Sample records for ultrafine coal technical

  1. Synthesis and reactivity of ultra-fine coal liquefaction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Fulton, J.L.

    1992-10-01

    The Pacific Northwest Laboratory is currently developing ultra-fine iron-based coal liquefaction catalysts using two new particle production technologies: (1) modified reverse micelles (MRM) and (2) rapid thermal decomposition of solutes (RTDS). These methodologies have been shown to allow control over both particle size (from 1 nm to 60 nm) and composition when used to produce ultra-fine iron-based materials. Powders produced using these methods are found to be selective catalysts for carbon-carbon bond scission using the naphthyl bibenzylmethane model compound, and to promote the production of THF soluble coal products during liquefaction studies. This report describes the materials produced by bothmore » MRM and the RTDS methods and summarizes the results of preliminary catalysis studies using these materials.« less

  2. The influence of reagent type on the kinetics of ultrafine coal flotation

    USGS Publications Warehouse

    Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.

    1989-01-01

    A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.

  3. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    EPA Science Inventory

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  4. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    EPA Science Inventory

    This paper/presentation is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practicall...

  5. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  6. Soot, organics and ultrafine ash from air- and oxy-fired coal ...

    EPA Pesticide Factsheets

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant stoichiometric ratios (SR = 1.2-1.4), but with the ability to maintain constant residence times (2.3 s). Experiments were conducted using a pulverized bituminous coal under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Size-classified fly ash samples were collected, and measurements focused on the composition of the total and ultrafine (<0.6 µm) fly ash produced, in particular the soot, elemental carbon (EC), and organic carbon (OC) fractions. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Subsequent analyses of the carbonaceous component on particles <0.6 µm by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100 and 550 °C with the remaining

  7. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  8. DESIGN AND CHARACTERIZATION OF AN ULTRAFINE COAL ASH AEROSOL GENERATOR FOR DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Primary ultrafine particulate matter (PM) is produced during pulverized coal combustion by the nucleation and heterogeneous condensation of vapor-phase species. This differs from the mechanisms that control the formation of the supermicron fly ash that is heavily influenced by t...

  9. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  10. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls.

    PubMed

    Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O

    2017-10-01

    There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 5, July 1, 1991--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  12. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    NASA Astrophysics Data System (ADS)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  13. Study on feasible technical potential of coal to electricity in china

    NASA Astrophysics Data System (ADS)

    Jia, Dexiang; Tan, Xiandong

    2017-01-01

    The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.

  14. Improving Competitiveness of U.S. Coal Dialogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkinos, Angelos

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps

  15. Microgas dispersion for fine-coal cleaning. Technical progress report, March 1, 1981-August 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, R.H.; Halsey, G.S.; Sebba, F.

    1981-01-01

    The results of the flotation tests conducted demonstrate that the use of fine colloidal gas aphrons (CGA) bubbles is beneficial for fine coal flotation. As demonstrated with the ultrafine coal sample, the froth products of CGA flotation are almost twice as clean as those of the conventional flotation tests at 70% yield. The kerosene consumption was considerably higher, however, both in conventional and in CGA flotation. Attempts were made to coat the CGA bubbles with a film of kerosene and use them for flotation, hoping that this would reduce the oil consumption. However, no positive results have yet been obtainedmore » with this process. Another problem associated with CGA flotation is that the ash content of the froth products is relatively high when using a stable CGA, such as that prepared with Dowfroth M150. On the other hand, when using an unstable CGA, as is the case with MIBC, low ash clean coal products can be obtained, but at the expense of the yield. Two approaches are being investigated to correct this problem. A considerable amount of effort has been made to determine the surface charge of the CGA.« less

  16. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    NASA Technical Reports Server (NTRS)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  17. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissionsmore » from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.« less

  18. Technical devices of powered roof support for the top coal caving as automation objects

    NASA Astrophysics Data System (ADS)

    Nikitenko, M. S.; Kizilov, S. A.; Nikolaev, P. I.; Kuznetsov, I. S.

    2018-05-01

    In the paper technical devices for the top coal caving as automation objects in the composition of the longwall mining complex (LTCC) are considered. The proposed concept for automation of the top coal caving process allows caving efficiency to be ensured, coal dilution to be prevented, conveyor overloading to be prevented, the shearer service personnel to be unloaded, the influence of the “human factor” to be reduced.

  19. Ash particulate formation from pulverized coal under oxy-fuel combustion conditions.

    PubMed

    Jia, Yunlu; Lighty, JoAnn S

    2012-05-01

    Aerosol particulates are generated by coal combustion. The amount and properties of aerosol particulates, specifically size distribution and composition, can be affected by combustion conditions. Understanding the formation of these particles is important for predicting emissions and understanding potential deposition. Oxy-fuel combustion conditions utilize an oxygen-enriched gas environment with CO(2). The high concentration of CO(2) is a result of recycle flue gas which is used to maintain temperature. A hypothesis is that high CO(2) concentration reduces the vaporization of refractory oxides from combustion. A high-temperature drop-tube furnace was used under different oxygen concentrations and CO(2) versus N(2) to study the effects of furnace temperature, coal type, and gas phase conditions on particulate formation. A scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were utilized for particle size distributions ranging from 14.3 nm to 20 μm. In addition, particles were collected on a Berner low pressure impactor (BLPI) for elemental analysis using scanning electron microscopy and energy dispersive spectroscopy. Three particle size modes were seen: ultrafine (below 0.1 μm), fine (0.1 to 1.0 μm), and coarse (above 1 μm). Ultrafine mass concentrations were directly related to estimated particle temperature, increasing with increasing temperature. For high silicon and calcium coals, Utah Skyline and PRB, there was a secondary effect due to CO(2) and the hypothesized reaction. Illinois #6, a high sulfur coal, had the highest amount of ultrafine mass and most of the sulfur was concentrated in the ultrafine and fine modes. Fine and coarse mode mass concentrations did not show a temperature or CO(2) relationship. (The table of contents graphic and abstract graphic are adapted from ref 27.). © 2012 American Chemical Society

  20. Political and technical issues of coal fire extinction in the Kyoto framework

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.

  1. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  2. Pelletizing/reslurrying as a means of distributing and firing clean coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  3. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  4. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment.

    PubMed

    Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; da Boit, Kátia; Teixeira, Elba C; Sampaio, Carlos H; Madariaga, Juan Manuel; Silva, Luis F O

    2017-02-01

    Soils around coal mining are important reservoir of hazardous elements (HEs), nanominerals, and ultrafine compounds. This research reports and discusses the soil concentrations of HEs (As, Cd, Cr, Cu, Ni, Pb, and Zn) in coal residues of abandoned mines. To assess differences regarding environmental impact and risk assessment between coal abandoned mines from the Santa Catarina state, eighteen coal cleaning rejects with different mineralogical and chemical composition, from eight abandoned mines were collected. Nanominerals and ultra-fine minerals from mining-contaminated areas were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM), providing new information on the mineralogy and nano-mineralogy of these coal residues. The total contents of 57 elements (HEs, alkali metals, and rare earth elements) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The calculation of NWACs (Normalized Average Weighted Concentration), together with the chemometric analysis by Principal component analysis (PCA) confirmed the variability of the samples regarding their city and their mine of origin. Moreover, the results confirmed the existence of hotspots in mines near urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Advanced physical fine coal cleaning: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination ofmore » Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.« less

  6. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    NASA Technical Reports Server (NTRS)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  7. The suitability of ultrafine coal as an industrial boiler fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barratt, D.J.; Roberts, P.T.

    1989-07-01

    Coal that was finely ground to a mean particle size of 12 /mu/m produced a hotter, shorter flame compared to normal pulverized fuel in a pilot scale combustor. Measurements indicated that, should this fuel be fired in an industrial boiler, the rate of ash deposition on the walls and convection tubes could be low, but that the thin ash deposits that were produced might be more highly insulating and would therefore require more frequent cleaning. A mathematical model, using reactivity and pyrolysis data measured in laboratory-scale apparatus, has been used to predict the heat release rate within a boiler. Thismore » would be sufficiently high to allow a premium-quality finely ground coal to be burned in many boilers originally designed for oil firing, provided that burner mixing patterns were optimized.« less

  8. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pulmonary effects induced by ultrafine PTFE particles.

    PubMed

    Johnston, C J; Finkelstein, J N; Mercer, P; Corson, N; Gelein, R; Oberdörster, G

    2000-11-01

    PTFE (polytetrafluoroethylene) fumes consisting of large numbers of ultrafine (uf) particles and low concentrations of gas-phase compounds can cause severe acute lung injury. Our studies were designed to test three hypotheses: (i) uf PTFE fume particles are causally involved in the induction of acute lung injury, (ii) uf PTFE elicit greater pulmonary effects than larger sized PTFE accumulation mode particles, and (iii) preexposure to the uf PTFE fume particles will induce tolerance. We used uf Teflon (PTFE) fumes (count median particle size approximately 16 nm) generated by heating PTFE in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity. Teflon fumes at ultrafine particle concentrations of 50 microg/m(3) were extremely toxic to rats when inhaled for only 15 min. We found that when generated in argon, the ultrafine Teflon particles alone are not toxic at these exposure conditions; neither were Teflon fume gas-phase constituents when generated in air. Only the combination of both phases when generated in air caused high toxicity, suggesting either the existence of radicals on the surface or a carrier mechanism of the ultrafine particles for adsorbed gas compounds. Aging of the fresh Teflon fumes for 3.5 min led to a predicted coagulation to >100 nm particles which no longer caused toxicity in exposed animals. This result is consistent with a greater toxicity of ultrafine particles compared to accumulation mode particles, although changes in particle surface chemistry during the aging process may have contributed to the diminished toxicity. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-min exposures on 3 days prior to a 15-min exposure. Messages encoding antioxidants and chemokines were increased substantially in nonadapted animals, yet were unaltered in adapted animals. This study shows the importance of preexposure history for the susceptibility to acute

  10. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 March 1995--31 May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honaker, R.Q.; Reed, S.

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potentialmore » of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an extensive separation performance comparison between a pilot-scale Floatex Density Separator (18{times}18-inch) and an existing spiral circuit has been conducted at Kerf-McGee Coal Preparation plan for the treatment of nominally {minus}16 mesh coal. The results indicate that the Floatex is a more efficient separation device (E{sub p}=0.12) than a conventional coal spiral (E{sub p}=0.18) for Illinois seam coals. In addition, the treatment of {minus}100 mesh Illinois No. 5 fine coal from the same plant using Falcon concentrator, column flotation (Packed-Column) and their different combinations was also evaluated. For a single operation, both Falcon concentrator and column flotation can produce a clean coal product with 90% combustible recovery and 5% ash content. In the case of the combined circuit, column flotation followed by the Falcon achieved a higher combustible recovery value (about 75%) than that obtained by the individual units while maintaining an ash content less than 3%.« less

  11. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1999-01-01

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  12. Exporting coal through technology and countertrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissoff, E.

    1985-08-01

    Straightforward coal exporting on a simple price-and-delivery basis is becoming increasingly difficult for US suppliers. Technology and countertrade are two tools which could help coal suppliers' exports and, at the same time, satisfy the needs of their overseas customers. Neither would complicate the established process of coal exporting, but both would offer the prospect of increased sales and higher profits. Technical selling involves demonstrating to a customer that US steam coal is more competitive when burned in boiler designed specifically to burn that coal efficiently. To do this, the exporter must know the chemical characteristic of his coal and establishmore » a working relationship with his customers' purchasing agents and boiler chiefs. Technical selling to new users offers even more opportunities. Countertrade occurs when the customer pays for coal or a coal/boiler package with something other than US dollars.« less

  13. Self-Scrubbing Coal -- an integrated approach to clean air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, K.E.

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceedingmore » boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.« less

  14. Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Mistry, D. K.; Chen, T. N.

    1977-01-01

    A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

  15. Exposure to ultrafine particles in asphalt work.

    PubMed

    Elihn, Karine; Ulvestad, Bente; Hetland, Siri; Wallen, Anna; Randem, Britt Grethe

    2008-12-01

    An epidemiologic study has demonstrated that asphalt workers show increased loss of lung function and an increase of biomarkers of inflammation over the asphalt paving season. The aim of this study was to investigate which possible agent(s) causes the inflammatory reaction, with emphasis on ultrafine particles. The workers' exposure to total dust, polycyclic aromatic hydrocarbons, and NO(2) was determined by personal sampling. Exposure to ultrafine particles was measured by means of particle counters and scanning mobility particle sizer mounted on a van following the paving machine. The fractions of organic and elemental carbon were determined. Asphalt paving workers were exposed to ultrafine particles with medium concentration of about 3.4 x 10(4)/cm(3). Ultrafine particles at the paving site originated mainly from asphalt paving activities and traffic exhaust; most seemed to originate from asphalt fumes. Oil mist exceeded occupational limits on some occasions. Diesel particulate matter was measured as elemental carbon, which was low, around 3 microg/m(3). NO(2) and total dust did not exceed limits. Asphalt pavers were exposed to relatively high concentrations of ultrafine particles throughout their working day, with possible adverse health effects.

  16. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    NASA Astrophysics Data System (ADS)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  17. Measurements of hygroscopicity and volatility of atmospheric ultrafine particles during ultrafine particle formation events at urban, industrial, and coastal sites.

    PubMed

    Park, Kihong; Kim, Jae-Seok; Park, Seung Ho

    2009-09-01

    The tandem differential mobility analyzer (TDMA) technique was applied to determine the hygroscopicity and volatility of atmospheric ultrafine particles in three sites of urban Gwangju, industrial Yeosu, and coastal Taean in South Korea. A database for the hygroscopicity and volatility of the known compositions and sizes of the laboratory-generated particles wasfirst constructed for comparison with the measured properties of atmospheric ultrafine particles. Distinct differences in hygroscopicity and volatility of atmospheric ultrafine particles werefound between a "photochemical event" and a "combustion event" as well as among different sites. At the Gwangju site, ultrafine particles in the "photochemical event" were determined to be more hygroscopic (growth factor (GF) = 1.05-1.33) than those in the "combustion event" (GF = 1.02-1.12), but their hygroscopicity was not as high as pure ammonium sulfate or sulfuric acid particles in the laboratory-generated database, suggesting they were internally mixed with less soluble species. Ultrafine particles in the "photochemical event" at the Yeosu site, having a variety of SO2, CO, and VOC emission sources, were more hygroscopic (GF = 1.34-1.60) and had a higher amount of volatile species (47-75%)than those observed at the Gwangju site. Ultrafine particle concentration at the Taean site increased during daylight hours with low tide, having a higher GF (1.34-1.80) than the Gwangju site and a lower amount of volatile species (17-34%) than the Yeosu site. Occasionally ultrafine particles were externally mixed according to their hygroscopicity and volatility, and TEM/EDS data showed that each type of particle had a distinct morphology and elemental composition.

  18. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  19. 43 CFR 9239.5-3 - Coal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...

  20. 43 CFR 9239.5-3 - Coal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...

  1. 43 CFR 9239.5-3 - Coal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...

  2. 43 CFR 9239.5-3 - Coal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...

  3. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J.; Ho, Pauline

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  4. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

    PubMed

    Brown, D M; Wilson, M R; MacNee, W; Stone, V; Donaldson, K

    2001-09-15

    Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest

  5. Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialecka, Barbara

    One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less

  6. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1998-01-01

    An ultrafine cementitious grout having a particle size 90% of which are less than 6 .mu.m in diameter and an average size of about 2.5 .mu.m or less, and preferably 90% of which are less than 5 .mu.m in diameter and an average size of about 2 .mu.m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4-0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  7. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  8. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  9. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  10. Comparison of Mutagenic Activities of Various Ultra-Fine Particles.

    PubMed

    Park, Chang Gyun; Cho, Hyun Ki; Shin, Han Jae; Park, Ki Hong; Lim, Heung Bin

    2018-04-01

    Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.

  11. Ultrafine cementitious grout

    DOEpatents

    Ahrens, E.H.

    1998-07-07

    An ultrafine cementitious grout is described having a particle size 90% of which are less than 6 {micro}m in diameter and an average size of about 2.5 {micro}m or less, and preferably 90% of which are less than 5 {micro}m in diameter and an average size of about 2 {micro}m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4--0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {micro}m in width. 4 figs.

  12. Surgical smoke and ultrafine particles

    PubMed Central

    Brüske-Hohlfeld, Irene; Preissler, Gerhard; Jauch, Karl-Walter; Pitz, Mike; Nowak, Dennis; Peters, Annette; Wichmann, H-Erich

    2008-01-01

    Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine (<100 nm) and accumulation mode particles (< 1 μm). Epidemiological and toxicological studies have shown that exposure to particulate air pollution is associated with adverse cardiovascular and respiratory health effects. Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc.) was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3) of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure. PMID:19055750

  13. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  14. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  15. ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.

    PubMed

    Vasyanovich, M; Mostafa, M Y A; Zhukovsky, M

    2017-11-01

    Cascade impactors based on inertial deposition of aerosols are widely used to determine the size distribution of radioactive aerosols. However, there are situations where radioactive aerosols are represented by particles with a diameter of 1-5 nm. In this case, ultrafine aerosols can be deposited on impactor cascades by diffusion mechanism. The influence of ultrafine aerosols (1-5 nm) on the response of three different types of cascade impactors was studied. It was shown that the diffusion deposition of ultrafine aerosols can distort the response of the cascade impactor. The influence of diffusion deposition of ultrafine aerosols can be considerably removed by the use of mesh screens or diffusion battery installed before cascade impactor during the aerosol sampling. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  17. Physicochemical properties and gasification reactivity of the ultrafine semi-char derived from a bench-scale fluidized bed gasifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang

    2017-08-01

    Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.

  18. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  19. Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2005-11-08

    This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

  20. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, Thomas T.; Sheinberg, Haskell; Blake, Rodger D.

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  1. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  2. Dry cleaning of Turkish coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8,more » 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.« less

  3. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis

    NASA Astrophysics Data System (ADS)

    Tańczuk, Mariusz; Radziewicz, Wojciech; Olszewski, Eligiusz; Skorek, Janusz

    2017-10-01

    District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value) has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.

  4. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    NASA Astrophysics Data System (ADS)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  5. Evaluating the feasibility of underground coal gasification in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Harju, J.A.; Schmit, C.R.

    Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less

  6. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, F.M.

    1993-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the thirteenth quarter, wet oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied bymore » Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy to detect functional groups that might be responsible for changing the hydrophobicity of coal samples. Coal samples from the Pennsylvania State Coal Bank were oxidized for 5 hours at room temperature using 10% H{sub 2}O{sub 2} at pH 1.0, 1.0 M HNO{sub 3} or 0.05 M Fe{sub 2}(SO{sub 4}){sub 3} at pH 1.0. Details of the experimental procedure used in the wet oxidation tests were provided in our September 30, 1993 report, along with results of ion-exchange analysis and film flotation tests on as-received and oxidized coal samples. Table II shows the weight percentage of carboxylic and phenolic group oxygen generated by oxidation with different treatments, as determined by ion-exchange. DRIFT spectroscopic analysis was done on as-received and oxidized samples to identify different functionalities directly, to supplement the information on carboxylic and phenolic groups obtained indirectly by ion-exchange methods. The procedure for DRIFT analysis was reported in our June 30, 1993 report.« less

  7. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives.

    PubMed

    Gan, Bo; Li, Bei; Jiang, Haipeng; Bi, Mingshu; Gao, Wei

    2018-06-05

    The suppressions of ultrafine water mists containing additives (NaCl and NaHCO 3 ) on 100 nm, 5 μm, and 30 μm polymethyl methacrylate (PMMA) dust explosions were experimentally studied in a dust-explosion apparatus. High-speed photography showed that maximum vertical positions and flame propagation velocities were significantly decreased by suppression with ultrafine water mist/additives. Flame propagation velocities in 100 nm, 5 μm, and 30 μm dust explosions suppressed by the ultrafine pure water mist were reduced by 48.2%, 27.7%, and 15.3%, respectively. Maximum temperatures and temperature rising rates measured by a fine thermocouple in nano- and micro-PMMA dust explosions were also significantly decreased. It was proved that the addition of NaCl and NaHCO 3 improved the suppression effects of the ultrafine pure water mist. The improvement of explosion suppression by an 8% NaHCO 3 mist was superior to that of a 16% NaCl mist. The suppression mechanisms of ultrafine water mist/additives are further discussed by analyzing the physical and chemical effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less

  9. Physicochemical properties and ability to generate free radicals of ambient coarse, fine, and ultrafine particles in the atmosphere of Xuanwei, China, an area of high lung cancer incidence

    NASA Astrophysics Data System (ADS)

    Lu, Senlin; Yi, Fei; Hao, Xiaojie; Yu, Shang; Ren, Jingjing; Wu, Minghong; Jialiang, Feng; Yonemochi, Shinich; Wang, Qingyue

    2014-11-01

    The link between the high incidence of lung cancer and harmful pollutants emitted by local coal combustion in Xuanwei, Yunnan province, China, has been a focus of study since the 1980s. However, the mechanisms responsible for the high lung cancer rate remain unclear, necessitating further study. Since a close relationship between ambient air particle pollution and respiratory diseases exists, we sampled size-resolved ambient particles from the atmosphere of Xuanwei. In our indoor experiment, cutting-edge methods, including scanning electron microscopy coupled with energy dispersive X-ray detection (SEM/EDX), particle-induced X-ray emission (PIXE), electronic paramagnetic resonance (EPR) and the cell-free DCFH-DA assay, were employed to investigate the physicochemical properties, the potential to generate free radicals and the oxidative potential of ambient coarse (diameter, 1.8-10 μm), fine (diameter, 0.1-1.8 μm), and ultrafine (diameter, <0.1 μm) particles. We found the total mass concentrations of the size-resolved particles collected in spring were higher than that in early winter. Mass percentage of fine particles accounted for 68% and 61% of the total particulate mass in spring and in early winter samples, respectively, indicating that fine particles were the major component of the Xuanwei ambient particulate matters. On the other hand, the results of SEM/EDX analysis showed that the coarse particles were dominated by minerals, the fine particles by soot aggregates and fly ashes, and the ultrafine particles by soot particles and unidentified particles. Our PIXE results revealed that crustal elements (Ca, Ti Si, Fe) were mainly distributed in coarse particles, while trace metals (Cr, Mn, Ni, Cu, Zn, Pb) dominated in the fine particle fraction, and S, a typical element emitted by coal combustion, mainly resided in fine particles collected from the winter atmosphere. EPR results indicated that the magnitude of free radical intensity caused by size

  10. Preparation of an Ultrafine Rebamipide Ophthalmic Suspension with High Transparency.

    PubMed

    Matsuda, Takakuni; Hiraoka, Shogo; Urashima, Hiroki; Ogura, Ako; Ishida, Tatsuhiro

    2017-01-01

    A 2% commercially available, milky-white, rebamipide micro-particle suspension is used to treat dry eyes, and it causes short-term blurring of the patient's vision. In the current study, to improve the transparency of a rebamipide suspension, we attempted to obtain a clear rebamipide suspension by transforming the rebamipide particles to an ultrafine state. In the initial few efforts, various rebamipide suspensions were prepared using a neutralizing crystallization method with additives, but the suspensions retained their opaque quality. However, as a consequence of several critical improvements in the neutralizing crystallization methods such as selection of additives for crystallization, process parameters during crystallization, the dispersion method, and dialysis, we obtained an ultrafine rebamipide suspension (2%) that was highly transparent (transmittance at 640 nm: 59%). The particle size and transparency demonstrated the fewest level of changes at 25°C after 3 years, compared to initial levels. During that period, no obvious particle sedimentation was observed. The administration of this ultrafine rebamipide suspension (2%) increased the conjunctival mucin, which was comparable to the commercially available micro-particle suspension (2%). The corneal and conjunctival concentration of rebamipide following ocular administration of the ultrafine suspension was slightly higher than that of the micro-particle suspension. The ultrafine rebamipide suspension (eye-drop formulation) with a highly transparent ophthalmic clearness should improve a patient's QOL by preventing even a shortened period of blurred vision.

  11. Evaluation of ERDA-sponsored coal feed system development

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.

    1977-01-01

    Coal feeders were evaluated based upon criteria such as technical feasibility, performance (i.e. ability to meet process requirements), projected life cycle costs, and projected development cost. An initial set of feeders was selected based on the feeders' cost savings potential compared with baseline lockhopper systems. Additional feeders were considered for selection based on: (1) increasing the probability of successful feeder development; (2) application to specific processes; and (3) technical merit. A coal feeder development program is outlined.

  12. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Ursla Levy

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less

  13. Preparation of uniaxially aligned TiO2 ultrafine fibers by electrospinning.

    PubMed

    Nien, Yu-Hsun; Tsai, Yan-Sheng; Wang, Jia-Yi; Syu, Shu-Ping

    2012-11-01

    TiO2 nanofibers are often produced by electrospinning using a collector consisting of two parallel electrodes. In this work, a high speed rotating drum was used as a collector to produce uniaxially aligned TiO2 ultrafine fibers. The apparatus to manufacture uniaxially aligned TiO2 ultrafine fiber consisted of a high-speed roller, a high-voltage power supply, a controllable syringe pump and a syringe. Titanium (IV) isopropoxide and polyvinylpyrrolidone were used as precursor and auxiliary, respectively. Titanium (IV) isopropoxide and polyvinylpyrrolidone were well mixed with other essential reagents to form the polymer solution. The polymer solution was poured into the syringe and pumped at various flow rates. The electrospun ultrafine fibers collected on the roller were heat treated up to 600 degrees C and the uniaxially aligned TiO2 ultrafine fibers were formed and characterized using scanning electron microscope and X-ray diffraction.

  14. Effect of coal filler on the properties of soy protein plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.H.; Zhou, A.N.; Hu, M.B.

    2006-11-15

    The influence of ultrafine coal filler (UFC) content on tensile properties, water absorption, and biodegradability of soy protein plastics were investigated. The addition of UFC in the soy protein plastics, with different content of glycerol as a plasticizer, was at different ratio varying from 10:0 to 6:4. Blend sheets of the soy protein composites were prepared by the compression molding processing. The results show that, with 23.08 wt % glycerol, the tensile strength and elongation at break for the soy protein sheet with coal filler (range from 5 to 30 parts) can be enhanced as compared with nonfilled soy proteinmore » plastics. Water resistance of the soy protein plastics improves with the increase in UFC content. The derivative thermogravimetry (DTG) curves indicate a double-stage degradation process for defatted soy flour (SPF), while three-stage degradation process for soy plastics and the soy protein composites. FT-IR, XPS, and SEM were applied to study the interfacial interaction between coal macromolecules and soy protein molecules in UFC filled soy protein plastics. The results demonstrated that there is strong interfacial interaction in the soy protein plastics caused by the compression molding processing.« less

  15. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    NASA Astrophysics Data System (ADS)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  16. [A technological study on the extraction of ultra-fine powder of Panax notoginsen].

    PubMed

    Huang, Yaohai; Huang, Mingqing; Zeng, Huifang; Guo, Wei; Xi, Ping

    2005-12-01

    To investigate the extraction of ultra-fine powder Panax notoginsen. The extraction rate of ginseng saponin Rg1, Re, Rb1, notoginseng saponin R1 and filtrated time were determined by alcoholic and aqueous extraction of Panax notoginsen in tablet, coarse powder, ultra-fine powder and recostitution granules of ultra-fine powder. The filtered time of ultra-fine powder of Panax notoginsen extraction and that of the tablet of Panax notoginsen extraction were similar, while the extraction rates of various saponins of it were high. The method of aqueous extrction in ltra-fine powder of Panax notoginsen is easy in filtrationer, higher in extraction rate of Panax notoginsen and lower in production cost.

  17. Improving the stability of coal slurries. Quarterly progress report, March 15-June 15, 1986. [Sedimentation tests in the presence and absence of gum tragacanth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogler, H.S.

    1986-01-01

    In this report, we will describe the progress of our research in two key areas. The twin objectives of this research are: (a) to examine the effectiveness of hydrocolloids as stabilizers of coal-water slurries and (b) to gain an understanding of the mechanism of stabilization through the use of monodisperse polystyrene lattices as model systems. Sedimentation tests with ultrafine ground coal in presence and absence of gum tragacanth have been carried out. An isotherm of gum tragacanth binding to coal surface has been generated. We have also conducted rheological studies to characterize the stabilized coal-water slurries. Similar experiments with -200more » mesh coal are currently under way. In the case of model system studies, the effect of article size on the gum tragacanth induced stability has been studied. Initial experiments on the effects of increased electrolyte concentration and the addition of nonsolvents like ethanol to the continuous phase have been undertaken. 9 refs., 16 figs., 1 tab.« less

  18. Structure and phase composition of ultrafine-grained TiNb alloy after high-temperature annealings

    NASA Astrophysics Data System (ADS)

    Eroshenko, Anna Yu.; Glukhov, Ivan A.; Mairambekova, Aikol; Tolmachev, Alexey I.; Sharkeev, Yurii P.

    2017-12-01

    The paper presents the experimental data observed in the microstructure and phase composition of ultrafine-grained Ti-40 mass % Nb (Ti40Nb) alloy after high-temperature annealings. The ultrafine-grained Ti40Nb alloy is produced by severe plastic deformation (SPD). This method includes multiple abc-pressing and multi-pass rolling followed by further pre-recrystallizing annealing which, in its turn, enhances the formation of ultrafine-grained structures with mean size of 0.28 µm involving stable β- and α-phase and metastable nanosized ω-phase in the alloy. It is shown that annealing at 500°C preserves the ultrafine-grained structure and phase composition. In cases of annealing at 800°C the ultrafine-grained state transforms into the coarse-grained state. The stable β-phase and the nanosized metastable ω-phase have been identified in the coarse-grained structure.

  19. On the assessment of exposure to airborne ultrafine particles in urban environments.

    PubMed

    Gomes, João Fernando Pereira; Bordado, João Carlos Moura; Albuquerque, Paula Cristina Silva

    2012-01-01

    The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM₁₀ patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 μm²/cm³, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.

  20. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable.more » Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.« less

  1. Influences Determining European Coal Seam Gas Deliverability

    NASA Astrophysics Data System (ADS)

    Clark, G.

    2009-04-01

    Technically the coal basins of Europe have generated significant Gas In Place figures that has historically generated investor's interest in the development of this potential coal seam gas (CSG) resource. In the early 1980's, a wave of international, principally American, companies arrived, established themselves, drilled and then left with a poor record of success and disappointed investors. Recently a second wave of investment started after 2002, with the smaller companies leading the charge but have the lesson been learned from the past failures? To select a CSG investment project the common European approach has been to: 1. Find an old mining region; 2. Look to see if it had a coal mine methane gas problem; 3. Look for the non-mined coal seams; and 4. Peg the land. This method is perhaps the reason why the history of CSG exploration in Europe is such a disappointment as generally the coal mining regions of Europe do not have commercial CSG reservoir attributes. As a result, investors and governments have lost confidence that CSG will be a commercial success in Europe. New European specific principles for the determination of commercial CSG prospects have had to be delineated that allow for the selection of coal basins that have a strong technical case for deliverability. This will result in the return of investor confidence.

  2. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors.

    PubMed

    Liu, Fangyan; Su, Hai; Jin, Long; Zhang, Haitao; Chu, Xiang; Yang, Weiqing

    2017-11-01

    The ultrafine Co 3 O 4 nanoparticles are successfully prepared by a novel solvothermal-precipitation approach which exploits the supernatant liquid of Co 3 O 4 nanoflake micropheres synthesized by solvothermal method before. Interestingly, the water is only employed to obtain the ultrafine nanoparticles in supernatant liquid which was usually thrown away before. The microstructure measurement results of the as-grown samples present the homogeneous disperse ultrafine Co 3 O 4 nanoparticles with the size of around 5-10nm. The corresponding synthesis mechanism of the ultrafine Co 3 O 4 nanoparticles is proposed. More importantly, these ultrafine Co 3 O 4 nanoparticles obtained at 250°C show the highest specific capacitance of 523.0Fg -1 at 0.5Ag -1 , 2.6 times that of Co 3 O 4 nanoflake micropheres due to the quantum size effect. Meanwhile, the sample annealed under 350°C possesses the best cycling stability with capacitance retention of 104.9% after 1500 cycles. These results unambiguously demonstrate that this work not only provides a novel, facile, and eco-friendly approach to prepare high-performance Co 3 O 4 nanoparticles electrode materials for supercapacitors but also develops a widely used method for the preparation of other materials on a large scale. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  4. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits

  6. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.

    2018-01-01

    Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed.

  7. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  8. Ultrafine particle transport and deposition in a large scale 17-generation lung model.

    PubMed

    Islam, Mohammad S; Saha, Suvash C; Sauret, Emilie; Gemci, Tevfik; Yang, Ian A; Gu, Y T

    2017-11-07

    To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira; Dimopoulos Eggenschwiler, Panayotis

    2018-08-01

    Ultrafine (<100 nm) particles related to traffic are of high environmental and human health concern, as they are supposed to be more toxic than larger particles. In the present study transmission electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles <10 nm were rarely detected. The ultrafine particles can be distinguished into the following types: soot, ash-bearing soot and ash. Ash consists of Ca, P, Mg, Zn, Fe, S, and minor Sn compounds. Most elements originate from lubricating oil additives; Sn and at least part of Fe are products of engine wear; minor W ± Si-bearing nearly spherical particles in Diesel exhaust derive from catalytic coating material. Ultrafine ash particles predominate over ultrafine soot or are nearly equal in amount, in contrast to emissions of larger sizes where soot is by far the prevalent particle type. This is probably due to the low ash amount per volume fraction in the total emissions, which does not favor formation of large ash agglomerates, opposite to soot, which is abundant and thus easily forms agglomerates of sizes larger than those of the ultrafine range. No significant differences of ultrafine particle characteristics were identified among the tested Gasoline and Diesel vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles. Copyright © 2018 Elsevier Ltd. All

  10. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 260 with Black Thunder Mine subbituminous coal: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In ordermore » to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)« less

  11. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill.

    PubMed

    Civeira, Matheus S; Ramos, Claudete G; Oliveira, Marcos L S; Kautzmann, Rubens M; Taffarel, Silvio R; Teixeira, Elba C; Silva, Luis F O

    2016-02-01

    Ultrafine and nanometric sediment inputs into river systems can be a major source of nutrients and hazardous elements and have a strong impact on water quality and ecosystem functions of rivers and lakes regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in South America. The objective of this work was to study the coal cleaning rejects (CCRs) spill that occurred from a CCRs impoundment pond into the Tubarão River, South Brazil, provided a unique occasion to study the importance and role of incidental nanoparticles associated with pollutant dispersal from a large-scale, acute aquatic pollution event. Multifaceted geochemical research by X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS, and Raman spectroscopy, provided an in-depth understanding of importance of a nano-mineralogy approach of Aqueous Pollution Scenarios. The electron beam studies showed the presence of a number of potentially hazardous elements (PHEs) in nanoparticles (amorphous and minerals). Some of the neoformed ultrafine/nanoparticles found in the contaminated sediments are the same as those commonly associated with oxidation/transformation of oxides, silicates, sulfides, and sulfates. These data of the secondary ultra/nanoparticles, puts in evidence their ability to control the mobility of PHEs, suggesting possible presentations in environmental technology, including recuperation of sensitive coal mine. The developed methodology facilitated the sediment transport of the catchment providing consistent results and suggesting its usefulness as a tool for temporary rivers management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Exposure to Ambient Ultrafine Particles and Nitrogen Dioxide and Incident Hypertension and Diabetes.

    PubMed

    Bai, Li; Chen, Hong; Hatzopoulou, Marianne; Jerrett, Michael; Kwong, Jeffrey C; Burnett, Richard T; van Donkelaar, Aaron; Copes, Ray; Martin, Randall V; Van Ryswyk, Keith; Lu, Hong; Kopp, Alexander; Weichenthal, Scott

    2018-05-01

    Previous studies reported that long-term exposure to traffic-related air pollution may increase the incidence of hypertension and diabetes. However, little is known about the associations of ultrafine particles (≤0.1 μm in diameter) with these two conditions. We conducted a population-based cohort study to investigate the associations between exposures to ultrafine particles and nitrogen dioxide (NO2) and the incidence of diabetes and hypertension. Our study population included all Canadian-born residents aged 30 to 100 years who lived in the City of Toronto, Canada, from 1996 to 2012. Outcomes were ascertained using validated province-wide databases. We estimated annual concentrations of ultrafine particles and NO2 using land-use regression models and assigned these estimates to participants' annual postal code addresses during the follow-up period. Using random-effects Cox proportional hazards models, we calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for ultrafine particles and NO2, adjusted for individual- and neighborhood-level covariates. We considered both single- and multipollutant models. Each interquartile change in exposure to ultrafine particles was associated with increased risk of incident hypertension (HR = 1.03; 95% CI = 1.02, 1.04) and diabetes (HR = 1.06; 95% CI = 1.05, 1.08) after adjusting for all covariates. These results remained unaltered with further control for fine particulate matter (≤2.5 μm; PM2.5) and NO2. Similarly, NO2 was positively associated with incident diabetes (HR = 1.06; 95% CI = 1.05, 1.07) after controlling for ultrafine particles and PM2.5. Exposure to traffic-related air pollution including ultrafine particles and NO2 may increase the risk for incident hypertension and diabetes. See video abstract at, http://links.lww.com/EDE/B337.

  13. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  14. The occurrence of ultrafine particles in the specific environment of children.

    PubMed

    Burtscher, Heinz; Schüepp, Karen

    2012-06-01

    Interest in ultrafine particles (UFP) has been increasing due to their specific physico-chemical characteristics. Ultrafine particles are those with an aerodynamic diameter of <0.1 μm and are also commonly know as nanoparticles (0.1 μm = 100 nm). Due to their small size UFP contribute mostly to particle number concentrations and are therefore underestimated in actual pollution measurements, which commonly measure mass concentration. Children represent the most vulnerable group in regard to particulate exposure due to their developing status and different exposures compared to adults. This review discusses the sources of ultrafine particles as well as the specific exposures of children highlighting the importance and uniqueness of this age group. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Ultrafine particle concentration and new particle formation in a coastal arid environment

    NASA Astrophysics Data System (ADS)

    Alfoldy, Balint; Kotob, Mohamed; Obbard, Jeffrey P.

    2017-04-01

    Arid environments can be generally characterised by high coarse aerosol load due to the wind-driven erosion of the upper earth crust (i.e. Aeolian dust). On the other hand, anthropogenic activities and/or natural processes also generate significant numbers of particles in the ultrafine size range. Ultrafine particles (also referred as nano-particles) is considered as aerosol particles with the diameter less than 100 nm irrespectively their chemical composition. Due to their small size, these particles represent negligible mass portion in the total atmospheric particulate mass budget. On the other hand, these particles represent the majority of the total particle number budget and have the major contribution in the total aerosol surface distribution. Ultrafine particles are characterised by high mobility (diffusion) and low gravitational settling velocity. Consequently, these particles can be transported long distances and their atmospheric lifetime is relatively high (i.e. in the Accumulation Mode). Ultrafine particles play important role in the atmosphere as they take part in the atmospheric chemistry (high surface), impact the climate (sulphate vs. black carbon), and implies significant health effects due to their deep lung penetration and high mobility in the body. The Atmospheric Laboratory of Qatar University is conducting real-time monitoring of ultrafine particles and regularly taking aerosol samples for chemical analysis at the university campus. In this paper, recent results are presented regarding the size distribution and chemical composition of the ultrafine aerosol particles. Based on the concentration variation in time, sources of ultrafine particles can be clearly separated from the sources of fine or coarse particles. Several cases of new particle formation events have been observed and demonstrated in the paper, however, the precursors of the secondary aerosol particles are still unknown. Literature references suggest that among the sulphuric acid

  16. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  17. A mechanism for the production of ultrafine particles from concrete fracture.

    PubMed

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Speciation and pulmonary effects of acidic SO x formed on the surface of ultrafine zinc oxide aerosols

    NASA Astrophysics Data System (ADS)

    Amdur, Mary O.; Chen, Lung Chi; Guty, John; Lam, Hua Fuan; Miller, Patricia D.

    Ultrafine metal oxides and SO 2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SO x layer. A ZnO-SO 2-H 2O (mixed 500°C) system generates such particles to provide greatly needed information on both quantitative composition of the surface layer and its effects on the lung. Total S on the particles is related to ZnO concentration and is predominantly S VI. As a surface layer, 20 μg m -3 H 2SO 4 decreases pulmonary diffusing capacity in guinea pigs after four daily 3-h exposures and produces bronchial hypersensitivity following a single 1-h exposure. That 200 μg m -3 H 2SO 4 aerosols of equivalent particle size are needed to produce the same degree of bronchial hypersensitivity emphasizes the importance of the surface layer.

  19. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, G.P.

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterizemore » a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.« less

  20. Exposure to diesel exhaust fumes in the context of exposure to ultrafine particles.

    PubMed

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Kamińska, Irena; Cieślak, Małgorzata; Szadkowska-Stańczyk, Irena

    2016-01-01

    Diesel exhaust fumes emission is a significant source of ultrafine particles, the size of which is expressed in nanometers. People occupationally exposed to diesel exhaust particles include mainly workers servicing vehicles with engines of this type. This article presents the analysis of measurements of ultrafine particle concentrations occurring in the bus depot premises during the work connected with everyday technical servicing of buses. The measurements were carried out in the everyday servicing (ES) room of the bus depot before, during and after the work connected with bus servicing. Determinations included: particle concentrations in terms of particle number and particle surface area, and mass concentrations of aerosol. Mean value of number concentration of 10- to 1000-nm particles increased almost 20-fold, from 7600 particles/cm3 before starting bus servicing procedures to 130 000 particles/cm3 during the bus servicing procedures in the room. During the procedures, the mean surface area concentration of particles potentially deposited in the alveolar (A) region was almost 3 times higher than that of the particles depositing in the tracheo-bronchial (TB) region: 356.46 μm2/cm3 vs. 95.97 μm2/cm3, respectively. The mass concentration of the fraction of particulate matter with aerodynamic diameter 0.02-1 μm (PM1) increased 5-fold during the analyzed procedures and was 0.042 mg/m3 before, and 0.298 mg/m3 while the procedures continued. At the time when bus servicing procedures continued in the ES room, a very high increase in all parameters of the analyzed particles was observed. The diesel exhaust particles exhibit a very high degree of fragmentation and, while their number is very high and their surface area is very large, their mass concentration is relatively low. The above findings confirm that ultrafine particles found in diesel exhaust fumes may be harmful to the health of the exposed people, and to their respiratory tract in particular. This work is

  1. Ultrafine particle and fiber production in microgravity

    NASA Technical Reports Server (NTRS)

    Webb, George W. (Inventor)

    1988-01-01

    In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.

  2. Reactivity of coal in direct hydrogenation processes: Technical progress report, March-May 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Miller, R.L.

    Research during the past quarter centered on continuation of two facets related to the study of coal reactivity in direct hydrogenation liquefaction processes. Five coals from the Argonne Premium coal collection were liquefied at three temperature levels in order to gather data for kinetic analysis purposes. Conversion of these coals to THF-, toluene-, and hexane-solubles was determined at temperatures of 425, 400, and 375 C, and nominal reaction times of 3, 5, 10, 15, and 40 minutes in the microautoclave batch reaction system. Preliminary mathematical modeling of the data using simple irreversible rate expressions and more complex formulations based onmore » a statistical distribution of activation energies was initiated in order to investigate the feasibility of utilizing activation energy as an additional reactivity screening factor. Use of complex models such as the Anthony-Howard formulation for purposes of activation energy determination from liquefaction data at one temperature level was further examined. Five of the 21 coals from the Penn State Premium coal sample bank were liquefied at the standard reactivity screening conditions, and the rate and extent of conversion to THF-, and toluene-, and hexane-solubles quantified. These data were added to the existing data base containing similar information for the prior coal suites from the Exxon and Argonne collections, and preliminary correlational efforts for reactivity vs. coal properties were initiated. Prior conclusions regarding the effect of rank on the rate and extent of conversion were qualitatively verified from the data collected. 1 ref., 13 figs., 2 tabs.« less

  3. Primitive ultrafine matrix in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.

    1981-01-01

    Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.

  4. Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers

    DTIC Science & Technology

    1980-09-01

    TECHNICAL REPORT N-93 September 1980 ANALYSIS OF FLUE GAS DESULFURIZATION (FGD) PROCESSES FOR POTENTIAL USE ON ARMY COAL-FIRED BOILERS TECHNICAL LIBRARY...REFERENCE: Technical Report N-93, Analysis of Flue Gas Desulfurization (FGD) Ppooesses for Potential Use on Army Coal-Fired Boilers Please take a few...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER CERL-TR-N-93 2. GOVT ACCESSION NO «. TITLE (end Subtitle) ANALYSIS OF FLUE GAS DESULFURIZATION (FGD

  5. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?

    NASA Technical Reports Server (NTRS)

    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our

  6. Review of non-traditional coal mining countries. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettigrew, J.

    1976-03-01

    The coal reserves and coal production of countries in Africa and Central and South America are reviewed. About 0.5 percent of world hard coal output originates from Central and South America, but production of lignite and brown coals is negligible. Colombia, Mexico and Brazil are the largest producers, while significant amounts of coal are won in Chile. At present Argentina, Peru and Venezuela have very small coal industries. Excluding the Republic of South Africa, the African continent has only about 0.25 percent of world coal reserves. Lignite and brown coal resources are negligible. Despite the relatively small amount of coalmore » resources there is nevertheless a degree of underexploitation. Of those African countries that have reserves, most are capable of modest increases in production given the right financial and technical assistance. Africa produces about 3.0 percent of total world coal production, and all but 0.2 percent comes from South Africa. Over half of the remainder is mined in Rhodesia.« less

  7. Research on solvent-refined coal. Quarterly technical progress report, July 1-September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-07-01

    This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Company's Merriam Laboratory during the third quarter of 1981. A four-part experiment was conducted with subbituminous Edna coal, pyrite and/or bituminous Ireland coal at 457/sup 0/C and 1800 psig or 450/sup 0/C and 2250 psig. The purpose was to determine the conditions appropriate for processing a 50/50 by weight blend of these coals. A total of four runs (11 experiments) discussed this quarter were directed toward the study of disposable catalysts. Subbituminous coals from the Edna and Belle Ayr Mines weremore » processed in the SRC II mode. Additives investigated were pyrite, ferric oxide, molybdenum doped ferric oxide and iron dispersed on silica-alumina. The level and type of sulfur added in conjunction with ferric oxide catalysts was also explored as well as addition of sulfur by itself. Two solvent hydrogenation runs and five SRC I runs were directed toward a preliminary investigation of short residence time processing of western (Belle Ayr) coals.« less

  8. Chlorine in coal and its relationship with boiler corrosion. Technical report, 1 March--31 May 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, M.I.M.; Lytle, J.M.; Ruch, R.R.

    1994-09-01

    Limited literature and use history data have suggested that some high-chlorine Illinois coals do not cause boiler corrosion while extensive data developed by the British correlate corrosion with chlorine content and other parameters related to the coal and boiler. The differences in corrosivity in coals may be due to the coal properties, to blending of coals, or to the boiler parameters in which they were burned. The goals of this study focus on coal properties. In this quarter, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine themore » forms and the evolution characteristics of chlorine in coals. The TGA-FTIR results indicate that under oxidation condition, both British and Illinois coals release hydrogen chloride gas. Illinois coals release the gas at high temperature with maximum evolution temperature ranged between 210 and 280 C. The XANES results indicate that chlorine in coal exists in ionic forms including a solid salt form. The solid NaCl salt form, however, is observed only in some of the British coals and none of the Illinois coals. These results combined with TGA-FTIR results suggest that the chlorine ions in Illinois coals are different from the chlorine ions in British coals.« less

  9. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.

    PubMed

    Misra, R D K; Thein-Han, W W; Pesacreta, T C; Hasenstein, K H; Somani, M C; Karjalainen, L P

    2009-06-01

    Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.

  10. Mechanical properties of reconstituted Australian black coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstitutedmore » coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.« less

  11. Fabrication of ultra-fine nanostructures using edge transfer printing.

    PubMed

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  12. The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel

    PubMed Central

    Kral, Petr; Dvorak, Jiri; Sklenicka, Vaclav; Masuda, Takahiro; Horita, Zenji; Kucharova, Kveta; Kvapilova, Marie; Svobodova, Marie

    2018-01-01

    The effect of ultrafine-grained size on creep behaviour was investigated in P92 steel. Ultrafine-grained steel was prepared by one revolution of high-pressure torsion at room temperature. Creep tensile tests were performed at 873 K under the initially-applied stress range between 50 and 160 MPa. The microstructure was investigated using transmission electron microscopy and scanning electron microscopy equipped with an electron-back scatter detector. It was found that ultrafine-grained steel exhibits significantly faster minimum creep rates, and there was a decrease in the value of the stress exponent in comparison with coarse-grained P92 steel. Creep results also showed an abrupt decrease in the creep rate over time during the primary stage. The abrupt deceleration of the creep rate during the primary stage was shifted, with decreasing applied stress with longer creep times. The change in the decline of the creep rate during the primary stage was probably related to the enhanced precipitation of the Laves phase in the ultrafine-grained microstructure. PMID:29757206

  13. Research on solvent-refined coal. Quarterly technical progress report, April 1, 1981-June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-10-01

    This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during the second quarter of 1981. Alexander Mine coal was evaluated as a feedstock for major liquefaction facilities and had a yield structure similar to other reactive Pittsburgh seam coals at standard SRC II conditions. Two lots of coal from the Ireland Mine (Pittsburgh seam) were found to be of nearly the same composition and produced essentially the same yields. Two experiments in which coal-derived nonvolatile organic matter was processed without fresh coal feed indicate constant rates ofmore » conversion of SRC to oil and gas. Insoluble organic matter (IOM) remained unconverted. The naphtha and middle distillate products from the deep conversion contained less sulfur but more nitrogen than those from conventional SRC II processing. Encouraging results were obtained when a very small amount of iron oxide dispersed on alumina was added to Kaiparowits coal which cannot be processed at normal SRC II conditions without added catalyst. Subbituminous coals from the McKinley and Edna Mines were processed successfully with added pyrite but would not run when the added catalyst was removed.« less

  14. Great Lakes transport of western coal: economic and technical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elste, V.H.; Scher, R.M

    1978-04-01

    A comprehensive investigation of coal transportation from western mines via railroad unit trains plus water transport on the Great Lakes covers in detail: the design of coal colliers for the Great Lakes as limited in size by the Poe lock at Sault Ste. Marie or by river destinations; effects of ice freezing on the lakes or on the coal cargo; problems of designing for alternative transport of taconite pellets; the economic effects of variations in ship characteristics; the effect of fuel price and of operation through the winter; economic comparison of transport alternatives for various pairs of sources and destinations;more » the advantage (vs. a slurry pipeline) of being able to expand on a unit-by-unit basis; and that the rail-water route is lowest in cost for all destinations on the Great Lakes east of Detroit, but direct unit-train service to Chicago is either equal or superior to the rail-water combination. (''A unitrain operating on level track is a most energy-efficient producer of transportation and only an extremely large vessel can approach or equal this performance'').« less

  15. Ultrafine particle measurement and related EPA research studies

    EPA Science Inventory

    Webinar slides to present information on measuring ultrafine particles at the request of the 2013 MARAMA Monitoring Committee. The talk covers near-road monitoring, instrument intercomparison, and general overview of UFP monitoring technology.

  16. Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment.

    PubMed

    Kaur, S; Nieuwenhuijsen, M J

    2009-07-01

    Short-term human exposure concentrations to PM2.5, ultrafine particle counts (particle range: 0.02-1 microm), and carbon monoxide (CO) were investigated at and around a street canyon intersection in Central London, UK. During a four week field campaign, groups of four volunteers collected samples at three timings (morning, lunch, and afternoon), along two different routes (a heavily trafficked route and a backstreet route) via five modes of transport (walking, cycling, bus, car, and taxi). This was followed by an investigation into the determinants of exposure using a regression technique which incorporated the site-specific traffic counts, meteorological variables (wind speed and temperature) and the mode of transport used. The analyses explained 9, 62, and 43% of the variability observed in the exposure concentrations to PM2.5, ultrafine particle counts, and CO in this study, respectively. The mode of transport was a statistically significant determinant of personal exposure to PM2.5, ultrafine particle counts, and CO, and for PM2.5 and ultrafine particle counts it was the most important determinant. Traffic count explained little of the variability in the PM2.5 concentrations, but it had a greater influence on ultrafine particle count and CO concentrations. The analyses showed that temperature had a statistically significant impact on ultrafine particle count and CO concentrations. Wind speed also had a statistically significant effect but smaller. The small proportion in variability explained in PM2.5 by the model compared to the largest proportion in ultrafine particle counts and CO may be due to the effect of long-range transboundary sources, whereas for ultrafine particle counts and CO, local traffic is the main source.

  17. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes.

    PubMed

    Bhargava, Arpit; Tamrakar, Shivani; Aglawe, Aniket; Lad, Harsha; Srivastava, Rupesh Kumar; Mishra, Dinesh Kumar; Tiwari, Rajnarayan; Chaudhury, Koel; Goryacheva, Irina Yu; Mishra, Pradyumna Kumar

    2018-03-01

    Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response

  18. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    DOE R&D Accomplishments Database

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  19. Ultrafine Condensation Particle Counter Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, C.

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  20. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire.

    PubMed

    Sehn, Janaína L; de Leão, Felipe B; da Boit, Kátia; Oliveira, Marcos L S; Hidalgo, Gelsa E; Sampaio, Carlos H; Silva, Luis F O

    2016-03-01

    Detailed geochemistry similarities between the burning coal cleaning rejects (BCCRs) and non-anthropogenic geological environments are outlined here. While no visible flames were detected, this research revealed that auto-combustion existed in the studied area for many years. The occurrence of several amorphous phases, mullite, hematite and many other Al/Fe-minerals formed by high temperature was found. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present work using multi-analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and newmineral creation. It recording huge numbers of rare minerals with alunite, montmorillonite, szmolnockite, halotrichite, coquimbite and copiapite at the BCCRs. The information presented the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing potential hazardous elements (PHEs), such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. Most of the nano-particles and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important impact to environment and subsequently animal and human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health.

    PubMed

    Oliveira, Marcos L S; da Boit, Kátia; Pacheco, Fernanda; Teixeira, Elba C; Schneider, Ismael L; Crissien, Tito J; Pinto, Diana C; Oyaga, Rafael M; Silva, Luis F O

    2018-01-01

    Pollution generated by hazardous elements and persistent organic compounds that affect coal fire is a major environmental concern because of its toxic nature, persistence, and potential risk to human health. The coal mining activities are growing in the state of Santa Catarina in Brazil, thus the collateral impacts on the health and economy are yet to be analyzed. In addition, the environment is also enduring the collateral damage as the waste materials directly influence the coal by-products applied in civil constructions. This study was aimed to establish the relationships between the composition, morphology, and structural characteristics of ultrafine particles emitted by coal mine fires. In Brazil, the self-combustions produced by Al-Ca-Fe-Mg-Si coal spheres are rich in chalcophile elements (As, Cd, Cu, Hg, Pb, Sb, Se, Sn, and Zn), lithophile elements (Ce, Hf, In, La, Th, and U), and siderophile elements (Co, Cr, Mo, Fe, Ni, and V). The relationship between nanomineralogy and the production of hazardous elements as analyzed by advanced methods for the geochemical analysis of different materials were also delineated. The information obtained by the mineral substance analysis may provide a better idea for the understanding of coal-fire development and assessing the response of particular coal in different combustion processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Enthalpy measurement of coal-derived liquids. Technical progress report, November 1982-January 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidnay, A.J.; Yesavage, V.F.

    The objective of this research is to measure the enthalpy for representative coal-derived liquids and model compounds over the pressure and temperature regions most likely to be encountered in both liquefaction and processing systems, and to prepare from the data an enthalpy correlation suitable for process design calculations. The correlational effort this past quarter on the enthalpy of coal-derived syncrudes and model compounds has emphasized the experimental determination of a correlating factor for association in coal liquids. As in previous work, the degree of association is to be related to cryoscopic molecular weight determinations on the coal liquids. To thismore » end, work on and an evaluationof a cryoscopic molecular weight apparatus was completed this quarter. Molecular weights of coal liquids determined by the standard Beckman freezing point depression apparatus were consistently low (5 to 10%). After modifications of the apparatus, it was tested with the following compounds: hexane, dodecane, m-xylene and naphthalene. Benzene was the solvent used. However, the molecular weight measurements were again consistently lower than the true values, and in many cases the experimental error was greater than that of the Beckman apparatus.« less

  3. Trace element geochemistry and mineralogy of coal from Samaleswari open cast coal block (S-OCB), Eastern India

    NASA Astrophysics Data System (ADS)

    Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina

    2018-04-01

    Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.

  4. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.

    PubMed

    Jørgensen, Rikke Bramming; Buhagen, Morten; Føreland, Solveig

    2016-07-01

    To investigate the exposure to number concentration of ultrafine particles and the size distribution in the breathing zone of workers during rehabilitation of a subsea tunnel. Personal exposure was measured using a TSI 3091 Fast Mobility Particle Sizer (FMPS), measuring the number concentration of submicrometre particles (including ultrafine particles) and the particle size distribution in the size range 5.6-560 nm. The measurements were performed in the breathing zone of the operators by the use of a conductive silicone tubing. Working tasks studied were operation of the slipforming machine, operations related to finishing the verge, and welding the PVC membrane. In addition, background levels were measured. Arithmetic mean values of ultrafine particles were in the range 6.26×10(5)-3.34×10(6). Vertical PVC welding gave the highest exposure. Horizontal welding was the work task with the highest maximum peak exposure, 8.1×10(7) particles/cm(3). Background concentrations of 4.0×10(4)-3.1×10(5) were found in the tunnel. The mobility diameter at peak particle concentration varied between 10.8 nm during horizontal PVC welding and during breaks and 60.4 nm while finishing the verge. PVC welding in a vertical position resulted in very high exposure of the worker to ultrafine particles compared to other types of work tasks. In evaluations of worker exposure to ultrafine particles, it seems important to distinguish between personal samples taken in the breathing zone of the worker and more stationary work area measurements. There is a need for a portable particle-sizing instrument for measurements of ultrafine particles in working environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Economic assessment of coal-burning locomotives: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurrymore » as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.« less

  6. Size resolved ultrafine particles emission model--a continues size distribution approach.

    PubMed

    Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick

    2011-08-15

    A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Comparison of corrosion behavior between coarse grained and nano/ultrafine grained alloy 690

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo

    2016-01-01

    The effect of grain refinement on corrosion resistance of alloy 690 was investigated. The electron work function value of coarse grained alloy 690 was higher than that of nano/ultrafine grained one. The grain refinement reduced the electron work function of alloy 690. The passive films formed on coarse grained and nano/ultrafine grained alloy 690 in borate buffer solution were studied by potentiodynamic curves and electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The results showed that the grain refinement improved corrosion resistance of alloy 690. This was attributed to the fact that grain refinement promoted the enrichment of Cr2O3 and inhibited Cr(OH)3 in the passive film. More Cr2O3 in passive film could significantly improve the corrosion resistance of the nano/ultrafine grained alloy 690.

  8. Structure and Growth of Rod-Shaped Mn Ultrafine Particle

    NASA Astrophysics Data System (ADS)

    Kido, Osamu; Suzuki, Hitoshi; Saito, Yoshio; Kaito, Chihiro

    2003-09-01

    The structure of rod-shaped Mn ultrafine particles was elucidated by electron microscopy. Mn ultrafine particles have characteristic tristetrahedron (α-Mn), rhombic dodecahedron (β-Mn) and rod-shape crystal habits. It was found that the rod-shaped particle resulted from the parallel coalescence of β-Mn particles with the size of 50 nm. Detailed analysis of the defects seen in large rod-shaped particles with the width of 100 nm indicated a mixture of α- and β-phases. A size effect on the phase transition from β to α was observed throughout the rod-shaped crystal structure. The structure and growth of Mn particles were discussed based on the outline of the smoke and the temperature distribution in the smoke.

  9. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  10. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D.L.

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less

  11. Effect of ultrafine zinc oxide (ZnO) nanoparticles on induction of oral tolerance in mice.

    PubMed

    Matsumura, Misa; Takasu, Nobuo; Nagata, Masafumi; Nakamura, Kazuichi; Kawai, Motoyuki; Yoshino, Shin

    2010-01-01

    Ultrafine nanoparticles of zinc oxide (ZnO) recently became available as a substitute for larger-size fine ZnO particles. However, the biological activity of ultrafine ZnO currently remains undefined. In the present study, we investigated the effect of ultrafine ZnO on oral tolerance that plays an important role in the prevention of food allergy. Oral tolerance was induced in mice by a single oral administration (i.e., gavage) of 25 mg of ovalbumin (OVA) 5 days prior to a subcutaneous immunization with OVA (Day 0). Varying doses of ultrafine (diameter: approximately 21 nm) as well as fine (diameter: < 5 microm) ZnO particles were given orally at the same time during the OVA gavage. The results indicated that a single oral administration of OVA was followed by significant decreases in serum anti-OVA IgG, IgG(1), IgG(2a), and IgE antibodies and in the proliferative responses to the antigen by these hosts' spleen cells. The decreases in these immune responses to OVA were associated with a marked suppression of secretion of interferon (IFN)gamma, interleukin (IL)-5, and IL-17 by these lymphoid cells. Treatment with either ultrafine or fine ZnO failed to affect the oral OVA-induced suppression of antigen-specific IgG, IgG(1), IgG(2a), and IgE production or lymphoid cell proliferation. The suppression induced by the oral OVA upon secretion of IFN gamma, IL-5, and IL-17 was also unaffected by either size of ZnO. These results indicate that ultrafine particles of ZnO do not appear to modulate the induction of oral tolerance in mice.

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MFmore » coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.« less

  13. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data

  14. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analysesmore » of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.« less

  15. Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Schmit, C.R.

    The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

  16. Direct firing of coal for power production

    NASA Technical Reports Server (NTRS)

    Papay, L. T.

    1978-01-01

    The use of new technology and advanced emission control hardware to reduce emissions from the direct combustion of coal to produce electricity in California is considered. The technical feasibilty of a demonstration project on an existing 81-MW boiler is demonstrated.

  17. The upper pennsylvanian pittsburgh coal bed: Resources and mine models

    USGS Publications Warehouse

    Watson, W.D.; Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.

    2001-01-01

    The U.S. Geological Survey recently completed a digital coal resource assessment model of the Upper Pennsylvanian Pittsburgh coal bed, which indicates that after subtracting minedout coal, 16 billion short tons (14 billion tonnes) remain of the original 34 billion short tons (31 billion tonnes) of coal. When technical, environmental, and social restrictions are applied to the remaining Pittsburgh coal model, only 12 billion short tons (11 billion tonnes) are available for mining. Our assessment models estimate that up to 0.61 billion short tons (0.55 billion tonnes), 2.7 billion short tons (2.4 billion tonnes), and 8.5 billion short tons (7.7 billion tonnes) could be available for surface mining, continuous mining, and longwall mining, respectively. This analysis is an example of a second-generation regional coal availability study designed to model recoverability characteristics for all the major coal beds in the United States. ?? 2001 International Association for Mathematical Geology.

  18. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, July--September 1977. [Coal-fuel oil-water slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, W.; Davis, A.; Walker, P. L.

    1977-12-01

    The Penn State/ERDA Coal Sample Bank was expanded to include 201 new coal samples. A total of 68 characterized coal samples and 115 selected printouts of coal data were supplied upon request to the coal research community. Selected chemical and petrographic properties were statistically analyzed for 119 coal channel samples chosen from the Penn State/ERDA Coal Data Base. Installation of the pressurized laminar flow isotherml reactor has begun. Experiments have continued on the combustion pot; the study of the reactivity of a Koppers Company coke is now complete. Studies show that weight changes associated with preoxidation can be precisely meausredmore » using a TGA apparatus. Water densities determined on 19 coals were lower when measured in the presence of a wetting agent. Study of the effect of reaction temperature on gasification of Saran carbon in air shows one percent platinum loading on Saran carbon increases gasification rates over the entire range of carbon burn-off. Study of the theoretical aspects of combustion of low volatile fuels was resumed. The computer model was expanded to include the effects of heat loss through the furnace walls and its effect on flame temperature profiles. Investigation of the combustion characteristics of coal-oil-water-air fuel mixtures was continued. Only through the use of non-equilibrium experiments can certain important combustion characteristics be studied, and computerized data acquisition is being developed to fully implement such methods.« less

  19. Association Between Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban Areas.

    PubMed

    Stafoggia, Massimo; Schneider, Alexandra; Cyrys, Josef; Samoli, Evangelia; Andersen, Zorana Jovanovic; Bedada, Getahun Bero; Bellander, Tom; Cattani, Giorgio; Eleftheriadis, Konstantinos; Faustini, Annunziata; Hoffmann, Barbara; Jacquemin, Bénédicte; Katsouyanni, Klea; Massling, Andreas; Pekkanen, Juha; Perez, Noemi; Peters, Annette; Quass, Ulrich; Yli-Tuomi, Tarja; Forastiere, Francesco

    2017-03-01

    Epidemiologic evidence on the association between short-term exposure to ultrafine particles and mortality is weak, due to the lack of routine measurements of these particles and standardized multicenter studies. We investigated the relationship between ultrafine particles and particulate matter (PM) and daily mortality in eight European urban areas. We collected daily data on nonaccidental and cardiorespiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. We estimated a weak, delayed association between particle number concentration and nonaccidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5) or nitrogen dioxide (NO2). The stronger association found between particle number concentration and mortality in the warmer season (1.14% increase) became null after adjustment for other pollutants. We found weak evidence of an association between daily ultrafine particles and mortality. Further studies are required with standardized protocols for ultrafine particle data collection in multiple European cities over extended study periods.

  20. Traffic emission factors of ultrafine particles: effects from ambient air.

    PubMed

    Janhäll, Sara; Molnar, Peter; Hallquist, Mattias

    2012-09-01

    Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the Göte-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8 × 10(15) × (1 - 0.095 × CO - 3.2 × 10(-3) × T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented.

  1. Development of decision- making mechanism in engineering design of phased coal mines technical upgrade

    NASA Astrophysics Data System (ADS)

    Kulak, V. Yu; Petrova, T. V.; Novichikhin, A. V.

    2017-09-01

    The approach to a choice of a new mine design and technical upgrade of operating coal mines is substantiated. The choice of the option is made in the following way: the elements of the mine technological system are defined, for each element of the system two levels of costs are allocated - capital and operational; a graph of alternative options of the system is formed by matrix enumeration taking into account the possibility of simultaneous application of different elements, up to 10 000 scenarios are formed; capital and operating costs of options are estimated in the form of coefficients as the cost-to-cost ratio in the base variant, which has already been implemented and the costs of which are already known; ranking of the options at the level of costs and the definition of the 10 preferred are performed. It is established that the application of partial enumeration allows the costs relative to the base variant to be reduced by 10 %; the main constraint of costs reduction is the need to comply with all conditions that ensure industrial safety.

  2. Coal industry of Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetincelik, M.

    1979-09-01

    The known occurrences of hard (bituminous) coal in Turkey are very limited. Total resources are estimated to be 1,500,000,000 metric tons of which 205,000,000 tons are considered to be technically and economically recoverable at the present time. Tertiary lignite deposits are found extensively throughout Turkey. Total resources of lignite are estimated to be about 5,140,000,000 metric tons of which 2,740,000,000 tons are considered to be recoverable. In 1978, Turkey completely nationalized its coal industry whereby the government was authorized to take over all private mines. As a result of this, a major increase in coal production is expected based onmore » a new energy policy. Turkish Coal Enterprises (TKI), a state-owned organization, is now in control of the entire coal industry. TKI was established by law in 1957 and has its headquarters in Ankara. The gradually changing structure of Turkey's national economy from agriculture to increased industrialization has been accompanied by a rise in energy requirements. However, the lack of recent industrial expansion and the decline in the national economy has been due to the shortage of energy. A new energy plan developed for the country has established that, in the future, lignite will be used in far greater proportions for electricity generation (burned in captive plants). The nationalization of Turkey's lignite mines is expected to ensure a coordinated and effective means of meeting the demand.« less

  3. A 1,000 GtC Coal Question for Future Energy Scenarios: How Much Coal Will Renewables Need to Displace?

    NASA Astrophysics Data System (ADS)

    Ritchie, W. J.; Dowlatabadi, H.

    2016-12-01

    Twenty years ago, global coal assessments indicated reserve-to-production (R-P) ratios of more than 300 years. Consequently, most studies of energy futures established coal as a virtually unlimited backstop to meet the world's projected energy needs. Coal was modeled to offset oil and gas production declines and provide a source of energy which renewables and lower carbon supply strategies needed to outcompete. Over the past two decades, increasingly consistent methodologies have been applied globally to assess recoverable coal. Coal production has also witnessed significant mechanization to meet higher demand. Each of these has led to a significant reduction in estimates of economically recoverable coal reserves despite a doubling of market prices over this period. The current reserve to production ratio for coal is now around 100 years. It is time to reconsider coal as the inexhaustible energy backstop The energy models which develop long-term estimates of renewable energy needs and projections of greenhouse gas (GHG) emissions still adopt the characteristics of vintage coal assessments. By convention, baseline GHG emissions used by the IPCC and others, project combustion of most known coal reserves before the year 2100. When vintage assessments are used, this involves extraction of all currently known coal reserves plus twice again from resources invalidated as recoverable for geologic, environmental, social, legal, technical or economic reasons. We provide evidence for rejecting these projections of unbounded growth in coal consumption. Legacy pathways of implausibly high coal use upwardly bias long-term scenarios for total cumulative GHG emissions and subsequent research on climate change. This bias has precluded consideration of much more ambitious climate mitigation targets without significant socio-economic dislocation and unnecessarily diminishes possible future contributions from renewables.

  4. Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis.

    PubMed

    Song, Sanghwan; Lee, Kiyoung; Lee, Young-Mi; Lee, Jung-Hyun; Lee, Sang Il; Yu, Seung-Do; Paek, Domyung

    2011-04-01

    Although ambient particulate pollutants have been shown to exacerbate existing allergic symptoms of mucous membranes including rhinitis and asthma, the effects on skin such as atopic dermatitis in childhood deserve further study. We investigated the effects of urban particulate pollutants including ultrafine particles on atopic severity in children with atopic dermatitis. We included 41 schoolchildren, 8-12 years old, who had been diagnosed with atopic dermatitis. For 67 consecutive days, all of them measured their symptoms in a diary. To assess exposure, the daily ambient mass concentrations of particulate matter less than 10, 2.5 and 1 μm (PM(10), PM(2.5) and PM(1), respectively) and concentrations of submicron particles (0.01- 1 μm) were measured at a local school. The mean mass concentrations of PM(10), PM(2.5) and PM(1) were 74.0, 57.8 and 50.8 μg/m(3), respectively. The mean concentrations were 41,335/cm(3) ultrafine particles (UFPs) and 8577/cm(3) accumulation mode (0.1-1 μm) particles. Significant associations were found between the concentrations of ultrafine particles and the itchiness symptom in children with atopic dermatitis. An interquartile range (IQR) increase in previous day ultrafine particles concentration (IQR: 28-140/m(3)) was significantly associated with a 3.1% (95% confidence interval, 0.2-6.1) increase in the itch symptom score for children with atopic dermatitis. The results suggested that the concentration of ambient ultrafine particles may exacerbate skin symptoms in children with atopic dermatitis. Copyright © 2011. Published by Elsevier Inc.

  5. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice.

    PubMed

    Wardoyo, Arinto Y P; Juswono, Unggul P; Noor, Johan A E

    2018-01-01

    Ultrafine particles (UFPs) are one of motorcycle exhaust emissions which can penetrate the lung alveoli and deposit in the kidney. This study was aimed to investigate mice kidney cell physical damage (deformation) due to motorcycle exhaust emission exposures. The motorcycle exhaust emissions were sucked from the muffler with the rate of 33 cm 3 /s and passed through an ultrafine particle filter system before introduced into the mice exposure chamber. The dose concentration of the exhaust emissions was varied by setting the injected time of the 20s, 40s, 60s, 80s, and 100s. The mice were exposed to the smoke in the chamber for 100 s twice a day. The impact of the ultrafine particles on the kidney was observed by identifying the histological image of the kidney cell deformation using a microscope. The exposure was conducted for 10 days. The kidney observations were carried out on day 11. The results showed that there was a significant linear correlation between the total concentration of ultrafine particles deposited in the kidneys and the physical damage percentages. The increased concentrations of ultrafine particles caused larger cell deformation to the kidneys.

  7. Size-resolved ultrafine particle composition analysis 2. Houston

    NASA Astrophysics Data System (ADS)

    Phares, Denis J.; Rhoads, Kevin P.; Johnston, Murray V.; Wexler, Anthony S.

    2003-04-01

    Between 23 August and 18 September 2000, a single-ultrafine-particle mass spectrometer (RSMS-II) was deployed just east of Houston as part of a sampling intensive during the Houston Supersite Experiment. The sampling site was located just north of the major industrial emission sources. RSMS-II, which simultaneously measures the aerodynamic size and composition of individual ultrafine aerosols, is well suited to resolving some of the chemistry associated with secondary particle formation. Roughly 27,000 aerosol mass spectra were acquired during the intensive period. These were classified and labeled based on the spectral peak patterns using the neural networks algorithm, ART-2a. The frequency of occurrence of each particle class was correlated with time and wind direction. Some classes were present continuously, while others appeared intermittently or for very short time durations. The most frequently detected species at the site were potassium and silicon, with lesser amounts of organics and heavier metals.

  8. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji

    2014-09-15

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain sizemore » for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET.« less

  9. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  10. Apportionment of motor vehicle emissions from fast changes in number concentration and chemical composition of ultrafine particles near a roadway intersection.

    PubMed

    Klems, Joseph P; Pennington, M Ross; Zordan, Christopher A; McFadden, Lauren; Johnston, Murray V

    2011-07-01

    High frequency spikes in ultrafine number concentration near a roadway intersection arise from motor vehicles that accelerate after a red light turns green. The present work describes a method to determine the contribution of motor vehicles to the total ambient ultrafine particle mass by correlating these number concentration spikes with fast changes in ultrafine particle chemical composition measured with the nano aerosol mass spectrometer, NAMS. Measurements were performed at an urban air quality monitoring site in Wilmington, Delaware during the summer and winter of 2009. Motor vehicles were found to contribute 48% of the ultrafine particle mass in the winter measurement period, but only 16% of the ultrafine particle mass in the summer period. Chemical composition profiles and contributions to the ultrafine particle mass of spark vs diesel vehicles were estimated by correlating still camera images, chemical composition and spike contribution at each time interval.. The spark and diesel contributions were roughly equal, but the uncertainty in the split was large. The distribution of emissions from individual vehicles was determined by correlating camera images with the spike contribution to particle number concentration at each time interval. A small percentage of motor vehicles were found to emit a disproportionally large concentration of ultrafine particles, and these high emitters included both spark ignition and diesel vehicles.

  11. Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges

    2016-02-15

    Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less

  12. Occupational safety and health implications of increased coal utilization.

    PubMed Central

    Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L

    1979-01-01

    An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621

  13. Exposure to airborne ultrafine particles from cooking in Portuguese homes.

    PubMed

    Bordado, J C; Gomes, J F; Albuquerque, P C

    2012-10-01

    Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 microm2/cm3 (increased to 72.9 microm2/cm3 due to gas burning) to a maximum of 890.3 microm2/cm3 measured during fish boiling in water and a maximum of 4500 microm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities. The approach of this study considers the determination of alveolar deposited surface area of aerosols generated from cooking activities, namely, typical Portuguese dishes. This type of measurement has not been done so far, in spite of the recognition that cooking activity is a main source of submicrometer and ultrafine aerosols. The results have shown that the levels of generated aerosols surpass the outdoor concentrations in a major European town, which calls for further determinations, contributing to a better assessment of exposure of individuals to domestic activities such as this one.

  14. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  15. Definitional-mission report: Clean-coal-technology assistance project in Poland (final report). Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, V.K.

    1992-01-01

    The new impending environmental law in Poland provides for strict environmental guidelines for coal preparation, washing, mine desalination, and application of commercially viable and economical clean coal technologies for utilization of coal. The government of Poland requested the U.S. Trade and Development Program (TDP) carry out a Definitional Mission to Poland to define the requirements of the Polish authorities and to prepare specific recommendations for follow on actions by TDP. The technical assistance package proposed to be funded by TDP includes two specific activities. These are (i) an orientation visit to review selected clean coal technology projects in the U.S.,more » and (ii) preparation of a compendium of the main coal sector requirements in Poland and the types of technologies needed. The Definitional Mission has prepared a Scope of Work which recommends that TDP allocate a fund to finance the cost of the above technical assistance activities. It is further recommended that TDP enlist the assistance of a non-profit trade organization to provide this assistance to the Polish government.« less

  16. Coal gasifier cogeneration powerplant project

    NASA Technical Reports Server (NTRS)

    Shure, L. I.; Bloomfield, H. S.

    1980-01-01

    Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.

  17. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directorymore » and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.« less

  18. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    DOE R&D Accomplishments Database

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  19. Liquid fuels from coal: analysis of a partial transition from oil to coal; light liquids in Zimbabwe's liquid fuels base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maya, R.S.

    1986-01-01

    This study assesses the feasibility of a coal based light liquids program as a way to localize forces that determine the flow of oil into the Zimbabwean economy. Methods in End-use Energy Analysis and Econometrics in which the utilization of petroleum energy is related to economic and industrial activity are used to gain insight into the structure and behavior of petroleum utilization in that country and to forecast future requirements of this resource. The feasibility of coal liquefaction as a substitute for imported oil is assessed by the use of engineering economics in which the technical economics of competing oilmore » supply technologies are analyzed and the best option is selected. Coal conversion technologies are numerous but all except the Fischer-Trosch indirect coal liquefaction technology are deficient in reliability as commercial ventures. The Fischer-Tropsch process by coincidence better matches Zimbabwe's product configuration than the less commercially advanced technologies. Using present value analysis to compare the coal liquefaction and the import option indicates that it is better to continue importing oil than to resort to a coal base for a portion of the oil supplies. An extended analysis taking special consideration of the risk and uncertainty factors characteristic of Zimbabwe's oil supply system indicates that the coal option is better than the import option. The relative infancy of the coal liquefaction industry and the possibility that activities responsible for the risk and uncertainty in the oil supply system will be removed in the future, however, make the adoption of the coal option an unusually risky undertaking.« less

  20. CARDIOVASCULAR EFFECTS OF ULTRAFINE CARBON PARTICLES IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Rationale: Epidemiological evidence suggests that ultrafine particles are associated with adverse cardiovascular effects, specifically in elderly individuals with preexisting cardiovascular disease. The objective of this study was (i) to assess cardiopulmonary responses in adult ...

  1. Cofiring biomass with coal: Opportunities for Malaysia

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  2. Geologic coal assessment: The interface with economics

    USGS Publications Warehouse

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  3. Health hazards of ultrafine metal and metal oxide powders

    NASA Technical Reports Server (NTRS)

    Boylen, G. W., Jr.; Chamberlin, R. I.; Viles, F. J.

    1969-01-01

    Study reveals that suggested threshold limit values are from two to fifty times lower than current recommended threshold limit values. Proposed safe limits of exposure to the ultrafine dusts are based on known toxic potential of various materials as determined in particle size ranges.

  4. Process and apparatus for producing ultrafine explosive particles

    DOEpatents

    McGowan, Michael J.

    1992-10-20

    A method and an improved eductor apparatus for producing ultrafine explosive particles is disclosed. The explosive particles, which when incorporated into a binder system, have the ability to propagate in thin sheets, and have very low impact sensitivity and very high propagation sensitivity. A stream of a solution of the explosive dissolved in a solvent is thoroughly mixed with a stream of an inert nonsolvent by obtaining nonlaminar flow of the streams by applying pressure against the flow of the nonsolvent stream, to thereby diverge the stream as it contacts the explosive solution, and violently agitating the combined stream to rapidly precipitate the explosive particles from the solution in the form of generally spheroidal, ultrafine particles. The two streams are injected coaxially through continuous, concentric orifices of a nozzle into a mixing chamber. Preferably, the nonsolvent stream is injected centrally of the explosive solution stream. The explosive solution stream is injected downstream of and surrounds the nonsolvent solution stream for a substantial distance prior to being ejected into the mixing chamber.

  5. Perspectives of Using Ultra-Fine Metals as Universal Safe BioStimulators to Get Cattle Breeding Quality Products

    NASA Astrophysics Data System (ADS)

    Polishchuk, S.

    2015-11-01

    We have conducted investigations of ultra-fine metals biological activity with lab non-pedigree white rats, rabbits breed “Soviet chinchilla” and cattle young stock of the black and white breed as the most widely spread in the central part of Russia. One can see the possibility of using microelements of ultra-fine iron, cobalt and copper as cheap, non-toxic and highly effective biological catalyst of biochemical processes in the organism that improve physiological state, morphological and biochemical blood parameters increasing activity of the experimental animals’ ferment systems and their productivity and meat biological value. We have proved the ultra-fine powders safety when adding them to the animals’ diet.

  6. Management of local economic and ecological system of coal processing company

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.

    2016-10-01

    The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.

  7. Leaching behavior of rare earth elements in Fort Union lignite coals of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane

    Rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including those previously mined in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from amore » single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This paper details the results of a study on characterization of North Dakota lignite and lignite-related feedstocks as an assessment of their feasibility for rare earth element recovery. The abundance, distribution and modes of occurrence of the rare earth elements in the samples collected were determined in this initial study to inform the selection of appropriate extraction and concentration methods to recover the rare earth elements. Materials investigated include the lignite coals, clay-rich sediments associated with the coal seams, and materials associated with a lignite beneficiation system and power plant. The results show that high rare earth element levels exist both in lignite coals and associated sediments. The form of the rare earth elements in the clay materials is primarily as ultra-fine mineral grains. In the lignite coals, approximately 80-95% of the rare earths content is organically associated, primarily as coordination

  8. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station.

    PubMed

    Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh

    2015-08-18

    Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.

  9. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less

  10. Application of Paste Backfill in Underground Coal Fires

    NASA Astrophysics Data System (ADS)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  11. Business Industry Technical Assistance Center, Hazard Community College.

    ERIC Educational Resources Information Center

    Marrow, Alvin J.

    The Business Industry and Technical Assistance Center (BITAC) was established in 1986 at Hazard Community College, in Kentucky, to serve as an information and technical assistance center for small business. As the local area began to face layoffs in the coal mining industry, however, the center extended its services in four principal areas:…

  12. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite

    PubMed Central

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  13. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less

  14. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    PubMed

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. HUMAN CLINICAL STUDIES OF CONCENTRATED AMBIENT ULTRAFINE AND FINE PARTICLES

    EPA Science Inventory

    Confirmation of our hypothesis that exposure to ambient ultrafine and fine particles promotes coagulation and alters cardiac function will have important implications for air pollution regulatory efforts, and will provide new approaches for the prevention of cardiovascular hea...

  16. ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD

    EPA Science Inventory

    Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...

  17. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  18. Urban and rural ultrafine (PM 0.1) particles in the Helsinki area

    NASA Astrophysics Data System (ADS)

    Pakkanen, Tuomo A.; Kerminen, Veli-Matti; Korhonen, Christina H.; Hillamo, Risto E.; Aarnio, Päivi; Koskentalo, Tarja; Maenhaut, Willy

    In June 1996-June 1997 Berner low-pressure impactors were used at an urban and at a rural site in the Helsinki area for sampling ultrafine particles (UFP, PM 0.1). Ten sample pairs, each pair measured simultaneously, were collected in the size range of 0.03-15 μm of particle aerodynamic diameter. More than 40 chemical components were measured. Surprisingly, the average UFP mass concentration was higher at the rural site (520 ng/m 3) than at the urban site (490 ng/m 3). The average chemical composition of UFP was similar at the two sites. The most abundant of the measured components were sulphate (32 and 40 ng/m 3 for the urban and rural sites, respectively), ammonium (22 and 25 ng/m 3), nitrate (4 and 11 ng/m 3) and the Ca 2+ ion (5 and 7 ng/m 3). The most important metals at both sites were Ca, Na, Fe, K and Zn with concentrations between 0.7 and 5 ng/m 3. Of the heavy metals, Ni, V, Cu, and Pb were important with average ultrafine concentrations between about 0.1 and 0.2 ng/m 3. Also the organic anions oxalate (urban 2.1 ng/m 3 and rural 1.9 ng/m 3) and methanesulphonate (1.3 and 1.7 ng/m 3) contributed similarly at both sites. The measured species accounted for only about 15-20% of the total ultrafine mass. The fraction that was not measured includes mainly carbonaceous material and water. It was estimated that the amount of water was about 10% (50 ng/m 3) and that of carbonaceous material about 70% (350 ng/m 3) at both sites. Aitken modes were observed for most components with the average mass mean mode diameters being between about 0.06 and 0.12 μm. The average concentrations in the Aitken mode differed clearly from those in the UFP for several components. The average contribution of ultrafine mass to the fine particle mass (PM 2.5) was about 7% at the urban site and 8.5% at the rural site. At both sites the contribution of ultrafine to fine was especially high for Se, Ag, B, and Ni (10-20%) and at the rural site also for Co (20%), Ca 2+ (16%) and Mo (11

  19. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 11, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This project is one of eight projects selected under the assessment program in the Support of Eastern Democracy (SEED) Act of 0989 by the federal government to reduce low-level emission sources in the Krakow area of Poland. The objective of this Cooperative Agreement is to demonstrate that the quality of stack gas emissions can be improved through the substitution of run-of-mine coal by washed coal. To this end, EFH Coal Company will design, build, and operate a 300-mtph (330 stph) preparation plant and produce a low ash, double-screened washed coal for burning in a traveling-grate stoker in one of themore » many water heating plants in the city of Krakow. By burning this prepared coal under proper combustion condition, combustion efficiency will be increased, stoker maintenance will be lowered and the amount of carbon monoxide, sulfur dioxide and particulates in the stack gases will be reduced significantly. Contracts to: provide the raw-coal feed to the plant; dispose of plant wastes; burn the clean coal in a demonstration water heating plant in Krakow; and to market any surplus production are in place. An international irrevocable purchase order has been let for the procurement of a customized modular 300 mtph (330 stph) dense medium cyclone preparation plant to wash the 20 mm ({approx} 3/4 in.) by 5 mm. ({approx} 1/4 in.) size fraction of raw coal produced by the Katowice Coal Holding Company. This plant will be fabricated and shipped from the United States to Poland as soon as the final land-us and construction permits are granted.« less

  20. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    USGS Publications Warehouse

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  1. Field Study on the formation and emission characteristics of PM2.5 in coal fired power plant unit

    NASA Astrophysics Data System (ADS)

    Xia, Yongjun; Huang, Guohui; Zhu, Yunpeng; Wang, Qian

    2018-05-01

    Particulate matter(PM) measurements were performed at the inlet and outlet of Fabric filter(FF) and the outlet of limestone-gypsum wet flue gas desulfurization (WFGD) tower at a 220MW pulverized coal fired power plant unit, and the PM formation characteristics, the performance characteristics of FF and the influence of WFGD to PM emission were discussed. The results showed that PM were of bimodal size distribution. The concentration of PMs larger than 2.5μm reduced in the WFGD while PMs less than 2.5μm particularly the PM diameter around 0.5μm increased due to the ultrafine PM aggregation as well as new PM formation from gypsum slurry entrainment.

  2. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPHmore » oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  3. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  4. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  5. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A samplemore » bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.« less

  6. Advanced direct coal liquefaction concepts. Quarterly report, July 1--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    All the reports required for completion of the contract were submitted this quarter. A proposal for further work in Phase 2 was also submitted. The technical and economic assessment of the process was completed. The results show that for the base case scenario (25% equity, 15% after tax DCF-ROE) coal derived synthetic crude oil can be produced at just below US $30 per barrel. The study was based on the production of 75,000 BPD of C{sub 4+} synthetic crude oil from Black Thunder coal for subsequent processing in a conventional petroleum refinery from Black Thunder (Wyoming) subbituminous coal.

  7. Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.

    1971-01-01

    The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.

  8. Analysis of the ultrafine fraction of the Apollo 14 regolith

    NASA Technical Reports Server (NTRS)

    Finkelman, R. B.

    1973-01-01

    Analyses were obtained on more than 2400 randomly selected particles from the sub-37 micron (ultrafine) fraction of ten Apollo 14 regolith samples. The analyses were conducted with an energy dispersive electron microprobe system. The semiquantitative data were used to group the particles into ten categories. The pyroxene/plagioclase and olivine/plagioclase ratios are inconsistent with those ratios in the Apollo 14 breccias and rocks. The data suggest that fragmented basalts similar to Apollo 12 olivine basalts may have made significant contributions to the ultrafine fraction of the Fra Mauro regolith. Among a number of unusual particles encountered are brown, birefringent lath-shaped grains with 60 wt % SiO2 and 34 wt % FeO(FeSi2O5) and a glass with 20 to 25 wt % CaO, 0 to 8 wt % MgO, 40 to 45 wt % Al2O3 and approximately 30 wt % SiO2.

  9. Synthesis of ultrafine ZrB2 powders by sol-gel process

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Zhu, Shi-Zhen; Xu, Qiang; Yan, Zhen-Yu; Liu, Ling

    2010-09-01

    Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.

  10. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain

    NASA Astrophysics Data System (ADS)

    Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A. M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S.

    2012-12-01

    Urban air quality impairment by ultrafine particles has become a matter of concern due to the adverse effects on human health. Most of the studies of ultrafine particles in urban air quality have focused on vehicle exhaust emissions. We studied how industrial emissions contribute to ultrafine particle concentrations in downwind urban ambient air. This research is based on experimental data collected in the ambient air of the industrial city of Huelva (SW Spain) over April 2008-December 2009 period (particle number, gaseous pollutants and black carbon concentrations and levels and chemical composition of PM10 and PM2.5 with daily and hourly resolution). This city is affected by emissions from the second largest Cu-smelter in Europe, phosphoric acid and fertilizer production plants and an oil refinery and petrochemical plant. Industrial emissions are the main cause of ultrafine particle episodes. When vehicle exhaust emissions are the main source, ultrafine particles typically show (24-h mean) concentrations within the range 14,700-5000 cm-3 (50th-1st), with 60% of these linked to this source and 30% to industrial emissions. In contrast, when daily mean levels of N are within the range 50,000-25,500 cm-3 (100th-70th), industrial and vehicle exhaust emissions accounted for 49 and 30%, respectively. High concentrations of toxic trace metals (As, Cu, Cd, Zn and Pb) were recorded when the study city suffered fumigations of the Cu-smelter plumes (e.g. 10-25 ng m-3 As, 1-2 ng m-3 Cd and >105 cm-3 of ultrafine particles). Because of these industrial emissions, ultrafine particle concentrations during daylight are about two times higher than those observed in other European cities. Recently, ultrafine particle emissions in vehicle exhausts have been subject to limit values in a recent stage of the EURO standards. Industrial emissions should also be considered.

  11. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

    NASA Astrophysics Data System (ADS)

    Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie

    2017-10-01

    Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, C.W.; Chander, S.; Gutterman, C.

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than didmore » relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.« less

  13. COAL PREPARATION PLANT COMPUTER MODEL: VOLUME I. USER DOCUMENTATION

    EPA Science Inventory

    The two-volume report describes a steady state modeling system that simulates the performance of coal preparation plants. The system was developed originally under the technical leadership of the U.S. Bureau of Mines and the sponsorship of the EPA. The modified form described in ...

  14. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstratemore » that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.« less

  15. Global Development of Commercial Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Blinderman, M. S.

    2017-07-01

    Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.

  16. Associations Between Ultrafine Particles and Co-Pollutant Concentrations in the Tampa Bay Area.

    PubMed

    Desai, Ushang; Watson, Alain

    2016-05-01

    Ultrafine particles (UFPs) are ubiquitous in urban air and have been recognized as a risk to human health. The aim of this study was to measure the relationships among ultrafine particles and other ambient air pollutants and meteorological factors in the Tampa Bay Area. This study measured continuous UFPs, black carbon, oxides of nitrogen (NO(x)), nitrogen dioxide (NO2), nitric oxide (NO), carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), particulate matter having an aerodynamic diameter of 10 microns or less (PM10), relative humidity, wind speed, and ambient temperature during January to March 2014. Moreover, the study compared the relationship between UFPs and various co-pollutants daily, including during morning rush hour periods. This study found a moderate correlation among UFPs and black carbon, NO(x), NO2, and NO during hourly continuous measurements and rush hour periods, and a low level of correlation among UFPs and CO, O3, SO2, PM10, relative humidity, wind speed, and ambient temperature. This study indicates that co-pollutants should not be used as a surrogate to assess the human health risk from ultrafine particles exposure.

  17. Perspectives on individual to ensembles of ambient fine and ultrafine particles and their sources

    NASA Astrophysics Data System (ADS)

    Bein, Keith James

    By combining Rapid Single-ultrafine-particle Mass Spectrometry (RSMS) measurements during the Pittsburgh Supersite experiment with a large array of concurrent PM, gas and meteorological data, a synthesis of data and analyses is employed to characterize sources, emission trends and dynamics of ambient fine and ultrafine particles. Combinatorial analyses elicit individual to ensemble descriptions of particles, their sources, their changes in state from atmospheric processing and the scales of motion driving their transport and dynamics. Major results include (1) Particle size and composition are strong indicators of sources/source categories and real-time measurements allow source attribution at the single particle and point source level. (2) Single particle source attribution compares well to factor analysis of chemically-speciated bulk phase data and both resulted in similar conclusions but independently revealed new sources. (3) RSMS data can quantitatively estimate composition-resolved, number-based particle size distribution. Comparison to mass-based data yielded new information about physical and chemical properties of particles and instrument sensitivity. (4) Source-specific signatures and real-time monitoring allow passing plumes to be tracked and characterized. (5) The largest of three identified coal combustion sources emits ˜ 2.4 x 10 17 primary submicron particles per second. (6) Long-range transport has a significant impact on the eastern U.S. including specific influences of eight separate wildfire events. (7) Pollutant dynamics in the Pittsburgh summertime air shed, and Northeastern U.S., is characterized by alternating periods of stagnation and cleansing. The eight wildfire events were detected in between seven successive stagnation events. (8) Connections exist between boreal fire activity, southeast subsiding transport of the emissions, alternating periods of stagnation and cleansing at the receptor and the structure and propagation of

  18. LASER DESORPTION/IONIZATION OF SINGLE ULTRAFINE MULTICOMPONENT AEROSOLS. (R823980)

    EPA Science Inventory

    Laser desorption/ionization characteristics of single
    ultrafine multicomponent aerosols have been investigated.
    The results confirm earlier findings that (a) the negative
    ion spectra are dominated by free electrons and (b) the ion
    yield-to-mass ratio is higher for ...

  19. Vascular effects of ultrafine particles in persons with type 2 diabetes

    EPA Science Inventory

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  20. Air pollution ultrafine particles: toxicity beyond the lung.

    PubMed

    Terzano, C; Di Stefano, F; Conti, V; Graziani, E; Petroianni, A

    2010-10-01

    Ultrafine particles or nanoparticles (UFPs or PM0.1) are the fraction of ambient particulates with an aerodynamic diameter smaller than 0.1 microm. Currently UFPs are emerging as the most abundant particulate pollutants in urban and industrial areas, as their exposures have increased dramatically because of anthropogenic sources such as internal combustion engines, power plants, incinerators and many other sources of thermo-degradation. Ultrafine particles have been less studied than PM2.5 and PM10 particulates, mass concentrations of particles smaller than 2.5 and 10 microm, respectively. OBJECTIVE, EVIDENCE AND INFORMATION SOURCES: We examined the current scientific literature about the health effects of ultrafine particles exposure. UFPs are able to inhibit phagocytosis, and to stimulate inflammatory responses, damaging epithelial cells and potentially gaining access to the interstitium. They could be responsible for consistent reductions in forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) in patients with asthma. Chronic exposure to UFPs can produce deleterious effects on the lung, also causing oxidative stress and enhancing pro-inflammatory effects in airways of COPD patients. Cardiovascular detrimental consequences due to UFPs exposure have observed in epidemiological studies, and could likely be explained by translocation of UFPs from the respiratory epithelium towards circulation and subsequent toxicity to vascular endothelium; alteration of blood coagulation; triggering of autonomic nervous system reflexes eventually altering the cardiac frequency and function. Once deposited deeply into the lung, UFPs--in contrast to larger-sized particles--appear to access to the blood circulation by different transfer routes and mechanisms, resulting in distribution throughout the body, including the brain, with potential neurotoxic consequences. UFPs represent an area of toxicology of emerging concern. A new concept of environmental medicine

  1. CARDIOVASCULAR RESPONSES TO ULTRAFINE CARBON PARTICLE EXPOSURES IN RATS

    EPA Science Inventory

    TD-02-042 (U. KODAVANTI) GPRA # 10108

    Cardiovascular Responses to Ultrafine Carbon Particle Exposures in Rats.
    V. Harder1, B. Lentner1, A. Ziesenis1, E. Karg1, L. Ruprecht1, U. Kodavanti2, A. Stampfl3, J. Heyder1, H. Schulz1
    GSF- Institute for Inhalation Biology1, I...

  2. A Two-Step Approach for Producing an Ultrafine-Grain Structure in Cu-30Zn Brass (Postprint)

    DTIC Science & Technology

    2015-08-13

    crystallization anneal at 400 °C (0.55Tm, where Tm is the melting point ) for times ranging from 1 min to 10 hours, followed by water quenching; an additional...200 words) A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was developed to produce an ultrafine-grain...b s t r a c t A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was devel- oped to produce an ultrafine

  3. The Method of Validity Evaluation of Hard Coal Excavation in Residual Seam Parts

    NASA Astrophysics Data System (ADS)

    Wodarski, Krzysztof; Bijańska, Jolanta; Gumiński, Adam

    2017-12-01

    The excavation of residual seam parts should be justified by positive assessment of the purposefulness, technical feasibility and economic effectiveness. The results of the profitability evaluation are crucial in a decision making process. The excavation of residual seam parts, even if it is possible from a technical point of view, should not be implemented if it is economically inefficient or when accompanied by a very high risk of non-recovery of invested capital resources. The article presents the evaluation method of possibilities of excavating hard coal from residual seam parts, and the example of its use in one of collieries in the Upper Silesian Coal Basin. Working in line with the developed method, allows to indicate the variant of residual seam part exploitation, which is feasible to implement from a technical point of view, and which is characterized by the highest economic effectiveness and lowest risk.

  4. [Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].

    PubMed

    Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming

    2012-12-01

    A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.

  5. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.A. Robbins; R.A. Winschel; S.D. Brandes

    This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made tomore » ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.« less

  6. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  7. Ultrafine fibers of zein and anthocyanins as natural pH indicator.

    PubMed

    Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2018-05-01

    pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire.

    PubMed

    Civeira, Matheus S; Pinheiro, Rafael N; Gredilla, Ainara; de Vallejuelo, Silvia Fdez Ortiz; Oliveira, Marcos L S; Ramos, Claudete G; Taffarel, Silvio R; Kautzmann, Rubens M; Madariaga, Juan Manuel; Silva, Luis F O

    2016-02-15

    Brazilian coal area (South Brazil) impacted the environment by means of a large number of coal waste piles emplaced over the old mine sites and the adjacent areas of the Criciúma, Urussanga, and Siderópolis cities. The area studied here was abandoned and after almost 30 years (smokeless visual) some companies use the actual minerals derived from burning coal cleaning rejects (BCCRs) complied in the mentioned area for industry tiles or refractory bricks. Mineralogical and geochemical similarities between the BCCRs and non-anthropogenic geological environments are outlined here. Although no visible flames were observed, this study revealed that auto-combustion existed in the studied area for many years. The presence of amorphous phases, mullite, hematite and other Fe-minerals formed by high temperature was found. There is also pyrite, Fe-sulphates (eg. jarosite) and unburnt coal present, which are useful for comparison purposes. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present study using advanced analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and mineral formation. It is reporting huge numbers of rare minerals with alunite, montmorillonite, szomolnokite, halotrichite, coquimbite and copiapite at the BCCRs. The data showed the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing hazardous elements, such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. By Principal Component Analysis (PCA), the mineralogical composition was related with the range of elemental concentration of each sample. Most of the nano-minerals and ultra-fine particles

  9. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operatingmore » variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.« less

  10. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  11. [The study of ultra-fine diamond powder used in magnetic head polishing slurry].

    PubMed

    Jin, Hong-Yun; Hou, Shu-En; Pan, Yong; Xiao, Hong-Yan

    2008-05-01

    In the present paper, atomic absorption spectrometry(AAS), inductively-coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and laser Raman spectroscopy (RM) were employed to study the commercial ultra-fine diamond powders prepared by the static pressure-catalyst method and used in magnetic head polishing slurry. The results of AAS and ICP-MS indicated that there were silicon oxide, Fe, Ni, Al and some other metal elements in the ultra-fine powders. XRD patterns showed the peaks of SiO2 at 2theta = 35.6 degrees, 39.4 degrees and 59.7 degrees and diamond sharp peaks in agreement with the results above. Diamond sharp peaks implied perfect crystal and high-hardness beneficial to high-efficiency in polishing. The broader Raman band of graphite at 1 592 cm(-1) observed by Raman analysis proved graphite existing in the diamond powders. In the TEM images, the size of ultra-fine powders was estimated between 0.1 and 0.5 microm distributed in a wide scope, however, sharp edges of the powder particles was useful to polish. The ultra-fine diamond powders have many advantages, for example, high-hardness, well abrasion performance, high-polishing efficiency and being useful in magnetic head polishing slurry. But, the impurities influence the polishing efficiency, shortening its service life and the wide distribution reduces the polishing precision. Consequently, before use the powders must be purified and classified. The purity demands is 99.9% and trace silicon oxide under 0.01% should be reached. The classification demands that the particle distribution should be in a narrower scope, with the mean size of 100 nm and the percentage of particles lager than 200 nm not over 2%.

  12. Control technology appendices for pollution control technical manuals. Final report, June 1982-February 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-04-01

    The document is one of six technical handbooks prepared by EPA to help government officials granting permits to build synfuels facilities, synfuels process developers, and other interested parties. They provide technical data on waste streams from synfuels facilities and technologies capable of controlling them. Process technologies covered in the manuals include coal gasification, coal liquefaction by direct and idirect processing, and the extraction of oil from shale. The manuals offer no regulatory guidance, allowing the industry flexibility in deciding how best to comply with environmental regulations.

  13. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 4, January--March, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities wheremore » coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.« less

  14. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    NASA Astrophysics Data System (ADS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  15. Run 263 with Black Thunder Mine subbituminous coal and dispersed molybdenum catalysts. Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 263 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on October 31, 1991 and continued until February 23, 1992. Tests were conducted by operating the reactors in the Close-Coupled Integrated Two-Stage Liquefaction mode and by processing Black Thunder Mine subbituminous coal from Wyodak-Anderson seam in Wyoming Powder River Basin. Half volume reactors were used for the entire run. In the first part of Run 263, a dispersed molybdenum catalyst was evaluated for its performance without a supported catalyst in the second stage. Molyvan L and Molyvan 822more » (commercially available as friction reducing lubricants) were used as precursors for the dispersed molybdenum catalyst. The effect of the dispersed catalyst on eliminating the solids buildup was also evaluated. For the second part of the run, the hybrid catalyst system was tested with supported Criterion 324 1/1611 catalyst in the second stage at catalyst replacement rates of 2 and 3 lb/ton of MF coal. The molybdenum concentration was 100--200 ppm based on MF coal. Iron oxide was used as a slurry catalyst precursor at a rate of 1--2 wt % MF coal throughout the run with dimethyl disulfide (DMDS) as the sulfiding agent. The close-coupled reactor unit was on-stream for 2482 hours for an on-stream factor of 91.2% and the ROSE-SR{sup sm} unit was on-feed for 2126 hours for an on-stream factor of 96.4% for the entire run.« less

  16. Ultrafine particles in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Pre-feasibility study for construction of a commercial coal hydrogenation plant

    NASA Astrophysics Data System (ADS)

    Hahn, W.; Wilhelm, H.; Kleinhueckelkotten, H.; Schmedeshagen, B.

    1982-11-01

    The technical problems, a suitable site and the unsatisfactory economics hinder the realization of a commercial coal liquefaction plant in Germany were identified. It is found that a plant for hydrogenation of coal and heavy oil according to the updated bergius-Pier process can be built. The improvement of acceptable reactor loading and increase of product yield was considered. The infrastructure aspects of a site for the plant which covers 300 hectars as well as eventually existing atmospheric pollution conditions in the environment are also considered.

  18. Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere.

    PubMed

    Kawanaka, Youhei; Matsumoto, Emiko; Sakamoto, Kazuhiko; Yun, Sun-Ja

    2011-02-15

    The present study was performed to estimate the contributions of fine and ultrafine particles to the lung deposition of particle-bound mutagens in the atmosphere. This is the first estimation of the respiratory deposition of atmospheric particle-bound mutagens. Direct and S9-mediated mutagenicity of size-fractionated particulate matter (PM) collected at roadside and suburban sites was determined by the Ames test using Salmonella typhimurium strain TA98. Regional deposition efficiencies in the human respiratory tract of direct and S9-mediated mutagens in each size fraction were calculated using the LUDEP computer-based model. The model calculations showed that about 95% of the lung deposition of inhaled mutagens is caused by fine particles for both roadside and suburban atmospheres. Importantly, ultrafine particles were shown to contribute to the deposition of mutagens in the alveolar region of the lung by as much as 29% (+S9) and 26% (-S9) for the roadside atmosphere and 11% (+S9) and 13% (-S9) for the suburban atmosphere, although ultrafine particles contribute very little to the PM mass concentration. These results indicated that ultrafine particles play an important role as carriers of mutagens into the lung. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  20. An Investigation of Physico-Mechanical Properties of Ultrafine-Grained Magnesium Alloys Subjected to Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Kozulyn, A. A.; Skripnyak, V. A.; Krasnoveikin, V. A.; Skripnyak, V. V.; Karavatskii, A. K.

    2015-01-01

    The results of investigations of physico-mechanical properties of specimens made from the structural Mg-based alloy (Russian grade Ma2-1) in its coarse-grained and ultrafine-grained states after SPD processing are presented. To form the ultrafine-grained structure, use was made of the method of orthogonal equal-channel angular pressing. After four passes through the die, a simultaneous increase was achieved in microhardness, yield strength, ultimate tensile strength and elongation to failure under conditions of uniaxial tensile loading.

  1. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.

    2010-06-01

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  2. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    PubMed

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  3. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  4. A practice of ultra-fine tailings disposal as filling material in a gold mine.

    PubMed

    Deng, D Q; Liu, L; Yao, Z L; Song, K I-I L; Lao, D Z

    2017-07-01

    A practice of cemented backfill technology with ultra-fine tailings in a gold mine was comprehensively presented, and a series of tests were conducted in accordance with the peculiar properties of ultra-fine tailings and the mining technology conditions. The test results show that, the tailings from Shuiyindong Gold Mine have a great grinding fineness, with the average particle diameter 22.03 μm, in which the ultra-fine particles with the diameter below 20 μm occupying 66.13%. The analysis results of chemical components of tailings indicate that the content of SiO 2 is relatively low, i.e., 33.08%, but the total content of CaO, MgO and Al 2 O 3 is relatively high i.e., 36.5%. After the settlement of 4-6 h, the tailing slurry with the initial concentration of 40% has the maximum settling concentration of 54.692%, and the corresponding maximum settling unit weight is 1.497 g/cm 3 . During the field application, the ultra-fine tailings and PC32.5 cement were mixed with the cement-tailings ratios of 1:3-1:8, and the slurry concentration of 50 wt% was prepared. Using the slurry pump, the prepared cemented backfill slurries flowed into the goaf, and then the strength of the cemented backfill body met the mining technique requirements in Shuiyindong Gold Mine, where the ore body has a smooth occurrence, with the average thickness of approximately 2 m and the inclination angle ranging from 5 to 10°. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Coal-Seq III Consortium. Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3more » expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was

  6. Ultrafine Angelica gigas powder normalizes ovarian hormone levels and has antiosteoporosis properties in ovariectomized rats: particle size effect.

    PubMed

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-10-01

    The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake.

  7. Imaging of DNA Ultrafine Bridges in Budding Yeast.

    PubMed

    Quevedo, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.

  8. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    PubMed Central

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-01-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones. PMID:27827413

  9. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  10. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.

    PubMed

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-08-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter < or = 2.5 microm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30-50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses--a relatively rapid (approximately 30 min), bright but diffuse fluorescence followed by the slower (2-4 hr) appearance of punctate cytoplasmic fluorescence--after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells.

  11. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, R.L.; Lazarov, L.K.; Prudich, M.E.

    1994-03-10

    The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies.more » The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.« less

  12. Coal Fires in the United States: A Case Study in Government Inattention

    NASA Astrophysics Data System (ADS)

    McCurdy, K. M.

    2006-12-01

    Coal fires occur in all coal producing nations. Like most other environmental problems fires are not confined by political boundaries. Important economic coal seams in the United States are found across the Inter-montaine west, the Midwest, and Appalachia. The age of these deposits differs, as does the grade and sulfur content of the coal, the mining techniques utilized for exploitation of this resource, and the markets in which the coal is traded. Coal fires are ordinary occurrences under extraordinary conditions. Every coal bed exposed in an underground or surface mine has the potential to ignite. These fires are spread thinly over the political geography and over time, so that constituencies rarely coalesce to petition government to address the coal fire problem. Coal fires produce serious problems with long term consequences for society. They threaten mine safety, consume a non-renewable resource, and produce toxic gases with serious health effects for local populations. Additionally, as coal production in the developing world intensifies, these problems worsen. The lack of government attention to coal fires is due to the confluence of at least four independent political factors: 1) The separated powers, federated system in which decisions in the United States are made; 2) Low levels of political energy available in Congress to be expended on coal fires, measured by the magnitude of legislative majorities and seniority; 3) The mid-twentieth century model of scientific and technical information moving indirectly to legislators through the bureaucratic agencies; 4) The chronic and diffuse nature of fires across space and time.

  13. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 1, May--July, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during the first Quarter of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for this effort. An evaluation of the washability characteristics of five samples of two coals (Piast and Janina) showed that {open_quotes}compliance-quality{close_quotes} stoker coals could be produced which contained less than 640 g of SO{sub 2}/KJ (1.5 lbs SO{sub 2}/MMBtu) at acceptable plant yields by washing in heavy media cyclones. A search for long-term sources of raw coal to feed the proposed new 300 tph stoker coal preparation plant was initiated. As the quantity of stoker coal that will be produced (300 tph) at the new plant will exceed the demand by MPEC, a search for other and additional potential markets was begun. Because the final cost of the stoker coal will be influenced by such factors as the plant`s proximity to both the raw coal supply and the customers, the availability and cost of utilities, and the availability of suitable refuse disposal areas, these concerns were the topic of discussions at the many meetings that were held between EFH Coal and the Polish Partners.« less

  14. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 2, August--October, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during the second Quarter of a two year project to demonstrate that the air pollution, from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland, can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators for this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Staszic Mine were evaluated. The data show that the ash content of this coal can be reduced from 24.4 percent to 6.24 percent by washing in a heavy media cyclone at 1.825 sp.gr.; the actual yield of clean coal would be 76.1 percent. The quest for long-term sources of raw coal to feed the proposed 300 tph stoker coal preparation plant continued throughout the reporting period. Meetings were held with Polish coal preparation equipment suppliers to obtain price and delivery quotations for long lead-time process equipment. Preliminary cost evaluations were the topic of several meetings with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project. The search for markets for surplus production from the new plant continued.« less

  15. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin

    recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less

  16. Manpower for the coal mining industry: an assessment of adequacy through the year 2000. Volume II. Technical approach. Final technical report. [USA; forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendis, M.S.; Rosenberg, J.I.; Medville, D.M.

    1980-03-01

    This report presents a summary of the analytical approach taken and the conclusions reached in an assessment of the supply and demand for manpower in the coal mining industry through the year 2000. A hybrid system dynamics/econometric model of the coal mining industry was developed which incorporates relationships between technological change, labor productivity, production costs, wages, graduation rates, and other key variables in estimating imbalances between labor supply and demand. Study results indicate that while the supply of production workers is expected to be sufficient under most future demand scenarios, periodic shortages of experienced workers, especially in the Northern Greatmore » Plains can be expected. Other study findings are that the supply of mining engineers will be sufficient under all but the highest coal demand scenario, a shortage of faculty will affect the supply of mining engineers in the near-term and the employment of mining technicians is expected to exhibit the largest increase in any labor category studied. In this volume the nature of the coal mining manpower problem is discussed, a detailed description of that analysis conducted and the sources of data used is provided, and the findings of the study are presented.« less

  17. Database for content of mercury in Polish brown coal

    NASA Astrophysics Data System (ADS)

    Jastrząb, Krzysztof

    2018-01-01

    Poland is rated among the countries with largest level of mercury emission in Europe. According to information provided by the National Centre for Balancing and Management of Emissions (KOBiZE) more than 10.5 tons of mercury and its compounds were emitted into the atmosphere in 2015 from the area of Poland. Within the scope of the BazaHg project lasting from 2014 to 2015 and co-financed from the National Centre of Research and Development (NCBiR) a database was set up with specification of mercury content in Polish hard steam coal, coking coal and brown coal (lignite) grades. With regard to domestic brown coal the database comprises information on coal grades from Brown Coal Mines of `Bełchatów', `Adamów', `Turów' and `Sieniawa'. Currently the database contains 130 records with parameters of brown coal, where each record stands for technical analysis (content of moisture, ash and volatile particles), elemental analysis (CHNS), content of chlorine and mercury as well as net calorific value and combustion heat. Content of mercury in samples of brown coal grades under test ranged from 44 to 985 μg of Hg/kg with the average level of 345 μg of Hg/kg. The established database makes up a reliable and trustworthy source of information about content of mercury in Polish fossils. The foregoing details completed with information about consumption of coal by individual electric power stations and multiplied by appropriate emission coefficients may serve as the background to establish loads of mercury emitted into atmosphere from individual stations and by the entire sector of power engineering in total. It will also enable Polish central organizations and individual business entities to implement reasonable policy with respect of mercury emission into atmosphere.

  18. Bio-coal briquettes using low-grade coal

    NASA Astrophysics Data System (ADS)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  19. CoalVal-A coal resource valuation program

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  20. Process for making ultra-fine ceramic particles

    DOEpatents

    Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.

    1995-01-01

    A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.

  1. Analysis of factors determining enterprise value of company merger and acquisition: A case study of coal in Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Candra, Ade; Pasasa, Linus A.; Simatupang, Parhimpunan

    2015-09-01

    The main purpose of this paper is looking at the relationship between the factors of technical, financial and legal with enterprise value in mergers and acquisitions of coal companies in Kalimantan, Indonesia over the last 10 years. Data obtained from secondary data sources in the company works and from published data on the internet. The data thus obtained are as many as 46 secondary data with parameters resources, reserves, stripping ratio, calorific value, distance from pit to port, and distance from ports to vessels, production per annum, the cost from pit to port, from port to vessel costs, royalties, coal price and permit status. The data was analysis using structural equation modeling (SEM) to determine the factors that most significant influence enterprise value of coal company in Kalimantan. The result shows that a technical matter is the factor that most affects the value of enterprise in coal merger and acquisition company. Financial aspect is the second factor that affects the enterprise value.

  2. Fabrication of ultra-fine grained aluminium tubes by RTES technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, H., E-mail: h.jafarzadeh@ut.ac.ir; Abrinia, K.

    Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement ismore » determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.« less

  3. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  4. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    PubMed Central

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601

  5. From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    1999-01-01

    A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in

  6. CARDIOVASCULAR RESPONSES IN UNRESTRAINED WKY-RATS TO INHALED ULTRAFINE CARBON PARTICLES

    EPA Science Inventory

    Abstract
    This study provides evidence for adverse cardiac effects of inhaled ultrafine particles (UFPs) in healthy WKY rats. Short term exposure (24 h) with carbon UFPs (180 ?g?m ?) induced a moderate but significant heart rate increase of 18 bpm (4.8 %) in association with a ...

  7. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-03-18

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.

  8. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  9. Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) in Brisbane, Queensland (Australia): study design and implementation.

    PubMed

    Ezz, Wafaa Nabil; Mazaheri, Mandana; Robinson, Paul; Johnson, Graham R; Clifford, Samuel; He, Congrong; Morawska, Lidia; Marks, Guy B

    2015-02-02

    Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children's health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

  10. Ultrafine Angelica gigas Powder Normalizes Ovarian Hormone Levels and Has Antiosteoporosis Properties in Ovariectomized Rats: Particle Size Effect

    PubMed Central

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-01-01

    Abstract The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake. PMID:23039111

  11. UPREGULATION OF TISSUE FACTOR IN HUMAN ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Epidemiology studies have linked the exposure to air pollutant particles with increased cardiovascular mortality and morbidity, but the mechanisms remain unknown. In our laboratory we have tested the hypothesis that the ultrafine fraction of ambient pollutant particles would cau...

  12. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-03-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  13. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  14. Current status and prospect: Coal water mixture technology in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sastrawinata, T.; Suwono, A.

    1996-12-31

    This paper covers the status of Coal Water Mixture (CWM) technology in Indonesia and also the prospect for implementing this technology. Advantageous use of a pipeline for coal transportation is geographically inconvenient. Characteristics of CWM for Indonesian coal and combustion characteristics of CWM for Indonesian coal are reviewed. The coal reserve estimated in Indonesia is about 36 billions tons with ratio of lignite and higher rank is 60:40. The main problems faced in the coal utilization in Indonesia is the transportation from the mines to the users. Remote, limited infrastructure and the geographic conditions are factors which contribute to themore » problems. The CWM made of Indonesian low rank coal from various origins has been prepared for further study. The CWM of various coal concentration up to 66% with good handling and storage stability was obtained. Rheological measurements of the obtained CWM shows that for high coal concentration (greater than about 40%), in addition to the yield stress, the solution also behaves as the power law model of fluid. Energy Technology Laboratory has just started to investigate the combustion characteristics of CWM. CWM in Indonesia has not been utilized commercially in the industrial boiler, so that needs to be studied comprehensively. The technical aspects in this is stressed on the combustion characteristics in the boiler furnace. LSDE has a state of the art coal combustion facility that includes a chemical analytic laboratory and a boiler simulator equipped with complete data acquisition. The experiments will have several numerical criteria to characterize CWS combustion process, i.e., Maximum Furnace Exit Temperature, firing rate, pressure drop in the test section, deposit strength and deposit weight, swirl flow number.« less

  15. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century.

    PubMed

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-12-01

    Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM 2.5 ) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM 2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM 2.5 . In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.

  16. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century

    PubMed Central

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-01-01

    Abstract Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM2.5) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM2.5. In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future. PMID:28649460

  17. Coal Tar and Coal-Tar Pitch

    Cancer.gov

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  18. MECHANISMS BY WHICH ULTRAFINE, FINE, AND COARSE PARTICLES CAUSE ADVERSE HEALTH EFFECTS

    EPA Science Inventory

    A small number of recent studies suggest that different size particles may cause different health effects. There are clearly differences in the chemical makeup of coarse, fine, and ultrafine particles, and this different chemistry may well drive different health responses. The ...

  19. OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES

    EPA Science Inventory

    In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...

  20. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  1. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  2. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  3. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  4. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  5. PTBA Coal Briquette Development Project: A status report, March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purba, A.C.; Supriyanto, H.; Djamal, T.S.

    1995-12-31

    Indonesia has a vast coal reserved amounted around 36 Billion Tons (As May 1993), of which more than 98% located in two big islands: Sumatera & Kalimantan. Indonesian Energy Policy, set up in 1976 were shifting the National Energy Mix to encourage the use of other alternative energy for fulfilling the domestic energy demand. Coal, as it was available in enormous reserve become the most suitable alternative fuel. Indonesian coal mining industry was then gaining a big momentum for its resurrection since it was for long had been overlooked. As the result of reconstruction of old mines, expanding the currentmore » mines and the opening of new mines by foreign investor (Contractors) in Kalimantan, since 1986, ten years after the set up of New National Energy Policy or 45 years after peak production level in the past, 2 million tons of coal production was regained. Afterward the coal production of Indonesian coal mine industry are increasing in an exponential rate of growth. With more than 29 million tons of coal produced in 1994, Indonesia will continue to play greater role in the world coal export market in the future. It is projected that by the year of 1998, Indonesia will rank the 3rd as the world coal exporter next to Australia and South African with around 14% of world market share. In this paper, author would only like to report the current status of Indonesian Coal Briquette Industry of which PT Tambang Batubara Bukit Asam (Persero), PTBA, the state owned coal mining company was being appointed to pioneer the establishment of the first coal briquette industry in Indonesia. Process Technology that being compared here in this paper were based on the technical compliance to specification set by government and the techno-economic evaluation. Due to limitations and constrains, all aspects concerning the project will only be discussed in an overview.« less

  6. Boiler MACT Technical Assistance (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012.more » This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.« less

  7. [Ultrafine particles and effects on the body: review of the literature].

    PubMed

    Pedata, P; Garzillo, E M; Sannolo, N

    2010-01-01

    The International laws and the technology developments led to a situation where the current levels of environmental pollution are below those that existed at the beginning of the century: however, these pollution levels produce harmful effects to health linked to an increase in morbidity and mortality. Over the years the pollution has changed: following the transformation of heating, motor innovation and emissions reducing, has been a reduction in air concentration of some conventional pollutants (sulfur dioxide, carbon monoxide, benzene), while there wasn't a significant reduction of particulate air pollution. In this work have been questioned several electronic databases of scientific literature based on a selection algorithm that contains expressions for the following topics: "ultrafine particles", "effects on human health", "occupational and environmental exposure". We analyzed 200 articles, progressively reduced to 88, selected for keywords, year of publication and arguments; the main topics covered by the articles were related to chemical and physical UFP properties, UFP exposure, European legislation relating to the values of particle concentrations in the atmosphere, toxicokinetics and effects on various organs such as, in particular, the respiratory system, cardiovascular system, central nervous system and the intracellular mechanism of action. Analysis of the literature showed that ultrafine particles (PM0.1 aerodynamic diameter less than 0.1 microm) are more powerful than the coarse particle fraction (2.5-10 microm) and fine (0.1-2.5 microm) in inducing adverse effects to human health. Unfortunately, the study of mechanisms of action of these particles presents particular difficulties because of the large number of chemical and biological mechanisms that come into play in the body after exposure to ultrafine particles.

  8. Combustion-Derived Ultrafine Particles Transport Organic Toxicants to Target Respiratory Cells

    PubMed Central

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-01-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30–50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses—a relatively rapid (~ 30 min), bright but diffuse fluorescence followed by the slower (2–4 hr) appearance of punctate cytoplasmic fluorescence—after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells. PMID:16079063

  9. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphousmore » carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.« less

  10. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    NASA Astrophysics Data System (ADS)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  11. Development of Age-Hardening Technology for Ultrafine-Grained Al-Li-Cu Alloys Fabricated by High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Motoshima, Hiroaki; Hirosawa, Shoichi; Lee, Seungwon; Horita, Zenji; Matsuda, Kenji; Terada, Daisuke

    The age-hardening behavior and precipitation microstructures with high dislocation density and ultrafine grains have been studied for cold-rolled and severely deformed 2091 Al-Li-Cu alloy. The age-hardenability at 463K was reduced by high-pressure torsion (HPT) due to the accelerated formation of larger 8-AlLi precipitates at grain boundaries, in place of transgranular precipitation of refined δ'-Al3Li particles that are predominantly observable in the no-deformed and 10%-rolled specimens. When aged at 373K, however, it was successfully achieved for the HPT specimen to increase the hardness up to 290HV, the highest level of hardness among conventional wrought aluminum alloys. The corresponding TEM microstructures confirmed that refined δ' particles precipitate within ultrafine grains while keeping the grain size at 206nm. This result suggests that the combined processing of severe plastic deformation with age-hardening technique enables the fabrication of novel aluminum alloys concurrently strengthened by ultrafine-grained and precipitation hardenings.

  12. Bibliography of the Gulf of Mexico coastal plain coal geology

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; Karlsen, Alexander W.; Tewalt, Susan J.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Tewalt, Susan J.

    2011-01-01

    Unlike scientific literature pertaining to most other coal-bearing regions in the conterminous United States, this bibliography on the coal geology of the Gulf Coastal Plain is dominated by work from the late 20th century. Although coals of this region were mined commercially in the late 1800s and early 1900s, they were eclipsed by the production and use of oil and gas in the middle 1920s and were not mined again as a significant fuel source until the 1970s. As a result, the literature consists mainly of a relatively small number of pre-1920 contributions in state and federal reports, followed by a plethora of technical papers, symposia proceedings, field guides, theses, dissertations, and abstracts over the past 40 years.The purpose of this chapter is to record the present work used by U.S. Geological Survey personnel preparing the Gulf Coast Coal Resource Assessment and to furnish an introduction to the larger body of sedimentary, stratigraphic, paleontologic, geochemical, hydrologic, and mining literature that exists in the region. This bibliography is an update of an earlier compilation (Tewalt et al., 1990). Despite its length, it is not exhaustive. Nor is it restricted to papers that focus solely upon coals because an understanding of these coals is rooted in the general geologic literature of the Gulf Coastal Plain.

  13. A novel film-pore-surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding.

    PubMed

    Zhang, Haiyan; Chen, Longjian; Lu, Minsheng; Li, Junbao; Han, Lujia

    2016-01-01

    Ultrafine grinding is an environmentally friendly pretreatment that can alter the degree of polymerization, the porosity and the specific surface area of lignocellulosic biomass and can, thus, enhance cellulose hydrolysis. Enzyme adsorption onto the substrate is a prerequisite for the enzymatic hydrolysis process. Therefore, it is necessary to investigate the enzyme adsorption properties of corn stover pretreated by ultrafine grinding. The ultrafine grinding pretreatment was executed on corn stover. The results showed that ultrafine grinding pretreatment can significantly decrease particle size [from 218.50 μm of sieve-based grinding corn stover (SGCS) to 17.45 μm of ultrafine grinding corn stover (UGCS)] and increase the specific surface area (SSA), pore volume (PV) and surface composition (SSA: from 1.71 m(2)/g of SGCS to 2.63 m(2)/g of UGCS, PV: from 0.009 cm(3)/g of SGCS to 0.024 m(3)/g of UGCS, cellulose surface area: from 168.69 m(2)/g of SGCS to 290.76 m(2)/g of UGCS, lignin surface area: from 91.46 m(2)/g of SGCS to 106.70 m(2)/g of UGCS). The structure and surface composition changes induced by ultrafine grinding increase the enzyme adsorption capacity from 2.83 mg/g substrate of SGCS to 5.61 mg/g substrate of UGCS. A film-pore-surface diffusion model was developed to simultaneously predict the enzyme adsorption kinetics of both the SGCS and UGCS. Satisfactory predictions could be made with the model based on high R (2) and low RMSE values (R (2) = 0.95 and RMSE = 0.16 mg/g for the UGCS, R (2) = 0.93 and RMSE = 0.09 mg/g for the SGCS). The model was further employed to analyze the rate-limiting steps in the enzyme adsorption process. Although both the external-film and internal-pore mass transfer are important for enzyme adsorption on the SGCS and UGCS, the UGCS has a lower internal-pore resistance compared to the SGCS. Ultrafine grinding pretreatment can enhance the enzyme adsorption onto corn stover by altering structure and

  14. Integration of advanced preparation with coal liquefaction. Second quarterly technical progress report, January 1-March 31, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steedman, W.G.; Longanbach, J.R.; Muralidhara, H.S.

    Standard reaction conditions of 427 C, 5 minutes reaction time, 2:1 solvent/coal ratio and 1000 psig (r.t.) hydrogen overpressure result in good, but not maximum, conversions to THF soluble with both Illinois No. 6 and Wyodak (upper seam) coals. The cumulative effects of the pretreatment steps were also examined using feedstocks which were dried in a vacuum oven at room temperature under nitrogen before liquefaction to remove the effects of moisture. Chloride removal followed by drying had a positive effect on liquefaction. Oil agglomeration followed by drying also improved liquefaction reactivity significantly. Solvent drying also resulted in a small increasemore » in liquefaction reactivity. The overall reactivity of coal treated in sequence with each pretreatment step was slightly less than that of the dry ground coal. Liquefaction under a high partial pressure of hydrogen sulfide in hydrogen also results in a significant increase in conversion to THF solubles. 1 reference, 12 figures, 7 tables.« less

  15. Coal blending preparation for non-carbonized coal briquettes

    NASA Astrophysics Data System (ADS)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  16. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 7, October--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1995-12-31

    This report describes the progress made during this reporting period of a two-year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at one of MPEC`s central heating plants in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and, ideally, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions--MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators--for the execution of this effort. A long- term contract for the procurement of 750,000 tons of 20 mm. {times} 0 raw coal for the new plant has been negotiated with the Katowice Coal Holding Company. This long-term lease includes a site near the defunct Kazimierz-Julius preparation plant that has all of the infrastructure needed to build and operate the proposed 300 tph stoker coal preparation plant. The search for markets for utilizing surplus production from the new plant continues. Bid prices for a prefabricated (modular) 300-tph turnkey preparation plant delivered to Poland for preparing a stoker coal ranged from $3.2 to $3.5 million dollars (US). A commitment has been negotiated with Bank PKO S.A. to provide $2 million in cost-share financing toward the capital cost of the project. This sum, when added to the $2.4 million in DOE- BPU funds will be adequate to meet the $3 to $3.5 million needed to finance the purchase, erection and start-up of the 300 tph processing plant.« less

  17. Process for coal liquefaction employing selective coal feed

    DOEpatents

    Hoover, David S.; Givens, Edwin N.

    1983-01-01

    An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

  18. Ultrafine Particle Metrics and Research Considerations: Review of the 2015 UFP Workshop

    EPA Science Inventory

    In February 2015, the United States Environmental Protection Agency (EPA) sponsored a workshop in Research Triangle Park, North Carolina, USA to review the current state of the science on emissions, air quality impacts, and health effects associated with exposures to ultrafine pa...

  19. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  20. Long-term study of urban ultrafine particles and other pollutants

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Chalupa, David C.; Utell, Mark J.

    2011-12-01

    Continuous measurements of number size distributions of ultrafine particles (UFPs) and other pollutants (PM 2.5, SO 2, CO and O 3) have been performed in Rochester, New York since late November 2001. The 2002-2009 average number concentrations of particles in three size ranges (10-50 nm, 50-100 nm and 100-500 nm) were 4730 cm -3, 1838 cm -3, and 1073 cm -3, respectively. The lowest annual average number concentrations of particles in 10-50 nm and 50-100 nm were observed during 2008-2009. The lowest monthly average number concentration of 10-50 nm particles was observed in July and the highest in February. The daily patterns of 10-50 nm particles had two peaks at early morning (7-8 AM) and early afternoon (2 PM). There was a distinct declining trend in the peak number concentrations from 2002-2005 to 2008-2009. Large reductions in SO 2 concentrations associated with northerly winds between 2007 and 2009 were observed. The most significant annual decrease in the frequency of morning particle nucleation was observed from 2005 to 2007. The monthly variation in the morning nucleation events showed a close correlation with number concentrations of 10-50 nm particles ( r = 0.89). The frequency of the local SO 2-related nucleation events was much higher before 2006. All of these results suggest significant impacts of highway traffic and industrial sources. The decrease in particle number concentrations and particle nucleation events likely resulted from a combination of the U.S. EPA 2007 Heavy-Duty Highway Rule implemented on October 1, 2006, the closure of a large coal-fired power plant in May 2008, and the reduction of Eastman Kodak emissions.

  1. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  2. Soft-X-ray-enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections.

    PubMed

    Kettleson, Eric M; Schriewer, Jill M; Buller, R Mark L; Biswas, Pratim

    2013-02-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.

  3. Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections

    PubMed Central

    Kettleson, Eric M.; Schriewer, Jill M.; Buller, R. Mark L.

    2013-01-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems. PMID:23263945

  4. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  5. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-04-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  6. JV Task 120 - Coal Ash Resources Research Consortium Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased levelmore » of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members

  7. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lili; Schobert, Harold H.; Song, Chunshan

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. Formore » convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.« less

  8. Electrolysis treatment of trichiasis by using ultra-fine needle.

    PubMed

    Sakarya, Yasar; Sakarya, Rabia; Yildirim, Aydin

    2010-01-01

    To determine the safety and efficacy of electrolysis treatment of trichiasis by using ultrafine needle. The medical records of 24 lids of 24 patients who underwent electrolysis treatment for trichiasis by the same surgeon (Y.S.) during the period from May 2006 through December 2008 were reviewed. The average age of the 24 patients was 59.2 years (range, 43 to 76 years). Thirteen of the patients were women. The results were considered satisfactory if no recurrence of trichiasis occurred for at least 6 months after the last electrolysis procedure. Sixteen of the 24 patients (66.6%) had a satisfactory result with 1 treatment. Of the 8 patients (33.3%) who had an unsatisfactory result, while 5 (20.8%) responded well to 1 additional electrolysis, 3 (12.5%) responded well to 2 additional electrolyses to the recurrent cilia. The procedure was well tolerated by the patients. All eyelids healed within 2 weeks after treatment without any scarring. Faint hypopigmentation was visible in 2 patients (8.3%). Mild notching of eyelid occurred in 4 patients (16.6%). Electrolysis treatment by using ultrafine (55-microm thickness) needle is an effective and safe method for treatment of trichiasis with many advantages over other recognized modalities of therapy.

  9. Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons

    USGS Publications Warehouse

    Warwick, Peter D.

    2005-01-01

    Coal is an important and required energy source for today's world. Current rates of world coal consumption are projected to continue at approximately the same (or greater) levels well into the twenty-first century. This paper will provide an introduction to the concept of coal systems analysis and the accompanying volume of papers will provide examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Coal systems analysis incorporates the various disciplines of coal geology to provide a complete characterization of the resource. The coal system is divided into four stages: (1) accumulation, (2) preservation-burial, (3) diagenesis-coalification, and (4) coal and hydrocarbon resources. These stages are briefly discussed and key references and examples of the application of coal systems analysis are provided.

  10. Air quality in the German-Czech border region: A focus on harmful fractions of PM and ultrafine particles

    NASA Astrophysics Data System (ADS)

    Schladitz, Alexander; Leníček, Jan; Beneš, Ivan; Kováč, Martin; Skorkovský, Jiří; Soukup, Aleš; Jandlová, Jana; Poulain, Laurent; Plachá, Helena; Löschau, Gunter; Wiedensohler, Alfred

    2015-12-01

    A comprehensive air quality study has been carried out at two urban background sites in Annaberg-Buchholz (Germany) and Ústí nad Labem (Czech Republic) in the German-Czech border region between January 2012 and June 2014. Special attention was paid to quantify harmful fractions of particulate matter (PM) and ultrafine particle number concentration (UFP) from solid fuel combustion and vehicular traffic. Source type contributions of UFP were quantified by using the daily concentration courses of UFP and nitrogen oxide. Two different source apportionment techniques were used to quantify relative and absolute mass contributions: positive matrix factorization for total PM2.5 and elemental carbon in PM2.5 and chemical mass balance for total PM1 and organic carbon in PM1. Contributions from solid fuel combustion strongly differed between the non-heating period (April-September) and the heating period (October-March). Major sources of solid fuel combustion in this study were wood and domestic coal combustion, while the proportion of industrial coal combustion was low (<3%). In Ústí nad Labem combustion of domestic brown coal was the most important source of organic carbon ranging from 34% to 43%. Wood combustion was an important source of organic carbon in Annaberg-Buchholz throughout the year. Heavy metals and less volatile polycyclic aromatic hydrocarbons (PAH) in the accumulation mode were related to solid fuel combustion with enhanced concentrations during the heating period. In contrast, vehicular PAH emissions were allocated to the Aitken mode. Only in Ústí nad Labem a significant contribution of photochemical new particle formation (e.g. from sulfur dioxide) to UFP of almost 50% was observed during noontime. UFPs from traffic emissions (nucleation particles) and primary emitted soot particles dominated at both sites during the rest of the day. The methodology of a combined source apportionment of UFP and PM can be adapted to other regions of the world with

  11. Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Wang, Jianxing; Yang, Guowei

    2017-07-01

    There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.

  12. Application of the discrete generalized multigroup method to ultra-fine energy mesh in infinite medium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, N. A.; Forget, B.

    2012-07-01

    The Discrete Generalized Multigroup (DGM) method uses discrete Legendre orthogonal polynomials to expand the energy dependence of the multigroup neutron transport equation. This allows a solution on a fine energy mesh to be approximated for a cost comparable to a solution on a coarse energy mesh. The DGM method is applied to an ultra-fine energy mesh (14,767 groups) to avoid using self-shielding methodologies without introducing the cost usually associated with such energy discretization. Results show DGM to converge to the reference ultra-fine solution after a small number of recondensation steps for multiple infinite medium compositions. (authors)

  13. Method for producing ultrafine-grained materials using repetitive corrugation and straightening

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Jiang, Honggang; Huang, Jianyu

    2001-01-01

    A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece is disclosed. The workpiece is subjected to forces that corrugate and then straighten the workpiece. These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.

  14. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 3, November--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted by the other central heating plants in Krakow and indeed, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for the execution of this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Nikwa Modrejow Mine were evaluated. The data show that the ash content of this coal can be reduced from 34.0 percent to 9.0 percent by washing in a heavy-media cyclone at 1.725 sp.gr.; the actual yield of clean coal would be 63.1 percent. This product would meet compliance limitations of 500 a of SO{sub 2}/GJ. An evaluation of the predicted results that can be expected when washing five different candidate Polish coals shows that compliance products containing less than 640 a SO{sub 2}/GJ and 10 percent ash at attractive yields can be produced by washing the raw coals in a heavy-media cyclone. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project continued. The search for markets for utilizing surplus production from the new plant continued.« less

  15. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) in Brisbane, Queensland (Australia): Study Design and Implementation

    PubMed Central

    Ezz, Wafaa Nabil; Mazaheri, Mandana; Robinson, Paul; Johnson, Graham R.; Clifford, Samuel; He, Congrong; Morawska, Lidia; Marks, Guy B.

    2015-01-01

    Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study. PMID:25648226

  16. Macromolecular structural changes in bituminous coals during extraction and solubilization. Annual technical progress report, September 1, 1980-August 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppas, N.A.; Hill-Lievense, M.E.; Hooker, D.T. II

    1981-01-01

    Seven coal samples ranging from a lignite with 69.95% carbon to an anthracite with 94.17% carbon on a dry mineral matter-free (dmmf) basis were extracted with pyridine at its reflux temperature for two weeks. The coal matrices obtained were subjected to two degradation techniques, the Sternberg reductive alkylation technique and the Miyake alkylation technique. Gel permeation chromatographic analysis of pyridine-extracted liquids of the alkylated coal showed average molecular weights smaller than those of the original coal extracts. Electron impact mass spectrometry was used to obtain the mass spectra of these alkylated coal samples. Based on investigation of the recurring patternmore » of the peaks of the mass spectra of these products it was concluded that a cluster size of 126 to 130 is characteristic of the crosslinked structure of the coal studied. In addition, several chemical compounds in the range of m/e 78-191 were identified.« less

  17. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 6, July - September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1995-09-01

    This report describes the progress made during this reporting period of a project to demonstrate that the air pollution from a traveling- grate stoker being used to heat water at one of MPEC`s central heating plants in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and, ideally, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators -- for the execution of this effort. The terms of a long- term contract for the procurement of 750,000 tons of 20 mm x 0 raw coal for the new plant have been negotiated with the Katowice Holding Company. This draft contract currently is still under legal review. The negotiated price is near that of the Polish government`s established price of $32/ton. Biprostal, an engineering firm located in Krakow, continued performing the many environmental and permitting activities that are required by the various levels of the Polish government before the plant can be constructed and operated. The search for markets for utilizing surplus production from the new plant continues. Because of the unanticipated delays encountered during the onset of the project with forming the EFH Coal/Polish partnership and in negotiating long-term raw coal supply contracts, a third 90-day, no-cost time extension was requested.« less

  18. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found tomore » be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.« less

  19. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  20. Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore.

    EPA Science Inventory

    Ultrafine Particulate Matter (UFP) has been associated with increased cardiovascular morbidity and mortality. However, the mechanisms that drive PM associated cardiovascular disease and dysfunction remain unclear. We examined the impact of intratracheal instillation of 100 g UFP...

  1. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osseo-Asare, K.; Boakye, E.; Vittal, M.

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  2. A FIELD TEST USING COAL:DRDF BLENDS IN SPREADER STOKER-FIRED BOILERS

    EPA Science Inventory

    This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-...

  3. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    PubMed Central

    Möller, Winfried; Brown, David M; Kreyling, Wolfgang G; Stone, Vicki

    2005-01-01

    Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only. PMID:16202162

  4. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    NASA Astrophysics Data System (ADS)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  5. Fine and ultrafine particle emissions from microwave popcorn.

    PubMed

    Zhang, Q; Avalos, J; Zhu, Y

    2014-04-01

    This study characterized fine (PM2.5 ) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre-packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil-lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150-560 and 350-800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil-lined original package with a brown paper bag significantly reduced the peak concentration by 24-87% for total particle number and 36-70% for PM2.5 . A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 10(10) to 8.0 × 10(10) No./min for total particle number and from 134 to 249 μg/min for PM2.5 . © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Coal desulfurization by a microwave process. Technical progress report, February 1981-May 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavitsanos, P.D.; Golden, J.A.; Bleiler, K.W.

    1981-01-01

    Desulfurization experiments were carried out using the 6KW, 2450 MHz Flow Reactor System. The program has been directed toward the combination of physical separation and microwave exposure with NaOH to increase sulfur removal. The following treatment sequence has been used with good results: (1) expose 1/4 to 1 in. raw coal to microwaves; (2) crush the treated coal and separate the sample into float/sink fractions; (3) add NaOH to the float fraction and re-expose the sample to microwaves; and (4) wash, add NaOH and expose to microwaves. This procedure has produced up to 89% sulfur removal and as low asmore » 0.31 numberS/10/sup 6/ Btu. Ash analyses on these samples showed as high as 40% reduction. The calorific value was increased in almost all samples. Data on sulfur, ash and calorific values are summarized.« less

  7. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    DOE PAGES

    Cao, G. H.; Jian, G. Y.; Liu, N.; ...

    2015-08-19

    In this study, Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti 86.5Si 13.5) 97Nb 3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti 86.5Si 13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti 5Si 3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti 5Si 3 phases caused by the Nb addition. The crystallographic orientation relationship of Ti 5Si 3 with α-Ti is (more » $$1\\bar{1}00$$)[$$\\overline{11}$$26]Ti 5Si 3∥($$01\\bar{1}1$$)[5$$\\overline{143}$$] α–Τi.« less

  8. Comparison of detonation spreading in pressed ultra-fine and nano-TATB

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Wixom, Ryan; Knepper, Robert; Yarrington, Cole; Patel, Rajen; Stepanov, Victor

    2017-06-01

    Detonation spreading behavior in insensitive high explosives is an important performance characteristic for initiation-train design. In the past, several variations of the floret test have been used to study this phenomenon. Commonly, dent blocks or multi-fiber optical probes were employed for reduced cost and complexity. We devised a floret-like test, using minimal explosive material, to study the detonation spreading in nano-TATB as compared to ultra-fine TATB. Our test uses a streak camera, combined with photonic Doppler velocimetry, to image the breakout timing and quantify the output particle velocity. The TATB acceptor pellets are initiated using an explosively-driven aluminum flyer with a well characterized velocity. We characterized the two types of TATB by assessing purity, particle morphology, and the microstructure of the consolidated pellets. Our results align with published data for ultra-fine TATB, however the nano-TATB shows a distinct difference where output has a strong dependence on density. The results indicate that control over pellet pore size and pressing density may be used to optimize detonation spreading behavior.

  9. What component of coal causes coal workers' pneumoconiosis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCunney, R.J.; Morfeld, P.; Payne, S.

    2009-04-15

    The objective was to evaluate the component of coal responsible for coal workers' pneumoconiosis (CWP). A literature search of PubMED was conducted to address studies that have evaluated the risk of CWP based on the components of coal. The risk of CWP (CWP) depends on the concentration and duration of exposure to coal dust. Epidemiology studies have shown inverse links between CWP and quartz content. Coal from the USA and Germany has demonstrated links between iron content and CWP; these same studies indicate virtually no role for quartz. In vitro studies indicate strong mechanistic links between iron content in coalmore » and reactive oxygen species, which play a major role in the inflammatory response associated with CWP. The active agent within coal appears to be iron, not quartz. By identifying components of coal-before mining activities, the risk of developing CWP may be reduced.« less

  10. Size evolution of ultrafine particles: Differential signatures of normal and episodic events.

    PubMed

    Joshi, Manish; Khan, Arshad; Anand, S; Sapra, B K

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    PubMed

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  12. Coal systems analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, P.D.

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coalmore » Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.« less

  13. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    NASA Astrophysics Data System (ADS)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  14. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  15. Ultrafine particle and fiber production in micro-gravity

    NASA Technical Reports Server (NTRS)

    Webb, George W.

    1987-01-01

    The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.

  16. Coal resource assessments using coal availability and recoverability methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbacher, T.J.

    1997-12-01

    The U.S. Geological Survey (USGS), in conjunction with state geological surveys and other federal agencies, has initiated a study and developed methodology to reassess the nation`s major coal resources. This study differs from previous coal resource assessments of the USGS, U.S. Bureau of Mines, and the Department of Energy`s Energy Information Administration, because this program: (1) Identifies and characterizes the coal beds and coal zones that will provide the bulk of the nation`s coal-derived energy during the first quarter of the twenty-first century; (2) organizes geologic, chemical, environmental, and geographic information in digital format and makes these data available tomore » the public through the Internet or other digital media, such as CD ROMs; (3) includes coal resource availability and coal recoverability analyses for selected areas; (4) provides economic assessments and coal recoverability analyses for selected areas; (5) provides methodology to perform socio-economic impact analysis related to coal mining in specific geographical areas as small as a county.« less

  17. TRANSLOCATION AND POTENTIAL NEUROLOGICAL EFFECTS OF FINE AND ULTRAFINE PARTICLES: A CRITICAL UPDATE

    EPA Science Inventory

    This proceedings book is a collection of seminars presented in a symposium organized by by Munich's GSF-National Research Center for Environment and Health. Research presented at this symposium indicated inhaled ultrafine particulate matter quickly exits the lungs and target...

  18. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-09-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  19. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  20. Detection of coal mine workings using high-resolution earth resistivity techniques. Final technical report, September 1979-September 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.

    1980-09-26

    Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less

  1. 13. Coal ejectors mounted on aft bulkhead of coal bunker. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Coal ejectors mounted on aft bulkhead of coal bunker. Ejectors were used to flush overboard live coals and clinkers from firebed (pipe for carrying coals overboard has been removed from ejector in foreground). Coal doors from bunker appear beside ejector in foreground). Coal doors from bunker appear beside ejectors at deck; note firing shovels in background against hull. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  2. Appalachian coal assessment: Defining the coal systems of the Appalachian basin

    USGS Publications Warehouse

    Milici, R.C.

    2005-01-01

    The coal systems concept may be used to organize the geologic data for a relatively large, complex area, such as the Appalachian basin, in order to facilitate coal assessments in the area. The concept is especially valuable in subjective assessments of future coal production, which would require a detailed understanding of the coal geology and coal chemistry of the region. In addition, subjective assessments of future coal production would be enhanced by a geographical information system that contains the geologic and geochemical data commonly prepared for conventional coal assessments. Coal systems are generally defined as one or more coal beds or groups of coal beds that have had the same or similar genetic history from their inception as peat deposits, through their burial, diagenesis, and epigenesis to their ultimate preservation as lignite, bituminous coal, or anthracite. The central and northern parts of the Appalachian basin contain seven coal systems (Coal Systems A-G). These systems may be defined generally on the following criteria: (1) on the primary characteristics of their paleopeat deposits, (2) on the stratigraphic framework of the Paleozoic coal measures, (3) on the relative abundance of coal beds within the major stratigraphic groupings, (4) on the amount of sulfur related to the geologic and climatic conditions under which paleopeat deposits accumulated, and (5) on the rank of the coal (lignite to anthracite). ??2005 Geological Society of America.

  3. CAMD studies of coal structure and coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulon, J.L.; Carlson, G.A.

    The macromolecular structure of coal is essential to understand the mechanisms occurring during coal liquefaction. Many attempts to model coal structure can be found in the literature. More specifically for high volatile bituminous coal, the subject of interest the most commonly quoted models are the models of Given, Wiser, Solomon, and Shinn. In past work, the authors`s have used computer-aided molecular design (CAMD) to develop three-dimensional representations for the above coal models. The three-dimensional structures were energy minimized using molecular mechanics and molecular dynamics. True density and micopore volume were evaluated for each model. With the exception of Given`s model,more » the computed density values were found to be in agreement with the corresponding experimental results. The above coal models were constructed by a trial and error technique consisting of a manual fitting of the-analytical data. It is obvious that for each model the amount of data is small compared to the actual complexity of coal, and for all of the models more than one structure can be built. Hence, the process by which one structure is chosen instead of another is not clear. In fact, all the authors agree that the structure they derived was only intended to represent an {open_quotes}average{close_quotes} coal model rather than a unique correct structure. The purpose of this program is further develop CAMD techniques to increase the understanding of coal structure and its relationship to coal liquefaction.« less

  4. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells.

    PubMed

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-06-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier

  5. Children exposure to indoor ultrafine particles in urban and rural school environments.

    PubMed

    Cavaleiro Rufo, João; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Aguiar, Lívia; Teixeira, João Paulo; Moreira, André; Oliveira Fernandes, Eduardo

    2016-07-01

    Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.

  6. Coalescence growth mechanism of ultrafine metal particles

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.

    1990-01-01

    Ultrafine particles produced by a gas-evaporation technique show clear-cut crystal habits. The convection of an inert gas makes distinct growth zones in a metal smoke. The coalescence stages of hexagonal plates and multiply twinned particles are observed in the outer zone of a smoke. A model of the coalescence growth of particles with different crystal habits is proposed. Size distributions can be calculated by counting the ratio of the number of collisions by using the effective cross section of collisions and the existence probability of the volume of a particle. This simulation model makes clear the effect on the growth rate of coalescence growth derived from crystal habit.

  7. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Brunson, Roy J.

    1979-01-01

    An improved process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation of scale, made up largely of calcium carbonate which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. An oxide of sulfur, in liquid phase, is contacted with a coal feed sufficient to impregnate the pores of the coal. The impregnated coal, in particulate form, can thereafter be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of scale.

  8. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  9. [Worker exposure to ultrafine particles during carbon black treatment].

    PubMed

    Mikołajczyk, Urszula; Bujak-Pietrek, Stella; Szadkowska-Stańczyk, Irena

    2015-01-01

    The aim of the project was to assess the exposure of workers to ultrafine particles released during handling and packing of carbon black. The assessment included the results of the measurements performed in a carbon black handling plant before, during, and after work shift. The number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was assayed by a condensation particle counter (CPC). The mass concentration of particles was determined by a DustTrak II DRX aerosol concentration monitor. The surface area concentration of the particles potentially deposited in the alveolar (A) and tracheo-bronchial (TB) regions was estimated by an AeroTrak 9000 nanoparticle monitor. An average mass concentration of particles during the process was 6-fold higher than that before its start, while a 3-fold increase in the average number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was observed during the process. At the same time a 4-fold increase was found in the surface area concentration of the particles potentially deposited in the A and TB regions. During the process of carbon black handling and packing a significantly higher values of each of the analysed parameters, characterizing the exposure to ultrafine particles, were noted. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. The Application for a Prediction of the Coal Spontaneous Ignition - Predisam

    NASA Astrophysics Data System (ADS)

    Moni, Vlastimil; Klouda, Petr; Blata, Jan; Helebrant, František

    2017-06-01

    The article follows the research of the project number TA01020351 called "The research of possibilities when predicting steam origin and consequent spontaneous ignition of brown coal fuels" which was researched with the support of the Technological Agency in the Czech Republic in 2011-2014 in the connection with a realized technical research. Therefore, it gives a summary information about the evaluation of the risk degree for the origin of spontaneous ignitions of the brown coal. The presented way of evaluation is based on a numeric expression of a value for MHU criteria - the point load of particular indicators is added together with other results gained from this research project. Then, more information is taken from companies running the dumps of brown coal products - both for suppliers (mining companies) and big consumers (power engineering). The complex knowledge about prediction of the origin of the spontaneous ignition enables to make an early response to eliminate a threat of mining fire in open pit mines or on the dumps of coal products. Consequently, it reduces the risk of fire and breakdowns of transportation means DPD, heavy machines and preparation plants. The working injuries are reduced as well - burns by coal in fire or inhalation of gas products from imperfect combustion.

  11. Flotation and flocculation chemistry of coal and oxidized coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniquesmore » capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.« less

  12. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  14. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  15. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  16. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    USGS Publications Warehouse

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  17. Coal mine subsidence: proceedings from a citizen's conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavrolas, P.; Schechtman, M.

    A lay summary of coal-mine subsidence presents non-technical information for people in Illinois' subsidence-prone areas, and describes state and national assistance programs. The report explains mining methods and the effects of subsidence on buildings and farmland. It tells what to do in the event of an emergency and how to buy a home in a questionable area. The five appendices include directories to state and federal agencies. 14 figures, 1 table. (DCK)

  18. EMISSIONS FROM RESIDENTIAL AND SMALL COMMERCIAL STOKER-COAL-FIRED BOILERS UNDER SMOKELESS OPERATION

    EPA Science Inventory

    The report gives results of a technical assessment of the advisability of increased use of stoker coal for residential and small commercial space heaters. The assessment was based on: (1) an experimental laboratory study (major emphasis) to evaluate emissions from a 20-hp (200 kw...

  19. [Identification of the cumulative eco-environment effect of coal-electricity integration based on interpretative structural model].

    PubMed

    Han, Lin Wei; Fu, Xiao; Yan, Yan; Wang, Chen Xing; Wu, Gang

    2017-05-18

    In order to determine the cumulative eco-environmental effect of coal-electricity integration, we selected 29 eco-environmental factors including different development and construction activities of coal-electricity integration, soil, water, atmospheric conditions, biology, landscape, and ecology. Literature survey, expert questionnaire and interview were conducted to analyze the interactive relationships between different factors. The structure and correlations between the eco-environmental factors influenced by coal-electricity integration activities were analyzed using interpretive structural modeling (ISM) and the cumulative eco-environment effect of development and construction activities was determined. A research and evaluation framework for the cumulative eco-environmental effect was introduced in addition to specific evaluation and management needs. The results of this study would provide a theoretical and technical basis for planning and management of coal-electricity integration development activities.

  20. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S. C.

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of buildingmore » a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO 2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH 4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH 4 can interact with CO 2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel

  1. Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2012-03-01

    Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.

  2. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  3. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    PubMed

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  4. The joint Australia/Federal Republic of Germany feasibility study on the conversion of Australian coals into liquid fuels in Australia

    NASA Astrophysics Data System (ADS)

    Imhausen, K. H.

    1982-08-01

    The IG hydrogenation process used commercially in Germany up to 1945, was improved. Pilot plants in Germany are presently under construction or in the start-up phase. A technical concept for the conversion of Australian bituminous coals and/or Australian brown coals into automotive fuels, using coal hydrogenation, gasification and Fisher-Tropsch synthesis was developed. Development of technology, consumption figures and of expenditure/investment for a complete plant, producing about 3 million tons of automotive fuels per year, was also attempted. The results show that standard automotive fuels are produced from bituminous coal, using a combination of high pressure coal hydrogenation and of Fisher-Tropsch synthesis, and from brown coal, using high pressure coal hydrogenation only. Under the assumption that crude oil prices increase 3% more rapidly than yearly inflation, and the raw material cost are staying at a low level, commercial plants are planned.

  5. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  6. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  7. Size-resolved ultrafine particle composition analysis 1. Atlanta

    NASA Astrophysics Data System (ADS)

    Rhoads, K. P.; Phares, D. J.; Wexler, A. S.; Johnston, M. V.

    2003-04-01

    During August 1999 as part of the Southern Oxidants Study Supersite Experiment, our group collected size-resolved measurements of the chemical composition of single ambient aerosol particles with a unique real-time laser desorption/ionization mass spectrometry technique. The rapid single-particle mass spectrometry instrument is capable of analyzing "ultrafine" particles with aerodynamic diameters ranging from 0.01 to 1.5 μm. Under the heaviest loading observed in Atlanta, particles were analyzed at a rate of roughly one per second in sizes ranging from 0.1 to 0.2 μm. Nearly 16,000 individual spectra were recorded over the course of the month during both daytime and nighttime sampling periods. Evaluation of the data indicates that the composition of the ultrafine (less than 100 nm) particles is dominated by carbon-containing compounds. Larger particles show varied compositions but typically appeared to have organic carbon characteristics mixed with an inorganic component (e.g., crustal materials, metals, etc.). During the experiment, 70 composition classes were identified. In this paper we report the average spectra and correlations with various meteorological parameters for all major compound classes and a number of minor ones. The major composition classes are identified from the primary peaks in their spectra as organic carbon (about 74% of the particles), potassium (8%), iron (3%), calcium (2%), nitrate (2%), elemental carbon (1.5%), and sodium (1%). Many of these compound classes appeared in repeatable size ranges and quadrants of the wind rose, indicating emission from specific sources.

  8. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    NASA Astrophysics Data System (ADS)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.

  9. Quarterly Coal Distribution

    EIA Publications

    2017-01-01

    The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding Annual Coal Distribution Report.

  10. SOURCE STRENGTHS OF ULTRAFINE AND FINE PARTICLES DUE TO COOKING WITH A GAS STOVE

    EPA Science Inventory

    Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were us...

  11. Coal resources of the Sonda coal field, Sindh Province, Pakistan

    USGS Publications Warehouse

    Thomas, R.E.; Riaz, Khan M.; Ahmed, Khan S.

    1993-01-01

    Approximately 4.7 billion t of original coal resources, ranging from lignite A to subbituminous C in rank, are estimated to be present in the Sonda coal field. These resources occur in 10 coal zones in the Bara Formation of Paleocene age. The Bara Formation does not out crop in the area covered by this report. Thin discontinuous coal beds also occur in the Sonhari Member of the Laki Formation, of Paleocene and Eocene age, but they are unimportant as a resource of the Sonda coal field. The coal resource assessment was based on 56 exploratory drill holes that were completed in the Sonda field between April 1986 and February 1988. The Sonda coal field is split into two, roughly equal, areas by the southwestward flowing Indus River, a major barrier to the logistics of communications between the two halves. As a result the two halves, called the Sonda East and Sonda West areas, were evaluated at different times by slightlydifferent techniques; but, because the geology is consistent between the two areas, the results of both evaluations have been summarized in this report. The resource estimates for the Sonda East area, approximately 1,700 million t, were based on the thickest coal bed in each zone at each drill hole. This method gives a conservative estimate of the total amount of coal in the Sonda East area. The resource estimates for the Sonda West area, approximately 3,000 million t, were based on cumulative coal bed thicknesses within each coal zone, resulting in a more liberal estimate. In both cases, minimum parameters for qualifying coal were a thickness of 30 cm or greater and no more than 50% ash; partings thicker than 1 cm were excluded. The three most important coal zones in the Sonda field are the Inayatabad, the Middle Sonda and the Lower Sonda. Together, these three coal zones contain 50% of the total resources. Isopachs were constructed for the thickest coal beds in these three coal zones and indicate large variations in thickness over relatively small

  12. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  13. Mammalian cell-transforming potential of traffic-linked ultrafine particulate matter PM0.056 in urban roadside atmosphere.

    PubMed

    Verma, Mukesh K; Poojan, Shiv; Sultana, Sarwat; Kumar, Sushil

    2014-09-01

    We examined the clastogenic and cell-transforming potential of ultrafine particulate matter fraction PM0.056 of urban ambient aerosol using mammalian cells. PM1.0, PM0.56 and PM0.056 fractions were sampled from roadside atmosphere of an urban area using the cascade impactor MOUDI-NR-110. The potential to induce cytotoxicity, DNA damage and micronuclei formation was examined at the test concentrations of 3, 6, 12.5, 25, 50 and 100 μg/ml using the 3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the plasmid relaxation assay and the C3H10T1/2 (10T1/2) cells. The cell-transforming potential was investigated in vitro using 10T1/2 cell transformation assay and the soft agar assay. PM1, PM0.56 and PM0.056 fractions were found to be toxic in dose-dependent manner. These induced cytotoxicity at five test concentrations, the ultrafine particle fraction PM0.056 showed greater cytotoxic potential. PM0.056 induced micronucleus formation in 10T1/2 cells. The effect was statistically significant. The DNA-damaging potential was measured in a plasmid relaxation assay. Both fine and ultrafine particle fraction PM0.56 and PM0.056 displayed greater effect as compared to larger PM1 fraction. DNA damage was found to be dependent on particulate matter intrinsic pro-oxidant chemicals. The ability of the ultrafine particle fraction PM0.056 to induce morphological cell transformation was demonstrated by significant and dose-dependent increases in type III focus formation by morphologically transformed cells in culture flasks and their clonal expansion in soft agar. It is concluded that the traffic-linked ultrafine particle fraction PM0.056 in the atmosphere by the roadside of an urban area is clastogenic and able to induce morphological transformation of mammalian cells. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions

  14. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  15. Corona-assisted flame synthesis of ultrafine titania particles

    NASA Astrophysics Data System (ADS)

    Vemury, Srinivas; Pratsinis, Sotiris E.

    1995-06-01

    Synthesis of ultrafine titania particles is investigated in a diffusion flame aerosol reactor in the presence of a gaseous electric discharge (corona) created by two needle electrodes. The corona wind flattens the flame and reduces the particle residence time at high temperatures, resulting in smaller primary particle sizes and lower level of crystallinity. Increasing the applied potential from 5 to 8 kV reduces the particle size from 50 to 25 nm and the rutile content from 20 to 8 wt %. Coronas provide a clean and simple technique that facilitates gas phase synthesis of nanosized materials with controlled size and crystallinity.

  16. Microstructure and properties of ultrafine grained structure of Cu-Zn-Si alloy fabricated by heavy cold rolling

    NASA Astrophysics Data System (ADS)

    Miura, H.; Kobayashi, T.; Kobayashi, M.

    2014-08-01

    Cu-18.2Zn-1.5Si-0.25Fe (mass%) alloy was heavily cold rolled. Ultrafine grained (UFGed) structure, containing a mixture of lamellar and mechanical twins, was easily and homogeneously formed. The average grain size was approximately 100 nm. The as-rolled sample showed quite high ultimate tensile strength (UTS) over 1 GPa. The UTS was higher than those obtained by multi directional forging. When the samples were annealed at relatively low temperatures between 553 K and 653 K, they showed slight hardening followed by large softening due to occurrence of static recrystallization (SRX). Annealing of UFGed structure at relatively low temperature of around 0.4 Tm caused extensive SRX that, in turn, induces ultrafine RXed grained structure. The grain size of the RXed sample was as fine as 200 nm. Although the annealing induced recovery of ductility while UTS gradually reduces, UTS over 1 GPa with ductility of 15 % were attained. The RXed grains mainly contained ultrafine annealing twins. Therefore, UFGed structure and superior mechanical properties could be achieved by a simple process of cold rolling, i.e., without severe plastic deformation.

  17. A novel ultrafine-grained Fe−22Mn−0.6C TWIP steel with superior strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Y.Z., E-mail: yztian@imr.ac.cn

    A fully recrystallized ultrafine-grained (UFG) Fe−22wt.%Mn−0.6wt.%C twinning-induced plasticity (TWIP) steel with mean grain size of 576 nm was fabricated by cold rolling and annealing process. Tensile test showed that this UFG steel possessed high yield strength of 785 MPa, and unprecedented uniform elongation of 48%. The Hall-Petch relationship was verified from the coarse-grained (CG) regime to the ultrafine-grained (UFG) regime. The microstructures at specified tensile strains were characterized by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The microstructures and strain hardening behavior of the UFG TWIP steel were compared with the CG counterpart. The strong strain hardening capabilitymore » of the UFG steel is supposed to be responsible for the high strength and good ductility. - Highlights: • A fully recrystallized Fe−22Mn−0.6C TWIP steel with mean grain size of 576 nm was fabricated. • The ultrafine-grained (UFG) steel exhibits strong strain-hardening capability, excellent strength and ductility. • The Hall-Petch relationship is fitted well from the CG regime to the UFG regime.« less

  18. Entrained-flow gasification at elevated pressure: Volume 1: Final technical report, March 1, 1985-April 30,1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedman, P.O.; Smoot, L.D.; Smith, P.J.

    1987-10-15

    The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of usingmore » laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.« less

  19. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less

  20. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, July-September 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, W.; Davis, A.; Walker, P. L.

    1979-05-01

    Certain important aspects of the chemical and physical composition of American lignite coals are being characterized. Differential scanning calorimetry and thermogravimetric analysis were used to study the interaction between oxygen and seventeen coal chars (40 x 100 mesh) at 100/sup 0/C. The same techniques were used to investigate briefly the interaction between air and a highly caking coal at selected isothermal temperatures in the range 100 to 275/sup 0/C.

  1. Enthalpy measurement of coal-derived liquids. Technical progress report, August-October 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidnay, A.J.; Yesavage, V.F.

    The correlational effort on the coal syncrudes and model compounds has been proceeding along two fronts. The first involves experimental work on a correlating factor for association in the liquids and the second involves an investigation of the modeling capabilities of cubic equations of state. The first area of investigation is the experimental measurement of a correlating factor for assocition in coal liquids. The procedure involves molecular weight measurement by freezing point depression. To facilitate these measurements, a simple Beckman freezing point depression apparatus is being currently modified to increase the accuracy, speed, and ease of measurement. The second areamore » of effort has involved establishing a set of cubic equations of state which can adequately model the enthalpy departures of quinoline and m-cresol. To this effort, a number of standard and association specific equations of state have been tested against a data base of previously measured enthalpy departures of m-cresol and quinoline. It has been found that these equations do quantitatively a poor job on m-cresol and quinoline. These problems are probably due to the highly polar nature of m-cresol and to a lesser extent quinoline, and to the poor quality of critical parameters for quinoline.« less

  2. Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less

  3. Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.

  4. Daily trends and source apportionment of ultrafine particulate mass (PM0.1) over an annual cycle in a typical California city.

    PubMed

    Kuwayama, Toshihiro; Ruehl, Chris R; Kleeman, Michael J

    2013-12-17

    Toxicology studies indicate that inhalation of ultrafine particles (Dp < 0.1 μm) causes adverse health effects, presumably due to their large surface area-to-volume ratio that can drive heterogeneous reactions. Epidemiological associations between ultrafine particles and health effects, however, have been difficult to identify due to the lack of appropriate long-term monitoring and exposure data. The majority of the existing ultrafine particle epidemiology studies are based on exposure to particle number, although an independent analysis suggests that ultrafine particle mass (PM0.1) correlates better with particle surface area. More information is needed to characterize PM0.1 exposure to fully evaluate the health effects of ultrafine particles using epidemiology. The present study summarizes 1 year of daily PM0.1 chemistry and source apportionment at Sacramento, CA, USA. Positive matrix factorization (PMF) was used to resolve PM0.1 source contributions from old-technology diesel engines, residential wood burning, rail, regional traffic, and brake wear/road dust. Diesel PM0.1 and total PM0.1 concentrations were reduced by 97 and 26%, respectively, as a result of the adoption of cleaner diesel technology. The strong linear correlation between PM0.1 and particle surface area in central California suggests that the adoption of clean diesel engines reduced particle surface area by similar amounts. PM0.1 sulfate reduction occurred as a result of reduced primary particle surface area available for sulfate condensation. The current study demonstrates the capability of measuring PM0.1 source contributions over a 12 month period and identifies the extended benefits of emissions reduction efforts for diesel engines on ambient concentrations of primary and secondary PM0.1.

  5. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less

  6. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  7. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Kenneth; Imam, Tahmina; Chevanan, Nehru

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  8. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  9. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  10. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.

  11. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children.

    PubMed

    Evans, Kristin A; Halterman, Jill S; Hopke, Philip K; Fagnano, Maria; Rich, David Q

    2014-02-01

    Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1-7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. We conducted a pilot study using data from 3 to 10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088p/cm(3); OR=1.27; 95% CI=0.90-1.79) and 7-day mean carbon monoxide (interquartile range=0.17ppm; OR=1.63; 95% CI=1.03-2.59). Relative odds

  12. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    PubMed Central

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  13. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells.

    PubMed

    Marabini, Laura; Ozgen, Senem; Turacchi, Silvia; Aminti, Stefania; Arnaboldi, Francesca; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Vecchi, Roberta; Becagli, Silvia; Caruso, Donatella; Corrado, Galli L; Marinovich, Marina

    2017-08-01

    In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques. Comet assay and γ-H2AX evaluation show a significant DNA damage after 24h treatment. The interpretation of the results is based on the correlation among toxicological results, chemical-physical properties of UFPs, and the type and efficiency conditions in residential pellet or logwood stoves. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Kenneth; Imam, Thamina; Chevanan, Nehru

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, majormore » efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt

  15. Ultrafine particles, and PM 2.5 generated from cooking in homes

    NASA Astrophysics Data System (ADS)

    Wan, Man-Pun; Wu, Chi-Li; Sze To, Gin-Nam; Chan, Tsz-Chun; Chao, Christopher Y. H.

    2011-11-01

    Exposure to airborne particulate matters (PM) emitted during cooking can lead to adverse health effects. An understanding of the exposure to PM during cooking at home provides a foundation for the quantification of possible health risks. The concentrations of airborne particles covering the ultrafine (14.6-100 nm) and accumulation mode (100-661.2 nm) size ranges and PM 2.5 (airborne particulate matters smaller than 2.5 μm in diameter) during and after cooking activities were measured in 12 naturally ventilated, non-smoking homes in Hong Kong, covering a total of 33 cooking episodes. The monitored homes all practiced Chinese-style cooking. Cooking elevated the average number concentrations of ultrafine particles (UFPs) and accumulation mode particles (AMPs) by 10 fold from the background level in the living room and by 20-40 fold in the kitchen. PM 2.5 mass concentrations went up to the maximum average of about 160 μg m -3 in the kitchen and about 60 μg m -3 in the living room. Cooking emitted particles dispersed quickly from the kitchen to the living room indicating that the health impact is not limited to occupants in the kitchen. Particle number and mass concentrations remained elevated for 90 min in the kitchen and for 60 min in the living room after cooking. Particles in cooking emissions were mainly in the ultrafine size range in terms of the number count while AMPs contributed to at least 60% of the surface area concentrations in the kitchen and 73% in the living room. This suggests that AMPs could still be a major health concern since the particle surface area concentration is suggested to have a more direct relationship with inhalation toxicity than with number concentration. Particle number concentration (14.6-661.2 nm) in the living room was about 2.7 times that in the outdoor environment, suggesting that better ventilation could help reduce exposure.

  16. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  17. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  18. Attitudes toward Women Coal Miners in an Appalachian Coal Community.

    ERIC Educational Resources Information Center

    Trent, Roger B.; Stout-Wiegand, Nancy

    1987-01-01

    In a coal mining community, a survey revealed that the level of negative sentiment toward women coal miners was substantial and varied by gender role. Male coal miners were negative toward female co-workers, but they supported women's right to coal mine jobs, while female homemakers did not. (Author/CH)

  19. [Health effects of ambient ultrafine particles--the project UFIREG].

    PubMed

    Dostál, Miroslav; Pastorková, Anna; Lanzinger, Stefanie; Schneider, Alexandra; Bastian, Susanne; Senghaas, Monika; Erzen, Ziva; Novák, Jiří; Kolodnitska, Teťana; Šrám, Radim J; Peters, Annette

    2015-01-01

    The project "Ultrafine particles--an evidence based contribution to the development of regional and European environmental and health policy" (UFIREG) started in July 2011 and ended in December 2014. It was implemented through the Central Europe Programme and co-financed by the European Regional Development Fund. Five cities in four Central European countries participated in the study: Augsburg (Germany), Chernivtsi (Ukraine), Dresden (Germany), Ljubljana (Slovenia) and Prague (Czech Republic). The aim of the UFIREG project was to improve the knowledge base on possible health effects of ambient ultrafine particles (UFP) and to raise overall awareness of environmental and health care authorities and the population. Epidemiological studies in the frame of the UFIREG project have assessed the short-term effects of UFP on human mortality and morbidity, especially in relation to cardiovascular and respiratory diseases. Official statistics were used to determine the association between air pollution concentration and daily (cause-specific: respiratory and cardiovascular) hospital admissions and mortality. Associations of UFP levels and health effects were analysed for each city by use of Poisson regression models adjusting for a number of confounding factors. Results on morbidity and mortality effects of UFP were heterogeneous across the five European cities investigated. Overall, an increase in respiratory hospital admissions and mortality could be detected for increases in UFP concentrations. Results on cardiovascular health were less conclusive. Further multi-centre studies such as UFIREG are needed preferably investigating several years in order to produce powerful results.

  20. Technology and development requirements for advanced coal conversion systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.

  1. Health impacts of coal and coal use: Possible solutions

    USGS Publications Warehouse

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva.

    PubMed

    Vriens, Annette; Nawrot, Tim S; Saenen, Nelly D; Provost, Eline B; Kicinski, Michal; Lefebvre, Wouter; Vanpoucke, Charlotte; Van Deun, Jan; De Wever, Olivier; Vrijens, Karen; De Boever, Patrick; Plusquin, Michelle

    2016-07-26

    Ultrafine particles (<100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI:10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva.

  3. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Gorbaty, Martin L.; Taunton, John W.

    1980-01-01

    A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

  4. The commercial feasibility of underground coal gasification in southern Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.; Young, B.C.; Harju, J.A.

    Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A projectmore » to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.« less

  5. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  6. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response.

    PubMed

    Forest, Valérie; Pailleux, Mélanie; Pourchez, Jérémie; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Sennour, Mohamed; Hochepied, Jean-François; Grosseau, Philippe; Cottier, Michèle

    2014-08-01

    Boehmite (γ-AlOOH) nanoparticles (NPs) are used in a wide range of industrial applications. However, little is known about their potential toxicity. This study aimed at a better understanding of the relationship between the physico-chemical properties of these NPs and their in vitro biological activity. After an extensive physico-chemical characterization, the cytotoxicity, pro-inflammatory response and oxidative stress induced by a bulk industrial powder and its ultrafine fraction were assessed using RAW264.7 macrophages. Although the bulk powder did not trigger a significant biological activity, pro-inflammatory response was highly enhanced with the ultrafine fraction. This observation was confirmed with boehmite NPs synthesized at the laboratory scale, with well-defined and tightly controlled physico-chemical features: toxicity was increased when NPs were dispersed. In conclusion, the agglomerates size of boehmite NPs has a major impact on their toxicity, highlighting the need to study not only raw industrial powders containing NPs but also the ultrafine fractions representative of respirable particles.

  7. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    PubMed Central

    Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František

    2016-01-01

    In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514

  8. Translocation and potential neurological effects of fine and ultrafine particles a critical update

    PubMed Central

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-01-01

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  9. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    PubMed

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  10. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, C.W.; Gutterman, C.; Chander, S.

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash usingmore » commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.« less

  11. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  12. The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Quarterly] technical report, December 1, 1991--February 29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, V.J.

    The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the pre-combustion removal of sulfur from coal. Microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal; however, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal samples for subsequent biodesulfurization. During the current quarter, chemical comminution and combined chemical treatment/explosivemore » comminution experiments have been performed to generate coal samples with increased surface area and porosity. Ammonia vapor was found to be the most effective chemical comminution agent and the optimum conditions for combined chemical treatment/explosive comminution have not yet been determined.« less

  13. Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals

    NASA Astrophysics Data System (ADS)

    Seehra, Mohindar; Singh, Vivek

    2011-03-01

    To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.

  14. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  15. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using airmore » or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.« less

  16. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resultedmore » in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There

  17. Apparatus and method for feeding coal into a coal gasifier

    DOEpatents

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  18. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    DOE R&D Accomplishments Database

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  19. Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Roberts, Lauara N.R.; Biewick, Laura

    2000-01-01

    This CD-ROM set contains a geologic assessment of coal deposits of the Colorado Plateau region and new resource estimates for selected assessment units within the Colorado Plateau. Original resource estimates (in-place resources before production) for the 12 priority assessment units of the Colorado Plateau exceed one half trillion short tons of coal in beds greater than 1 ft thick and under less than 6,000 ft of overburden. The coal is high quality and low sulfur, and a portion of these resources will provide future energy production for the Nation. Disc 1, in Portable Document Format, contains results of the assessment in summary and (or) technical reports for 12 priority coal assessment units in the Colorado Plateau and also contains an ArcView Data Publisher project, which is an interactive geographic information system of digital data collected during the assessment. Disc 2 contains stratigraphic data bases for seven of the priority coal assessment areas within the Colorado Plateau region and an ArcView project identical to the ArcView Data Publisher project on disc 1 except that it retains some of the functionality that is disabled in the ArcView Data Publisher program.

  20. Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen

    2017-10-01

    Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.

  1. 15. VIEW OF COAL TRESTLE LOOKING NORTHEAST. COAL DUMPED FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF COAL TRESTLE LOOKING NORTHEAST. COAL DUMPED FROM HOPPER CARS COULD BE CRUSHED AND LOADED ON A CONVEYOR THAT PARALLELED THE TRACK TO THE EAST (LEFT) AND CARRIED IT TO A 1000 TON BUNKER LOCATED ON THE NORTH SIDE OF THE EAST BOILER ROOM. COAL COULD ALSO GO THROUGH THE CRUSHER AND BE DIVERTED TO THE CONVEYOR SHOWN IN THE LEFT FOREGROUND. COAL PILES FORMED UNDER THE CONVEYOR WOULD BE MOVED AND SHAPED BY BULLDOZER. A GROUND LEVEL HOPPER WAS LOCATED TO THE RIGHT OF THE SLOPING HOUSING WHICH EXTENDS FROM THE SOUTH SIDE OF THE COAL TRESTLE. THIS HOPPER FED A CONVEYOR LOCATED WITHIN THE SLOPING HOUSING. COAL DROPPED INTO THE HOPPER WOULD BE CONVEYED INTO THE CRUSHER UNDER THE TRESTLE AND THEN DIVERTED TO THE CONVEYOR WHICH LOADED THE 1000 TON BUNKER. THE COAL HANDLING SYSTEM WAS DESIGNED BY GIBBS AND HILL IN 1947. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  2. Antibacterial activities of amorphous cefuroxime axetil ultrafine particles prepared by high gravity antisolvent precipitation (HGAP).

    PubMed

    Zhao, Hong; Kang, Xu-liang; Chen, Xuan-li; Wang, Jie-xin; Le, Yuan; Shen, Zhi-gang; Chen, Jian-feng

    2009-01-01

    In vitro and in vivo antibacterial activities on the Staphylococcus aureus and Escherichia coli of the amorphous cefuroxime axetil (CFA) ultrafine particles prepared by HGAP method were investigated in this paper. The conventional sprayed CFA particles were studied as the control group. XRD, SEM, BET tests were performed to investigate the morphology changes of the samples before and after sterile. The in vitro dissolution test, minimal inhibitory concentrations (MIC) and the in vivo experiment on mice were explored. The results demonstrated that: (i) The structure, morphology and amorphous form of the particles could be affected during steam sterile process; (ii) CFA particles with different morphologies showed varied antibacterial activities; and (iii) the in vitro and in vivo antibacterial activities of the ultrafine particles prepared by HGAP is markedly stronger than that of the conventional sprayed amorphous particles.

  3. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  4. Method for the production of ultrafine particles by electrohydrodynamic micromixing

    DOEpatents

    DePaoli, David W.; Hu, Zhong Cheng; Tsouris, Constantinos

    2001-01-01

    The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.

  5. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  6. New method of feeding coal - Continuous extrusion of fully plastic coal

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.; England, C.

    1978-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 400 C. Coal is then fed much in the manner of common thermoplastics, using screw extruders. Preliminary results show that coals can be extruded at rates of about 3.3 kg/MJ, similar to those for plastics.

  7. UP-REGULATION OF TISSUE FACTOR IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS AFTER ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Background: Epidemiology studies have linked exposure to pollutant particles to

    increased cardiovascular mortality and morbidity, but the mechanisms remain unknown.

    Objectives: We tested the hypothesis that the ultrafine fraction of ambient pollutant

    particle...

  8. Chemicals from coal - The Eastman experience. [Anhydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkins, T.H.

    1986-03-01

    Tennessee Eastman Company is a major producer of chemicals, fibers and plastics. It is located in Kingsport, Tennessee, headquarters for the Eastman Chemicals Division of Eastman Kodak Company. Eastman Companies employ a total of 12,250 people in Kingsport. Other domestic Eastman Chemicals Division plants are located in Texas, South Carolina, Arkansas and New York. The authors began to witness a flow of products from one of the most highly technical and sophisticated chemical processes in operation in the world. The Eastman ''Chemicals-from-Coal'' facility is not a sunfuel plant. To be sure, we are producing syngas from coal, but the syngasmore » is used to produce acetic anhydride. Acetic anhydride is very important to Eastman. This chemical intermediate eventually finds its way into such diverse products as aspirin, cigarette filters, tool handles, and photographic film. It also is used to make other chemical intermediates such as cellulose esters, anhydrides, triacetin, and acetate ester solvents, all of which have a variety of end uses. The chemicals-from-coal project had its inception in the late 1960's when Eastman stepped up its program of energy conservation and began a search for lower cost chemical feedstocks. Our concern started before the national concern caused by a ten-fold increase in petroleum prices during the past decade.« less

  9. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols.

    PubMed

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Krouzek, Jiri; Hovorka, Jan

    2013-06-14

    Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1ultrafine particles (dae<0.17). High-volume aerosol samples were collected consecutively in four localities that differed in the level of environmental pollution. The genotoxicity of EOMs was measured by analysis of DNA adducts induced in an a cellular assay consisting of calf thymus DNA with/without rat liver microsomal S9 fraction coupled with (32)P-postlabelling. The upper accumulation fraction was the major size fraction in all four localities, forming 37-46% of the total PM mass. Per m(3) of sampled air, this fraction also bound the largest amount of c-PAHs. Correspondingly, the upper accumulation fraction induced the highest DNA-adduct levels. Per PM mass itself, the lower accumulation fraction is seen to be the most efficient in binding DNA-reactive organic compounds. Interestingly, the results suggest that the fraction of ultrafine particles of various ambient-air samples is neither a major carrier of c-PAHs, nor a major inducer of their genotoxicity, which is an important finding that is relevant to the toxicity and health effects of ultrafine particles, which are so extensively discussed these days. Copyright © 2013. Published by Elsevier B.V.

  10. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous

  11. Looking southeast at coal conveyor leading from the coal unloading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at coal conveyor leading from the coal unloading station to the coal elevator. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  12. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  13. The Safety Attitudes of Senior Managers in the Chinese Coal Industry

    PubMed Central

    Zhang, Jiangshi; Chen, Na; Fu, Gui; Yan, Mingwei; Kim, Young-Chan

    2016-01-01

    Introduction: Senior managers’ attitudes towards safety are very important regarding the safety practices in an organization. The study is to describe the current situation of senior managers′ attitudes towards safety in the Chinese coal industry. Method: We evaluated the changing trends as well as the reasons for these changes in the Chinese coal industry in 2009 and in 2014 with 168 senior manager samples from large Chinese state-owned coal enterprises. Evaluations of 15 safety concepts were performed by means of a questionnaire. Results and Conclusions: Results indicate that, in 2014, three concepts were at a very high level (mean > 4.5), and six were at a relatively high level (4.5 > mean > 4.0). Analyses of changing trends revealed that nine concepts improved significantly, while four greatly declined in 2014 compared to those in 2009. The data reported here suggest that the reasons for the significant improvement with respect to the nine concepts include the improvement in social and legal environments, the improvement of the culture of social safety, workers′ safety demands being met, and scientific and technical advances in the coal industry. The decline of the four concepts seemed to be caused by a poor awareness of managers in the coal industry that safety creates economic benefits, insufficient information on safety, inadequate attention to the development of a safety culture and safety management methods, and safety organizations and workers′ unions not playing their role effectively. Practical Applications: We therefore recommend strengthening the evidence that safety creates economic benefits, providing incentives for employees to encourage their participation in safety management, and paying more attention to the prevention of accidents in coal mines via safety organizations and unions. These results can provide guidelines for workers, industrialists, and government regarding occupational safety in the whole coal industry. PMID:27869654

  14. The Safety Attitudes of Senior Managers in the Chinese Coal Industry.

    PubMed

    Zhang, Jiangshi; Chen, Na; Fu, Gui; Yan, Mingwei; Kim, Young-Chan

    2016-11-17

    Introduction: Senior managers' attitudes towards safety are very important regarding the safety practices in an organization. The study is to describe the current situation of senior managers' attitudes towards safety in the Chinese coal industry. Method : We evaluated the changing trends as well as the reasons for these changes in the Chinese coal industry in 2009 and in 2014 with 168 senior manager samples from large Chinese state-owned coal enterprises. Evaluations of 15 safety concepts were performed by means of a questionnaire. Results and Conclusions : Results indicate that, in 2014, three concepts were at a very high level (mean > 4.5), and six were at a relatively high level (4.5 > mean > 4.0). Analyses of changing trends revealed that nine concepts improved significantly, while four greatly declined in 2014 compared to those in 2009. The data reported here suggest that the reasons for the significant improvement with respect to the nine concepts include the improvement in social and legal environments, the improvement of the culture of social safety, workers' safety demands being met, and scientific and technical advances in the coal industry. The decline of the four concepts seemed to be caused by a poor awareness of managers in the coal industry that safety creates economic benefits, insufficient information on safety, inadequate attention to the development of a safety culture and safety management methods, and safety organizations and workers' unions not playing their role effectively. Practical Applications : We therefore recommend strengthening the evidence that safety creates economic benefits, providing incentives for employees to encourage their participation in safety management, and paying more attention to the prevention of accidents in coal mines via safety organizations and unions. These results can provide guidelines for workers, industrialists, and government regarding occupational safety in the whole coal industry.

  15. Coal recovery process

    DOEpatents

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  16. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  17. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  18. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  19. Deposition of ultrafine (nano) particles in the human lung.

    PubMed

    Asgharian, Bahman; Price, Owen T

    2007-10-01

    Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.

  20. Real-Time Ultrafine Aerosol Measurements from Wastewater Treatment Facilities.

    PubMed

    Piqueras, P; Li, F; Castelluccio, V; Matsumoto, M; Asa-Awuku, A

    2016-10-18

    Airborne particle emissions from wastewater treatment plants (WWTP) have been associated with health repercussions but particulate quantification studies are scarce. In this study, particulate matter (PM) number concentrations and size distributions in the ultrafine range (7-300 nm) were measured from two different sources: a laboratory-scale aerobic bioreactor and the activated sludge aeration basins at Orange County Sanitation District (OCSD). The relationships between wastewater parameters (total organic carbon (TOC), chemical oxygen demand (COD), and total suspended solids (TSS)), aeration flow rate and particle concentrations were also explored. A significant positive relationship was found between particle concentration and WWTP variables (COD: r(10) = 0.876, p <.001, TOC: r(10) = 0.664, p <.05, TSS: r(10) = 0.707, p <.05, aeration flow rate: r(8) = 0.988, p <.0001). A theoretical model was also developed from empirical data to compare real world WWTP aerosol number emission fluxes with laboratory data. Aerosol number fluxes at OCSD aerated basins (9.8 × 10 4 lbs/min·cm 2 ) and the bioreactor (7.95 × 10 4 lbs/min·cm 2 ) were calculated and showed a relatively small difference (19%). The ultrafine size distributions from both systems were consistent, with a mode of ∼48 nm. The average mass concentration (7.03 μg/cm 3 ) from OCSD was relatively small compared to other urban sources. However, the in-tank average number concentration of airborne particles (14 480 lbs/cm 3 ) was higher than background ambient concentrations.

  1. Molecular biological enhancement of coal biodesulfurization. [Quarterly] technical report, December 1, 1993--February 28, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbane, J.J. II

    1994-06-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strain`s of microorganisms that possess higher levels of desulfurization activity and therefore wall permit more favorable biodesulfurization process conditions: faster rates, mare complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurizationmore » process and accordingly is the focus of research in this project. Several possible strong promoters have been isolated and are in the process of being analyzed. When these promoters have been characterized for inducibility, strength, transcriptional start sites and other physical properties, they will be placed in front of the desulfurization genes and expression will be monitored. Improved promoter probe vectors have been constructed, allowing a conclusive screen of all putative Rhodococcus promoters. With the improved methodologies in the handling of Rhodococcus RNA, we have begun to gauge promoter expression using Northern blots. During this quarter we have constructed and successfully used a promoter probe vector using the {beta}-galactosidane gene from E. coli. A chromosomal promoter library was constructed upstream from the {beta}-galactosidase gene. Over 200 colonies were isolated that yielded {beta}-galactosidase activity.« less

  2. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties:more » volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.« less

  3. 39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. 1 (WEST) (NOTE: COAL CARS No. 9 & 5 IN BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  4. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less

  5. Long-term assessment of ultrafine particles on major roadways in Las Vegas, Nevada and Detroit, Michigan

    EPA Science Inventory

    This is a presentation at the National Air Monitoring conference, given at the request of OAQPS partners. The presentation will cover ultrafine particle data collected at three locations - Las Vegas, Detroit, and Research Triangle Park.

  6. 35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL TOWER No. 2 (NOTE: SKYLIGHT ABOVE; COAL CARS IN FAR BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  7. 34. BOILER HOUSE, COAL CONVEYOR AND TURNAROUND TRACK FOR COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BOILER HOUSE, COAL CONVEYOR AND TURN-AROUND TRACK FOR COAL CARS (NOTE: COAL CAR No. 6 IN FAR BACK GROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  8. Coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  9. The Special Features of the Deformation Behavior of an Ultrafine-Grained Aluminum Alloy of the Al-Mg-Li System at Room Temperature

    NASA Astrophysics Data System (ADS)

    Naydenkin, E. V.; Mishin, I. P.; Ivanov, K. V.

    2015-04-01

    The special features of the deformation behavior of an ultrafine-grained aluminum alloy produced by severe plastic deformation are investigated. Unlike ultrafine-grained pure aluminum, the second-phase particles precipitated in the bulk and at the grain boundaries of the alloy are shown to hinder the development of grain boundary sliding and plastic strain localization. This increases the length of the strain hardening stage and uniformity of elongation of a heterogeneous aluminum alloy specimen as compared to pure aluminum.

  10. Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.

    2016-12-01

    Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.

  11. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  12. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  13. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  14. Brecciated and mineralized coals in Union County Western Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Williams, D.A.; Eble, C.F.; Sakulpitakphon, T.; Moecher, D.P.

    2001-01-01

    Coals from the D-2 and D-3 boreholes in the Grove Center 7 1/2 min quadrangle, Union County, KY, have been found to be highly brecciated and mineralized. The mineralization is dominated by a carbonate assemblage with minor sulfides and sulfates. Included among the secondary minerals is the lead selenide, clausthalite. Overall, the emplacement of secondary vein minerals was responsible for raising the rank of the coals from the 0.6-0.7% Rmax range found in the area to as high as 0.95-0.99% Rmax. A 1.3-m-thick coal found in one of the boreholes is unique among known Western Kentucky coals in having less than 50% vitrinite. Semifusinite and fusinite dominate the maceral assemblages. The coal is also low in sulfur coal, which is unusual for the Illinois Basin. It has an ash yield of less than 10%; much of it dominated by pervasive carbonate veining. The age of the thick coal in core D-2 is similar to that of the Elm Lick coal bed, found elsewhere in the Western Kentucky coalfield. The coals in D-3 are younger, having Stephanian palynomorph assemblages. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. The Effects of Vegetation Barriers on Near-road Ultrafine Particle Number and Carbon Monoxide Concentrations

    EPA Science Inventory

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant t...

  16. Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system

    NASA Astrophysics Data System (ADS)

    Abuzairi, Tomy; Okada, Mitsuru; Purnamaningsih, Retno Wigajatri; Poespawati, Nji Raden; Iwata, Futoshi; Nagatsu, Masaaki

    2016-07-01

    Ultrafine plasma jet is a promising technology with great potential for nano- or micro-scale surface modification. In this letter, we demonstrated the use of ultrafine atmospheric pressure plasma jet (APPJ) for patterning bio-immobilization on vertically aligned carbon nanotube (CNT) microarray platform without a physical mask. The biotin-avidin system was utilized to demonstrate localized biomolecule patterning on the biosensor devices. Using ±7.5 kV square-wave pulses, the optimum condition of plasma jet with He/NH3 gas mixture and 2.5 s treatment period has been obtained to functionalize CNTs. The functionalized CNTs were covalently linked to biotin, bovine serum albumin (BSA), and avidin-(fluorescein isothiocyanate) FITC, sequentially. BSA was necessary as a blocking agent to protect the untreated CNTs from avidin adsorption. The localized patterning results have been evaluated from avidin-FITC fluorescence signals analyzed using a fluorescence microscope. The patterning of biomolecules on the CNT microarray platform using ultrafine APPJ provides a means for potential application of microarray biosensors based on CNTs.

  17. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  18. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    PubMed

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  19. Coal-Quality Information - Key to the Efficient and Environmentally Sound Use of Coal

    USGS Publications Warehouse

    Finkleman, Robert B.

    1997-01-01

    The rock that we refer to as coal is derived principally from decomposed organic matter (plants) consisting primarily of the element carbon. When coal is burned, it produces energy in the form of heat, which is used to power machines such as steam engines or to drive turbines that produce electricity. Almost 60 percent of the electricity produced in the United States is derived from coal combustion. Coal is an extraordinarily complex material. In addition to organic matter, coal contains water (up to 40 or more percent by weight for some lignitic coals), oils, gases (such as methane), waxes (used to make shoe polish), and perhaps most importantly, inorganic matter (fig. 1). The inorganic matter--minerals and trace elements--cause many of the health, environmental, and technological problems attributed to coal use (fig. 2). 'Coal quality' is the term used to refer to the properties and characteristics of coal that influence its behavior and use. Among the coal-quality characteristics that will be important for future coal use are the concentrations, distribution, and forms of the many elements contained in the coal that we intend to burn. Knowledge of these quality characteristics in U.S. coal deposits may allow us to use this essential energy resource more efficiently and effectively and with less undesirable environmental impact.

  20. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  1. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    PubMed Central

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  2. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  3. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  4. Environmentally friendly use of non-coal ashes in Sweden.

    PubMed

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  5. Fine and ultrafine particle exposures on 73 trips by car to 65 non-smoking restaurants in the San Francisco Bay Area.

    PubMed

    Ott, W R; Wallace, L A; McAteer, J M; Hildemann, L M

    2017-01-01

    A number of studies indicate cooking is a major source of exposure to particulate matter, but few studies have measured indoor air pollution in restaurants, where cooking predominates. We made 73 visits by car to 65 different non-smoking restaurants in 10 Northern California towns while carrying portable continuous monitors that unobtrusively measured ultrafine (down to 10 nm) and fine (PM 2.5 ) particles to characterize indoor restaurant exposures, comparing them with exposures in the car. The mean ultrafine number concentrations in the restaurants on dinner visits averaging 1.4 h was 71 600 particles/cm 3 , or 4.3 times the mean concentration on car trips, and 12.3 times the mean background concentration in the residence. Restaurants that cooked dinner in the same room as the patrons had higher ultrafine concentrations than restaurants with separate kitchens. Restaurant PM 2.5 mass concentrations averaged 36.3 μg/m 3 , ranging from 1.5 to 454 μg/m 3 , but were relatively low on most visits: 43% of the indoor means were below 10 μg/m 3 and 66% were below 20 μg/m 3 , with 5.5% above 100 μg/m 3 . Exposure to fine and ultrafine particles when visiting a restaurant exceeded the exposure a person received while traveling by car to and from the restaurant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Process for changing caking coals to noncaking coals

    DOEpatents

    Beeson, Justin L.

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  7. Quality of economically extractable coal beds in the Gillette coal field as compared with other Tertiary coal beds in the Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.

    2002-01-01

    The Powder River Basin, and specifically the Gillette coal field, contains large quantities of economically extractable coal resources. These coal resources have low total sulfur content and ash yield, and most of the resources are subbituminous in rank. A recent U.S Geological Survey study of economically extractable coal in the Gillette coal field focused on five coal beds, the Wyodak rider, Upper Wyodak, Canyon, Lower Wyodak-Werner, and Gates/Kennedy. This report compares the coal quality of these economically extractable coal beds to coal in the Wyodak-Anderson coal zone in the Powder River Basin and in the Gillette coal field (Flores and others, 1999) and other produced coal in the Gillette coal field (Glass, 2000). The Upper Wyodak, Canyon, and Lower Wyodak/Werner beds are within the Wyodak-Anderson coal zone. Compared with all coal in the Wyodak-Anderson coal zone, both throughout the Powder River Basin and just within the Gillette coal field; the thick, persistent Upper Wyodak coal bed in the Gillette coal field has higher mean gross calorific value (8,569 Btu/lb), lower mean ash yield (5.8 percent), and lower mean total sulfur content (0.46 percent).

  8. Coal burning issues. [Book - monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, A.E.S.

    1980-01-01

    The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less

  9. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  10. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  11. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Borbíró, I.; Angyal, A.; Csedreki, L.; Furu, E.; Szoboszlai, Z.; Kiss, Á. Z.; Hunyadi, J.

    2011-10-01

    Skin penetration is one of the potential routes for nanoparticles to gain access into the human body. Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the particle size smaller than 200 nm makes the product more transparent compared to formulations containing coarser particles. The present study continues the work carried out in the frame of the NANODERM: “Quality of skin as a barrier to ultrafine particles” European project and complements our previous investigations on human skin with compromised barrier function. Atopic dermatitis (a type of eczema) is an inflammatory, chronically relapsing, non-contagious skin disease. It is very common in children but may occur at any age. The exact cause of atopic dermatitis is unknown, but is likely due to a combination of impaired barrier function together with a malfunction in the body's immune system. In this study, skin samples were obtained from two patients suffering from atopic dermatitis. Our results indicate that the ultrafine zinc oxide particles, in a hydrophobic basis gel with an application time of 2 days or 2 weeks, have penetrated deeply into the stratum corneum in these patients. On the other hand, penetration into the stratum spinosum was not observed even in the case of the longer application time.

  12. Lead acetate trihydrate precursor route to synthesize novel ultrafine lead oxide from spent lead acid battery pastes

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Yang, Jiakuan; Zhang, Wei; Zhu, Xinfeng; Hu, Yuchen; Yang, Danni; Yuan, Xiqing; Yu, Wenhao; Dong, Jinxin; Wang, Haifeng; Li, Lei; Vasant Kumar, R.; Liang, Sha

    2014-12-01

    A novel green recycling process is investigated to prepare lead acetate trihydrate precursors and novel ultrafine lead oxide from spent lead acid battery pastes. The route contains the following four processes. (1) The spent lead pastes are desulphurized by (NH4)2CO3. (2) The desulphurized pastes are converted into lead acetate solution by leaching with acetic acid solution and H2O2; (3) The Pb(CH3COO)2·3H2O precursor is crystallized and purified from the lead acetate solution with the addition of glacial acetic acid; (4) The novel ultrafine lead oxide is prepared by the calcination of lead acetate trihydrate precursor in N2 or air at 320-400 °C. Both the lead acetate trihydrate and lead oxide products are characterized by TG-DTA, XRD, and SEM techniques. The calcination products are mainly α-PbO, β-PbO, and a small amount of metallic Pb. The particle size of the calcination products in air is significantly larger than that in N2. Cyclic voltammetry measurements of the novel ultrafine lead oxide products show good reversibility and cycle stability. The assembled batteries using the lead oxide products as cathode active materials show a good cyclic stability in 80 charge/discharge cycles with the depth of discharge (DOD) of 100%.

  13. In-plant testing of a novel coal cleaning circuit using advanced technologies. Final technical report, September 1, 1995--August 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honaker, R.Q.; Reed, S.; Mohanty, M.K.

    1997-05-01

    A circuit comprised of advanced fine coal cleaning technologies was evaluated in an operating preparation plant to determine circuit performance and to compare the performance with current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon enhanced gravity concentrator and a Jameson flotation cell. A Packed-Column was used to provide additional reductions in the pyritic sulfur and ash contents by treatment of the Floatex-Falcon-Jameson circuit product. For a low sulfur Illinois No. 5 coal, the pyritic sulfur content was reduced from 0.67% to 0.34% at a combustible recovery of 93.2%. The ash contentmore » was decreased from 27.6% to 5.84%, which equates to an organic efficiency of 95% according to gravity-based washability data. The separation performance achieved on a high sulfur Illinois No. 5 coal resulted in the rejection of 72.7% of the pyritic sulfur and 82.3% of the ash-forming material at a recovery of 8 1 %. Subsequent pulverization of the cleaned product and retreatment in a Falcon concentrator and Packed-Column resulted in overall circuit ash and pyritic sulfur rejections of 89% and 93%, respectively, which yielded a pyritic sulfur content reduction from 2.43% to 0.30%. This separation reduced the sulfur dioxide emission rating of an Illinois No. 5 coal from 6.21 to 1.75 lbs SO{sub 2}/MBTU, which is Phase I compliance coal. A comparison of the results obtained from the Floatex-Falcon-Jameson circuit with those of the existing circuit revealed that the novel fine coal circuit provides 10% to 20% improvement in mass yield to the concentrate while rejecting greater amounts of ash and pyritic sulfur.« less

  14. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less

  15. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  16. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE PAGES

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; ...

    2016-05-04

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  17. ENVIRONMENTAL ASSESSMENT OF A FIRETUBE BOILER FIRING COAL/OIL/WATER MIXTURES. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    This volume describes emission results from sampling of flue gas from a firetube boiler burning a coal/oil/water (COW) mixture and COW with soda ash added (COW+SA) to control SO2 emissions. Measurements included: continuous monitoring of flue gas emissions; source assessment samp...

  18. Economics and coal resource appraisal: strippable coal in the Illinois Basin ( USA).

    USGS Publications Warehouse

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    Because coal is expected to provide an increasing part of U.S. energy supply, it is crucial for long term planning that coal-resource appraisals convey sufficient information regarding the degree of economic resource scarcity as coal consumption increases. Argues that coal-resource estimates, as they are now made, will not give warning of future supply difficulties. A method for incorporating an economic dimension into appraisals of strippable coal resources is presented and applied to a major producing region, the Illinois part of the Illinois basin? In particular, a long-run incremental cost function (that is unit costs vs. cumulative reserves extracted) is estimated for strippable coal in Illinois. -from Authors

  19. Continuous coal processing method

    NASA Technical Reports Server (NTRS)

    Ryason, P. R. (Inventor)

    1980-01-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  20. Process development for production of coal/sorbent agglomerates. Final technical report, September 1, 1990--August 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, D.M.

    1991-12-31

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less

  1. Comparison of the Eastern and Western Kentucky coal fields (Pennsylvanian), USA-why are coal distribution patterns and sulfur contents so different in these coal fields?

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Chesnut, D.R.

    2002-01-01

    More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals. Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality. The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and

  2. Associations between short-term exposure to particulate matter and ultrafine particles and myocardial infarction in Augsburg, Germany.

    PubMed

    Wolf, Kathrin; Schneider, Alexandra; Breitner, Susanne; Meisinger, Christa; Heier, Margit; Cyrys, Josef; Kuch, Bernhard; von Scheidt, Wolfgang; Peters, Annette

    2015-08-01

    Short-term exposure to increased particulate matter (PM) concentration has been reported to trigger myocardial infarction (MI). However, the association with ultrafine particles remains unclear. We aimed to assess the effects of short-term air pollution and especially ultrafine particles on registry-based MI events and coronary deaths in the area of Augsburg, Germany. Between 1995 and 2009, the MONICA/KORA myocardial infarction registry recorded 15,417 cases of MI and coronary deaths. Concentrations of PM<10μm (PM10), PM<2.5μm (PM2.5), particle number concentration (PNC) as indicator for ultrafine particles, and meteorological parameters were measured in the study region. Quasi-Poisson regression adjusting for time trend, temperature, season, and weekday was used to estimate immediate, delayed and cumulative effects of air pollutants on the occurrence of MI. The daily numbers of total MI, nonfatal and fatal events as well as incident and recurrent events were analysed. We observed a 1.3% risk increase (95%-confidence interval: [-0.9%; 3.6%]) for all events and a 4.4% [-0.4%; 9.4%] risk increase for recurrent events per 24.3μg/m(3) increase in same day PM10 concentrations. Nonfatal events indicated a risk increase of 3.1% [-0.1%; 6.5%] with previous day PM10. No association was seen for PM2.5 which was only available from 1999 on. PNC showed a risk increase of 6.0% [0.6%; 11.7%] for recurrent events per 5529 particles/cm(3) increase in 5-day average PNC. Our results suggested an association between short-term PM10 concentration and numbers of MI, especially for nonfatal and recurrent events. For ultrafine particles, risk increases were notably high for recurrent events. Thus, persons who already suffered a MI seemed to be more susceptible to air pollution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Exposure of Children to Ultrafine Particles in Primary Schools in Portugal.

    PubMed

    Rufo, João Cavaleiro; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Pereira, Cristiana; Teixeira, João Paulo; Pinto, Mariana; Moreira, André; Fernandes, Eduardo de Oliveira

    2015-01-01

    Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.

  4. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge

    PubMed Central

    Miller, Mark R.; Clift, Martin J.D.; Elder, Alison; Mills, Nicholas L.; Møller, Peter; Schins, Roel P.F.; Vogel, Ulla; Kreyling, Wolfgang G.; Alstrup Jensen, Keld; Kuhlbusch, Thomas A.J.; Schwarze, Per E.; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C. Lang; Cassee, Flemming R.

    2017-01-01

    Background: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. Objectives: NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. Methods: A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Discussion: Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. Conclusion: There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424 PMID:29017987

  5. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge.

    PubMed

    Stone, Vicki; Miller, Mark R; Clift, Martin J D; Elder, Alison; Mills, Nicholas L; Møller, Peter; Schins, Roel P F; Vogel, Ulla; Kreyling, Wolfgang G; Alstrup Jensen, Keld; Kuhlbusch, Thomas A J; Schwarze, Per E; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C Lang; Cassee, Flemming R

    2017-10-10

    A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424.

  6. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less

  7. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  8. Method of gas emission control for safe working of flat gassy coal seams

    NASA Astrophysics Data System (ADS)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  9. [Industrial pulverized coal low NO{sub x} burner, Phase I] technical progress report, April 1, 1992--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    Market evaluation of industrial pulverized coal usage, and of typical industries and applications where the low-NO{sub x}, burner may be sold, was partially completed at the end of this reporting period. The study identified three coals that may adequately meet the requirements of the low-NO{sub x} burner modeling study, and of the intended industrial applications. These were: (a) Pittsburgh Seam Bituminous, (b) Pittsburgh No. 8, and (c) Utah Bituminous. The first burner design, for modeling studies, was developed for a nominal output of 5.0 million Btu/hr. All input and process parameters, and all major dimensions of the burner have beenmore » determined. Burner design sketch was developed. Standard jet pump geometry of the fuel-rich burner flow path (US Patents No. 4,445,842 and No. 3,990,831), has been modified for use with pulverized coal. Staged air was added. Staged air, in conjunction with recirculated flue gas, has been found by ADL, MIT and other researchers to be effective in NO{sub x}, reduction. No attempt has been made to achieve compactness of design. The primary and seconder, air inlets and flow passages are separate, although in the industrial burner they will be combined. Flue gas may be drawn into the burner either from the hot furnace chamber, or from the flue stack after recuperation. However, to satisfy the energy requirements for volatilizing the coal, flue gas temperature above 2000{degrees}F may be needed. With the preliminary burner design completed, and suitable coals for the modeling study selected, type project is ready to proceed to the kinetic modeling tasks at MIT.« less

  10. [Industrial pulverized coal low NO[sub x] burner, Phase I] technical progress report, April 1, 1992--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    Market evaluation of industrial pulverized coal usage, and of typical industries and applications where the low-NO[sub x], burner may be sold, was partially completed at the end of this reporting period. The study identified three coals that may adequately meet the requirements of the low-NO[sub x] burner modeling study, and of the intended industrial applications. These were: (a) Pittsburgh Seam Bituminous, (b) Pittsburgh No. 8, and (c) Utah Bituminous. The first burner design, for modeling studies, was developed for a nominal output of 5.0 million Btu/hr. All input and process parameters, and all major dimensions of the burner have beenmore » determined. Burner design sketch was developed. Standard jet pump geometry of the fuel-rich burner flow path (US Patents No. 4,445,842 and No. 3,990,831), has been modified for use with pulverized coal. Staged air was added. Staged air, in conjunction with recirculated flue gas, has been found by ADL, MIT and other researchers to be effective in NO[sub x], reduction. No attempt has been made to achieve compactness of design. The primary and seconder, air inlets and flow passages are separate, although in the industrial burner they will be combined. Flue gas may be drawn into the burner either from the hot furnace chamber, or from the flue stack after recuperation. However, to satisfy the energy requirements for volatilizing the coal, flue gas temperature above 2000[degrees]F may be needed. With the preliminary burner design completed, and suitable coals for the modeling study selected, type project is ready to proceed to the kinetic modeling tasks at MIT.« less

  11. Coal Data Browser

    EIA Publications

    The Coal Data Browser gives users easy access to coal information from EIA's electricity and coal surveys as well as data from the Mine Safety and Health Administration and trade information from the U.S. Census Bureau. Users can also see the shipment data from individual mines that deliver coal to the U.S. electric power fleet, have the ability to track supplies delivered to a given power plant, and to see which mines serve each particular plant.

  12. Combustion performance characteristics of fine grind fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, O.K.; Levasseur, A.A.

    1996-12-31

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCFs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. To date, twelve beneficiated coal-based fuels have been acquired through PETC and tested at ABB Power Plant Laboratories Fireside Performance Test Facility (FPTF). The results from these fuels indicate that firing the BCFs improved furnace heat transfer andmore » fly ash erosion compared to their respective feed coals. This paper presents the results from a series of combustion test runs recently conducted in the FPTF to address the effect of fuel fineness on performance. A conventionally cleaned at the mine Pittsburgh No. 8 (Emerald mine, Green County, Pennsylvania, Cyprus Coal Company) was acquired and prepared at three grinds (standard, fine and ultra-fine grinds) to evaluate the effect of fuel fineness on combustion performance. The three fuels were tested at firing rates ranging from 3.0 {times} 10{sup 6} Btu/h to 4.0 {times} 10{sup 6} Btu/h, at standard (no staging) and two staged firing conditions.« less

  13. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    2005-01-01

    The Lower Broas-Stockton coal is a heavily mined coal of the Central Appalachian Basin. Coal thickness, distribution, composition, and stratigraphic position were compared with basement structure, gas and oil field trends, and sequence strat- igraphic and paleoclimate interpretations to better understand the geology of the Stockton coal bed in eastern Kentucky. The thickest coal occurs south of the Warfield structural trend and east of the Paint Creek Uplift, two basement-related structures. Along the Warfield trend, coal beds in the underlying Peach Orchard coal zone locally merge with the Stockton coal to form a seam more than 3 m thick. Other areas of thick coal occur in elongate trends. Two pairs of elongate, conjugate trends in Stockton coal thickness are interpreted as regional paleofractures that influenced paleotopography and groundwater during peat accumulation. Compositional group analyses indicate that the Stockton peat infilled depressions in the paleotopography as a topogenous to soligenous mire codominated by tree ferns and lycopsid trees. Flooding from adjacent paleochannels is indicated by partings and seam splits along the margins of the mineable coal body. One or more increments of low-vitrinite coal, dominated by tree ferns and shrubby, Densosporites-producing lycopsids occur at all sample sites. Similar assemblages have been previously used to identify ombrogenous, domed mire origins for Early and Middle Pennsylvanian coals in which ash yields were less than 10%. It is difficult, however, to reconcile ombrogenous conditions with the partings in the Stockton coal in this area. Low-ash, low-vitrinite increments may have been formed in topogenous to soligenous mires with periodic drying or water-table fluctuations, rather than widespread doming. This is consistent with interpretations of increasingly seasonal paleoclimates in the late Middle and Late Pennsylvanian and fracture-influenced groundwater conditions. ??2005 Geological Society of America.

  14. Clean coal initiatives in Indiana

    USGS Publications Warehouse

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  15. Demonstration of Shear Localization in Ultrafine Grained Tungsten Alloys via Powder Metallurgy Processing Route

    DTIC Science & Technology

    2012-09-01

    of a di-tungsten boride (W2B) phase was not detected in the nW-B sample, but the low concentration of boron may have made this phase undetectable by...Split Hopkinson Bar UFG ultrafine grained W2B di-tungsten boride XRD x-ray diffraction NO. OF NO. OF COPIES ORGANIZATION COPIES

  16. Synthesis of ultrafine Si3N4 powder in RF-RF plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Michitaka; Nishio, Hiroaki

    1991-10-01

    A newly designed plasma-CVD apparatus mounted with the RF-RF type plasma torch was introduced to synthesize ultrafine powders of silicon nitride (Si3N4). The RF-RF plasma system (the combination of a main (lower) and controlling (upper) RF plasma) improved the stability of simple RF plasma and solved the impurity problem of dc-RF hybrid plasma. The reaction of SiCl4 and NH3, which were radially injected into the tail flames of the upper and lower plasmas, respectively, yielded near-stoichiometric amorphous powders of Si3N4. The nitrogen content in the products largely depended on the flow rate of the quenching gas, a mixture of NH3more » (reactant) and H2. The oxygen content and metal impurities are 2-3 wt pct and less than 200 ppm, respectively. The powder particles had an average diameter of about 15 nm with a narrow size distribution, and showed extreme air sensitivity. Conspicuous crystallazation and particle growth occurred when heated at temperatures above 1400 C. These results suggested that the RF-RF system was a potential reactor for the synthesis of ultrafine powders with excellent sinterability at relatively low temperatures. 9 refs.« less

  17. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.

    PubMed

    Kiliç, Mehtap Gülsün; Hoşten, Cetin; Demirci, Sahinde

    2009-11-15

    This paper attempts to compare electrocoagulation using aluminum anodes and stainless steel cathodes with conventional coagulation by aluminum sulfate dosing on aqueous suspensions of ultrafine quartz. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine quartz suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of quartz particles from suspensions. Coagulation, however, was more effective in a wider pH range (pH 6-9) than electrocoagulation which yielded optimum effectiveness in a relatively narrower pH range around 9, where, in both methods, these pH values corresponded to near-zero zeta potentials of quartz particles. Furthermore, experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (<10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.

  18. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    PubMed

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  19. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    PubMed Central

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-01-01

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  20. Statutory complexity disguises agency capture in Citizens Coal Council v. EPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, R.

    2007-07-01

    In Citizens Coal Council v. EPA, an en banc panel for the Sixth Circuit Court of Appeals considered a challenge to EPA regulations promulgated pursuant to the Clean Water Act (CWA). The EPA promulgated the regulations in an attempt to incentivize coal companies to remine once abandoned mine sites. Petitioners, two nonprofit environmental organizations, claimed that the regulations violated the Clean Water Act and Administrative Procedure Act by allowing coal companies to remine without adhering to any enforceable pollution limitations. The EPA countered that more remining would improve water quality at abandoned sites. The Sixth Circuit rejected Petitioners' claims, findingmore » that the EPA's regulations were reasonably consistent with the CWA's goal of restoring the integrity of the nation's waters. In so holding, the court struggled to understand the meaning of the CWA's complex procedural and technical language, and allowed the EPA to justify the rule based on the CWA's broad statement of purpose. Such superficial judicial review sets a dangerous precedent in environmental law, because it exacerbates the risk of agency capture. A captured agency promulgates regulations that benefit-industry, not the environment. Without the judiciary acting as a meaningful check against agency capture, the public loses a valuable tool in the fight against major-industrial polluters like the domestic coal industry. Citizens Coal Council therefore stands as a cautionary tale, a warning sign that the judiciary may be unable to identify agency capture where the regulations at issue are promulgated pursuant to a complex statute like the Clean Water Act.« less

  1. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    USGS Publications Warehouse

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  2. Coal Markets

    EIA Publications

    2017-01-01

    Summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAP), Northern Appalachia (NAP), Illinois Basin (ILB), Power River Basin (PRB), and Uinta Basin (UIB)) in the United States.

  3. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  4. Impact of meteorology, traffic characteristics, and distance from roadway on roadside concentrations of ultrafine particulate matter

    EPA Science Inventory

    Traffic-laden roadways are major contributors to poor air quality in developed areas, elevating pollutants such as particulate matter (PM) and ozone. Among the numerous air pollutants emitted by vehicles, ultrafine particles (UFPs, diameter <100 nm) are of interest as a potentia...

  5. ANALYSIS OF TOTAL RESPIRATORY DEPOSITION OF INHALED ULTRAFINE PARTICLES IN ADULT SUBJECTS AT VARIOUS BREATHING PATTERNS

    EPA Science Inventory

    Ultrafine particles are ubiquitous in the ambient air and their unique physicochemical characteristics may pose a potential health hazard. Accurate lung dose information is essential to assess a potential health risk to exposure to these particles. In the present study, we measur...

  6. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  7. Assessment of the Coal-Bed Gas Total Petroleum System in the Cook Inlet-Susitna region, south-central Alaska

    USGS Publications Warehouse

    Rouse, William A.; Houseknecht, David W.

    2012-01-01

    The Cook Inlet-Susitna region of south-central Alaska contains large quantities of gas-bearing coal of Tertiary age. The U.S. Geological Survey in 2011 completed an assessment of undiscovered, technically recoverable coal-bed gas resources underlying the Cook Inlet-Susitna region based on the total petroleum system (TPS) concept. The Cook Inlet Coal-Bed Gas TPS covers about 9,600,000 acres and comprises the Cook Inlet basin, Matanuska Valley, and Susitna lowland. The TPS contains one assessment unit (AU) that was evaluated for coal-bed gas resources between 1,000 and 6,000 feet in depth over an area of about 8,500,000 acres. Coal beds, which serve as both the source and reservoir for natural gas in the AU, were deposited during Paleocene-Pliocene time in mires associated with a large trunk-tributary fluvial system. Thickness of individual coal beds ranges from a few inches to more than 50 feet, with cumulative coal thickness of more than 800 feet in the western part of the basin. Coal rank ranges from lignite to subbituminous, with vitrinite reflectance values less than 0.6 percent throughout much of the AU. The AU is considered hypothetical because only a few wells in the Matanuska Valley have tested the coal-bed reservoirs, so the use of analog coal-bed gas production data was necessary for this assessment. In order to estimate reserves that might be added in the next 30 years, coal beds of the Upper Fort Union Formation in the Powder River Basin of Wyoming and Montana were selected as the production analog for Tertiary coal beds in the Cook Inlet-Susitna region. Upper Fort Union coal beds have similar rank (lignite to subbituminous), range of thickness, and coal-quality characteristics as coal beds of the Tertiary Kenai Group. By use of this analog, the mean total estimate of undiscovered coal-bed gas in the Tertiary Coal-Bed Gas AU is 4.674 trillion cubic feet (TCF) of gas.

  8. Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer

    NASA Astrophysics Data System (ADS)

    Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard

    2017-05-01

    Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.

  9. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  10. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  11. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  12. Microbial solubilization of coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal hadmore » been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.« less

  13. Preliminary investigation on the effects of primary airflow to coal particle distribution in coal-fired boilers

    NASA Astrophysics Data System (ADS)

    Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.

    2017-04-01

    This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.

  14. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  15. Utilization of coal-water fuel in heat power industry and by public utilities of Ukraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papayani, F.A.; Switly, Y.G.

    1995-12-31

    One of the major problems of the fuel and energy balance of Ukraine is acute shortage of its own resources of organic fuel. At present the steam coal output in Ukraine approaches 100 mln t, oil production makes up about 5 min t and that of gas reaches 22 bln. m{sup 3}, which in terms of equivalent fuel (e.f ) totals 94 min t, the annual demand being approximately 300 mln t e.f. To make up for fuel deficiency Ukraine has to annually import 120 bln. m{sup 3} of gas, 50 mln t of oil and about 10 mln tmore » of coal, their approximate cost being U.S.$ 15.6 bln. At the same time coal reserves in developed fields only make up 10 bln. t, the total reserves of this fuel being 100 bln. t. Thus the whole burden of meeting the requirements of Ukraine in power resources when nuclear power plants capacities are being reduced and expected to be reducing in the nearest future falls on coal. Under wasting conditions a problem of today is to develop and introduce new technologies of coal mining and utilization with due regard for technical, economic and ecological aspects which are particularly important for densely populated industrial regions. Ecological problems associated with a dramatic increase in the volume of coal combustion can be solved by developing new methods and means for flue gas cleaning in the first place and by wide-scale introduction of coal-water fuel (CWF) in the second place. Investigations have shown that the second way is more preferable since it is based on the integrated technology for original coal demineralization and CWT production, advantages of each process being used in full measure. Thus demineralization of coal is among major requirements to development of a CWT production technology.« less

  16. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  17. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  18. ¹¹¹Indium-labeled ultrafine carbon particles; a novel aerosol for pulmonary deposition and retention studies.

    PubMed

    Sanchez-Crespo, Alejandro; Klepczynska-Nyström, Anna; Lundin, Anders; Larsson, Britt Marie; Svartengren, Magnus

    2011-02-01

    Continuous environmental or occupational exposure to airborne particulate pollution is believed to be a major hazard for human health. A technique to characterize their deposition and clearance from the lungs is fundamental to understand the underlying mechanisms behind their negative health effects. In this work, we describe a method for production and follow up of ultrafine carbon particles labeled with radioactive ¹¹¹Indium (¹¹¹In). The physicochemical and biological properties of the aerosol are described in terms of particle size and concentration, agglomeration rate, chemical bonding stability, and human lung deposition and retention. Preliminary in vivo data from a healthy human pilot exposure and 1-week follow up of the aerosol is presented. More than 98% of the generated aerosol was labeled with Indium and with particle sizes log normally distributed around 79  nm count median diameter. The aerosol showed good generation reproducibility and chemical stability, about 5% leaching 7 days after generation. During human inhalation, the particles were deposited in the alveolar space, with no central airways involvement. Seven days after exposure, the cumulative activity retention was 95.3%. Activity leaching tests from blood and urine samples confirmed that the observed clearance was explained by unbound activity, suggesting that there was no significant elimination of ultrafine particles. Compared to previously presented methods based on Technegas, ¹¹¹In-labelled ultrafine carbon particles allow for extended follow-up assessments of particulate pollution retention in healthy and diseased lungs.

  19. Method for the removal of ultrafine particulates from an aqueous suspension

    DOEpatents

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J. G.

    2000-01-01

    A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  20. Method for the Removal of Ultrafine Particulates from an Aqueous Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J.G.

    1999-03-05

    A method of separating ultra-fine particulate from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel-containing the particulate, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.