation of an Ultrafiltration-Based Procedure for Simultaneous Recovery of Enteric Microbes in 100-Liter Tap Water Samples▿

    PubMed Central

    Hill, Vincent R.; Kahler, Amy M.; Jothikumar, Narayanan; Johnson, Trisha B.; Hahn, Donghyun; Cromeans, Theresa L.

    2007-01-01

    Ultrafiltration (UF) is increasingly being recognized as a potentially effective procedure for concentrating and recovering microbes from large volumes of water and treated wastewater. Because of their very small pore sizes, UF membranes are capable of simultaneously concentrating viruses, bacteria, and parasites based on size exclusion. In this study, a UF-based water sampling procedure was used to simultaneously recover representatives of these three microbial classes seeded into 100-liter samples of tap water collected from eight cities covering six hydrologic areas of the United States. The UF-based procedure included hollow-fiber UF as the primary step for concentrating microbes and then used membrane filtration for bacterial culture assays, immunomagnetic separation for parasite recovery and quantification, and centrifugal UF for secondary concentration of viruses. Water samples were tested for nine water quality parameters to investigate whether water quality data correlated with measured recovery efficiencies and molecular detection levels. Average total method recovery efficiencies were 71, 97, 120, 110, and 91% for φX174 bacteriophage, MS2 bacteriophage, Enterococcus faecalis, Clostridium perfringens spores, and Cryptosporidium parvum oocysts, respectively. Real-time PCR and reverse transcription-PCR (RT-PCR) for seeded microbes and controls indicated that tap water quality could affect the analytical performance of molecular amplification assays, although no specific water quality parameter was found to correlate with reduced PCR or RT-PCR performance. PMID:17483281

  2. Production of Hypoallergenic Antibacterial Peptides from Defatted Soybean Meal in Membrane Bioreactor: A Bioprocess Engineering Study with Comprehensive Product Characterization

    PubMed Central

    2017-01-01

    Summary Hypoallergenic antibacterial low-molecular-mass peptides were produced from defatted soybean meal in a membrane bioreactor. In the first step, soybean meal proteins were digested with trypsin in the bioreactor, operated in batch mode. For the tryptic digestion of soybean meal protein, optimum initial soybean meal concentration of 75 g/L, temperature of 40 °C and pH=9.0 were determined. After enzymatic digestion, low-molecular-mass peptides were purified with cross-flow flat sheet membrane (pore size 100 µm) and then with tubular ceramic ultrafiltration membrane (molecular mass cut-off 5 kDa). Effects of transmembrane pressure and the use of a static turbulence promoter to reduce the concentration polarization near the ultrafiltration membrane surface were examined and their positive effects were proven. For the filtration with ultrafiltration membrane, transmembrane pressure of 3·105 Pa with 3-stage discontinuous diafiltration was found optimal. The molecular mass distribution of purified peptides using ultrafiltration membrane was determined by a liquid chromatography–electrospray ionization quadrupole time-of-flight mass spectrometry setup. More than 96% of the peptides (calculated as relative frequency) from the ultrafiltration membrane permeate had the molecular mass M≤1.7 kDa and the highest molecular mass was found to be 3.1 kDa. The decrease of allergenic property due to the tryptic digestion and membrane filtration was determined by an enzyme-linked immunosorbent assay and it was found to exceed 99.9%. It was also found that the peptides purified in the ultrafiltration membrane promoted the growth of Pediococcus acidilactici HA6111-2 and they possessed antibacterial activity against Bacillus cereus. PMID:29089846

  3. Monolith filter apparatus and membrane apparatus, and method using same

    DOEpatents

    Goldsmith, Robert L [Wayland, MA

    2012-04-03

    A filtration apparatus that separates a liquid feedstock mixed with a gas into filtrate and retentate, the apparatus including at least one filtration device comprised of at least one monolith segment of porous material that defines a plurality of passageways extending longitudinally from a feed face of the structure to a retentate end face. The filtration device contains at least one filtrate conduit within it for carrying filtrate toward a filtrate collection zone, the filtrate conduit providing a path of lower flow resistance than that of alternative flow paths through the porous material of the device. The filtration device can also be utilized as a membrane support for a device for microfiltration, ultrafiltration, nanofiltration, reverse osmosis, or pervaporation. Also disclosed is a method for using such a filtration apparatus.

  4. Chronic Intraocular Inflammation as a Risk Factor for XEN Gel Stent Occlusion: A Case of Microscopic Examination of a Fibrin-obstructed XEN Stent.

    PubMed

    Gillmann, Kevin; Mansouri, Kaweh; Bravetti, Giorgio Enrico; Mermoud, André

    2018-06-05

    In recent years microinvasive glaucoma surgery (MIGS) has risen in popularity. Amongst MIGS options is the XEN gel stent (Allergan Plc, Dublin, Ireland), a 45▒μm wide ab-interno microstent. It has proven effective in lowering IOP with low complication rates. However, XEN gel stents can become obstructed and cause postoperative rise in IOP. The causes and predicting factors for such obstructions still requires further research. We describe the case of a 69-year old male patient, with traumatic glaucoma and chronic intraocular inflammation demonstrated by laser flare photometry, following childhood trauma and anterior segment surgery. Uncontrollable IOP despite maximal antiglaucomatous therapy was managed with XEN-augmented Baerveldt surgery. Despite good initial filtration and IOP control, the XEN stent became obstructed and was surgically replaced. After a month, the new stent became obstructed and was replaced by a thicker-lumened Baerveldt tube. This restored good filtration, and adequate IOP was maintained post-operatively. Microscopic examination of the obstructed XEN stent showed a dense fibrin plug. This case report shows that fibrin formation could be an important factor in XEN gel stent obstruction, even in initially successfully filtering stents. The association of fibrinogenesis and intraocular inflammation could add a note of caution to the use of XEN gel stents in complicated cataract surgery, or advocate for aggressive anti-inflammatory treatments post-operatively. This could lead to a refinement in success predictors and better patient selection for XEN surgery. Finally, this could open the way to new management options for persistent obstructions, including pharmaceutical fibrinolysis.

  5. Removal of Cryptosporidium parvum in bank filtration systems

    NASA Astrophysics Data System (ADS)

    Harter, T.; Atwill, E. R.; Hou, L. L.

    2003-04-01

    The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Many surface water systems therefore depend on filtration systems, including bank filtration systems, for the removal of the pathogenic oocysts. To better understand the effectiveness, e.g., of bank filtration systems, we have implemented a series of columns studies under various environmental conditions (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough of C. parvum in pulsed injections of the oocyst through sand columns, although the model does not account for the significant tailing that occurs in C. parvum transport. Application of colloid filtration theory to bank filtration system is further limited by the intrinsic heterogeneity of the geologic systems used for bank filtration. We couple filtration theory with a stochastic subsurface transport approach and with percolation theory to account for the effects of intrinsic heterogeneity. We find that a 1-log removal can be achieved even under relatively adverse conditions (low collision efficiency, high velocity) if 85% - 90% of the sedimentary hydrofacies located within the bank filtration system or of the coarsest known hydrofacies connecting the riverbed with the extraction system has a grain-size distribution with a 10% passing diameter equal to 1 mm. One millimeter is a standard sieve size in sediment analysis.

  6. Disaggregation of adenylate cyclase during polyacrylamide-gel electrophoresis in mixtures of ionic and non-ionic detergents.

    PubMed

    Newby, A C; Chrambach, A

    1979-02-01

    1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in

  7. Disaggregation of adenylate cyclase during polyacrylamide-gel electrophoresis in mixtures of ionic and non-ionic detergents

    PubMed Central

    Newby, Andrew C.; Chrambach, Andreas

    1979-01-01

    1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in

  8. Enhanced performance of crumb rubber filtration for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2009-03-01

    Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.

  9. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1996-09-17

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1,000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1,050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  10. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1995-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes.ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  11. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1995-12-19

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  12. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1996-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  13. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Worsening renal function in patients with acute decompensated heart failure treated with ultrafiltration: predictors and outcomes.

    PubMed

    Raichlin, Eugenia; Haglund, Nicholas A; Dumitru, Ioana; Lyden, Elizabeth R; Johnston, Michael D; Mack, Joan M; Windle, John R; Lowes, Brian D

    2013-12-01

    Ultrafiltration (UF) is used to treat patients with diuretic-resistant acute decompensated heart failure. The aim of this study was to identify predictors and the effect of worsening renal failure (WRF) on mortality in patients treated with UF. Based on changes in serum creatinine, 99 patients treated with UF were divided into WRF and control groups. Overall creatinine increased from 1.9 ± 9.7 to 2.2 ± 2.0 mg/dL (P < .001), and WRF developed in 41% of the subjects. The peak UF rate was higher in the WRF group in univariate analysis (174 ± 45 vs 144 ± 42 mL/h; P = .03). Based on multivariate analysis, aldosterone antagonist treatment (odds ratio [OR] 3.38, 95% confidence interval [CI] 1.17-13.46, P = .04), heart rate ≤65 beats/min (OR 6.03, 95% CI 1.48-48.42; P = .03), and E/E' ≥15 (OR 3.78, 95% CI 1.26-17.55; P = .04) at hospital admission were associated with WRF. Patients with baseline glomerular filtration rate (GFR) ≤60 mg/dL who developed WRF during UF had a 75% 1-year mortality rate. WRF occurred frequently during UF. Increased LV filling pressures, lower heart rate, and treatment with aldosterone antagonist at hospital admission can identify patients at increased risk for WRF. Patients with baseline GFR ≤60 mg/dL and WRF during UF have an extremely high 1-year mortality rate. Published by Elsevier Inc.

  15. Feasibility of intermittent back-filtrate infusion hemodiafiltration to reduce intradialytic hypotension in patients with cardiovascular instability: a pilot study.

    PubMed

    Koda, Yutaka; Aoike, Ikuo; Hasegawa, Shin; Osawa, Yutaka; Nakagawa, Yoichi; Iwabuchi, Fumio; Iwahashi, Chikara; Sugimoto, Tokuichiro; Kikutani, Toshihiko

    2017-04-01

    Intradialytic hypotension (IDH) is one of the major problems in performing safe hemodialysis (HD). As blood volume depletion by fluid removal is a major cause of hypotension, careful regulation of blood volume change is fundamental. This study examined the effect of intermittent back-filtrate infusion hemodiafiltration (I-HDF), which modifies infusion and ultrafiltration pattern. Purified on-line quality dialysate was intermittently infused by back filtration through the dialysis membrane with a programmed dialysis machine. A bolus of 200 ml of dialysate was infused at 30 min intervals. The volume infused was offset by increasing the fluid removal over the next 30 min by an equivalent amount. Seventy-seven hypotension-prone patients with over 20-mmHg reduction of systolic blood pressure during dialysis or intervention-requirement of more than once a week were included in the crossover study of 4 weeks duration for each modality. In a total of 1632 sessions, the frequency of interventions, the blood pressure, and the pulse rate were documented. During I-HDF, interventions for symptomatic hypotension were reduced significantly from 4.5 to 3.0 (per person-month, median) and intradialytic systolic blood pressure was 4 mmHg higher on average. The heart rate was lower during I-HDF than HD in the later session. Older patients and those with greater interdialytic weight gain responded to I-HDF. I-HDF could reduce interventions for IDH. It is accompanied with the increased intradialytic blood pressure and the less tachycardia, suggesting less sympathetic stimulation occurs. Thus, I-HDF could be beneficial for some hypotension-prone patients. 000013816.

  16. Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling

    PubMed Central

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2014-01-01

    Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs). PMID:25269375

  17. Vibrating membrane filtration as improved technology for microalgae dewatering.

    PubMed

    Nurra, Claudia; Clavero, Ester; Salvadó, Joan; Torras, Carles

    2014-04-01

    The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean pore sizes (from 7000Da to 0.2μm) were tested and compared in both filtration set-ups. Experiments were carried-out with Nannochloropsis gaditana and Phaeodactylum tricornutum microalgae. It has been demonstrated that, even if the choice of the membrane depends on its cut-off, its material and the type of microalgae filtrated, dynamic filtration is always the best technology over a conventional one. If with conventional filtration permeability values were in the vicinity of 10L/h/m(2)/bar in steady state phase, with dynamic filtration these values increased to 30L/h/m(2)/bar or more. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Determination of total and unbound concentrations of lopinavir in plasma using liquid chromatography-tandem mass spectrometry and ultrafiltration methods.

    PubMed

    Illamola, S M; Labat, L; Benaboud, S; Tubiana, R; Warszawski, J; Tréluyer, J M; Hirt, D

    2014-08-15

    Lopinavir is an HIV protease inhibitor with high protein binding (98-99%) in human plasma. This study was designed to develop an ultrafiltration method to measure the unbound concentrations of lopinavir overcoming the non-specific binding issue. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of total concentrations of lopinavir in plasma was developed and validated, and an adaptation was also optimized and validated for the determination of unbound concentrations. The chromatographic separation was performed with a C18 column (100 mm × 2.1mm i.d., 5 μm particle size) using a mobile phase containing deionized water with formic acid, and acetonitrile, with gradient elution at a flow-rate of 350 μL min(-1). Identification of the compounds was performed by multiple reaction monitoring, using electrospray ionization in positive ion mode. The method was validated over a clinical range of 0.01-1 μg/mL for human plasma ultrafiltrate and 0.1-15 μg/mL in human plasma. The inter and intra-assay accuracies and precisions were between 0.23% and 11.37% for total lopinavir concentrations, and between 3.50% and 13.30% for plasma ultrafiltrate (unbound concentration). The ultrafiltration method described allows an accurate separation of the unbound fraction of lopinavir, circumscribing the loss of drug by nonspecific binding (NSB), and the validated LC-MS/MS methodology proposed is suitable for the determination of total and unbound concentrations of lopinavir in clinical practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  20. Concentration and Detection of Cryptosporidium Oocysts in Surface Water Samples by Method 1622 Using Ultrafiltration and Capsule Filtration

    USGS Publications Warehouse

    Simmons, O. D.; Sobsey, M.D.; Heaney, C.D.; Schaefer, F. W.; Francy, D.S.

    2001-01-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4???,6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.

  1. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water.

    PubMed

    Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom

    2017-03-01

    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.

  2. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China

  3. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  4. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  5. Immunological Relationship of Different Preparations of Coliform Enterotoxins

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.

    1978-01-01

    Antisera raised in rabbits to ultrafiltrate toxin preparations containing either the heat-labile (LT) toxin form obtained from whole cell lysates or broth filtrates or the heat-stable (ST) toxin form prepared from broth filtrates from nontoxigenic and toxigenic strains of Escherichia coli and Klebsiella were examined for their ability to neutralize the secretory effect on water transport of these toxins in the rat jejunum as determined by the in vivo marker perfusion technique. Antisera to the heat-labile toxin derived from whole cell lysate preparations from nontoxigenic strains had no neutralizing effect. Antisera to both types of LT preparation from both toxigenic strains neutralized, with several exceptions, all of the homologous and heterologous LT toxins as well as a heat-labile toxin preparation derived from sequential ultrafiltration of cell-free whole cell lysates which had a defined molecular weight of between 30,000 and 100,000. These antisera also neutralized homologous and heterologous ST preparations obtained from broth filtrates, but they had no neutraliziṅg effect on low-molecular-weight, ST toxin material obtained during the sequential ultrafiltration of cell lysates. Antisera to ST prepared from broth filtrates had no neutralizing capacity against either LT or ST toxin preparations. These observations (i) indicate that the immunological relationship of E. coli and Klebsiella LT and ST toxins extends to antisera raised against LT prepared by several different methods, (ii) raise the possibility that, based on the response to antisera to LT, there may be several immunologically heterogeneous forms of low-molecular-weight ST toxin, and (c) confirm the lack of immunogenicity of ST. PMID:361578

  6. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  7. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  8. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  9. A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles.

    PubMed

    Li, Xin; Li, Jiansheng; Fang, Xiaofeng; Bakzhan, Kariboz; Wang, Lianjun; Van der Bruggen, Bart

    2016-05-01

    Fouling of ultrafiltration (UF) membranes is a major impediment for their use in drinking water production. Mixed matrix membranes (MMMs) may have great opportunities in dealing with this challenge due to their hierarchical structures and multiple functionalities. In this study, a synergetic analysis method based on intermolecular adhesion force measurement and fouling process simulation was applied to investigate the fouling mechanism of polyethersulfone (PES) UF membranes containing in situ self-assembled TiO2 nanoparticles (NPs). The fouling resistance behavior and antifouling mechanism of the newly developed composite membranes were investigated with sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA) as model organic foulants. An improved antifouling effect was conspicuously observed for the composite membranes, expressed by a lower flux decline and significantly better cleaning efficiency. A strong correlation between the self-assembled structure of TiO2 NPs and the antifouling behavior of the composite membrane was observed. A lower magnitude and a narrower distribution of adhesion forces for the composite membrane suggest the effective suppression of foulants adsorption on the clean or fouled membrane. The simulation analysis indicates that the main fouling mechanism was standard blocking and cake filtration, further confirming the superiority of the NPs self-assembled structure in mitigating membrane fouling. This dual analysis method may provide a promising technological support for the application of modified UF membranes with self-assembled NPs in drinking water production. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Spontaneous water filtration of bio-inspired membrane

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  11. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  12. Production of wheat gluten hydrolysates with reduced antigenicity employing enzymatic hydrolysis combined with downstream unit operations.

    PubMed

    Merz, Michael; Kettner, Lucas; Langolf, Emma; Appel, Daniel; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2016-08-01

    Due to allergies or other health disorders a certain segment of the population is not able to safely consume some plant proteins, which are the main protein support in human nutrition. Coeliac disease is a prominent autoimmune disorder and requires a strict adherence to a gluten-free diet. The aim of this study was to identify suitable combinations of enzymatic hydrolysis and common unit operations in food processing (centrifugation, ultra-filtration) to produce gluten-free wheat gluten hydrolysates for food application. To analyse the hydrolysates, a simple and cheap competitive ELISA protocol was designed and validated in this study as well. The competitive ELISA was validated using gliadin spiked skim milk protein hydrolysates, due to the latter application of the assay. The limit of quantification was 4.19 mg kg(-1) , which allowed the identification of gluten-free (<20 mg kg(-1) ) hydrolysates. Enzymatic hydrolysis, including the type of peptidase, and the downstream processing greatly affected the antigenicity of the hydrolysates. Enzymatic hydrolysis and downstream processing operations, such as centrifugation and ultra-filtration, reduced the antigenicity of wheat gluten hydrolysates. Gluten-free hydrolysates were obtained with Flavourzyme after centrifugation (25 g L(-1) substrate) and after 1 kDa ultra-filtration (100 g L(-1) substrate). A multiple peptidase complex, such as Flavourzyme, seems to be required for the production of gluten-free hydrolysates. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Purification and characterization of Bacillus cereus protease suitable for detergent industry.

    PubMed

    Prakash, Monika; Banik, Rathindra Mohan; Koch-Brandt, Claudia

    2005-12-01

    An extracellular alkaline protease from an alkalophilic bacterium, Bacillus cereus, was produced in a large amount by the method of extractive fermentation. The protease is thermostable, pH tolerant, and compatible with commercial laundry detergents. The protease purified and characterized in this study was found to be superior to endogenous protease already present in commercial laundry detergents. The enzyme was purified to homogeneity by ammonium sulfate precipitation, concentration by ultrafiltration, anion-exchange chromatography, and gel filtration. The purified enzyme had a specific activity of 3256.05 U/mg and was found to be a monomeric protein with a molecular mass of 28 and 31 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE, respectively. Its maximum protease activity against casein was found to be at pH 10.5 and 50 degrees C. Proteolytic activity of the enzyme was detected by casein and gelatin zymography, which gave a very clear protease activity zone on gel that corresponded to the band obtained on SDS-PAGE and nondenaturing PAGE with a molecular mass of nearly 31 kDa. The purified enzyme was analyzed through matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and identified as a subtilisin class of protease. Specific serine protease inhibitors, suggesting the presence of serine residues at the active site, inhibited the enzyme significantly.

  14. One-dimensional filtration of pharmaceutical grade phyllosilicate dispersions.

    PubMed

    Viseras, C; Cerezo, P; Meeten, G H; Lopez-Galindo, A

    2001-04-17

    The filtration behaviour of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm UK) with similar sizes and different morphologies (fibrous and/or laminar) were selected as model clays. Sepiolite from Vicálvaro is an almost pure fibrous sample, Bentopharm presents a high amount of laminar particles and palygorskite from Turón is made up of similar percentages of laminar and fibrous particles. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Filtration measurements were taken and the corresponding filtration curves obtained. Finally, the desorptivity (S) of the filtration cakes was calculated and correlated to the textural characteristics of the materials, the solid fraction and mixing conditions. Filtration behaviour of the dispersions depended on all three of these factors. Laminar dispersions presented lower S values than fibrous dispersions. In the 2% w/v dispersions the bridging forces between particles did not permit formation of an interconnected network as in 10% w/v dispersions and, consequently, filtration times increased with the solid fraction (i.e. S values decreased). Regarding stability to pH changes, the results showed that filtration behaviour was highly sensitive to basic pH in the fibrous clay dispersions and almost insensitive in the laminar clay dispersions.

  15. 40 CFR 141.717 - Pre-filtration treatment toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface water or GWUDI source. (c) Bank filtration. Systems receive Cryptosporidium treatment credit for... paragraph. Systems using bank filtration when they begin source water monitoring under § 141.701(a) must... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Pre-filtration treatment toolbox...

  16. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    PubMed Central

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  17. Protein-tRNA Agarose Gel Retardation Assays for the Analysis of the N 6-threonylcarbamoyladenosine TcdA Function.

    PubMed

    Fernández, Francisco J; Gómez, Sara; Navas-Yuste, Sergio; López-Estepa, Miguel; Vega, M Cristina

    2017-06-21

    We demonstrate methods for the expression and purification of tRNA(UUU) in Escherichia coli and the analysis by gel retardation assays of the binding of tRNA(UUU) to TcdA, an N 6 -threonylcarbamoyladenosine (t 6 A) dehydratase, which cyclizes the threonylcarbamoyl side chain attached to A37 in the anticodon stem loop (ASL) of tRNAs to cyclic t 6 A (ct 6 A). Transcription of the synthetic gene encoding tRNA(UUU) is induced in E. coli with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and the cells containing tRNA are harvested 24 h post-induction. The RNA fraction is purified using the acid phenol extraction method. Pure tRNA is obtained by a gel filtration chromatography that efficiently separates the small-sized tRNA molecules from larger intact or fragmented nucleic acids. To analyze TcdA binding to tRNA(UUU), TcdA is mixed with tRNA(UUU) and separated on a native agarose gel at 4 °C. The free tRNA(UUU) migrates faster, while the TcdA-tRNA(UUU) complexes undergo a mobility retardation that can be observed upon staining of the gel. We demonstrate that TcdA is a tRNA(UUU)-binding enzyme. This gel retardation assay can be used to study TcdA mutants and the effects of additives and other proteins on binding.

  18. Selective separation of Eu{sup 3+} using polymer-enhanced ultrafiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, M.V.

    1994-03-01

    A process to selectively remove {sup 241}Am from liquid radioactive waste was investigated as an actinide separation method applicable to Hanford and other waste sites. The experimental procedures involved removal of Eu, a nonradioactive surrogate for Am, from aqueous solutions at pH 5 using organic polymers in conjunction with ultrafiltration. Commercially available polyacrylic acid (60,000 MW) and Pacific Northwest Laboratory`s (PNL) synthesized E3 copolymer ({approximately}10,000 MW) were tested. Test solutions containing 10 {mu}g/mL of Eu were dosed vath each polymer at various concentrations in order to bind Eu (i.e., by complexation and/or cation exchange) for subsequent rejection by an ultrafiltrationmore » coupon. Test solutions were filtered with and without polymer to determine if enhanced Eu separation could be achieved from polymer treatment. Both polymers significantly increased Eu removal. Optimum concentrations were 20 {mu}g/mL of polyacrylic acid and 100 {mu}g/mL of E3 for 100% Eu rejection by the Amicon PM10 membrane at 55 psi. In addition to enhancement of removal, the polymers selectively bound Eu over Na, suggesting that selective separation of Eu was possible. This suggests that polymer-enhanced ultrafiltration is a potential process for separation of {sup 241}Am from Hanford tank waste, further investigation of binding agents and membranes effective under very alkaline and high ionic strength is warranted. This process also has potential applications for selective separation of toxic metals from industrial process streams.« less

  19. Cumulative irritation potential among metronidazole gel 1%, metronidazole gel 0.75%, and azelaic acid gel 15%.

    PubMed

    Colón, Luz E; Johnson, Lori A; Gottschalk, Ronald W

    2007-04-01

    Topical therapy for rosacea aims to reduce inflammatory lesions and decrease erythema but can carry side effects such as stinging, pruritus, and burning. Metronidazole and azelaic acid gel 15% are U.S. Food and Drug Administration-approved for the treatment of rosacea. The current study was conducted to assess the cumulative irritation potential of 2 formulations of metronidazole 0.75% gel and 1% gel--and azelaic acid gel 15% over 21 days (N=36). Results of this study demonstrated a significantly greater poten tial for irritation from azelaic acid compared with metronidazole gel 0.75% (P < .0001), which had significantly greater potential for irritation compared with metronidazole gel 1% (P = .0054). Metronidazole gel 1% had a similar profile to white petrolatum.

  20. Filter aids influence on pressure drop across a filtration system

    NASA Astrophysics Data System (ADS)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  1. Thermoase-Derived Flaxseed Protein Hydrolysates and Membrane Ultrafiltration Peptide Fractions Have Systolic Blood Pressure-Lowering Effects in Spontaneously Hypertensive Rats

    PubMed Central

    Nwachukwu, Ifeanyi D.; Girgih, Abraham T.; Malomo, Sunday A.; Onuh, John O.; Aluko, Rotimi E.

    2014-01-01

    Thermoase-digested flaxseed protein hydrolysate (FPH) samples and ultrafiltration membrane-separated peptide fractions were initially evaluated for in vitro inhibition of angiotensin I-converting enzyme (ACE) and renin activities. The two most active FPH samples and their corresponding peptide fractions were subsequently tested for in vivo antihypertensive activity in spontaneously hypertensive rats (SHR). The FPH produced with 3% thermoase digestion showed the highest ACE- and renin-inhibitory activities. Whereas membrane ultrafiltration resulted in significant (p < 0.05) increases in ACE inhibition by the <1 and 1–3 kDa peptides, only a marginal improvement in renin-inhibitory activity was observed for virtually all the samples after membrane ultrafiltration. The FPH samples and membrane fractions were also effective in lowering systolic blood pressure (SBP) in SHR with the largest effect occurring after oral administration (200 mg/kg body weight) of the 1–3 kDa peptide fraction of the 2.5% FPH and the 3–5 kDa fraction of the 3% FPH. Such potent SBP-lowering capacity indicates the potential of flaxseed protein-derived bioactive peptides as ingredients for the formulation of antihypertensive functional foods and nutraceuticals. PMID:25302619

  2. The influence of algal organic matter produced by Microcystis aeruginosa on coagulation-ultrafiltration treatment of natural organic matter.

    PubMed

    Xu, Jie; Zhao, Yanxia; Gao, Baoyu; Han, Songlin; Zhao, Qian; Liu, Xiaoli

    2018-04-01

    Cyanobacterial bloom causes the release of algal organic matter (AOM), which inevitably affects the treatment processes of natural organic matter (NOM). This study works on treating micro-polluted surface water (SW) by emerging coagulant, namely titanium sulfate (Ti(SO 4 ) 2 ), followed by Low Pressure Ultrafiltration (LPUF) technology. In particular, we explored the respective influence of extracellular organic matter (EOM) and intracellular organic matter (IOM) on synergetic EOM-NOM/IOM-NOM removal, functional mechanisms and subsequent filtration performance. Results show that the IOM inclusion in surface water body facilitated synergic IOM-NOM composite pollutants removal by Ti(SO 4 ) 2 , wherein loosely-aggregated flocs were produced, resulting in floc cake layer with rich porosity and permeability during LPUF. On the contrary, the surface water invaded by EOM pollutants increased Ti(SO 4 ) 2 coagulation burden, with substantially deteriorated both UV 254 -represented and dissolved organic matter (DOC) removal. Corresponded with the weak Ti(SO 4 ) 2 coagulation for EOM-NOM removal was the resultant serious membrane fouling during LPUF procedure, wherein dense cake layer was formed due to the compact structure of flocs. Although the IOM enhanced NOM removal with reduced Ti(SO 4 ) 2 dose and yielded mitigated membrane fouling, larger percentage of irreversible fouling was seen than NOM and EOM-NOM cases, which was most likely due to the substances with small molecular weight, such as microcystin, adhering in membrane pores. This research would provide theoretical basis for dose selection and process design during AOM-NOM water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Committee Report: Metrics & Methods for MF/UF System Optimization

    EPA Science Inventory

    After a membrane filtration (i.e., microfiltration (MF) and ultrafiltration (UF)) system is designed, installed, and commissioned, it is essential that the plant is well-maintained in order to proactively identify potential design or equipment problems and ensure its proper opera...

  4. REMOVAL OF MICROBIAL CONTAMINANTS IN DRINKING WATER: KOCH MEMBRANE SYSTEMS, HF-82-35-PMPW™ ULTRAFILTRATION MEMBRANE

    EPA Science Inventory

    Two Koch Membrane Systems HF-82-35-PMPW ultrafiltration membrane cartridges were tested for removal of viruses, bacteria, and protozoan cysts at NSF’s Drinking Water Treatment Systems Laboratory. The ETV testing was conducted as part of a series of evaluations of the Expeditiona...

  5. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration sampling requirements. 141...-Systems Serving 10,000 or More People § 141.174 Filtration sampling requirements. (a) Monitoring... sampling every four hours in lieu of continuous monitoring, but for no more than five working days...

  6. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Filtration sampling requirements. 141...-Systems Serving 10,000 or More People § 141.174 Filtration sampling requirements. (a) Monitoring... sampling every four hours in lieu of continuous monitoring, but for no more than five working days...

  7. 10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  8. Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent.

    PubMed

    Doke, Suresh M; Yadav, Ganapati D

    2014-12-01

    In this study, titania nanoparticles were synthesized by combustion and used to make ultrafiltration membrane. Characteristics of titania membranes such as textural evaluation, surface morphology, pure water permeability and protein rejection were investigated. Titania membrane sintered at 450 °C showed pure water permeability 11 × 10−2 L h−1 m−2 kPa−1 and 76% protein rejection. The membrane presented good water flux and retention properties with regards to protein and methylene blue dye. Ultrafiltration process was operated at lower pressure (100 kPa) and showed 99% removal of methylene blue using adsorptive micellar flocculation at sodium dodecyl sulfate concentration below its critical micellar concentration. Ferric chloride was used as the coagulant. The method of making titania membrane and its use are new. These studies can be extended to other dyes and pollutants.

  9. Life Support Filtration System Trade Study for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  10. Ultrafiltration membrane reactors for enzymatic resolution of amino acids: design model and optimization.

    PubMed

    Bódalo, A; Gómez, J L.; Gómez, E; Bastida, J; Máximo, M F.; Montiel, M C.

    2001-03-08

    In this paper the possibility of continuous resolution of DL-phenylalanine, catalyzed by L-aminoacylase in a ultrafiltration membrane reactor (UFMR) is presented. A simple design model, based on previous kinetic studies, has been demonstrated to be capable of describing the behavior of the experimental system. The model has been used to determine the optimal experimental conditions to carry out the asymmetrical hydrolysis of N-acetyl-DL-phenylalanine.

  11. Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.

    PubMed

    Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R

    2010-01-01

    Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed

  13. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  14. 1. Perspective view southwest of filtration bed with earth mounded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective view southwest of filtration bed with earth mounded over facility. Armory Street appears in the foreground. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  15. More Efficient Sodium Removal by Ultrafiltration Compared to Diuretics in Acute Heart Failure; Underexplored and Overstated.

    PubMed

    Kazory, Amir

    2016-01-01

    Enhanced removal of sodium has often been cited as an advantage of ultrafiltration (UF) therapy over diuretic-based medical treatment in the management of acute decompensated heart failure. However, so far clinical studies have rarely evaluated the precise magnitude of sodium removal, and this assumption is largely based on the physiologic mechanisms and anecdotal observations that predate the contemporary management of heart failure. Recent data suggest that patients treated with UF experience substantial reduction in urinary sodium excretion possibly due to prolonged intravascular volume contraction. Consequently, the efficient sodium extraction through production of isotonic ultrafiltrate can be offset by urine hypotonicity. Based on the limited currently available data, it seems unlikely that the persistent benefits of UF could be solely explained by its greater efficiency in sodium removal. The design of the future studies should include frequent measurements of urine sodium to precisely compare the impact of UF and diuretics on sodium balance. © 2016 S. Karger AG, Basel.

  16. Block copolymer self-assembly derived ultrafiltration membranes: From science to start-up

    NASA Astrophysics Data System (ADS)

    Wiesner, Ulrich

    In the last ten years a novel method to generate asymmetric ultrafiltration membranes has been established. It is based on the combination of block copolymer self-assembly with non-solvent induced phase separation (NIPS) and is now referred to as SNIPS. NIPS as an industry proven method for the formation of phase inversion membranes opening a pathway to scale up and commercialization of these membranes. The combination of NIPS with block copolymer self-assembly leads to asymmetric membranes with narrow pore size distributions in the top surface layer (so called isoporous membranes) as well as high pore densities, thereby potentially combining high resolution with high flux in membrane separation processes. Such membranes have potential applications in the biopharmaceutical industry where a large fraction of the costs are currently associated with time-consuming non-membrane based separation processes. This talk will describe a family of isoporous ultrafiltration membranes based on the self-assembly behavior of an ABC triblock terpolymer which has led to the formation of a start-up company out of Cornell University. After introduction of the SNIPS process in general, and its application to such ABC triblock terpolymers in particular, open scientific questions associated with the formation mechanisms of the top surface separation layer in such membranes is discussed, which is at the heart of enabling high performance separation behavior. Furthermore, challenges translating scientific work into industrial settings are highlighted.

  17. Isolation, purification, and immunological activities of a low-molecular-weight polysaccharide from the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes).

    PubMed

    Zhu, Lina; Luo, Xi; Tang, Qingjiu; Liu, Yanfang; Zhou, Shuai; Yang, Yan; Zhang, Jingsong

    2013-01-01

    To obtain a low-molecular-weight polysaccharide with immuno-enhancing activity, hot water extract of Ganoderma lucidum fruit bodies was separated by membrane ultrafiltration, anion exchange, and gel filtration chromatography, and the immunological activities of fractions were assessed on the basis of nitric oxide production by RAW 264.7 macrophages. A novel polysaccharide (TB3-2-2) was successfully isolated and purified. TB3-2-2 is a homogeneous polysaccharide, with a relative molecular weight of 5.11 × 103 Da, identified by high-performance liquid chromatography and was composed of galactose and glucose in a molar ratio of 2:3 determined by high-performance anion exchange chromatography. TB3-2-2 had a carbohydrate content of 99%, as measured using the phenol-sulfuric acid method. Proliferation of mouse spleen lymphocytes and the expression level of interleukin-6 was significantly increased by TB3-2-2. Results indicate that the low-molecular-weight polysaccharide with immunological activity in G. lucidum is worthy of further research and development.

  18. Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide.

    PubMed

    Nakamura, Michiko; Miura, Sayaka; Takagaki, Akiko; Nanjo, Fumio

    2017-05-01

    Crude tea polysaccharide (crude TPS) was prepared from instant green tea by ethanol precipitation followed by ultrafiltration membrane treatment and its effects on blood lipid, liver lipid, and fecal lipid levels were examined with Sprague-Dawley rats fed a high-fat diet. Although crude TPS showed no effects on the serum lipid levels, it suppressed the liver lipid accumulation and increased the fecal excretion of dietary fat. Then, the structural features of crude TPS were investigated. After separation of crude TPS by DEAE-cellulose and gel-filtration column chromatography, two kinds of neutral tea polysaccharides (NTPS-LP and NTPS-HH) and an acidic polysaccharide (ATPS-MH) were obtained. According to monosaccharide composition, methylation, and NMR analyses, NTPS-LP, NPTS-HH, and ATPS-MH were presumed to be starch, arabinogalactan with β-1,3-linked galactosyl backbone blanched at position 6 and with 1,5-linked arabinofuranosyl residues, and α-1,4-linked galacturonic acid backbone with arabinogalactan region, respectively.

  19. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study.

    PubMed

    Wu, Qiongying; Jia, Junqiang; Yan, Hui; Du, Jinjuan; Gui, Zhongzheng

    2015-06-01

    Silkworm pupa (Bombyx mori) protein was hydrolyzed using gastrointestinal endopeptidases (pepsin, trypsin and α-chymotrypsin). Then, the hydrolysate was purified sequentially by ultrafiltration, gel filtration chromatography and RP-HPLC. A novel ACE inhibitory peptide, Ala-Ser-Leu, with the IC50 value of 102.15μM, was identified by IT-MS/MS. This is the first report of Ala-Ser-Leu from natural protein. Lineweaver-Burk plots suggest that the peptide is a competitive inhibitor against ACE. The molecular docking studies revealed that the ACE inhibition of Ala-Ser-Leu is mainly attributed to forming very strong hydrogen bonds with the S1 pocket (Ala354) and the S2 pocket (Gln281 and His353). The results indicate that silkworm pupa (B. mori) protein or its gastrointestinal protease hydrolysate could be used as a functional ingredient in auxiliary therapeutic foods against hypertension. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Bromelain: from production to commercialisation.

    PubMed

    Ramli, Aizi Nor Mazila; Aznan, Tuan Norsyalieza Tuan; Illias, Rosli Md

    2017-03-01

    Bromelain is a mixture of proteolytic enzymes found in pineapple (Ananas comosus) plants. It can be found in several parts of the pineapple plant, including the stem, fruit, leaves and peel. High demand for bromelain has resulted in gradual increases in bromelain production. These increases have led to the need for a bromelain production strategy that yields more purified bromelain at a lower cost and with fewer production steps. Previously, bromelain was purified by conventional centrifugation, ultrafiltration and lyophilisation. Recently, the development of more modern purification techniques such as gel filtration, ion exchange chromatography, affinity chromatography, aqueous two-phase extraction and reverse micelle chromatography has resulted in increased industrial bromelain production worldwide. In addition, recombinant DNA technology has emerged as an alternative strategy for producing large amounts of ultrapure bromelain. An up-to-date compilation of data regarding the commercialisation of bromelain in the clinical, pharmaceutical and industrial fields is provided in this review. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates.

    PubMed

    Chen, Ning; Yang, Hongmei; Sun, Yi; Niu, Jun; Liu, Shuying

    2012-12-01

    Walnut proteins were hydrolyzed separately using three different proteases to obtain antioxidant peptides. The antioxidant activities of the hydrolysates were measured using 1,1-diphenyl-2-picryl hydrazyl (DPPH) assay. Among hydrolysates, pepsin hydrolysate obtained by 3h exhibited the highest antioxidant activities, which could also quench the hydroxyl radical, chelate ferrous ion, exhibit reducing power and inhibit the lipid peroxidation. Then, 3-h pepsin hydrolysates were purified sequentially by ultrafiltration, gel filtration and RP-HPLC. The sequence of the peptide with the highest antioxidative activity was identified to be Ala-Asp-Ala-Phe (423.23 Da) using RP-HPLC-ESI-MS, which was identified for the first time from walnut protein hydrolysates. Last, the inhibition of the peptide on lipid peroxidation was similar with that of reduced glutathione (GSH). These results indicate that the protein hydrolysates and/or its isolated peptides may be effectively used as food additives. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. 30. Valves under central corridor of filtration bed building. Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Valves under central corridor of filtration bed building. Main flood valves is at left and crossover valve is a right. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  3. Crumb rubber filtration: a potential technology for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2006-05-01

    The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).

  4. Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations

    NASA Astrophysics Data System (ADS)

    Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio

    2018-03-01

    We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.

  5. Nutrient Recovery from the Dry Grind Process Using Sequential Micro and Ultrafiltration of Thin Stillage

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1 um pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45 L/m**2/h (LMH)...

  6. Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment of drinking water: a pilot study.

    PubMed

    Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui

    2013-01-01

    This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.

  7. High concentration biotherapeutic formulation and ultrafiltration: Part 1 pressure limits.

    PubMed

    Lutz, Herb; Arias, Joshua; Zou, Yu

    2017-01-01

    High therapeutic dosage requirements and the desire for ease of administration drive the trend to subcutaneous administration using delivery systems such as subcutaneous pumps and prefilled syringes. Because of dosage volume limits, prefilled syringe administration requires higher concentration liquid formulations, limited to about 30 cP or roughly 100-300 g L -1 for mAb's. Ultrafiltration (UF) processes are routinely used to formulate biological therapeutics. This article considers pressure constraints on the UF process that may limit its ability to achieve high final product concentrations. A system hardware analysis shows that the ultrafiltration cassette pressure drop is the major factor limiting UF systems. Additional system design recommendations are also provided. The design and performance of a new cassette with a lower feed channel flow resistance is described along with 3D modeling of feed channel pressure drop. The implications of variations in cassette flow channel resistance for scaling up and setting specifications are considered. A recommendation for a maximum pressure specification is provided. A review of viscosity data and theory shows that molecular engineering, temperature, and the use of viscosity modifying excipients including pH adjustment can be used to achieve higher concentrations. The combined use of a low pressure drop cassette with excipients further increased final concentrations by 35%. Guidance is provided on system operation to control hydraulics during final concentration. These recommendations should allow one to design and operate systems to routinely achieve the 30 cP target final viscosity capable of delivery using a pre-filled syringe. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:113-124, 2017. © 2016 American Institute of Chemical Engineers.

  8. Recycled PET Nanofibers for Water Filtration Applications

    PubMed Central

    Zander, Nicole E.; Gillan, Margaret; Sweetser, Daniel

    2016-01-01

    Water shortage is an immediate and serious threat to our world population. Inexpensive and scalable methods to clean freshwater and wastewater are in high demand. Nanofiber filtration membranes represent a next generation nonwoven filter media due to their unique properties. Polyethlyene terephthalate (PET) is often used in the packaging of water and other commonly used materials, leading to a large amount of plastic waste often with limited incentive for recycling (few value-added uses). Here, we present work in the generation of nanofiber liquid filtration membranes from PET plastic bottles and demonstrate their use in microfiltration. PET nanofiber membranes were formed via solution electrospinning with fiber diameters as low as ca. 100 nm. Filtration efficiency was tested with latex beads with sizes ranging from 30 to 2000 nm. Greater than 99% of the beads as small as 500 nm were removed using gravity filtration. To reduce biofouling, the mats were functionalized with quaternary ammonium and biguanide biocides. The biguanide functionalized mats achieved 6 log reduction for both gram negative and gram positive bacteria. PMID:28773380

  9. 22. Float located adjacent to entry stair in filtration bed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  10. 2. View east of filtration bed building. Access bridge to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View east of filtration bed building. Access bridge to earth covering over reinforced concrete roof is at center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  11. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then,more » the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.« less

  12. Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface.

    PubMed

    Zhao, Xinzhen; He, Chunju

    2015-08-19

    On the basis of the excellent fouling resistance of zwitterionic materials, the super antifouling polyvinylidene fluoride (PVDF) membrane was efficiently prepared though one-step sulfonation of PVDF and polyaniline blend membrane in situ. The self-doped sulfonated polyaniline (SPANI) was generated as a novel zwitterionic polymer to improve the antifouling property of PVDF ultrafiltration membrane used in sewage treatment. Surface attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, surface zeta potential, and water contact angle demonstrated the successful fabrication of zwitterionic interface by convenient sulfonation modification. The static adsorption fouling test showed the quantified adsorption mass of bovine serum albumin (BSA) pollutant on the PVDF/SPANI membrane surface decreases to 3(±2) μg/cm(2), and the water flux recovery ratio (FRR) values were no less than 95% for the three model pollutants of BSA, sodium alginate (SA), and humic acid (HA), which were corresponding hydrophobic, hydrophilic, and natural pollutants in sewage, respectively. This Research Article demonstrated the antifouling advantages of zwitterionic SPANI and aimed to provide a simple method for the large scale preparation of zwitterionic antifouling ultrafiltration membranes.

  13. Long-Term Leukocyte Filtration Should Be Avoided during Extracorporeal Circulation

    PubMed Central

    Tang, Jiali; Tao, Kaiyu; Zhou, Jing; Zhang, Chongwei; Gong, Lina; Luo, Nanfu

    2013-01-01

    Filtration during extracorporeal circulation (ECC) not only removes but also activates leukocytes; therefore, long-term leukocyte filtration may cause adverse effects. In the present study, we tested this hypothesis by priming ECC with 300 mL of canine blood and examining filtration effects in 3 groups (n = 6 each) during 60 min ECC. In the control group (Group C) blood was filtrated with an arterial filter for 60 min; in long-term (Group L) and short-term (Group S) groups, blood was filtrated with a leukocyte filter for 60 and 5 min. We found that about 90% of leukocytes were removed after 5 min of filtration in both Groups L and S. Although leukocyte count continued to reduce, mean fluorescent intensities of CD11/CD18, free hemoglobin, and neutrophil elastase increased in Group L and were higher than those in Groups C and S at 60 min. Leukocyte rupture, cytoplasmic leakage, and circulating naked nuclei were also found in Group L. The data support our hypothesis that long-term filtration can induce inflammation and lead to leukocyte destruction. PMID:24453424

  14. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  15. Carprofen pharmacokinetics in plasma and in control and inflamed canine tissue fluid using in vivo ultrafiltration.

    PubMed

    Messenger, K M; Wofford, J A; Papich, M G

    2016-02-01

    Measurement of unbound drug concentrations at their sites of action is necessary for accurate PK/PD modeling. The objective of this study was to determine the unbound concentration of carprofen in canine interstitial fluid (ISF) using in vivo ultrafiltration and to compare pharmacokinetic parameters of free carprofen concentrations between inflamed and control tissue sites. We hypothesized that active concentrations of carprofen would exhibit different dispositions in ISF between inflamed vs. normal tissues. Bilateral ultrafiltration probes were placed subcutaneously in six healthy Beagle dogs 12 h prior to induction of inflammation. Two milliliters of either 2% carrageenan or saline control was injected subcutaneously at each probe site, 12 h prior to intravenous carprofen (4 mg/kg) administration. Plasma and ISF samples were collected at regular intervals for 72 h, and carprofen concentrations were determined using HPLC. Prostaglandin E2 (PGE2 ) concentrations were quantified in ISF using ELISA. Unbound carprofen concentrations were higher in ISF compared with predicted unbound plasma drug concentrations. Concentrations were not significantly higher in inflamed ISF compared with control ISF. Compartmental modeling was used to generate pharmacokinetic parameter estimates, which were not significantly different between sites. Terminal half-life (T½) was longer in the ISF compared with plasma. PGE2 in ISF decreased following administration of carprofen. In vivo ultrafiltration is a reliable method to determine unbound carprofen in ISF, and that disposition of unbound drug into tissue is much higher than predicted from unbound drug concentration in plasma. However, concentrations and pharmacokinetic parameter estimates are not significantly different in inflamed vs. un-inflamed tissues. © 2015 John Wiley & Sons Ltd.

  16. Vision-related quality of life following glaucoma filtration surgery.

    PubMed

    Hirooka, Kazuyuki; Nitta, Eri; Ukegawa, Kaori; Tsujikawa, Akitaka

    2017-05-12

    To evaluate vision-related quality of life (VR-QOL) following glaucoma filtration surgery. A total of 103 glaucoma patients scheduled to undergo glaucoma filtration surgery. Prior to and at three months after glaucoma filtration surgery, trabeculectomy or EX-PRESS, all patients completed the 25-item National Eye Institute Visual Function Questionnaire (VFQ-25). A total of 48 patients underwent combined cataract and filtration surgery. The clinical data collected pre- and postoperatively included best-corrected visual acuity (BCVA) and intraocular pressure (IOP). The IOP decreased significantly from 19.0 ± 8.1 mmHg to 9.7 ± 3.9 mmHg (P < 0.001). Preoperative VFQ-25 composite score (65.8 ± 15.6) was similar to the postoperative score (67.8 ± 16.6). A significantly improved VFQ-25 composite score (pre: 63.2 ± 17.1, post: 67.7 ± 17.8; P = 0.001) was observed in the patients who underwent combined cataract and filtration surgery. There was a significant association between the BCVA changes in the operated eye and the changes in the VFQ-25 composite score (r = -0.315, P = 0.003). Although glaucoma filtration surgery by itself did not decrease the VR-QOL in glaucoma patients, there was significant improvement in the VR-QOL after the patients underwent combined cataract and glaucoma filtration surgery.

  17. Enhanced permeability and antifouling performance of cellulose acetate ultrafiltration membrane assisted by l-DOPA functionalized halloysite nanotubes.

    PubMed

    Mu, Keguang; Zhang, Dalun; Shao, Ziqiang; Qin, Dujian; Wang, Yalong; Wang, Shuo

    2017-10-15

    l-Dopa functionalized halloysite nanotubes (HNTs) were prepared by the self-polymerization of l-dopa in the weak alkaline condition. Then different contents of l-dopa coated HNTs (LPDHNTs) were blended into cellulose acetate to prepare enhanced performance ultrafiltration membranes via the phase inversion method. The HNTs and LPDHNTs were characterized by FTIR, XPS, and TEM anysis. And the membranes morphologies, separation performance, antifouling performance, mechanical properties and hydrophilicity were also investigated. It was found that the composite membranes exhibited excellent antifouling performance. The pure water flux of 3.0wt% LPDHNTs/CA membrane increased from 11.4Lm -2 h -1 to 92.9Lm -2 h -1 , while the EA rejection ratio of the membrane was about 91.2%. In addition, the mechanical properties of the resultant membranes were strengthened compared with the CA ultrafiltration membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Use of the Hemobag® for Modified Ultrafiltration in a Jehovah’s Witness Patient Undergoing Cardiac Surgery

    PubMed Central

    Moskowitz, David M.; Klein, James J.; Shander, Aryeh; Perelman, Seth I.; McMurtry, Kirk A.; Cousineau, Katherine M.; Ergin, M. Arisan

    2006-01-01

    Abstract: Modified ultrafiltration is an important technique to concentrate the patient’s circulating blood volume and the residual whole blood in the extracorporeal circuit post-cardiopulmonary bypass. The Hemobag system is a device cleared by the US Food and Drug Administration and represents a novel and safe modification of traditional modified ultrafiltration systems. It is quick and easy to operate by the perfusionist during the hemoconcentration process. Hemoconcentration is accomplished by having the Hemobag “recovery loop” circuit separate from the extracorporeal circuit. This allows the surgeons to continue with surgery, decannulate, and administer protamine simultaneously while the Hemobag is in use. The successful use of the Hemobag in a Jehovah’s Witness patient has not been previously described in the literature. This case report describes how to set up and operate the Hemobag in a Jehovah’s Witness patient undergoing cardiac surgery that requires an extracorporeal circuit. PMID:17089515

  19. Novel Filtration Markers for GFR Estimation

    PubMed Central

    Inker, Lesley A.; Coresh, Josef; Levey, Andrew S.; Eckfeldt, John H.

    2017-01-01

    Creatinine-based glomerular filtration rate estimation (eGFRcr) has been improved and refined since the 1970s through both the Modification of Diet in Renal Disease (MDRD) Study equation in 1999 and the CKD Epidemiology Collaboration (CKD-EPI) equation in 2009, with current clinical practice dependent primarily on eGFR for accurate assessment of GFR. However, researchers and clinicians have recognized limitations of relying on creatinine as the only filtration marker, which can lead to inaccurate GFR estimates in certain populations due to the influence of non-GFR determinants of serum or plasma creatinine. Therefore, recent literature has proposed incorporation of multiple serum or plasma filtration markers into GFR estimation to improve precision and accuracy and decrease the impact of non-GFR determinants for any individual biomarker. To this end, the CKD-EPI combined creatinine-cystatin C equation (eGFRcr-cys) was developed in 2012 and demonstrated superior accuracy to equations relying on creatinine or cystatin C alone (eGFRcr or eGFRcys). Now, the focus has broadened to include additional novel filtration markers to further refine and improve GFR estimation. Beta-2-microglobulin (B2M) and beta-trace-protein (BTP) are two filtration markers with established assays that have been proposed as candidates for improving both GFR estimation and risk prediction. GFR estimating equations based on B2M and BTP have been developed and validated, with the CKD-EPI combined BTP-B2M equation (eGFRBTP-B2M) demonstrating similar performance to eGFR and eGFR. Additionally, several studies have demonstrated that both B2M and BTP are associated with outcomes in CKD patients, including cardiovascular events, ESRD and mortality. This review will primarily focus on these two biomarkers, and will highlight efforts to identify additional candidate biomarkers through metabolomics-based approaches. PMID:29333147

  20. THE ROLE OF FILTRATION IN PREVENTING WATERBORNE DISEASE

    EPA Science Inventory

    Filtration is an important treatment process in the removal of pathogenic microorganisms and the prevention of waterborne disease. Historically, filtration was responsible for reducing death and illness from waterborne disease in 1871 in Germany. Other early examples in the U.S. ...

  1. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  2. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  3. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  4. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  5. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    PubMed

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  6. 21. Overflow pipe in filtration bed. Located at each corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Overflow pipe in filtration bed. Located at each corner of the bed, the pipes drain off any excess water and maintain a limit on water depth. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. Evaluation of emerging factors blocking filtration of high-adjunct-ratio wort.

    PubMed

    Ma, Ting; Zhu, Linjiang; Zheng, Feiyun; Li, Yongxian; Li, Qi

    2014-08-20

    Corn starch has become a common adjunct for beer brewing in Chinese breweries. However, with increasing ratio of corn starch, problems like poor wort filtration performance arise, which will decrease production capacity of breweries. To solve this problem, factors affecting wort filtration were evaluated, such as the size of corn starch particle, special yellow floats formed during liquefaction of corn starch, and residual substance after liquefaction. The effects of different enzyme preparations including β-amylase and β-glucanase on filtration rate were also evaluated. The results indicate that the emerging yellow floats do not severely block filtration, while the fine and uniform-shape corn starch particle and its incompletely hydrolyzed residue after liquefaction are responsible for filtration blocking. Application of β-amylase preparation increased the filtration rate of liquefied corn starch. This study is useful for our insight into the filtration blocking problem arising in the process of high-adjunct-ratio beer brewing and also provides a feasible solution using enzyme preparations.

  8. Tolerability of clindamycin/tretinoin gel vs. tretinoin microsphere gel and adapalene gel.

    PubMed

    Leyden, James; Wortzman, Mitchell; Baldwin, Edward K

    2009-04-01

    Newer agents and formulations seek to improve the tolerability of topical retinoid therapy. Recently, a gel containing crystalline clindamycin 1.2% and tretinoin 0.025% (CLIN/RA) was approved by the U.S. Food and Drug Administration (FDA) for the treatment of treating mild-to-moderate acne. This single-center, randomized, evaluator-blind phase 1 study compared the tolerability of CLIN/RA to 0.1% tretinoin gel or 0.1% adapalene gel. Forty-five patients applied CLIN/RA once daily to one side of their face every day for 21 days. Patients were randomized to either tretinoin 0.1% (n = 23) or adapalene 0.1% (n = 22) on the contralateral side. A clinical evaluator assessed degree of erythema and scaling; patients provided subjective evaluations of burning, stinging, and itching. CLIN/RA was significantly better tolerated than was 0.1% tretinoin gel, as evidenced by significantly reduced erythema (P < 0.04), scaling (P < 0.03), itching (P < 0.02), burning (P < 0.03) and stinging (P < 0.04). A trend for greater erythema, scaling, and subjective discomfort for 0.1% adapalene gel compared to CLIN/RA was also evident.

  9. Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control.

    PubMed

    Kazner, C; Jamil, S; Phuntsho, S; Shon, H K; Wintgens, T; Vigneswaran, S

    2014-01-01

    While high quality water reuse based on dual membrane filtration (membrane filtration or ultrafiltration, followed by reverse osmosis) is expected to be progressively applied, treatment and sustainable management of the produced reverse osmosis concentrate (ROC) are still important issues. Forward osmosis (FO) is a promising technology for maximising water recovery and further dewatering ROC so that zero liquid discharge is produced. Elevated concentrations of organic and inorganic compounds may act as potential foulants of the concentrate desalting system, in that they consist of, for example, FO and a subsequent crystallizer. The present study investigated conditions under which the FO system can serve as concentration phase with the focus on its fouling propensity using model foulants and real ROC. Bulk organics from ROC consisted mainly of humic acids (HA) and building blocks since wastewater-derived biopolymers were retained by membrane filtration or ultrafiltration. Organic fouling of the FO system by ROC-derived bulk organics was low. HA was only adsorbed moderately at about 7% of the initial concentration, causing a minor flux decline of about 2-4%. However, scaling was a major impediment to this process if not properly controlled, for instance by pH adjustment or softening.

  10. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  11. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  12. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  13. [Dialysis and ultrafiltration therapy in patients with cardio-renal syndrome: recommendations of the working group "heart-kidney" of the German Cardiac Society and the German Society of Nephrology].

    PubMed

    Schwenger, V; Remppis, B A; Westenfeld, R; Weinreich, T; Brunkhorst, R; Schieren, G; Krumme, B; Haller, H; Schmieder, R; Schlieper, G; Frye, B; Hoppe, U C; Hoyer, J; Keller, T; Blumenstein, M; Schunkert, H; Mahfoud, F; Rump, L C

    2014-02-01

    Renal failure is common in patients with severe heart failure. This complex pathophysiological interaction has been classified as cardio-renal syndrome. In these patients hydropic decompensation is the main cause of hospitalization. In patients with refractory heart failure, characterized by diuretic resistance and congestion due to volume overload, ultrafiltration has to be considered. In acute decompensated heart failure with worsening of renal function, extracorporeal ultrafiltration is the preferred treatment modality. On the other hand, patients suffering from chronic decompensated heart failure, particularly patients with ascites, will profit from the treatment specific advantages of peritoneal ultrafiltration. Prerequisite for an optimized care of patients with cardio-renal syndrome is the close collaboration among intensive care doctors, cardiologists and nephrologists. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  15. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    NASA Astrophysics Data System (ADS)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  16. UTEX LEACHING, THICKENING AND FILTRATION TESTS. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, A.; George, D.R.; Thomas, P.N.

    1954-03-15

    A series of leaching, thickening, and filtration tests was undertaken to determine minimum conditions for high uranium extractions and obtain thickening and filtration data. The ore represented by the sample responded to cold and hot leaching with the minimum condition for uranium extraction being 500 pounds of H/ sub 2/SO/sub 4/ per ton and five pounds NaClO/sub 3/ per ton leached at room temperature for l6 hours with uranium extraction of over 95%. Thickening and filtration were economical if a reagent such as S-3000 or Guar gum was used. (auth)

  17. Removal of pathogens using riverbank filtration

    NASA Astrophysics Data System (ADS)

    Cote, M. M.; Emelko, M. B.; Thomson, N. R.

    2003-04-01

    Although more than hundred years old, in situ or Riverbank Filtration (RBF) has undergone a renewed interest in North America because of its potential as a surface water pre-treatment tool for removal of pathogenic microorganisms. A new RBF research field site has been constructed along the banks of the Grand River in Kitchener, Ontario, Canada to assess factors influencing pathogen removal in the subsurface. Implementation of RBF and appropriate design of subsequent treatment (UV, chlorination, etc.) processes requires successful quantification of in situ removals of Cryptosporidium parvum or a reliable surrogate parameter. C.~parvum is often present in surface water at low indigenous concentrations and can be difficult to detect in well effluents. Since releases of inactivated C.~parvum at concentrations high enough for detection in well effluents are cost prohibitive, other approaches for demonstrating effective in situ filtration of C.~parvum must be considered; these include the use of other microbial species or microspheres as indicators of C.~parvum transport in the environment. Spores of Bacillus subtilis may be considered reasonable indicators of C.~parvum removal by in situ filtration because of their size (˜1 μm in diameter), spherical shape, relatively high indigenous concentration is many surface waters, and relative ease of enumeration. Based on conventional particle filtration theory and assuming equivalent chemical interactions for all particle sizes, a 1 μm B.~subtilis spore will be removed less readily than a larger C. parvum oocyst (4-6 μm) in an ideal granular filter. Preliminary full-scale data obtained from a high rate RBF production well near the new RBF test site demonstrated greater than 1 log removal of B.~subtilis spores. This observed spore removal is higher than that prescribed by the proposed U.S. Long Term 2 Enhanced Surface Water Treatment Rule for C.~parvum. To further investigate the removal relationship between C

  18. A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1982-01-01

    A slit sieve model has been used to develop a general correlation between the average pore size of the upstream surface of a membrane and the molecular weight of the solute which it retains by better than 80%. The pore size is determined by means of the correlation using the high retention data from an ultrafiltration (UF) or a reverse osmosis (RO) experiment. The pore population density can also be calculated from the flux data via appropriate equations.

  19. Development and application of novelty pretreatment method for the concurrent quantitation of eleven water-soluble B vitamins in ultrafiltrates after renal replacement therapy.

    PubMed

    Wirkus, Dorota; Jakubus, Aleksandra; Owczuk, Radosław; Stepnowski, Piotr; Paszkiewicz, Monika

    2017-02-01

    Continous renal replacement therapy (CRRT) is particularly recommended for septic shock patients in intensive care units. The CRRT technique used most frequently is high volume continuous veno-venous haemofiltration. It provides a high rate of clearance of uremic toxins and inflammatory cytokines. However, it should also be taken into account that substances important for homeostasis may be concurrently unintentionally removed. Accordingly, water-soluble vitamins can be removed during continuous renal replacement therapy, and the estimate of the loss is critical to ensure appropriate supplementation. The aim of this work was to develop a simple methodology for a purification step prior to the LC-MS/MS determination of water-soluble vitamins in ultrafiltrate samples. For this purpose, two types of resin and a mix of resins were used as sorbents for the purification step. Moreover, parameters such as the amount of resin and the extraction time were optimized. The LC-MS/MS method was developed and validated for final determination of 11 vitamins. The results demonstrated the high purification capability of DEAE Sephadex resin with recoveries between 65 and 101% for water-soluble vitamins from ultrafiltrate samples. An optimized method was applied to assess the loss of B-group vitamins in patients after 24h of renal replacement therapy. The loss of vitamins B2, B6 pyridoxamine, B6 pyridoxal, B7, B1, and B5 in ultrafiltrates was similar in all patients. In the native ultrafiltrates, vitamins B6 pyridoxine, B9 and B12 were not detected. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Pharmacokinetic analysis of flomoxef in children undergoing cardiopulmonary bypass and modified ultrafiltration.

    PubMed

    Masuda, Zenichi; Kurosaki, Yuji; Ishino, Kozo; Yamauchi, Keita; Sano, Shunji

    2008-04-01

    Cardiopulmonary bypass (CPB) induces changes in the pharmacokinetics of drugs. The purpose of this study was to model the pharmacokinetics of flomoxef, a cephalosporin antibiotic, in pediatric cardiac surgery. Each patient received a flomoxef dose of 30 mg/kg as a bolus after the induction of anesthesia and an additional dose (1 g for a child weighing < 10 kg, 2 g for > or = 10 kg) was injected into the CPB prime. Modified ultrafiltration (MUF) was routinely performed. Blood samples, urine, and ultrafiltrate were collected. In seven patients (group I), serum flomoxef concentration-time courses were analyzed by a modified two-compartment model. Utilizing the estimated parameters, serum concentrations were simulated in another eight patients (group II). The initiation of CPB resulted in an abrupt increase in serum flomoxef concentrations in group I; however, concentrations declined biexponentially. The amount of excreted flomoxef in the urine and by MUF was 47% +/- 8% of the total administered dose. In group II, an excellent fit was found between the values calculated by the program and the observed serum concentrations expressed; most of the performance errors were <1.0. There was no difference in any kinetic parameter between group I and groups I + II (n = 15). The pharmacokinetics of flomoxef in children undergoing CPB and MUF were well fitted to a modified two-compartment model. Using the kinetic data from this study, the individualization of dosage regimens for prophylactic use of flomoxef might be possible.

  1. Functional principal component analysis of glomerular filtration rate curves after kidney transplant.

    PubMed

    Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo

    2017-01-01

    This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.

  2. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    PubMed

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  3. Centrifugal ultrafiltration of human serum for improving immunoglobulin A quantification using attenuated total reflectance infrared spectroscopy.

    PubMed

    Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Bryanton, Janet; Bigsby, Kathryn; Shaw, R Anthony

    2018-02-20

    Attenuated total reflectance infrared (ATR-IR) spectroscopy is a simple, rapid and cost-effective method for the analysis of serum. However, the complex nature of serum remains a limiting factor to the reliability of this method. We investigated the benefits of coupling the centrifugal ultrafiltration with ATR-IR spectroscopy for quantification of human serum IgA concentration. Human serum samples (n = 196) were analyzed for IgA using an immunoturbidimetric assay. ATR-IR spectra were acquired for whole serum samples and for the retentate (residue) reconstituted with saline following 300 kDa centrifugal ultrafiltration. IR-based analytical methods were developed for each of the two spectroscopic datasets, and the accuracy of each of the two methods compared. Analytical methods were based upon partial least squares regression (PLSR) calibration models - one with 5-PLS factors (for whole serum) and the second with 9-PLS factors (for the reconstituted retentate). Comparison of the two sets of IR-based analytical results to reference IgA values revealed improvements in the Pearson correlation coefficient (from 0.66 to 0.76), and the root mean squared error of prediction in IR-based IgA concentrations (from 102 to 79 mg/dL) for the ultrafiltration retentate-based method as compared to the method built upon whole serum spectra. Depleting human serum low molecular weight proteins using a 300 kDa centrifugal filter thus enhances the accuracy IgA quantification by ATR-IR spectroscopy. Further evaluation and optimization of this general approach may ultimately lead to routine analysis of a range of high molecular-weight analytical targets that are otherwise unsuitable for IR-based analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In vitro granulocyte adherence and in vivo margination: two associated complement-dependent functions. Studies based on the acute neutropenia of filtration leukophoresis.

    PubMed

    Fehr, J; Jacob, H S

    1977-09-01

    To study mechanisms and mediators regulating the distribution of intravascular granulocytes between circulating and marginated pools, a human model with extreme transient margination, the neutropenia of continuous flow filtration leukophoresis, was analyzed. Studies in animals demonstrated the existence of a complement (C)-derived granulocytopenia-inducing factor. Thus, autologous plasma, exposed to nylon fibers (NF) of the filtration system, produced an acute selective decrement of circulating granulocytes and monocytes. This phenomenon was blocked by decomplementing plasma, by pretreatment of plasma with EDTA or hydrazine, and by preheating at 56 degrees C, but did occur after recombination of heat-inactivated and hydrazine-treated plasma before NF exposure. Preheating plasma at 50 degrees C did not inhibit the neutropenic response, suggesting involvement of the classical pathway of C activation. Ultrafiltration studies indicated that the NF-provoked neutropenia-inducing factor has a mol wt in the range of 10,000-30,000, and is heat stable (56 degrees C). To analyze the hypothesis that C- induced neutrophil margination might be consequent to increased cell adhesiveness to endothelial surfaces, the role of C in promoting granulocyte adherence was evaluated in vitro. Measured with a plastic Petridish assay, granulocyte adherence was significantly reduced in heat- inactivated (56 degrees C) and hydrazine-treated plasma, but adherence promoting capacity was restored by mixing the two plasmas, or by adding purified C3 to hydrazine-treated plasma. After exposure to activated C, neutrophils showed significantly increased adhesiveness which was maintained when cells were resuspended in heat-inactivated plasma, but progressively lost when resuspended in fresh plasma. On the basis of these results we conclude that granulocyte adhesiveness in vitro and margination in vivo are closely associated, C-dependent phenomena.

  5. A new approach to determining symmetry groups of filtration properties of porous media in nonlinear filtration laws

    NASA Astrophysics Data System (ADS)

    Maksimov, V. M.; Dmitriev, N. M.; Dmitriev, M. N.

    2017-04-01

    Theoretical analysis of filtration properties of porous media for orthotropic and monoclinic symmetry groups has been carried out. It is shown how it is possible to establish a type of symmetry with the help of special laboratory investigations and to distinguish groups with orthotropic and monoclinic symmetry. It is established that the criterion for solving this problem is the use of nonlinear Darcy law at high flow velocities, where the effects of asymmetry of filtration properties manifest themselves upon a change in the flow direction.

  6. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  7. Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies.

    PubMed

    Gao, Qiang; Duan, Qiang; Wang, Depei; Zhang, Yunze; Zheng, Chunyang

    2013-02-27

    To date, the multifunctional γ-aminobutyric acid (GABA) is mainly produced by microbial fermentation in industry. The purpose of this study was to find an effective method for separation and purification of 31.2 g/L initial GABA from the fermentation broth of Enterococcus raffinosus TCCC11660. To remove the impurities from fermentation broth, flocculation pretreatment using chitosan and sodium alginate was first implemented to facilitate subsequent filtration. Ultrafiltration followed two discontinuous diafiltration steps to effectively remove proteins and macromolecular pigments, and the resulting permeate was further decolored by DA201-CII resin at a high decoloration ratio and GABA recovery. Subsequently, ion exchange chromatography (IEC) with Amberlite 200C resin and gradient elution were applied for GABA separation from glutamate and arginine. Finally, GABA crystals of 99.1% purity were prepared via warm ethanol precipitation twice. Overall, our results reveal that the successive process including flocculation, filtration, ultrafiltration, decoloration, IEC, and crystallization is promising for scale-up GABA extraction from fermentation broth.

  8. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    PubMed

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-06-01

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m 2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  9. Recent progress in cell-free solubilization of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, M.S.; Aronson, H.; Feldman, K.

    1988-01-01

    Low rank coal has been solubilized using cell-free filtrates separated from cultures of Polyporus versicolor. Solubilization has been obtained with neat filtrates and with fractions collected from the neat filtrates after gel permeation chromatography. The coal solubilizing enzymes have been collected in enriched fractions with gpc. This increased relative purity has allowed the determination of the average molecular weight of this enzyme by gel permeation chromatography and by polyacrylamide gel electrophoresis. Rates of coal solubilization are dependent on the size of coal particles, mass of coal, temperature, pH, concentration of the cell-free filtrate, and the concentration of several inorganic ions.

  10. ETV REPORT - PHYSICAL REMOVAL OF CRYPTOSPORIDIUM OOCYSTS AND GIARDIA CYSTS IN DRINKING WATER, LEOPOLD MEMBRANE SYSTEMS ULTRABAR ULTRAFILTRATION SYSTEM WITH 60 INCH MARK III ELEMENT AT PITTSBURG, PA - NSF/00/10/EPADW395

    EPA Science Inventory

    Verification testing of the Leopold Ultrabar Mark III Ultrafiltration Systems was conducted from February 3-March9, 1999. The performance claim evaluated during field testing of the Leopold Ultrabar Mark III Ultrafiltration system was that the system is capable of a minimum 3 log...

  11. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration

    PubMed Central

    Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.

    2016-01-01

    ABSTRACT This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rprePEM = 74.8% ± 9.7%) than with CS-blocked membranes (rpreCS = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpostPEM = 99.5% ± 6.6% and rpostCS = 98.8% ± 7.7%) and tap water (rpostPEM = 89% ± 15% and rpostCS = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpostCS = 88.6% ± 4.3% and rpostPEM = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery

  12. The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative

    PubMed Central

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J. Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2011-01-01

    The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications. PMID:20677327

  13. Simple Syringe Filtration Methods for Reliably Examining Dissolved and Colloidal Trace Element Distributions in Remote Field Locations

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.

    2002-12-01

    and sea water. Filters are pre-cleaned in the lab using clean pH 2 water followed by a clean water rinse and then dried with clean air. Because of the significant pressure that must be placed on the syringe for some minutes to effect a filtration, a simple plastic press and stand has been devised. Polarization artifacts, which can affect this type of ultra-filtration, do not appear to be significant. This may be due to the comparatively large pore size of these filters (equivalent to approx. 40 kDa). These filters, in combination with the 0.45 micron filters, are being used in a multi-year study of trace elements in the Yukon River system.

  14. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron

  15. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethysmography of supine healthy male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n = 6) and during placebo infusion (n = 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 +/- 4 to 2,568 +/- 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion: mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3%, respectively, relative to preinfusion baseline values (p less than 0.05). Mean calf filtration, however, was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20% with ANP infusion, whereas blood pressure was unchanged. Calf conductance (blood flow/ arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, pharmacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchnic sites or both, while having the opposite effect in the leg.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, A.; Hamdy, M.K.

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline beta-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymic hydrolysis, decreased with the filtration time. The immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato beta-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcohol fermentation of the filtrate resulted in an alcohol contentmore » of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%.« less

  17. Development of a Simple and Rapid Method to Measure the Free Fraction of Tacrolimus in Plasma Using Ultrafiltration and LC-MS/MS.

    PubMed

    Stienstra, Nicolaas A; Sikma, Maaike A; van Dapperen, Anouk L; de Lange, Dylan W; van Maarseveen, Erik M

    2016-12-01

    Tacrolimus is an immunosuppressant mainly used in the prophylaxis of solid organ transplant rejection. Therapeutic drug monitoring of tacrolimus is essential for avoiding toxicity related to overexposure and transplant rejection from underexposure. Previous studies suggest that unbound tacrolimus concentrations in the plasma may serve as a better predictor of tacrolimus-associated nephrotoxicity and neurotoxicity compared to tacrolimus concentration in whole blood. Monitoring the plasma concentrations of unbound tacrolimus might be of interest in preventing tacrolimus-related toxicity. Therefore, the aim was to develop a method for the measurement of total and unbound tacrolimus concentrations in plasma. The sample preparation for the determination of the plasma concentrations of unbound tacrolimus consisted of an easy-to-use ultrafiltration method followed by solid-phase extraction. To determine the total concentration of tacrolimus in plasma, a simple method based on protein precipitation was developed. The extracts were injected into a Thermo Scientific HyPurity C18 column using gradient elution. The analytes were detected by liquid chromatography-tandem mass spectrometry with positive ionization. The method was validated over a linear range of 1.00-200 ng/L for unbound tacrolimus concentrations in plasma and 100-3200 ng/L for total plasma concentrations. The lower limit of quantification was 1.00 ng/L in ultrafiltrate and 100 ng/L in plasma. The inaccuracy and imprecision for the determination of unbound tacrolimus concentrations in ultrafiltrate and plasma showed a maximum coefficients of variation (CV) of 11.7% and a maximum bias of 3.8%. A rapid and easy method based on ultrafiltration and liquid chromatography-tandem mass spectrometry was established to measure the total and unbound tacrolimus concentrations in plasma. This method can facilitate further investigations on the relationship between plasma concentrations of unbound tacrolimus and clinical

  18. RIVERBANK FILTRATION: FATE OF DBP PRECURSORS AND SELECTED MICROORGANISMS

    EPA Science Inventory

    The fate of disinfection by-product (DBP) precursors and selected microorganisms during riverbank filtration (RBF) was monitored at three different mid-Western drinking water utilities. At all three sites, filtration (RBF) was monitored at three different mid-Western drinking wa...

  19. STORMWATER TREATMENT AT CRITICAL AREAS: EVALUATION OF FILTRATION MEDIA

    EPA Science Inventory

    Past research has identified urban runoff as a major contributor to the degradation of urban streams and rivers. Filtration, especially "slow" filtration, is of interest for stormwater runoff treatment because filters will work on intermittent flows without significant loss of ca...

  20. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    PubMed Central

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  1. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  2. Determination of moxifloxacin in human plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid chromatography- tandem mass spectrometry method.

    PubMed

    Pranger, Arianna D; Alffenaar, Jan-Willem C; Wessels, A Mireille A; Greijdanus, Ben; Uges, Donald R A

    2010-04-01

    Moxifloxacin (MFX) is a useful agent in the treatment of multi-drug-resistant tuberculosis (MDR-TB). At Tuberculosis Centre Beatrixoord, a referral center for tuberculosis in the Netherlands, approximately 36% of the patients have received MFX as treatment. Based on the variability of MFX AUC, the variability of in vitro susceptibility to MFX of M. tuberculosis, and the variability of penetration into sanctuary sites, measuring the concentration of MFX in plasma and cerebrospinal fluid (CSF) could be recommended. Therefore, a rapid and validated liquid chromatography-tandem mass spectrometry (LC-MS-MS) analyzing method with a simple pretreatment procedure was developed for therapeutic drug monitoring of MFX in human plasma and CSF. Because of the potential influence of protein binding on efficacy, we decided to determine both bound and unbound (ultrafiltrate) fraction of MFX. The calibration curves were linear in the therapeutic range of 0.05 to 5.0 mg/L plasma and CSF with CV in the range of -5.4% to 9.3%. MFX ultrafiltrate samples could be determined with the same method setup for analysis of MFX in CSF. The LC-MS-MS method developed in this study is suitable for monitoring MFX in human plasma, plasma ultrafiltrate, and CSF.

  3. Fluorometric Method for Determining the Efficiency of Spun-Glass Air Filtration Media

    PubMed Central

    Sullivan, James F.; Songer, Joseph R.; Mathis, Raymond G.

    1967-01-01

    The procedures and equipment needed to measure filtration efficiency by means of fluorescent aerosols are described. The filtration efficiency of individual lots of spun-glass air filtration medium or of entire air filtration systems employing such media was determined. Data relating to the comparative evaluation of spun-glass filter media by means of the fluorometric method described, as well as by conventional biological procedures, are presented. PMID:6031433

  4. [Study on assistant cleaning of ultrasound for the ultrafiltration membrane].

    PubMed

    Zhang, Guojun; Liu, Zhongzhou

    2003-11-01

    The effects of ultrasounds with different frequency on membrane performance were investigated in this paper. The experimental results show that there were nearly no effects of 20 W ultrasound on membrane retention coefficient, but it decreased seriously when the ultrasound power was above 30 W. On the basis of these results, low frequency ultrasound (20 W) was introduced to assist the chemical cleaning in the ultrafiltration process of wastewater from bank note printing works. The cleaning time could be shortened from 20-30 min to 5 min by the ultra-liberation and ultra-blend effects of ultrasound, therefore, the cleaning efficiency was highly improved. However, the fouling substances could not be cleaned entirely in the simple physical cleaning process by SEM analysis.

  5. Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2010-10-12

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  6. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  7. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties.

    PubMed

    Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick

    2010-08-30

    Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation

  8. Quantifying oil filtration effects on bearing life

    NASA Technical Reports Server (NTRS)

    Needelman, William M.; Zaretsky, Erwin V.

    1991-01-01

    Rolling-element bearing life is influenced by the number, size, and material properties of particles entering the Hertzian contact of the rolling element and raceway. In general, rolling-element bearing life increases with increasing level of oil filtration. Based upon test results, two equations are presented which allow for the adjustment of bearing L(sub 10) or catalog life based upon oil filter rating. It is recommended that where no oil filtration is used catalog life be reduced by 50 percent.

  9. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    PubMed

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  10. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes.

    PubMed

    Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2015-10-01

    With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant.

  11. 11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  12. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.

    PubMed

    Kartal, S N; Imamura, Y; Tsuchiya, F; Ohsato, K

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.

  13. Validation of sterilizing grade filtration.

    PubMed

    Jornitz, M W; Meltzer, T H

    2003-01-01

    Validation consideration of sterilizing grade filters, namely 0.2 micron, changed when FDA voiced concerns about the validity of Bacterial Challenge tests performed in the past. Such validation exercises are nowadays considered to be filter qualification. Filter validation requires more thorough analysis, especially Bacterial Challenge testing with the actual drug product under process conditions. To do so, viability testing is a necessity to determine the Bacterial Challenge test methodology. Additionally to these two compulsory tests, other evaluations like extractable, adsorption and chemical compatibility tests should be considered. PDA Technical Report # 26, Sterilizing Filtration of Liquids, describes all parameters and aspects required for the comprehensive validation of filters. The report is a most helpful tool for validation of liquid filters used in the biopharmaceutical industry. It sets the cornerstones of validation requirements and other filtration considerations.

  14. 12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  15. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    PubMed

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ROOM, REGULATES DISTRIBUTION OF WATER, CONTROLS POWER HOUSES. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow

  18. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  19. Purification of contaminated water by filtration through porous glass

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  20. Pathogen filtration to control plant disease outbreak in greenhouse production

    NASA Astrophysics Data System (ADS)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  1. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    PubMed

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Turbine lubricating oil: New filtration advances save time and money

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushar, T.

    1996-11-01

    This article describes benefits of filtration advances which include fewer forced outages, faster startups and reduced bearing wear. The importance of clean lubricating oil for turbines has been recognized for a long time, and almost all generating plants use some type of filtration system. Many older technologies and systems cannot remove enough of the contaminants to meet the needs of today`s turbines and operating conditions. Newer filtration technologies, such as multiphase filtration systems incorporating pressure coalescence filters to remove water, can reduce contaminants to levels that will help prevent unscheduled or forced outages, allow faster startups after an ongoing outage,more » and reduce wear of bearings and other components. Such preventive measures are more important than ever because of today`s increased competition and emphasis on cost control.« less

  3. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    PubMed

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

      Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  4. CONFORMANCE IMPROVEMENT USING GELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysismore » suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity

  5. Topical Silver Nanoparticles Result in Improved Bleb Function by Increasing Filtration and Reducing Fibrosis in a Rabbit Model of Filtration Surgery

    PubMed Central

    Butler, Michelle R.; Prospero Ponce, Claudia M.; Weinstock, Y. Etan; Orengo-Nania, Silvia; Chevez-Barrios, Patricia; Frankfort, Benjamin J.

    2013-01-01

    Purpose. To compare the effects of silver nanoparticles (AgNPs) and mitomycin C (MMC) on intraocular pressure (IOP) and external, histologic, and immunohistochemical bleb characteristics in a rabbit model of filtration surgery. Methods. Filtration surgery with concurrent topical application of either AgNPs or MMC was performed on 14 pigmented Dutch Belted rabbits. IOP and bleb characteristics were compared on postoperative day 1 and at weeks 1 through 6. Hematoxylin and eosin staining and smooth muscle actin (SMA) immunohistochemistry were performed at postoperative week 6. Results. Average IOP across all time points was reduced 5.8 and 3.8 mm Hg in AgNP- and MMC-treated eyes, respectively. At week 6, IOP was reduced 4.1 and 0.2 mm Hg in AgNP- and MMC-treated eyes, respectively. Blebs were smaller, thicker, and less ischemic in AgNP-treated eyes. AgNP-treated eyes showed less fibrosis and more stromal edema, suggesting increased filtration, and also had fewer SMA-positive myofibroblasts, suggesting reduced bleb contraction. AgNP-treated eyes showed more lymphocytes than MMC-treated eyes. There were few complications in both groups. Conclusions. In a rabbit model of filtration surgery, AgNPs are a reasonable alternative to MMC as adjunctive therapy. Compared to MMC, AgNPs result in an improved and sustained reduction of IOP and promote blebs with decreased fibrosis and ischemia as well as increased filtration despite a smaller overall size. This combination may offer an opportunity to promote long-term surgical IOP reduction with an improved complication profile. PMID:23766475

  6. Synthesis of superhydrophobic alumina membrane: Effects of sol-gel coating, steam impingement and water treatment

    NASA Astrophysics Data System (ADS)

    Ahmad, N. A.; Leo, C. P.; Ahmad, A. L.

    2013-11-01

    Ceramic membranes possess natural hydrophilicity thus tending to absorb water droplets. The absorption of water molecules on membrane surface reduces their application in filtration, membrane distillation, osmotic evaporation and membrane gas absorption. Fluoroalkylsilane (FAS) grafting allows the conversion of hydrophilic ceramic membranes into superhydrophobic thin layer, but it usually introduces a great increment of mass transfer resistance. In this study, superhydrophobic alumina membranes were synthesized by dip coating alumina support into sol-gel and grafted with the fluoroalkylsilane (FAS) named (heptadecafluoro-1,1,2,2-tetra hydrodecyl) triethoxysilane. Steam impingement and water treatment acted as additional steps to generate surface roughness on sol-gel and most importantly to reduce mass transfer resistance. Superhydrophobic alumina membrane with high water contact angle (158.4°) and low resistance (139.5 ± 24.9 G m-1) was successfully formed when the alumina membrane was dip coated into sol-gel for 7 s, treated with steam impingement for 1 min and immersed in hot water at 100 °C. However, the mass transfer resistance was greatly induced to 535.6 ± 23.5 G m-1 when the dip coating time was increased to 60 s. Long dip coating time contributes more on the blockage of porous structure rather than creates a thin film on the top of membrane surface. Reducing the pore size and porosity significantly due to increase of coating molecules deposited on the membrane. Steam impingement for 1 min promoted the formation of cones and valleys on the sol-gel, but the macro-roughness was destroyed when the steam impingement duration was extended to more than 3 min. The immersions of membranes into hot water at temperatures higher than 60 °C encouraged the formation of boehmite which enhances the formation of additional roughness and enlarges pore size greatly. Thus, this work showed that the formation of superhydrophobic alumina membrane with low resistance is

  7. 3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF THE FILTRATION APPARATUS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  8. Controlling Legionella and Pseudomonas aeruginosa re-growth in therapeutic spas: implementation of physical disinfection treatments, including UV/ultrafiltration, in a respiratory hydrotherapy system.

    PubMed

    Leoni, E; Sanna, T; Zanetti, F; Dallolio, L

    2015-12-01

    The study aimed to assess the efficacy of an integrated water safety plan (WSP) in controlling Legionella re-growth in a respiratory hydrotherapy system located in a spa centre, supplied with sulphurous water, which was initially colonized by Legionella pneumophila. Heterotrophic plate counts, Pseudomonas aeruginosa, Legionella spp. were detected in water samples taken 6-monthly from the hydrotherapy equipment (main circuit, entry to benches, final outlets). On the basis of the results obtained by the continuous monitoring and the changes in conditions, the original WSP, including physical treatments of water and waterlines, environmental surveillance and microbiological monitoring, was integrated introducing a UV/ultrafiltration system. The integrated treatment applied to the sulphurous water (microfiltration/UV irradiation/ultrafiltration), waterlines (superheated stream) and distal outlets (descaling/disinfection of nebulizers and nasal irrigators), ensured the removal of Legionella spp. and P. aeruginosa and a satisfactory microbiological quality over time. The environmental surveillance was successful in evaluating the hazard and identifying the most suitable preventive strategies to avoid Legionella re-growth. Ultrafiltration is a technology to take into account in the control of microbial contamination of therapeutic spas, since it does not modify the chemical composition of the water, thus allowing it to retain its therapeutic properties.

  9. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration.

    PubMed

    Lu, Ping; Amburgey, James E; Hill, Vincent R; Murphy, Jennifer L; Schneeberger, Chandra L; Arrowood, Michael J; Yuan, Tao

    2017-06-01

    Removal of Cryptosporidium-sized microspheres and Cryptosporidium parvum oocysts from swimming pools was investigated using diatomaceous earth (DE) precoat filtration and perlite-sand filtration. In pilot-scale experiments, microsphere removals of up to 2 log were obtained with 0.7 kg·DE/m 2 at a filtration rate of 5 m/h. A slightly higher microsphere removal (2.3 log) was obtained for these DE-precoated filters when the filtration rate was 3.6 m/h. Additionally, pilot-scale perlite-sand filters achieved greater than 2 log removal when at least 0.37 kg/m 2 of perlite was used compared to 0.1-0.4 log removal without perlite both at a surface loading rate of 37 m/h. Full-scale testing achieved 2.7 log of microspheres and oocysts removal when 0.7 kg·DE/m 2 was used at 3.6 m/h. Removals were significantly decreased by a 15-minute interruption of the flow (without any mechanical agitation) to the DE filter in pilot-scale studies, which was not observed in full-scale filters. Microsphere removals were 2.7 log by perlite-sand filtration in a full-scale swimming pool filter operated at 34 m/h with 0.5 kg/m 2 of perlite. The results demonstrate that either a DE precoat filter or a perlite-sand filter can improve the efficiency of removal of microspheres and oocysts from swimming pools over a standard sand filter under the conditions studied.

  11. Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches.

    PubMed

    Di Francesco, Alessandra; Roberti, Roberta; Martini, Camilla; Baraldi, Elena; Mari, Marta

    2015-12-01

    The Aureobasidium pullulans L1 and L8 strains are known as efficient biocontrol agents against several postharvest fungal pathogens. In order to better understand the mechanism of action underneath the antifungal activity of L1 and L8 strains, yeast cell filtrates grown at different times were evaluated in vivo against Monilinia laxa on peach. Lesion diameters on peach fruit were reduced by L1 and L8 culture filtrates of 42.5% and 67% respectively. The ability of these filtrates to inhibit M. laxa conidia germination and germ tube elongation was studied by in vitro assays. The results showed a 70% reduction of conidia germination for both strains while for germ tube elongation, it was 52% and 41% for L1 and L8 culture filtrates respectively. Finally, the activity of cell wall hydrolytic enzymes such as chitinase and glucanase in cell filtrates was analysed and the expression of genes encoding these activities was quantified during yeast growth. From 24h onward, both culture filtrates contained β,1-3,glucanase and. chitinase activities, the most pronounced of which was N-β-acetylglucosaminidase. Gene expression level encoding for these enzymes in L1 and L8 varied according to the strain. These results indicate that L1 and L8 strains culture filtrates retain the yeast antagonistic activity and suggest that the production of hydrolytic enzymes plays an important role in this activity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, A.; Hamdy, M.K.

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline /beta/-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymatic hydrolysis, decreased with the filtration time. THe immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato /beta/-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcoholic fermentation of the filtrate resulted in an alcohol contentmore » of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%. 17 refs.« less

  13. Effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  14. Filtration device for active effluents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M.; Meunier, G.

    1994-12-31

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.

  15. Evaluation of Filtration and UV Disinfection for Inactivation of ...

    EPA Pesticide Factsheets

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3) cartridge filtration. Two types of low-pressure UV systems were evaluated with and without pretreatment systems. The presentation will provide results for removal of particles and inactivation of MS2 bacteriophage (a viral surrogate) on two surface waters in northeastern Minnesota. Several studies, including a recent study conducted by Minnesota Department of Health (MDH), show that viruses occur in groundwater at a higher rate than expected. Based on preliminary results in Minnesota, virus occurrence appears to be correlated with recharge events such as heavy rainfall and snowmelt. These recharge events are predicted to become more extreme due to climate change impacts. Filtration, ultraviolet (UV) disinfection, and chlorination, can provide a multi-barrier approach for removal or inactivation of pathogens and DBP precursors in both groundwater and surface water systems.

  16. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  17. Definition of purified enzyme-linked immunosorbent assay antigens from the culture filtrate protein of Mycobacterium bovis by proteomic analysis.

    PubMed

    Cho, Yun Sang; Lee, Sang-Eun; Ko, Young Joon; Cho, Donghee; Lee, Hyang Shim; Hwang, Inyeong; Nam, Hyangmi; Heo, Eunjung; Kim, Jong Man; Jung, Sukchan

    2009-01-01

    Enzyme-linked immunosorbent assay (ELISA) has been developed as the ancillary diagnosis of bovine tuberculosis at ante-mortem to overcome the disadvantages of intradermal skin test. In this study, the antigenic proteins were purified, applied to bTB ELISA, and identified through proteomic analysis. Culture filtrate protein of Mycobacterium bovis was fractionated by MonoQ column chromatography, and examined the antigenicity by immunoblotting. The antigenic 20 kDa protein was in-gel digested and identified the antigenome by LTQ mass spectrometer and peptide match fingerprinting, which were MPB64, MPB70, MPB83, Fas, Smc, Nrp, RpoC, Transposase, LeuA, and MtbE. The 20 kDa protein exhibited the highest antigenicity to bTB positive cattle in ELISA and would be useful for bTB serological diagnosis.

  18. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration.

    PubMed

    Wang, Feng; Gao, Baoyu; Ma, Defang; Yue, Qinyan; Li, Ruihua; Wang, Qianwen

    2016-11-01

    In this study, reservoir water intended for drinking water supply was treated by (i) ultrafiltration (UF) (ii) coagulation (CW) (iii) coagulation combined with ultrafiltration (CW-UF). To probe the influences of three treatment processes on disinfection byproduct (DBP) precursors in source water, the changes of dissolved organic matter (DOM) amounts and physicochemical properties, and disinfection byproduct (DBP) formation characteristics during chlorine disinfection were investigated. Both carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) formation and speciation were analyzed. The influence of chlorine dose, contact time on DBP formation and speciation were also studied to optimize the disinfection conditions to minimize the DBP formation. Compared with UF and CW alone, CW-UF improved the dissolved organic carbon (DOC) removal from about 20 % to 59 %. The three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy analysis showed that CW-UF had high removal efficiency in microbial products (Region IV), fulvic acid-like (Region III) and humic acid-like (Region V). The total C-DBP was determined by the formation of trihalomethanes and trichloromethane was the most abundant species (40 %). The most abundant N-DBP species was dichloroacetonitrile (32.5 %), followed by trichloroactetonitrile. CW-UF effectively reduced the risk of DBPs in drinking water supply by reducing 30.8 % and 16.9 % DBPs formation potential compared with UF and CW alone. Increasing contact time improved the yields of both C-DBPs and N-DBPs. Chlorine dosage had slight influence on DBP yield in this study.

  19. Purification and characterisation of a hypoglycemic peptide from Momordica Charantia L. Var. abbreviata Ser.

    PubMed

    Yuan, Xiaoqing; Gu, Xiaohong; Tang, Jian

    2008-11-15

    A water-soluble peptide MC2-1-5 from Momordica charantia L. Var. Abbreviata Ser., with hypoglycemic effect, was purified by ultrafiltration, gel filtration chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The infrared (IR) spectra showed characteristic absorption peaks and the molecular mass of MC2-1-5 was found to be 3405.5174Da by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The sequence of its first 10 N-terminal amino acids was GHPYYSIKKS as determined by a protein sequencer. MC2-1-5 reduced the blood glucose level in alloxan-induced diabetic mice by 61.70% and 69.18% at 2 and 4h, respectively, after oral administration at a dose of 2mg/kg. The oral glucose tolerance test (OGTT) showed MC2-1-5 produced a reduction of 25.50%, 39.62% and 41.74% in blood glucose level after 1, 2 and 3h, respectively, of oral administration compared with a diabetic control. Copyright © 2008 Elsevier Ltd. All rights reserved.

  20. Purification of a novel pepsin inhibitor from Coriolus versicolor and its biochemical properties.

    PubMed

    Zhang, Guo-Qiang; Zhang, Qiu-Ping; Sun, Ying; Tian, Ya-Ping; Zhou, Nan-Di

    2012-03-01

    A novel pepsin inhibitor was isolated from Coriolus versicolor. The purification was carried out by a 2-step ultrafiltration followed by DEAE-52 and Mono Q ion-exchange chromatography. SDS-PAGE and gel filtration chromatography analysis showed that the isolated inhibitor was a 22.3 kDa protein with a single subunit. Heat stability of this inhibitor was estimated and only 7% of its inhibitory activity lost after treatment at 98 °C. The inhibitor was more specific against pepsin than several other proteases. The dissociation constant (K(i)) and concentration required for 50% pepsin inhibition (IC50) were 5.84 × 10(-5) M and 26.26 μg/mL, respectively. Apparent decrease of α-helix and increase of random coil were observed in the circular dichroism spectra of pepsin when an equimolar amount of the inhibitor was added. The inhibition mechanism of this inhibitor differs from the reported aspartic protease inhibitors, according to the secondary structure and the kinetic studies of this inhibitor. © 2012 Institute of Food Technologists®

  1. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis.

    PubMed

    Yu, Jie; Hu, Yuanliang; Xue, Mingxiong; Dun, Yaohao; Li, Shenao; Peng, Nan; Liang, Yunxiang; Zhao, Shumao

    2016-07-28

    The aim of this study was to isolate antioxidant peptides from an enzymatic hydrolysate of Spirulina platensis. A novel antioxidant peptide was obtained by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography, with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay used to measure the antioxidant activity, and the sequence was determined to be Pro-Asn-Asn (343.15 Da) by electrospray ionization tandem mass spectrometry. This peptide was synthesized to confirm its antioxidant properties, and it exhibited 81.44 ± 0.43% DPPH scavenging activity at 100 µg/ml, which was similar to that of glutathione (82.63 ± 0.56%). Furthermore, the superoxide anion and hydroxyl free-radical scavenging activities and the SOD activity of the peptide were 47.84 ± 0.49%, 54.01 ± 0.82%, and 12.55 ± 0.75%, respectively, at 10 mg/ml. These results indicate that S. platensis is a good source of antioxidant peptides, and that its hydrolysate may have important applications in the pharmaceutical and food industries.

  2. Comparison of Garnet Bead Media Filtration and Multimedia Filtration for Turbidity and Microbial Pathogen Removal

    EPA Science Inventory

    U.S. Environmental Protection Agency’s (EPA’s) National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio is evaluating drinking water filtration systems to determine their capability to meet the requirements of the Long-Term 2 Enhanced Surface Water Treatment Rule ...

  3. Health benefits of particle filtration

    EPA Science Inventory

    This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...

  4. Angiogenesis in Glaucoma Filtration Surgery and Neovascular Glaucoma-A Review

    PubMed Central

    Kim, Megan; Lee, Chelsea; Payne, Rachael; Yue, Beatrice Y.J.T.; Chang, Jin-Hong; Ying, Hongyu

    2015-01-01

    Angiogenesis may pose a clinical challenge in glaucoma, for example during the wound healing phase after glaucoma filtration surgery and in a severe form of secondary glaucoma called neovascular glaucoma (NVG). Up regulation of vascular endothelial growth factor (VEGF), a key mediator of angiogenesis, occurs in eyes that have undergone glaucoma filtration surgery, as well as those with NVG. This has led to studies investigating the ability of anti-VEGF therapy to improve outcomes, and we examine their findings with respect to the safety and efficacy of anti-VEGF agents, mainly bevacizumab and ranibizumab, in eyes that have undergone glaucoma filtration surgery or have NVG. Combining conventional therapies—such as anti-metabolites after filtration surgery and panretinal photocoagulation in NVG—and anti-VEGF drugs may achieve a synergetic effect, although further studies are required to evaluate the long-term efficacy of combination treatments. PMID:25980779

  5. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement.

    PubMed

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie; Schiffmann, Christian L; Andrades, Adarelys; von Bergen, Martin; Sawers, R Gary; Adrian, Lorenz

    2016-09-01

    Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring bacterium using only hydrogen as electron donor and halogenated organics as electron acceptor. Here, we studied proteins involved in the respiratory chain under non-denaturing conditions. Using blue native gel electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250-270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster containing subunit (CbdbA131) of the hydrogen uptake hydrogenase (Hup). No colocalisation between the catalytically active subunits of hydrogenase and reductive dehalogenase was found. By two-dimensional BN/SDS-PAGE the stability of the complex towards detergents was assessed, demonstrating stepwise disintegration with increasing detergent concentrations. Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein-protein interactions of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Antifouling performance of polytetrafluoroethylene and polyvinylidene fluoride ultrafiltration membranes during alkali/surfactant/polymer flooding wastewater treatment: Distinctions and mechanisms.

    PubMed

    Zhu, Youbing; Yu, Shuili; Zhang, Bing; Li, Jianfeng; Zhao, Dongsheng; Gu, Zhengyang; Gong, Chao; Liu, Guicai

    2018-06-18

    Alkali/surfactant/polymer (ASP) flooding wastewater is highly caustic, and membrane fouling is the main obstacle during ASP ultrafiltration (UF) treatment. To maintain favorable filtration performance, polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes were implemented here, and their antifouling properties and mechanisms were investigated based on the threshold flux theory. Compared with the PVDF membranes, the PTFE membranes exhibited superior antifouling properties with lower reductions in flux and smaller hydraulic resistance, and they presented a nearly identical pseudo-stable fouling rate at a later time point. In the fouling layers of the PTFE and PVDF membranes, anion polyacrylamide (APAM) was observed along with divalent/trivalent metal ions. The thermodynamic and molecular mechanisms of membrane fouling by APAM were elucidated using the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM), respectively. The calculated total interfacial free energy (mJ/m 2 ) of adhesion between the APAM and PTFE membranes was positive, and the value between the APAM and PVDF membranes was negative. Furthermore, the values and interaction distances of the measured intermolecular rupture and approaching forces were larger for APAM-PTFE than for APAM-PVDF. For the PTFE membranes, the positive free energies and smaller intermolecular interaction resulted in weaker APAM-PTFE adhesion and adsorption and therefore the lower levels of flux decline and the later achievement of the pseudo-stable fouling rate. Additionally, the total flux recoveries observed after physical cleaning reached 0.78-0.80 and 0.32-0.39 for the PTFE and PVDF membranes, respectively, which showed that the PTFE membranes can be cleaned easily. The PTFE membranes have considerable potential for extensive application in UF treatments for ASP wastewater. These results should promote understanding the essence of the threshold flux and the fouling

  7. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    PubMed

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  9. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  10. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  11. Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatanaga, Tetsuya; Whang, Chenduen; Cappuccini, F.

    1990-11-01

    Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor {alpha} (TNF-{alpha}) in vitro. BF is a protein with a molecular mass of 28kDa on reducing sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The active material was purified to homogeneity by a combination of affinity chromatography, PAGE, and high-pressure liquid chromatography. Amino acid sequence analysis revealed that BF is derived from the membrane TNF receptor. Purified BF blocks the lytic activity of recombinant human and mouse TNF-{alpha} and recombinant human lymphotoxin activity of TNF-{alpha} andmore » recombinant human lymphotoxin on murine L929 cells in vitro. However, BF inhibits the lytic activity of TNF-{alpha} more effectively than it does that of lymphotoxin. The BF also inhibits the necrotizing activity of recombinant human TNF-{alpha} when coinjected into established cutaneous Meth A tumors in BALB/c mice. The BF may have an important role in (i) the regulation and control of TNF-{alpha} and lymphotoxin activity in cancer patients, (ii) interaction between the tumor and the host antitumor mechanisms, and (iii) use of systemically administered TNF-{alpha} in clinical trials with human cancer patients.« less

  12. Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient

    NASA Astrophysics Data System (ADS)

    Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.

    2018-04-01

    The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.

  13. Ultrafiltration and thermal processing effects on Maillard reaction products and biological properties of date palm sap syrups (Phoenix dactylifera L.).

    PubMed

    Makhlouf-Gafsi, Ines; Krichen, Fatma; Mansour, Riadh Ben; Mokni, Abir; Sila, Assad; Bougatef, Ali; Blecker, Christophe; Attia, Hamadi; Besbes, Souhail

    2018-08-01

    The effect of ultrafiltration process and temperature concentration on MRPs content and antioxidant, antimicrobial and cytotoxic properties of date palm sap syrups were investigated. MRPs were analyzed by HPLC. Antioxidant activity was evaluated by reducing power and DPPH free radical and H 2 O 2 scavenging activities. Antimicrobial activity was evaluated by the agar disk diffusion method. In vitro cytotoxic activity was examined by cell proliferation assay. Date sap syrups displayed strong antioxidant activities which are correlated 5HMF and 2F contents. In addition, concentration at 100 °C, unlike ultrafiltration process, enhanced significantly the antioxidant activities sap syrups and total phenolic contents. The antimicrobial activities showed marked activity against S. enterica, P. aeruginosa, S. aureus, L. monocytogenes with an inhibition zone of 21, 34, 27 and 34 mm respectively. Cytotoxicity assays showed that sap syrups can inhibit the proliferation of HeLa cell lines at high concentration. Published by Elsevier Ltd.

  14. "All that glisters is not gold": Ultrafiltration and free thyroxine measurement With apologies to W Shakespeare.

    PubMed

    Midgley, John E M

    2011-02-01

    To examine the merits of measuring free analytes by ultrafiltration using either diluted or undiluted serum. Confidence in the accuracy of measurements is affected both by problems identified in current systems using semipermeable membranes, the sensitivity of the system to artefacts and comparisons with other imperfect assays. All "gold standard" methods must robustly obey sound physicochemical principles if valid conclusions are to be drawn. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, J. M.

    1985-10-15

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: a (meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and N, N-dialkyl (meth) acrylamide. The copolymer may be cross-linked with N,N'-methylenebisacrylamide or other appropriate cross-linking agent.

  16. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  17. A validated inductively coupled plasma mass spectrometry (ICP-MS) method for the quantification of total platinum content in plasma, plasma ultrafiltrate, urine and peritoneal fluid.

    PubMed

    Lemoine, Lieselotte; Thijssen, Elsy; Noben, Jean-Paul; Adriaensens, Peter; Carleer, Robert; Speeten, Kurt Van der

    2018-04-15

    Oxaliplatin is a platinum (Pt) 1 containing antineoplastic agent that is applied in current clinical practice for the treatment of colon and appendiceal neoplasms. A fully validated, highly sensitive, high throughput inductively coupled plasma mass spectrometry (ICP-MS) method is provided to quantify the total Pt content in plasma, plasma ultrafiltrate, urine and peritoneal fluid. In this ICP-MS approach, the only step of sample preparation is a 1000-fold dilution in 0.5% nitric acid, allowing the analysis of 17 samples per hour. Detection of Pt was achieved over a linear range of 0.01-100 ng/mL. The limit of quantification was 18.0 ng/mL Pt in plasma, 8.0 ng/mL in ultrafiltrate and 6.1 ng/mL in urine and peritoneal fluid. The ICP-MS method was further validated for inter-and intraday precision and accuracy (≤15%), recovery, robustness and stability. Short-term storage of the biofluids, for 14 days, can be performed at -4 °C, -24 °C and -80 °C. As to long-term stability, up to 5 months, storage at -80 °C is encouraged. Furthermore, a timeline assessing the total and unbound Pt fraction in plasma and ultrafiltrate over a period of 45 h is provided. Following an incubation period of 5 h at 37 °C, 19-21% of Pt was recovered in the ultrafiltrate, emphasizing the extensive and rapid binding of oxaliplatin-derived Pt to plasma proteins. The described method can easily be implemented in a routine setting for pharmacokinetic studies in patients treated with oxaliplatin-based hyperthermic intraperitoneal perioperative chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Filtration effectiveness of HVAC systems at near-roadway schools.

    PubMed

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  19. Acute effects of ultrafiltration on aortic mechanical properties determined by measurement of pulse wave velocity and pulse propagation time in hemodialysis patients

    PubMed Central

    Yıldız, Banu Şahin; Şahin, Alparslan; Aladağ, Nazire Başkurt; Arslan, Gülgün; Kaptanoğulları, Hakan; Akın, İbrahim; Yıldız, Mustafa

    2015-01-01

    Objective: The effects of acute hemodialysis session on pulse wave velocity are conflicting. The aim of the current study was to assess the acute effects of ultrafiltration on the aortic mechanical properties using carotid-femoral (aortic) pulse wave velocity and pulse propagation time. Methods: A total of 26 (12 women, 14 men) consecutive patients on maintenance hemodialysis (mean dialysis duration: 40.7±25.6 (4-70) months) and 29 healthy subjects (13 women, 16 men) were included in this study. Baseline blood pressure, carotid-femoral (aortic) pulse wave velocity, and pulse propagation time were measured using a Complior Colson device (Createch Industrie, France) before and immediately after the end of the dialysis session. Results: While systolic blood pressure, diastolic blood pressure, mean blood pressure, pulse pressure, and pulse wave velocity were significantly higher in patients on hemodialysis than in healthy subjects, pulse propagation time was significantly higher in healthy subjects. Although body weight, systolic blood pressure, diastolic blood pressure, mean blood pressure, pulse pressure, and pulse wave velocity were significantly decreased, heart rate and pulse propagation time were significantly increased after ultrafiltration. There was a significant positive correlation between pulse wave velocity and age, body height, waist circumference, systolic blood pressure, diastolic blood pressure, mean blood pressure, pulse pressure, and heart rate. Conclusion: Although hemodialysis treatment may chronically worsen aortic mechanical properties, ultrafiltration during hemodialysis may significantly improve aortic pulse wave velocity, which is inversely related to aortic distensibility and pulse propagation time. PMID:25413228

  20. Active DNA gels

    NASA Astrophysics Data System (ADS)

    Saleh, Omar A.; Fygenson, Deborah K.; Bertrand, Olivier J. N.; Park, Chang Young

    2013-02-01

    Research into the mechanics and fluctuations of living cells has revealed the key role played by the cytoskeleton, a gel of stiff filaments driven out of equilibrium by force-generating motor proteins. Inspired by the extraordinary mechanical functions that the cytoskeleton imparts to the cell, we sought to create an artificial gel with similar characteristics. We identified DNA, and DNA-based motor proteins, as functional counterparts to the constituents of the cytoskeleton. We used DNA selfassembly to create a gel, and characterized its fluctuations and mechanics both before and after activation by the motor. We found that certain aspects of the DNA gel quantitatively match those of cytoskeletal networks, indicating the universal features of motor-driven, non-equilibrium networks.

  1. Dynamic Optical Filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  2. Dynamic optical filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  3. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work?

    PubMed

    Steele, Maureen; Silins, Edmund; Flaherty, Ian; Hiley, Sarah; van Breda, Nick; Jauncey, Marianne

    2018-01-01

    Wheel-filtration of pharmaceutical opioid tablets is a recognised harm reduction strategy, but uptake of the practice among people who inject drugs is low. The study aimed to: (i) examine perceptions of filtration practices; (ii) provide structured education on wheel-filtration; and (iii) assess uptake of the practice. Frequent opioid tablet injectors (n = 30) attending a supervised injecting facility in Sydney, Australia, received hands-on instruction on wheel-filtration based on recommended practice. Pre-education, post-education and follow-up questionnaires were administered. Wheel-filtration was generally regarded as better than cotton-filtration (the typical method) in terms of perceived effects on health, ease of use and overall drug effect. Sixty-eight percent of those who said they would try wheel-filtration after the education had actually done so. Of those who usually used cotton-filtration, over half (60%) had used wheel-filtration two weeks later. Uptake of safer preparation methods for pharmaceutical opioid tablets increases after structured education in wheel-filtration. Findings suggest that SIFs are an effective site for this kind of education. Supervised injecting facility workers are uniquely positioned to provide harm reduction education at the time of injection. [Steele M, Silins E, Flaherty I, Hiley S, van Breda N, Jauncey M. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work? Drug Alcohol Rev 2018;37:116-120]. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  4. Standardization of milk using cold ultrafiltration retentates for the manufacture of Swiss cheese: effect of altering coagulation conditions on yield and cheese quality.

    PubMed

    Govindasamy-Lucey, S; Jaeggi, J J; Martinelli, C; Johnson, M E; Lucey, J A

    2011-06-01

    Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature=32.2°C (UFHT), low renneting temperature=28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT

  5. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  6. Application of melanin-free ink as a new antioxidative gel enhancer in sardine surimi gel.

    PubMed

    Vate, Naveen Kumar; Benjakul, Soottawat; Agustini, Tri Winarni

    2015-08-30

    The squid ink that is discarded as waste during processing can be effectively utilised as a gel enhancer in surimi gels, especially those prepared from dark-fleshed fish which have poor gel properties. It also acts as an antioxidant, inhibiting lipid oxidation. This investigation aimed to study the effect of melanin-free ink (MFI) from splendid squid (Loligo formosana) on properties and oxidative stability of surimi gel from sardine (Sardinella albella). MFI (0-0.1 g kg(-1) surimi) increased the breaking force and deformation of sardine surimi gel in a dose-dependent manner (P < 0.05). The addition of MFI had no effect on whiteness of surimi gels (P > 0.05). The expressible moisture content of gels decreased as the levels of MFI increased (P < 0.05). Based on a microstructure study, gel added with MFI at a level of 0.08 g kg(-1) surimi was denser and finer than that of the control (without MFI). Surimi gels with MFI had lower peroxide values, thiobarbituric acid reactive substances, nonanal and 2-decenal. MFI could improve the properties of sardine surimi gel. Additionally, it was able to prevent lipid oxidation in surimi gels during refrigerated storage. © 2014 Society of Chemical Industry.

  7. Improving IAQ Via Air Filtration.

    ERIC Educational Resources Information Center

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  8. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  9. NCL-01: Nanomedicine Drug Release Study in Human Plasma Using Stable Isotope Tracer Ultrafiltration Assay (SITUA)  | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory will evaluate drug release from a nanoparticulate formulation in vitro in human plasma, using a novel stable isotope tracer ultrafiltration assay (SITUA) developed at the laboratory. The SITUA is a metho

  10. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    EPA Science Inventory

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  11. The effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Colberg, M.R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally-associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  12. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  13. Sioux City Riverbank Filtration Study

    NASA Astrophysics Data System (ADS)

    Mach, R.; Condon, J.; Johnson, J.

    2003-04-01

    The City of Sioux City (City) obtains a large percentage of their drinking water supply from both a horizontal collector well system and vertical wells located adjacent to the Missouri River. These wells are set in either the Missouri Alluvium or the Dakota Sandstone aquifer. Several of the collector well laterals extend out beneath the Missouri River, with the laterals being over twenty feet below the river channel bottom. Due to concerns regarding ground water under direct surface water influence, the Iowa Department of Natural Resources (IDNR) required the City to expand their water treatment process to deal with potential surface water contaminant issues. With the extensive cost of these plant upgrades, the City and Olsson Associates (OA) approached the IDNR requesting approval for assessing the degree of natural riverbank filtration for water treatment. If this natural process could be ascertained, the level of treatment from the plant could be reduced. The objective of this study was to quantify the degree of surface water (i.e. Missouri River) filtration due to the underlying Missouri River sediments. Several series of microscopic particulate analysis where conducted, along with tracking of turbidity, temperature, bacteria and a full scale particle count study. Six particle sizes from six sampling points were assessed over a nine-month period that spanned summer, fall and spring weather periods. The project was set up in two phases and utilized industry accepted statistical analyses to identify particle data trends. The first phase consisted of twice daily sample collection from the Missouri River and the collector well system for a one-month period. Statistical analysis of the data indicated reducing the sampling frequency and sampling locations would yield justifiable data while significantly reducing sampling and analysis costs. The IDNR approved this modification, and phase II included sampling and analysis under this reduced plant for an eight

  14. [Sniffing Position and i-gel Rotation Approach for i-gel Insertion under General Anesthesia].

    PubMed

    Takahashi, Yoshihiro; Murashima, Koji; Kayashima, Kenji

    2016-04-01

    Insertion assistance techniques, such as the sniffing position (SP) and i-gel? rotation approach (RA), are recommended in the i-gel supraglottic airway device insertion manual. The usefulness of these techniques was evaluated, in this study, under general anesthesia. In 50 adult patients, the i-gel was inserted with the patient in the mild-SP with 5 degrees head extention at first attempt. When resistance was encountered during insertion or airway patency was not obtained after insertion, the i-gel was re-inserted with the patient in the full-SP with maximum head extention during second attempt. When re-insertion failed, the i-gel was inserted with the patient in the full-SP and by using the i-gel RA during third attempt. Airway patency was established in the mild-SP in 36 of 50 patients, in the full-SP in 11 of the remaining 14, and in the full-SP with the i-gel RA in the remaining 3. The average insertion time was 24.0 s during the first attempt, 22.2 s during the second, and 18.2 s during the third. No major complications were observed. Both the full-SP and the i-gel RA can be used for i-gel insertion.

  15. [Polymer Gel Dosimeter].

    PubMed

    Hayashi, Shin-Ichiro

    2017-01-01

    With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.

  16. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  17. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  18. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    NASA Astrophysics Data System (ADS)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the

  19. Comparison of MFI-UF constant pressure, MFI-UF constant flux and Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFI UF).

    PubMed

    Sim, Lee Nuang; Ye, Yun; Chen, Vicki; Fane, Anthony G

    2011-02-01

    Understanding the foulant deposition mechanism during crossflow filtration is critical in developing indices to predict fouling propensity of feed water for reverse osmosis (RO). Factors affecting the performance on different fouling indices such as MFI-UF constant pressure, MFI-UF constant flux and newly proposed fouling index, CFS-MFI(UF) were investigated. Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFI(UF)) utilises a typical crossflow unit to simulate the hydrodynamic conditions in the actual RO units followed by a dead-end unit to measure the fouling propensity of foulants. CFS-MFI(UF) was found sensitive to crossflow velocity. The crossflow velocity in the crossflow sampler unit influences the particle concentration and the particle size distribution in its permeate. CFS-MFI(UF) was also found sensitive to the permeate flux of both CFS and the dead-end cell. To closely simulate the hydrodynamic conditions of a crossflow RO unit, the flux used for CFS-MFI(UF) measurement was critical. The best option is to operate both the CFS and dead-end permeate flux at flux which is normally operated at industry RO units (∼20 L/m(2)h), but this would prolong the test duration excessively. In this study, the dead-end flux was accelerated by reducing the dead-end membrane area while maintaining the CFS permeate flux at 20 L/m(2)h. By doing so, a flux correction factor was investigated and applied to correlate the CFS-MFI(UF) measured at dead-end flux of 120 L/m(2)h to CFS-MFI(UF) measured at dead-end flux of 20 L/m(2)h for RO fouling rate prediction. Using this flux correction factor, the test duration of CFS-MFI(UF) can be shortened from 15 h to 2h. © 2010 Elsevier Ltd. All rights reserved.

  20. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    PubMed

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  1. Fine dust filtration using a metal fiber bed.

    PubMed

    Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min

    2006-08-01

    A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.

  2. Enrichment and Purification of Casein Glycomacropeptide from Whey Protein Isolate Using Supercritical Carbon Dioxide Processing and Membrane Ultrafiltration

    PubMed Central

    Bonnaillie, Laetitia M.; Qi, Phoebe; Wickham, Edward; Tomasula, Peggy M.

    2014-01-01

    Whey protein concentrates (WPC) and isolates (WPI), comprised mainly of β-lactoglobulin (β-LG), α-lactalbumin (α-LA) and casein glycomacropeptide (GMP), are added to foods to boost nutritional and functional properties. Supercritical carbon dioxide (SCO2) has been shown to effectively fractionate WPC and WPI to obtain enriched fractions of α-LA and β-LG, thus creating new whey ingredients that exploit the properties of the individual component proteins. In this study, we used SCO2 to further fractionate WPI via acid precipitation of α-LA, β-LG and the minor whey proteins to obtain GMP-enriched solutions. The process was optimized and α-LA precipitation maximized at low pH and a temperature (T) ≥65 °C, where β-LG with 84% purity and GMP with 58% purity were obtained, after ultrafiltration and diafiltration to separate β-LG from the GMP solution. At 70 °C, β-LG also precipitated with α-LA, leaving a GMP-rich solution with up to 94% purity after ultrafiltration. The different protein fractions produced with the SCO2 process will permit the design of new foods and beverages to target specific nutritional needs. PMID:28234306

  3. Successful treatment of homozygous familial hypercholesterolemia using cascade filtration plasmapheresis.

    PubMed

    Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali

    2012-12-01

    The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.

  4. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  5. Rat lingual lipase: partial purification, hydrolytic properties, and comparison with pancreatic lipase.

    PubMed

    Roberts, I M; Montgomery, R K; Carey, M C

    1984-10-01

    We have partially purified lingual lipase from the serous glands of rat tongue. With a combination of Triton X-100 extraction or Triton X-114 phase-separation techniques, Bio-Bead SM-2 treatment, dialysis, and gel filtration on Sephadex G-200 or Sephacryl S-300, we obtained a sparingly soluble lipid-free protein demonstrating hydrolytic activity against triglycerides and negligible phospholipase or cholesteryl esterase activities. Compared with homogenate, specific activities of the enzyme were enriched 3- to 5-fold prior to gel filtration and 10-fold after gel filtration. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration under denaturing conditions (6 M guanidine X HCl or 0.1% sodium dodecyl sulfate) revealed one major glycoprotein band with Mr approximately 50,000. Gel filtration of the active enzyme in 0.1% Triton X-100 gave an Mr approximately 270,000-300,000, suggesting extensive self-aggregation. With both tributyrin and triolein, the pH optimum of the purified enzyme was 4.0 and activity extended from pH 2.0 to 8.0. In contrast to purified human pancreatic lipase, lingual lipase hydrolyzed triglyceride emulsions and mixed micelles stabilized with both short-chain (dihexanoyl) and long-chain (egg) lecithin and were inhibited only slightly (18-25%) by micellar concentrations of two common bile salts, taurodeoxycholate and taurocholate. Our results suggest that the hydrolysis of dietary fat by lingual lipase may extend from the pharynx through the esophagus and stomach and into the upper small intestine.

  6. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ultrafiltration of skimmed goat milk increases its nutritional value by concentrating nonfat solids such as proteins, Ca, P, Mg, and Zn.

    PubMed

    Moreno-Montoro, Miriam; Olalla, Manuel; Giménez-Martínez, Rafael; Bergillos-Meca, Triana; Ruiz-López, María Dolores; Cabrera-Vique, Carmen; Artacho, Reyes; Navarro-Alarcón, Miguel

    2015-11-01

    Goat milk has been reported to possess good nutritional and health-promoting properties. Usually, it must be concentrated before fermented products can be obtained. The aim of this study was to compare physicochemical and nutritional variables among raw (RM), skimmed (SM), and ultrafiltration-concentrated skimmed (UFM) goat milk. The density, acidity, ash, protein, casein, whey protein, Ca, P, Mg, and Zn values were significantly higher in UFM than in RM or SM. Dry extract and fat levels were significantly higher in UFM than in SM, and Mg content was significantly higher in UFM than in RM. Ultrafiltration also increased the solubility of Ca and Mg, changing their distribution in the milk. The higher concentrations of minerals and proteins, especially caseins, increase the nutritional value of UFM, which may therefore be more appropriate for goat milk yogurt manufacturing in comparison to RM or SM. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. IMPACT OF WATER CHEMISTRY ON MANGANESE REMOVAL DURING OXIDATION/FILTRATION TREATMENT

    EPA Science Inventory

    This is a poster showing the purpose and setup of our pilot plant experiments with manganese filtration. The focus is on the differences, effectiveness, and problems with using chlorine and potassium permanganate in oxidation/filtration. The poster will show the results and findi...

  9. Direct Force Measurements on Neurofilaments: Gel Expanded to Gel Condensed Transition

    NASA Astrophysics Data System (ADS)

    Beck, R.; Deek, J.; Jones, J. B.; Safinya, C. R.

    2010-03-01

    Neurofilaments (NFs)--the major cytoskeletal constituent of axons in vertebrates, consist of three subunit proteins assembled to form filaments with protruding unstructured C-terminus sidearms. Liquid crystal gel networks of sidearm-mediated NF assemblies play a key role in the mechanical while disruptions of this network, due to over-accumulation or incorrect sidearm interactions, are a hallmark of motor neuron diseases. Using synchrotron SAXS [1,2] and microscopy techniques [1,3] we report a direct force measurement of reconstituted NF-gels under osmotic pressure (P), which revealed the role of subunit sidearms on structure and interaction of NFs. With increasing P, near physiological condition, the gels undergo an abrupt nonreversible gel expanded to gel condensed transition that indicates sidearm-mediated attractions between NFs. This attraction is consistent with an electrostatic model of interpenetrating chains.[4pt] [1] J.B. Jones, C.R. Safinya, Biophys. J. 95, 823 (2008);[0pt] [2] R. Beck et al., Nature Mat. (2009) in press;[0pt] [3] H. Hess et al. Langmuir 24, 8397 (2008)

  10. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry.

    PubMed

    Chen, Guilin; Huang, Bill X; Guo, Mingquan

    2018-05-21

    Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Effects of pore pressure and mud filtration on drilling rates in a permeable sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; DiBona, B.; Sandstrom, J.

    1983-10-01

    During laboratory drilling tests in a permeable sandstone, the effects of pore pressure and mud filtration on penetration rates were measured. Four water-base muds were used to drill four saturated sandstone samples. The drilling tests were conducted at constant borehole pressure with different back pressures maintained on the filtrate flowing from the bottom of the sandstone samples. Bit weight was also varied. Filtration rates were measured while drilling and with the bit off bottom and mud circulating. Penetration rates were found to be related to the difference between the filtration rates measured while drilling and circulating. There was no observedmore » correlation between standard API filtration measurements and penetration rate.« less

  12. Effects of pore pressure and mud filtration on drilling rates in a permeable sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; Dearing, H.L.; DiBona, B.G.

    1985-09-01

    During laboratory drilling tests in a permeable sandstone, the effects of pore pressure and mud filtration on penetration rates were measured. Four water-based muds were used to drill four saturated sandstone samples. The drilling tests were conducted at constant borehole pressure while different backpressures were maintained on the filtrate flowing from the bottom of the sandstone samples. Bit weight was varied also. Filtration rates were measured while circulating mud during drilling and with the bit off bottom. Penetration rates were found to be related qualitatively to the difference between the filtration rates measured while drilling and circulating. There was nomore » observed correlation between standard API filtration measurements and penetration rate.« less

  13. Modeling the filtration ability of stockpiled filtering facepiece

    NASA Astrophysics Data System (ADS)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  14. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    DTIC Science & Technology

    2013-11-18

    the experimental filter media Next-SandTM was used, thus turbidity results may not be translatable to conventional filtration media. The media...performance objective was not met. Further optimization of the media filtration process would result in meeting the objective. Dissolved Organic Carbon...FINAL REPORT Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration ESTCP Project ER

  15. Acoustic filtration and sedimentation of soot particles

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Ezekoye, O. A.

    Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1-2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone.

  16. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbidity level of representative samples of a system's filtered water must be less than or equal to 0.5 NTU....74 (a)(1) and (c)(1). (2) The turbidity level of representative samples of a system's filtered water... filtration, the turbidity level of representative samples of a system's filtered water must be less than or...

  17. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidium and Giardia spp.

    PubMed Central

    Rhodes, Eric R.; Villegas, Leah Fohl; Shaw, Nancy J.; Miller, Carrie; Villegas, Eric N.

    2012-01-01

    Cryptosporidium and Giardia species are two of the most prevalent protozoa that cause waterborne diarrheal disease outbreaks worldwide. To better characterize the prevalence of these pathogens, EPA Method 1623 was developed and used to monitor levels of these organisms in US drinking water supplies 12. The method has three main parts; the first is the sample concentration in which at least 10 L of raw surface water is filtered. The organisms and trapped debris are then eluted from the filter and centrifuged to further concentrate the sample. The second part of the method uses an immunomagnetic separation procedure where the concentrated water sample is applied to immunomagnetic beads that specifically bind to the Cryptosporidium oocysts and Giardia cysts allowing for specific removal of the parasites from the concentrated debris. These (oo)cysts are then detached from the magnetic beads by an acid dissociation procedure. The final part of the method is the immunofluorescence staining and enumeration where (oo)cysts are applied to a slide, stained, and enumerated by microscopy. Method 1623 has four listed sample concentration systems to capture Cryptosporidium oocysts and Giardia cysts in water: Envirochek filters (Pall Corporation, Ann Arbor, MI), Envirochek HV filters (Pall Corporation), Filta-Max filters (IDEXX, Westbrook, MA), or Continuous Flow Centrifugation (Haemonetics, Braintree, MA). However, Cryptosporidium and Giardia (oo)cyst recoveries have varied greatly depending on the source water matrix and filters used1,14. A new tangential flow hollow-fiber ultrafiltration (HFUF) system has recently been shown to be more efficient and more robust at recovering Cryptosporidium oocystsand Giardia cysts from various water matrices; moreover, it is less expensive than other capsule filter options and can concentrate multiple pathogens simultaneously1-3,5-8,10,11. In addition, previous studies by Hill and colleagues demonstrated that the HFUF significantly improved

  18. Free forming of the gel by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Okada, Koji; Tase, Taishi; Saito, Azusa; Makino, Masato; Gong, Jin; Kawakami, Masaru; Furukawa, Hidemitsu

    2015-04-01

    Gels, soft and wet materials, have unique properties such as material permeability, biocompatibility and low friction, which are hardly found in hard and dry materials. These superior characteristics of hydrogels promise to expand the medical applications. In recent years, the optical 3D gel printer named SWIM-ER (Soft and Wet Industrial - Easy Realizer) was developed by our team in order to fabricate tough gels with free form. We are aiming to create artificial blood vessel of the gel material by 3D gel printer. Artificial blood vessel is expected to be used for vascular surgery practice. The artificial blood vessel made by 3D gel printer can be create to free form on the basis of the biological data of the patient. Therefore, we believe it is possible to contribute to increasing the success rate and safety of vascular surgery by creating artificial blood vessel with 3D gel printer. The modeling method of SWIM-ER is as follow. Pregel solution is polymerized by one-point UV irradiation with optical fiber. The irradiation area is controlled by computer program, so that exact 3D free forming is realized. In this study, synthesis conditions are re-examined in order to improve the degree of freedom of fabrication. The dimensional accuracy in height direction is improved by increasing the cross linker concentration. We examined the relationship of resolution to the pitch and UV irradiation time in order to improve the modeling accuracy.

  19. Method for concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2012-09-04

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  20. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration

    USGS Publications Warehouse

    Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.

    2004-01-01

    The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.

  1. EX-PRESS Glaucoma Filtration Device: efficacy, safety, and predictability

    PubMed Central

    Chan, Jessica E; Netland, Peter A

    2015-01-01

    Trabeculectomy has been the traditional primary surgical therapy for open-angle glaucoma. While trabeculectomy is effective in lowering intraocular pressure, complications associated with the procedure have motivated the development of alternative techniques and devices, including the EX-PRESS Glaucoma Filtration Device. This review describes the efficacy, safety, complication rates, and potential advantages and disadvantages of the EX-PRESS Glaucoma Filtration Device. EX-PRESS implantation is technically simpler compared with that of trabeculectomy, with fewer surgical steps. Vision recovery has been more rapid after EX-PRESS implantation compared with trabeculectomy. Intraocular pressure variation is lower during the early postoperative period, indicating a more predictable procedure. While efficacy of the EX-PRESS implant has been comparable to trabeculectomy, postoperative complications appear less common after EX-PRESS implantation compared with trabeculectomy. The EX-PRESS Glaucoma Filtration Device appears to be safe and effective in the surgical management of open-angle glaucoma. PMID:26366105

  2. Impacts of extreme flooding on riverbank filtration water quality.

    PubMed

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the

  3. Summary of the ultrafiltration, reverse osmosis, and adsorbents project

    NASA Astrophysics Data System (ADS)

    Colvin, C. M.; Roberts, R. C.; Williams, M. K.

    1983-01-01

    The design for a medium size (40 gal/min) ultrafiltration (UF) membrane unit includes a schematic diagram, capital and operating costs, a list and discussion of the radioisotopes tested and the results achieved, operating parameters, and characteristics of the available membrane configurations. The plant design for a reverse osmosis (RO) membrane unit includes a conceptual diagram, specifications for a RO unit producing 40 gal/min of permeated product, a list of radioisotopes tested on RO units and the rejections achieved, a discussion of the principal of RO, a discussion of the upper limits of cation and anion concentrations (there are no lower limits), a discussion of membrane configurations and porosities, a discussion of factors affecting membranes, a section on calculating the membrane area needed for a particular application, and capital and operating cost calculations. The design for an ion exchange pilot plant includes a schematic diagram; flow, resin, and column specifications; impurity limits; and operating and capital costs. A short theoretical discussion and process description are also included. The design retains flexibility so that application to a specific stream can be determined.

  4. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated lubricant and with a contaminated lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3 and 30 micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49 micron bearings were statistically lower. The 105 micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  5. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  6. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  7. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  8. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  9. Tools for Schools: Filtration for Improved Air Quality. Technical Services Bulletin.

    ERIC Educational Resources Information Center

    2001

    This product bulletin addresses air pollution control in educational facilities to enhance educational performance, provides air quality recommendations for schools, and examines the filtration needs of various school areas. The types of air particles typically present are highlighted, and the use of proper filtration to control gases and vapors…

  10. Four years experience with filtration systems in commercial nurseries for eliminating Phytophthora species from recirculation water

    Treesearch

    T. Ufer; M. Posner; H.-P. Wessels; S. Wagner; K. Kaminski; T. Brand; Werres S.

    2008-01-01

    In a four year project, three different filtration systems were tested under commercial nursery conditions to eliminate Phytophthora spp. from irrigation water. Five nurseries were involved in the project. Slow sand filtration systems were tested in three nurseries. In the fourth nursery, a filtration system with lava grains (Shieer® Bio filtration)...

  11. Cellular proliferation after experimental glaucoma filtration surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jampel, H.D.; McGuigan, L.J.; Dunkelberger, G.R.

    1988-01-01

    We used light microscopic autoradiography to determine the time course of cellular incorporation of tritiated thymidine (a correlate of cell division) following glaucoma filtration surgery in seven eyes of four cynomolgus monkeys with experimental glaucoma. Incorporation of tritiated thymidine was detected as early as 24 hours postoperatively. Peak incorporation occurred five days postoperatively and had returned to baseline levels by day 11. Cells incorporating tritiated thymidine included keratocytes, episcleral cells, corneal and capillary endothelial cells, and conjunctival and corneal epithelial cells. Transmission electron microscopy was correlated with the autoradiographic results to demonstrate that fibroblasts were dividing on the corneoscleral margin.more » These findings have potential clinical implications for the use of antiproliferative agents after filtration surgery.« less

  12. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  13. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels.

    PubMed

    Rahman, Mohammad Shafiur; Al-Mahrouqi, Abdullah Issa

    2009-01-01

    Mechanical compression was used to study the gelling characteristics of gelatin gels. Texture profile analysis (TPA) showed that the hardness of fish and mammalian gelatin increased significantly as the concentrations of gels increased. TPA attributes of 10% fish skin gel showed significant differences from those obtained from 20% and 30% gels. In bovine and porcine cases, such generic trends were not observed. Mechanical characteristics of 10% gels of gelatin from fish skin, determined from one cycle compression, were significantly lower than other sources of gelatin gels, while bovine and porcine gels did not show any significant differences. In the case of TPA, hardness of bovine gelatin gel was highest at 41 N for 10% gel, followed by porcine (30 N) then fish skin (5 N) gelatin gels. The gels prepared from different sources did not show any generic trends when all other mechanical attributes were considered.

  14. [Why? How? What for? We must measure the glomerular filtration].

    PubMed

    Treviño-Becerra, Alejandro

    2010-01-01

    The measurement of the glomerular filtration shows the degree of the functional qualities and the proficiency of the renal system. Despite new technologies, at present the best accepted technique for measuring the glomerular filtration in most countries is the clearance of creatinine in 24 hour urine. The clearance of creatinine has the advantage that it is confident, easy to reproduce, without technical limitations and low cost.

  15. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    PubMed

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; He, Jie; Wang, Xiaoliang; Li, Dawei; He, Haibing; Ren, Lianbing; Jiang, Biwang; Wang, Yong; Teng, Chao; Xue, Gi; Tao, Huchun

    2017-01-01

    Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that constituted the Cd gels served as the precursors of the CdS QDs, and the oleic acid (OA) that ligated with the Cd in the supramolecular gels was capped on the surface of the CdS QDs in the form of carboxylate. The OA-stabilized CdS QDs were in situ synthesized in the entangled self-assembled fibrillar networks (SAFIN) of the Cd gels through reactions between the gelator and H2S. As a result, the QDs exactly replicated the framework of the SAFIN in the CdS QD gels instead of simply assembling along the SAFIN of the supramolecular gels. Moreover, the CdS QDs showed extraordinary sensitivity in the fluorescence detection of IO4 - anions. The facile one-step method developed here is a new approach to assembling nanostructured materials into 3D architectures and has general implications for the design of low molecular mass gelators to bring desired functionality to the developed supramolecular gels.

  17. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    PubMed

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P < 0.05) when analyzed immediately after cooling; however, gel chewiness, cohesiveness and firmness indicated by Kramer force benefited from 24 h at 4 °C gel setting when stored post-cooking. Gel-setting conditions had a greater (P < 0.05) effect on texture when directly analyzed and most changes occurred in no-set gels. There were significant (P < 0.05) changes between directly analyzed and post-cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  18. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  19. Secondary wastewater polishing with ultrafiltration membranes for unrestricted reuse: fouling and flushing modeling.

    PubMed

    Gillerman, Leonid; Bick, Amos; Buriakovsky, Nisan; Oron, Gideon

    2006-11-01

    The effects of operating parameters such astransmembrane pressure, retentate, and recirculation volumetric flow rates on the productivity of an ultrafiltration membrane were studied using field data and development of a management model. Correlation equations for predicting the volumetric permeate flow rates were derived from general membrane blocking laws and experimental data. The experimental data were obtained from a pilot study carried out in the Arad wastewater treatment system (a pilot plant operating in feed and bleed operation mode) located several kilometers west of the City of Arad, Israel. Correlation predictions were confirmed with the independent experimental results. The results enabled us to develop a mathematical expression accurately describing the decline in flux due to fouling.

  20. ADVANCED ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION

    EPA Science Inventory

    The paper discusses laboratory and pilot plant studies of a modification of the U.S. EPA's Electrically Stimulated Fabric Filtration (ESFF) method in which corona voltage on a center-wire electrode replaces the subcorona electrodes at the bag surface. The electric field which aff...