Sample records for ultrafine grain sizes

  1. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  2. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  3. The Strength-Grain Size Relationship in Ultrafine-Grained Metals

    NASA Astrophysics Data System (ADS)

    Balasubramanian, N.; Langdon, Terence G.

    2016-12-01

    Metals processed by severe plastic deformation (SPD) techniques, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), generally have submicrometer grain sizes. Consequently, they exhibit high strength as expected on the basis of the Hall-Petch (H-P) relationship. Examples of this behavior are discussed using experimental data for Ti, Al, and Ni. These materials typically have grain sizes greater than 50 nm where softening is not expected. An increase in strength is usually accompanied by a decrease in ductility. However, both high strength and high ductility may be achieved simultaneously by imposing high strain to obtain ultrafine-grain sizes and high fractions of high-angle grain boundaries. This facilitates grain boundary sliding, and an example is presented for a cast Al-7 pct Si alloy processed by HPT. In some materials, SPD may result in a weakening even with a very fine grain size, and this is due to microstructural changes during processing. Examples are presented for an Al-7034 alloy processed by ECAP and a Zn-22 pct Al alloy processed by HPT. In some SPD-processed materials, it is possible that grain boundary segregation and other features are present leading to higher strengths than predicted by the H-P relationship.

  4. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  5. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  6. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.

    PubMed

    Misra, R D K; Thein-Han, W W; Pesacreta, T C; Hasenstein, K H; Somani, M C; Karjalainen, L P

    2009-06-01

    Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.

  7. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji

    2014-09-15

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain sizemore » for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET.« less

  8. Structure and phase composition of ultrafine-grained TiNb alloy after high-temperature annealings

    NASA Astrophysics Data System (ADS)

    Eroshenko, Anna Yu.; Glukhov, Ivan A.; Mairambekova, Aikol; Tolmachev, Alexey I.; Sharkeev, Yurii P.

    2017-12-01

    The paper presents the experimental data observed in the microstructure and phase composition of ultrafine-grained Ti-40 mass % Nb (Ti40Nb) alloy after high-temperature annealings. The ultrafine-grained Ti40Nb alloy is produced by severe plastic deformation (SPD). This method includes multiple abc-pressing and multi-pass rolling followed by further pre-recrystallizing annealing which, in its turn, enhances the formation of ultrafine-grained structures with mean size of 0.28 µm involving stable β- and α-phase and metastable nanosized ω-phase in the alloy. It is shown that annealing at 500°C preserves the ultrafine-grained structure and phase composition. In cases of annealing at 800°C the ultrafine-grained state transforms into the coarse-grained state. The stable β-phase and the nanosized metastable ω-phase have been identified in the coarse-grained structure.

  9. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  10. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    NASA Astrophysics Data System (ADS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  12. Comparison of corrosion behavior between coarse grained and nano/ultrafine grained alloy 690

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo

    2016-01-01

    The effect of grain refinement on corrosion resistance of alloy 690 was investigated. The electron work function value of coarse grained alloy 690 was higher than that of nano/ultrafine grained one. The grain refinement reduced the electron work function of alloy 690. The passive films formed on coarse grained and nano/ultrafine grained alloy 690 in borate buffer solution were studied by potentiodynamic curves and electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The results showed that the grain refinement improved corrosion resistance of alloy 690. This was attributed to the fact that grain refinement promoted the enrichment of Cr2O3 and inhibited Cr(OH)3 in the passive film. More Cr2O3 in passive film could significantly improve the corrosion resistance of the nano/ultrafine grained alloy 690.

  13. The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel

    PubMed Central

    Kral, Petr; Dvorak, Jiri; Sklenicka, Vaclav; Masuda, Takahiro; Horita, Zenji; Kucharova, Kveta; Kvapilova, Marie; Svobodova, Marie

    2018-01-01

    The effect of ultrafine-grained size on creep behaviour was investigated in P92 steel. Ultrafine-grained steel was prepared by one revolution of high-pressure torsion at room temperature. Creep tensile tests were performed at 873 K under the initially-applied stress range between 50 and 160 MPa. The microstructure was investigated using transmission electron microscopy and scanning electron microscopy equipped with an electron-back scatter detector. It was found that ultrafine-grained steel exhibits significantly faster minimum creep rates, and there was a decrease in the value of the stress exponent in comparison with coarse-grained P92 steel. Creep results also showed an abrupt decrease in the creep rate over time during the primary stage. The abrupt deceleration of the creep rate during the primary stage was shifted, with decreasing applied stress with longer creep times. The change in the decline of the creep rate during the primary stage was probably related to the enhanced precipitation of the Laves phase in the ultrafine-grained microstructure. PMID:29757206

  14. Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression

    NASA Astrophysics Data System (ADS)

    Patra, S.; Neogy, S.; Kumar, Vinod; Chakrabarti, D.; Haldar, A.

    2012-11-01

    Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite ( α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite ( γ) → ferrite ( α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful "cube" texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//<111>) texture components, along with {332}<133> and {554}<225> components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γ → α transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.

  15. Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2012-03-01

    Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.

  16. Fabrication of ultra-fine grained aluminium tubes by RTES technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, H., E-mail: h.jafarzadeh@ut.ac.ir; Abrinia, K.

    Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement ismore » determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.« less

  17. High-temperature studies of grain boundaries in ultrafine grained alloys by means of positron lifetime

    NASA Astrophysics Data System (ADS)

    Würschum, R.; Shapiro, E.; Dittmar, R.; Schaefer, H.-E.

    2000-11-01

    Atomic free volumes and vacancies in the ultrafine grained alloys Pd84Zr16, Cu 0.1 wt % ZrO2, and Fe91Zr9 were studied by means of positron lifetime. The thermally stable microstructures serve as a novel type of model system for studying positron trapping and annihilation as well as the thermal behavior of vacancy-sized free volumes over a wide temperature range up to ca. 1200 K by making use of a metallic 58Co positron source. In ultrafine grained Cu the thermal formation of lattice vacancies could be observed. In Pd84Zr16 an increase of the specific positron trapping rate of nanovoids and, in addition, detrapping of positrons from free volumes with a mean size slightly smaller than one missing atom in the grain boundaries contributes to a reversible increase of the positron lifetime of more than 60 ps with measuring temperature. In Fe91Zr9 similar linear high-temperature increases of the positron lifetime are observed in the nanocrystalline and the amorphous state. The question of thermal vacancy formation in grain boundaries is addressed taking into account the different types of interface structures of the present alloys.

  18. A novel ultrafine-grained Fe−22Mn−0.6C TWIP steel with superior strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Y.Z., E-mail: yztian@imr.ac.cn

    A fully recrystallized ultrafine-grained (UFG) Fe−22wt.%Mn−0.6wt.%C twinning-induced plasticity (TWIP) steel with mean grain size of 576 nm was fabricated by cold rolling and annealing process. Tensile test showed that this UFG steel possessed high yield strength of 785 MPa, and unprecedented uniform elongation of 48%. The Hall-Petch relationship was verified from the coarse-grained (CG) regime to the ultrafine-grained (UFG) regime. The microstructures at specified tensile strains were characterized by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The microstructures and strain hardening behavior of the UFG TWIP steel were compared with the CG counterpart. The strong strain hardening capabilitymore » of the UFG steel is supposed to be responsible for the high strength and good ductility. - Highlights: • A fully recrystallized Fe−22Mn−0.6C TWIP steel with mean grain size of 576 nm was fabricated. • The ultrafine-grained (UFG) steel exhibits strong strain-hardening capability, excellent strength and ductility. • The Hall-Petch relationship is fitted well from the CG regime to the UFG regime.« less

  19. Microstructure and properties of ultrafine grained structure of Cu-Zn-Si alloy fabricated by heavy cold rolling

    NASA Astrophysics Data System (ADS)

    Miura, H.; Kobayashi, T.; Kobayashi, M.

    2014-08-01

    Cu-18.2Zn-1.5Si-0.25Fe (mass%) alloy was heavily cold rolled. Ultrafine grained (UFGed) structure, containing a mixture of lamellar and mechanical twins, was easily and homogeneously formed. The average grain size was approximately 100 nm. The as-rolled sample showed quite high ultimate tensile strength (UTS) over 1 GPa. The UTS was higher than those obtained by multi directional forging. When the samples were annealed at relatively low temperatures between 553 K and 653 K, they showed slight hardening followed by large softening due to occurrence of static recrystallization (SRX). Annealing of UFGed structure at relatively low temperature of around 0.4 Tm caused extensive SRX that, in turn, induces ultrafine RXed grained structure. The grain size of the RXed sample was as fine as 200 nm. Although the annealing induced recovery of ductility while UTS gradually reduces, UTS over 1 GPa with ductility of 15 % were attained. The RXed grains mainly contained ultrafine annealing twins. Therefore, UFGed structure and superior mechanical properties could be achieved by a simple process of cold rolling, i.e., without severe plastic deformation.

  20. Interplay between grain structure and protein adsorption on functional response of osteoblasts: ultrafine-grained versus coarse-grained substrates.

    PubMed

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-01-01

    The rapid adsorption of proteins is the starting and primary biological response that occurs when a biomedical device is implanted in the physiological system. The biological response, however, depends on the surface characteristics of the device. Considering the significant interest in nano-/ultrafine surfaces and nanostructured coatings, we describe here, the interplay between grain structure and protein adsorption (bovine serum albumin: BSA) on osteoblasts functions by comparing nanograined/ultrafine-grained (NG/UFG) and coarse-grained (CG: grain size in the micrometer range) substrates by investigating cell-substrate interactions. The protein adsorption on NG/UFG surface was beneficial in favorably modulating biological functions including cell attachment, proliferation, and viability, whereas the effect was less pronounced on protein adsorbed CG surface. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on protein adsorbed NG/UFG surface. The functional response followed the sequence: NG/UFG(BSA) > NG/UFG > CG(BSA) > CG. The differences in the cellular response on bare and protein adsorbed NG/UFG and CG surfaces are attributed to cumulative contribution of grain structure and degree of hydrophilicity. The study underscores the potential advantages of protein adsorption on artificial biomedical devices to enhance the bioactivity and regulate biological functions. Copyright © 2012 Wiley Periodicals, Inc.

  1. Suppression of Twinning and Phase Transformation in an Ultrafine Grained 2 GPa Strong Metastable Austenitic Steel: Experiment and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yongfeng; Jia, Nan; Wang, Y. D.

    2015-07-17

    An ultrafine-grained 304 austenitic 18 wt.%Cr-8 wt.%Ni stainless steel with a grain size of ~270 nm was synthesized by accumulative rolling (67 % total reduction) and annealing (550 °C, 150s). Uniaxial tensile testing at room temperature reveals an extremely high yield strength of 1890 ± 50MPa and a tensile strength of 2050 ± 30MPa, while the elongation reaches 6 ± 1%. Experimental characterization on samples with different grain sizes between 270 nm and 35 μm indicates that both, deformation twinning and martensitic phase transformation are significantly retarded with increasing grain refinement. A crystal plasticity finite element model incorporating a constitutivemore » law reflecting the grain size-controlled dislocation slip and deformation twinning captures the micromechanical behavior of the steels with different grain sizes. Comparison of simulation and experiment shows that the deformation of ultrafine-grained 304 steels is dominated by the slip of partial dislocations, whereas for coarse-grained steels dislocation slip, twinning and martensite formation jointly contribute to the shape change.« less

  2. Development of Age-Hardening Technology for Ultrafine-Grained Al-Li-Cu Alloys Fabricated by High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Motoshima, Hiroaki; Hirosawa, Shoichi; Lee, Seungwon; Horita, Zenji; Matsuda, Kenji; Terada, Daisuke

    The age-hardening behavior and precipitation microstructures with high dislocation density and ultrafine grains have been studied for cold-rolled and severely deformed 2091 Al-Li-Cu alloy. The age-hardenability at 463K was reduced by high-pressure torsion (HPT) due to the accelerated formation of larger 8-AlLi precipitates at grain boundaries, in place of transgranular precipitation of refined δ'-Al3Li particles that are predominantly observable in the no-deformed and 10%-rolled specimens. When aged at 373K, however, it was successfully achieved for the HPT specimen to increase the hardness up to 290HV, the highest level of hardness among conventional wrought aluminum alloys. The corresponding TEM microstructures confirmed that refined δ' particles precipitate within ultrafine grains while keeping the grain size at 206nm. This result suggests that the combined processing of severe plastic deformation with age-hardening technique enables the fabrication of novel aluminum alloys concurrently strengthened by ultrafine-grained and precipitation hardenings.

  3. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    DOE PAGES

    Ott, R. T.; Geng, J.; Besser, M. F.; ...

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has beenmore » reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.« less

  4. Effects of grain size on the quasi-static mechanical properties of ultrafine-grained and nanocrystalline tantalum

    NASA Astrophysics Data System (ADS)

    Ligda, Jonathan Paul

    The increase in strength due to the Hall-Petch effect, reduced strain hardening capacity, a reduced ductility, and changes in deformation mechanisms are all effects of reducing grain size (d) into the ultrafine-grained (UFG, 100 < d < 1000 nm) and nanocrystalline (NC, d<100 nm) state. However, most of the studies on the mechanical behavior of UFG/NC metals have been on face-centered cubic (FCC) metals. Of the few reports on UFG/NC body-centered cubic (BCC) metals, the interest is related to their increase in strength and reduced strain rate sensitivity. This combination increases their propensity to deform via adiabatic shear bands (ASBs) at high strain rates, which is a desired response for materials being considered as a possible replacement for depleted uranium in kinetic energy penetrators. However, an ideal replacement material must also plastically deform in tension under quasi-static rates to survive initial launch conditions. This raises the question: if the material forms ASBs at dynamic rates, will it also form shear bands at quasi-static isothermal rates? As well as, is there a specific grain size for a material that will plastically deform in tension at quasi-static rates but form adiabatic shear bands at dynamic rates? Using high pressure torsion, a polycrystalline bulk tantalum disk was refined into the UFG/NC regime. Using microscale mechanical testing techniques, such as nanoindentation, microcompression, and microtension, it is possible to isolate locations with a homogeneous grain size within the disk. Pillars are compressed using a nanoindenter with a flat punch tip, while "dog-bone" specimens were pulled in tension using a custom built in-situ tension stage within a scanning electron microscope (SEM). The observed mechanical behavior is related to the microstructure by using transmission electron microscopy (TEM) on the as-processed material and tested specimens. Synchrotron X-ray based texture analysis was also conducted on the disk to

  5. The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti

    NASA Astrophysics Data System (ADS)

    Ren, Chai; Koopman, Mark; Fang, Z. Zak; Zhang, Huan

    2016-11-01

    Tungsten (W) is a brittle material at room temperature making it very difficult to fabricate. Although the lack of ductility remains a difficult challenge, nano-sized and ultrafine-grained (UFG) structures offer the potential to overcome tungsten's room-temperature brittleness. One way to manufacture UFG W is to compact and sinter nano-sized W powder. It is challenging, however, to control grain growth during sintering. As one method to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this study. Addition of 1% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. It was found that sintering in Ar yielded a finer grain size than sintering in H2 at similar densities. The active diffusion mechanisms during sintering were different for W-1% Ti nano powders sintered in Ar and H2.

  6. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties

    PubMed Central

    Zhao, Lijia; Park, Nokeun; Tian, Yanzhong; Shibata, Akinobu; Tsuji, Nobuhiro

    2016-01-01

    Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application. PMID:27966603

  7. Fabrication of MEMS components using ultrafine-grained aluminium alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Xiao Guang; Gao, Nong; Moktadir, Zakaria; Kraft, Michael; Starink, Marco J.

    2010-04-01

    A novel process for the fabrication of a microelectromechanical systems (MEMS) metallic component with features smaller than 10 µm and high thermal conductivity was investigated. This may be applied to new or improved microscale components, such as (micro-) heat exchangers. In the first stage of processing, equal channel angular pressing (ECAP) was employed to refine the grain size of commercial purity aluminium (Al-1050) to the ultrafine-grained (UFG) material. Embossing was conducted using a micro silicon mould fabricated by deep reactive ion etching (DRIE). Both cold embossing and hot embossing were performed on the coarse-grained and UFG Al-1050. Cold embossing on UFG Al-1050 led to a partially transferred pattern from the micro silicon mould and high failure rate of the mould. Hot embossing on UFG Al-1050 provided a smooth embossed surface with a fully transferred pattern and a low failure rate of the mould, while hot embossing on the coarse-grained Al-1050 resulted in a rougher surface with shear bands.

  8. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk; Nikonenko, Elena, E-mail: vilatomsk@mail.ru

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a differentmore » effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.« less

  9. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    PubMed Central

    Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František

    2016-01-01

    In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514

  10. Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen

    2017-10-01

    Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.

  11. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys.

    PubMed

    Yu, Hailiang; Tieu, A Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-04-08

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.

  12. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-04-01

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.

  13. Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2017-01-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.

  14. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    PubMed Central

    Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-01-01

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation. PMID:25851228

  15. Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay

    2014-05-01

    A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical

  16. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    PubMed Central

    El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.

    2014-01-01

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578

  17. Size and modal analyses of fines and ultrafines from some Apollo 17 samples

    NASA Technical Reports Server (NTRS)

    Greene, G. M.; King, D. T., Jr.; Banholzer, G. S., Jr.; King, E. A.

    1975-01-01

    Scanning electron and optical microscopy techniques have been used to determine the grain-size frequency distributions and morphology-based modal analyses of fine and ultrafine fractions of some Apollo 17 regolith samples. There are significant and large differences between the grain-size frequency distributions of the less than 10-micron size fraction of Apollo 17 samples, but there are no clear relations to the local geologic setting from which individual samples have been collected. This may be due to effective lateral mixing of regolith particles in this size range by micrometeoroid impacts. None of the properties of the frequency distributions support the idea of selective transport of any fine grain-size fraction, as has been proposed by other workers. All of the particle types found in the coarser size fractions also occur in the less than 10-micron particles. In the size range from 105 to 10 microns there is a strong tendency for the percentage of regularly shaped glass to increase as the graphic mean grain size of the less than 1-mm size fraction decreases, both probably being controlled by exposure age.

  18. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  19. Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Mahato, B.; Sharma, Sailaja; Sahu, J. K.

    2009-12-01

    As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85- μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.

  20. Method for producing ultrafine-grained materials using repetitive corrugation and straightening

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Jiang, Honggang; Huang, Jianyu

    2001-01-01

    A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece is disclosed. The workpiece is subjected to forces that corrugate and then straighten the workpiece. These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.

  1. Influence of Grain Size Distribution on the Mechanical Behavior of Light Alloys in Wide Range of Strain Rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2015-06-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.

  2. Unstable plastic deformation of ultrafine-grained copper at 0.5 K

    NASA Astrophysics Data System (ADS)

    Isaev, N. V.; Grigorova, T. V.; Shumilin, S. E.; Polishchuk, S. S.; Davydenko, O. A.

    2017-12-01

    We investigate the relation between the strain-hardening rate and flow instability of polycrystalline Cu-OF deformed by tension at a constant rate in a liquid 3He atmosphere. The microstructure of the ultrafine-grained crystal, obtained by the equal-channel angular hydro-extrusion method, was varied by annealing at recovery and recrystallization temperatures and was monitored by x-ray diffraction. It is shown that that the flow instability, manifesting itself as macroscopic stress serrations on the tension curve, appears at a threshold tension sufficient for activation of a dynamic recovery that leads to a decrease of the strain-hardening coefficient. We discuss the effect of grain size and the initial dislocation density on the evolution of the dislocation structure that determines the scale and the statistical properties of the flow instability in the investigated crystals at low temperature.

  3. An Investigation of Physico-Mechanical Properties of Ultrafine-Grained Magnesium Alloys Subjected to Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Kozulyn, A. A.; Skripnyak, V. A.; Krasnoveikin, V. A.; Skripnyak, V. V.; Karavatskii, A. K.

    2015-01-01

    The results of investigations of physico-mechanical properties of specimens made from the structural Mg-based alloy (Russian grade Ma2-1) in its coarse-grained and ultrafine-grained states after SPD processing are presented. To form the ultrafine-grained structure, use was made of the method of orthogonal equal-channel angular pressing. After four passes through the die, a simultaneous increase was achieved in microhardness, yield strength, ultimate tensile strength and elongation to failure under conditions of uniaxial tensile loading.

  4. High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium.

    PubMed

    Xue, Sichuang; Fan, Zhe; Lawal, Olawale B; Thevamaran, Ramathasan; Li, Qiang; Liu, Yue; Yu, K Y; Wang, Jian; Thomas, Edwin L; Wang, Haiyan; Zhang, Xinghang

    2017-11-21

    Aluminium typically deforms via full dislocations due to its high stacking fault energy. Twinning in aluminium, although difficult, may occur at low temperature and high strain rate. However, the 9R phase rarely occurs in aluminium simply because of its giant stacking fault energy. Here, by using a laser-induced projectile impact testing technique, we discover a deformation-induced 9R phase with tens of nm in width in ultrafine-grained aluminium with an average grain size of 140 nm, as confirmed by extensive post-impact microscopy analyses. The stability of the 9R phase is related to the existence of sessile Frank loops. Molecular dynamics simulations reveal the formation mechanisms of the 9R phase in aluminium. This study sheds lights on a deformation mechanism in metals with high stacking fault energies.

  5. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less

  6. Microalloying Ultrafine Grained Al Alloys with Enhanced Ductility

    PubMed Central

    Jiang, L.; Li, J. K.; Cheng, P. M.; Liu, G.; Wang, R. H.; Chen, B. A.; Zhang, J. Y.; Sun, J.; Yang, M. X.; Yang, G.

    2014-01-01

    Bulk ultrafine grained (UFG)/nanocrystal metals possess exceptional strength but normally poor ductility and thermal stability, which hinder their practical applications especially in high-temperature environments. Through microalloying strategy that enables the control of grains and precipitations in nanostructured regime, here we design and successfully produce a highly microstructure-stable UFG Al-Cu-Sc alloy with ~275% increment in ductility and simultaneously ~50% enhancement in yield strength compared with its Sc-free counterpart. Although the precipitations in UFG alloys are usually preferentially occurred at grain boundaries even at room temperature, minor Sc addition into the UFG Al-Cu alloys is found to effectively stabilize the as-processed microstructure, strongly suppress the θ-Al2Cu phase precipitation at grain boundary, and remarkably promote the θ′-Al2Cu nanoparticles dispersed in the grain interior in artificial aging. A similar microalloying strategy is expected to be equally effective for other UFG heat-treatable alloys. PMID:24398915

  7. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Lu, L.; Lu, K.

    2007-10-01

    We have investigated electrical resistivities of high-purity ultrafine-grained Cu containing different concentrations of nanoscale growth twins, but having identical grain size. The samples were synthesized by pulsed electrodeposition, wherein the density of twins was varied systematically by adjusting the processing parameters. The electrical resistivity of the Cu specimen with a twin spacing of 15nm at room temperature (RT) is 1.75μΩcm (the conductivity is about 97% IACS), which is comparable to that of coarse-grained (CG) pure Cu specimen. A reduction in twin density for the same grain size (with twin lamellar spacings of 35 and 90nm, respectively) results in an increment in electrical resistivity from 1.75to2.12μΩcm. However, the temperature coefficient of resistivity at RT for these Cu specimens is insensitive to the twin spacing and shows a consistent value of ˜3.78×10-3/K, which is slightly smaller than that of CG Cu (3.98×10-3/K). The increased electrical resistivities of the Cu samples were ascribed dominantly to the intrinsic grain boundary (GB) scattering, while the GB defects and GB energy would decrease with increasing twin density. Transmission electron microscope observations revealed the GB configuration difference from the Cu samples with various twin densities. Plastic deformation would induce an apparent increase in the resistivity. The higher of the twin density, the higher increment of RT resistivity was detected in the Cu specimens subjected to 40% rolling strain. Both the deviated twin boundaries and strained GBs may give rise to an increase in the resistivity.

  8. Development of a High-Strength Ultrafine-Grained Ferritic Steel Nanocomposite

    NASA Astrophysics Data System (ADS)

    Rahmanifard, Roohollah; Farhangi, Hasan; Novinrooz, Abdul Javad; Moniri, Samira

    2013-02-01

    This article describes the microstructural and mechanical properties of 12YWT oxide-dispersion-strengthened (ODS)-ferritic steel nanocomposite. According to the annealing results obtained from X-ray diffraction line profile analysis on mechanically alloyed powders milled for 80 hours, the hot extrusion at 1123 K (850 °C) resulted in a nearly equiaxed ultrafine structure with an ultimate tensile strength of 1470 MPa, yield strength of 1390 MPa, and total elongation of 13 pct at room temperature comparable with high-strength 14YWT ODS steel. Maximum total elongation was found at 973 K (600 °C) where fractography of the tensile specimen showed a fully ductile dimple feature compared with the splitting cracks and very fine dimpled structure observed at room temperature. The presence of very small particles on the wall of dimples at 1073 K (800 °C) with nearly chemical composition of the matrix alloy was attributed to the activation of the boundaries decohesion mechanism as a result of diffusion of solute atoms. The results of Charpy impact test also indicated significant improvement of transition temperature with respect to predecessor 12YWT because of the decreased grain size and more homogeneity of grain size distribution. Hence, this alloy represented a good compromise between the strength and Charpy impact properties.

  9. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tammy J. Harrell; Troy D. Topping; Haiming Wen

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grainedmore » material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.« less

  10. Size resolved ultrafine particles emission model--a continues size distribution approach.

    PubMed

    Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick

    2011-08-15

    A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  12. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-04-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  13. Performance of surface on ultrafine grained Ti-0.2Pd in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Lai; Zhou, Qing; Yang, Kai; Zou, Cheng-Hong; Wang, Lei

    2018-03-01

    Ti-0.2 wt% Pd (Ti-0.2Pd) which has high crevice corrosion resistance is highlighted for implant applications. In this work, Ti-0.2Pd alloy is subjected to equal channel angular pressing (ECAP) for grain refinement. The effect of the microstructure on the surface performance of Ti-0.2Pd in a simulated body fluid (SBF) adding bovine serum albumin is investigated. Heat-treated specimens including furnace cooled (FC) and water quenched (WQ) specimens are also prepared for comparison. The corrosion resistance is evaluated by the tests of potentiodynamic polarization and the measurement of electrochemical impedance spectroscopy (EIS). The composition and morphology of the surface after exposing to SBF 60 days were examined by X-ray photoelectronic spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results show an ultrafine grained microstructure with average grain size of 3.6 μm is obtained after ECAP. The ultrafine grained Ti-0.2Pd has higher corrosion resistance than AR(as-received), WQ and FC specimens. The quantitative analysis of the surface shows larger numbers of precipitations formed on ECAPed Ti-0.2Pd than those formed on heat-treated. The precipitation contains more oxygen, calcium and phosphorus on ECAPed specimen than those on other specimens. The Ca:P ratio is ranged from 1:0.7 to 1:4.4, no dependent on the specimen type. A larger Warburg resistance is obtained on WQ specimen indicating a denser layer formation on WQ specimen. The precipitation formed on WQ specimens is the least among three kinds of specimens. Palladium is not found on the surfaces after exposure to SBF.

  14. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    PubMed

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  15. Computational Investigation of Effects of Grain Size on Ballistic Performance of Copper

    NASA Astrophysics Data System (ADS)

    He, Ge; Dou, Yangqing; Guo, Xiang; Liu, Yucheng

    2018-01-01

    Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 µm), regular copper (grain size ≈ 30 µm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance than the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive model is used to predict the plastic deformation of Cu; the JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material's failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.

  16. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy.

    PubMed

    Choi, H Y; Kim, W J

    2015-11-01

    The combination of solid solution heat treatments and severe plastic deformation by high-ratio differential speed rolling (HRDSR) resulted in the formation of an ultrafine-grained microstructure with high thermal stability in a Mg-5Zn-0.5Zr (ZK60) alloy. When the precipitate particle distribution was uniform in the matrix, the internal stresses and dislocation density could be effectively removed without significant grain growth during the annealing treatment (after HRDSR), leading to enhancement of corrosion resistance. When the particle distribution was non-uniform, rapid grain growth occurred in local areas where the particle density was low during annealing, leading to development of a bimodal grain size distribution. The bimodal grain size distribution accelerated corrosion by forming a galvanic corrosion couple between the fine-grained and coarse-grained regions. The HRDSR-processed ZK60 alloy with high thermal stability exhibited high corrosion resistance, high strength and high ductility, and excellent superplasticity, which allow the fabrication of biodegradable magnesium devices with complicated designs that have a high mechanical integrity throughout the service life in the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  18. Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid

    2016-01-01

    In this study, passivation behavior of ultrafine-grained (UFG) pure copper fabricated by ARB process in 0.01 M borax solution has been investigated. Before any electrochemical measurements, evaluation of microstructure was obtained by transmission electron microscopy (TEM). TEM observations revealed that with increasing the number of ARB passes, the grain size of specimens decrease. Also, TEM images showed that UFGs with average size of below 100 nm appeared after 7 passes of ARB. To investigate the passivation behavior of the specimens, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis was carried out. For this purpose, three potentials within the passive region were chosen for potentiostatic passive film growth. EIS results showed that both passive film and charge-transfer resistance increases with increasing the number of ARB passes. Moreover, Mott-Schottky analysis revealed that with increasing the number of ARB passes, the acceptor density of the passive films decreased. In conclusion, increasing the number of ARB passes offers better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  19. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Special Features of the Deformation Behavior of an Ultrafine-Grained Aluminum Alloy of the Al-Mg-Li System at Room Temperature

    NASA Astrophysics Data System (ADS)

    Naydenkin, E. V.; Mishin, I. P.; Ivanov, K. V.

    2015-04-01

    The special features of the deformation behavior of an ultrafine-grained aluminum alloy produced by severe plastic deformation are investigated. Unlike ultrafine-grained pure aluminum, the second-phase particles precipitated in the bulk and at the grain boundaries of the alloy are shown to hinder the development of grain boundary sliding and plastic strain localization. This increases the length of the strain hardening stage and uniformity of elongation of a heterogeneous aluminum alloy specimen as compared to pure aluminum.

  1. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment.

    PubMed

    Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin

    2015-11-04

    Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.

  2. A Two-Step Approach for Producing an Ultrafine-Grain Structure in Cu-30Zn Brass (Postprint)

    DTIC Science & Technology

    2015-08-13

    crystallization anneal at 400 °C (0.55Tm, where Tm is the melting point ) for times ranging from 1 min to 10 hours, followed by water quenching; an additional...200 words) A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was developed to produce an ultrafine-grain...b s t r a c t A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was devel- oped to produce an ultrafine

  3. Origin of tension-compression asymmetry in ultrafine-grained fcc metals

    NASA Astrophysics Data System (ADS)

    Tsuru, T.

    2017-08-01

    A mechanism of anomalous tension-compression (T-C) asymmetry in ultrafine-grained (UFG) metals is proposed using large-scale atomistic simulations and dislocation theory. Unlike coarse-grained metals, UFG Al exhibits remarkable T-C asymmetry of the yield stress. The atomistic simulations reveal that the yield event is not related to intragranular dislocations but caused by dislocation nucleation from the grain boundaries (GBs). The dislocation core structure associated with the stacking fault energy in Al is strongly affected by the external stress compared with Cu; specifically, high tensile stress stabilizes the dissociation into partial dislocations. These dislocations are more likely to be nucleated from GBs and form deformation twins from an energetic viewpoint. The mechanism, which is different from well-known mechanisms for nanocrystalline and amorphous metals, is unique to high-strength UFG metals and can explain the difference in T-C asymmetry between UFG Cu and Al.

  4. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.

    PubMed

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-06-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation.

  5. Mechanical Behavior of Nanostructured and Ultrafine Grained Materials under Shock Wave Loadings. Experimental Data and Results of Computer Simulation.

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2011-06-01

    Features of mechanical behavior of nanostructured (NS) and ultrafine grained (UFG) metal and ceramic materials under quasistatic and shock wave loadings are discussed in this report. Multilevel models developed within the approach of computational mechanics of materials were used for simulation mechanical behavior of UFG and NS metals and ceramics. Comparisons of simulation results with experimental data are presented. Models of mechanical behavior of nanostructured metal alloys takes into account a several structural factors influencing on the mechanical behavior of materials (type of a crystal lattice, density of dislocations, a size of dislocation substructures, concentration and size of phase precipitation, and distribution of grains sizes). Results show the strain rate sensitivity of the yield stress of UFG and polycrystalline alloys is various in a range from 103 up to 106 1/s. But the difference of the Hugoniot elastic limits of a UFG and coarse-grained alloys may be not considerable. The spall strength, the yield stress of UFG and NS alloys are depend not only on grains size, but a number of factors such as a distribution of grains sizes, a concentration and sizes of voids and cracks, a concentration and sizes of phase precipitation. Some titanium alloys with grain sizes from 300 to 500 nm have the quasi-static yield strength and the tensile strength twice higher than that of coarse grained counterparts. But the spall strength of the UFG titanium alloys is only 10 percents above than that of coarse grained alloys. At the same time it was found the spall strength of the bulk UFG aluminium and magnesium alloys with precipitation strengthening is essentially higher in comparison of coarse-grained counterparts. The considerable decreasing of the strain before failure of UFG alloys was predicted at high strain rates. The Hugoniot elastic limits of oxide nanoceramics depend not only on the porosity, but also on sizes and volume distribution of voids.

  6. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

    PubMed

    Brown, D M; Wilson, M R; MacNee, W; Stone, V; Donaldson, K

    2001-09-15

    Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest

  7. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  8. A comprehensive study on the damage tolerance of ultrafine-grained copper

    PubMed Central

    Hohenwarter, A.; Pippan, R.

    2012-01-01

    In this study the fracture behavior of ultrafine-grained copper was assessed by means of elasto-plastic fracture mechanics. For the synthesis of the material high pressure torsion was used. The fracture toughness was quantitatively measured by JIC as a global measure by recording the crack growth resistance curve. Additionally, the initiation toughness in terms of the crack opening displacement (CODi) was evaluated as a local fracture parameter. The results presented here exhibit a low fracture initiation toughness but simultaneously a remarkably high fracture toughness in terms of JIC. The origin of the large difference between these two parameters, peculiarities of the fracture surface and the fracture mechanical performance compared to coarse grained copper will be discussed. PMID:23471016

  9. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel

    PubMed Central

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-01-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493

  10. Ultrafine-grained commercially pure titanium and microstructure response to hydroxyapatite coating methods

    NASA Astrophysics Data System (ADS)

    Calvert, Kayla L.

    Commercially pure titanium (cp-Ti) is an ideal biomaterial as it does not evoke an inflammatory foreign body response in the body. However, the low strength of cp-Ti prevents the use in most orthopaedic load bearing applications. Therefore, many metal orthopaedic implants are commonly made of higher strength metal alloys that are less biocompatible. Nanostructured materials exhibit superior mechanical properties compared to their conventional grain sized counterparts. Severe plastic deformation (SPD) of metals has been shown to produce nanostructured materials. SPD by machining is a single-step deformation route that refines the grain microstructure, to develop an ultrafine grained (UFG) microstructure. UFG cp-Ti strips were developed with induced shear strains of up to 4.0 using a machining-based process. Both Vickers microhardness evaluation and microstructural analysis were used to characterize the as-received (annealed) and machined states. For induced shear strains between 1.9 and 4.0 in grade 2 cp-Ti the hardness was increased from 188 +/- 7 kg/mm2 in the as-received state to between 244 +/- 6 and 264 +/- 12 kg/mm 2 in the as-machined state, corresponding to an increase in hardness between 31 and 41%. The microstructural analysis revealed a grain size reduction from 34 +/- 11 mum in the as-received state to ˜ 100 nm for machined grade 2-Ti. A complete annealing study suggested that recovery/recrystallization occurs between 300 and 400°C, with a significant hardness drop between 400 and 600°C, while grain growth is continuous, starting at the lowest annealing temperature of 300°C. Hydroxyapatite (HA) is commonly applied to orthopaedic devices to promote bone growth. Machined Ti strips were coated with HA using conventional plasma spray as well as two alternative low-temperature application routes (sol-gel with calcination and anodization with hydrothermal treatment) to evaluate the thermal influence on the UFG-Ti substrate. Plasma spray produced a thick

  11. Demonstration of Shear Localization in Ultrafine Grained Tungsten Alloys via Powder Metallurgy Processing Route

    DTIC Science & Technology

    2012-09-01

    of a di-tungsten boride (W2B) phase was not detected in the nW-B sample, but the low concentration of boron may have made this phase undetectable by...Split Hopkinson Bar UFG ultrafine grained W2B di-tungsten boride XRD x-ray diffraction NO. OF NO. OF COPIES ORGANIZATION COPIES

  12. Possible Gems and Ultra-Fine Grained Polyphase Units in Comet Wild 2.

    NASA Technical Reports Server (NTRS)

    Gainsforth, Z.; Butterworth, A. L.; Jilly-Rehak, C. E.; Westphal, A. J.; Brownlee, D. E.; Joswiak, D.; Ogliore, R. C.; Zolensky, M. E.; Bechtel, H. A.; Ebel, D. S.; hide

    2016-01-01

    GEMS and ultrafine grained polyphase units (UFG-PU) in anhydrous IDPs are probably some of the most primitive materials in the solar system. UFG-PUs contain nanocrystalline silicates, oxides, metals and sulfides. GEMS are rounded approximately 100 nm across amorphous silicates containing embedded iron-nickel metal grains and sulfides. GEMS are one of the most abundant constituents in some anhydrous CPIDPs, often accounting for half the material or more. When NASA's Stardust mission returned with samples from comet Wild 2 in 2006, it was thought that UFG-PUs and GEMS would be among the most abundant materials found. However, possibly because of heating during the capture process in aerogel, neither GEMS nor UFG-PUs have been clearly found.

  13. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    PubMed

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  14. Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effects on the phase transformations

    NASA Astrophysics Data System (ADS)

    Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.

    2017-05-01

    Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.

  15. Ultrafine-Grained Pure Ti Processed by New SPD Scheme Combining Drawing with Shear

    NASA Astrophysics Data System (ADS)

    Raab, A. G.; Bobruk, E. V.; Raab, G. I.

    2018-05-01

    The paper displays the results of the studies and analysis of a promising severe plastic deformation scheme that implements the conditions of a non-monotonous impact during shear drawing of long-length bulk metal materials. The paper describes the efficiency of the proposed severe plastic deformation technique to form a gradient ultrafine-grained state in rod-shaped billets on the example of commercially pure Ti and its further development for future industrial applications.

  16. Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling

    NASA Astrophysics Data System (ADS)

    Inoue, Tadanobu; Yin, Fuxing; Kimura, Yuuji; Tsuzaki, Kaneaki; Ochiai, Shojiro

    2010-02-01

    Bulk ultrafine-grained (UFG) low-carbon steel bars were produced by caliber rolling, and the impact and tensile properties were investigated. Initial samples with two different microstructures, ferrite-pearlite and martensite (or bainite), were prepared and then caliber rolling was conducted at 500 °C. The microstructures in the rolled bars consisted of an elongated UFG structure with a strong α-fiber texture. The rolled bar consisting of spheroidal cementite particles that distributed uniformly in the elongated ferrite matrix of transverse grain sizes 0.8 to 1.0 μm exhibited the best strength-ductility balance and impact properties. Although the yield strength in the rolled bar increased 2.4 times by grain refinement, the upper-shelf energy did not change, and its value was maintained from 100 °C to -40 °C. In the rolled bars, cracks during an impact test branched parallel to the longitudinal direction of the test samples as temperatures decreased. Delamination caused by such crack branching appeared, remarkably, near the ductile-to-brittle transition temperature (DBTT). The effect of delamination on the impact properties was associated with crack propagation on the basis of the microstructural features in the rolled bars. In conclusion, the strength-toughness balance is improved by refining crystal grains and controlling their shape and orientation; in addition, delamination effectively enhances the low-temperature toughness.

  17. Size-resolved ultrafine particle composition analysis 2. Houston

    NASA Astrophysics Data System (ADS)

    Phares, Denis J.; Rhoads, Kevin P.; Johnston, Murray V.; Wexler, Anthony S.

    2003-04-01

    Between 23 August and 18 September 2000, a single-ultrafine-particle mass spectrometer (RSMS-II) was deployed just east of Houston as part of a sampling intensive during the Houston Supersite Experiment. The sampling site was located just north of the major industrial emission sources. RSMS-II, which simultaneously measures the aerodynamic size and composition of individual ultrafine aerosols, is well suited to resolving some of the chemistry associated with secondary particle formation. Roughly 27,000 aerosol mass spectra were acquired during the intensive period. These were classified and labeled based on the spectral peak patterns using the neural networks algorithm, ART-2a. The frequency of occurrence of each particle class was correlated with time and wind direction. Some classes were present continuously, while others appeared intermittently or for very short time durations. The most frequently detected species at the site were potassium and silicon, with lesser amounts of organics and heavier metals.

  18. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir; Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir; Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. Amore » new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper

  19. Development of ultrafine-grained microstructure in Al-Cu-Mg alloy through equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Sai Anuhya, Danam; Gupta, Ashutosh; Nayan, Niraj; Narayana Murty, S. V. S.; Manna, R.; Sastry, G. V. S.

    2014-08-01

    Al-Cu-Mg alloys are extensively used for riveting applications in aerospace industries due to their relatively high shear strength coupled with high plasticity. The significant advantage of using V65 aluminum alloy ((Al-4Cu-0.2Mg) for rivet application also stems from its significantly slower natural aging kinetics, which gives operational flexibility to carryout riveting operation even after 4 days of solution heat treatment, in contrast to its equivalent alloy AA2024.Rivets are usually made by cold heading of wire rods. In order to form a defect free rivet head, grain size control in wire rods is essential at each and every stage of processing right from casting onwards upto the final wire drawing stage. Wire drawing is carried out at room temperature to reduce diameter as well as impart good surface finish. In the present study, different microstructures in V65 alloy bars were produced by rolling at different temperatures (room temperature to 523K) and subsequently deformed by equal channel angular pressing (ECAP) at 423K upto an equivalent strain of 7. ECAP was carried out to study the effect of initial microstructure on grain refinement and degree of deformation on the evolution of ultrafine grain structure. The refinement of V65 alloy by ECAP is significantly influenced by Initial microstructure but amount of deformation strongly affects the evolution processes as revealed by optical microscopy and transmission electron microscopy.

  20. Sintering mantle mineral aggregates with submicron grains: examples of olivine and clinopyroxene

    NASA Astrophysics Data System (ADS)

    Tsubokawa, Y.; Ishikawa, M.

    2017-12-01

    Physical property of the major mantle minerals play an important role in the dynamic behavior of the Earth's mantle. Recently, it has been found that nano- to sub-micron scale frictional processes might control faulting processes and earthquake instability, and ultrafine-grained mineral aggregates thus have attracted the growing interest. Here we investigated a method for preparing polycrystalline clinoyproxene and polycrystalline olivine with grain size of sub-micron scale from natural crystals, two main constituents of the upper mantle. Nano-sized powders of both minerals are sintered under argon flow at temperatures ranging from 1130-1350 °C for 0.5-20 h. After sintering at 1180 °C and 1300 °C, we successfully fabricated polycrystalline clinopyroxene and polycrystalline olivine with grain size of < 500 nm, respectively. Our experiments demonstrate future measurements of ultrafine-grained mineral aggregates on its physical properties of Earth's mantle.

  1. Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    PubMed

    Ren, Fuzeng; Zhu, Weiwei; Chu, Kangjie

    2016-07-01

    Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fine grained (UFG) structure of ε-phase with average grain size of 600nm in length and 150nm in thickness. The hardness and modulus were determined to be 8.87±0.56GPa and 198.27±7.02GPa, respectively. The coefficient of friction upon dry sliding against alumina is pretty close to that of the forged Co-29Cr-6Mo alloy. The initial ε-phase and UFG microstructure contribute to reduce the depth of severe plastic deformation region during wear and enable the alloy with excellent wear resistance. The corrosion potential of such UFG Co-Cr-Mo alloy has more positive corrosion potential and much lower corrosion current density than those of ASTM alloy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Size-resolved ultrafine particle composition analysis 1. Atlanta

    NASA Astrophysics Data System (ADS)

    Rhoads, K. P.; Phares, D. J.; Wexler, A. S.; Johnston, M. V.

    2003-04-01

    During August 1999 as part of the Southern Oxidants Study Supersite Experiment, our group collected size-resolved measurements of the chemical composition of single ambient aerosol particles with a unique real-time laser desorption/ionization mass spectrometry technique. The rapid single-particle mass spectrometry instrument is capable of analyzing "ultrafine" particles with aerodynamic diameters ranging from 0.01 to 1.5 μm. Under the heaviest loading observed in Atlanta, particles were analyzed at a rate of roughly one per second in sizes ranging from 0.1 to 0.2 μm. Nearly 16,000 individual spectra were recorded over the course of the month during both daytime and nighttime sampling periods. Evaluation of the data indicates that the composition of the ultrafine (less than 100 nm) particles is dominated by carbon-containing compounds. Larger particles show varied compositions but typically appeared to have organic carbon characteristics mixed with an inorganic component (e.g., crustal materials, metals, etc.). During the experiment, 70 composition classes were identified. In this paper we report the average spectra and correlations with various meteorological parameters for all major compound classes and a number of minor ones. The major composition classes are identified from the primary peaks in their spectra as organic carbon (about 74% of the particles), potassium (8%), iron (3%), calcium (2%), nitrate (2%), elemental carbon (1.5%), and sodium (1%). Many of these compound classes appeared in repeatable size ranges and quadrants of the wind rose, indicating emission from specific sources.

  3. Effect of Initial Microstructure on Impact Toughness of 1200 MPa-Class High Strength Steel with Ultrafine Elongated Grain Structure

    NASA Astrophysics Data System (ADS)

    Jafari, Meysam; Garrison, Warren M.; Tsuzaki, Kaneaki

    2014-02-01

    A medium-carbon low-alloy steel was prepared with initial structures of either martensite or bainite. For both initial structures, warm caliber-rolling was conducted at 773 K (500 °C) to obtain ultrafine elongated grain (UFEG) structures with strong <110>//rolling direction (RD) fiber deformation textures. The UFEG structures consisted of spheroidal cementite particles distributed uniformly in a ferrite matrix of a transverse grain size of about 331 and 311 nm in samples with initial martensite and bainite structures, respectively. For both initial structures, the UFEG materials had similar tensile properties, upper shelf energy (145 J), and ductile-to-brittle transition temperatures 98 K (500 °C). Obtaining the martensitic structure requires more rapid cooling than is needed to obtain the bainitic structure and this more rapid cooling promote cracking. As the UFEG structures obtained from initial martensitic and bainitic structures have almost identical properties, but obtaining the bainitic structure does not require a rapid cooling which promotes cracking suggests the use of a bainitic structure in obtaining UFEG structures should be examined further.

  4. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding.

    PubMed

    Kwan, Charles C F; Wang, Zhirui

    2013-08-13

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability.

  5. Spall Fracture Patterns for the Heterophase Cu-Al-Ni Alloy in Ultrafine- and Coarse-Grained States Exposed to a Nanosecond Relativistic High-Current Electron Beam

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Markov, A. B.; Mayer, A. E.; Bakach, G. P.; Tabachenko, A. N.; Kashin, O. A.; Pochivalova, G. P.; Skosyrskii, A. B.; Kitsanov, S. A.; Zhorovkov, M. F.; Yakovlev, E. V.

    2013-05-01

    A comparative study of spall fracture patterns for the heterophase Cu - 8.45% Al - 5.06% Ni alloy (аt.%) in ultrafine- and coarse-grained states under shock-wave loading using the "SINUS-7" electron accelerator is carried out. For electron energy of 1.4 MeV, pulse duration of 50 ns, and power density of 1.6·1010 W/cm2, the shock wave amplitude was 8 GPa and the strain rate was ~2·105 s-1. It is established that the thickness of the spalled layer increased for both grained structures, and the degree of plastic strain decreased with increasing target thickness. Based on experimental data obtained and results of theoretical calculations, it is demonstrated that the spall strength of ultrafine- and coarse-grained structures is ~3 GPa. The data on the grained structure at different distances from the spall surface and spall fraction patterns and mechanism are presented.

  6. High-flux plasma exposure of ultra-fine grain tungsten

    DOE PAGES

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; ...

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 10 22 m -2 s -1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of

  7. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding

    PubMed Central

    Kwan, Charles C.F.; Wang, Zhirui

    2013-01-01

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability. PMID:28811446

  8. Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celada-Casero, C., E-mail: c.celada@cenim.csic.es

    The primary objective of this work is to obtain fundamental insights on phase transformations, with focus on the reaustenitization process (α′→γ transformation), of a cold-rolled (CR) semi-austenitic metastable stainless steel upon different isochronal conditions (0.1, 1, 10 and 100 °C/s). For this purpose, an exhaustive microstructural characterization has been performed by using complementary experimental such as scanning and transmission electron microscopy (SEM and TEM), electron backscattered diffraction (EBSD), electron probe microanalysis (EPMA), micro-hardness Vickers and magnetization measurements. It has been detected that all microstructural changes shift to higher temperatures as the heating rate increases. The reaustenitization occurs in two-steps formore » all heating rates, which is attributed to the chemical banding present in the CR state. The α′→γ transformation is controlled by the migration of substitutional alloying elements across the austenite/martensite (γ/α′) interface, which finally leads to ultrafine-grained reaustenitized microstructures (440–280 nm). The morphology of the martensite phase in the CR state has been found to be the responsible for such a grain refinement, along with the presence of χ-phase and nanometric Ni{sub 3}(Ti,Al) precipitates that pin the austenite grain growth, especially upon slowly heating at 0.1 °C/s. - Highlights: •Ultrafine-grained austenite structures are obtained isochronally at 0.1–100 °C/s •The α′→γ transformation occurs in two steps due to the initial chemical banding •A diffusional mechanism governs the α′→γ transformation for all heating rates •The dislocation-cell-type of martensite promotes a diffusional mechanism •Precipitates located at α′/γ interfaces hinder the austenite growth.« less

  9. Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lipinska, Marta; Chrominski, Witold; Olejnik, Lech; Golinski, Jacek; Rosochowski, Andrzej; Lewandowska, Malgorzata

    2017-10-01

    In this study, an Al-Mg-Si alloy was processed using via incremental equal channel angular pressing (I-ECAP) in order to obtain homogenous, ultrafine-grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90 deg rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP, and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 to 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high-angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53 to 57 pct depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminum with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength was more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications.

  10. Microstructure, microtexture and precipitation in the ultrafine-grained surface layer of an Al-Zn-Mg-Cu alloy processed by sliding friction treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanxia

    2017-01-15

    Precipitate redistribution and texture evolution are usually two concurrent aspects accompanying grain refinement induced by various surface treatment. However, the detailed precipitate redistribution characteristics and process, as well as crystallographic texture in the surface refined grain layer, are still far from full understanding. In this study, we focused on the microstructural and crystallographic features of the sliding friction treatment (SFT) induced surface deformation layer in a 7050 aluminum alloy. With the combination of transmission electron microscopy (TEM) and high angle angular dark field scanning TEM (HAADF-STEM) observations, a surface ultrafine grain (UFG) layer composed of both equiaxed and lamellar ultrafinemore » grains and decorated by high density of coarse grain boundary precipitates (GBPs) were revealed. Further precession electron diffraction (PED) assisted orientation mapping unraveled that high angle grain boundaries rather than low angle grain boundaries are the most favorable nucleation sites for GBPs. The prominent precipitate redistribution can be divided into three successive and interrelated stages, i.e. the mechanically induced precipitate dissolution, solute diffusion and reprecipitation. The quantitative prediction based on pipe diffusion along dislocations and grain boundary diffusion proved the distribution feasibility of GBPs around UFGs. Based on PED and electron backscatter diffraction (EBSD) analyses, the crystallographic texture of the surface UFG layer was identified as a shear texture composed of major rotated cube texture (001) 〈110〉 and minor (111) 〈112〉, while that of the adjoining lamellar coarse grained matrix was pure brass. The SFT induced surface severe shear deformation is responsible for texture evolution. - Highlights: •The surface ultrafine grain layer in a 7050 aluminum alloy was focused. •Precipitate redistribution and texture evolution were discussed. •The quantitative prediction

  11. Corrosion behavior of ultrafine-grained AA2024 aluminum alloy produced by cryorolling

    NASA Astrophysics Data System (ADS)

    Laxman Mani Kanta, P.; Srivastava, V. C.; Venkateswarlu, K.; Paswan, Sharma; Mahato, B.; Das, Goutam; Sivaprasad, K.; Krishna, K. Gopala

    2017-11-01

    The objectives of this study were to produce ultrafine-grained (UFG) AA2024 aluminum alloy by cryorolling followed by aging and to evaluate its corrosion behavior. Solutionized samples were cryorolled to 85% reduction in thickness. Subsequent aging resulted in a UFG structure with finer precipitates of Al2CuMg in the cryorolled alloy. The (1) solutionized and (2) solutionized and cryorolled samples were uniformly aged at 160°C/24 h and were designated as CGPA and CRPA, respectively; these samples were subsequently subjected to corrosion studies. Potentiodynamic polarization studies in 3.5wt% NaCl solution indicated an increase in corrosion potential and a decrease in corrosion current density for CRPA compared to CGPA. In the case of CRPA, electrochemical impedance spectroscopic studies indicated the presence of two complex passive oxide layers with a higher charge transfer resistance and lower mass loss during intergranular corrosion tests. The improved corrosion resistance of CRPA was mainly attributed to its UFG structure, uniform distribution of fine precipitates, and absence of coarse grain-boundary precipitation and associated precipitate-free zones as compared with the CGPA alloy.

  12. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  13. Simultaneous increase in the strength, plasticity, and corrosion resistance of an ultrafine-grained Ti-4Al-2V pseudo-alpha-titanium alloy

    NASA Astrophysics Data System (ADS)

    Chuvil'deev, V. N.; Kopylov, V. I.; Nokhrin, A. V.; Bakhmet'ev, A. M.; Sandler, N. G.; Kozlova, N. A.; Tryaev, P. V.; Tabachkova, N. Yu.; Mikhailov, A. S.; Ershova, A. V.; Gryaznov, M. Yu.; Chegurov, M. K.; Sysoev, A. N.; Smirnova, E. S.

    2017-05-01

    The influence of severe plastic deformation on the structural-phase state of grain boundaries in a Ti-4Al-2V (commercial PT3V grade) pseudo-alpha-titanium alloy has been studied. It is established that increase in the strength, plasticity, and corrosion resistance of this alloy is related to the formation of an ultrafine- grained structure. In particular, it is shown that an increase in the resistance to hot-salt intergranular corrosion is due to diffusion-controlled redistribution of aluminum and vanadium atoms at the grain boundaries of titanium formed during thermal severe plastic deformation.

  14. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

  15. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  16. Fatigue behavior of ultrafine grained medium Carbon steel processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Ruffing, C.; Ivanisenko, Yu; Kerscher, E.

    2014-08-01

    The endurance limit of materials has been observed to be significantly increased in materials with an ultrafine grained microstructure [1, 2]. As this effect, however, has not yet been investigated in steels, fatigue experiments of an unalloyed medium carbon steel with a carbon content of 0.45 wt.-%, which was treated by high pressure torsion (HPT) [3-5] at elevated temperature were carried out. The treatments were applied to discs which had different initial carbide morphologies and showed an increase of hardness after HPT by a factor of 1.75 - 3.2 compared to the initial states, whereby the amount of increase depends on the initial carbide morphology. The maximum hardness achieved was 810 HV. The discs were cut into fatigue specimens in the form of bars of the size of 4 mm x 1 mm x 600 gm. Until a hardness of 500 HV the endurance limits correspond linearly with the hardness. This is no longer the case at higher hardness values, where inherent and process-initiated flaws lead to lower fatigue limits. The maximum endurance limit exceeded 1050 MPa in 4-point-micro-bending and at a load ratio of R = 0.1. Fractography revealed different crack initiation sites like pre cracks and shear bands [6, 7] resulting from HPT or fisheye fractures initiated from non-metallic inclusions.

  17. The relationship between structure and magnetic properties in ultra-fine grained/nanostructured FePd alloys

    NASA Astrophysics Data System (ADS)

    Okumura, Hideyuki

    In this study, the magnetic behavior including coercivity and the magnetic phase transition (ferromagnetic ↔ paramagnetic) and related phenomena were qualitatively and quantitatively investigated in ultra-fine grained/nanostructured FePd permanent magnet alloys, in relation to the microstructure and defect structure, and the results were compared with bulk FePd. Most of the alloy specimens investigated were in the form of epoxybonded magnets or isostatically-pressed pellets, formed from powders which were produced with high energy ball milling. Some results of thin films and ribbons produced with sputtering and melt-spinning, respectively, are also included in this thesis. Characterization of the materials was performed by using X-ray diffraction techniques with texture measurement, transmission electron microscopy with Lorentz microscopy, scanning electron microscopy with EDS analysis, optical microscopy and vibrating sample magnetometry. X-ray line broadening analysis was utilized for the quantitative characterization of the nanoscale microstructure, and it was found that the Cauchy-Gaussian profile assumption best describes the broadening data. Enhanced coercivities ˜10 times those of the bulk FePd obtained using conventional heat treatments were explained as the result of statistical (stochastic) unpinning of interaction domain walls out of the potential well at the grain boundary, and there is also an additional effect ascribed to an increase of the magnetocrystalline anisotropy, which is mainly due to the metastable c/a ratio of the nanostructured ordered phase and possibly to stress anisotropy. At the same time, there is also a decrease of the coercivity for smaller grain sizes because of the "magnetically soft" grain boundary phase. A semi-quantitative theoretical model is proposed, which includes the effect of exchange coupling between the ordered grains. The so-called Kronmuller analysis based on the wall pinning model was self-consistent, supporting

  18. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    NASA Astrophysics Data System (ADS)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  19. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  20. Grain dissection as a grain size reducing mechanism during ice microdynamics

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-04-01

    Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron

  1. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir; Karimzadeh, F.; Enayati, M.H.

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties ofmore » the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the

  2. Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods

    NASA Astrophysics Data System (ADS)

    Yogesha, K. K.; Joshi, Amit; Jayaganthan, R.

    2017-05-01

    In the present study, 5052 Al alloy was processed through different rolling methods to obtain ultrafine grains and its high-cycle fatigue behavior were investigated. The solution-treated Al-Mg alloys (AA 5052) were deformed through different methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW), up to 75% thickness reduction. The deformed samples were subjected to mechanical testing such as hardness, tensile and high-cycle fatigue (HCF) test at stress control mode. The CGW samples exhibit better HCF strength when compared to other conditions. The microstructure of the tested samples was characterized by optical microscopy, SEM fractography and TEM to understand the deformation behavior of deformed Al alloy. The improvement in fatigue life of CR and CGR samples is due to effective grain refinement, subgrain formations, and high dislocation density observed in the heavily deformed samples at cryogenic condition as observed from SEM and TEM analysis. However, in case of CGW samples, formation of nanoshear bands accommodates the applied strain during cyclic loading, thereby facilitating dislocation accumulation along with subgrain formations, leading to the high fatigue life. The deformed or broken impurity phase particles found in the deformed samples along with the precipitates that were formed during warm rolling also play a prominent role in enhancing the fatigue strength. These tiny particles hindered the dislocation movement by effectively pinning it at grain boundaries, thereby improving the resistance of crack propagation under cyclic load.

  3. Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.

    2015-09-01

    Accumulative roll bonding (ARB) has been used as a severe plastic deformation process for the industrial production of ultra-fine grained (UFG) and nano-crystalline sheets with excellent mechanical properties. In the present study, the effect of the ARB process on the corrosion behavior of UFG and nano-crystalline 1050 aluminum alloy in a buffer borate solution (pH 5.5) has been investigated. The result of microhardness tests revealed that microhardness values increase with an increasing number of ARB cycles. A sharp increase in microhardness is seen after three ARB cycles, whereas moderate additional increases are observed afterward for up to nine cycles. Also, the XRD results showed that the mean crystallite size decreased to about 91 nm after nine cycles. The potentiodynamic plots show that as a result of ARB, the corrosion behavior of the UFG and nano-crystalline specimens improves, compared to the annealed 1050 aluminum alloy. Moreover, electrochemical impedance spectroscopy measurements showed that the polarization resistance increases with an increasing number of ARB cycles.

  4. Interlinking backscatter, grain size and benthic community structure

    NASA Astrophysics Data System (ADS)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p < 0.001). Results for the Clamshell grab for two of the methods have stronger positive correlations; mean backscatter intensity (r2 = 0.619; p < 0.001) and angular response predicted mean grain size (r2 = 0.692; p < 0.001). ANOVA reveals significant differences in mean grain size (Hamon) within acoustic groups for all methods: mean backscatter (p < 0.001), angular response predicted grain size (p < 0.001), and QTC class (p = 0.009). Mean grain size (Clamshell) shows a significant difference between groups for mean backscatter (p = 0.001); other methods were not significant. PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab

  5. Ultrafine Angelica gigas powder normalizes ovarian hormone levels and has antiosteoporosis properties in ovariectomized rats: particle size effect.

    PubMed

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-10-01

    The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake.

  6. The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.

    1996-03-01

    Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.

  7. Size evolution of ultrafine particles: Differential signatures of normal and episodic events.

    PubMed

    Joshi, Manish; Khan, Arshad; Anand, S; Sapra, B K

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Dobatkin, S. V.; Lukyanova, E. A.; Martynenko, N. S.; Anisimova, N. Yu; Kiselevskiy, M. V.; Gorshenkov, M. V.; Yurchenko, N. Yu; Raab, G. I.; Yusupov, V. S.; Birbilis, N.; Salishchev, G. A.; Estrin, Y. Z.

    2017-05-01

    The effect of severe plastic deformation on the structure, mechanical properties, corrosion resistance, and biocompatibility of the WE43 (Mg-Y-Nd-Zr) alloy earmarked for applications as bioresorbable material has been studied. The alloy was deformed by rotary swaging (RS), equal channel angular pressing (ECAP), and multiaxial deformation (MAD). The microstructure examination by transmission electron microscopy showed that all SPD modes lead to the formation of ultrafine-grained structure with a structural element size of 0.5-1 µm and the Mg12Nd phase particles 0.3 µm in size. The microstructure refinement by all three treatments resulted in strengthening of the alloy. ECAP and MAD also raised ductility to up to 12-17%, while RS increased the ultimate tensile strength to up to 415 MPa. The study of the corrosion properties showed that SPD does not affect the electrochemical corrosion of the alloy. Its biocompatibility in vitro was estimated after incubation of the samples with red blood cells (hemolysis study), white blood cells (cell viability assay), and mesenchymal stromal cells (cell proliferation analysis). The biodegradation rate in fetal bovine serum was also evaluated. ECAP and MAD were found to cause some deceleration of biodegradation by slowing down the gas formation in the biological fluid and, compared to MSC, to improve the biocompatibility of the WE43 alloy.

  9. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  10. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1998-01-01

    An ultrafine cementitious grout having a particle size 90% of which are less than 6 .mu.m in diameter and an average size of about 2.5 .mu.m or less, and preferably 90% of which are less than 5 .mu.m in diameter and an average size of about 2 .mu.m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4-0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  11. Ultrafine Angelica gigas Powder Normalizes Ovarian Hormone Levels and Has Antiosteoporosis Properties in Ovariectomized Rats: Particle Size Effect

    PubMed Central

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-01-01

    Abstract The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake. PMID:23039111

  12. A continuum theory of grain size evolution and damage

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Bercovici, D.

    2009-01-01

    Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening

  13. Complete grain boundaries from incomplete EBSD maps: the influence of segmentation on grain size determinations

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Ruediger

    2017-04-01

    Grain size analyses are carried out for a number of reasons, for example, the dynamically recrystallized grain size of quartz is used to assess the flow stresses during deformation. Typically a thin section or polished surface is used. If the expected grain size is large enough (10 µm or larger), the images can be obtained on a light microscope, if the grain size is smaller, the SEM is used. The grain boundaries are traced (the process is called segmentation and can be done manually or via image processing) and the size of the cross sectional areas (segments) is determined. From the resulting size distributions, 'the grain size' or 'average grain size', usually a mean diameter or similar, is derived. When carrying out such grain size analyses, a number of aspects are critical for the reproducibility of the result: the resolution of the imaging equipment (light microscope or SEM), the type of images that are used for segmentation (cross polarized, partial or full orientation images, CIP versus EBSD), the segmentation procedure (algorithm) itself, the quality of the segmentation and the mathematical definition and calculation of 'the average grain size'. The quality of the segmentation depends very strongly on the criteria that are used for identifying grain boundaries (for example, angles of misorientation versus shape considerations), on pre- and post-processing (filtering) and on the quality of the recorded images (most notably on the indexing ratio). In this contribution, we consider experimentally deformed Black Hills quartzite with dynamically re-crystallized grain sizes in the range of 2 - 15 µm. We compare two basic methods of segmentations of EBSD maps (orientation based versus shape based) and explore how the choice of methods influences the result of the grain size analysis. We also compare different measures for grain size (mean versus mode versus RMS, and 2D versus 3D) in order to determine which of the definitions of 'average grain size yields the

  14. BHQ revisited (1) - Looking at grain size

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Rüdiger; Tullis, Jan

    2016-04-01

    Black Hills Quartzite (BHQ) has been used extensively in experimental rock deformation for numerous studies. Coaxial and general shear experiments have been carried out, for example, to define the dislocation creep regimes of quartz (Hirth & Tullis, 1992), to determine the effect of annealing (Heilbronner & Tullis, 2002) or to study the development of texture and microstructure with strain (Heilbronner & Tullis, 2006). BHQ was also used to determine the widely used quartz piezometer by Stipp & Tullis (2003). Among the microstructure analyses that were performed in those original papers, grain size was usually determined using CIP misorientation images. However, the CIP method (= computer-integrated polarization microscopy, details in Heilbronner and Barrett, 2014) is only capable of detecting the c-axis orientation of optically uniaxial materials and hence is only capable of detecting grain boundaries between grains that differ in c-axis orientation. One of the puzzling results we found (Heilbronner & Tullis, 2006) was that the recrystallized grain size seemed to depend on the crystallographic preferred orientation of the domain. In other words the grain size did not only depend on the flow stress but also on the orientation of the c-axis w/r to the shear direction. At the time, no EBSD analysis (electron back scatter diffraction) was carried out and hence the full crystallographic orientation was not known. In principle it is therefore possible that we missed some grain boundaries (between grains with parallel c-axes) and miscalculated our grain sizes. In the context of recent shear experiments on quartz gouge at the brittle-viscous transition (see Richter et al., this conference), where EBSD is used to measure the recrystallized grain size, we wanted to re-measure the CIP grain sizes of our 2006 samples (deformed in regime 1, 2 and 3 of dislocation) in exactly the same way. In two companion posters we use EBSD orientation imaging to repeat, refine and expand the

  15. A Phase Field Study of the Effect of Microstructure Grain Size Heterogeneity on Grain Growth

    NASA Astrophysics Data System (ADS)

    Crist, David J. D.

    Recent studies conducted with sharp-interface models suggest a link between the spatial distribution of grain size variance and average grain growth rate. This relationship and its effect on grain growth rate was examined using the diffuse-interface Phase Field Method on a series of microstructures with different degrees of grain size gradation. Results from this work indicate that the average grain growth rate has a positive correlation with the average grain size dispersion for phase field simulations, confirming previous observations. It is also shown that the grain growth rate in microstructures with skewed grain size distributions is better measured through the change in the volume-weighted average grain size than statistical mean grain size. This material is based upon work supported by the National Science Foundation under Grant No. 1334283. The NSF project title is "DMREF: Real Time Control of Grain Growth in Metals" and was awarded by the Civil, Mechanical and Manufacturing Innovation division under the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.

  16. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols.

    PubMed

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Krouzek, Jiri; Hovorka, Jan

    2013-06-14

    Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1ultrafine particles (dae<0.17). High-volume aerosol samples were collected consecutively in four localities that differed in the level of environmental pollution. The genotoxicity of EOMs was measured by analysis of DNA adducts induced in an a cellular assay consisting of calf thymus DNA with/without rat liver microsomal S9 fraction coupled with (32)P-postlabelling. The upper accumulation fraction was the major size fraction in all four localities, forming 37-46% of the total PM mass. Per m(3) of sampled air, this fraction also bound the largest amount of c-PAHs. Correspondingly, the upper accumulation fraction induced the highest DNA-adduct levels. Per PM mass itself, the lower accumulation fraction is seen to be the most efficient in binding DNA-reactive organic compounds. Interestingly, the results suggest that the fraction of ultrafine particles of various ambient-air samples is neither a major carrier of c-PAHs, nor a major inducer of their genotoxicity, which is an important finding that is relevant to the toxicity and health effects of ultrafine particles, which are so extensively discussed these days. Copyright © 2013. Published by Elsevier B.V.

  17. What Controls Ooid Grain Size?

    NASA Astrophysics Data System (ADS)

    Trower, L.; Lamb, M. P.; Fischer, W. W.

    2015-12-01

    Ooids are subspherical chemical sand grains composed of concentric layers of CaCO₃ surrounding a central nucleus. These grains represent a common mode of carbonate sedimentation, making them potentially powerful proxies for paleoenvironmental conditions, provided a mechanistic understanding of the physical, chemical, and perhaps biological conditions necessary for their formation. At a basic level, growth of an ooid reflects that precipitation has outpaced abrasion over the ooid's lifetime. We can describe change in ooid size over time (net growth rate) mechanistically as the sum of a growth rate (the rate of carbonate precipitation on the ooid surface) and an abrasion rate (the rate of removal of material through grain-grain and grain-bed collisions). Previous studies have addressed the growth rate, investigating the extent to which microbial activity affects and/or controls carbonate precipitation on ooid surfaces, and the net growth rate, using stepwise acid digestion and radiocarbon dating to determine the ages of cortical layers. We focused on the abrasion rate and designed an experimental study to measure abrasion rates of ooids as a function of grain size and sediment transport stage. Preliminary experiments with medium-sand-sized ooids at a Rouse number of ~1.2 yielded an abrasion rate of 0.04 g/hr (or ~40 ng/ooid/hr), which is four orders of magnitude greater than the fastest net growth rates reported in the recent high resolution ooid cortex radiocarbon dating study by Beaupre et al. (2015). This result requires that either: 1) ooids are essentially not moving and therefore not being abraded or 2) precipitation rates are also much more rapid than the net growth rates estimated by incremental radiocarbon dating. The former constraint is inconsistent with field observations that most marine ooids occur in high energy shoal environments, both in modern examples and in the rock record. Precipitation rates must therefore also be relatively rapid compared

  18. Ultrafine cementitious grout

    DOEpatents

    Ahrens, E.H.

    1998-07-07

    An ultrafine cementitious grout is described having a particle size 90% of which are less than 6 {micro}m in diameter and an average size of about 2.5 {micro}m or less, and preferably 90% of which are less than 5 {micro}m in diameter and an average size of about 2 {micro}m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4--0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {micro}m in width. 4 figs.

  19. Tsunami sediments and their grain size characteristics

    NASA Astrophysics Data System (ADS)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  20. On the effect of nonequilibrium vacancies on the melting and pore formation in ultrafine-grained aluminum alloys subjected to pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kikin, P. Yu.; Perevezentsev, V. N.; Rusin, E. E.

    2015-08-01

    An analysis has been carried out of the experimental data concerning the interaction of pulsed laser radiation with the ultrafine-grained (UFG) Al-Mg alloys obtained by the methods of severe plastic deformation. It has been shown that the melting and pore formation in the UFG alloys under the effect of laser radiation start earlier than in their coarse-grained analogs. The observed behavior of the alloys can be explained from the united positions based on the concepts of the influence of the high concentration of nonequilibrium vacancies on the ability of the alloys to absorb the laser radiation and on the process of pore formation.

  1. Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching.

    PubMed

    Nazarov, Denis V; Zemtsova, Elena G; Solokhin, Alexandr Yu; Valiev, Ruslan Z; Smirnov, Vladimir M

    2017-01-13

    In this study, we present the detailed investigation of the influence of the etching medium (acidic or basic Piranha solutions) and the etching time on the morphology and surface relief of ultrafine grained (UFG) and coarse grained (CG) titanium. The surface relief and morphology have been studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and the spectral ellipsometry. The composition of the samples has been determined by X-ray fluorescence analysis (XRF) and X-ray Photoelectron Spectroscopy (XPS). Significant difference in the etching behavior of UFG and CG titanium has been found. UFG titanium exhibits higher etching activity independently of the etching medium. Formed structures possess higher homogeneity. The variation of the etching medium and time leads to micro-, nano-, or hierarchical micro/nanostructures on the surface. Significant difference has been found between surface composition for UFG titanium etched in basic and acidic Piranha solution. Based on the experimental data, the possible reasons and mechanisms are considered for the formation of nano- and microstructures. The prospects of etched UFG titanium as the material for implants are discussed.

  2. Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching

    PubMed Central

    Nazarov, Denis V.; Zemtsova, Elena G.; Solokhin, Alexandr Yu.; Valiev, Ruslan Z.; Smirnov, Vladimir M.

    2017-01-01

    In this study, we present the detailed investigation of the influence of the etching medium (acidic or basic Piranha solutions) and the etching time on the morphology and surface relief of ultrafine grained (UFG) and coarse grained (CG) titanium. The surface relief and morphology have been studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and the spectral ellipsometry. The composition of the samples has been determined by X-ray fluorescence analysis (XRF) and X-ray Photoelectron Spectroscopy (XPS). Significant difference in the etching behavior of UFG and CG titanium has been found. UFG titanium exhibits higher etching activity independently of the etching medium. Formed structures possess higher homogeneity. The variation of the etching medium and time leads to micro-, nano-, or hierarchical micro/nanostructures on the surface. Significant difference has been found between surface composition for UFG titanium etched in basic and acidic Piranha solution. Based on the experimental data, the possible reasons and mechanisms are considered for the formation of nano- and microstructures. The prospects of etched UFG titanium as the material for implants are discussed. PMID:28336849

  3. Unfolding grain size effects in barium titanate ferroelectric ceramics

    PubMed Central

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-01-01

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size. PMID:25951408

  4. Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface

    NASA Astrophysics Data System (ADS)

    Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Valiev, R. Z.

    2011-08-01

    Bulk ultrafine-grained Ni 50.8Ti 49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential ( Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO 3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.

  5. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    PubMed

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Grain size-sensitive creep in ice II

    USGS Publications Warehouse

    Kubo, T.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2006-01-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  7. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-03

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  8. Grain-size-yield stress relationship: Analysis and computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.A.; Benson, D.J.; Fu, H.H.

    1999-07-01

    The seminal contributions of Julia Weertman to the understanding of the mechanical properties of nanocrystalline materials will be briefly outlined. A constitutive equation predicting the effect of grain size on the yield stress of metals, based on the model proposed by M.A. Meyers and E. Ashworth, is discussed and extended to the nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite, comprised of the grain interior, with flow stress {sigma}{sub fB},more » and grain boundary work-hardened layer, with flow stress {sigma}{sub fGB}. Three principal factors contribute to the grain-boundary hardening: (1) the grain boundaries act as barriers to plastic flow; (2) the grain boundaries act as dislocation sources; and (3) elastic anisotropy causes additional stresses in grain-boundary surroundings. The predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains. Computational predictions are made of plastic flow as a function of grain size incorporating elastic and plastic anisotropy as well as differences of dislocation accumulation rate in grain boundary regions and grain interiors. This is the first plasticity calculation that accounts for grain size effects in a physically-based manner. 58 refs., 7 figs., 1 tab.« less

  9. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stráská, Jitka, E-mail: straska.jitka@gmail.com; Janeček, Miloš, E-mail: janecek@met.mff.cuni.cz; Čížek, Jakub, E-mail: jcizek@mbox.troja.mff.cuni.cz

    Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardnessmore » and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.« less

  10. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    PubMed Central

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16−49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. PMID:26246614

  11. Grain-size considerations for optoelectronic multistage interconnection networks.

    PubMed

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C

    1992-09-10

    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost

  12. A new route for the synthesis of submicron-sized LaB{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lihong, Bao; Wurentuya,; Wei, Wei

    Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less

  13. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    PubMed

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Reversal in the Size Dependence of Grain Rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoling; Tamura, Nobumichi; Mi, Zhongying

    The conventional belief, based on the Read-Shockley model for the grain rotation mechanism, has been that smaller grains rotate more under stress due to the motion of grain boundary dislocations. However, in our high-pressure synchrotron Laue x-ray microdiffraction experiments, 70 nm nickel particles are found to rotate more than any other grain size. We infer that the reversal in the size dependence of the grain rotation arises from the crossover between the grain boundary dislocation-mediated and grain interior dislocation-mediated deformation mechanisms. The dislocation activities in the grain interiors are evidenced by the deformation texture of nickel nanocrystals. This new findingmore » reshapes our view on the mechanism of grain rotation and helps us to better understand the plastic deformation of nanomaterials, particularly of the competing effects of grain boundary and grain interior dislocations.« less

  15. Reversal in the Size Dependence of Grain Rotation

    DOE PAGES

    Zhou, Xiaoling; Tamura, Nobumichi; Mi, Zhongying; ...

    2017-03-01

    The conventional belief, based on the Read-Shockley model for the grain rotation mechanism, has been that smaller grains rotate more under stress due to the motion of grain boundary dislocations. However, in our high-pressure synchrotron Laue x-ray microdiffraction experiments, 70 nm nickel particles are found to rotate more than any other grain size. We infer that the reversal in the size dependence of the grain rotation arises from the crossover between the grain boundary dislocation-mediated and grain interior dislocation-mediated deformation mechanisms. The dislocation activities in the grain interiors are evidenced by the deformation texture of nickel nanocrystals. This new findingmore » reshapes our view on the mechanism of grain rotation and helps us to better understand the plastic deformation of nanomaterials, particularly of the competing effects of grain boundary and grain interior dislocations.« less

  16. Tungsten Carbide Grain Size Computation for WC-Co Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Zhou, Dongran; Cui, Haichao; Xu, Peiquan; Lu, Fenggui

    2016-06-01

    A "two-step" image processing method based on electron backscatter diffraction in scanning electron microscopy was used to compute the tungsten carbide (WC) grain size distribution for tungsten inert gas (TIG) welds and laser welds. Twenty-four images were collected on randomly set fields per sample located at the top, middle, and bottom of a cross-sectional micrograph. Each field contained 500 to 1500 WC grains. The images were recognized through clustering-based image segmentation and WC grain growth recognition. According to the WC grain size computation and experiments, a simple WC-WC interaction model was developed to explain the WC dissolution, grain growth, and aggregation in welded joints. The WC-WC interaction and blunt corners were characterized using scanning and transmission electron microscopy. The WC grain size distribution and the effects of heat input E on grain size distribution for the laser samples were discussed. The results indicate that (1) the grain size distribution follows a Gaussian distribution. Grain sizes at the top of the weld were larger than those near the middle and weld root because of power attenuation. (2) Significant WC grain growth occurred during welding as observed in the as-welded micrographs. The average grain size was 11.47 μm in the TIG samples, which was much larger than that in base metal 1 (BM1 2.13 μm). The grain size distribution curves for the TIG samples revealed a broad particle size distribution without fine grains. The average grain size (1.59 μm) in laser samples was larger than that in base metal 2 (BM2 1.01 μm). (3) WC-WC interaction exhibited complex plane, edge, and blunt corner characteristics during grain growth. A WC ( { 1 {bar{{1}}}00} ) to WC ( {0 1 1 {bar{{0}}}} ) edge disappeared and became a blunt plane WC ( { 10 1 {bar{{0}}}} ) , several grains with two- or three-sided planes and edges disappeared into a multi-edge, and a WC-WC merged.

  17. Grain size evolution and convection regimes of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Rozel, A.; Golabek, G. J.; Boutonnet, E.

    2011-12-01

    A new model of grain size evolution has recently been proposed in Rozel et al. 2010. This new approach stipulates that the grain size dynamics is governed by two additive and simultaneous processes: grain growth and dynamic recrystallization. We use the usual normal grain growth laws for the growth part. For dynamic recrystallization, reducing the mean grain size increases the total area of grain boundaries. Grain boundaries carry some surface tension, so some energy is required to decrease the mean grain size. We consider that this energy is available during mechanical work. It is usually considered to produce some heat via viscous dissipation. A partitioning parameter f is then required to know what amount of energy is dissipated and what part is converted in surface tension. This study gives a new calibration of the partitioning parameter on major Earth materials involved in the dynamic of the terrestrial planets. Our calibration is in adequation with the published piezometric relations available in the literature (equilibrium grain size versus shear stress). We test this new model of grain size evolution in a set of numerical computations of the dynamics of the Earth using stagYY. We show that the grain size evolution has a major effect on the convection regimes of terrestrial planets.

  18. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less

  19. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    PubMed Central

    2011-01-01

    A large quantity of ultrafine tetragonal barium titanate (BaTiO3) nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature. PMID:21781339

  20. Grain size constraints on twin expansion in hexagonal close packed crystals

    DOE PAGES

    Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.

    2016-10-20

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause thesemore » stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.« less

  1. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1999-01-01

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  2. Effect of freeze-thaw cycling on grain size of biochar.

    PubMed

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.

  3. Effect of freeze-thaw cycling on grain size of biochar

    PubMed Central

    Dugan, Brandon; Masiello, Caroline A.; Wahab, Leila M.; Gonnermann, Helge M.; Nittrouer, Jeffrey A.

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle. PMID:29329343

  4. Grain size distribution in sheared polycrystals

    NASA Astrophysics Data System (ADS)

    Sarkar, Tanmoy; Biswas, Santidan; Chaudhuri, Pinaki; Sain, Anirban

    2017-12-01

    Plastic deformation in solids induced by external stresses is of both fundamental and practical interest. Using both phase field crystal modeling and molecular dynamics simulations, we study the shear response of monocomponent polycrystalline solids. We subject mesocale polycrystalline samples to constant strain rates in a planar Couette flow geometry for studying its plastic flow, in particular its grain deformation dynamics. As opposed to equilibrium solids where grain dynamics is mainly driven by thermal diffusion, external stress/strain induce a much higher level of grain deformation activity in the form of grain rotation, coalescence, and breakage, mediated by dislocations. Despite this, the grain size distribution of this driven system shows only a weak power-law correction to its equilibrium log-normal behavior. We interpret the grain reorganization dynamics using a stochastic model.

  5. Pulmonary effects induced by ultrafine PTFE particles.

    PubMed

    Johnston, C J; Finkelstein, J N; Mercer, P; Corson, N; Gelein, R; Oberdörster, G

    2000-11-01

    PTFE (polytetrafluoroethylene) fumes consisting of large numbers of ultrafine (uf) particles and low concentrations of gas-phase compounds can cause severe acute lung injury. Our studies were designed to test three hypotheses: (i) uf PTFE fume particles are causally involved in the induction of acute lung injury, (ii) uf PTFE elicit greater pulmonary effects than larger sized PTFE accumulation mode particles, and (iii) preexposure to the uf PTFE fume particles will induce tolerance. We used uf Teflon (PTFE) fumes (count median particle size approximately 16 nm) generated by heating PTFE in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity. Teflon fumes at ultrafine particle concentrations of 50 microg/m(3) were extremely toxic to rats when inhaled for only 15 min. We found that when generated in argon, the ultrafine Teflon particles alone are not toxic at these exposure conditions; neither were Teflon fume gas-phase constituents when generated in air. Only the combination of both phases when generated in air caused high toxicity, suggesting either the existence of radicals on the surface or a carrier mechanism of the ultrafine particles for adsorbed gas compounds. Aging of the fresh Teflon fumes for 3.5 min led to a predicted coagulation to >100 nm particles which no longer caused toxicity in exposed animals. This result is consistent with a greater toxicity of ultrafine particles compared to accumulation mode particles, although changes in particle surface chemistry during the aging process may have contributed to the diminished toxicity. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-min exposures on 3 days prior to a 15-min exposure. Messages encoding antioxidants and chemokines were increased substantially in nonadapted animals, yet were unaltered in adapted animals. This study shows the importance of preexposure history for the susceptibility to acute

  6. A new database sub-system for grain-size analysis

    NASA Astrophysics Data System (ADS)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  7. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  8. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    PubMed Central

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-01-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998

  9. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.

    PubMed

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-04-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.

  10. Extreme grain size reduction in dolomite: microstructures and mechanisms.

    NASA Astrophysics Data System (ADS)

    Kennedy, L.; White, J. C.

    2007-12-01

    Pure dolomite sample were deformed at room temperature and under a variety of confining pressures (0 - 100MPa) to examine the processes of grain size reduction. The dolomite is composed of > 97 vol. % dolomite with accessory quartz, calcite, tremolite, and muscovite and has been metamorphosed to amphibolite facies and subsequently annealed. At the hand sample scale, the rock is isotropic, except for minor, randomly oriented tremolite porphyroblasts, and weakly aligned muscovite. At the thin section scale, coarser grains have lobate grain boundaries, exhibit minor to no undulose extinction and few deformation twins, although well- developed subgrains are present. Growth twins are common, as is the presence of well developed {1011} cleavage. Mean grain size 476 microns, and porosity is essentially zero (Austin and Kennedy, 2006). Samples contain diagonal to subvertical faults. Fractures are lined with an exceptionally fine-grained, powdered dolomite. Even experiments done at no confining pressure and stopped before sliding on the fracture surfaces occurred had significant powdered gouge developed along the surfaces. In this regard, fracturing of low porosity, pure dolomite, with metamorphic textures (e.g. lobate, interlocking grain boundaries) results in the development of fine-grained gouge. As expected the dolomite exhibited an increase in strength with increasing confining pressure, with a maximum differential stress of ~400MPa at 100 MPa confining pressure. At each chosen confining pressure, two experiments were performed and stopped at different stages along the load-displacement curve: just before yield stress and at peak stress. Microstructures at each stage were observed in order to determine the possible mechanisms for extreme grain size reduction. SEM work shows that in samples with little to no apparent displacement along microfractures, extreme grain size reduction still exists, suggesting that frictional sliding and subsequent cataclasis may not be the

  11. Implications of Grain Size Evolution for the Effective Stress Exponent in Ice

    NASA Astrophysics Data System (ADS)

    Behn, M. D.; Goldsby, D. L.; Hirth, G.

    2016-12-01

    Viscous flow in ice has typically been described by the Glen law—a non-Newtonian, power-law relationship between stress and strain-rate with a stress exponent n 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice is strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding [1], which explicitly incorporates the grain-size dependence of ice rheology. Yet, neither dislocation creep (n 4), nor grain boundary sliding (n 1.8), have stress exponents that match the value of n 3 for the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form cannot be explained by a single deformation mechanism. Here we seek to understand the origin of the n 3 dependence of the Glen law through a new model for grain-size evolution in ice. In our model, grain size evolves in response to the balance between dynamic recrystallization and grain growth. To simulate these processes we adapt the "wattmeter" [2], originally developed within the solid-Earth community to quantify grain size in crustal and mantle rocks. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. The evolution of grain size in turn controls the relative contributions of dislocation creep and grain boundary sliding, and thus the effective stress exponent for ice flow. Using this approach, we first benchmark our grain size evolution model on experimental data and then calculate grain size in two end-member scenarios: (1) as a function of depth within an ice-sheet, and (2) across an ice-stream margin. We show that the calculated grain sizes match ice core observations for the interior of ice sheets. Furthermore, owing to the influence of grain size on strain rate, the

  12. Effect of Bimodal Grain Size Distribution on Scatter in Toughness

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Debalay; Strangwood, Martin; Davis, Claire

    2009-04-01

    Blunt-notch tests were performed at -160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.

  13. The size distribution of interstellar grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.

    1987-01-01

    Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.

  14. Effects of grain size evolution on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin

  15. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, O.; Esquivel, E.; Efe, M.

    Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less

  16. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size

    DOE PAGES

    El-Atwani, O.; Esquivel, E.; Efe, M.; ...

    2018-02-20

    Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less

  17. On Suspended matter grain size in Baltic sea

    NASA Astrophysics Data System (ADS)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  18. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response.

    PubMed

    Forest, Valérie; Pailleux, Mélanie; Pourchez, Jérémie; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Sennour, Mohamed; Hochepied, Jean-François; Grosseau, Philippe; Cottier, Michèle

    2014-08-01

    Boehmite (γ-AlOOH) nanoparticles (NPs) are used in a wide range of industrial applications. However, little is known about their potential toxicity. This study aimed at a better understanding of the relationship between the physico-chemical properties of these NPs and their in vitro biological activity. After an extensive physico-chemical characterization, the cytotoxicity, pro-inflammatory response and oxidative stress induced by a bulk industrial powder and its ultrafine fraction were assessed using RAW264.7 macrophages. Although the bulk powder did not trigger a significant biological activity, pro-inflammatory response was highly enhanced with the ultrafine fraction. This observation was confirmed with boehmite NPs synthesized at the laboratory scale, with well-defined and tightly controlled physico-chemical features: toxicity was increased when NPs were dispersed. In conclusion, the agglomerates size of boehmite NPs has a major impact on their toxicity, highlighting the need to study not only raw industrial powders containing NPs but also the ultrafine fractions representative of respirable particles.

  19. Grain-size variations on a longitudinal dune and a barchan dune

    NASA Astrophysics Data System (ADS)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  20. Can high resolution topographic surveys provide reliable grain size estimates?

    NASA Astrophysics Data System (ADS)

    Pearson, Eleanor; Smith, Mark; Klaar, Megan; Brown, Lee

    2017-04-01

    High resolution topographic surveys contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-grid scale topographic variability (or 'surface roughness') to particle grain size by deriving empirical relationships between the two. Such relationships would permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing data to drive distributed hydraulic models and revolutionising monitoring of river restoration projects. However, comparison of previous roughness-grain-size relationships shows substantial variability between field sites and do not take into account differences in patch-scale facies. This study explains this variability by identifying the factors that influence roughness-grain-size relationships. Using 275 laboratory and field-based Structure-from-Motion (SfM) surveys, we investigate the influence of: inherent survey error; irregularity of natural gravels; particle shape; grain packing structure; sorting; and form roughness on roughness-grain-size relationships. A suite of empirical relationships is presented in the form of a decision tree which improves estimations of grain size. Results indicate that the survey technique itself is capable of providing accurate grain size estimates. By accounting for differences in patch facies, R2 was seen to improve from 0.769 to R2 > 0.9 for certain facies. However, at present, the method is unsuitable for poorly sorted gravel patches. In future, a combination of a surface roughness proxy with photosieving techniques using SfM-derived orthophotos may offer improvements on using either technique individually.

  1. The grain-size lineup: A test of a novel eyewitness identification procedure.

    PubMed

    Horry, Ruth; Brewer, Neil; Weber, Nathan

    2016-04-01

    When making a memorial judgment, respondents can regulate their accuracy by adjusting the precision, or grain size, of their responses. In many circumstances, coarse-grained responses are less informative, but more likely to be accurate, than fine-grained responses. This study describes a novel eyewitness identification procedure, the grain-size lineup, in which participants eliminated any number of individuals from the lineup, creating a choice set of variable size. A decision was considered to be fine-grained if no more than 1 individual was left in the choice set or coarse-grained if more than 1 individual was left in the choice set. Participants (N = 384) watched 2 high-quality or low-quality videotaped mock crimes and then completed 4 standard simultaneous lineups or 4 grain-size lineups (2 target-present and 2 target-absent). There was some evidence of strategic regulation of grain size, as the most difficult lineup was associated with a greater proportion of coarse-grained responses than the other lineups. However, the grain-size lineup did not outperform the standard simultaneous lineup. Fine-grained suspect identifications were no more diagnostic than suspect identifications from standard lineups, whereas coarse-grained suspect identifications carried little probative value. Participants were generally reluctant to provide coarse-grained responses, which may have hampered the utility of the procedure. For a grain-size approach to be useful, participants may need to be trained or instructed to use the coarse-grained option effectively. (c) 2016 APA, all rights reserved).

  2. The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Rüdiger

    2017-10-01

    General shear experiments on Black Hills Quartzite (BHQ) deformed in the dislocation creep regimes 1 to 3 have been previously analyzed using the CIP method (Heilbronner and Tullis, 2002, 2006). They are reexamined using the higher spatial and orientational resolution of EBSD. Criteria for coherent segmentations based on c-axis orientation and on full crystallographic orientations are determined. Texture domains of preferred c-axis orientation (Y and B domains) are extracted and analyzed separately. Subdomains are recognized, and their shape and size are related to the kinematic framework and the original grains in the BHQ. Grain size analysis is carried out for all samples, high- and low-strain samples, and separately for a number of texture domains. When comparing the results to the recrystallized quartz piezometer of Stipp and Tullis (2003), it is found that grain sizes are consistently larger for a given flow stress. It is therefore suggested that the recrystallized grain size also depends on texture, grain-scale deformation intensity, and the kinematic framework (of axial vs. general shear experiments).

  3. Universal scaling of grain size distributions during dislocation creep

    NASA Astrophysics Data System (ADS)

    Aupart, Claire; Dunkel, Kristina G.; Angheluta, Luiza; Austrheim, Håkon; Ildefonse, Benoît; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2017-04-01

    Grain size distributions are major sources of information about the mechanisms involved in ductile deformation processes and are often used as paleopiezometers (stress gauges). Several factors have been claimed to influence the stress vs grain size relation, including the water content (Jung & Karato 2001), the temperature (De Bresser et al., 2001), the crystal orientation (Linckens et al., 2016), the presence of second phase particles (Doherty et al. 1997; Cross et al., 2015), and heterogeneous stress distributions (Platt & Behr 2011). However, most of the studies of paleopiezometers have been done in the laboratory under conditions different from those in natural systems. It is therefore essential to complement these studies with observations of naturally deformed rocks. We have measured olivine grain sizes in ultramafic rocks from the Leka ophiolite in Norway and from Alpine Corsica using electron backscatter diffraction (EBSD) data, and calculated the corresponding probability density functions. We compared our results with samples from other studies and localities that have formed under a wide range of stress and strain rate conditions. All distributions collapse onto one universal curve in a log-log diagram where grain sizes are normalized by the mean grain size of each sample. The curve is composed of two straight segments with distinct slopes for grains above and below the mean grain size. These observations indicate that a surprisingly simple and universal power-law scaling describes the grain size distribution in ultramafic rocks during dislocation creep irrespective of stress levels and strain rates. Cross, Andrew J., Susan Ellis, and David J. Prior. 2015. « A Phenomenological Numerical Approach for Investigating Grain Size Evolution in Ductiley Deforming Rocks ». Journal of Structural Geology 76 (juillet): 22-34. doi:10.1016/j.jsg.2015.04.001. De Bresser, J. H. P., J. H. Ter Heege, and C. J. Spiers. 2001. « Grain Size Reduction by Dynamic

  4. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data

  5. Towards the effect of acoustic emission (AE) sensor positioning within AE signal parameters in sliding on bulk ultrafine-grained materials

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu.; Podgornykh, O. A.; Chazov, P. A.; Shamarin, N. N.; Filippova, E. O.

    2017-12-01

    The effect of AE sensor positioning on the bulk ultrafine-grained materials used for sliding against steel ball has been investigated. Two versions of AE sensor positioning have been tested and showed the different attenuation levels. The experimentally obtained AE signal waveforms have been analyzed under the AE signal parameters such as a median frequency and AE energy. It was established that the AE sensor positioned on the sample supporting plate in the vicinity of the sample tested allowed redistribution of the signal energy from a low-frequency to high-frequency range as well as extending the median frequency range as compared to those obtained by mounting the sensor on the immobile sample holder.

  6. Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion.

    PubMed

    Um, Ho Yong; Park, Byung Ho; Ahn, Dong-Hyun; Abd El Aal, Mohamed Ibrahim; Park, Jaechan; Kim, Hyoung Seop

    2017-04-01

    Severe plastic deformation (SPD) has recently been advanced as the main process for fabricating bulk ultrafine grained or nanocrystalline metallic materials, which present much higher strength and better bio-compatibility than coarse-grained counterparts. Medical devices, such as aneurysm clips and dental implants, require high mechanical and biological performance (e.g., stiffness, yield strength, fatigue resistance, and bio-compatibility). These requirements match well the characteristics of SPD-processed materials. Typical aneurysm clips are made of a commercial Ti-6Al-4V alloy, which has higher yield strength than Ti. In this work, Ti and Ti-6Al-4V workpieces were processed by high-pressure torsion (HPT) to enhance their mechanical properties. Tensile tests and hardness tests were performed to evaluate their mechanical properties, and their microstructure was investigated. The hardness and yield stress of the HPT-processed Ti are comparable to those of the initial Ti-6Al-4V due to significantly refined microstructure. Finite element analyses for evaluating the opening performance of a specific geometry of the YASARGIL aneurysm clip were carried out using mechanical properties of the initial and HPT-processed Ti and Ti-6Al-4V. These results indicate that SPD-processed Ti could be a good candidate to substitute for Ti-6Al-4V in aneurysm clips. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Grain size segregation in debris discs

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  8. Detecting rare, abnormally large grains by x-ray diffraction

    DOE PAGES

    Boyce, Brad L.; Furnish, Timothy Allen; Padilla, H. A.; ...

    2015-07-16

    Bimodal grain structures are common in many alloys, arising from a number of different causes including incomplete recrystallization and abnormal grain growth. These bimodal grain structures have important technological implications, such as the well-known Goss texture which is now a cornerstone for electrical steels. Yet our ability to detect bimodal grain distributions is largely confined to brute force cross-sectional metallography. The present study presents a new method for rapid detection of unusually large grains embedded in a sea of much finer grains. Traditional X-ray diffraction-based grain size measurement techniques such as Scherrer, Williamson–Hall, or Warren–Averbach rely on peak breadth andmore » shape to extract information regarding the average crystallite size. However, these line broadening techniques are not well suited to identify a very small fraction of abnormally large grains. The present method utilizes statistically anomalous intensity spikes in the Bragg peak to identify regions where abnormally large grains are contributing to diffraction. This needle-in-a-haystack technique is demonstrated on a nanocrystalline Ni–Fe alloy which has undergone fatigue-induced abnormal grain growth. In this demonstration, the technique readily identifies a few large grains that occupy <0.00001 % of the interrogation volume. Finally, while the technique is demonstrated in the current study on nanocrystalline metal, it would likely apply to any bimodal polycrystal including ultrafine grained and fine microcrystalline materials with sufficiently distinct bimodal grain statistics.« less

  9. Grain Size Measurements of Eolian Ripples in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Weitz, C. M.; Sullivan, R. J., Jr.; Lapotre, M. G. A.; Rowland, S. K.; Edgett, K. S.; Grant, J. A., III; Yingst, R. A.

    2017-12-01

    The Curiosity rover team has explored several different eolian sand targets in Gale crater, including dunes and ripples. Using Curiosity's Mars Hand Lens Imager (MAHLI), we measured the size of grains on or near ripple crests within dunes, ripple fields, and in isolated ripples. The Barby target (Sol 1184) is on the crest of a ripple on the lower stoss slope of the barchan High dune. Flume Ridge (Sol 1604) and Avery Peak (Sol 1651) are smaller ripples on the Nathan Bridges and Mount Desert Island linear dunes. Schoolhouse Ledge (Sol 1688) is an isolated megaripple not associated with either a dune or ripple field. Enchanted Island (Sol 1751) is a ripple contained within a larger ripple field near the Vera Rubin Ridge. Our results show the grains of the Avery Peak and Flume Ridge targets are mostly 75-150 µm in size and grain motion was observed during each MAHLI imaging sequence. Barby is dominated by 250-450 µm grains assumed to be active based upon the lack of a dust coating, though grain motion was not observed. The Enchanted Island target has slightly larger grains than Barby, with most between 300-500 µm. The grains have some dust aggregates on their surfaces, suggesting they have been less active in recent months or years relative to the ripples examined within the Bagnold dune field. Finally, grains along the crest of Schoolhouse Ledge are the largest, 400-600 µm, and all of the grain surfaces have a thin dust coating, indicating the ripple is not currently active. Some of the ripple crests have similar grain sizes on both the stoss and lee sides (Schoolhouse Ledge, Barby) whereas other ripples showed larger grains concentrated on the stoss side (Enchanted Island, Avery Peak, Flume Ridge). Scuffing by the rover's front wheel revealed both Schoolhouse Ledge and Enchanted Island had coarser grains dominating the ripple surface with finer grains within the ripple interior. In general, the surfaces of active sand ripples have smaller grains compared to the

  10. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    Muñoz, O.; Moreno, F.; Vargas-Martín, F.; Guirado, D.; Escobar-Cerezo, J.; Min, M.; Hovenier, J. W.

    2017-09-01

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (I) soft forward peaks and (II) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

  11. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Gao, Yanfei; Nieh, T. G.

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the appliedmore » stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.« less

  12. Snow grain size and shape distributions in northern Canada

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Montpetit, B.; Roy, A.

    2016-12-01

    Pioneer snow work in the 1970s and 1980s proposed new approaches to retrieve snow depth and water equivalent from space using passive microwave brightness temperatures. Numerous research work have led to the realization that microwave approaches depend strongly on snow grain morphology (size and shape), which was poorly parameterized since recently, leading to strong biases in the retrieval calculations. Related uncertainties from space retrievals and the development of complex thermodynamic multilayer snow and emission models motivated several research works on the development of new approaches to quantify snow grain metrics given the lack of field measurements arising from the sampling constraints of such variable. This presentation focuses on the unknown size distribution of snow grain sizes. Our group developed a new approach to the `traditional' measurements of snow grain metrics where micro-photographs of snow grains are taken under angular directional LED lighting. The projected shadows are digitized so that a 3D reconstruction of the snow grains is possible. This device has been used in several field campaigns and over the years a very large dataset was collected and is presented in this paper. A total of 588 snow photographs from 107 snowpits collected during the European Space Agency (ESA) Cold Regions Hydrology high-resolution Observatory (CoReH2O) mission concept field campaign, in Churchill, Manitoba Canada (January - April 2010). Each of the 588 photographs was classified as: depth hoar, rounded, facets and precipitation particles. A total of 162,516 snow grains were digitized across the 588 photographs, averaging 263 grains/photo. Results include distribution histograms for 5 `size' metrics (projected area, perimeter, equivalent optical diameter, minimum axis and maximum axis), and 2 `shape' metrics (eccentricity, major/minor axis ratio). Different cumulative histograms are found between the grain types, and proposed fits are presented with the

  13. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.

    PubMed

    Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai

    2017-09-01

    Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Luminescence isochron dating: a new approach using different grain sizes.

    PubMed

    Zhao, H; Li, S H

    2002-01-01

    A new approach to isochron dating is described using different sizes of quartz and K-feldspar grains. The technique can be applied to sites with time-dependent external dose rates. It is assumed that any underestimation of the equivalent dose (De) using K-feldspar is by a factor F, which is independent of grain size (90-350 microm) for a given sample. Calibration of the beta source for different grain sizes is discussed, and then the sample ages are calculated using the differences between quartz and K-feldspar De from grains of similar size. Two aeolian sediment samples from north-eastern China are used to illustrate the application of the new method. It is confirmed that the observed values of De derived using K-feldspar underestimate the expected doses (based on the quartz De) but, nevertheless, these K-feldspar De values correlate linearly with the calculated internal dose rate contribution, supporting the assumption that the underestimation factor F is independent of grain size. The isochron ages are also compared with the results obtained using quartz De and the measured external dose rates.

  15. A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems

    EPA Science Inventory

    Ultrafine particle (UFP) emissions and particle number size distributions (PNSD) are critical in the evaluation of air pollution impacts on human health and climate change. Residential cookstove emissions are a major source of many air pollutants; however, data on UFP number emis...

  16. The importance of grain size to mantle dynamics and seismological observations

    NASA Astrophysics Data System (ADS)

    Gassmoeller, R.; Dannberg, J.; Eilon, Z.; Faul, U.; Moulik, P.; Myhill, R.

    2017-12-01

    Grain size plays a key role in controlling the mechanical properties of the Earth's mantle, affecting both long-timescale flow patterns and anelasticity on the timescales of seismic wave propagation. However, dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity, and a limited treatment of changes in mineral assemblage. We study grain size evolution, its interplay with stress and strain rate in the convecting mantle, and its influence on seismic velocities and attenuation. Our geodynamic models include the simultaneous and competing effects of dynamic recrystallization resulting from dislocation creep, grain growth in multiphase assemblages, and recrystallization at phase transitions. They show that grain size evolution drastically affects the dynamics of mantle convection and the rheology of the mantle, leading to lateral viscosity variations of six orders of magnitude due to grain size alone, and controlling the shape of upwellings and downwellings. Using laboratory-derived scaling relationships, we convert model output to seismologically-observable parameters (velocity, attenuation) facilitating comparison to Earth structure. Reproducing the fundamental features of the Earth's attenuation profile requires reduced activation volume and relaxed shear moduli in the lower mantle compared to the upper mantle, in agreement with geodynamic constraints. Faster lower mantle grain growth yields best fit to seismic observations, consistent with our re-examination of high pressure grain growth parameters. We also show that ignoring grain size in interpretations of seismic anomalies may underestimate the Earth's true temperature variations.

  17. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz, O.; Moreno, F.; Guirado, D.

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Furthermore » computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.« less

  18. A brittle to ductile transition in NiAl of a critical grain size

    NASA Technical Reports Server (NTRS)

    Schulson, E. M.; Barker, D. R.

    1983-01-01

    Tensile tests have been carried out on the strongly ordered B2 aluminide NiAl at 400 C to investigate the effect of the grain size on the ductility of the material. It is found that the ductility is very low and essentially independent of the grain size for aggregates of grains larger than about 20 microns; for finer-grained aggregates, the ductility increases sharply with decreasing grain size. Thus, NiAl exhibits a critical grain size below which polycrystalline aggregates are ductile in tension. For all grain sizes, fracture occurs in a brittle manner through a combination of intergranular decohesion and transgranular cleavage.

  19. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2017-03-01

    Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size <1 µm) and a small fraction of the inter lath films of retained austenite. The UFG DP steel produced through intercritical annealing at 1013 K (740 °C) has good combination of strength (1295 MPa) and ductility (uniform elongation, 13 pct). The nanoscale V- and Nb-based carbides/carbonitrides and spheroidized cementite particles have played a crucial role in achieving UFG DP microstructure and in improving the strength and work hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

  20. Grain Size as a Control for Melt Focusing Beneath Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Turner, A.; Katz, R. F.; Behn, M. D.

    2015-12-01

    Grain size is a fundamental control on both the rheology and permeability of the mantle. These properties, in turn, affect the transport of melt beneath mid-ocean ridges. Previous models of grain size beneath ridges have considered only the single-phase problem of dynamic recrystallisation and the resultant pattern of grain-size variation [1,2]. These models have not coupled the spatially variable grain-size field to two-phase (partially molten) mechanics to investigate the implications of spatially variable grain size on melt transport. Here, we present new results from numerical models that investigate the consequences of this coupling. In our two-dimensional, two-phase model the grain-size is coupled to both the permeability and rheology. The rheology is strain-rate and grain-size dependent. For simplicity, however, the grain-size field is not computed dynamically — rather, it is imposed from a single-phase, steady-state model [1] that is based on the "wattmeter" theory [3]. Our calculations predicts that a spatially variable grain size field can promote focusing of melt towards the ridge axis. This focusing is distinct from the commonly discussed, sub-lithospheric decompaction channel [4]. Furthermore, our model predicts that the shape of the partially molten region is sensitive to rheological parameters associated with grain size. The comparison of this shape with observations [5] may help to constrain the rheology of the upper mantle beneath mid-ocean ridges. References: [1] Turner et al., Geochem. Geophys. Geosyst., 16, 925-946, 2015. [2] Behn et al., EPSL, 282, 178-189, 2009. [3] Austin and Evans, Geology, 35:343-346, 2007. [4] Sparks and Parmentier, EPSL, 105, 368-377, 1991. [5] Key et al., Nature, 495, 499-502, 2013.

  1. Nano-Sized Grain Refinement Using Friction Stir Processing

    DTIC Science & Technology

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  2. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    PubMed

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction.

    PubMed

    Turner, Andrew J; Katz, Richard F; Behn, Mark D

    2015-03-01

    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise. The grain-size field beneath MORs can vary over orders of magnitude The grain-size field affects the rheology and permeability of the asthenosphere The grain-size field may focus melt toward the ridge axis.

  4. Effects of grain size on the properties of bulk nanocrystalline Co-Ni alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Gui-Ying; Xiao, Fu-Ren

    2017-08-01

    Bulk nanocrystalline Co78Ni22 alloys with grain size ranging from 5 nm to 35 nm were prepared by high-speed jet electrodeposition (HSJED) and annealing. Microhardness and magnetic properties of these alloys were investigated by microhardness tester and vibrating sample magnetometer. Effects of grain size on these characteristics were also discussed. Results show that the microhardness of nanocrystalline Co78Ni22 alloys increases following a d -1/2-power law with decreasing grain size d. This phenomenon fits the Hall-Petch law when the grain size ranges from 5 nm to 35 nm. However, coercivity H c increases following a 1/d-power law with increasing grain size when the grain size ranges from 5 nm to 15.9 nm. Coercivity H c decreases again for grain sizes above 16.6 nm according to the d 6-power law.

  5. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  6. A simple autocorrelation algorithm for determining grain size from digital images of sediment

    USGS Publications Warehouse

    Rubin, D.M.

    2004-01-01

    Autocorrelation between pixels in digital images of sediment can be used to measure average grain size of sediment on the bed, grain-size distribution of bed sediment, and vertical profiles in grain size in a cross-sectional image through a bed. The technique is less sensitive than traditional laboratory analyses to tails of a grain-size distribution, but it offers substantial other advantages: it is 100 times as fast; it is ideal for sampling surficial sediment (the part that interacts with a flow); it can determine vertical profiles in grain size on a scale finer than can be sampled physically; and it can be used in the field to provide almost real-time grain-size analysis. The technique can be applied to digital images obtained using any source with sufficient resolution, including digital cameras, digital video, or underwater digital microscopes (for real-time grain-size mapping of the bed). ?? 2004, SEPM (Society for Sedimentary Geology).

  7. ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.

    PubMed

    Vasyanovich, M; Mostafa, M Y A; Zhukovsky, M

    2017-11-01

    Cascade impactors based on inertial deposition of aerosols are widely used to determine the size distribution of radioactive aerosols. However, there are situations where radioactive aerosols are represented by particles with a diameter of 1-5 nm. In this case, ultrafine aerosols can be deposited on impactor cascades by diffusion mechanism. The influence of ultrafine aerosols (1-5 nm) on the response of three different types of cascade impactors was studied. It was shown that the diffusion deposition of ultrafine aerosols can distort the response of the cascade impactor. The influence of diffusion deposition of ultrafine aerosols can be considerably removed by the use of mesh screens or diffusion battery installed before cascade impactor during the aerosol sampling. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The relevance of grain dissection for grain size reduction in polar ice: insights from numerical models and ice core microstructure analysis

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-09-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to

  9. Grain size of loess and paleosol samples: what are we measuring?

    NASA Astrophysics Data System (ADS)

    Varga, György; Kovács, János; Szalai, Zoltán; Újvári, Gábor

    2017-04-01

    Particle size falling into a particularly narrow range is among the most important properties of windblown mineral dust deposits. Therefore, various aspects of aeolian sedimentation and post-depositional alterations can be reconstructed only from precise grain size data. Present study is aimed at (1) reviewing grain size data obtained from different measurements, (2) discussing the major reasons for disagreements between data obtained by frequently applied particle sizing techniques, and (3) assesses the importance of particle shape in particle sizing. Grain size data of terrestrial aeolian dust deposits (loess and paleosoil) were determined by laser scattering instruments (Fritsch Analysette 22 Microtec Plus, Horiba Partica La-950 v2 and Malvern Mastersizer 3000 with a Hydro Lv unit), while particles size and shape distributions were acquired by Malvern Morphologi G3-ID. Laser scattering results reveal that the optical parameter settings of the measurements have significant effects on the grain size distributions, especially for the fine-grained fractions (<5 µm). Significant differences between the Mie and Fraunhofer approaches were found for the finest grain size fractions, while only slight discrepancies were observed for the medium to coarse silt fractions. It should be noted that the different instruments provided different grain size distributions even with the exactly same optical settings. Image analysis-based grain size data indicated underestimation of clay and fine silt fractions compared to laser measurements. The measured circle-equivalent diameter of image analysis is calculated from the acquired two-dimensional image of the particle. It is assumed that the instantaneous pulse of compressed air disperse the sedimentary particles onto the glass slide with a consistent orientation with their largest area facing to the camera. However, this is only one outcome of infinite possible projections of a three-dimensional object and it cannot be regarded as a

  10. Element enrichment factor calculation using grain-size distribution and functional data regression.

    PubMed

    Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R

    2015-01-01

    In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    NASA Astrophysics Data System (ADS)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  12. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    USGS Publications Warehouse

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  13. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    PubMed

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.

  14. A generalized threshold model for computing bed load grain size distribution

    NASA Astrophysics Data System (ADS)

    Recking, Alain

    2016-12-01

    For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.

  15. Evaluating the importance of grain size sensitive creep in terrestrial ice sheet rheology

    NASA Astrophysics Data System (ADS)

    Maaijwee, C. N. P. J.; de Bresser, J. H. P.

    2009-04-01

    The rheology of ice in terrestrial ice sheets is generally considered to be independent of the size of the grains (crystals), and appears well described by Glen's flow law. In recent years, however, new laboratory deformation experiments on ice as well as analysis of in situ measurements of deformation at glaciers suggested that grain size and variations therein should not be discarded as important parameters in the deformation of ice in nature. Ice, just like crystalline rock materials, exhibits distributed grain sizes. Taking now that not only grain size insensitive (GSI; dislocation) mechanisms, but also grain size sensitive (GSS; diffusion and/or grain boundary sliding) mechanisms may be operative in ice, variations in the shape of the distribution (e.g. the width) can be expected to affect the rheological behaviour. To evaluate this effect, we have derived a composite GSI+GSS flow law and combined this with full grain size distributions. The constitutive flow equations for end-member GSI and GSS creep of ice were taken from the work of Goldsby and Kohlstedt (2001, J.Geophys.Res., vol. 106). We used their description of grain boundary sliding controlled creep as representative of GSS creep. The grain size data largely came from published measurements from the top 800-1000 m of two Greenland ice cores (NorthGRIP and GRIP) and one Antarctic ice core (Epica, Dome Concordia). Temperature profiles were available for both core settings. The grain size data show a close to lognormal distribution in all three settings, with the median grain size increasing with depth. We constructed a synthetic grain size profile up to a depth of 3100 m (cf. GRIP) by allowing the median grain size and standard deviation of the distribution to linearly increase with depth. The percentage GSS creep contributing to the total strain rate has been calculated for a range of strain rates that were assumed constant along the ice core axes. The results of our calculations show that at realistic

  16. Measurements of hygroscopicity and volatility of atmospheric ultrafine particles during ultrafine particle formation events at urban, industrial, and coastal sites.

    PubMed

    Park, Kihong; Kim, Jae-Seok; Park, Seung Ho

    2009-09-01

    The tandem differential mobility analyzer (TDMA) technique was applied to determine the hygroscopicity and volatility of atmospheric ultrafine particles in three sites of urban Gwangju, industrial Yeosu, and coastal Taean in South Korea. A database for the hygroscopicity and volatility of the known compositions and sizes of the laboratory-generated particles wasfirst constructed for comparison with the measured properties of atmospheric ultrafine particles. Distinct differences in hygroscopicity and volatility of atmospheric ultrafine particles werefound between a "photochemical event" and a "combustion event" as well as among different sites. At the Gwangju site, ultrafine particles in the "photochemical event" were determined to be more hygroscopic (growth factor (GF) = 1.05-1.33) than those in the "combustion event" (GF = 1.02-1.12), but their hygroscopicity was not as high as pure ammonium sulfate or sulfuric acid particles in the laboratory-generated database, suggesting they were internally mixed with less soluble species. Ultrafine particles in the "photochemical event" at the Yeosu site, having a variety of SO2, CO, and VOC emission sources, were more hygroscopic (GF = 1.34-1.60) and had a higher amount of volatile species (47-75%)than those observed at the Gwangju site. Ultrafine particle concentration at the Taean site increased during daylight hours with low tide, having a higher GF (1.34-1.80) than the Gwangju site and a lower amount of volatile species (17-34%) than the Yeosu site. Occasionally ultrafine particles were externally mixed according to their hygroscopicity and volatility, and TEM/EDS data showed that each type of particle had a distinct morphology and elemental composition.

  17. Development of manufacturing systems for nanocrystalline and ultra-fine grain materials employing indexing equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hester, Michael Wayne

    Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece

  18. Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus

    2017-10-01

    The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (<10 km), the solar wind leads to a depletion of fine grains (<100µm) on the surface. Ground observations of the two asteroids currently targeted by spacecraft, Ryugu (Hayabusa-2) and Bennu (OSIRIS-REx), indicate that their surfaces could be covered in mm- to cm-sized regolith grains. As these small bodies have surface gravity levels below 10-5g, g being the Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes <250 µm have revealed a transition of the grain behavior from a gravity-dominated regime to a cohesion-dominated regime when the local gravity level reaches values below 10-3g. This is in good agreement with analytical and simulation studies for these grain sizes. From the expected grain sizes at the surfaces of Ryugu and Bennu, we have now focused on larger grain sizes ranging from mm to cm. We have carried out a series of experiments to study the cohesion behavior of such larger grains of asteroid regolith simulant. The simulant used was CI Orgueil of Deep Space Industries. Experiments included laboratory tabletop avalanching, compression and shear force measurements, as well as low-velocity impacts under microgravity.Our goal is to determine if the grain size distribution has an influence on the cohesion behavior of the regolith and if we can validate numerical simulation results with experimental measurements. We will discuss the implications of our results for sample return or landing missions to small bodies such as

  19. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less

  20. Strategic Regulation of Grain Size in Memory Reporting over Time

    ERIC Educational Resources Information Center

    Goldsmith, M.; Koriat, A.; Pansky, A.

    2005-01-01

    As time passes, people often remember the gist of an event though they cannot remember its details. Can rememberers exploit this difference by strategically regulating the ''grain size'' of their answers over time, to avoid reporting wrong information? A metacognitive model of the control of grain size in memory reporting was examined in two…

  1. Impact of grain size evolution on necking and pinch-and-swell formation in calcite layers

    NASA Astrophysics Data System (ADS)

    Schmalholz, Stefan Markus; Duretz, Thibault

    2017-04-01

    The formation of necking zones and the associated formation of pinch-and-swell structure is one form of strain localization in extending, competent layers. Natural pinch-and-swell structure in centimetre-thick calcite layers typically shows a reduction of grain size from swell towards pinch. However, the impact of grain size evolution on necking and pinch-and-swell formation is incompletely understood. We perform zero-dimensional (0D) and 2D thermo-mechanical numerical simulations to quantify the impact of grain size evolution on necking for extension rates between 10-12s^-1and10^-14 s-1 and temperatures around 350°C. For a combination of diffusion and dislocation creep we calculate grain size evolution according to the paleowattmeter (grain size is proportional to mechanical work rate) or the paleopiezometer (grain size is proportional to stress). Numerical results fit two observations: (i) grain size reduction from swells towards pinches, and (ii) dislocation creep dominated deformation in swells and significant contribution of diffusion creep in pinches. Modelled grain size in pinches (10 to 60 μm) and swells (70 to 800 μm) is close to observed grain size in pinches (15 to 27 μm) and in swells (250 to 1500 μm). Grain size evolution has only a minor impact on necking suggesting that grain size evolution is a consequence, and not the cause of necking. Viscous shear heating and grain size evolution had a negligible thermal impact in the simulations.

  2. Grain size effects on dislocation and twinning mediated plasticity in magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-09-20

    Grain size effects on the competition between dislocation slip and {101¯2} -twinning in magnesium are investigated using discrete dislocation dynamics simulations. These simulations account for dislocation–twin boundary interactions and twin boundary migration through the glide of twinning dislocations. It is shown that twinning deformation exhibits a strong grain size effect; while dislocation mediated slip in untwinned polycrystals displays a weak one. In conclusion, this leads to a critical grain size at 2.7 μm, above which twinning dominates, and below which dislocation slip dominates.

  3. Ultrafine particle concentration and new particle formation in a coastal arid environment

    NASA Astrophysics Data System (ADS)

    Alfoldy, Balint; Kotob, Mohamed; Obbard, Jeffrey P.

    2017-04-01

    Arid environments can be generally characterised by high coarse aerosol load due to the wind-driven erosion of the upper earth crust (i.e. Aeolian dust). On the other hand, anthropogenic activities and/or natural processes also generate significant numbers of particles in the ultrafine size range. Ultrafine particles (also referred as nano-particles) is considered as aerosol particles with the diameter less than 100 nm irrespectively their chemical composition. Due to their small size, these particles represent negligible mass portion in the total atmospheric particulate mass budget. On the other hand, these particles represent the majority of the total particle number budget and have the major contribution in the total aerosol surface distribution. Ultrafine particles are characterised by high mobility (diffusion) and low gravitational settling velocity. Consequently, these particles can be transported long distances and their atmospheric lifetime is relatively high (i.e. in the Accumulation Mode). Ultrafine particles play important role in the atmosphere as they take part in the atmospheric chemistry (high surface), impact the climate (sulphate vs. black carbon), and implies significant health effects due to their deep lung penetration and high mobility in the body. The Atmospheric Laboratory of Qatar University is conducting real-time monitoring of ultrafine particles and regularly taking aerosol samples for chemical analysis at the university campus. In this paper, recent results are presented regarding the size distribution and chemical composition of the ultrafine aerosol particles. Based on the concentration variation in time, sources of ultrafine particles can be clearly separated from the sources of fine or coarse particles. Several cases of new particle formation events have been observed and demonstrated in the paper, however, the precursors of the secondary aerosol particles are still unknown. Literature references suggest that among the sulphuric acid

  4. The role of grain size in He bubble formation: Implications for swelling resistance

    DOE PAGES

    El-Atwani, Osman; Nathaniel, II, James E.; Leff, Asher C.; ...

    2016-12-07

    Here, nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas rangingmore » from 3000 to 7500 nm 2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm 2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.« less

  5. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira; Dimopoulos Eggenschwiler, Panayotis

    2018-08-01

    Ultrafine (<100 nm) particles related to traffic are of high environmental and human health concern, as they are supposed to be more toxic than larger particles. In the present study transmission electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles <10 nm were rarely detected. The ultrafine particles can be distinguished into the following types: soot, ash-bearing soot and ash. Ash consists of Ca, P, Mg, Zn, Fe, S, and minor Sn compounds. Most elements originate from lubricating oil additives; Sn and at least part of Fe are products of engine wear; minor W ± Si-bearing nearly spherical particles in Diesel exhaust derive from catalytic coating material. Ultrafine ash particles predominate over ultrafine soot or are nearly equal in amount, in contrast to emissions of larger sizes where soot is by far the prevalent particle type. This is probably due to the low ash amount per volume fraction in the total emissions, which does not favor formation of large ash agglomerates, opposite to soot, which is abundant and thus easily forms agglomerates of sizes larger than those of the ultrafine range. No significant differences of ultrafine particle characteristics were identified among the tested Gasoline and Diesel vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles. Copyright © 2018 Elsevier Ltd. All

  6. Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos

    2016-09-09

    We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is muchmore » slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).« less

  7. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.

  8. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors.

    PubMed

    Liu, Fangyan; Su, Hai; Jin, Long; Zhang, Haitao; Chu, Xiang; Yang, Weiqing

    2017-11-01

    The ultrafine Co 3 O 4 nanoparticles are successfully prepared by a novel solvothermal-precipitation approach which exploits the supernatant liquid of Co 3 O 4 nanoflake micropheres synthesized by solvothermal method before. Interestingly, the water is only employed to obtain the ultrafine nanoparticles in supernatant liquid which was usually thrown away before. The microstructure measurement results of the as-grown samples present the homogeneous disperse ultrafine Co 3 O 4 nanoparticles with the size of around 5-10nm. The corresponding synthesis mechanism of the ultrafine Co 3 O 4 nanoparticles is proposed. More importantly, these ultrafine Co 3 O 4 nanoparticles obtained at 250°C show the highest specific capacitance of 523.0Fg -1 at 0.5Ag -1 , 2.6 times that of Co 3 O 4 nanoflake micropheres due to the quantum size effect. Meanwhile, the sample annealed under 350°C possesses the best cycling stability with capacitance retention of 104.9% after 1500 cycles. These results unambiguously demonstrate that this work not only provides a novel, facile, and eco-friendly approach to prepare high-performance Co 3 O 4 nanoparticles electrode materials for supercapacitors but also develops a widely used method for the preparation of other materials on a large scale. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    PubMed

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear texture and weak cube orientation. The subdivision of the grains to the rolling direction began to occur after 3 cycles of the ARB, resulting in formation of ultrafine grains with small aspect ratio. After 5 cycles, the ultrafine grained structure with the average grain diameter of 560 nm develops in almost whole regions of the sample.

  10. Metamorphic reactions, grain size reduction and deformation of mafic lower crustal rocks

    NASA Astrophysics Data System (ADS)

    Degli Alessandrini, Giulia; Menegon, Luca; Beltrando, Marco; Dijkstra, Arjan; Anderson, Mark

    2016-04-01

    This study investigates grain-scale deformation mechanisms associated with strain localization in the mafic continental lower crust, with particular focus on the role of syn-kinematic metamorphic reactions and their product - symplectites - in promoting grain size reduction and phase mixing. The investigated shear zone is hosted in the Finero mafic-ultramafic complex in the Italian Southern Alps. Shearing occurred at T ≥ 650° C and P ≥ 0.4-0.6 GPa. The shear zone reworks both mafic and ultramafic lithologies and displays anastomosing patterns of (ultra)mylonitic high strain zones wrapping less foliated, weakly deformed low strain domains. Field and microstructural observations indicate that different compositional layers of the shear zone responded differently to deformation, resulting in strain partitioning. Four distinct microstructural domains have been identified: (1) an ultramylonitic domain characterized by an amph + pl matrix (grain size < 30μm) with large amphibole porphyroclasts (grain size between 200μm and 5000μm) and rare garnets; (2) a domain rich in garnet porphyroclasts embedded in a matrix of monomineralic plagioclase displaying a core and mantle structure (average grain size 45μm) (3) a metagabbroic domain with porphyroclasts of clinopyroxene, orthopyroxene and garnets (200μm average grain size) wrapped by monomineralic ribbons of recrystallized plagioclase and (4) a garnet-free ultramylonitic domain composed of an intermixed amph + cpx + opx + pl matrix (6μm average grain size). In these domains, each porphyroclastic mineral responds differently to deformation: amphibole readily breaks down to symplectitic intergrowths of amph + pl or opx + pl. Garnet undergoes fracturing (in domain 2) or reacts to give symplectites of pl + opx (in domain 3). Plagioclase dynamically recrystallizes in mono-phase aggregates, whereas clinopyroxene undergoes fracturing and orthopyroxene undergoes plastic deformation. The behaviour of the different phases

  11. Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Chen, Li-jia; Zhang, Guo-qiang; Han, Dong; Li, Xiao-wu

    2018-06-01

    To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained (UFG) materials with a high stacking fault energy (SFE), UFG Al processed by equal-channel angular pressing (ECAP) was selected as a target material and its tensile behavior at different pre-cyclic levels D ( D = N i / N f, where N i and N f are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa, respectively) along with the corresponding microstructures and deformation features were systematically studied. The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress, and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples. The yield strength σ YS, ultimate tensile strength σ UTS, and uniform strain ɛ exhibited a strong dependence on D when D ≤ 20%; however, when D was in the range from 20% to 50%, no obvious change in mechanical properties was observed. The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.

  12. Investigations of grain size dependent sediment transport phenomena on multiple scales

    NASA Astrophysics Data System (ADS)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  13. Species distribution model transferability and model grain size - finer may not always be better.

    PubMed

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  14. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  15. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-10-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  16. Experimental verification of cleavage characteristic stress vs grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, W.; Li, D.; Yao, M.

    Instead of the accepted cleavage fracture stress [sigma][sub f] proposed by Knott et al, a new parameter S[sub co], named as ''cleavage characteristic stress,'' has been recently recommended to characterize the microscopic resistance to cleavage fracture. To give a definition, S[sub co] is the fracture stress at the brittle/ductile transition temperature of steels in plain tension, below which the yield strength approximately equals the true fracture stress combined with an abrupt curtailment of ductility. By considering a single-grain microcrack arrested at a boundary, Huang and Yao set up an expression of S[sub co] as a function of grain size. Themore » present work was arranged to provide an experimental verification of S[sub co] vs grain size.« less

  17. Only pick the right grains: Modelling the bias due to subjective grain-size interval selection for chronometric and fingerprinting approaches.

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Fuchs, Margret; Kreutzer, Sebastian

    2016-04-01

    Many modern approaches of radiometric dating or geochemical fingerprinting rely on sampling sedimentary deposits. A key assumption of most concepts is that the extracted grain-size fraction of the sampled sediment adequately represents the actual process to be dated or the source area to be fingerprinted. However, these assumptions are not always well constrained. Rather, they have to align with arbitrary, method-determined size intervals, such as "coarse grain" or "fine grain" with partly even different definitions. Such arbitrary intervals violate principal process-based concepts of sediment transport and can thus introduce significant bias to the analysis outcome (i.e., a deviation of the measured from the true value). We present a flexible numerical framework (numOlum) for the statistical programming language R that allows quantifying the bias due to any given analysis size interval for different types of sediment deposits. This framework is applied to synthetic samples from the realms of luminescence dating and geochemical fingerprinting, i.e. a virtual reworked loess section. We show independent validation data from artificially dosed and subsequently mixed grain-size proportions and we present a statistical approach (end-member modelling analysis, EMMA) that allows accounting for the effect of measuring the compound dosimetric history or geochemical composition of a sample. EMMA separates polymodal grain-size distributions into the underlying transport process-related distributions and their contribution to each sample. These underlying distributions can then be used to adjust grain-size preparation intervals to minimise the incorporation of "undesired" grain-size fractions.

  18. Impact of grain size and rock composition on simulated rock weathering

    NASA Astrophysics Data System (ADS)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  19. Grain size-sensitive viscoelastic relaxation and seismic properties of polycrystalline MgO

    NASA Astrophysics Data System (ADS)

    Barnhoorn, A.; Jackson, I.; Fitz Gerald, J. D.; Kishimoto, A.; Itatani, K.

    2016-07-01

    Torsional forced-oscillation experiments on a suite of synthetic MgO polycrystals, of high-purity and average grain sizes of 1-100 µm, reveal strongly viscoelastic behavior at temperatures of 800-1300°C and periods between 1 and 1000 s. The measured shear modulus and associated strain energy dissipation both display monotonic variations with oscillation period, temperature, and grain size. The data for the specimens of intermediate grain size have been fitted to a generalized Burgers creep function model that is also broadly consistent with the results for the most coarse-grained specimen. The mild grain size sensitivity for the relaxation time τL, defining the lower end of the anelastic absorption band, is consistent with the onset of elastically accommodated grain boundary sliding. The upper end of the anelastic absorption band, evident in the highest-temperature data for one specimen only, is associated with the Maxwell relaxation time τM marking the transition toward viscous behavior, conventionally ascribed a stronger grain size sensitivity. Similarly pronounced viscoelastic behavior was observed in complementary torsional microcreep tests, which confirm that the nonelastic strains are mainly recoverable, i.e., anelastic. With an estimated activation volume for the viscoelastic relaxation, the experimentally constrained Burgers model has been extrapolated to the conditions of pressure and temperature prevailing in the Earth's uppermost lower mantle. For a plausible grain size of 10 mm, the predicted dissipation Q-1 ranges from 10-3 to 10-2 for periods of 3-3000 s. Broad consistency with seismological observations suggests that the lower mantle ferropericlase phase might account for much of its observed attenuation.

  20. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence.

    PubMed

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-04-01

    Metallic biomedical devices with nanometer-sized grains (NGs) provide surfaces that are different from their coarse-grained (CG) (tens of micrometer) counterparts in terms of increased fraction of grain boundaries (NG>50%; CG<2-3%). The novel concept of 'phase-reversion' involving a controlled deformation-annealing sequence is used to obtain a wide range of grain structures, starting from the NG regime to the CG regime, to demonstrate that the grain structure significantly impacts cellular interactions and osteoblast functions. The uniqueness of this concept is the ability to address the critical aspect of cellular activity in nanostructured materials, because a range of grain sizes from NG to CG are obtained in a single material using an identical set of parameters. This is in addition to a high strength/weight ratio and superior wear and corrosion resistance. These multiple attributes are important for the long-term stability of biomedical devices. Experiments on the interplay between grain structure from the NG regime to CG in austenitic stainless steel on osteoblast functions indicated that cell attachment, proliferation, viability, morphology and spread varied with grain size and were favorably modulated on the NG and ultrafine-grain structure. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on the NG surface. The differences in the cellular response with change in grain structure are attributed to grain structure and degree of hydrophilicity. The study lays the foundation for a new branch of nanostructured materials for biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. High Strength-High Ductility Combination Ultrafine-Grained Dual-Phase Steels Through Introduction of High Degree of Strain at Room Temperature Followed by Ultrarapid Heating During Continuous Annealing of a Nb-Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Deng, Yonggang; Di, Hongshuang; Hu, Meiyuan; Zhang, Jiecen; Misra, R. D. K.

    2017-07-01

    Ultrafine-grained dual-phase (UFG-DP) steel consisting of ferrite (1.2 μm) and martensite (1 μm) was uniquely processed via combination of hot rolling, cold rolling and continuous annealing of a low-carbon Nb-microalloyed steel. Room temperature tensile properties were evaluated and fracture mechanisms studied and compared to the coarse-grained (CG) counterpart. In contrast to the CG-DP steel, UFG-DP had 12.7% higher ultimate tensile strength and 10.7% greater uniform elongation. This is partly attributed to the increase in the initial strain-hardening rate, decrease in nanohardness ratio of martensite and ferrite. Moreover, a decreasing number of ferrite grains with {001} orientation increased the cleavage fracture stress and increased the crack initiation threshold stress with consequent improvement in ductility UFG-DP steel.

  2. Grain-size-dependent diamond-nondiamond composite films: characterization and field-emission properties.

    PubMed

    Pradhan, Debabrata; Lin, I Nan

    2009-07-01

    Diamond films with grain sizes in the range of 5-1000 nm and grain boundaries containing nondiamond carbon are deposited on a silicon substrate by varying the deposition parameters. The overall morphologies of the as-deposited diamond-nondiamond composite films are examined by scanning electron microscopy and atomic force microscopy, which show a decrease in the surface roughness with a decrease in the diamond grain size. Although the Raman spectra show predominately nondiamond carbon features in the diamond films with smaller grain sizes, glancing-angle X-ray diffraction spectra show the absence of graphitic carbon features and the presence of very small amorphous carbon diffraction features. The CH4 percentage (%) in Ar and H2 plasma during deposition plays a crucial role in the formation of diamond films with different grain sizes and nondiamond carbon contents, which, in turn, determines the field-emission behavior of the corresponding diamond films. The smaller the grain size of the diamond, the lower is the turn-on field for electron emission. A lower turn-on field is obtained from the diamond films deposited with 2-5% CH4 than from the films deposited with either 1% or 7.5% CH4 in the Ar medium. A current density greater than 1 mA/cm2 (at 50 V/microm) is obtained from diamond films deposited with a higher percentage of CH4. A model is suggested for the field-emission mechanism from the diamond-nondiamond composite films with different diamond grain sizes and nondiamond contents.

  3. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.

    PubMed

    Jørgensen, Rikke Bramming; Buhagen, Morten; Føreland, Solveig

    2016-07-01

    To investigate the exposure to number concentration of ultrafine particles and the size distribution in the breathing zone of workers during rehabilitation of a subsea tunnel. Personal exposure was measured using a TSI 3091 Fast Mobility Particle Sizer (FMPS), measuring the number concentration of submicrometre particles (including ultrafine particles) and the particle size distribution in the size range 5.6-560 nm. The measurements were performed in the breathing zone of the operators by the use of a conductive silicone tubing. Working tasks studied were operation of the slipforming machine, operations related to finishing the verge, and welding the PVC membrane. In addition, background levels were measured. Arithmetic mean values of ultrafine particles were in the range 6.26×10(5)-3.34×10(6). Vertical PVC welding gave the highest exposure. Horizontal welding was the work task with the highest maximum peak exposure, 8.1×10(7) particles/cm(3). Background concentrations of 4.0×10(4)-3.1×10(5) were found in the tunnel. The mobility diameter at peak particle concentration varied between 10.8 nm during horizontal PVC welding and during breaks and 60.4 nm while finishing the verge. PVC welding in a vertical position resulted in very high exposure of the worker to ultrafine particles compared to other types of work tasks. In evaluations of worker exposure to ultrafine particles, it seems important to distinguish between personal samples taken in the breathing zone of the worker and more stationary work area measurements. There is a need for a portable particle-sizing instrument for measurements of ultrafine particles in working environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    DOE PAGES

    Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; ...

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model usedmore » to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.« less

  5. Grain size mapping in shallow rivers using spectral information: a lab spectroradiometry perspective

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2017-10-01

    Every individual attribute of a riverine environment defines the overall spectral signature to be observed by an optical sensor. The spectral characteristic of riverbed is influenced not only by the type but also the roughness of substrates. Motivated by this assumption, potential of optical imagery for mapping grain size of shallow rivers (< 1 m deep) is examined in this research. The previous studies concerned with grain size mapping are all built upon the texture analysis of exposed bed material using very high resolution (i.e. cm resolution) imagery. However, the application of texturebased techniques is limited to very low altitude sensors (e.g. UAVs) to ensure the sufficient spatial resolution. Moreover, these techniques are applicable only in the presence of exposed substrates along the river channel. To address these drawbacks, this study examines the effectiveness of spectral information to make distinction among grain sizes for submerged substrates. Spectroscopic experiments are performed in controlled condition of a hydraulic lab. The spectra are collected over a water flume in a range of water depths and bottoms with several grain sizes. A spectral convolution is performed to match the spectra to WorldView-2 spectral bands. The material type of substrates is considered the same for all the experiments with only variable roughness/size of grains. The spectra observed over dry beds revealed that the brightness/reflectance increases with the grain size across all the spectral bands. Based on this finding, the above-water spectra over a river channel are simulated considering different grain sizes in the bottom. A water column correction method is then used to retrieve the bottom reflectances. Then the inferred bottom reflectances are clustered to segregate among grain sizes. The results indicate high potential of the spectral approach for clustering grain sizes (overall accuracy of 92%) which opens up some horizons for mapping this valuable attribute of

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  7. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  8. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    NASA Astrophysics Data System (ADS)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  9. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    NASA Astrophysics Data System (ADS)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most

  10. Effects of moisture and grain size on the mechanisms of rainsplash transport

    NASA Astrophysics Data System (ADS)

    Taube, S. R.; Furbish, D. J.

    2010-12-01

    Desert shrubs accumulate soil mounds beneath their canopies through rainsplash transport. Previous studies of this process have suggested that there is a preferential concentration of smaller grain sizes closer to the base of the shrub, based on the idea that smaller material is more readily splashed inward beneath the shrub. However, our studies have shown that there are two mechanisms of ejection of the grains with moist soil conditions, each preferentially moving either large or small grain sizes. Larger grains tend to be launched from grain-to-grain collisions following drop impact and travel as individual grains. Smaller grains appear to clump together and move as a single large "grain". The medium-sized grains generally had a greater travel distance than the very large or very small grains, potentially because they involve both modes of transport with a greater effective transfer of energy from the raindrop to the grains. The average travel distance is greatest near 100 microns, which is reflected by the data of Leguedois, et al. (2005). Experiments using high-speed imaging reveals that there is a marked difference between the mechanism of transport when the sediment grains are dry versus when they are moist. The dry grains are rapidly deposited about the impact site with a small proportion moving far from the site. However, moist grains tend to clump together to form “blobs” of water and sediment. Immediately after impact, the drop creates a water corona with entrained sediment, which then contracts into water-sediment blobs that are rocketed outwards from the impact, leaving little to no grain mass near the impact site. Varying degrees of moisture content appeared to have little influence on grain dispersal, leading us to believe that once the soil material is moist (but not saturated), its splash behavior is mostly related to details of the drop corona.

  11. Eyewitness Recall: Regulation of Grain Size and the Role of Confidence

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2008-01-01

    Eyewitness testimony plays a critical role in Western legal systems. Three experiments extended M. Goldsmith, A. Koriat, and A. Weinberg-Eliezer's (2002) framework of the regulation of grain size (precision vs. coarseness) of memory reports to eyewitness memory. In 2 experiments, the grain size of responses had a large impact on memory accuracy.…

  12. Structure and Growth of Rod-Shaped Mn Ultrafine Particle

    NASA Astrophysics Data System (ADS)

    Kido, Osamu; Suzuki, Hitoshi; Saito, Yoshio; Kaito, Chihiro

    2003-09-01

    The structure of rod-shaped Mn ultrafine particles was elucidated by electron microscopy. Mn ultrafine particles have characteristic tristetrahedron (α-Mn), rhombic dodecahedron (β-Mn) and rod-shape crystal habits. It was found that the rod-shaped particle resulted from the parallel coalescence of β-Mn particles with the size of 50 nm. Detailed analysis of the defects seen in large rod-shaped particles with the width of 100 nm indicated a mixture of α- and β-phases. A size effect on the phase transition from β to α was observed throughout the rod-shaped crystal structure. The structure and growth of Mn particles were discussed based on the outline of the smoke and the temperature distribution in the smoke.

  13. Determination of grain-size characteristics from electromagnetic seabed mapping data: A NW Iberian shelf study

    NASA Astrophysics Data System (ADS)

    Baasch, Benjamin; Müller, Hendrik; von Dobeneck, Tilo; Oberle, Ferdinand K. J.

    2017-05-01

    The electric conductivity and magnetic susceptibility of sediments are fundamental parameters in environmental geophysics. Both can be derived from marine electromagnetic profiling, a novel, fast and non-invasive seafloor mapping technique. Here we present statistical evidence that electric conductivity and magnetic susceptibility can help to determine physical grain-size characteristics (size, sorting and mud content) of marine surficial sediments. Electromagnetic data acquired with the bottom-towed electromagnetic profiler MARUM NERIDIS III were analysed and compared with grain size data from 33 samples across the NW Iberian continental shelf. A negative correlation between mean grain size and conductivity (R=-0.79) as well as mean grain size and susceptibility (R=-0.78) was found. Simple and multiple linear regression analyses were carried out to predict mean grain size, mud content and the standard deviation of the grain-size distribution from conductivity and susceptibility. The comparison of both methods showed that multiple linear regression models predict the grain-size distribution characteristics better than the simple models. This exemplary study demonstrates that electromagnetic benthic profiling is capable to estimate mean grain size, sorting and mud content of marine surficial sediments at a very high significance level. Transfer functions can be calibrated using grains-size data from a few reference samples and extrapolated along shelf-wide survey lines. This study suggests that electromagnetic benthic profiling should play a larger role for coastal zone management, seafloor contamination and sediment provenance studies in worldwide continental shelf systems.

  14. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  15. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    NASA Astrophysics Data System (ADS)

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  16. Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.

    1971-01-01

    The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.

  17. Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges

    2016-02-15

    Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less

  18. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  19. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  20. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  1. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Xingxing; Sun, Youbin; Vandenberghe, Jef; Li, Ying; An, Zhisheng

    2018-06-01

    Sedimentary sequences that developed on river terraces have been widely investigated to reconstruct high-resolution palaeoclimatic changes since the last deglaciation. However, frequent changes in sedimentary facies make palaeoenvironmental interpretation of grain-size variations relatively complicated. In this paper, we employed multiple grain-size parameters to discriminate the sedimentary characteristics of aeolian and fluvial facies in the Dadiwan (DDW) section on the western Chinese Loess Plateau. We found that wind and fluvial dynamics have quite different impacts on the grain-size compositions, with distinctive imprints on the distribution pattern. By using a lognormal distribution fitting approach, two major grain-size components sensitive to aeolian and fluvial processes, respectively, were distinguished from the grain-size compositions of the DDW terrace deposits. The fine grain-size component (GSC2) represents mixing of long-distance aeolian and short-distance fluvial inputs, whilst the coarse grain-size component (GSC3) is mainly transported by wind from short-distance sources. Thus GSC3 can be used to infer the wind intensity. Grain-size variations reveal that the wind intensity experienced a stepwise shift from large-amplitude variations during the last deglaciation to small-amplitude oscillations in the Holocene, corresponding well to climate changes from regional to global context.

  2. The magnetized sheath of a dusty plasma with grains size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin

    2015-05-15

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less

  3. Magnetic Grain-size Proxies in Loessic Soils and Their Potential use in Paleorainfall Reconstruction

    NASA Astrophysics Data System (ADS)

    Machac, T. A.; Geiss, C. E.; Zanner, C. W.

    2005-05-01

    As part of our ongoing rock-magnetic study of loessic soil profiles we sampled over 70 in Nebraska, Iowa, Missouri and Illinois. Our sampling sites are located in stable upland positions and extend along a rainfall gradient which ranges from an average annual precipitation of less than 500 mm/year in southwestern Nebraska to almost 1000 mm/year in central Missouri. Soil cores were obtained with the aid of a hydraulic soil probe, described and subsampled into small plastic bags. Samples were air-dried in the laboratory and the < 2mm fraction was used for magnetic analyses. We measured magnetic susceptibility X and several remanence parameters (ARM, IRM) for all samples. Hysteresis measurements, IRM acquisition curves and time dependence of IRM acquisition were measured for a subset of samples. All samples show magnetically enhanced A- and B-horizons, which results in increased values of X, ARM and IRM. Changes in the ratio of ARM/IRM suggest an increase in the relative abundance of stable single domain (SSD) particles. VRM analyses show that the upper soil horizons are enhanced in ultrafine superparamagnetic (SP) ferrimagnets as well. Changes in the relative abundance of SP and SSD ferrimagnets along our transsect correlates well with the modern precipitation gradient, suggesting the use of grain-size dependent magnetic parameter as a potential paleorainfall proxy when analyzing paleosols.

  4. Significance of the model considering mixed grain-size for inverse analysis of turbidites

    NASA Astrophysics Data System (ADS)

    Nakao, K.; Naruse, H.; Tokuhashi, S., Sr.

    2016-12-01

    A method for inverse analysis of turbidity currents is proposed for application to field observations. Estimation of initial condition of the catastrophic events from field observations has been important for sedimentological researches. For instance, there are various inverse analyses to estimate hydraulic conditions from topography observations of pyroclastic flows (Rossano et al., 1996), real-time monitored debris-flow events (Fraccarollo and Papa, 2000), tsunami deposits (Jaffe and Gelfenbaum, 2007) and ancient turbidites (Falcini et al., 2009). These inverse analyses need forward models and the most turbidity current models employ uniform grain-size particles. The turbidity currents, however, are the best characterized by variation of grain-size distribution. Though there are numerical models of mixed grain-sized particles, the models have difficulty in feasibility of application to natural examples because of calculating costs (Lesshaft et al., 2011). Here we expand the turbidity current model based on the non-steady 1D shallow-water equation at low calculation costs for mixed grain-size particles and applied the model to the inverse analysis. In this study, we compared two forward models considering uniform and mixed grain-size particles respectively. We adopted inverse analysis based on the Simplex method that optimizes the initial conditions (thickness, depth-averaged velocity and depth-averaged volumetric concentration of a turbidity current) with multi-point start and employed the result of the forward model [h: 2.0 m, U: 5.0 m/s, C: 0.01%] as reference data. The result shows that inverse analysis using the mixed grain-size model found the known initial condition of reference data even if the condition where the optimization started is deviated from the true solution, whereas the inverse analysis using the uniform grain-size model requires the condition in which the starting parameters for optimization must be in quite narrow range near the solution. The

  5. Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Gottlieb, C.; Günther, T.; Wilsch, G.

    2018-04-01

    In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 μm) and cement particles (particle size ≈ 50μm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA).

  6. Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries

    DOEpatents

    Carlisle, John A.; Auciello, Orlando; Birrell, James

    2006-10-31

    An ultrananocrystalline diamond (UNCD) having an average grain size between 3 and 5 nanometers (nm) with not more than about 8% by volume diamond having an average grain size larger than 10 nm. A method of manufacturing UNCD film is also disclosed in which a vapor of acetylene and hydrogen in an inert gas other than He wherein the volume ratio of acetylene to hydrogen is greater than 0.35 and less than 0.85, with the balance being an inert gas, is subjected to a suitable amount of energy to fragment at least some of the acetylene to form a UNCD film having an average grain size of 3 to 5 nm with not more than about 8% by volume diamond having an average grain size larger than 10 nm.

  7. Negative Temperature Dependence of Recrystallized Grain Size: Formulation and Experimental Confirmation on Copper

    PubMed Central

    Elmasry, Mohamed; Liu, Fan; Jiang, Yao; Mao, Ze Ning; Liu, Ying; Wang, Jing Tao

    2017-01-01

    The catalyzing effect on nucleation of recrystallization from existing grains resulting from previous lower temperature deformation is analyzed, analogous to the size effect of foreign nucleus in heterogeneous nucleation. Analytical formulation of the effective nucleation site for recrystallization leads to a negative temperature dependence of recrystallized grain size of metals. Non-isochronal annealing—where annealing time is set just enough for the completion of recrystallization at different temperatures—is conducted on pure copper after severe plastic deformation. More homogeneous and smaller grains are obtained at higher annealing temperature. The good fit between analytical and experimental results unveils the intrinsic feature of this negative temperature dependence of recrystallized grain size. PMID:28772676

  8. A universal approximation of grain size from images of noncohesive sediment

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Rubin, D. M.; Warrick, J. A.

    2010-06-01

    The two-dimensional spectral decomposition of an image of sediment provides a direct statistical estimate, grid-by-number style, of the mean of all intermediate axes of all single particles within the image. We develop and test this new method which, unlike existing techniques, requires neither image processing algorithms for detection and measurement of individual grains, nor calibration. The only information required of the operator is the spatial resolution of the image. The method is tested with images of bed sediment from nine different sedimentary environments (five beaches, three rivers, and one continental shelf), across the range 0.1 mm to 150 mm, taken in air and underwater. Each population was photographed using a different camera and lighting conditions. We term it a "universal approximation" because it has produced accurate estimates for all populations we have tested it with, without calibration. We use three approaches (theory, computational experiments, and physical experiments) to both understand and explore the sensitivities and limits of this new method. Based on 443 samples, the root-mean-squared (RMS) error between size estimates from the new method and known mean grain size (obtained from point counts on the image) was found to be ±≈16%, with a 95% probability of estimates within ±31% of the true mean grain size (measured in a linear scale). The RMS error reduces to ≈11%, with a 95% probability of estimates within ±20% of the true mean grain size if point counts from a few images are used to correct bias for a specific population of sediment images. It thus appears it is transferable between sedimentary populations with different grain size, but factors such as particle shape and packing may introduce bias which may need to be calibrated for. For the first time, an attempt has been made to mathematically relate the spatial distribution of pixel intensity within the image of sediment to the grain size.

  9. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE PAGES

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.; ...

    2018-05-01

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  10. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  11. Grain size and shape evolution of experimentally deformed sediments: the role of slip rate

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio; De Paola, Nicola

    2016-04-01

    Sediment deformation within fault zones occurs with a broad spectrum of mechanisms which, in turn, depend on intrinsic material properties (porosity, grain size and shape, etc.) and external factors (burial depth, fluid pressure, stress configuration, etc.). Fieldworks and laboratory measurements conducted in the last years in sediments faulted at shallow depth showed that cataclasis and grain size reduction can occur very close to the Earth surface (<1-2 km), and that fault displacement is one of the parameters controlling the amount of grain size, shape, and microtextural modifications in fault cores. In this contribution, we present a new set of microstructural observations combined with grain size and shape distribution data obtained from quart-feldspatic loose sediments (mean grain diameter 0.2 mm) experimentally deformed at different slip rates from subseismic (0.01 mm/s, 0.1 mm/s, 1 mm/s, 1 cm/s, and 10 cm/s) to coseismic slip rates (1 m/s). The experiments were originally performed at sigma n=14 MPa, with the same amount of slip (1.3 m), to constrain the frictional properties of such sediments at shallow confining pressures (<1 km). After the experiments, the granular materials deformed in the 0.1-1 mm-thick slip zones were prepared for both grain size distribution analyses and microstructural and textural analyses in thin sections. Grain size distribution analyses were obtained with a Malvern Mastersizer 3000 particle size laser-diffraction analyser, whereas grain shape data (angularity) were obtained by using image analysis technique on selected SEM-photomicrographs. Microstructural observations were performed at different scales with a standard optical microscope and with a SEM. Results indicate that mean grain diameter progressively decreases with increasing slip rates up to ~20-30 m, and that granulometric curves systematically modify as well, shifting toward finer grain sizes. Obtained fractal dimensions (D) indicate that D increases from ~2.3 up

  12. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    NASA Astrophysics Data System (ADS)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  13. Development of Bulk Nanocrystalline Tungsten Alloys for Fusion Reactor Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhigang Zak

    This project developed a technology for manufacturing bulk ultrafine tungsten materials that are at or near full density for fusion reactor structural applications, aiming to improve ductility and toughness of tungsten before and after irradiation. The project involved the development of fabrication processes for making bulk ultrafine grained W, the development of new alloys of ultrafine grained W and evaluations of properties of these specific materials. The goal of this fabrication process is to produce fully dense bulk W with ultrafine grain sizes, with uniform distributions of grain size and additives. To date there is no known process that couldmore » be used to make ultrafine grained tungsten in a fully dense state and in a cost-acceptable fashion. The specific technology described in this proposal for making ultrafine grained tungsten involves a suite of nano-particle processing and sintering techniques. The program also developed new alloys of ultrafine grained W, e.g. W-(Ta,V,Ti)-TiC alloys to improve ductility and toughness before and after irradiation. By completing this project, we achieved the following objectives: • Demonstrated experimentally the feasibility of producing bulk ultrafine grained tungsten alloys (at or near 100% dense, <1000 nm grain size) using the proposed process • Demonstrated the proposed ultrafine grained W alloys, namely, W-(Ta, V, Ti)-TiC, can indeed be made using the proposed process • Demonstrated that the properties of nano tungsten alloys meet the requirements for fusion reactor applications. The overall goal was to harness the potential of ultrafine grained W produced using the proposed processes as the core structural materials for future fusion reactors. The project was very successful overall, meeting all milestones and surpassing project goals in terms of process development and material’s blistering resistance properties. A novel process similar to the conventional press-and-sinter powder metallurgy method

  14. Analysis of the ultrafine fraction of the Apollo 14 regolith

    NASA Technical Reports Server (NTRS)

    Finkelman, R. B.

    1973-01-01

    Analyses were obtained on more than 2400 randomly selected particles from the sub-37 micron (ultrafine) fraction of ten Apollo 14 regolith samples. The analyses were conducted with an energy dispersive electron microprobe system. The semiquantitative data were used to group the particles into ten categories. The pyroxene/plagioclase and olivine/plagioclase ratios are inconsistent with those ratios in the Apollo 14 breccias and rocks. The data suggest that fragmented basalts similar to Apollo 12 olivine basalts may have made significant contributions to the ultrafine fraction of the Fra Mauro regolith. Among a number of unusual particles encountered are brown, birefringent lath-shaped grains with 60 wt % SiO2 and 34 wt % FeO(FeSi2O5) and a glass with 20 to 25 wt % CaO, 0 to 8 wt % MgO, 40 to 45 wt % Al2O3 and approximately 30 wt % SiO2.

  15. Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2007-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the laboratory for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  16. Underwater Microscope for Measuring Spatial and Temporal Changes in Bed-Sediment Grain Size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2006-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the lab for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in-situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  17. Apollo 16 soils - Grain size analyses and petrography

    NASA Technical Reports Server (NTRS)

    Heiken, G. H.; Mckay, D. S.; Fruland, R. M.

    1973-01-01

    Soils from South Ray Crater, North Ray Crater, and the interray area of Station 10 have a similar provenance, containing breccia fragments of low to medium metamorphic grade and low light/dark lithic fragment ratios; these appear to be characteristic of the Cayley Formation. The primary difference between soils possibly derived from North Ray and South Ray craters is in the agglutinate content. A soil from Stone Mountain (Station 4) is characterized by breccia fragments of medium to high metamorphic grade and a high light/dark lithic fragment ratio; this soil may be derived from the Descartes Formation. Differences between the selenomorphic units, the Descartes and Cayley formations, may be lithologic as well as structural. The mean grain size varies from 84 to 280 microns, and all of the samples are poorly to very poorly sorted. There appears to be a relation between the sorting, grain size, and agglutinate content, with the finer-grained, better sorted soils containing more than 30% agglutinates. 'Shadowed' soils, collected close to large boulders, are similar in all respects to the 'reference' soils collected at least 5 m from the boulders.

  18. Measuring Snow Grain Size with the Near-Infrared Emitting Reflectance Dome (NERD)

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.

    2014-12-01

    Because of its high visible albedo, snow plays a large role in Earth's surface energy balance. This role is a subject of intense study, but due to the wide range of snow albedo, variations in the characteristics of snow grains can introduce radiative feedbacks in a snow pack. Snow grain size, for example, is one property which directly affects a snow pack's absorption spectrum. Previous studies model and observe this spectrum, but potential feedbacks induced by these variations are largely unknown. Here, we implement a simple and inexpensive technique to measure snow grain size in an instrument we call the Near-infrared Emitting Reflectance Dome (NERD). A small black styrene dome (~17cm diameter), fitted with two narrowband light-emitting diodes (LEDs) centered around 1300nm and 1550nm and three near-infrared reverse-biased photodiodes, is placed over the snow surface enabling a multi-spectral measurement of the hemispheric directional reflectance factor (HDRF). We illuminate the snow at each wavelength, measure directional reflectance, and infer grain size from the difference in HDRFs measured on the same snow crystals at fixed viewing angles. We validate measurements from the NERD using two different reflectance standards, materials designed to be near perfect Lambertian reflectors, having known, constant reflectances (~99% and ~55%) across a wide range of wavelengths. Using a 3D Monte Carlo model simulating photon pathways through a pack of spherical snow grains, we calculate the difference in HDRFs at 1300nm and 1550nm to predict the calibration curve for a wide range of grain sizes. This theoretically derived curve gives a relationship between effective radius and the difference in HDRFs and allows us to approximate grain sizes using the NERD in just a few seconds. Further calibration requires knowledge of truth values attainable using a previously validated instrument or measurements from an inter-comparison workshop.

  19. Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory

    ERIC Educational Resources Information Center

    Wissman, Kathryn T.; Rawson, Katherine A.

    2015-01-01

    The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…

  20. Instant Grainification: Real-Time Grain-Size Analysis from Digital Images in the Field

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.; Chezar, H.

    2007-12-01

    Over the past few years, digital cameras and underwater microscopes have been developed to collect in-situ images of sand-sized bed sediment, and software has been developed to measure grain size from those digital images (Chezar and Rubin, 2004; Rubin, 2004; Rubin et al., 2006). Until now, all image processing and grain- size analysis was done back in the office where images were uploaded from cameras and processed on desktop computers. Computer hardware has become small and rugged enough to process images in the field, which for the first time allows real-time grain-size analysis of sand-sized bed sediment. We present such a system consisting of weatherproof tablet computer, open source image-processing software (autocorrelation code of Rubin, 2004, running under Octave and Cygwin), and digital camera with macro lens. Chezar, H., and Rubin, D., 2004, Underwater microscope system: U.S. Patent and Trademark Office, patent number 6,680,795, January 20, 2004. Rubin, D.M., 2004, A simple autocorrelation algorithm for determining grain size from digital images of sediment: Journal of Sedimentary Research, v. 74, p. 160-165. Rubin, D.M., Chezar, H., Harney, J.N., Topping, D.J., Melis, T.S., and Sherwood, C.R., 2006, Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size: USGS Open-File Report 2006-1360.

  1. Size distribution of dust grains: A problem of self-similarity

    NASA Technical Reports Server (NTRS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e

  2. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-03-18

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.

  3. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  4. The occurrence of ultrafine particles in the specific environment of children.

    PubMed

    Burtscher, Heinz; Schüepp, Karen

    2012-06-01

    Interest in ultrafine particles (UFP) has been increasing due to their specific physico-chemical characteristics. Ultrafine particles are those with an aerodynamic diameter of <0.1 μm and are also commonly know as nanoparticles (0.1 μm = 100 nm). Due to their small size UFP contribute mostly to particle number concentrations and are therefore underestimated in actual pollution measurements, which commonly measure mass concentration. Children represent the most vulnerable group in regard to particulate exposure due to their developing status and different exposures compared to adults. This review discusses the sources of ultrafine particles as well as the specific exposures of children highlighting the importance and uniqueness of this age group. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    NASA Astrophysics Data System (ADS)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  6. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    NASA Astrophysics Data System (ADS)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  7. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  8. Investigation of structural-scale levels of spall fracture induced by a nanosecond relativistic high-current electron beam in ultrafine-grained Ti-Al-V-Mo alloy

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Markov, A. B.; Bakach, G. P.; Maletkina, T. Yu.; Belov, N. N.; Tabachenko, A. N.; Skosirskii, A. B.; Habibullin, M. V.; Yakovlev, E. V.

    2017-12-01

    The results of an experimental and theoretical study of shock-wave processes and spall fracture in an ultrafine-grained and coarse-grained (α + β) Ti-Al-V-Mo alloy under the action of a nanosecond relativistic high-current electron beam are reported. Mathematical modeling is performed to show that when an electron beam with a power density of 1.65 × 1010 W/cm2 impacts this alloy, a shock wave with a compression amplitude of 13 GPa appears and its reflection gives rise to a tensile wave. Its amplitude increases with decreasing target thickness. The calculated increase in the thickness of the spalled layer at the rear surface of the target corresponds to the experimental data. It is established experimentally that plastic deformation precedes the spall fracture sequentially at three structural-scale levels. At the beginning pores are formed and merge, then microcracks are formed at different angles to the back surface of the target between the pores, and then a macrocrack is formed. As a result, the macrocrack surface is not smooth but exhibits pits of ductile fracture.

  9. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  10. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    NASA Astrophysics Data System (ADS)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  11. Quantifying Grain-Size Variability of Metal Pollutants in Road-Deposited Sediments Using the Coefficient of Variation

    PubMed Central

    Wang, Xiaoxue; Li, Xuyong

    2017-01-01

    Particle grain size is an important indicator for the variability in physical characteristics and pollutants composition of road-deposited sediments (RDS). Quantitative assessment of the grain-size variability in RDS amount, metal concentration, metal load and GSFLoad is essential to elimination of the uncertainty it causes in estimation of RDS emission load and formulation of control strategies. In this study, grain-size variability was explored and quantified using the coefficient of variation (Cv) of the particle size compositions, metal concentrations, metal loads, and GSFLoad values in RDS. Several trends in grain-size variability of RDS were identified: (i) the medium class (105–450 µm) variability in terms of particle size composition, metal loads, and GSFLoad values in RDS was smaller than the fine (<105 µm) and coarse (450–2000 µm) class; (ii) The grain-size variability in terms of metal concentrations increased as the particle size increased, while the metal concentrations decreased; (iii) When compared to the Lorenz coefficient (Lc), the Cv was similarly effective at describing the grain-size variability, whereas it is simpler to calculate because it did not require the data to be pre-processed. The results of this study will facilitate identification of the uncertainty in modelling RDS caused by grain-size class variability. PMID:28788078

  12. GS6, a member of the GRAS gene family, negatively regulates grain size in rice.

    PubMed

    Sun, Lianjun; Li, Xiaojiao; Fu, Yongcai; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Sun, Xianyou; Sun, Xuewen; Sun, Chuanqing

    2013-10-01

    Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today's cultivars compared with their wild relatives. However, the molecular genetic control of rice grain size is still not well characterized. Here, we report the identification and cloning of Grain Size 6 (GS6), which plays an important role in reducing grain size in rice. A premature stop at the +348 position in the coding sequence (CDS) of GS6 increased grain width and weight significantly. Alignment of the CDS regions of GS6 in 90 rice materials revealed three GS6 alleles. Most japonica varieties (95%) harbor the Type I haplotype, and 62.9% of indica varieties harbor the Type II haplotype. Association analysis revealed that the Type I haplotype tends to increase the width and weight of grains more than either of the Type II or Type III haplotypes. Further investigation of genetic diversity and the evolutionary mechanisms of GS6 showed that the GS6 gene was strongly selected in japonica cultivars. In addition, a "ggc" repeat region identified in the region that encodes the GRAS domain of GS6 played an important historic role in the domestication of grain size in rice. Knowledge of the function of GS6 might aid efforts to elucidate the molecular mechanisms that control grain development and evolution in rice plants, and could facilitate the genetic improvement of rice yield. © 2013 Institute of Botany, Chinese Academy of Sciences.

  13. Application of composite flow laws to grain size distributions derived from polar ice cores

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp

    2014-05-01

    Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a

  14. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size

  15. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  16. Preparation of an Ultrafine Rebamipide Ophthalmic Suspension with High Transparency.

    PubMed

    Matsuda, Takakuni; Hiraoka, Shogo; Urashima, Hiroki; Ogura, Ako; Ishida, Tatsuhiro

    2017-01-01

    A 2% commercially available, milky-white, rebamipide micro-particle suspension is used to treat dry eyes, and it causes short-term blurring of the patient's vision. In the current study, to improve the transparency of a rebamipide suspension, we attempted to obtain a clear rebamipide suspension by transforming the rebamipide particles to an ultrafine state. In the initial few efforts, various rebamipide suspensions were prepared using a neutralizing crystallization method with additives, but the suspensions retained their opaque quality. However, as a consequence of several critical improvements in the neutralizing crystallization methods such as selection of additives for crystallization, process parameters during crystallization, the dispersion method, and dialysis, we obtained an ultrafine rebamipide suspension (2%) that was highly transparent (transmittance at 640 nm: 59%). The particle size and transparency demonstrated the fewest level of changes at 25°C after 3 years, compared to initial levels. During that period, no obvious particle sedimentation was observed. The administration of this ultrafine rebamipide suspension (2%) increased the conjunctival mucin, which was comparable to the commercially available micro-particle suspension (2%). The corneal and conjunctival concentration of rebamipide following ocular administration of the ultrafine suspension was slightly higher than that of the micro-particle suspension. The ultrafine rebamipide suspension (eye-drop formulation) with a highly transparent ophthalmic clearness should improve a patient's QOL by preventing even a shortened period of blurred vision.

  17. A pretreatment method for grain size analysis of red mudstones

    NASA Astrophysics Data System (ADS)

    Jiang, Zaixing; Liu, Li'an

    2011-11-01

    Traditional sediment disaggregation methods work well for loose mud sediments, but not for tightly cemented mudstones by ferric oxide minerals. In this paper, a new pretreatment method for analyzing the grain size of red mudstones is presented. The experimental samples are Eocene red mudstones from the Dongying Depression, Bohai Bay Basin. The red mudstones are composed mainly of clay minerals, clastic sediments and ferric oxides that make the mudstones red and tightly compacted. The procedure of the method is as follows. Firstly, samples of the red mudstones were crushed into fragments with a diameter of 0.6-0.8 mm in size; secondly, the CBD (citrate-bicarbonate-dithionite) treatment was used to remove ferric oxides so that the cementation of intra-aggregates and inter-aggregates became weakened, and then 5% dilute hydrochloric acid was added to further remove the cements; thirdly, the fragments were further ground with a rubber pestle; lastly, an ultrasonicator was used to disaggregate the samples. After the treatment, the samples could then be used for grain size analysis or for other geological analyses of sedimentary grains. Compared with other pretreatment methods for size analysis of mudstones, this proposed method is more effective and has higher repeatability.

  18. The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde

    2017-12-01

    The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.

  19. Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-zhi; Koumoto, Kunihito

    2013-07-01

    The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.

  20. An Informatics Based Approach to Reduce the Grain Size of Cast Hadfield Steel

    NASA Astrophysics Data System (ADS)

    Dey, Swati; Pathak, Shankha; Sheoran, Sumit; Kela, Damodar H.; Datta, Shubhabrata

    2016-04-01

    Materials Informatics concept using computational intelligence based approaches are employed to bring out the significant alloying additions to achieve grain refinement in cast Hadfield steel. Castings of Hadfield steels used for railway crossings, requires fine grained austenitic structure. Maintaining proper grain size of this component is very crucial in order to achieve the desired properties and service life. This work studies the important variables affecting the grain size of such steels which includes the compositional and processing variables. The computational findings and prior knowledge is used to design the alloy, which is subjected to a few trials to validate the findings.

  1. Ultrafine particle and fiber production in microgravity

    NASA Technical Reports Server (NTRS)

    Webb, George W. (Inventor)

    1988-01-01

    In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.

  2. Grain size dependence of dielectric relaxation in cerium oxide as high-k layer

    PubMed Central

    2013-01-01

    Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. PMID:23587419

  3. Composition of Metallic Elements and Size Distribution of Fine and Ultrafine Particles in a Steelmaking Factory.

    PubMed

    Marcias, Gabriele; Fostinelli, Jacopo; Catalani, Simona; Uras, Michele; Sanna, Andrea Maurizio; Avataneo, Giuseppe; De Palma, Giuseppe; Fabbri, Daniele; Paganelli, Matteo; Lecca, Luigi Isaia; Buonanno, Giorgio; Campagna, Marcello

    2018-06-07

    The characteristics of aerosol, in particular particle size and chemical composition, can have an impact on human health. Particle size distribution and chemical composition is a necessary parameter in occupational exposure assessment conducted in order to understand possible health effects. The aim of this study was to characterize workplace airborne particulate matter in a metallurgical setting by synergistically using two different approaches; Methodology: Analysis of inhalable fraction concentrations through traditional sampling equipment and ultrafine particles (UFP) concentrations and size distribution was conducted by an Electric Low-Pressure Impactor (ELPI+™). The determination of metallic elements (ME) in particles was carried out by inductively coupled plasma mass spectrometry; Results: Inhalable fraction and ME concentrations were below the limits set by Italian legislation and the American Conference of Governmental Industrial Hygienists (ACGIH, 2017). The median of UFP was between 4.00 × 10⁴ and 2.92 × 10⁵ particles/cm³. ME concentrations determined in the particles collected by ELPI show differences in size range distribution; Conclusions: The adopted synergistic approach enabled a qualitative and quantitative assessment of the particles in steelmaking factories. The results could lead to a better knowledge of occupational exposure characterization, in turn affording a better understanding of occupational health issues due to metal fumes exposure.

  4. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    PubMed

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 O<0.1 ppm, O 2 <10 ppm). The PCE of the solar cell based on a perovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    PubMed

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  6. Mapping Snow Grain Size over Greenland from MODIS

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander

    2008-01-01

    This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the

  7. Optimal reproduction in salmon spawning substrates linked to grain size and fish length

    NASA Astrophysics Data System (ADS)

    Riebe, Clifford S.; Sklar, Leonard S.; Overstreet, Brandon T.; Wooster, John K.

    2014-02-01

    Millions of dollars are spent annually on revitalizing salmon spawning in riverbeds where redd building by female salmon is inhibited by sediment that is too big for fish to move. Yet the conditions necessary for productive spawning remain unclear. There is no gauge for quantifying how grain size influences the reproductive potential of coarse-bedded rivers. Hence, managers lack a quantitative basis for optimizing spawning habitat restoration for reproductive value. To overcome this limitation, we studied spawning by Chinook, sockeye, and pink salmon (Oncorhynchus tshawytscha, O. nerka, and O. gorbuscha) in creeks and rivers of California and the Pacific Northwest. Our analysis shows that coarse substrates have been substantially undervalued as spawning habitat in previous work. We present a field-calibrated approach for estimating the number of redds and eggs a substrate can accommodate from measurements of grain size and fish length. Bigger fish can move larger sediment and thus use more riverbed area for spawning. They also tend to have higher fecundity, and so can deposit more eggs per redd. However, because redd area increases with fish length, the number of eggs a substrate can accommodate is maximized for moderate-sized fish. This previously unrecognized tradeoff raises the possibility that differences in grain size help regulate river-to-river differences in salmon size. Thus, population diversity and species resilience may be linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. Our approach provides a tool for managing grain-size distributions in support of optimal reproductive potential and species resilience.

  8. A universal approximation to grain size from images of non-cohesive sediment

    USGS Publications Warehouse

    Buscombe, D.; Rubin, D.M.; Warrick, J.A.

    2010-01-01

    The two-dimensional spectral decomposition of an image of sediment provides a direct statistical estimate, grid-by-number style, of the mean of all intermediate axes of all single particles within the image. We develop and test this new method which, unlike existing techniques, requires neither image processing algorithms for detection and measurement of individual grains, nor calibration. The only information required of the operator is the spatial resolution of the image. The method is tested with images of bed sediment from nine different sedimentary environments (five beaches, three rivers, and one continental shelf), across the range 0.1 mm to 150 mm, taken in air and underwater. Each population was photographed using a different camera and lighting conditions. We term it a “universal approximation” because it has produced accurate estimates for all populations we have tested it with, without calibration. We use three approaches (theory, computational experiments, and physical experiments) to both understand and explore the sensitivities and limits of this new method. Based on 443 samples, the root-mean-squared (RMS) error between size estimates from the new method and known mean grain size (obtained from point counts on the image) was found to be ±≈16%, with a 95% probability of estimates within ±31% of the true mean grain size (measured in a linear scale). The RMS error reduces to ≈11%, with a 95% probability of estimates within ±20% of the true mean grain size if point counts from a few images are used to correct bias for a specific population of sediment images. It thus appears it is transferable between sedimentary populations with different grain size, but factors such as particle shape and packing may introduce bias which may need to be calibrated for. For the first time, an attempt has been made to mathematically relate the spatial distribution of pixel intensity within the image of sediment to the grain size.

  9. Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas

    2012-01-01

    An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.

  10. Health hazards of ultrafine metal and metal oxide powders

    NASA Technical Reports Server (NTRS)

    Boylen, G. W., Jr.; Chamberlin, R. I.; Viles, F. J.

    1969-01-01

    Study reveals that suggested threshold limit values are from two to fifty times lower than current recommended threshold limit values. Proposed safe limits of exposure to the ultrafine dusts are based on known toxic potential of various materials as determined in particle size ranges.

  11. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  12. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  14. Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

    NASA Astrophysics Data System (ADS)

    Shin, Jong-Ho; Kim, Young-Deak; Lee, Jong-Wook

    2018-05-01

    Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and 292 μm) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

  15. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  16. Role of grain-size in phyllonitisation: Insights from mineralogy, microstructures, strain analyses and numerical modeling

    NASA Astrophysics Data System (ADS)

    Bose, Narayan; Dutta, Dripta; Mukherjee, Soumyajit

    2018-07-01

    Brittle Y- and P-planes exist in an exposure of greywacke in the Garhwal Lesser Himalaya, India. Although, Y-planes are well developed throughout, the P-planes are prominent only in some parts (domain-A), and not elsewhere (domain-B). To investigate why the P-planes developed selectively, the following studies were undertaken: 1. Clay-separated XRD analyses: clinochlore and illite are present in both the domains. 2. Strain analyses by Rf-φ method: it deduces strain magnitudes of ∼1.8 for the ductile deformed quartz grains from both the domains A and B. 3. Grain size analyses of quartz clasts: domain-A is mostly composed of finer grains (area up to 40,000 μm2), whereas domain-B consists of a population of coarser grains (area >45,000 μm2). A 2D finite element modeling of linear elastic material was performed using COMSOL software to investigate the control of grain-size variation on the generation brittle shear planes. The results of numerical modeling corroborate the known fact that an increase in grain-size reduces the elastic strain energy density. A broader grain-size distribution increases the effects of diffusion creep and resists the onset of dislocation creep. Thus, rocks with coarser grain population (domain B) tend to resist the generation of shear fractures, unlike their fine-grained counterpart (domain A).

  17. Light Scattering by Wavelength-Sized Particles "Dusted" with Subwavelength-Sized Grains

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2011-01-01

    The numerically exact superposition T-matrix method is used to compute the scattering cross sections and the Stokes scattering matrix for polydisperse spherical particles covered with a large number of much smaller grains. We show that the optical effect of the presence of microscopic dust on the surfaces of wavelength-sized, weakly absorbing particles is much less significant than that of a major overall asphericity of the particle shape.

  18. Incision and Landsliding Lead to Coupled Increase in Sediment Flux and Grain Size Export

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, D. C.; Brooke, S.; D'Arcy, M. K.; Whittaker, A. C.; Armitage, J. J.

    2017-12-01

    The rates and grain sizes of sediment fluxes modulate the dynamics and timing of landscape response to tectonics, and dictate the depositional patterns of sediment in basins. Over the last decades, we have gained a good quantitative understanding on how sediment flux and grain size may affect incision and basin stratigraphy. However, we comparably still have limited knowledge on how these variables change with varying tectonic rates. To address this question, we have studied 152 catchments along 8 normal fault-bounded ranges in southern Italy, which are affected by varying fault slip rates and experiencing a transient response to tectonics. Using a data set of 38 new and published 10Be erosion rates, we calibrate a sediment flux predictive equation (BQART), in order to estimate catchment sediment fluxes. We demonstrate that long-term sediment flux is governed by fault slip rates and the tectonically-controlled transient incision, and that sediment flux estimates from the BQART, steady-state assumptions, and incised volumes are highly correlated. This is supported by our 10Be erosion rates, which are controlled by fault slip and incision rates, and the associated landsliding. Based on a new landslide inventory, we show that erosion rate differences are likely due to differences in incision-related landslide activity across these catchments, and that landslides are a major component of sediment fluxes. From a data set of >13000 grain size counts on hillslope grain size supply and fluvial sediment at catchment outlets, we observe that landslides deliver material 20-200% coarser than other sediment sources, and that this coarse supply has an impact on the grain size distributions being exported from the catchments. Combining our sediment flux and grain size data sets, we are able to show that for our catchments, and potentially also for any areas that respond to changes in climate or tectonics via enhanced landsliding, sediment flux and grain size export increase

  19. The effects of surface finish and grain size on the strength of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  20. Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.; Ruggiero, P.; Harney, J.N.; Draut, A.E.; Buscombe, D.

    2009-01-01

    A new application of the autocorrelation grain size analysis technique for mixed to coarse sediment settings has been investigated. Photographs of sand- to boulder-sized sediment along the Elwha River delta beach were taken from approximately 1??2 m above the ground surface, and detailed grain size measurements were made from 32 of these sites for calibration and validation. Digital photographs were found to provide accurate estimates of the long and intermediate axes of the surface sediment (r2 > 0??98), but poor estimates of the short axes (r2 = 0??68), suggesting that these short axes were naturally oriented in the vertical dimension. The autocorrelation method was successfully applied resulting in total irreducible error of 14% over a range of mean grain sizes of 1 to 200 mm. Compared with reported edge and object-detection results, it is noted that the autocorrelation method presented here has lower error and can be applied to a much broader range of mean grain sizes without altering the physical set-up of the camera (~200-fold versus ~6-fold). The approach is considerably less sensitive to lighting conditions than object-detection methods, although autocorrelation estimates do improve when measures are taken to shade sediments from direct sunlight. The effects of wet and dry conditions are also evaluated and discussed. The technique provides an estimate of grain size sorting from the easily calculated autocorrelation standard error, which is correlated with the graphical standard deviation at an r2 of 0??69. The technique is transferable to other sites when calibrated with linear corrections based on photo-based measurements, as shown by excellent grain-size analysis results (r2 = 0??97, irreducible error = 16%) from samples from the mixed grain size beaches of Kachemak Bay, Alaska. Thus, a method has been developed to measure mean grain size and sorting properties of coarse sediments. ?? 2009 John Wiley & Sons, Ltd.

  1. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    PubMed Central

    He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang

    2017-01-01

    Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514

  2. Implications of grain size variation in magnetic field alignment of block copolymer blends

    DOE PAGES

    Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.; ...

    2017-03-28

    Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less

  3. Implications of grain size variation in magnetic field alignment of block copolymer blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.

    Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less

  4. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  5. Grain size effect on Lcr elastic wave for surface stress measurement of carbon steel

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Miao, Wenbing; Dong, Shiyun; He, Peng

    2018-04-01

    Based on critical refraction longitudinal wave (Lcr wave) acoustoelastic theory, correction method for grain size effect on surface stress measurement was discussed in this paper. Two fixed distance Lcr wave transducers were used to collect Lcr wave, and difference in time of flight between Lcr waves was calculated with cross-correlation coefficient function, at last relationship of Lcr wave acoustoelastic coefficient and grain size was obtained. Results show that as grain size increases, propagation velocity of Lcr wave decreases, one cycle is optimal step length for calculating difference in time of flight between Lcr wave. When stress value is within stress turning point, relationship of difference in time of flight between Lcr wave and stress is basically consistent with Lcr wave acoustoelastic theory, while there is a deviation and it is higher gradually as stress increasing. Inhomogeneous elastic plastic deformation because of inhomogeneous microstructure and average value of surface stress in a fixed distance measured with Lcr wave were considered as the two main reasons for above results. As grain size increasing, Lcr wave acoustoelastic coefficient decreases in the form of power function, then correction method for grain size effect on surface stress measurement was proposed. Finally, theoretical discussion was verified by fracture morphology observation.

  6. The Smallest Lunar Grains: Analytical TEM Characterization of the Sub-micron Size Fraction of a Mare Soil

    NASA Technical Reports Server (NTRS)

    Thompson, M.; Christoffersen, R.

    2010-01-01

    The chemical composition, mineralogical type, and morphology of lunar regolith grains changes considerably with decreasing size, and below the approx.25 m size range the correlation between these parameters and remotely-sensed lunar surface properties connected to space weathering increases significantly. Although trends for these parameters across grain size intervals greater than 20 m are now well established, the 0 to 20 m size interval remains relatively un-subdivided with respect to variations in grain modal composition, chemistry and microstructure. Of particular interest in this size range are grains in the approximate < 1 m diameter class, whose fundamental properties are now the focus of lunar research pertaining to electrostatic grain transport, dusty plasmas, and lunar dust effects on crew health and exploration systems. In this study we have used analytical transmission electron microscopy (TEM) to characterize the mineralogy, microstructure and major element composition of grains below the 1 m size threshold in lunar soil 10084.

  7. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in amore » stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less

  8. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  9. A mechanism for the production of ultrafine particles from concrete fracture.

    PubMed

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Apparatus and method for the determination of grain size in thin films

    DOEpatents

    Maris, Humphrey J

    2000-01-01

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  11. Apparatus and method for the determination of grain size in thin films

    DOEpatents

    Maris, Humphrey J

    2001-01-01

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  12. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Yang, Zhou; Yang, Dong; Zhang, Xu; Cui, Dong; Liu, Yucheng; Wei, Qingbo; Fan, Haibo; Liu, Shengzhong (Frank)

    2016-02-01

    Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices.Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices. Electronic supplementary information (ESI) available: XRD patterns and statistic results of solar cell performance. See DOI: 10.1039/c5nr08935b

  13. Study of variation grain size in desulfurization process of calcined petroleum coke

    NASA Astrophysics Data System (ADS)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  14. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less

  15. Rapid Grain Size Reduction in the Upper Mantle at a Plate Boundary

    NASA Astrophysics Data System (ADS)

    Kidder, S. B.; Scott, J.; Prior, D. J.; Lubicich, E. J.

    2017-12-01

    A few spinel peridotite xenoliths found near the Alpine Fault, New Zealand, exhibit a mylonitic texture and, locally, an extremely fine 30 micron grain size. The harzburgite xenoliths were emplaced in a 200 km-long elongate dike zone interpreted as a gigantic tension fracture or Reidel shear associated with Alpine Fault initiation 25 Ma. The presence of thin ( 1 mm) ultramylonite zones with px-ol phase mixing and fine grain sizes, minimal crustal-scale strain associated with the dike swarm, and the absence of mylonites at four of the five xenolith localities associated with the dike swarm indicate that upper mantle deformation was highly localized. Strings of small, recrystallized grains (planes in 3D) are found in the interiors of olivine porphyroclasts. In some cases, bands 1-2 grains thick are traced from the edges of olivine grains and terminate in their interiors. Thicker zones of recrystallized grains are also observed crossing olivine porphyroclasts without apparent offset of the unrecrystallized remnants of the porphyroclasts. We suggest a brittle-plastic origin for these features since the traditional recrystallization mechanisms associated with dislocation creep require much more strain than occurred within these porphyroclasts. Analogous microstructures in quartz and feldspar in mid-crust deformation zones are attributed to brittle-plastic processes. We hypothesize that such fine-grained zones were the precursors of the observed, higher-strain ultramylonite zones. Given the size of the new grains preserved in the porphyroclasts ( 100 micron) and a moho temperature > 650°C, grain growth calculations indicate that the observed brittle-plastic deformation occurred <10,000 yrs. prior to eruption. It is likely then that either brittle-plastic deformation was coeval with the ductile shearing occurring in the ultramylonite bands, or possibly, if deformation can be separated into brittle-plastic (early) and ductile (later) phases, that the entire localization

  16. Frost grain size metamorphism - Implications for remote sensing of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Fanale, F. P.; Zent, A. P.

    1983-01-01

    The effective grain size of a material on a planetary surface affects the strength of absorption features observed in the reflectance of a particulate surface. In the case of a planetary surface containing volatile ices, the absorption characteristics can change in connection with processes leading to a change in the grain size of the material. The present investigation is concerned with an evaluation regarding the occurrence of such processes and the implications for remote sensing applications. It is found that quantitative modeling of the kinetics of grain growth and destruction by thermal and nonthermal processes can provide a means to reconcile apparent optical paths in the volatile portions of planetary surfaces with the physical history of those surfaces. Attention is also given to conditions in the case of the Pluto/Triton system, Uranus and Saturnian satellites, and the Galilean system.

  17. [Spatial change of the grain-size of aeolian sediments in Qira oasis-desert ecotone, Northwest China].

    PubMed

    Lin, Yong Chong; Xu, Li Shuai

    2017-04-18

    In order to understand the environmental influence of oasis-desert ecotone to oasis ecological system, we comparatively analyzed the grain size characteristics of various aeolian sediments, including the sediments in oasis-desert ecotone, shelterbelt and the inside oasis and in Qira River valley. The results showed that the grain size characteristics (including grain-size distribution curve, grain size parameters, and content of different size classes) of sediments in the oasis-desert ecotone were consistent along the prevailing wind direction with a grain-size range of 0.3-200 μm and modal size of 67 μm. All of the sediments were good sorting and mainly composed of suspension components and saltation components, but not denatured saltation and creeping components (>200 μm). They were typically aeolian deposits being short-range transported. The grain sizes of sediments in oasis-desert ecotone were smaller than that in the material sources of Qira River valley and desert (0.3-800 μm), but very similar to those of the modern aeolian deposits in oasis-desert ecotone, shelterbelt and the inside oasis. The denatured saltation and creep components (>200 μm) were suppressed to transport into oasis-desert ecotone because of the high vegetation cover in oasis-desert ecotone. Therefore, like the shelterbelts, the oasis-desert ecotone could also block the invasion of desert. They safeguarded the oasis ecological environment together.

  18. Influence of Temperature and Grain Size on Austenite Stability in Medium Manganese Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Wang, Li; Findley, Kip O.; Speer, John G.

    2017-05-01

    With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson-Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.

  19. Diffusion of Oxygen Isotopes in Thermally Evolving Planetesimals and Size Ranges of Presolar Silicate Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakita, Shigeru; Nozawa, Takaya; Hasegawa, Yasuhiro, E-mail: shigeru@cfca.jp

    Presolar grains are small particles found in meteorites through their isotopic compositions, which are considerably different from those of materials in the solar system. If some isotopes in presolar grains diffused out beyond their grain sizes when they were embedded in parent bodies of meteorites, their isotopic compositions could be washed out, and hence the grains could no longer be identified as presolar grains. We explore this possibility for the first time by self-consistently simulating the thermal evolution of planetesimals and the diffusion length of {sup 18}O in presolar silicate grains. Our results show that presolar silicate grains smaller thanmore » ∼0.03 μ m cannot keep their original isotopic compositions even if the host planetesimals experienced a maximum temperature as low as 600 °C. Since this temperature corresponds to that experienced by petrologic type 3 chondrites, isotopic diffusion can constrain the size of presolar silicate grains discovered in such chondrites to be larger than ∼0.03 μ m. We also find that the diffusion length of {sup 18}O reaches ∼0.3–2 μ m in planetesimals that were heated up to 700–800°C. This indicates that, if the original size of presolar grains spans a range from ∼0.001 μ m to ∼0.3 μ m like that in the interstellar medium, then the isotopic records of the presolar grains may be almost completely lost in such highly thermalized parent bodies. We propose that isotopic diffusion could be a key process to control the size distribution and abundance of presolar grains in some types of chondrites.« less

  20. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  1. Effect of ultrafine zinc oxide (ZnO) nanoparticles on induction of oral tolerance in mice.

    PubMed

    Matsumura, Misa; Takasu, Nobuo; Nagata, Masafumi; Nakamura, Kazuichi; Kawai, Motoyuki; Yoshino, Shin

    2010-01-01

    Ultrafine nanoparticles of zinc oxide (ZnO) recently became available as a substitute for larger-size fine ZnO particles. However, the biological activity of ultrafine ZnO currently remains undefined. In the present study, we investigated the effect of ultrafine ZnO on oral tolerance that plays an important role in the prevention of food allergy. Oral tolerance was induced in mice by a single oral administration (i.e., gavage) of 25 mg of ovalbumin (OVA) 5 days prior to a subcutaneous immunization with OVA (Day 0). Varying doses of ultrafine (diameter: approximately 21 nm) as well as fine (diameter: < 5 microm) ZnO particles were given orally at the same time during the OVA gavage. The results indicated that a single oral administration of OVA was followed by significant decreases in serum anti-OVA IgG, IgG(1), IgG(2a), and IgE antibodies and in the proliferative responses to the antigen by these hosts' spleen cells. The decreases in these immune responses to OVA were associated with a marked suppression of secretion of interferon (IFN)gamma, interleukin (IL)-5, and IL-17 by these lymphoid cells. Treatment with either ultrafine or fine ZnO failed to affect the oral OVA-induced suppression of antigen-specific IgG, IgG(1), IgG(2a), and IgE production or lymphoid cell proliferation. The suppression induced by the oral OVA upon secretion of IFN gamma, IL-5, and IL-17 was also unaffected by either size of ZnO. These results indicate that ultrafine particles of ZnO do not appear to modulate the induction of oral tolerance in mice.

  2. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    NASA Astrophysics Data System (ADS)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  3. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al{sub 2}O{sub 3}/TiC, and zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krell, A.; Klaffke, D.

    Friction and wear of sintered alumina with grain sizes between 0.4 and 3 {micro}m were measured in comparison with Al{sub 2}O{sub 3}/TiC composites and with tetragonal ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effectmore » reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al{sub 2}O{sub 3}/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 {micro}m.« less

  4. Mechanical Behaviour of Light Metal Alloys at High Strain Rates. Computer Simulation on Mesoscale Levels

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Meyer, Lothar W.; Herzig, Norman; Skripnyak, Nataliya

    2012-02-01

    Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.

  5. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  6. SOURCE STRENGTHS OF ULTRAFINE AND FINE PARTICLES DUE TO COOKING WITH A GAS STOVE

    EPA Science Inventory

    Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were us...

  7. Size Matters: FTIR Spectral Analysis of Apollo Regolith Samples Exhibits Grain Size Dependence.

    NASA Astrophysics Data System (ADS)

    Martin, Dayl; Joy, Katherine; Pernet-Fisher, John; Wogelius, Roy; Morlok, Andreas; Hiesinger, Harald

    2017-04-01

    The Mercury Thermal Infrared Spectrometer (MERTIS) on the upcoming BepiColombo mission is designed to analyse the surface of Mercury in thermal infrared wavelengths (7-14 μm) to investigate the physical properties of the surface materials [1]. Laboratory analyses of analogue materials are useful for investigating how various sample properties alter the resulting infrared spectrum. Laboratory FTIR analysis of Apollo fine (<1mm) soil samples 14259,672, 15401,147, and 67481,96 have provided an insight into how grain size, composition, maturity (i.e., exposure to space weathering processes), and proportion of glassy material affect their average infrared spectra. Each of these samples was analysed as a bulk sample and five size fractions: <25, 25-63, 63-125, 125-250, and <250 μm. Sample 14259,672 is a highly mature highlands regolith with a large proportion of agglutinates [2]. The high agglutinate content (>60%) causes a 'flattening' of the spectrum, with reduced reflectance in the Reststrahlen Band region (RB) as much as 30% in comparison to samples that are dominated by a high proportion of crystalline material. Apollo 15401,147 is an immature regolith with a high proportion of volcanic glass pyroclastic beads [2]. The high mafic mineral content results in a systematic shift in the Christiansen Feature (CF - the point of lowest reflectance) to longer wavelength: 8.6 μm. The glass beads dominate the spectrum, displaying a broad peak around the main Si-O stretch band (at 10.8 μm). As such, individual mineral components of this sample cannot be resolved from the average spectrum alone. Apollo 67481,96 is a sub-mature regolith composed dominantly of anorthite plagioclase [2]. The CF position of the average spectrum is shifted to shorter wavelengths (8.2 μm) due to the higher proportion of felsic minerals. Its average spectrum is dominated by anorthite reflectance bands at 8.7, 9.1, 9.8, and 10.8 μm. The average reflectance is greater than the other samples due to

  8. Grain Size and Phase Purity Characterization of U 3Si 2 Pellet Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoggan, Rita E.; Tolman, Kevin R.; Cappia, Fabiola

    Characterization of U 3Si 2 fresh fuel pellets is important for quality assurance and validation of the finished product. Grain size measurement methods, phase identification methods using scanning electron microscopes equipped with energy dispersive spectroscopy and x-ray diffraction, and phase quantification methods via image analysis have been developed and implemented on U 3Si 2 pellet samples. A wide variety of samples have been characterized including representative pellets from an initial irradiation experiment, and samples produced using optimized methods to enhance phase purity from an extended fabrication effort. The average grain size for initial pellets was between 16 and 18 µm.more » The typical average grain size for pellets from the extended fabrication was between 20 and 30 µm with some samples exhibiting irregular grain growth. Pellets from the latter half of extended fabrication had a bimodal grain size distribution consisting of coarsened grains (>80 µm) surrounded by the typical (20-30 µm) grain structure around the surface. Phases identified in initial uranium silicide pellets included: U 3Si 2 as the main phase composing about 80 vol. %, Si rich phases (USi and U 5Si 4) composing about 13 vol. %, and UO 2 composing about 5 vol. %. Initial batches from the extended U 3Si 2 pellet fabrication had similar phases and phase quantities. The latter half of the extended fabrication pellet batches did not contain Si rich phases, and had between 1-5% UO 2: achieving U 3Si 2 phase purity between 95 vol. % and 98 vol. % U 3Si 2. The amount of UO 2 in sintered U 3Si 2 pellets is correlated to the length of time between U 3Si 2 powder fabrication and pellet formation. These measurements provide information necessary to optimize fabrication efforts and a baseline for future work on this fuel compound.« less

  9. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths.

    PubMed

    Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris

    2011-06-08

    The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.

  10. Grain size distribution of fault rocks: implication from natural gouges and high velocity friction experiments

    NASA Astrophysics Data System (ADS)

    Yang, X.; Chen, J.; Duan, B.

    2011-12-01

    The grain size distribution (GSD) is considered as an important parameter for the characterization of fault rocks. The relative magnitude of energy radiated as seismic waves to fracture energy plays a fundamental role to influence earthquake rupture dynamics. Currently, the details of grain size reduction mechanism and energy-budget are not well known. Here we present GSD measurements on fault rocks (gouge and breccias) in the main slip zone associated with the Wenchuan earthquake happened on 12 May, 2008, and on the gouges produced by high velocity friction (HVF) experiments. High velocity friction experiments were carried out on air dry granitic powder with grain size of 150 - 300 μm at normal stress of 1.0 MPa, a slip rate of 1.0 m / s and slip distances from 10 m to 30 m. On log-log plots of N(r) versus equivalent radius, two distinct linear parts can be discriminated with their intersection at 1 - 2 μm, defined as critical radius rc. One of power-law regime spans about 4 decades from 4 μm to 16 mm and the other covers a range of 0.2 - 2.0 μm. Larger fractal dimension from 2.7 to 3.5 are obtained for larger grain size regime, while lower values ranging from 1.7 to 2.1 for smaller size one. This two-stage distribution means the GSD is not self-similar (scale invariant) and the dominant ways of reducing grain size may be different from one another. XRD data show that the content of quartz drops greatly or disappears at 0.5 - 0.25 μm. GSD of HVF experimental products demonstrates similar feature to natural gouges. For instance, they all show the two-stage GSD with 1 - 2 μm of critical radius rc. The grains with their sizes of less than 1 μm appear rounded edges and equiaxial shapes. A variation in grain shapes can be observed in the grains larger than 5 μm. Some implications could be obtained from the measurements and experiments. (1) rc corresponds to the average value of grinding limit of rock-forming minerals. Further grain size reducing could be

  11. Grain size of recall practice for lengthy text material: fragile and mysterious effects on memory.

    PubMed

    Wissman, Kathryn T; Rawson, Katherine A

    2015-03-01

    The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The grain size hypothesis states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for lengthy text material. Participants were prompted to recall directly after studying each section (section recall) or after all sections had been studied (whole-text recall) during practice, and then all participants completed a final test after a delay. Results across 7 experiments (including 587 participants and 1,394 recall protocols) partially disconfirmed the predictions of the grain size hypothesis: Although the smaller grain size produced sizable recall advantages during practice as expected (ds from 1.02 to 1.87 across experiments), the advantage was substantially or completely attenuated across a delay. Experiments 2-7 falsified several plausible methodological and theoretical explanations for the fragility of the effect, indicating that it was not due to particular text materials, retrieval from working memory during practice, the length of the retention interval, the spacing between study and practice recall, a disproportionate increase in recall of unimportant details, or a deficit in integration of ideas across text sections. In sum, results conclusively establish an initially sizable but mysteriously fragile effect of grain size, for which an explanation remains elusive. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  12. Collapse of passive margins by lithospheric damage and plunging grain size

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Bercovici, David

    2018-02-01

    The collapse of passive margins has been proposed as a possible mechanism for the spontaneous initiation of subduction. In order for a new trench to form at the junction between oceanic and continental plates, the cold and stiff oceanic lithosphere must be weakened sufficiently to deform at tectonic rates. Such rates are especially hard to attain in the cold ductile portion of the lithosphere, at which the mantle lithosphere reaches peak strength. The amount of weakening required for the lithosphere to deform in this tectonic setting is dictated by the available stress. Stress in a cooling passive margin increases with time (e.g., due to ridge push), and is augmented by stresses present in the lithosphere at the onset of rifting (e.g., due to drag from underlying mantle flow). Increasing stress has the potential to weaken the ductile portion of the lithosphere by dislocation creep, or by decreasing grain size in conjunction with a grain-size sensitive rheology like diffusion creep. While the increasing stress acts to weaken the lithosphere, the decreasing temperature acts to stiffen it, and the dominance of one effect or the other determines whether the margin might weaken and collapse. Here, we present a model of the thermal and mechanical evolution of a passive margin, wherein we predict formation of a weak shear zone that spans a significant depth-range of the ductile portion of the lithosphere. Stiffening due to cooling is offset by weakening due to grain size reduction, driven by the combination of imposed stresses and grain damage. Weakening via grain damage is modest when ridge push is the only source of stress in the lithosphere, making the collapse of a passive margin unlikely in this scenario. However, adding even a small stress-contribution from mantle drag results in damage and weakening of a significantly larger portion of the lithosphere. We posit that rapid grain size reduction in the ductile portion of the lithosphere can enable, or at least

  13. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    PubMed

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  14. Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers?

    NASA Astrophysics Data System (ADS)

    Pearson, E.; Smith, M. W.; Klaar, M. J.; Brown, L. E.

    2017-09-01

    High resolution topographic surveys such as those provided by Structure-from-Motion (SfM) contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-metre scale topographic variability (or 'surface roughness') to sediment grain size by deriving empirical relationships between the two. In fluvial applications, such relationships permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing improved data to drive three-dimensional hydraulic models, allowing rapid geomorphic monitoring of sub-reach river restoration projects, and enabling more robust characterisation of riverbed habitats. However, comparison of previously published roughness-grain-size relationships shows substantial variability between field sites. Using a combination of over 300 laboratory and field-based SfM surveys, we demonstrate the influence of inherent survey error, irregularity of natural gravels, particle shape, grain packing structure, sorting, and form roughness on roughness-grain-size relationships. Roughness analysis from SfM datasets can accurately predict the diameter of smooth hemispheres, though natural, irregular gravels result in a higher roughness value for a given diameter and different grain shapes yield different relationships. A suite of empirical relationships is presented as a decision tree which improves predictions of grain size. By accounting for differences in patch facies, large improvements in D50 prediction are possible. SfM is capable of providing accurate grain size estimates, although further refinement is needed for poorly sorted gravel patches, for which c-axis percentiles are better predicted than b-axis percentiles.

  15. Synthesis and reactivity of ultra-fine coal liquefaction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Fulton, J.L.

    1992-10-01

    The Pacific Northwest Laboratory is currently developing ultra-fine iron-based coal liquefaction catalysts using two new particle production technologies: (1) modified reverse micelles (MRM) and (2) rapid thermal decomposition of solutes (RTDS). These methodologies have been shown to allow control over both particle size (from 1 nm to 60 nm) and composition when used to produce ultra-fine iron-based materials. Powders produced using these methods are found to be selective catalysts for carbon-carbon bond scission using the naphthyl bibenzylmethane model compound, and to promote the production of THF soluble coal products during liquefaction studies. This report describes the materials produced by bothmore » MRM and the RTDS methods and summarizes the results of preliminary catalysis studies using these materials.« less

  16. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-09-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  17. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  18. Amyloplast Membrane Protein SUBSTANDARD STARCH GRAIN6 Controls Starch Grain Size in Rice Endosperm1

    PubMed Central

    Matsushima, Ryo; Maekawa, Masahiko; Kusano, Miyako; Tomita, Katsura; Kondo, Hideki; Nishimura, Hideki; Crofts, Naoko; Fujita, Naoko; Sakamoto, Wataru

    2016-01-01

    Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications. PMID:26792122

  19. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  20. Wavelength-Dependent Extinction and Grain Sizes in "Dippers"

    NASA Astrophysics Data System (ADS)

    Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John

    2018-01-01

    We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.

  1. Corona-assisted flame synthesis of ultrafine titania particles

    NASA Astrophysics Data System (ADS)

    Vemury, Srinivas; Pratsinis, Sotiris E.

    1995-06-01

    Synthesis of ultrafine titania particles is investigated in a diffusion flame aerosol reactor in the presence of a gaseous electric discharge (corona) created by two needle electrodes. The corona wind flattens the flame and reduces the particle residence time at high temperatures, resulting in smaller primary particle sizes and lower level of crystallinity. Increasing the applied potential from 5 to 8 kV reduces the particle size from 50 to 25 nm and the rutile content from 20 to 8 wt %. Coronas provide a clean and simple technique that facilitates gas phase synthesis of nanosized materials with controlled size and crystallinity.

  2. Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization

    USGS Publications Warehouse

    Stern, L.A.; Durham, W.B.; Kirby, S.H.

    1997-01-01

    Grain-size-dependent flow mechanisms tend to be favored over dislocation creep at low differential stresses and can potentially influence the rheology of low-stress, low-strain rate environments such as those of planetary interiors. We experimentally investigated the effect of reduced grain size on the solid-state flow of water ice I, a principal component of the asthenospheres of many icy moons of the outer solar system, using techniques new to studies of this deformation regime. We fabricated fully dense ice samples of approximate grain size 2 ?? 1 ??m by transforming "standard" ice I samples of 250 ?? 50 ??m grain size to the higher-pressure phase ice II, deforming them in the ice II field, and then rapidly releasing the pressure deep into the ice I stability field. At T ??? 200 K, slow growth and rapid nucleation of ice I combine to produce a fine grain size. Constant-strain rate deformation tests conducted on these samples show that deformation rates are less stress sensitive than for standard ice and that the fine-grained material is markedly weaker than standard ice, particularly during the transient approach to steady state deformation. Scanning electron microscope examination of the deformed fine-grained ice samples revealed an unusual microstructure dominated by platelike grains that grew normal to the compression direction, with c axes preferentially oriented parallel to compression. In samples tested at T ??? 220 K the elongation of the grains is so pronounced that the samples appear finely banded, with aspect ratios of grains approaching 50:1. The anisotropic growth of these crystallographically oriented neoblasts likely contributes to progressive work hardening observed during the transient stage of deformation. We have also documented remarkably similar microstructural development and weak mechanical behavior in fine-grained ice samples partially transformed and deformed in the ice II field.

  3. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas

    NASA Technical Reports Server (NTRS)

    Chow, V. W.; Mendis, D. A.; Rosenberg, M.

    1993-01-01

    By virtue of being generally immersed in a plasma environment, cosmic dust is necessarily electrically charged. The fact that secondary emission plays an important role in determining the equilibrium grain potential has long been recognized, but the fact that the grain size plays a crucial role in this equilibrium potential, when secondary emission is important, has not been widely appreciated. Using both conducting and insulating spherical grains of various sizes and also both Maxwellian and generalized Lorentzian plasmas (which are believed to represent certain space plasmas), we have made a detailed study of this problem. In general, we find that the secondary emission yield delta increases with decreasing size and becomes very large for grains whose dimensions are comparable to the primary electron penetration depth, such as in the case of the very small grains observed at comet Halley and inferred in the interstellar medium. Moreover, we observed that delta is larger for insulators and equilibrium potentials are generally more positive when the plasma has a broad non-Maxwellian tail. Interestingly, we find that for thermal energies that are expected in several cosmic regions, grains of different sizes can have opposite charge, the smaller ones being positive while the larger ones are negative. This may have important consequences for grain accretion in polydisperse dusty space plasmas.

  4. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  5. Scattering and Absorption Properties of Polydisperse Wavelength-sized Particles Covered with Much Smaller Grains

    NASA Technical Reports Server (NTRS)

    Dlugach, Jana M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2012-01-01

    Using the results of direct, numerically exact computer solutions of the Maxwell equations, we analyze scattering and absorption characteristics of polydisperse compound particles in the form of wavelength-sized spheres covered with a large number of much smaller spherical grains.The results pertain to the complex refractive indices1.55 + i0.0003,1.55 + i0.3, and 3 + i0.1. We show that the optical effects of dusting wavelength-sized hosts by microscopic grains can vary depending on the number and size of the grains as well as on the complex refractive index. Our computations also demonstrate the high efficiency of the new superposition T-matrix code developed for use on distributed memory computer clusters.

  6. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    PubMed

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.)

    PubMed Central

    Lizana, X. Carolina; Riegel, Ricardo; Gomez, Leonardo D.; Herrera, Jaime; Isla, Adolfo; McQueen-Mason, Simon J.; Calderini, Daniel F.

    2010-01-01

    Grain weight is one of the most important components of cereal yield and quality. A clearer understanding of the physiological and molecular determinants of this complex trait would provide an insight into the potential benefits for plant breeding. In the present study, the dynamics of dry matter accumulation, water uptake, and grain size in parallel with the expression of expansins during grain growth in wheat were analysed. The stabilized water content of grains showed a strong association with final grain weight (r2=0.88, P <0.01). Grain length was found to be the trait that best correlated with final grain weight (r2=0.98, P <0.01) and volume (r2=0.94, P <0.01). The main events that defined final grain weight occurred during the first third of grain-filling when maternal tissues (the pericarp of grains) undergo considerable expansion. Eight expansin coding sequences were isolated from pericarp RNA and the temporal profiles of accumulation of these transcripts were monitored. Sequences showing high homology with TaExpA6 were notably abundant during early grain expansion and declined as maturity was reached. RNA in situ hybridization studies revealed that the transcript for TaExpA6 was principally found in the pericarp during early growth in grain development and, subsequently, in both the endosperm and pericarp. The signal in these images is likely to be the sum of the transcript levels of all three sequences with high similarity to the TaExpA6 gene. The early part of the expression profile of this putative expansin gene correlates well with the critical periods of early grain expansion, suggesting it as a possible factor in the final determination of grain size. PMID:20080826

  8. Microstructures and rheology of a calcite-shale thrust fault

    NASA Astrophysics Data System (ADS)

    Wells, Rachel K.; Newman, Julie; Wojtal, Steven

    2014-08-01

    A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (<0.3 μm) fault rocks, interpenetrating calcite grains form an interconnected network around shale clasts. One cm below the fault rock layer, sedimentary laminations in non-penetratively deformed footwall shale are cut by calcite veins, small faults, and stylolites. A 350 μm thick calcite vein separates the fault rocks and footwall shale. The vein is composed of layers of (1) coarse calcite grains (>5 μm) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 μm) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.

  9. Ultrahigh Carbon Steel.

    DTIC Science & Technology

    1984-10-01

    The unique mechanical properties achieved in UHC steels are due to the presence of micron-size ferrite grains and ultrafine spheroidized carbides. SN...unique mechanical properties achieved in UHC [0 steels are due to the presence of micron-size ferrite grains and ultrafine spheroidized carbides. 0... steel is that it has a low resistance to plastic flow upon deformation in the superplastic range at low strain rates (e.g., 2000 psi at 4 1041 e 10 s

  10. Grain size controls on sediment supply from debris-mantled dryland hillslopes

    NASA Astrophysics Data System (ADS)

    Michaelides, K.

    2011-12-01

    Debris-mantled hillslopes are common in arid and semiarid environments where low rates of chemical weathering give rise to thin, non-cohesive soils mantled with a layer of coarse rock fragments derived from weathered bedrock that can reach boulder size. The grain size distributions (GSDs) on the surface of these hillslopes interact with different magnitudes and frequencies of runoff-producing rainfall events that selectively transport grain sizes of different classes depending on flow, grain position on the slope, and hillslope attributes. Sediment transport over many runoff events determines sediment delivery to the slope base, which ultimately modifies the GSD of valley floors. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the topographic evolution of drainage basins over >104 y timescales, but the specific responses of sediment flux across the hillslope and the corresponding changes in GSDs to individual storm events are poorly understood. Sheetwash erosion of coarse fragments presents a particular set of conditions for sediment transport that is poorly resolved in current models. A particle-based model for sheetwash sediment transport on debris-mantled hillslopes was developed within a rainfall-runoff model. The rainfall-runoff model produces spatial values of flow depth and velocity which are used to drive a particle-by-particle force-balance model derived from first principles for grain sizes > 1 mm. Particles on the hillslope surface are represented explicitly and can be composed of mixed grain sizes of any distribution or of uniform sizes of any diameter. The model resolves all the forces on each particle at each time and space step based on the flow hydraulics acting on them, so no assumptions are made about incipient motion using Shield's criterion. This research examines how the interplay between hillslope GSD, hillslope attributes (gradient and length) and runoff

  11. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  12. Decoding sediment transport dynamics on alluvial fans from spatial changes in grain size, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Brooke, Sam; Whittaker, Alexander; Watkins, Stephen; Armitage, John

    2017-04-01

    How fluvial sediment transport processes are transmitted to the sedimentary record remains a complex problem for the interpretation of fluvial stratigraphy. Alluvial fans represent the condensed sedimentary archive of upstream fluvial processes, controlled by the interplay between tectonics and climate over time, infused with the complex signal of internal autogenic processes. With high sedimentation rates and near complete preservation, alluvial fans present a unique opportunity to tackle the problem of landscape sensitivity to external boundary conditions such as climate. For three coupled catchments-fan systems in the tectonically well-constrained northern Death Valley, we measure grain size trends across well-preserved Holocene and Late-Pleistocene deposits, which we have mapped in detail. Our results show that fan surfaces from the Late-Pleistocene are, on average, 50% coarser than counterpart active or Holocene fan surfaces, with clear variations in input grain sizes observed between surfaces of differing age. Furthermore, the change in ratio between mean grain size and standard deviation is stable downstream for all surfaces, satisfying the statistical definition of self-similarity. Applying a self-similarity model of selective deposition, we derive a relative mobility function directly from our grain size distributions, and we evaluate for each fan surface the grain size for which the ratio of the probability of transport to deposition is 1. We show that the "equally mobile" grain size lies in the range of 20 to 35 mm, varies over time, and is clearly lower in the Holocene than in the Pleistocene. Our results indicate that coarser grain sizes on alluvial fans are much less mobile than in river systems where such an analysis has been previously applied. These results support recent findings that alluvial fan sediment characteristics can be used as an archive of past environmental change and that landscapes are sensitive to environmental change over a glacial

  13. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  14. Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Gockel, Joy; Sheridan, Luke; Narra, Sneha P.; Klingbeil, Nathan W.; Beuth, Jack

    2017-12-01

    Metal additive manufacturing (AM) is used for both prototyping and production of final parts. Therefore, there is a need to predict and control the microstructural size and morphology. Process mapping is an approach that represents AM process outcomes in terms of input variables. In this work, analytical, numerical, and experimental approaches are combined to provide a holistic view of trends in the solidification grain structure of Ti-6Al-4V across a wide range of AM process input variables. The thermal gradient is shown to vary significantly through the depth of the melt pool, which precludes development of fully equiaxed microstructure throughout the depth of the deposit within any practical range of AM process variables. A strategy for grain size control is demonstrated based on the relationship between melt pool size and grain size across multiple deposit geometries, and additional factors affecting grain size are discussed.

  15. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

    NASA Astrophysics Data System (ADS)

    Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie

    2017-10-01

    Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

  16. Gas-Grain Chemical Models: Inclusion of a Grain Size Distribution and a Study Of Young Stellar Objects in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler Andrew

    2017-06-01

    Computational models of interstellar gas-grain chemistry have aided in our understanding of star-forming regions. Chemical kinetics models rely on a network of chemical reactions and a set of physical conditions in which atomic and molecular species are allowed to form and react. We replace the canonical single grain-size in our chemical model MAGICKAL with a grain size distribution and analyze the effects on the chemical composition of the gas and grain surface in quiescent and collapsing dark cloud models. We find that a grain size distribution coupled with a temperature distribution across grain sizes can significantly affect the bulk ice composition when dust temperatures fall near critical values related to the surface binding energies of common interstellar chemical species. We then apply the updated model to a study of ice formation in the cold envelopes surrounding massive young stellar objects in the Magellanic Clouds. The Magellanic Clouds are local satellite galaxies of the Milky Way, and they provide nearby environments to study star formation at low metallicity. We expand the model calculation of dust temperature to include a treatment for increased interstellar radiation field intensity; we vary the radiation field to model the elevated dust temperatures observed in the Magellanic Clouds. We also adjust the initial elemental abundances used in the model, guided by observations of Magellanic Cloud HII regions. We are able to reproduce the relative ice fractions observed, indicating that metal depletion and elevated grain temperature are important drivers of the envelope ice composition. The observed shortfall in CO in Small Magellanic Cloud sources can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH 3OH abundance is found to be enhanced (relative to total carbon abundance) in

  17. Can a grain size-dependent viscosity help yielding realistic seismic velocities of LLSVPs?

    NASA Astrophysics Data System (ADS)

    Schierjott, J.; Cheng, K. W.; Rozel, A.; Tackley, P. J.

    2017-12-01

    Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs the viscosity is still a very debated topic. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size- dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011) and Rozel (2012). Further, we consider a primordial layer and a time-dependent basalt production at the surface to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). With this model we perform a parameter study which includes different densities and viscosities of the imposed primordial layer. We detect possible thermochemical piles based on different criterions, compute their average effective viscosity, density, rheology and grain size and investigate which detecting criterion yields the most realistic results. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the LLSVP is lower than the one of our MORB material. In that case the average temperature of the LLSVP is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the LLSVP but not for a different average

  18. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  19. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    PubMed

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  20. Ultrafine particle and fiber production in micro-gravity

    NASA Technical Reports Server (NTRS)

    Webb, George W.

    1987-01-01

    The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.

  1. Can we use only Grain Size Data for Paleo-Flow Reconstructions?

    NASA Astrophysics Data System (ADS)

    Perillo, M. M.; Pohl, F.; Eggenhuisen, J. T.; Fedele, J.; Hoyal, D. C. J. D.; Mohrig, D. C.

    2015-12-01

    Paleo-flow and paleo-environmental reconstruction from ancient deposits is a critical task for earth surface scientists interested in the sedimentary record. Forming processes are commonly interpreted from the architectural characteristics of sedimentary deposits using quantitative relationships derived from experiments or geomorphic studies. However, very little attention has been paid to the equivalent problem at the scale of micro-facies: can we interpret the conditions at the time of sediment accumulation from grain size information in a small sample? Here we investigate the use of grain size distributions alone to reconstruct the flow conditions based on a set of experiments conducted in a 2D flume tank in the Eurotank facilities at Utrecht University. The experiments are designed for the examination of grain size distributions within sediments which were deposited by flows with known conditions (e.g. velocity, turbulence, shear velocity, concentration). By changing the slope of the flume tank we were able to create a range of flows from strongly depositional (depletive) to bypassing. Inspired by Eastwood et al (2012), we propose a working methodology to link the grain size distribution of the deposit to flow conditions. Our method utilizes the following empiric relations: i) the finer fraction of the deposit was deposited while most of that range surpass the Bagnold (1966)'s suspension threshold (shear velocity υ* approx. 3 times the settling velocity ωs); ii) the mean fraction was at incipient suspension stage (υ* ~ ωs); iii) the finer portion of the coarser grains were at bedload/saltation stage, where u* is approx. υ*c (critical shear velocity for initiation of motion); and iv) the coarser portion of the coarser grains were at creep-bedload stage, where υ* is approx. 0.7υ*c . We test whether this set of rules can be applied to the probability distribution function of deposit grainsize in an inversion that converges on a single value for the shear

  2. 3D granulometry: grain-scale shape and size distribution from point cloud dataset of river environments

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Lague, Dimitri; Gourdon, Aurélie; Croissant, Thomas; Crave, Alain

    2016-04-01

    The grain-scale morphology of river sediments and their size distribution are important factors controlling the efficiency of fluvial erosion and transport. In turn, constraining the spatial evolution of these two metrics offer deep insights on the dynamics of river erosion and sediment transport from hillslopes to the sea. However, the size distribution of river sediments is generally assessed using statistically-biased field measurements and determining the grain-scale shape of river sediments remains a real challenge in geomorphology. Here we determine, with new methodological approaches based on the segmentation and geomorphological fitting of 3D point cloud dataset, the size distribution and grain-scale shape of sediments located in river environments. Point cloud segmentation is performed using either machine-learning algorithms or geometrical criterion, such as local plan fitting or curvature analysis. Once the grains are individualized into several sub-clouds, each grain-scale morphology is determined using a 3D geometrical fitting algorithm applied on the sub-cloud. If different geometrical models can be conceived and tested, only ellipsoidal models were used in this study. A phase of results checking is then performed to remove grains showing a best-fitting model with a low level of confidence. The main benefits of this automatic method are that it provides 1) an un-biased estimate of grain-size distribution on a large range of scales, from centimeter to tens of meters; 2) access to a very large number of data, only limited by the number of grains in the point-cloud dataset; 3) access to the 3D morphology of grains, in turn allowing to develop new metrics characterizing the size and shape of grains. The main limit of this method is that it is only able to detect grains with a characteristic size greater than the resolution of the point cloud. This new 3D granulometric method is then applied to river terraces both in the Poerua catchment in New-Zealand and

  3. Settling equivalence of detrital minerals and grain-size dependence of sediment composition

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni

    2008-08-01

    This study discusses the laws which govern sediment deposition, and consequently determine size-dependent compositional variability. A theoretical approach is substantiated by robust datasets on major Alpine, Himalayan, and African sedimentary systems. Integrated (bulk-petrography, heavy-mineral, X-ray powder diffraction) multiple-window analyses at 0.25ϕ to 0.50ϕ sieve interval of eighty-five fluvial, beach, and eolian-dune samples, ranging from very fine silt to coarse sand, document homologous intrasample compositional trends, revealed by systematic concentration of denser grains in finer-grained fractions (“size-density sorting”). These trends are explained by the settling-equivalence principle, stating that detrital minerals are deposited together if their settling velocity is the same. Settling of silt is chiefly resisted by fluid viscosity, and Stokes' law predicts that size differences between detrital minerals in ϕ units (“size shifts”) are half the difference between the logarithms of their submerged densities. Settling of pebbles is chiefly resisted by turbulence effects, and the Impact law predicts double size shifts than Stokes' law. Settling of sand is resisted by both viscosity and turbulence, the settling-equivalence formula is complex, and size shifts increase - with increasing settling velocity and grain size - from those predicted by Stokes' law to those predicted by the Impact law. In wind-laid sands, size shifts match those predicted by the Impact law; size-density sorting is thus greater than in water-laid fine sands. New analytical, graphical, and statistical techniques for rigorous settling-equivalence analysis of terrigenous sediments are illustrated. Deviations associated with non-spherical shape, density anomalies, inheritance from source rocks, or mixing of detrital species with contrasting provenance and different size distribution are also tentatively assessed. Such integrated theoretical and experimental approach allows us

  4. Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Koopman, Mark; Xia, Yang; Paramore, James; Ravi Chandran, K. S.; Ren, Yang; Lu, Jun

    2015-12-01

    The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well established to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine α/α2 within coarse β grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of β → α + δ at approximately 473 K (200 °C).

  5. Effect of grain size on the melting point of confined thin aluminum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof

    2014-10-28

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grainmore » boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.« less

  6. In-Situ Analysis of the Chemical Vapor Synthesis of Nanocrystalline Silicon Carbide by Aerosol Mass Spectrometry

    DTIC Science & Technology

    2001-11-01

    ultrafine particles with a narrow size distribution and high purity. Chemical Vapor Synthesis (CVS) is a method to generate particles in the size range...high temperatures due to strong covalent bonds. Ultrafine particles of SiC are promising for the production of dense bulk solids due to the small grain

  7. Interpreting Hydraulic Conditions from Morphology, Sedimentology, and Grain Size of Sand Bars in the Colorado River in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.; Topping, D. J.; Schmidt, J. C.; Grams, P. E.; Buscombe, D.; East, A. E.; Wright, S. A.

    2015-12-01

    During three decades of research on sand bars and sediment transport in the Colorado River in Grand Canyon, we have collected unprecedented quantities of data on bar morphology, sedimentary structures, grain size of sand on the riverbed (~40,000 measurements), grain size of sand in flood deposits (dozens of vertical grain-size profiles), and time series of suspended sediment concentration and grain size (more than 3 million measurements using acoustic and laser-diffraction instruments sampling every 15 minutes at several locations). These data, which include measurements of flow and suspended sediment as well as sediment within the deposits, show that grain size within flood deposits generally coarsens or fines proportionally to the grain size of sediment that was in suspension when the beds were deposited. The inverse problem of calculating changing flow conditions from a vertical profile of grain size within a deposit is difficult because at least two processes can cause similar changes. For example, upward coarsening in a deposit can result from either an increase in discharge of the flow (causing coarser sand to be transported to the depositional site), or from winnowing of the upstream supply of sand (causing suspended sand to coarsen because a greater proportion of the bed that is supplying sediment is covered with coarse grains). These two processes can be easy to distinguish where suspended-sediment observations are available: flow-regulated changes cause concentration and grain size of sand in suspension to be positively correlated, whereas changes in supply can cause concentration and grain size of sand in suspension to be negatively correlated. The latter case (supply regulation) is more typical of flood deposits in Grand Canyon.

  8. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production.

    PubMed

    Liu, Shuying; Hua, Lei; Dong, Sujun; Chen, Hongqi; Zhu, Xudong; Jiang, Jun'e; Zhang, Fang; Li, Yunhai; Fang, Xiaohua; Chen, Fan

    2015-11-01

    Grain size is an important agronomic trait in determining grain yield. However, the molecular mechanisms that determine the final grain size are not well understood. Here, we report the functional analysis of a rice (Oryza sativa L.) mutant, dwarf and small grain1 (dsg1), which displays pleiotropic phenotypes, including small grains, dwarfism and erect leaves. Cytological observations revealed that the small grain and dwarfism of dsg1 were mainly caused by the inhibition of cell proliferation. Map-based cloning revealed that DSG1 encoded a mitogen-activated protein kinase (MAPK), OsMAPK6. OsMAPK6 was mainly located in the nucleus and cytoplasm, and was ubiquitously distributed in various organs, predominately in spikelets and spikelet hulls, consistent with its role in grain size and biomass production. As a functional kinase, OsMAPK6 interacts strongly with OsMKK4, indicating that OsMKK4 is likely to be the upstream MAPK kinase of OsMAPK6 in rice. In addition, hormone sensitivity tests indicated that the dsg1 mutant was less sensitive to brassinosteroids (BRs). The endogenous BR levels were reduced in dsg1, and the expression of several BR signaling pathway genes and feedback-inhibited genes was altered in the dsg1 mutant, with or without exogenous BRs, indicating that OsMAPK6 may contribute to influence BR homeostasis and signaling. Thus, OsMAPK6, a MAPK, plays a pivotal role in grain size in rice, via cell proliferation, and BR signaling and homeostasis. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  9. Effect of grain size on optical transmittance of birefringent polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Wen, Tzu-Chien

    Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light

  10. Size-Dependent Grain-Boundary Structure with Improved Conductive and Mechanical Stabilities in Sub-10-nm Gold Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang

    2018-05-01

    Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.

  11. Cyclic hardening behavior of extruded ZK60 magnesium alloy with different grain sizes

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Wang, Wenke

    2018-04-01

    Montonic and fully reversed strain-controlled cyclic deformation experiments were conducted on extruded ZK60 magnesium alloy with two different grain sizes in ambient air. Results revealed that the hardening rates of the ZK60 magnesium alloy rods with fine grain and coarse grain in the monotonic deformation and the fully reversed strain-controlled cyclic deformation were opposite along the extrusion direction. Electron Backscatter Diffration analysis revealed that fine grains were more easily rotated than coarse grains under the cyclic deformation. Under the twinning and detwinning process of the cyclic deformation at a large strain amplitude, the coarse grained ZK60 magnesium alloys were more prone to tension twinning {10-12}<10-11> and more residual twins were observed. Texture hardening of coarse grained magnesium alloy was more obvious in cyclic defromation than fine-grained magnesium alloy.

  12. Laboratory Reflectance Spectra in the Middle-infrared: Effects of Grain Size on Spectral Features

    NASA Astrophysics Data System (ADS)

    Le Bras, A.; Erard, S.; Fulchignoni, M.

    2000-10-01

    Since spectral mineral features are sensitive to surface parameters, interpretation of remote-sensing asteroids spectra in terms of mineral composition is not easy nor unique, and laboratory spectra are needed in order to understand the influence of each parameter. We developped an experimental program at IAS, using the 2.5-120 microns interferometer spectrometer, to study the influence of surface parameters on mineral features. We present here the results obtained variing the grain size. We studied grain size effects with two types of terrestrial rocks: anorthosite (bright) and basalte (dark) in the 2-40 microns range. We observed variations of the spectral contrast with grain size, shifts in wavelengths and variations of the intensity of some characteristic spectral features, and appearence of transparency features at wavelengths longer than 8 microns.

  13. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less

  14. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  15. MECHANISMS BY WHICH ULTRAFINE, FINE, AND COARSE PARTICLES CAUSE ADVERSE HEALTH EFFECTS

    EPA Science Inventory

    A small number of recent studies suggest that different size particles may cause different health effects. There are clearly differences in the chemical makeup of coarse, fine, and ultrafine particles, and this different chemistry may well drive different health responses. The ...

  16. Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice.

    PubMed

    Duan, Penggen; Xu, Jinsong; Zeng, Dali; Zhang, Baolan; Geng, Mufan; Zhang, Guozheng; Huang, Ke; Huang, Luojiang; Xu, Ran; Ge, Song; Qian, Qian; Li, Yunhai

    2017-05-01

    The utilization of natural genetic variation greatly contributes to improvement of important agronomic traits in crops. Understanding the genetic basis for natural variation of grain size can help breeders develop high-yield rice varieties. In this study, we identify a previously unrecognized gene, named GSE5, in the qSW5/GW5 locus controlling rice grain size by combining the genome-wide association study with functional analyses. GSE5 encodes a plasma membrane-associated protein with IQ domains, which interacts with the rice calmodulin protein, OsCaM1-1. We found that loss of GSE5 function caused wide and heavy grains, while overexpression of GSE5 resulted in narrow grains. We showed that GSE5 regulates grain size predominantly by influencing cell proliferation in spikelet hulls. Three major haplotypes of GSE5 (GSE5, GSE5 DEL1+IN1 , and GSE5 DEL2 ) in cultivated rice were identified based on the deletion/insertion type in its promoter region. We demonstrated that a 950-bp deletion (DEL1) in indica varieties carrying the GSE5 DEL1+IN1 haplotype and a 1212-bp deletion (DEL2) in japonica varieties carrying the GSE5 DEL2 haplotype associated with decreased expression of GSE5, resulting in wide grains. Further analyses indicate that wild rice accessions contain all three haplotypes of GSE5, suggesting that the GSE5 haplotypes present in cultivated rice are likely to have originated from different wild rice accessions during rice domestication. Taken together, our results indicate that the previously unrecognized GSE5 gene in the qSW5/GW5 locus, which is widely utilized by rice breeders, controls grain size, and reveal that natural variation in the promoter region of GSE5 contributes to grain size diversity in rice. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  17. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  18. Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.

    2007-07-01

    This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.

  19. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    NASA Astrophysics Data System (ADS)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  20. Composite grain size sensitive and grain size insensitive creep of bischofite, carnallite and mixed bischofite-carnallite-halite salt rock

    NASA Astrophysics Data System (ADS)

    Muhammad, Nawaz; de Bresser, Hans; Peach, Colin; Spiers, Chris

    2016-04-01

    Deformation experiments have been conducted on rock samples of the valuable magnesium and potassium salts bischofite and carnallite, and on mixed bischofite-carnallite-halite rocks. The samples have been machined from a natural core from the northern part of the Netherlands. Main aim was to produce constitutive flow laws that can be applied at the in situ conditions that hold in the undissolved wall rock of caverns resulting from solution mining. The experiments were triaxial compression tests carried out at true in situ conditions of 70° C temperature and 40 MPa confining pressure. A typical experiment consisted of a few steps at constant strain rate, in the range 10-5 to 10-8 s-1, interrupted by periods of stress relaxation. During the constant strain rate part of the test, the sample was deformed until a steady (or near steady) state of stress was reached. This usually required about 2-4% of shortening. Then the piston was arrested and the stress on the sample was allowed to relax until the diminishing force on the sample reached the limits of the load cell resolution, usually at a strain rate in the order of 10-9 s-1. The duration of each relaxation step was a few days. Carnallite was found to be 4-5 times stronger than bischofite. The bischofite-carnallite-halite mixtures, at their turn, were stronger than carnallite, and hence substantially stronger than pure bischofite. For bischofite as well as carnallite, we observed that during stress relaxation, the stress exponent nof a conventional power law changed from ˜5 at strain rate 10-5 s-1 to ˜1 at 10-9 s-1. The absolute strength of both materials remained higher if relaxation started at a higher stress, i.e. at a faster strain rate. We interpret this as indicating a difference in microstructure at the initiation of the relaxation, notably a smaller grain size related to dynamical recrystallization during the constant strain rate step. The data thus suggest that there is a gradual change in deformation

  1. Effects of rolling temperature and subsequent annealing on mechanical properties of ultrafine-grained Cu–Zn–Si alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiangkai; Yang, Xuyue, E-mail: yangxuyue@csu.edu.cn; Institute for Materials Microstructure, Central South University, Changsha 410083

    2015-08-15

    The effects of rolling temperature and subsequent annealing on mechanical properties of Cu–Zn–Si alloy were investigated by using X-ray diffraction, transmission electron microscope, electron back scattered diffraction and tensile tests. The Cu–Zn–Si alloy has been processed at cryogenic temperature (approximately 77 K) and room temperature up to different rolling strains. It has been identified that the cryorolled Cu–Zn–Si alloy samples show a higher strength compared with those room temperature rolled samples. The improved strength of cryorolled samples is resulted from grain size effect and higher densities of dislocations and deformation twins. And subsequent annealing, as a post-heat treatment, enhanced themore » ductility. An obvious increase in uniform elongation appears when the volume fraction of static recrystallization grains exceeds 25%. The strength–ductility combination of the annealed cryorolled samples is superior to that of annealed room temperature rolled samples, owing to the finer grains, high fractions of high angle grain boundaries and twins. - Highlights: • An increase in hardness of Cu–Zn–Si alloy is noticed during annealing process. • Thermal stability is reduced in Cu–Zn–Si alloy by cryorolling. • An obvious enhancement in UE is noticed when fraction of SRX grains exceeds 25%. • A superior strength–ductility combination is achieved in the cryorolling samples.« less

  2. EPR investigation of UV light effect on calcium carbonate powders with different grain sizes.

    PubMed

    Kabacińska, Zuzanna; Krzyminiewski, Ryszard; Dobosz, Bernadeta

    2014-06-01

    This study is based on investigation of calcium carbonate powders with different grain sizes exposed to UV light. Calcium carbonate is widely used in many branches of industry, e.g. as a filler for polymer materials; therefore, knowing its properties, among them also its reaction to UV light, is essential. Samples of powdered calcium carbonate with average grain sizes of 69 and 300 nm and 2.1, 6, 16, 25 µm were used in this investigation. Measurements were performed at room temperature using EPR X-band spectrometer, and they have shown the additional signals induced by the light from Hg lamp. The effect of annealing of the micro-grain samples was also studied. The spectra of four micro-grain samples after irradiation are similar, but there are differences between them and the other two powders, which could be related to the different sizes of their grains. Further studies based on these preliminary results may prove useful in research of photodegradation of CaCO3-filled materials, as well as helpful in increasing the accuracy of dating of archaeological and geological objects. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel

    PubMed Central

    Wan, Tao; Wakui, Takashi; Futakawa, Masatoshi; Obayashi, Hironari

    2017-01-01

    A lead bismuth eutectic (LBE) spallation target will be installed in the Target Test Facility (TEF-T) in the Japan Proton Accelerator Research Complex (J-PARC). The spallation target vessel filled with LBE is made of type 316L stainless steel. However, various damages, such as erosion/corrosion damage and liquid metal embrittlement caused by contact with flowing LBE at high temperature, and irradiation hardening caused by protons and neutrons, may be inflicted on the target vessel, which will deteriorate the steel and might break the vessel. To monitor the target vessel for prevention of an accident, an ultrasonic technique has been proposed to establish off-line evaluation for estimating vessel material status during the target maintenance period. Basic R&D must be carried out to clarify the dependency of ultrasonic wave propagation behavior on material microstructures and obtain fundamental knowledge. As a first step, ultrasonic waves scattered by the grains of type 316L stainless steel are investigated using new experimental and numerical approaches in the present study. The results show that the grain size can be evaluated exactly and quantitatively by calculating the attenuation coefficient of the ultrasonic waves scattered by the grains. The results also show that the scattering regimes of ultrasonic waves depend heavily on the ratio of wavelength to average grain size, and are dominated by grains of extraordinarily large size along the wave propagation path. PMID:28773115

  4. Transitional grain-size-sensitive flow of milky quartz aggregates

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2014-12-01

    Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse-grained

  5. Assessing grain-size correspondence between flow and deposits of controlled floods in the Colorado River, USA

    USGS Publications Warehouse

    Draut, Amy; Rubin, David M.

    2013-01-01

    Flood-deposited sediment has been used to decipher environmental parameters such as variability in watershed sediment supply, paleoflood hydrology, and channel morphology. It is not well known, however, how accurately the deposits reflect sedimentary processes within the flow, and hence what sampling intensity is needed to decipher records of recent or long-past conditions. We examine these problems using deposits from dam-regulated floods in the Colorado River corridor through Marble Canyon–Grand Canyon, Arizona, U.S.A., in which steady-peaked floods represent a simple end-member case. For these simple floods, most deposits show inverse grading that reflects coarsening suspended sediment (a result of fine-sediment-supply limitation), but there is enough eddy-scale variability that some profiles show normal grading that did not reflect grain-size evolution in the flow as a whole. To infer systemwide grain-size evolution in modern or ancient depositional systems requires sampling enough deposit profiles that the standard error of the mean of grain-size-change measurements becomes small relative to the magnitude of observed changes. For simple, steady-peaked floods, 5–10 profiles or fewer may suffice to characterize grain-size trends robustly, but many more samples may be needed from deposits with greater variability in their grain-size evolution.

  6. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less

  7. Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.

    PubMed

    Zhou, Piao; Zhou, Jianqiu; Zhu, Yongwei; Jiang, E; Wang, Zikun

    2018-04-01

    A theoretical model to explore the effect on crack initiation of nanotwinned materials was proposed based on the accumulation of dislocations at twin boundaries. First, a critical cracking initiation condition was established considering the number of dislocations pill-up at TBs, grain size and twin layer thickness, and a semi-quantitative relationship between the crystallographic orientation and the stacking fault energy was built. In addition, the number of dislocations pill-up was described by introducing the theory of strain gradient. Based on this model, the effects of grain size and twin lamellae thickness on dislocation density and crack initiation at twin boundaries were also discussed. The simulation results demonstrated that the crack initiation resistance can be improved by decreasing the grain size and increasing the twin lamellae, which keeps in agreement with recent experimental findings reported in the literature.

  8. The effects of snowpack grain size on satellite passive microwave observations from the Upper Colorado River Basin

    USGS Publications Warehouse

    Josberger, E.G.; Gloersen, P.; Chang, A.; Rango, A.

    1996-01-01

    Understanding the passive microwave emissions of a snowpack, as observed by satellite sensors, requires knowledge of the snowpack properties: water equivalent, grain size, density, and stratigraphy. For the snowpack in the Upper Colorado River Basin, measurements of snow depth and water equivalent are routinely available from the U.S. Department of Agriculture, but extremely limited information is available for the other properties. To provide this information, a field program from 1984 to 1995 obtained profiles of snowpack grain size, density, and temperature near the time of maximum snow accumulation, at sites distributed across the basin. A synoptic basin-wide sampling program in 1985 showed that the snowpack exhibits consistent properties across large regions. Typically, the snowpack in the Wyoming region contains large amounts of depth hoar, with grain sizes up to 5 mm, while the snowpack in Colorado and Utah is dominated by rounded snow grains less than 2 mm in diameter. In the Wyoming region, large depth hoar crystals in shallow snowpacks yield the lowest emissivities or coldest brightness temperatures observed across the entire basin. Yearly differences in the average grain sizes result primarily from variations in the relative amount of depth hoar within the snowpack. The average grain size for the Colorado and Utah regions shows much less variation than do the grain sizes from the Wyoming region. Furthermore, the greatest amounts of depth hoar occur in the Wyoming region during 1987 and 1992, years with strong El Nin??o Southern Oscillation, but the Colorado and Utah regions do not show this behavior.

  9. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer

    NASA Astrophysics Data System (ADS)

    Gudnason, Jonas; Thordarson, Thor; Houghton, Bruce F.; Larsen, Gudrun

    2018-01-01

    The 1845 eruption is commonly viewed as a typical Hekla eruption. It is a key event in the eruptive history of the volcano, as it is one of the best documented Hekla eruptions, in terms of contemporary accounts and observations. The eruption started on 2 September 1845 with an intense, hour long explosive Plinian phase that passed into effusive activity, ending on the 16 March 1846. The amount of tephra produced in the opening phase was 0.13 km3/7.5 × 1010 kg. The total grain-size distribution of the deposit is bimodal with a dominant coarse mode at - 2.5 φ (5.6 mm) and a broad finer mode at 3 to 4.5 φ (0.125 to 0.045 mm). At individual sites, the grain-size distribution of the tephra from the Plinian opening phase is also commonly (not always) bimodal. Deconvolved grain-size distributions exhibit distinctly different sedimentation patterns of the coarse and fine subpopulations. The lapilli-dominated subpopulation fines rapidly with transport, while the ash-dominated subpopulation shows less changes with distance, indicating premature sedimentation of fines by aggregation from the 1845 volcanic plume. Tephra deposition was to the ESE of the volcano from a 19 km (a.s.l.) high eruption plume. The plume front travelled at speeds of 16-19 m s- 1. Reports of ash deposition onto ships near the Faroe and Shetland Islands, 700 to 1100 km away from Hekla, demonstrate that even moderate-sized Hekla eruptions can affect very large parts of European air-space.

  10. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphousmore » carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.« less

  11. Scaling up of High-Pressure Sliding (HPS) for Grain Refinement and Superplasticity

    NASA Astrophysics Data System (ADS)

    Takizawa, Yoichi; Masuda, Takahiro; Fujimitsu, Kazushige; Kajita, Takahiro; Watanabe, Kyohei; Yumoto, Manabu; Otagiri, Yoshiharu; Horita, Zenji

    2016-09-01

    The process of high-pressure sliding (HPS) is a method of severe plastic deformation developed recently for grain refinement of metallic materials under high pressure. The sample for HPS is used with a form of sheet or rod. In this study, an HPS facility with capacities of 500 tonnes for vertical pressing and of 500 and 300 tonnes for horizontal forward and backward pressings, respectively, was newly built and applied for grain refinement of a Mg alloy as AZ61, Al alloys such as Al-Mg-Sc, A2024 and A7075 alloys, a Ti alloy as ASTM-F1295, and a Ni-based superalloy as Inconel 718. Sheet samples with dimensions of 10 to 30 mm width, 100 mm length, and 1 mm thickness were processed at room temperature and ultrafine grains with sizes of ~200 to 300 nm were successfully produced in the alloys. Tensile testing at elevated temperatures confirmed the advent of superplasticity with total elongations of more than 400 pct in all the alloys. It is demonstrated that the HPS can make all the alloys superplastic through processing at room temperature with a form of rectangular sheets.

  12. Computational study of deformation mechanisms and grain size evolution in granulites - Implications for the rheology of the lower crust

    NASA Astrophysics Data System (ADS)

    Maierová, Petra; Lexa, Ondrej; Jeřábek, Petr; Schulmann, Karel; Franěk, Jan

    2017-05-01

    Most of granulite terrains worldwide are characterized by large mean grain sizes of 1 mm or more. An important exception are the high-pressure felsic granulites in the Bohemian Massif, the European Variscan belt. There, recrystallization of original coarse-grained ternary feldspar led to formation of a fine-grained (∼100 μm) mixed matrix dominated by plagioclase and K-feldspar. This change occurred at temperatures of ∼850 °C and was probably caused by chemically induced decomposition related to slight cooling and enhanced by deformation during continental collision. The resulting microstructure shows indications of diffusion creep assisted by melt-enhanced grain-boundary sliding. Further on, minor coarsening occurred associated with deformation by dislocation creep and aggregation of mineral phases. Using a thermodynamics-based model of grain size evolution we show that stability of the fine-grained microstructure crucially depends on Zener pinning in the two-phase mineral matrix. Pinning efficiently hinders grain growth, and the small grain size that resulted from the ternary feldspar decomposition can be stable even at high temperatures. The late switch from the grain-size-sensitive creep to dislocation creep is rather difficult to explain by temperature and strain rate (or stress) changes only. However, a simple incorporation of melt solidification can successfully simulate this behavior. Alternatively, the switch and the associated grain size growth can be related to mineral phase aggregation at lower pressure-temperature conditions resulting into a decrease of pinning efficiency. This study suggests that the fine grain size of the Bohemian granulites, in contrast to the common coarse-grained type, stems from abrupt recrystallization during the high-pressure high-temperature conditions, and pinning in the fine-grained matrix. Such a process may in some cases significantly and suddenly reduce the strength of the lower continental crust and allow for its

  13. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgharzadeh, H.; Kim, H.S.; Simchi, A., E-mail: simchi@sharif.edu

    2013-01-15

    An ultrafine-grained Al6063/Al{sub 2}O{sub 3} (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 {mu}m), ultrafine grains (0.1-1 {mu}m), and micron-size grains (> 1 {mu}m) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle grain boundaries rather than nanometricmore » alumina particles. Hot deformation behavior of the material at different temperatures and strain rates was studied by compression test and compared to coarse-grained Al6063 alloy. The activation energy of the hot deformation process for the nanocomposite was determined to be 291 kJ mol{sup -1}, which is about 64% higher than that of the coarse-grained alloy. Detailed microstructural analysis revealed that dynamic recrystallization is responsible for the observed deformation softening in the ultrafine-grained nanocomposite. - Highlights: Black-Right-Pointing-Pointer The strengthening mechanisms of Al6063/Al{sub 2}O{sub 3} nanocomposite were evaluated. Black-Right-Pointing-Pointer Hot deformation behavior of the nanocomposite was studied. Black-Right-Pointing-Pointer The hot deformation activation energy was determined using consecutive models. Black-Right-Pointing-Pointer The restoration mechanisms and microstructural changes are presented.« less

  14. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  15. Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques

    USGS Publications Warehouse

    Cuttler, Michael V. W.; Lowe, Ryan J.; Falter, James L.; Buscombe, Daniel D.

    2017-01-01

    Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain-size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root-mean-square error of up to 28%, depending upon settling velocity model and grain-size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity-dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root-mean-square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand-sized bioclastic sediments from sieve, laser diffraction, or image analysis-derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain-size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.

  16. Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere.

    PubMed

    Kawanaka, Youhei; Matsumoto, Emiko; Sakamoto, Kazuhiko; Yun, Sun-Ja

    2011-02-15

    The present study was performed to estimate the contributions of fine and ultrafine particles to the lung deposition of particle-bound mutagens in the atmosphere. This is the first estimation of the respiratory deposition of atmospheric particle-bound mutagens. Direct and S9-mediated mutagenicity of size-fractionated particulate matter (PM) collected at roadside and suburban sites was determined by the Ames test using Salmonella typhimurium strain TA98. Regional deposition efficiencies in the human respiratory tract of direct and S9-mediated mutagens in each size fraction were calculated using the LUDEP computer-based model. The model calculations showed that about 95% of the lung deposition of inhaled mutagens is caused by fine particles for both roadside and suburban atmospheres. Importantly, ultrafine particles were shown to contribute to the deposition of mutagens in the alveolar region of the lung by as much as 29% (+S9) and 26% (-S9) for the roadside atmosphere and 11% (+S9) and 13% (-S9) for the suburban atmosphere, although ultrafine particles contribute very little to the PM mass concentration. These results indicated that ultrafine particles play an important role as carriers of mutagens into the lung. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  18. Characteristics and interrelation of recovery stress and recovery strain of an ultrafine-grained Ni-50.2Ti alloy processed by high-ratio differential speed rolling

    NASA Astrophysics Data System (ADS)

    Lim, Y. G.; Kim, W. J.

    2017-03-01

    The characteristics of the recovery stress and strain of an ultrafine-grained Ni-50.2 at% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined, and the factors that influence the recovery stress and strain and the relation between the two were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The subsequent annealing treatment at 673 K, however, reduced the shape recovery properties. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed. The recovery strain increased as the yield stress increased. Thus, the maximum recovery stress increased with an increase in yield stress. The recovery stress measured at room temperature (i.e., residual recovery stress) was, on the other hand, affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.

  19. The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Valiev, R. R.

    2018-04-01

    In this work, the results on solid particle erosion of an ultrafine-grained Grade 5 titanium alloy, which was produced using high-pressure torsion (HPT) technique, are presented. In order to assess influence of the HPT treatment on material's behavior in erosive conditions, special experimental procedures were developed. The ultrafine-grained (UFG) alloy was tested alongside with a conventional coarse-grained (CG) Grade 5 titanium alloy in equal conditions. The experiments were conducted in a small-scale wind tunnel with corundum particles as an abrasive material. Both particle dimensions and particle velocities were varied in course of the experiments. Erosion resistance of the samples was evaluated in two ways—mass reduction measurements with subsequent gravimetric erosion rate calculations and investigation of samples' surface roughness after erosion tests. The UFG titanium alloy demonstrated considerable improvement of static mechanical properties (ultimate tensile strength, microhardness), whereas its CG counterpart appeared to be slightly more resistant to solid particle erosion, which might indicate the drop of dynamic strength properties for the HPT-processed material.

  20. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice.

    PubMed

    Li, Shuangcheng; Gao, Fengyan; Xie, Kailong; Zeng, Xiuhong; Cao, Ye; Zeng, Jing; He, Zhongshan; Ren, Yun; Li, Wenbo; Deng, Qiming; Wang, Shiquan; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Li, Ping

    2016-11-01

    Grain weight is the most important component of rice yield and is mainly determined by grain size, which is generally controlled by quantitative trait loci (QTLs). Although numerous QTLs that regulate grain weight have been identified, the genetic network that controls grain size remains unclear. Herein, we report the cloning and functional analysis of a dominant QTL, grain length and width 2 (GLW2), which positively regulates grain weight by simultaneously increasing grain length and width. The GLW2 locus encodes OsGRF4 (growth-regulating factor 4) and is regulated by the microRNA miR396c in vivo. The mutation in OsGRF4 perturbs the OsmiR396 target regulation of OsGRF4, generating a larger grain size and enhanced grain yield. We also demonstrate that OsGIF1 (GRF-interacting factors 1) directly interacts with OsGRF4, and increasing its expression improves grain size. Our results suggest that the miR396c-OsGRF4-OsGIF1 regulatory module plays an important role in grain size determination and holds implications for rice yield improvement. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Evolution of mechanical properties of ultrafine grained 1050 alloy annealing with electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yiheng; He, Lizi, E-mail: helizi@epm.neu.edu.cn; Zhang, Lin

    2016-03-15

    The tensile properties and microstructures of 1050 aluminum alloy prepared by equal channel angular pressing at cryogenic temperature (cryoECAP) after electric current annealing at 90–210 °C for 3 h were investigated by tensile test, electron back scattering diffraction (EBSD) and transmission electron microscopy (TEM). An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C, due to a significant decrease in the density of mobile dislocations after annealing, and thus a higher yield stress is required to nucleate alternative dislocation sources during tensile test. The electric current can enhance the motion of dislocations, lead to a lower dislocation density at 90–150 °C,more » and thus shift the peak annealing temperature from 150 °C to 120 °C. Moreover, the electric current can promote the migration of grain boundaries at 150–210 °C, result in a larger grain size at 150 °C and 210 °C, and thus causes a lower yield stress. The sample annealed with electric current has a lower uniform elongation at 90–120 °C, and the deviation in the uniform elongation between samples annealed without and with electric current becomes smaller at 150–210 °C. - Highlights: • An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C. • The d. c. current can enhance the motion of dislocations at 90–150 °C, and thus shift the peak annealing temperature from 150 °C to 120 °C. • The d. c. current can promote the grain growth at 150–210 °C, and thus cause a lower yield stress. • The DC annealed sample has a lower uniform elongation at 90–120 °C.« less

  2. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations.

    PubMed

    Hudda, N; Fruin, S A

    2016-04-05

    We measured particle size distributions and spatial patterns of particle number (PN) and particle surface area concentrations downwind from the Los Angeles International Airport (LAX) where large increases (over local background) in PN concentrations routinely extended 18 km downwind. These elevations were mostly comprised of ultrafine particles smaller than 40 nm. For a given downwind distance, the greatest increases in PN concentrations, along with the smallest mean sizes, were detected at locations under the landing jet trajectories. The smaller size of particles in the impacted area, as compared to the ambient urban aerosol, increased calculated lung deposition fractions to 0.7-0.8 from 0.5-0.7. A diffusion charging instrument (DiSCMini), that simulates alveolar lung deposition, measured a fivefold increase in alveolar-lung deposited surface area concentrations 2-3 km downwind from the airport (over local background), decreasing steadily to a twofold increase 18 km downwind. These ratios (elevated lung-deposited surface area over background) were lower than the corresponding ratios for elevated PN concentrations, which decreased from tenfold to twofold over the same distance, but the spatial patterns of elevated concentrations were similar. It appears that PN concentration can serve as a nonlinear proxy for lung deposited surface area downwind of major airports.

  3. Determining and validating the effective snow grain size and pollution amount from satellite measurements in polar regions

    NASA Astrophysics Data System (ADS)

    Heygster, Georg; Wiebe, Heidrun; Zege, Eleonora; Aoki, Teruo; Kokhanovsky, Alexander; Katsev, I. L.; Prikhach, Alexander; Malinka, A. V.; Grudo, J. O.

    Sea ice is part of the cryosphere, besides the ice sheets, ice shelves, and glaciers. Compared to the other components, it is small in volume but large in area. Snow on top of the sea ice is even less in mass, but strongly influences the albedo of the sea ice, and thus the local radiative balance which plays an essential role for the albedo feedback process. The albedo of snow does not have a constant value, but depends on the grain size (smaller grains have higher albedo) and the amount of pollution like soot and in fewer cases dust which both lower the albedo significantly. Our retrievals are based on an algorithm that uses optical satellite observations to calculate the size of the snow grains and its pollution, the Snow Grain Size and Pollution amount (SGSP) algorithm (Zege et al. 2009) Here we present the algorithm and its operational implementation, based on MODIS data, to calculate the snow grain size and pollution amount in near real time, and a destriping procedure. The resulting data are used for a validation study by comparing them to in situ data taken at several places near Hokkaido (Japan), Barrow (Alaska, USA) between 2002 and 2005 and in Antarctica in 2003. While each single set of observations, in the Arctic and in the Antarctic, shows encouraging correlations, the regression lines between in situ and satellite retrievals of the snow grain size are quite different, with slopes of 1.01 (Arctic and Japan) and 0.44 (Antarctica). The discrepancy remains unresolved, emphasizing the need for more in situ observations for validation. Among the potential reasons for the discrepancy are the different kinds of in situ measured snow grain sizes. The crystal size was measured in the Arctic (Barrow) and Japan (Hokkaido) using a lens and optical methods have been used in Antarctica.

  4. Expading fluvial remote sensing to the riverscape: Mapping depth and grain size on the Merced River, California

    NASA Astrophysics Data System (ADS)

    Richardson, Ryan T.

    This study builds upon recent research in the field of fluvial remote sensing by applying techniques for mapping physical attributes of rivers. Depth, velocity, and grain size are primary controls on the types of habitat present in fluvial ecosystems. This thesis focuses on expanding fluvial remote sensing to larger spatial extents and sub-meter resolutions, which will increase our ability to capture the spatial heterogeneity of habitat at a resolution relevant to individual salmonids and an extent relevant to species. This thesis consists of two chapters, one focusing on expanding the spatial extent over which depth can be mapped using Optimal Band Ratio Analysis (OBRA) and the other developing general relations for mapping grain size from three-dimensional topographic point clouds. The two chapters are independent but connected by the overarching goal of providing scientists and managers more useful tools for quantifying the amount and quality of salmonid habitat via remote sensing. The OBRA chapter highlights the true power of remote sensing to map depths from hyperspectral images as a central component of watershed scale analysis, while also acknowledging the great challenges involved with increasing spatial extent. The grain size mapping chapter establishes the first general relations for mapping grain size from roughness using point clouds. These relations will significantly reduce the time needed in the field by eliminating the need for independent measurements of grain size for calibrating the roughness-grain size relationship and thus making grain size mapping with SFM more cost effective for river restoration and monitoring. More data from future studies are needed to refine these relations and establish their validity and generality. In conclusion, this study adds to the rapidly growing field of fluvial remote sensing and could facilitate river research and restoration.

  5. Plastic strain and grain size effects in the surface roughening of a model aluminum alloy

    NASA Astrophysics Data System (ADS)

    Moore, Eric Joseph

    To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta

  6. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    DOE PAGES

    Vasudevamurthy, G.; Byun, T. S.; Pappano, Pete; ...

    2015-03-13

    Here we present a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mm diameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constantsmore » did not show significant dependence on specimen size. Lastly, experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.« less

  7. Effects of grain size, mineralogy, and acid-extractable grain coatings on the distribution of the fallout radionuclides 7Be, 10Be, 137Cs, and 210Pb in river sediment

    NASA Astrophysics Data System (ADS)

    Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas

    2017-01-01

    Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we

  8. Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences.

    PubMed

    Zhao, H; Stephens, B

    2017-01-01

    Much of human exposure to particulate matter of outdoor origin occurs inside buildings, particularly in residences. The particle penetration factor through leaks in a building's exterior enclosure assembly is a key parameter that governs the infiltration of outdoor particles. However, experimental data for size-resolved particle penetration factors in real buildings, as well as penetration factors for fine particles less than 2.5 μm (PM 2.5 ) and ultrafine particles less than 100 nm (UFPs), remain limited, in part because of previous limitations in instrumentation and experimental methods. Here, we report on the development and application of a modified test method that utilizes portable particle sizing instrumentation to measure size-resolved infiltration factors and envelope penetration factors for 0.01-2.5 μm particles, which are then used to estimate penetration factors for integral measures of UFPs and PM 2.5 . Eleven replicate measurements were made in an unoccupied apartment unit in Chicago, IL to evaluate the accuracy and repeatability of the test procedure and solution methods. Mean estimates of size-resolved penetration factors ranged from 0.41 ± 0.14 to 0.73 ± 0.05 across the range of measured particle sizes, while mean estimates of penetration factors for integral measures of UFPs and PM 2.5 were 0.67 ± 0.05 and 0.73 ± 0.05, respectively. Average relative uncertainties for all particle sizes/classes were less than 20%. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Amyloplast-Localized SUBSTANDARD STARCH GRAIN4 Protein Influences the Size of Starch Grains in Rice Endosperm1[W

    PubMed Central

    Matsushima, Ryo; Maekawa, Masahiko; Kusano, Miyako; Kondo, Hideki; Fujita, Naoko; Kawagoe, Yasushi; Sakamoto, Wataru

    2014-01-01

    Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology. PMID:24335509

  10. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  11. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  12. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  13. Dependence of Grain Size on the Performance of a Polysilicon Channel TFT for 3D NAND Flash Memory.

    PubMed

    Kim, Seung-Yoon; Park, Jong Kyung; Hwang, Wan Sik; Lee, Seung-Jun; Lee, Ki-Hong; Pyi, Seung Ho; Cho, Byung Jin

    2016-05-01

    We investigated the dependence of grain size on the performance of a polycrystalline silicon (poly-Si) channel TFT for application to 3D NAND Flash memory devices. It has been found that the device performance and memory characteristics are strongly affected by the grain size of the poly-Si channel. Higher on-state current, faster program speed, and poor endurance/reliability properties are observed when the poly-Si grain size is large. These are mainly attributed to the different local electric field induced by an oxide valley at the interface between the poly-Si channel and the gate oxide. In addition, the trap density at the gate oxide interface was successfully measured using a charge pumping method by the separation between the gate oxide interface traps and traps at the grain boundaries in the poly-Si channel. The poly-Si channel with larger grain size has lower interface trap density.

  14. Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-01-01

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937

  15. Time-evolution of grain size distributions in random nucleation and growth crystallization processes

    NASA Astrophysics Data System (ADS)

    Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.

    2010-02-01

    We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.

  16. Bed-sediment grain-size and morphologic data from Suisun, Grizzly, and Honker Bays, CA, 1998-2002

    USGS Publications Warehouse

    Hampton, Margaret A.; Snyder, Noah P.; Chin, John L.; Allison, Dan W.; Rubin, David M.

    2003-01-01

    The USGS Place Based Studies Program for San Francisco Bay investigates this sensitive estuarine system to aid in resource management. As part of the inter-disciplinary research program, the USGS collected side-scan sonar data and bed-sediment samples from north San Francisco Bay to characterize bed-sediment texture and investigate temporal trends in sedimentation. The study area is located in central California and consists of Suisun Bay, and Grizzly and Honker Bays, sub-embayments of Suisun Bay. During the study (1998-2002), the USGS collected three side-scan sonar data sets and approximately 300 sediment samples. The side-scan data revealed predominantly fine-grained material on the bayfloor. We also mapped five different bottom types from the data set, categorized as featureless, furrows, sand waves, machine-made, and miscellaneous. We performed detailed grain-size and statistical analyses on the sediment samples. Overall, we found that grain size ranged from clay to fine sand, with the coarsest material in the channels and finer material located in the shallow bays. Grain-size analyses revealed high spatial variability in size distributions in the channel areas. In contrast, the shallow regions exhibited low spatial variability and consistent sediment size over time.

  17. Study on the Effect of Diamond Grain Size on Wear of Polycrystalline Diamond Compact Cutter

    NASA Astrophysics Data System (ADS)

    Abdul-Rani, A. M.; Che Sidid, Adib Akmal Bin; Adzis, Azri Hamim Ab

    2018-03-01

    Drilling operation is one of the most crucial step in oil and gas industry as it proves the availability of oil and gas under the ground. Polycrystalline Diamond Compact (PDC) bit is a type of bit which is gaining popularity due to its high Rate of Penetration (ROP). However, PDC bit can easily wear off especially when drilling hard rock. The purpose of this study is to identify the relationship between the grain sizes of the diamond and wear rate of the PDC cutter using simulation-based study with FEA software (ABAQUS). The wear rates of a PDC cutter with a different diamond grain sizes were calculated from simulated cuttings of cutters against granite. The result of this study shows that the smaller the diamond grain size, the higher the wear resistivity of PDC cutter.

  18. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    USGS Publications Warehouse

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than

  19. The Grain-size Patchiness of Braided Gravel-Bed Streams - example of the Urumqi River (northeast Tian Shan, China)

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Meunier, P.; Malverti, L.; Ye, B.

    2014-02-01

    In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.

  20. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    USDA-ARS?s Scientific Manuscript database

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  1. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size1[OPEN

    PubMed Central

    Wang, Liang; Lu, Qingtao

    2015-01-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. PMID:26504138

  2. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    NASA Astrophysics Data System (ADS)

    Du, Qiang; Li, Yanjun

    2015-06-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework.

  3. Multiple antiferromagnet/ferromagnet interfaces as a probe of grain-size-dependent exchange bias in polycrystalline Co/Fe 50Mn 50

    NASA Astrophysics Data System (ADS)

    Bolon, Bruce T.; Haugen, M. A.; Abin-Fuentes, A.; Deneen, J.; Carter, C. B.; Leighton, C.

    2007-02-01

    We have used ferromagnet/antiferromagnet/ferromagnet trilayers and ferromagnet/antiferromagnet multilayers to probe the grain size dependence of exchange bias in polycrystalline Co/Fe 50Mn 50. X-ray diffraction and transmission electron microscopy show that the Fe 50Mn 50 (FeMn) grain size increases with increasing FeMn thickness in the Co (30 Å)/FeMn system. Hence, in Co(30 Å)/FeMn( tAF Å)/Co(30 Å) trilayers the two Co layers sample different FeMn grain sizes at the two antiferromagnet/ferromagnet interfaces. For FeMn thicknesses above 100 Å, where simple bilayers have a thickness-independent exchange bias, we are therefore able to deduce the influence of FeMn grain size on the exchange bias and coercivity (and their temperature dependence) simply by measuring trilayer and multilayer samples with varying FeMn thicknesses. This can be done while maintaining the (1 1 1) orientation, and with little variation in interface roughness. Increasing the average grain size from 90 to 135 Å results in a fourfold decrease in exchange bias, following an inverse grain size dependence. We interpret the results as being due to a decrease in uncompensated spin density with increasing antiferromagnet grain size, further evidence for the importance of defect-generated uncompensated spins.

  4. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Mukai, T.; Kohzu, M.

    1999-10-26

    The effect of temperature and grain size on superplastic flow was investigated using a relatively coarse-grained ({approximately}20 {micro}m) Mg-Al-Zn alloy for the inclusive understanding of the dominant diffusion process. Tensile tests revealed that the strain rate was inversely proportional to the square of the grain size and to the second power of stress. The activation energy was close to that for grain boundary diffusion at 523--573 K, and was close to that for lattice diffusion at 598--673 K. From the analysis of the stress exponent, the grain size exponent and activation energy, it was suggested that the dominant diffusion processmore » was influenced by temperature and grain size. It was demonstrated that the notion of effective diffusivity explained the experimental results.« less

  5. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?

    NASA Technical Reports Server (NTRS)

    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our

  6. Exposure to ultrafine particles in asphalt work.

    PubMed

    Elihn, Karine; Ulvestad, Bente; Hetland, Siri; Wallen, Anna; Randem, Britt Grethe

    2008-12-01

    An epidemiologic study has demonstrated that asphalt workers show increased loss of lung function and an increase of biomarkers of inflammation over the asphalt paving season. The aim of this study was to investigate which possible agent(s) causes the inflammatory reaction, with emphasis on ultrafine particles. The workers' exposure to total dust, polycyclic aromatic hydrocarbons, and NO(2) was determined by personal sampling. Exposure to ultrafine particles was measured by means of particle counters and scanning mobility particle sizer mounted on a van following the paving machine. The fractions of organic and elemental carbon were determined. Asphalt paving workers were exposed to ultrafine particles with medium concentration of about 3.4 x 10(4)/cm(3). Ultrafine particles at the paving site originated mainly from asphalt paving activities and traffic exhaust; most seemed to originate from asphalt fumes. Oil mist exceeded occupational limits on some occasions. Diesel particulate matter was measured as elemental carbon, which was low, around 3 microg/m(3). NO(2) and total dust did not exceed limits. Asphalt pavers were exposed to relatively high concentrations of ultrafine particles throughout their working day, with possible adverse health effects.

  7. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    PubMed

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  8. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.

    PubMed

    Sosale, Guruprasad; Almecija, Dorothée; Das, Kaushik; Vengallatore, Srikar

    2012-04-20

    Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450 (∘)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films. © 2012 IOP Publishing Ltd

  9. Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study

    NASA Astrophysics Data System (ADS)

    Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.

    2017-12-01

    The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.

  10. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE PAGES

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.; ...

    2017-05-12

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  11. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  12. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  13. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna.

    PubMed

    Xia, Xinghui; Zhang, Xiaotian; Zhou, Dong; Bao, Yimeng; Li, Husheng; Zhai, Yawei

    2016-07-01

    Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Grain size distribution and microstructures of experimentally sheared granitoid gouge at coseismic slip rates - Criteria to distinguish seismic and aseismic faults?

    NASA Astrophysics Data System (ADS)

    Stünitz, Holger; Keulen, Nynke; Hirose, Takehiro; Heilbronner, Renée

    2010-01-01

    Microstructures and grain size distribution from high velocity friction experiments are compared with those of slow deformation experiments of Keulen et al. (2007, 2008) for the same material (Verzasca granitoid). The mechanical behavior of granitoid gouge in fast velocity friction experiments at slip rates of 0.65 and 1.28 m/s and normal stresses of 0.4-0.9 MPa is characterized by slip weakening in a typical exponential friction coefficient vs displacement relationship. The grain size distributions yield similar D-values (slope of frequency versus grain size curve = 2.2-2.3) as those of slow deformation experiments (D = 2.0-2.3) for grain sizes larger than 1 μm. These values are independent of the total displacement above a shear strain of about γ = 20. The D-values are also independent of the displacement rates in the range of ˜1 μm/s to ˜1.3 m/s and do not vary in the normal stress range between 0.5 MPa and 500 MPa. With increasing displacement, grain shapes evolve towards more rounded and less serrated grains. While the grain size distribution remains constant, the progressive grain shape evolution suggests that grain comminution takes place by attrition at clast boundaries. Attrition produces a range of very small grain sizes by crushing with a D <-value = 1. The results of the study demonstrate that most cataclastic and gouge fault zones may have resulted from seismic deformation but the distinction of seismic and aseismic deformation cannot be made on the basis of grain size distribution.

  15. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  16. Grain Size and Parameter Recovery with TIMSS and the General Diagnostic Model

    ERIC Educational Resources Information Center

    Skaggs, Gary; Wilkins, Jesse L. M.; Hein, Serge F.

    2016-01-01

    The purpose of this study was to explore the degree of grain size of the attributes and the sample sizes that can support accurate parameter recovery with the General Diagnostic Model (GDM) for a large-scale international assessment. In this resampling study, bootstrap samples were obtained from the 2003 Grade 8 TIMSS in Mathematics at varying…

  17. Mean grain size detection of DP590 steel plate using a corrected method with electromagnetic acoustic resonance.

    PubMed

    Wang, Bin; Wang, Xiaokai; Hua, Lin; Li, Juanjuan; Xiang, Qing

    2017-04-01

    Electromagnetic acoustic resonance (EMAR) is a considerable method to determine the mean grain size of the metal material with a high precision. The basic ultrasonic attenuation theory used for the mean grain size detection of EMAR is come from the single phase theory. In this paper, the EMAR testing was carried out based on the ultrasonic attenuation theory. The detection results show that the double peaks phenomenon occurs in the EMAR testing of DP590 steel plate. The dual phase structure of DP590 steel is the inducement of the double peaks phenomenon in the EMAR testing. In reaction to the phenomenon, a corrected method with EMAR was put forward to detect the mean grain size of dual phase steel. Compared with the traditional attenuation evaluation method and the uncorrected method with EMAR, the corrected method with EMAR shows great effectiveness and superiority for the mean grain size detection of DP590 steel plate. Copyright © 2016. Published by Elsevier B.V.

  18. Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) in Brisbane, Queensland (Australia): study design and implementation.

    PubMed

    Ezz, Wafaa Nabil; Mazaheri, Mandana; Robinson, Paul; Johnson, Graham R; Clifford, Samuel; He, Congrong; Morawska, Lidia; Marks, Guy B

    2015-02-02

    Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children's health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

  19. Effect of grain size on the high temperature properties of B2 aluminides

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    1987-01-01

    Measurements of the slow plastic flow behavior of cobalt, iron and nickel B2 crystal structure aluminides were conducted on materials fabricated by metallurical techniques. Due to this processing, the aluminides invariably had small equiaxed grains, ranging in size from about 3 to 60 microns in diameter. Grain size was dependent on the extrusion temperature used for powder consolidation, and it proved to be remarkably stable at elevated temperatures. Mechanical properties of all three aluminides were determined via constant velocity compression testing in air between 1000 and 1400 K at strain rates ranging from approx. 10 to the minus 3 power to 10 to the minus 7 power s (-1).

  20. Straight from the source's mouth; a quantitative study of grain-size export for an entire active rift, the Corinth Rift, central Greece

    NASA Astrophysics Data System (ADS)

    Watkins, Stephen E.; Whittaker, Alexander C.; Bell, Rebecca E.; Brooke, Sam A. S.; McNeill, Lisa C.; Gawthorpe, Robert L.

    2017-04-01

    The volumes, grain sizes and characteristics of sediment supplied from source catchments fundamentally controls basin stratigraphy. However, to date, few studies have constrained sediment budgets, including grain size, released into an active rift basin at a regional scale. The Gulf of Corinth, central Greece, is one of the most rapidly extending rifts in the world, with geodetic measurements of 5 mm/yr in the East to 15 mm/yr in the West. It has well-constrained climatic and tectonic boundary conditions and bedrock lithologies are well-characterised. It is therefore an ideal natural laboratory to study the grain-size export for a rift. In the field, we visited the river mouths of 49 catchments draining into the Corinth Gulf, which in total drain 83% of the rift. At each site, hydraulic geometries, surface grain-size of channel bars and full-weighted grain-size distributions of river sediment were obtained. The surface grain-size was measured using the Wolman point count method and the full-weighted grain-size distribution of the bedload by in-situ sieving. In total, approximately 17,000 point counts and 3 tonnes of sediment were processed. The grain-size distributions show an overall increase from East to West on the southern coast of the gulf, with largest grain-sizes exported from the Western rift catchments. D84 ranges from 20 to 110 mm, however 50% of D84 grain-sizes are less than 40 mm. Subsequently, we derived the full Holocene sediment budget for the Corinth Gulf by combining our grain size data with catchment sediment fluxes, constrained using the BQART model and calibrated to known Holocene sediment volumes in the basin from seismic data (c.f. Watkins et al., in review). This is the first time such a budget has been derived for the Corinth Rift. Finally, our estimates of sediment budgets and grain sizes were compared to regional uplift constraints, fault distributions, slip rates and lithology to identify the relative importance of these controls on

  1. Determination of grain size distribution function using two-dimensional Fourier transforms of tone pulse encoded images

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.

  2. Synthesis of ultrafine ZrB2 powders by sol-gel process

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Zhu, Shi-Zhen; Xu, Qiang; Yan, Zhen-Yu; Liu, Ling

    2010-09-01

    Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.

  3. An automated and universal method for measuring mean grain size from a digital image of sediment

    USGS Publications Warehouse

    Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.

    2010-01-01

    Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.

  4. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.

    PubMed

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-08-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter < or = 2.5 microm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30-50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses--a relatively rapid (approximately 30 min), bright but diffuse fluorescence followed by the slower (2-4 hr) appearance of punctate cytoplasmic fluorescence--after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells.

  5. Reproductive Potential of Salmon Spawning Substrates Inferred from Grain Size and Fish Length

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Sklar, L. S.; Overstreet, B. T.; Wooster, J. K.; Bellugi, D. G.

    2014-12-01

    The river restoration industry spends millions of dollars every year on improving salmon spawning in riverbeds where sediment is too big for fish to move and thus use during redd building. However, few studies have addressed the question of how big is too big in salmon spawning substrates. Hence managers have had little quantitative basis for gauging the amount of spawning habitat in coarse-bedded rivers. Moreover, the scientific framework has remained weak for restoration projects that seek to improve spawning conditions. To overcome these limitations, we developed a physically based, field-calibrated model for the fraction of the bed that is fine-grained enough to support spawning by fish of a given size. Model inputs are fish length and easy-to-measure indices of bed-surface grain size. Model outputs include the number of redds and eggs the substrate can accommodate when flow depth, temperature, and other environmental factors are not limiting. The mechanistic framework of the model captures the biophysical limits on sediment movement and the space limitations on redd building and egg deposition in riverbeds. We explored the parameter space of the model and found a previously unrecognized tradeoff in salmon size: bigger fish can move larger sediment and thus use more riverbed area for spawning; they also tend to have higher fecundity, and so can deposit more eggs per redd; however, because redd area increases with fish length, the number of eggs a substrate can accommodate is highest for moderate-sized fish. One implication of this tradeoff is that differences in grain size may help regulate river-to-river differences in salmon size. Thus, our model suggests that population diversity and, by extension, species resilience are linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. We cast the model into easy-to-use look-up tables, charts, and computer applications, including a JavaScript app that works on tablets and mobile

  6. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  7. A hybrid chip based on aerodynamics and electrostatics for the size-dependent classification of ultrafine and nano particles.

    PubMed

    Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun

    2009-09-21

    Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.

  8. [The study of ultra-fine diamond powder used in magnetic head polishing slurry].

    PubMed

    Jin, Hong-Yun; Hou, Shu-En; Pan, Yong; Xiao, Hong-Yan

    2008-05-01

    In the present paper, atomic absorption spectrometry(AAS), inductively-coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and laser Raman spectroscopy (RM) were employed to study the commercial ultra-fine diamond powders prepared by the static pressure-catalyst method and used in magnetic head polishing slurry. The results of AAS and ICP-MS indicated that there were silicon oxide, Fe, Ni, Al and some other metal elements in the ultra-fine powders. XRD patterns showed the peaks of SiO2 at 2theta = 35.6 degrees, 39.4 degrees and 59.7 degrees and diamond sharp peaks in agreement with the results above. Diamond sharp peaks implied perfect crystal and high-hardness beneficial to high-efficiency in polishing. The broader Raman band of graphite at 1 592 cm(-1) observed by Raman analysis proved graphite existing in the diamond powders. In the TEM images, the size of ultra-fine powders was estimated between 0.1 and 0.5 microm distributed in a wide scope, however, sharp edges of the powder particles was useful to polish. The ultra-fine diamond powders have many advantages, for example, high-hardness, well abrasion performance, high-polishing efficiency and being useful in magnetic head polishing slurry. But, the impurities influence the polishing efficiency, shortening its service life and the wide distribution reduces the polishing precision. Consequently, before use the powders must be purified and classified. The purity demands is 99.9% and trace silicon oxide under 0.01% should be reached. The classification demands that the particle distribution should be in a narrower scope, with the mean size of 100 nm and the percentage of particles lager than 200 nm not over 2%.

  9. H2O grain size and the amount of dust in Mars' residual north polar cap

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H.

    1990-01-01

    In Mars' north polar cap, the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 microns or more. Ice of this granularity containing 30 percent fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be 'old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain.

  10. H2O grain size and the amount of dust in Mars' residual North polar cap

    USGS Publications Warehouse

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  11. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  12. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes.

    PubMed

    Bhargava, Arpit; Tamrakar, Shivani; Aglawe, Aniket; Lad, Harsha; Srivastava, Rupesh Kumar; Mishra, Dinesh Kumar; Tiwari, Rajnarayan; Chaudhury, Koel; Goryacheva, Irina Yu; Mishra, Pradyumna Kumar

    2018-03-01

    Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response

  13. Modeling of Grain Size Distribution of Tsunami Sand Deposits in V-shaped Valley of Numanohama During the 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Satake, K.; Goto, T.; Takahashi, T.

    2016-12-01

    Estimating tsunami amplitude from tsunami sand deposit has been a challenge. The grain size distribution of tsunami sand deposit may have correlation with tsunami inundation process, and further with its source characteristics. In order to test this hypothesis, we need a tsunami sediment transport model that can accurately estimate grain size distribution of tsunami deposit. Here, we built and validate a tsunami sediment transport model that can simulate grain size distribution. Our numerical model has three layers which are suspended load layer, active bed layer, and parent bed layer. The two bed layers contain information about the grain size distribution. This numerical model can handle a wide range of grain sizes from 0.063 (4 ϕ) to 5.657 mm (-2.5 ϕ). We apply the numerical model to simulate the sedimentation process during the 2011 Tohoku earthquake in Numanohama, Iwate prefecture, Japan. The grain size distributions at 15 sample points along a 900 m transect from the beach are used to validate the tsunami sediment transport model. The tsunami deposits are dominated by coarse sand with diameter of 0.5 - 1 mm and their thickness are up to 25 cm. Our tsunami model can well reproduce the observed tsunami run-ups that are ranged from 16 to 34 m along the steep valley in Numanohama. The shapes of the simulated grain size distributions at many sample points located within 300 m from the shoreline are similar to the observations. The differences between observed and simulated peak of grain size distributions are less than 1 ϕ. Our result also shows that the simulated sand thickness distribution along the transect is consistent with the observation.

  14. Distribution and grain-size partitioning of metals in bovfom sediments of an experimentally acidified Wisconsin lake

    USGS Publications Warehouse

    Elder, John F.

    2007-01-01

    A study of concentrations and distribution of major and trace elements in surficial bottom sediments of Little Rock Lake in northern Wisconsin included examination of spatial variation and grain-size effects. No significant differences with respect to metal distribution in sediments were observed between the two basins of the lake, despite the experimental acidification of one of the basins from pH 6.1 to 4.6. The concentrations of most elements in the lake sediments were generally similar to soil concentrations in the area and were well below sediment quality criteria. Two exceptions were lead and zinc, whose concentrations in July 1990 exceeded the criteria of 50 μg/g and 100 μg/g, respectively, in both littoral and pelagic sediments. Concentrations of some elements, particularly Cu, Pb, and Zn, increased along transects from nearshore to midlake, following a similar gradient of sedimentary organic carbon. In contrast, Mn, Fe, and alkali/alkaline-earth elements were at maximum concentrations in nearshore sediments. These elements are less likely to partition to organic particles, and their distribution is more dependent on mineralogical composition, grain size, and other factors. Element concentrations varied among different sediment grain-size fractions, although a simple inverse relation to grain size was not observed. Fe, Mn, Pb, and Zn were more concentrated in a grain-size range 20–60 tm than in either the very fine or the coarse fractions, possibly because of the aggregation of smaller particles cemented together by organic and Fe/Mn hydrous-oxide coatings.

  15. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    USGS Publications Warehouse

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  16. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Kim, Yang Gon; Lee, Sunghak; Kim, Young Min; Kim, Nack J.; Yoo, Jang Yong

    2005-08-01

    The correlation of microstructure and Charpy V-notch (CVN) impact properties of a high-toughness API X70 pipeline steel was investigated in this study. Six kinds of steel were fabricated by varying the hot-rolling conditions, and their microstructures, effective grain sizes, and CVN impact properties were analyzed. The CVN impact test results indicated that the steels rolled in the single-phase region had higher upper-shelf energies (USEs) and lower energy-transition temperatures (ETTs) than the steels rolled in the two-phase region because their microstructures were composed of acicular ferrite (AF) and fine polygonal ferrite (PF). The decreased ETT in the steels rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having a smaller effective grain size. On the other hand, the absorbed energy of the steels rolled in the two-phase region was considerably lower because a large amount of dislocations were generated inside PFs during rolling. It was further decreased when coarse martensite or cementite was formed during the cooling process.

  17. Modeling the Effect of Grain Size Mixing on Thermal Inertia Values Derived from Diurnal and Seasonal THEMIS Measurements

    NASA Astrophysics Data System (ADS)

    McCarty, C.; Moersch, J.

    2017-12-01

    Sedimentary processes have slowed over Mars' geologic history. Analysis of the surface today can provide insight into the processes that may have affected it over its history. Sub-resolved checkerboard mixtures of materials with different thermal inertias (and therefore different grain sizes) can lead to differences in thermal inertia values inferred from night and day radiance observations. Information about the grain size distribution of a surface can help determine the degree of sorting it has experienced or it's geologic maturity. Standard methods for deriving thermal inertia from measurements made with THEMIS can give values for the same location that vary by as much as 20% between scenes. Such methods make the assumption that each THEMIS pixel contains material that has uniform thermophysical properties. Here we propose that if a mixture of small and large particles is present within a pixel, the inferred thermal inertia will be strongly dominated by whichever particle is warmer at the time of the measurement because the power radiated by a surface is proportional (by the Stefan-Boltzmann law) to the fourth power of its temperature. This effect will result in a change in thermal inertia values inferred from measurements taken at different times of day and night. Therefore, we expect to see correlation between the magnitude of diurnal variations in inferred thermal inertia values and the degree of grain size mixing for a given pixel location. Preliminary work has shown that the magnitude of such diurnal variation in inferred thermal inertias is sufficient to detect geologically useful differences in grain size distributions. We hypothesize that at least some of the 20% variability in thermal inertias inferred from multiple scenes for a given location could be attributed to sub-pixel grain size mixing rather than uncertainty inherent to the experiment, as previously thought. Mapping the difference in inferred thermal inertias from day and night THEMIS

  18. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    PubMed

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  19. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes

    PubMed Central

    Tian, Y. Z.; Zhao, L. J.; Chen, S.; Shibata, A.; Zhang, Z. F.; Tsuji, N.

    2015-01-01

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE. PMID:26582568

  20. Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al-Mg-Si nanostructured under severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Mavlyutov, A. M.; Kasatkin, I. A.; Murashkin, M. Yu.; Valiev, R. Z.; Orlova, T. S.

    2015-10-01

    The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al-Mg-Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ0.2 = 325-410 MPa) and electrical conductivity (55-52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 1013 to 5 × 1013 m-2) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.

  1. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the 'Mud Current Meter'

    NASA Astrophysics Data System (ADS)

    McCave, I. N.; Thornalley, D. J. R.; Hall, I. R.

    2017-09-01

    Fine grain-size parameters have been used for inference of palaeoflow speeds of near-bottom currents in the deep-sea. The basic idea stems from observations of varying sediment size parameters on a continental margin with a gradient from slower flow speeds at shallower depths to faster at deeper. In the deep-sea, size-sorting occurs during deposition after benthic storm resuspension events. At flow speeds below 10-15 cm s-1 mean grain-size in the terrigenous non-cohesive 'sortable silt' range (denoted by SS bar , mean of 10-63 μm) is controlled by selective deposition, whereas above that range removal of finer material by winnowing is also argued to play a role. A calibration of the SS bar grain-size flow speed proxy based on sediment samples taken adjacent to sites of long-term current meters set within 100 m of the sea bed for more than a year is presented here. Grain-size has been measured by either Sedigraph or Coulter Counter, in some cases both, between which there is an excellent correlation for SS bar (r = 0.96). Size-speed data indicate calibration relationships with an overall sensitivity of 1.36 ± 0.19 cm s-1/μm. A calibration line comprising 12 points including 9 from the Iceland overflow region is well defined, but at least two other smaller groups (Weddell/Scotia Sea and NW Atlantic continental rise/Rockall Trough) are fitted by sub-parallel lines with a smaller constant. This suggests a possible influence of the calibre of material supplied to the site of deposition (not the initial source supply) which, if depleted in very coarse silt (31-63 μm), would limit SS bar to smaller values for a given speed than with a broader size-spectrum supply. Local calibrations, or a core-top grain-size and local flow speed, are thus necessary to infer absolute speeds from grain-size. The trend of the calibrations diverges markedly from the slope of experimental critical erosion and deposition flow speeds versus grain-size, making it unlikely that the SS bar (or

  2. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters.

  3. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) in Brisbane, Queensland (Australia): Study Design and Implementation

    PubMed Central

    Ezz, Wafaa Nabil; Mazaheri, Mandana; Robinson, Paul; Johnson, Graham R.; Clifford, Samuel; He, Congrong; Morawska, Lidia; Marks, Guy B.

    2015-01-01

    Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study. PMID:25648226

  4. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    NASA Astrophysics Data System (ADS)

    Li, Tao; Li, Tuan-Jie

    2018-04-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  5. Toward unraveling a secret of the lower mantle: Detecting and characterizing piles using a grain size-dependent, composite rheology

    NASA Astrophysics Data System (ADS)

    Schierjott, Jana; Rozel, Antoine; Tackley, Paul

    2017-04-01

    Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs, their viscosity is still debated. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size-dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011). Further, we consider a basal primordial layer and a time-dependent basalt production to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). Our study comprises three main parts: 1) We perform a parameter study which includes different densities and viscosities of the imposed primordial layer. 2) We detect possible piles and compute their average effective viscosity, density, rheology and grain size. 3) We test the influence of grain size evolution on the development and morphology of piles and compare it to non-grain size models. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the imposed primordial material is lower than basalt. In that case the average temperature of the pile is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the pile but not for a different

  6. One-dimensional, two-dimensional, and three-dimensional photonic crystals fabricated with interferometric techniques on ultrafine-grain silver halide emulsions

    NASA Astrophysics Data System (ADS)

    Ulibarrena, Manuel; Carretero, Luis; Acebal, Pablo; Madrigal, Roque; Blaya, Salvador; Fimia, Antonio

    2004-09-01

    Holographic techniques have been used for manufacturing multiple band one-dimensional, two-dimensional, and three-dimensional photonic crystals with different configurations, by multiplexing reflection and transmission setups on a single layer of holographic material. The recording material used for storage is an ultra fine grain silver halide emulsion, with an average grain size around 20 nm. The results are a set of photonic crystals with the one-dimensional, two-dimensional, and three-dimensional index modulation structure consisting of silver halide particles embedded in the gelatin layer of the emulsion. The characterisation of the fabricated photonic crystals by measuring their transmission band structures has been done and compared with theoretical calculations.

  7. Grain-size analysis and sediment dynamics of hurricane-induced event beds in a coastal New England pond

    NASA Astrophysics Data System (ADS)

    Castagno, K. A.; Ruehr, S. A.; Donnelly, J. P.; Woodruff, J. D.

    2017-12-01

    Coastal populations have grown increasingly susceptible to the impacts of tropical cyclone events as they grow in size, wealth, and infrastructure. Changes in tropical cyclone frequency and intensity, augmented by a changing climate, pose an increasing threat of property damage and loss of life. Reconstructions of intense-hurricane landfalls from a series of southeastern New England sediment cores identify a series of events spanning the past 2,000 years. Though the frequency of these landfalls is well constrained, the intensity of these storms, particularly those for which no historical record exists, is not. This study analyzes the grain-size distribution of major storm event beds along a transect of sediment cores from a kettle pond in Falmouth, MA. The grain-size distribution of each event is determined using an image processing, size, and shape analyzer. The depositional patterns and changes in grain-size distribution in these fine-grained systems may both spatially and temporally reveal characteristics of both storm intensity and the nature of sediment deposition. An inverse-modeling technique using this kind of grain-size analysis to determine past storm intensity has been explored in back-barrier lagoon systems in the Caribbean, but limited research has assessed its utility to assess deposits from back-barrier ponds in the northeastern United States. Increases in hurricane intensity may be closely tied to increases in sea surface temperature. As such, research into these prehistoric intervals of increased frequency and/or intensity provides important insight into the current and future hurricane risks facing coastal communities in New England.

  8. Regolith grain size and cohesive strength of near-Earth Asteroid (29075) 1950 DA

    NASA Astrophysics Data System (ADS)

    Gundlach, B.; Blum, J.

    2015-09-01

    Due to its fast rotation period of 2.12 h, about half of the surface of near-Earth Asteroid (29075) 1950 DA experiences negative (i.e., outward directed) acceleration levels (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176). Thus, cohesion of the surface material is mandatory to prevent rotational breakup of the asteroid. Rozitis et al. (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176) concluded that a grain size of ∼6 cm or lower is needed to explain the required cohesive strength of 64-20+12Pa . Here, we present another approach to determine the grain size of near-Earth Asteroid (29075) 1950 DA by using the thermal inertia value from Rozitis et al. (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176) and a model of the heat conductivity of the surface regolith (Gundlach, B., Blum, J. [2013]. Icarus 223, 479-492). This method yields a mean particle radius ranging from 32 μm to 117 μm. The derived grain sizes are then used to infer the cohesive strength of the surface material of Asteroid (29075) 1950 DA (ranging from 24 Pa to 88 Pa), by using laboratory measurements of the tensile strength of powders.

  9. Effect of the Thermomechanical Treatment on Structural and Phase Transformations in Cu-14Al-3Ni Shape Memory Alloy Subjected to High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. V.; Pushin, V. G.; Kuranova, N. N.; Svirid, A. E.; Uksusnikov, A. N.; Ustyugov, Yu. M.; Gunderov, D. V.

    2018-04-01

    The possibilities of controlling the structure and properties of a Cu-Al-Ni shape memory alloy due to the use of different schemes of the thermomechanical treatment, including forging, homogenizing in the austenitic state and subsequent quenching, and high-pressure torsion have been found. For the first time, an ultrafine-grain structure has been produced in this alloy via severe plastic deformation using high-pressure torsion. It has been detected that high-pressure torsion using ten revolutions of the anvils leads to the formation of a nanocrystalline structure with a grain size of less than 100 nm. The subsequent short-term heating of the alloy to 800°C (10 s) in the temperature region of the existence of the homogeneous β phase made it possible to form an ultrafine-grain structure with predominant sizes of recrystallized grains of 1 and 8 μm. The quenching after heating prevented the decomposition of the solid solution. The refinement of the grain structure changed the deformation behavior of the alloy, having provided the possibility of the significant plastic deformation upon mechanical tensile tests. The coarse-grained hot-forged quenched alloy was brittle, and fracture occurred along the boundaries of former austenite grains and martensite packets. The highstrength ultrafine-grained alloy also experienced mainly the intercrystalline fracture along the high-angle boundaries of elements of the structure, the grain size of which was less by two orders than that in the initial alloy. This determined an increase in its relative elongation upon mechanical tests.

  10. Impact of varying analytical methodologies on grain particle size determination.

    PubMed

    Kalivoda, J R; Jones, C K; Stark, C R

    2017-01-01

    The determination of particle size is an important quality control measurement for feed manufacturers, nutritionists, and producers. The current approved method for determining the geometric mean diameter by weight (d) and geometric standard deviation (S) of grains is standard ANSI/ASAE S319.4. This method controls many variables, including the suggested quantity of initial material and the type, number, and size of sieves. However, the method allows for variations in sieving time, sieve agitators, and the use of a dispersion agent. The objective of this experiment was to determine which method of particle size analysis best estimated the particle size of various cereal grain types. Eighteen samples of either corn, sorghum, or wheat were ground and analyzed using different variations of the approved method. Treatments were arranged in a 5 × 3 factorial arrangement with 5 sieving methods: 1) 10-min sieving time with sieve agitators and no dispersion agent, 2) 10-min sieving time with sieve agitators and dispersion agent, 3) 15-min sieving time with no sieve agitators or dispersion agent, 4) 15-min sieving time with sieve agitators and no dispersion agent, and 5) 15-min sieving time with sieve agitators and dispersion agent conducted in 3 grain types (ground corn, sorghum, and wheat) with 4 replicates per treatment. The analytical method that resulted in the lowest d and greatest S was considered desirable because it was presumably representative of increased movement of particles to their appropriate sieve. Analytical method affected d and S ( ≤ 0.05) measured by both standards. Inclusion of sieve agitators and dispersion agent in the sieve stack resulted in the lowest d, regardless of sieving time. Inclusion of dispersion agent reduced d ( ≤ 0.05) by 32 and 36 µm when shaken for 10 and 15 min, respectively, compared to the same sample analyzed without dispersion agent. The addition of the dispersion agent also increased S. The dispersion agent increased the

  11. Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2005-01-01

    Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?

  12. Effect of Freeze-Thaw Cycles on Grain Size of Biochar

    NASA Astrophysics Data System (ADS)

    Dugan, B.; Liu, Z.; Masiello, C. A.; Gonnermann, H. M.; Nittrouer, J. A.

    2015-12-01

    Biochar may improve soil performance by altering soil physical properties such as porosity, density, hydraulic conductivity, and water holding capacity. Because these physical properties of soil-biochar mixtures are associated with the grain size of the soil and the biochar, they may change if biochar particles are physically broken down in the environment. In cold regions, biochar may be fragmented into smaller particles when water in biochar's internal pores expands during freezing. This expansion may mechanically break particles. In this study we investigate if freeze-thaw cycles affect grain size of biochars produced at two temperatures (350°C and 500°C) from four types of feedstock (mesquite, pine, sewage waste, and miscanthus). Prior to freeze-thaw cycles, biochar's internal porosity increases with pyrolysis temperature and also varies with feedstock type. In our study, the highest internal porosity is 0.82±0.11 for 500 °C miscanthus biochar and the lowest internal porosity is 0.27±0.01 for 350 °C sewage waste biochar. Our biochars also have different median grain diameter (D50) and aspect ratio (AR). The largest D50 is 4836±132 μm for 350 °C miscanthus biochar and the smallest D50 is 2238±13 μm for 350°C sewage waste biochar. The highest AR is 0.85±0.01 for 500 °C sewage waste biochar and the lowest AR is 0.31±0.01 for 350 °C miscanthus biochar. After characterizing the initial properties of biochars, we saturated our biochar using synthetic rain water and subjected them to 10 freeze-thaw cycles (freeze at -19±3°C for 8 hours and thaw at 20±0°C for 16 hours). We expect that D50 will be reduced and AR will be changed by freeze-thaw cycles and the effect will vary with biochar porosity. Ultimately this work will help constrain how biochar particle size changes due to freezing, which can be extrapolated to understand transients in soil performance associated with biochar particle size.

  13. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  14. Investigations on the effect of grain size on hot tearing susceptibility of MgZn1Y2 alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Z. J.; Liu, Z.; Wang, Y.; Mao, P. L.; Tang, W. R.; Zhou, Y.

    2018-05-01

    Effect of grain size on hot tearing susceptibility of MgZn1Y2 alloy was explored in the present paper. Based on the microstructure observation and phase constitution analysis results by the method of OM, SEM, EBSD and XRD, it was found that the addition of 0.2 wt% C2Cl6 or 0.5 wt% Zr could reduced the grain size significantly. The addition of Zr had the better effect than that of 0.2 wt% C2Cl6. The average grain size reduced from 55.48 μm to 20.64 μm, and the average grain shape aspect ratio reduced from 1.859 to 1.49 with the addition of Zr. Although the addition of 0.2 wt% C2Cl6 refined grain, it also reduced the amount of LPSO phase. It was also found that the dendrite coherent temperature (Tcoh) decreased with decreasing of the grain size of the alloy, while the dendrite coherent solid fraction ({{{{f}}}{{s}}}{{coh}}) increased with decreasing of the alloy. The modified Clyne-Davies model was used to predict the hot cracking susceptibility of the alloy. The predicted results indicated that the hot tearing susceptibility decreased with grain refinement. With addition of 0.2 wt% Zr, the predicted hot tearing sensitivity value was reduced by about 2.5 times than that of the alloy without the addition of Zr.

  15. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    PubMed

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  16. Experimental study of microstructure changes due to low cycle fatigue of a steel nanocrystallised by Surface Mechanical Attrition Treatment (SMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z.

    Electron Backscatter Diffraction technique is used to characterize the microstructure of 316L steel generated by Surface Mechanical Attrition Treatment (SMAT) before and after low cycle fatigue tests. A grain size gradient is generated from the top surface to the interior of the samples after SMAT so that three main regions can be distinguished below the treated surface: (i) the ultra-fine grain area within 5 μm under the top surface with preferably oriented grains, (ii) the intermediate area where the original grains are partially transformed, and (iii) the edge periphery area where the original grains are just mechanically deformed with themore » presence of plastic slips. Fatigue tests show that cyclic loading does not change the grain orientation spread and does not activate any plastic slip in the ultra-fine grain top surface area induced by SMAT. On the opposite, in the plastically SMAT affected region including the intermediate area and the edge periphery area, new slip systems are activated by low cycle fatigue while the grain orientation spread is increased. These results represent a first very interesting step towards the characterization and understanding of mechanical mechanisms involved during the fatigue of a grain size gradient material. - Highlights: •LCF tests are carried out on specimens processed by SMAT. •EBSD is used to investigate microstructural changes induced by LCF. •A grain size gradient is generated by SMAT from surface to the bulk of the fatigue samples. •New slip systems are activated by LCF and GOS is increased in plastically deformed region. •However, these phenomena are not observed in the top surface ultra-fine grain area.« less

  17. Combustion-Derived Ultrafine Particles Transport Organic Toxicants to Target Respiratory Cells

    PubMed Central

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-01-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30–50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses—a relatively rapid (~ 30 min), bright but diffuse fluorescence followed by the slower (2–4 hr) appearance of punctate cytoplasmic fluorescence—after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells. PMID:16079063

  18. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Fine and ultrafine particle emissions from microwave popcorn.

    PubMed

    Zhang, Q; Avalos, J; Zhu, Y

    2014-04-01

    This study characterized fine (PM2.5 ) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre-packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil-lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150-560 and 350-800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil-lined original package with a brown paper bag significantly reduced the peak concentration by 24-87% for total particle number and 36-70% for PM2.5 . A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 10(10) to 8.0 × 10(10) No./min for total particle number and from 134 to 249 μg/min for PM2.5 . © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Are catchment-wide erosion rates really "Catchment-Wide"? Effects of grain size on erosion rates determined from 10Be

    NASA Astrophysics Data System (ADS)

    Reitz, M. A.; Seeber, L.; Schaefer, J. M.; Ferguson, E. K.

    2012-12-01

    Early studies pioneering the method for catchment wide erosion rates by measuring 10Be in alluvial sediment were taken at river mouths and used the sand size grain fraction from the riverbeds in order to average upstream erosion rates and measure erosion patterns. Finer particles (<0.0625 mm) were excluded to reduce the possibility of a wind-blown component of sediment and coarser particles (>2 mm) were excluded to better approximate erosion from the entire upstream catchment area (coarse grains are generally found near the source). Now that the sensitivity of 10Be measurements is rapidly increasing, we can precisely measure erosion rates from rivers eroding active tectonic regions. These active regions create higher energy drainage systems that erode faster and carry coarser sediment. In these settings, does the sand-sized fraction fully capture the average erosion of the upstream drainage area? Or does a different grain size fraction provide a more accurate measure of upstream erosion? During a study of the Neto River in Calabria, southern Italy, we took 8 samples along the length of the river, focusing on collecting samples just below confluences with major tributaries, in order to use the high-resolution erosion rate data to constrain tectonic motion. The samples we measured were sieved to either a 0.125 mm - 0.710 mm fraction or the 0.125 mm - 4 mm fraction (depending on how much of the former was available). After measuring these 8 samples for 10Be and determining erosion rates, we used the approach by Granger et al. [1996] to calculate the subcatchment erosion rates between each sample point. In the subcatchments of the river where we used grain sizes up to 4 mm, we measured very low 10Be concentrations (corresponding to high erosion rates) and calculated nonsensical subcatchment erosion rates (i.e. negative rates). We, therefore, hypothesize that the coarser grain sizes we included are preferentially sampling a smaller upstream area, and not the entire

  1. Signal or noise? Separating grain size-dependent Nd isotope variability from provenance shifts in Indus delta sediments, Pakistan

    NASA Astrophysics Data System (ADS)

    Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.

    2017-12-01

    Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (<63μm, 63-125 μm, 125-250 μm) from the Indus delta of Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such

  2. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  3. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.

    2010-06-01

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  4. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J.; Ho, Pauline

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  5. Grain size effect on the electrical and magneto-transport properties of nanosized Pr0.67Sr0.33MnO3

    NASA Astrophysics Data System (ADS)

    Ng, S. W.; Lim, K. P.; Halim, S. A.; Jumiah, H.

    2018-06-01

    In this study, nanosized of Pr0.67Sr0.33MnO3 prepared via sol-gel method followed by heat treatment at 600-1000 °C in intervals of 100 °C were synthesized. The structure, surface morphology, electrical, magneto-transport and magnetic properties of the samples were investigated. Rietveld refinements of X-ray diffraction patterns confirm that single phase orthorhombic crystal structure with the space group of Pnma (62) is formed at 600 °C. A strong dependence of surface morphology, electrical and magneto-transport properties on grain size have been observed in this manganites system. Both grain size and crystallite size are increases with the sintering temperature due to the congregation effect. Upon increasing grain size, the paramagnetic-ferromagnetic transition temperature increases from 278 K to 295 K. The resistivity drops and the metal-insulator transition temperature shifted from 184 K to 248 K with increases of grain size due to the grain growth and reduction of grain boundary. Below metal-insulator transition temperature, the samples fit well to the combination of resistivity due to grain or domain boundaries, electron-electron scattering process and electron-phonon interaction. The resistivity data above the metal-insulator transition temperature is well described using small polaron hopping and variable range hopping models. It is found that the negative magnetoresistance also increases with larger grain size where the highest %MR of - 26% can be observed for sample sintered at 1000 °C (245 nm).

  6. Calcinations effect on the grain size distributions Al2O3 powder

    NASA Astrophysics Data System (ADS)

    Issa, Tarik Talib; Mohammed, Awattif A.; Kamil, Dunia

    2012-09-01

    Fine of Al2O3 Powder was calcined at 200°C, 400°C, 600°C, and 800°C respectively for 2 hours under static air, x-ray diffraction, optical microscope and grain size distribution were done to analysis the resulting data after calcinations process. Batter particle size was achieved at 800°C of value (0.486) μm, while batter particles mean value of size 7.18 μm was found at 400°C. SEM micrographs shows that the agglomerate particles were vanished due to the calcinations process.

  7. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  8. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China.

    PubMed

    Zhao, Hongtao; Li, Xuyong; Wang, Xiaomei; Tian, Di

    2010-11-15

    Pollutant washoff from road-deposited sediment (RDS) is an increasing problem associated with the rapid urbanization of China that results in urban non-point source pollution. Here, we analyzed the RDS grain size distribution and its potential impact on heavy metal pollution in urban runoff from impervious surfaces of urban villages, colleges and residences, and main traffic roads in the Haidian District, Beijing, China. RDS with smaller grain size had a higher metal concentration. Specifically, particles with the smallest grain size (<44 μm) had the highest metal concentration in most areas (unit: mg/kg): Cd 0.28-1.31, Cr 57.9-154, Cu 68.1-142, Ni 25.8-78.0, Pb 73.1-222 and Zn 264-664. Particles with smaller grain size (<250 μm) contributed more than 80% of the total metal loads in RDS washoff, while suspended solids with a grain size <44 μm in runoff water accounted for greater than 70% of the metal mass in the total suspended solids (TSS). The heavy metal content in the TSS was 2.21-6.52% of that in the RDS. These findings will facilitate our understanding of the importance of RDS grain size distribution in heavy metal pollution caused by urban storm runoff. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Lack of bedrock grain size influence on the soil production rate

    NASA Astrophysics Data System (ADS)

    Gontier, Adrien; Rihs, Sophie; Chabaux, Francois; Lemarchand, Damien; Pelt, Eric; Turpault, Marie-Pierre

    2015-10-01

    Our study deals with the part played by bedrock grain size on soil formation rates. U- and Th-series disequilibria were measured in two soil profiles developed from two different facies of the same bedrock, i.e., fine and coarse grain size granites, in the geomorphically flat landscape of the experimental Breuil-Chenue forest site, Morvan, France. The U- and Th-series disequilibria of soil layers and the inferred soil formation rate (1-2 mm ky-1) are nearly identical along the two profiles despite differences in bedrock grain size, variable weathering states and a significant redistribution of U and Th from the uppermost soil layers. This indicates that the soil production rate is more affected by regional geomorphology than by the underlying bedrock texture. Such a production rate inferred from residual soil minerals integrated over the age of the soil is consistent with the flat and slowly eroding geomorphic landscape of the study site. It also compares well to the rate inferred from dissolved solutes integrated over the shorter time scale of solute transport from granitic and basaltic watersheds under similar climates. However, it is significantly lower than the denudation or soil formation rates previously reported from either cosmogenic isotope or U-series measurements from similar climates and lithologies. Our results highlight the particularly low soil production rates of flat terrains in temperate climates. Moreover, they provide evidence that the reactions of mineral weathering actually take place in horizons deeper than 1 m, while a chemical steady state of both concentrations and U-series disequilibria is established in the upper most soil layers, i.e., above ∼70 cm depth. In such cases, the use of soil surface horizons for determining weathering rates is precluded and illustrates the need to focus instead on the deepest soil horizons.

  10. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation

  11. A visual basic program to generate sediment grain-size statistics and to extrapolate particle distributions

    USGS Publications Warehouse

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2004-01-01

    Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft

  12. Graphite grain-size spectrum and molecules from core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Meyer, Bradley S.

    2018-01-01

    Our goal is to compute the abundances of carbon atomic complexes that emerge from the C + O cores of core-collapse supernovae. We utilize our chemical reaction network in which every atomic step of growth employs a quantum-mechanically guided reaction rate. This tool follows step-by-step the growth of linear carbon chain molecules from C atoms in the oxygen-rich C + O cores. We postulate that once linear chain molecules reach a sufficiently large size, they isomerize to ringed molecules, which serve as seeds for graphite grain growth. We demonstrate our technique for merging the molecular reaction network with a parallel program that can follow 1017 steps of C addition onto the rare seed species. Due to radioactivity within the C + O core, abundant ambient oxygen is unable to convert C to CO, except to a limited degree that actually facilitates carbon molecular ejecta. But oxygen severely minimizes the linear-carbon-chain abundances. Despite the tiny abundances of these linear-carbon-chain molecules, they can give rise to a small abundance of ringed-carbon molecules that serve as the nucleations on which graphite grain growth builds. We expand the C + O-core gas adiabatically from 6000 K for 109 s when reactions have essentially stopped. These adiabatic tracks emulate the actual expansions of the supernova cores. Using a standard model of 1056 atoms of C + O core ejecta having O/C = 3, we calculate standard ejection yields of graphite grains of all sizes produced, of the CO molecular abundance, of the abundances of linear-carbon molecules, and of Buckminsterfullerene. None of these except CO was expected from the C + O cores just a few years past.

  13. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    PubMed

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  14. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    PubMed

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.

  15. Grain-grain interaction in stationary dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampe, Martin; Joyce, Glenn

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is largermore » than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.« less

  16. Influence of CdTe Deposition Temperature and Window Thickness on CdTe Grain Size and Lifetime After CdCl 2 Recrystallization

    DOE PAGES

    Amarasinghe, Mahisha; Colegrove, Eric; Moutinho, Helio; ...

    2018-01-23

    Grain structure influences both transport and recombination in CdTe solar cells. Larger grains generally are obtained with higher deposition temperatures, but commercially it is important to avoid softening soda-lime glass. Furthermore, depositing at lower temperatures can enable different substrates and reduced cost in the future. We examine how initial deposition temperatures and morphology influence grain size and lifetime after CdCl 2 recrystallization. Techniques are developed to estimate grain distribution quickly with low-cost optical microscopy, which compares well with electron backscatter diffraction data providing corroborative assessments of exposed CdTe grain structures. Average grain size increases as a function of CdCl 2more » temperature. For lower temperature close-spaced sublimation CdTe depositions, there can be more stress and grain segregation during recrystallization. However, the resulting lifetimes and grain sizes are similar to high-temperature CdTe depositions. The grain structures and lifetimes are largely independent of the presence and/or interdiffusion of Se at the interface, before and after the CdCl 2 treatment.« less

  17. Influence of CdTe Deposition Temperature and Window Thickness on CdTe Grain Size and Lifetime After CdCl 2 Recrystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amarasinghe, Mahisha; Colegrove, Eric; Moutinho, Helio

    Grain structure influences both transport and recombination in CdTe solar cells. Larger grains generally are obtained with higher deposition temperatures, but commercially it is important to avoid softening soda-lime glass. Furthermore, depositing at lower temperatures can enable different substrates and reduced cost in the future. We examine how initial deposition temperatures and morphology influence grain size and lifetime after CdCl 2 recrystallization. Techniques are developed to estimate grain distribution quickly with low-cost optical microscopy, which compares well with electron backscatter diffraction data providing corroborative assessments of exposed CdTe grain structures. Average grain size increases as a function of CdCl 2more » temperature. For lower temperature close-spaced sublimation CdTe depositions, there can be more stress and grain segregation during recrystallization. However, the resulting lifetimes and grain sizes are similar to high-temperature CdTe depositions. The grain structures and lifetimes are largely independent of the presence and/or interdiffusion of Se at the interface, before and after the CdCl 2 treatment.« less

  18. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The

  19. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  20. The Grain-size Patchiness of Braided Gravel-Bed Streams: Example of the Urumqi River (northeast Tian Shan, China)

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Malverti, L.; Meunier, P.; Ye, B.

    2012-04-01

    In gravel-beds rivers, sediments are sorted into patches of different grain-sizes. For single-thread streams, it has long been shown that this local granulometric sorting is closely linked to the channel morpho-sedimentary elements. For braided streams, this relation is still unclear. In such rivers, many observations of vertical sediment sorting has led to the definition of a surface and a subsurface layers. Because of this common stratification, methods for sampling gravel-bed rivers have been divided in two families. The surface layer is generally sampled by surface methods and the subsurface layer by volumetric methods. Yet, the equivalency between the two kind of techniques is still a key question. In this study, we characterized the grain-size distribution of the surface layer of the Urumqi River, a shallow braided gravel-bed river in China, by surface-count (Wolman grid-by-number) and volumetric (sieve-by-weight) sampling methods. An analysis of two large samples (212 grains and 3226 kg) show that these two methods are equivalent to characterize the river-bed surface layer. Then, we looked at the grain-size distributions of the river-bed morpho-sedimentary elements: (1) chutes at flow constrictions, which pass downstream to (2) anabranches and (3) bars at flow expansions. Using both sampling methods, we measured the diameter of more than 2300 grains and weight more than 6000 kg of grains larger than 4 mm. Our results show that the three morpho-sedimentary elements correspond only to two kinds of grain-size patches: (1) chutes composed of one coarse-grained top layer lying on finer deposits, and (2) anabranches and bars made up of finer-grained deposits more homogeneous in depth. On the basis of these quantitative observations, together with the concave or convex morphology of the different elements, we propose that chute patches form by erosion and transit with size-selective entrainment, whereas anabranch and bar patches rather develop and migrate by