Sample records for ultrafine particles-induced oxidative

  1. Pulmonary effects induced by ultrafine PTFE particles.

    PubMed

    Johnston, C J; Finkelstein, J N; Mercer, P; Corson, N; Gelein, R; Oberdörster, G

    2000-11-01

    PTFE (polytetrafluoroethylene) fumes consisting of large numbers of ultrafine (uf) particles and low concentrations of gas-phase compounds can cause severe acute lung injury. Our studies were designed to test three hypotheses: (i) uf PTFE fume particles are causally involved in the induction of acute lung injury, (ii) uf PTFE elicit greater pulmonary effects than larger sized PTFE accumulation mode particles, and (iii) preexposure to the uf PTFE fume particles will induce tolerance. We used uf Teflon (PTFE) fumes (count median particle size approximately 16 nm) generated by heating PTFE in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity. Teflon fumes at ultrafine particle concentrations of 50 microg/m(3) were extremely toxic to rats when inhaled for only 15 min. We found that when generated in argon, the ultrafine Teflon particles alone are not toxic at these exposure conditions; neither were Teflon fume gas-phase constituents when generated in air. Only the combination of both phases when generated in air caused high toxicity, suggesting either the existence of radicals on the surface or a carrier mechanism of the ultrafine particles for adsorbed gas compounds. Aging of the fresh Teflon fumes for 3.5 min led to a predicted coagulation to >100 nm particles which no longer caused toxicity in exposed animals. This result is consistent with a greater toxicity of ultrafine particles compared to accumulation mode particles, although changes in particle surface chemistry during the aging process may have contributed to the diminished toxicity. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-min exposures on 3 days prior to a 15-min exposure. Messages encoding antioxidants and chemokines were increased substantially in nonadapted animals, yet were unaltered in adapted animals. This study shows the importance of preexposure history for the susceptibility to acute

  2. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng

    oxidative damage to DA neurons. Our findings delineated the potential role of ultrafine particles alone and in combination with pesticide rotenone in the pathogenesis of PD. - Graphical abstract: Ultrafine particles and rotenone synergistically induce the assembly of active form NADPH oxidase complex in microglia inducing oxidative damage to dopamine neurons. - Highlights: • Ultrafine carbon black promotes dopaminergic neuronal loss induced by rotenone. • The role and underlying mechanism of ultrafine particles in the pathogenesis of PD • NADPH oxidase is a potential therapeutic target of Parkinson's disease.« less

  3. Ultrafine particle libraries for exploring mechanisms of PM2.5-induced toxicity in human cells.

    PubMed

    Bai, Xue; Liu, Yin; Wang, Shenqing; Liu, Chang; Liu, Fang; Su, Gaoxing; Peng, Xiaowu; Yuan, Chungang; Jiang, Yiguo; Yan, Bing

    2018-08-15

    Air pollution worldwide, especially in China and India, has caused serious health issues. Because PM 2.5 particles consist of solid particles of diverse properties with payloads of inorganic, organic and biological pollutants, it is still not known what the major toxic components are and how these components induce toxicities. To explore this complex issue, we apply reductionism principle and an ultrafine particle library approach in this work. From investigation of 63 diversely functionalized ultrafine particles (FUPs) with adsorbed key pollutants, our findings indicate that 1) only certain pollutants in the payloads of PM 2.5 are responsible for causing cellular oxidative stress, cell apoptosis, and cytotoxicity while the particle carriers are much less toxic; 2) pollutant-induced cellular oxidative stress and oxidative stress-triggered apoptosis are identified as one of the dominant mechanisms for PM 2.5 -induced cytotoxicity; 3) each specific toxic component on PM 2.5 (such as As, Pb, Cr or BaP) mainly affects its specific target organ(s) and, adding together, these pollutants may cause synergistic or just additive effects. Our findings demonstrate that reductionism concept and model PM 2.5 particle library approach are very effective in our endeavor to search for a better understanding of PM 2.5 -induced health effects. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

    PubMed

    Brown, D M; Wilson, M R; MacNee, W; Stone, V; Donaldson, K

    2001-09-15

    Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest

  5. OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES

    EPA Science Inventory

    In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...

  6. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  7. Effects of ultrafine diesel exhaust particles on oxidative stress generation and dopamine metabolism in PC-12 cells.

    PubMed

    Kim, Yong-Dae; Lantz-McPeak, Susan M; Ali, Syed F; Kleinman, Michael T; Choi, Young-Sook; Kim, Heon

    2014-05-01

    A major constituent of urban air pollution is diesel exhaust, a complex mixture of gases, chemicals, and particles. Recent evidence suggests that exposure to air pollution can increase the risk of a fatal stroke, cause cerebrovascular damage, and induce neuroinflammation and oxidative stress that may trigger neurodegenerative diseases, such as Parkinson's disease. The specific aim of this study was to determine whether ultrafine diesel exhaust particles (DEPs), the particle component of exhaust from diesel engines, can induce oxidative stress and effect dopamine metabolism in PC-12 cells. After 24 h exposure to DEPs of 200 nm or smaller, cell viability, ROS and nitric oxide (NO(2)) generation, and levels of dopamine (DA) and its metabolites, (dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)), were evaluated. Results indicated cell viability was not significantly changed by DEP exposure. However, ROS showed dramatic dose-dependent changes after DEP exposure (2.4 fold increase compared to control at 200 μg/mL). NO(2) levels were also dose-dependently increased after DEP exposure. Although not in a dose-dependent manner, upon DEP exposure, intracellular DA levels were increased while DOPAC and HVA levels decreased when compared to control. Results suggest that ultrafine DEPs lead to dopamine accumulation in the cytoplasm of PC-12 cells, possibly contributing to ROS formation. Further studies are warranted to elucidate this mechanism. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.

    2010-06-01

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  9. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  10. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress–Induced DNA Damage

    PubMed Central

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter; Simonsen, Jacob; Glasius, Marianne; Wåhlin, Peter; Raaschou-Nielsen, Ole; Loft, Steffen

    2007-01-01

    Background Particulate matter, especially ultrafine particles (UFPs), may cause health effects through generation of oxidative stress, with resulting damage to DNA and other macromolecules. Objective We investigated oxidative damage to DNA and related repair capacity in peripheral blood mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. Design Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. Methods The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were measured by the Comet assay. mRNA levels of OGG1, nucleoside diphosphate linked moiety X-type motif 1 (NUDT1), and heme oxygenase-1 (HO1) were determined by real-time reverse transcriptase–polymerase chain reaction. Results Exposure to UFPs for 6 and 24 hr significantly increased the levels of SBs and FPG sites, with a further insignificant increase after physical exercise. The OGG1 activity and expression of OGG1, NUDT1, and HO1 were unaltered. There was a significant dose–response relationship between NC and DNA damage, with the 57-nm mode as the major contributor to effects. Concomitant exposure to ozone, nitrogen oxides, and carbon monoxide had no influence. Conclusion Our results indicate that UFPs, especially the 57-nm soot fraction from vehicle emissions, causes systemic oxidative stress with damage to DNA and no apparent compensatory up-regulation of DNA repair within 24 hr. PMID:17687444

  11. Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.

    PubMed

    Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung K; Li, Rongsong

    2013-07-05

    Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS

    PubMed Central

    Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung; Li, Rongsong

    2013-01-01

    Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter < 200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. PMID:23751346

  13. Surgical smoke and ultrafine particles

    PubMed Central

    Brüske-Hohlfeld, Irene; Preissler, Gerhard; Jauch, Karl-Walter; Pitz, Mike; Nowak, Dennis; Peters, Annette; Wichmann, H-Erich

    2008-01-01

    Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine (<100 nm) and accumulation mode particles (< 1 μm). Epidemiological and toxicological studies have shown that exposure to particulate air pollution is associated with adverse cardiovascular and respiratory health effects. Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc.) was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3) of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure. PMID:19055750

  14. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    PubMed Central

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.
RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.
CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.


Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045

  15. Effect of ultrafine zinc oxide (ZnO) nanoparticles on induction of oral tolerance in mice.

    PubMed

    Matsumura, Misa; Takasu, Nobuo; Nagata, Masafumi; Nakamura, Kazuichi; Kawai, Motoyuki; Yoshino, Shin

    2010-01-01

    Ultrafine nanoparticles of zinc oxide (ZnO) recently became available as a substitute for larger-size fine ZnO particles. However, the biological activity of ultrafine ZnO currently remains undefined. In the present study, we investigated the effect of ultrafine ZnO on oral tolerance that plays an important role in the prevention of food allergy. Oral tolerance was induced in mice by a single oral administration (i.e., gavage) of 25 mg of ovalbumin (OVA) 5 days prior to a subcutaneous immunization with OVA (Day 0). Varying doses of ultrafine (diameter: approximately 21 nm) as well as fine (diameter: < 5 microm) ZnO particles were given orally at the same time during the OVA gavage. The results indicated that a single oral administration of OVA was followed by significant decreases in serum anti-OVA IgG, IgG(1), IgG(2a), and IgE antibodies and in the proliferative responses to the antigen by these hosts' spleen cells. The decreases in these immune responses to OVA were associated with a marked suppression of secretion of interferon (IFN)gamma, interleukin (IL)-5, and IL-17 by these lymphoid cells. Treatment with either ultrafine or fine ZnO failed to affect the oral OVA-induced suppression of antigen-specific IgG, IgG(1), IgG(2a), and IgE production or lymphoid cell proliferation. The suppression induced by the oral OVA upon secretion of IFN gamma, IL-5, and IL-17 was also unaffected by either size of ZnO. These results indicate that ultrafine particles of ZnO do not appear to modulate the induction of oral tolerance in mice.

  16. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    PubMed Central

    Balakrishna, Shrilatha; Lomnicki, Slawo; McAvey, Kevin M; Cole, Richard B; Dellinger, Barry; Cormier, Stephania A

    2009-01-01

    Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs). Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine particles and the

  17. ULTRAFINE CARBON PARTICLES INDUCE INTERLEUKIN-8 GENE TRANSCRIPTION AND P38 MAPK ACTIVATION IN NORMAL BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies suggest that ultrafine particles contribute to particulate matter-induced adverse health effects. Interleukin (IL)-8 is an important proinflammatory cytokine in the human lung that is induced in respiratory cells exposed to a variety of environmental insul...

  18. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century.

    PubMed

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-12-01

    Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM 2.5 ) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM 2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM 2.5 . In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.

  19. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century

    PubMed Central

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-01-01

    Abstract Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM2.5) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM2.5. In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future. PMID:28649460

  20. Exposure to ultrafine particles in asphalt work.

    PubMed

    Elihn, Karine; Ulvestad, Bente; Hetland, Siri; Wallen, Anna; Randem, Britt Grethe

    2008-12-01

    An epidemiologic study has demonstrated that asphalt workers show increased loss of lung function and an increase of biomarkers of inflammation over the asphalt paving season. The aim of this study was to investigate which possible agent(s) causes the inflammatory reaction, with emphasis on ultrafine particles. The workers' exposure to total dust, polycyclic aromatic hydrocarbons, and NO(2) was determined by personal sampling. Exposure to ultrafine particles was measured by means of particle counters and scanning mobility particle sizer mounted on a van following the paving machine. The fractions of organic and elemental carbon were determined. Asphalt paving workers were exposed to ultrafine particles with medium concentration of about 3.4 x 10(4)/cm(3). Ultrafine particles at the paving site originated mainly from asphalt paving activities and traffic exhaust; most seemed to originate from asphalt fumes. Oil mist exceeded occupational limits on some occasions. Diesel particulate matter was measured as elemental carbon, which was low, around 3 microg/m(3). NO(2) and total dust did not exceed limits. Asphalt pavers were exposed to relatively high concentrations of ultrafine particles throughout their working day, with possible adverse health effects.

  1. Measurements of hygroscopicity and volatility of atmospheric ultrafine particles during ultrafine particle formation events at urban, industrial, and coastal sites.

    PubMed

    Park, Kihong; Kim, Jae-Seok; Park, Seung Ho

    2009-09-01

    The tandem differential mobility analyzer (TDMA) technique was applied to determine the hygroscopicity and volatility of atmospheric ultrafine particles in three sites of urban Gwangju, industrial Yeosu, and coastal Taean in South Korea. A database for the hygroscopicity and volatility of the known compositions and sizes of the laboratory-generated particles wasfirst constructed for comparison with the measured properties of atmospheric ultrafine particles. Distinct differences in hygroscopicity and volatility of atmospheric ultrafine particles werefound between a "photochemical event" and a "combustion event" as well as among different sites. At the Gwangju site, ultrafine particles in the "photochemical event" were determined to be more hygroscopic (growth factor (GF) = 1.05-1.33) than those in the "combustion event" (GF = 1.02-1.12), but their hygroscopicity was not as high as pure ammonium sulfate or sulfuric acid particles in the laboratory-generated database, suggesting they were internally mixed with less soluble species. Ultrafine particles in the "photochemical event" at the Yeosu site, having a variety of SO2, CO, and VOC emission sources, were more hygroscopic (GF = 1.34-1.60) and had a higher amount of volatile species (47-75%)than those observed at the Gwangju site. Ultrafine particle concentration at the Taean site increased during daylight hours with low tide, having a higher GF (1.34-1.80) than the Gwangju site and a lower amount of volatile species (17-34%) than the Yeosu site. Occasionally ultrafine particles were externally mixed according to their hygroscopicity and volatility, and TEM/EDS data showed that each type of particle had a distinct morphology and elemental composition.

  2. Ultrafine particle concentration and new particle formation in a coastal arid environment

    NASA Astrophysics Data System (ADS)

    Alfoldy, Balint; Kotob, Mohamed; Obbard, Jeffrey P.

    2017-04-01

    Arid environments can be generally characterised by high coarse aerosol load due to the wind-driven erosion of the upper earth crust (i.e. Aeolian dust). On the other hand, anthropogenic activities and/or natural processes also generate significant numbers of particles in the ultrafine size range. Ultrafine particles (also referred as nano-particles) is considered as aerosol particles with the diameter less than 100 nm irrespectively their chemical composition. Due to their small size, these particles represent negligible mass portion in the total atmospheric particulate mass budget. On the other hand, these particles represent the majority of the total particle number budget and have the major contribution in the total aerosol surface distribution. Ultrafine particles are characterised by high mobility (diffusion) and low gravitational settling velocity. Consequently, these particles can be transported long distances and their atmospheric lifetime is relatively high (i.e. in the Accumulation Mode). Ultrafine particles play important role in the atmosphere as they take part in the atmospheric chemistry (high surface), impact the climate (sulphate vs. black carbon), and implies significant health effects due to their deep lung penetration and high mobility in the body. The Atmospheric Laboratory of Qatar University is conducting real-time monitoring of ultrafine particles and regularly taking aerosol samples for chemical analysis at the university campus. In this paper, recent results are presented regarding the size distribution and chemical composition of the ultrafine aerosol particles. Based on the concentration variation in time, sources of ultrafine particles can be clearly separated from the sources of fine or coarse particles. Several cases of new particle formation events have been observed and demonstrated in the paper, however, the precursors of the secondary aerosol particles are still unknown. Literature references suggest that among the sulphuric acid

  3. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  4. Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes.

    PubMed

    Büchner, Nicole; Ale-Agha, Niloofar; Jakob, Sascha; Sydlik, Ulrich; Kunze, Kerstin; Unfried, Klaus; Altschmied, Joachim; Haendeler, Judith

    2013-01-01

    Diet and pollution are environmental factors known to compromise "healthy aging" of the cardiovascular and respiratory systems. The molecular consequences of this permanent burden in these cells are still unknown. Therefore, this study investigates the impact of unhealthy diet on aging-related signaling pathways of human, primary cardiovascular cells and of airborne particles on lung epithelial and human endothelial cells. Nutrition health reports have shown that the diet in industrialized countries contains more than 100mg/dl low density lipoprotein (LDL) and a high fraction of added sugars, especially fructose. Several studies demonstrated that ultrafine particles can enter the circulation and thus may interact with endothelial cells directly. Both, dietary compounds and pollution derived particles, have been shown to increase the risk for cardiovascular diseases. To simulate an unhealthy diet, we supplemented cell culture media of human primary endothelial cells, smooth muscle cells and cardiomyocytes with LDL and replaced 1/3 of glucose with fructose. We observed hypertrophy in cardiomyocytes, enhanced proliferation in smooth muscle cells and increased senescence, loss of endothelial nitric oxide synthase and increased nuclear FoxO3A in endothelial cells. With respect to pollution we have used ultrafine carbon black particles (ufCB), one of the major constituents of industrial and exhaust emissions, in concentrations our lungs and vessels are constantly exposed to. These concentrations of ufCB increased reactive oxygen species in lung epithelial and vascular endothelial cells and reduced the S-NO content, a marker for NO-bioavailability, in endothelial cells. NO increases activation of Telomerase Reverse Transcriptase (TERT), an enzyme essential for telomere maintenance. TERT is required for proper endothelial cell function and is inactivated by Src kinase under conditions of oxidative stress. ufCB significantly increased Src kinase activation and reduced

  5. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  6. Translocation and potential neurological effects of fine and ultrafine particles a critical update

    PubMed Central

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-01-01

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  7. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    PubMed

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  8. Associations Between Ultrafine Particles and Co-Pollutant Concentrations in the Tampa Bay Area.

    PubMed

    Desai, Ushang; Watson, Alain

    2016-05-01

    Ultrafine particles (UFPs) are ubiquitous in urban air and have been recognized as a risk to human health. The aim of this study was to measure the relationships among ultrafine particles and other ambient air pollutants and meteorological factors in the Tampa Bay Area. This study measured continuous UFPs, black carbon, oxides of nitrogen (NO(x)), nitrogen dioxide (NO2), nitric oxide (NO), carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), particulate matter having an aerodynamic diameter of 10 microns or less (PM10), relative humidity, wind speed, and ambient temperature during January to March 2014. Moreover, the study compared the relationship between UFPs and various co-pollutants daily, including during morning rush hour periods. This study found a moderate correlation among UFPs and black carbon, NO(x), NO2, and NO during hourly continuous measurements and rush hour periods, and a low level of correlation among UFPs and CO, O3, SO2, PM10, relative humidity, wind speed, and ambient temperature. This study indicates that co-pollutants should not be used as a surrogate to assess the human health risk from ultrafine particles exposure.

  9. Process for making ultra-fine ceramic particles

    DOEpatents

    Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.

    1995-01-01

    A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.

  10. Ultrafine particle and fiber production in microgravity

    NASA Technical Reports Server (NTRS)

    Webb, George W. (Inventor)

    1988-01-01

    In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.

  11. Size-resolved ultrafine particle composition analysis 1. Atlanta

    NASA Astrophysics Data System (ADS)

    Rhoads, K. P.; Phares, D. J.; Wexler, A. S.; Johnston, M. V.

    2003-04-01

    During August 1999 as part of the Southern Oxidants Study Supersite Experiment, our group collected size-resolved measurements of the chemical composition of single ambient aerosol particles with a unique real-time laser desorption/ionization mass spectrometry technique. The rapid single-particle mass spectrometry instrument is capable of analyzing "ultrafine" particles with aerodynamic diameters ranging from 0.01 to 1.5 μm. Under the heaviest loading observed in Atlanta, particles were analyzed at a rate of roughly one per second in sizes ranging from 0.1 to 0.2 μm. Nearly 16,000 individual spectra were recorded over the course of the month during both daytime and nighttime sampling periods. Evaluation of the data indicates that the composition of the ultrafine (less than 100 nm) particles is dominated by carbon-containing compounds. Larger particles show varied compositions but typically appeared to have organic carbon characteristics mixed with an inorganic component (e.g., crustal materials, metals, etc.). During the experiment, 70 composition classes were identified. In this paper we report the average spectra and correlations with various meteorological parameters for all major compound classes and a number of minor ones. The major composition classes are identified from the primary peaks in their spectra as organic carbon (about 74% of the particles), potassium (8%), iron (3%), calcium (2%), nitrate (2%), elemental carbon (1.5%), and sodium (1%). Many of these compound classes appeared in repeatable size ranges and quadrants of the wind rose, indicating emission from specific sources.

  12. Ultrafine Condensation Particle Counter Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, C.

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  13. Air pollution ultrafine particles: toxicity beyond the lung.

    PubMed

    Terzano, C; Di Stefano, F; Conti, V; Graziani, E; Petroianni, A

    2010-10-01

    Ultrafine particles or nanoparticles (UFPs or PM0.1) are the fraction of ambient particulates with an aerodynamic diameter smaller than 0.1 microm. Currently UFPs are emerging as the most abundant particulate pollutants in urban and industrial areas, as their exposures have increased dramatically because of anthropogenic sources such as internal combustion engines, power plants, incinerators and many other sources of thermo-degradation. Ultrafine particles have been less studied than PM2.5 and PM10 particulates, mass concentrations of particles smaller than 2.5 and 10 microm, respectively. OBJECTIVE, EVIDENCE AND INFORMATION SOURCES: We examined the current scientific literature about the health effects of ultrafine particles exposure. UFPs are able to inhibit phagocytosis, and to stimulate inflammatory responses, damaging epithelial cells and potentially gaining access to the interstitium. They could be responsible for consistent reductions in forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) in patients with asthma. Chronic exposure to UFPs can produce deleterious effects on the lung, also causing oxidative stress and enhancing pro-inflammatory effects in airways of COPD patients. Cardiovascular detrimental consequences due to UFPs exposure have observed in epidemiological studies, and could likely be explained by translocation of UFPs from the respiratory epithelium towards circulation and subsequent toxicity to vascular endothelium; alteration of blood coagulation; triggering of autonomic nervous system reflexes eventually altering the cardiac frequency and function. Once deposited deeply into the lung, UFPs--in contrast to larger-sized particles--appear to access to the blood circulation by different transfer routes and mechanisms, resulting in distribution throughout the body, including the brain, with potential neurotoxic consequences. UFPs represent an area of toxicology of emerging concern. A new concept of environmental medicine

  14. CARDIOVASCULAR RESPONSES IN UNRESTRAINED WKY-RATS TO INHALED ULTRAFINE CARBON PARTICLES

    EPA Science Inventory

    Abstract
    This study provides evidence for adverse cardiac effects of inhaled ultrafine particles (UFPs) in healthy WKY rats. Short term exposure (24 h) with carbon UFPs (180 ?g?m ?) induced a moderate but significant heart rate increase of 18 bpm (4.8 %) in association with a ...

  15. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    NASA Technical Reports Server (NTRS)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  16. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain

    NASA Astrophysics Data System (ADS)

    Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A. M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S.

    2012-12-01

    Urban air quality impairment by ultrafine particles has become a matter of concern due to the adverse effects on human health. Most of the studies of ultrafine particles in urban air quality have focused on vehicle exhaust emissions. We studied how industrial emissions contribute to ultrafine particle concentrations in downwind urban ambient air. This research is based on experimental data collected in the ambient air of the industrial city of Huelva (SW Spain) over April 2008-December 2009 period (particle number, gaseous pollutants and black carbon concentrations and levels and chemical composition of PM10 and PM2.5 with daily and hourly resolution). This city is affected by emissions from the second largest Cu-smelter in Europe, phosphoric acid and fertilizer production plants and an oil refinery and petrochemical plant. Industrial emissions are the main cause of ultrafine particle episodes. When vehicle exhaust emissions are the main source, ultrafine particles typically show (24-h mean) concentrations within the range 14,700-5000 cm-3 (50th-1st), with 60% of these linked to this source and 30% to industrial emissions. In contrast, when daily mean levels of N are within the range 50,000-25,500 cm-3 (100th-70th), industrial and vehicle exhaust emissions accounted for 49 and 30%, respectively. High concentrations of toxic trace metals (As, Cu, Cd, Zn and Pb) were recorded when the study city suffered fumigations of the Cu-smelter plumes (e.g. 10-25 ng m-3 As, 1-2 ng m-3 Cd and >105 cm-3 of ultrafine particles). Because of these industrial emissions, ultrafine particle concentrations during daylight are about two times higher than those observed in other European cities. Recently, ultrafine particle emissions in vehicle exhausts have been subject to limit values in a recent stage of the EURO standards. Industrial emissions should also be considered.

  17. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.

    2018-01-01

    Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed.

  18. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  19. A mechanism for the production of ultrafine particles from concrete fracture.

    PubMed

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Borbíró, I.; Angyal, A.; Csedreki, L.; Furu, E.; Szoboszlai, Z.; Kiss, Á. Z.; Hunyadi, J.

    2011-10-01

    Skin penetration is one of the potential routes for nanoparticles to gain access into the human body. Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the particle size smaller than 200 nm makes the product more transparent compared to formulations containing coarser particles. The present study continues the work carried out in the frame of the NANODERM: “Quality of skin as a barrier to ultrafine particles” European project and complements our previous investigations on human skin with compromised barrier function. Atopic dermatitis (a type of eczema) is an inflammatory, chronically relapsing, non-contagious skin disease. It is very common in children but may occur at any age. The exact cause of atopic dermatitis is unknown, but is likely due to a combination of impaired barrier function together with a malfunction in the body's immune system. In this study, skin samples were obtained from two patients suffering from atopic dermatitis. Our results indicate that the ultrafine zinc oxide particles, in a hydrophobic basis gel with an application time of 2 days or 2 weeks, have penetrated deeply into the stratum corneum in these patients. On the other hand, penetration into the stratum spinosum was not observed even in the case of the longer application time.

  1. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira; Dimopoulos Eggenschwiler, Panayotis

    2018-08-01

    Ultrafine (<100 nm) particles related to traffic are of high environmental and human health concern, as they are supposed to be more toxic than larger particles. In the present study transmission electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles <10 nm were rarely detected. The ultrafine particles can be distinguished into the following types: soot, ash-bearing soot and ash. Ash consists of Ca, P, Mg, Zn, Fe, S, and minor Sn compounds. Most elements originate from lubricating oil additives; Sn and at least part of Fe are products of engine wear; minor W ± Si-bearing nearly spherical particles in Diesel exhaust derive from catalytic coating material. Ultrafine ash particles predominate over ultrafine soot or are nearly equal in amount, in contrast to emissions of larger sizes where soot is by far the prevalent particle type. This is probably due to the low ash amount per volume fraction in the total emissions, which does not favor formation of large ash agglomerates, opposite to soot, which is abundant and thus easily forms agglomerates of sizes larger than those of the ultrafine range. No significant differences of ultrafine particle characteristics were identified among the tested Gasoline and Diesel vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles. Copyright © 2018 Elsevier Ltd. All

  2. [Ultrafine particles and effects on the body: review of the literature].

    PubMed

    Pedata, P; Garzillo, E M; Sannolo, N

    2010-01-01

    The International laws and the technology developments led to a situation where the current levels of environmental pollution are below those that existed at the beginning of the century: however, these pollution levels produce harmful effects to health linked to an increase in morbidity and mortality. Over the years the pollution has changed: following the transformation of heating, motor innovation and emissions reducing, has been a reduction in air concentration of some conventional pollutants (sulfur dioxide, carbon monoxide, benzene), while there wasn't a significant reduction of particulate air pollution. In this work have been questioned several electronic databases of scientific literature based on a selection algorithm that contains expressions for the following topics: "ultrafine particles", "effects on human health", "occupational and environmental exposure". We analyzed 200 articles, progressively reduced to 88, selected for keywords, year of publication and arguments; the main topics covered by the articles were related to chemical and physical UFP properties, UFP exposure, European legislation relating to the values of particle concentrations in the atmosphere, toxicokinetics and effects on various organs such as, in particular, the respiratory system, cardiovascular system, central nervous system and the intracellular mechanism of action. Analysis of the literature showed that ultrafine particles (PM0.1 aerodynamic diameter less than 0.1 microm) are more powerful than the coarse particle fraction (2.5-10 microm) and fine (0.1-2.5 microm) in inducing adverse effects to human health. Unfortunately, the study of mechanisms of action of these particles presents particular difficulties because of the large number of chemical and biological mechanisms that come into play in the body after exposure to ultrafine particles.

  3. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells.

    PubMed

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-06-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier

  4. Structure and Growth of Rod-Shaped Mn Ultrafine Particle

    NASA Astrophysics Data System (ADS)

    Kido, Osamu; Suzuki, Hitoshi; Saito, Yoshio; Kaito, Chihiro

    2003-09-01

    The structure of rod-shaped Mn ultrafine particles was elucidated by electron microscopy. Mn ultrafine particles have characteristic tristetrahedron (α-Mn), rhombic dodecahedron (β-Mn) and rod-shape crystal habits. It was found that the rod-shaped particle resulted from the parallel coalescence of β-Mn particles with the size of 50 nm. Detailed analysis of the defects seen in large rod-shaped particles with the width of 100 nm indicated a mixture of α- and β-phases. A size effect on the phase transition from β to α was observed throughout the rod-shaped crystal structure. The structure and growth of Mn particles were discussed based on the outline of the smoke and the temperature distribution in the smoke.

  5. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?

    NASA Technical Reports Server (NTRS)

    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our

  6. Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) in Brisbane, Queensland (Australia): study design and implementation.

    PubMed

    Ezz, Wafaa Nabil; Mazaheri, Mandana; Robinson, Paul; Johnson, Graham R; Clifford, Samuel; He, Congrong; Morawska, Lidia; Marks, Guy B

    2015-02-02

    Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children's health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

  7. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols.

    PubMed

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Krouzek, Jiri; Hovorka, Jan

    2013-06-14

    Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1particles and ultrafine particles (dae<0.17). High-volume aerosol samples were collected consecutively in four localities that differed in the level of environmental pollution. The genotoxicity of EOMs was measured by analysis of DNA adducts induced in an a cellular assay consisting of calf thymus DNA with/without rat liver microsomal S9 fraction coupled with (32)P-postlabelling. The upper accumulation fraction was the major size fraction in all four localities, forming 37-46% of the total PM mass. Per m(3) of sampled air, this fraction also bound the largest amount of c-PAHs. Correspondingly, the upper accumulation fraction induced the highest DNA-adduct levels. Per PM mass itself, the lower accumulation fraction is seen to be the most efficient in binding DNA-reactive organic compounds. Interestingly, the results suggest that the fraction of ultrafine particles of various ambient-air samples is neither a major carrier of c-PAHs, nor a major inducer of their genotoxicity, which is an important finding that is relevant to the toxicity and health effects of ultrafine particles, which are so extensively discussed these days. Copyright © 2013. Published by Elsevier B.V.

  8. Sex-Dependent Depression-Like Behavior Induced by Respiratory Administration of Aluminum Oxide Nanoparticles.

    PubMed

    Zhang, Xin; Xu, Yan; Zhou, Lian; Zhang, Chengcheng; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Ding, Zhen; Chen, Xiaodong; Li, Xiaobo; Chen, Rui

    2015-12-09

    Ultrafine aluminum oxide, which are abundant in ambient and involved occupational environments, are associated with neurobehavioral alterations. However, few studies have focused on the effect of sex differences following exposure to environmental Al₂O₃ ultrafine particles. In the present study, male and female mice were exposed to Al₂O₃ nanoparticles (NPs) through a respiratory route. Only the female mice showed depression-like behavior. Although no obvious pathological changes were observed in mice brain tissues, the neurotransmitter and voltage-gated ion channel related gene expression, as well as the small molecule metabolites in the cerebral cortex, were differentially modulated between male and female mice. Both mental disorder-involved gene expression levels and metabolomics analysis results strongly suggested that glutamate pathways were implicated in sex differentiation induced by Al₂O₃ NPs. Results demonstrated the potential mechanism of environmental ultrafine particle-induced depression-like behavior and the importance of sex dimorphism in the toxic research of environmental chemicals.

  9. The occurrence of ultrafine particles in the specific environment of children.

    PubMed

    Burtscher, Heinz; Schüepp, Karen

    2012-06-01

    Interest in ultrafine particles (UFP) has been increasing due to their specific physico-chemical characteristics. Ultrafine particles are those with an aerodynamic diameter of <0.1 μm and are also commonly know as nanoparticles (0.1 μm = 100 nm). Due to their small size UFP contribute mostly to particle number concentrations and are therefore underestimated in actual pollution measurements, which commonly measure mass concentration. Children represent the most vulnerable group in regard to particulate exposure due to their developing status and different exposures compared to adults. This review discusses the sources of ultrafine particles as well as the specific exposures of children highlighting the importance and uniqueness of this age group. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    PubMed

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes.

    PubMed

    Bhargava, Arpit; Tamrakar, Shivani; Aglawe, Aniket; Lad, Harsha; Srivastava, Rupesh Kumar; Mishra, Dinesh Kumar; Tiwari, Rajnarayan; Chaudhury, Koel; Goryacheva, Irina Yu; Mishra, Pradyumna Kumar

    2018-03-01

    Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response

  13. Traffic emission factors of ultrafine particles: effects from ambient air.

    PubMed

    Janhäll, Sara; Molnar, Peter; Hallquist, Mattias

    2012-09-01

    Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the Göte-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8 × 10(15) × (1 - 0.095 × CO - 3.2 × 10(-3) × T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented.

  14. Ultrafine particle transport and deposition in a large scale 17-generation lung model.

    PubMed

    Islam, Mohammad S; Saha, Suvash C; Sauret, Emilie; Gemci, Tevfik; Yang, Ian A; Gu, Y T

    2017-11-07

    To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) in Brisbane, Queensland (Australia): Study Design and Implementation

    PubMed Central

    Ezz, Wafaa Nabil; Mazaheri, Mandana; Robinson, Paul; Johnson, Graham R.; Clifford, Samuel; He, Congrong; Morawska, Lidia; Marks, Guy B.

    2015-01-01

    Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study. PMID:25648226

  16. On the assessment of exposure to airborne ultrafine particles in urban environments.

    PubMed

    Gomes, João Fernando Pereira; Bordado, João Carlos Moura; Albuquerque, Paula Cristina Silva

    2012-01-01

    The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM₁₀ patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 μm²/cm³, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.

  17. Exposure to Ambient Ultrafine Particles and Nitrogen Dioxide and Incident Hypertension and Diabetes.

    PubMed

    Bai, Li; Chen, Hong; Hatzopoulou, Marianne; Jerrett, Michael; Kwong, Jeffrey C; Burnett, Richard T; van Donkelaar, Aaron; Copes, Ray; Martin, Randall V; Van Ryswyk, Keith; Lu, Hong; Kopp, Alexander; Weichenthal, Scott

    2018-05-01

    Previous studies reported that long-term exposure to traffic-related air pollution may increase the incidence of hypertension and diabetes. However, little is known about the associations of ultrafine particles (≤0.1 μm in diameter) with these two conditions. We conducted a population-based cohort study to investigate the associations between exposures to ultrafine particles and nitrogen dioxide (NO2) and the incidence of diabetes and hypertension. Our study population included all Canadian-born residents aged 30 to 100 years who lived in the City of Toronto, Canada, from 1996 to 2012. Outcomes were ascertained using validated province-wide databases. We estimated annual concentrations of ultrafine particles and NO2 using land-use regression models and assigned these estimates to participants' annual postal code addresses during the follow-up period. Using random-effects Cox proportional hazards models, we calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for ultrafine particles and NO2, adjusted for individual- and neighborhood-level covariates. We considered both single- and multipollutant models. Each interquartile change in exposure to ultrafine particles was associated with increased risk of incident hypertension (HR = 1.03; 95% CI = 1.02, 1.04) and diabetes (HR = 1.06; 95% CI = 1.05, 1.08) after adjusting for all covariates. These results remained unaltered with further control for fine particulate matter (≤2.5 μm; PM2.5) and NO2. Similarly, NO2 was positively associated with incident diabetes (HR = 1.06; 95% CI = 1.05, 1.07) after controlling for ultrafine particles and PM2.5. Exposure to traffic-related air pollution including ultrafine particles and NO2 may increase the risk for incident hypertension and diabetes. See video abstract at, http://links.lww.com/EDE/B337.

  18. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  19. Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere.

    PubMed

    Kawanaka, Youhei; Matsumoto, Emiko; Sakamoto, Kazuhiko; Yun, Sun-Ja

    2011-02-15

    The present study was performed to estimate the contributions of fine and ultrafine particles to the lung deposition of particle-bound mutagens in the atmosphere. This is the first estimation of the respiratory deposition of atmospheric particle-bound mutagens. Direct and S9-mediated mutagenicity of size-fractionated particulate matter (PM) collected at roadside and suburban sites was determined by the Ames test using Salmonella typhimurium strain TA98. Regional deposition efficiencies in the human respiratory tract of direct and S9-mediated mutagens in each size fraction were calculated using the LUDEP computer-based model. The model calculations showed that about 95% of the lung deposition of inhaled mutagens is caused by fine particles for both roadside and suburban atmospheres. Importantly, ultrafine particles were shown to contribute to the deposition of mutagens in the alveolar region of the lung by as much as 29% (+S9) and 26% (-S9) for the roadside atmosphere and 11% (+S9) and 13% (-S9) for the suburban atmosphere, although ultrafine particles contribute very little to the PM mass concentration. These results indicated that ultrafine particles play an important role as carriers of mutagens into the lung. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  1. Physicochemical properties and ability to generate free radicals of ambient coarse, fine, and ultrafine particles in the atmosphere of Xuanwei, China, an area of high lung cancer incidence

    NASA Astrophysics Data System (ADS)

    Lu, Senlin; Yi, Fei; Hao, Xiaojie; Yu, Shang; Ren, Jingjing; Wu, Minghong; Jialiang, Feng; Yonemochi, Shinich; Wang, Qingyue

    2014-11-01

    The link between the high incidence of lung cancer and harmful pollutants emitted by local coal combustion in Xuanwei, Yunnan province, China, has been a focus of study since the 1980s. However, the mechanisms responsible for the high lung cancer rate remain unclear, necessitating further study. Since a close relationship between ambient air particle pollution and respiratory diseases exists, we sampled size-resolved ambient particles from the atmosphere of Xuanwei. In our indoor experiment, cutting-edge methods, including scanning electron microscopy coupled with energy dispersive X-ray detection (SEM/EDX), particle-induced X-ray emission (PIXE), electronic paramagnetic resonance (EPR) and the cell-free DCFH-DA assay, were employed to investigate the physicochemical properties, the potential to generate free radicals and the oxidative potential of ambient coarse (diameter, 1.8-10 μm), fine (diameter, 0.1-1.8 μm), and ultrafine (diameter, <0.1 μm) particles. We found the total mass concentrations of the size-resolved particles collected in spring were higher than that in early winter. Mass percentage of fine particles accounted for 68% and 61% of the total particulate mass in spring and in early winter samples, respectively, indicating that fine particles were the major component of the Xuanwei ambient particulate matters. On the other hand, the results of SEM/EDX analysis showed that the coarse particles were dominated by minerals, the fine particles by soot aggregates and fly ashes, and the ultrafine particles by soot particles and unidentified particles. Our PIXE results revealed that crustal elements (Ca, Ti Si, Fe) were mainly distributed in coarse particles, while trace metals (Cr, Mn, Ni, Cu, Zn, Pb) dominated in the fine particle fraction, and S, a typical element emitted by coal combustion, mainly resided in fine particles collected from the winter atmosphere. EPR results indicated that the magnitude of free radical intensity caused by size

  2. Size evolution of ultrafine particles: Differential signatures of normal and episodic events.

    PubMed

    Joshi, Manish; Khan, Arshad; Anand, S; Sapra, B K

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.

    PubMed

    Jørgensen, Rikke Bramming; Buhagen, Morten; Føreland, Solveig

    2016-07-01

    To investigate the exposure to number concentration of ultrafine particles and the size distribution in the breathing zone of workers during rehabilitation of a subsea tunnel. Personal exposure was measured using a TSI 3091 Fast Mobility Particle Sizer (FMPS), measuring the number concentration of submicrometre particles (including ultrafine particles) and the particle size distribution in the size range 5.6-560 nm. The measurements were performed in the breathing zone of the operators by the use of a conductive silicone tubing. Working tasks studied were operation of the slipforming machine, operations related to finishing the verge, and welding the PVC membrane. In addition, background levels were measured. Arithmetic mean values of ultrafine particles were in the range 6.26×10(5)-3.34×10(6). Vertical PVC welding gave the highest exposure. Horizontal welding was the work task with the highest maximum peak exposure, 8.1×10(7) particles/cm(3). Background concentrations of 4.0×10(4)-3.1×10(5) were found in the tunnel. The mobility diameter at peak particle concentration varied between 10.8 nm during horizontal PVC welding and during breaks and 60.4 nm while finishing the verge. PVC welding in a vertical position resulted in very high exposure of the worker to ultrafine particles compared to other types of work tasks. In evaluations of worker exposure to ultrafine particles, it seems important to distinguish between personal samples taken in the breathing zone of the worker and more stationary work area measurements. There is a need for a portable particle-sizing instrument for measurements of ultrafine particles in working environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  5. Size resolved ultrafine particles emission model--a continues size distribution approach.

    PubMed

    Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick

    2011-08-15

    A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System

    PubMed Central

    Elder, Alison; Gelein, Robert; Silva, Vanessa; Feikert, Tessa; Opanashuk, Lisa; Carter, Janet; Potter, Russell; Maynard, Andrew; Ito, Yasuo; Finkelstein, Jacob; Oberdörster, Günter

    2006-01-01

    Background Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; < 100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb. Methods To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; ~ 500 μg/m3) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses. Results After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-α mRNA (~ 8-fold) and protein (~ 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was < 1.5% per day. Conclusions We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans. PMID:16882521

  7. Association Between Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban Areas.

    PubMed

    Stafoggia, Massimo; Schneider, Alexandra; Cyrys, Josef; Samoli, Evangelia; Andersen, Zorana Jovanovic; Bedada, Getahun Bero; Bellander, Tom; Cattani, Giorgio; Eleftheriadis, Konstantinos; Faustini, Annunziata; Hoffmann, Barbara; Jacquemin, Bénédicte; Katsouyanni, Klea; Massling, Andreas; Pekkanen, Juha; Perez, Noemi; Peters, Annette; Quass, Ulrich; Yli-Tuomi, Tarja; Forastiere, Francesco

    2017-03-01

    Epidemiologic evidence on the association between short-term exposure to ultrafine particles and mortality is weak, due to the lack of routine measurements of these particles and standardized multicenter studies. We investigated the relationship between ultrafine particles and particulate matter (PM) and daily mortality in eight European urban areas. We collected daily data on nonaccidental and cardiorespiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. We estimated a weak, delayed association between particle number concentration and nonaccidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5) or nitrogen dioxide (NO2). The stronger association found between particle number concentration and mortality in the warmer season (1.14% increase) became null after adjustment for other pollutants. We found weak evidence of an association between daily ultrafine particles and mortality. Further studies are required with standardized protocols for ultrafine particle data collection in multiple European cities over extended study periods.

  8. Ultrafine particle measurement and related EPA research studies

    EPA Science Inventory

    Webinar slides to present information on measuring ultrafine particles at the request of the 2013 MARAMA Monitoring Committee. The talk covers near-road monitoring, instrument intercomparison, and general overview of UFP monitoring technology.

  9. Process and apparatus for producing ultrafine explosive particles

    DOEpatents

    McGowan, Michael J.

    1992-10-20

    A method and an improved eductor apparatus for producing ultrafine explosive particles is disclosed. The explosive particles, which when incorporated into a binder system, have the ability to propagate in thin sheets, and have very low impact sensitivity and very high propagation sensitivity. A stream of a solution of the explosive dissolved in a solvent is thoroughly mixed with a stream of an inert nonsolvent by obtaining nonlaminar flow of the streams by applying pressure against the flow of the nonsolvent stream, to thereby diverge the stream as it contacts the explosive solution, and violently agitating the combined stream to rapidly precipitate the explosive particles from the solution in the form of generally spheroidal, ultrafine particles. The two streams are injected coaxially through continuous, concentric orifices of a nozzle into a mixing chamber. Preferably, the nonsolvent stream is injected centrally of the explosive solution stream. The explosive solution stream is injected downstream of and surrounds the nonsolvent solution stream for a substantial distance prior to being ejected into the mixing chamber.

  10. Size-resolved ultrafine particle composition analysis 2. Houston

    NASA Astrophysics Data System (ADS)

    Phares, Denis J.; Rhoads, Kevin P.; Johnston, Murray V.; Wexler, Anthony S.

    2003-04-01

    Between 23 August and 18 September 2000, a single-ultrafine-particle mass spectrometer (RSMS-II) was deployed just east of Houston as part of a sampling intensive during the Houston Supersite Experiment. The sampling site was located just north of the major industrial emission sources. RSMS-II, which simultaneously measures the aerodynamic size and composition of individual ultrafine aerosols, is well suited to resolving some of the chemistry associated with secondary particle formation. Roughly 27,000 aerosol mass spectra were acquired during the intensive period. These were classified and labeled based on the spectral peak patterns using the neural networks algorithm, ART-2a. The frequency of occurrence of each particle class was correlated with time and wind direction. Some classes were present continuously, while others appeared intermittently or for very short time durations. The most frequently detected species at the site were potassium and silicon, with lesser amounts of organics and heavier metals.

  11. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    NASA Astrophysics Data System (ADS)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  12. The chemical composition of ultrafine particles and associated biological effects at an alpine town impacted by wood burning.

    PubMed

    Corsini, Emanuela; Vecchi, Roberta; Marabini, Laura; Fermo, Paola; Becagli, Silvia; Bernardoni, Vera; Caruso, Donatella; Corbella, Lorenza; Dell'Acqua, Manuela; Galli, Corrado L; Lonati, Giovanni; Ozgen, Senem; Papale, Angela; Signorini, Stefano; Tardivo, Ruggero; Valli, Gianluigi; Marinovich, Marina

    2017-06-01

    This work is part of the TOBICUP (TOxicity of BIomass Combustion generated Ultrafine Particles) project which aimed at providing the composition of ultrafine particles (UFPs, i.e. particles with aerodynamic diameter, d ae , lower than 100nm) emitted by wood combustion and elucidating the related toxicity. Results here reported are from two ambient monitoring campaigns carried out at an alpine town in Northern Italy, where wood burning is largely diffused for domestic heating in winter. Wintertime and summertime UFP samples were analyzed to assess their chemical composition (i.e. elements, ions, total carbon, anhydrosugars, and polycyclic aromatic hydrocarbons) and biological activity. The induction of the pro-inflammatory cytokine interleukin-8 (IL-8) by UFPs was investigated in two human cells lines (A549 and THP-1) and in human peripheral blood leukocytes. In addition, UFP-induced oxidative stress and genotoxicity were investigated in A549 cells. Ambient UFP-related effects were compared to those induced by traffic-emitted particles (DEP) taken from the NIES reference material "vehicle exhaust particulates". Ambient air UFPs induced a dose-related IL-8 release in both A549 and THP-1 cells; the effect was more relevant on summer samples and in general THP-1 cells were more sensitive than A549 cells. On a weight basis our data did not support a higher biological activity of ambient UFPs compared to DEP. The production of IL-8 in the whole blood assay indicated that UFPs reached systemic circulation and activated blood leukocytes. Comet assay and γ-H2AX evaluation showed a significant DNA damage especially in winter UFPs samples compared to control samples. Our study showed that ambient UFPs can evoke a pulmonary inflammatory response by inducing a dose-related IL-8 production and DNA damage, with different responses to UFP samples collected in the summer and winter periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment.

    PubMed

    Kaur, S; Nieuwenhuijsen, M J

    2009-07-01

    Short-term human exposure concentrations to PM2.5, ultrafine particle counts (particle range: 0.02-1 microm), and carbon monoxide (CO) were investigated at and around a street canyon intersection in Central London, UK. During a four week field campaign, groups of four volunteers collected samples at three timings (morning, lunch, and afternoon), along two different routes (a heavily trafficked route and a backstreet route) via five modes of transport (walking, cycling, bus, car, and taxi). This was followed by an investigation into the determinants of exposure using a regression technique which incorporated the site-specific traffic counts, meteorological variables (wind speed and temperature) and the mode of transport used. The analyses explained 9, 62, and 43% of the variability observed in the exposure concentrations to PM2.5, ultrafine particle counts, and CO in this study, respectively. The mode of transport was a statistically significant determinant of personal exposure to PM2.5, ultrafine particle counts, and CO, and for PM2.5 and ultrafine particle counts it was the most important determinant. Traffic count explained little of the variability in the PM2.5 concentrations, but it had a greater influence on ultrafine particle count and CO concentrations. The analyses showed that temperature had a statistically significant impact on ultrafine particle count and CO concentrations. Wind speed also had a statistically significant effect but smaller. The small proportion in variability explained in PM2.5 by the model compared to the largest proportion in ultrafine particle counts and CO may be due to the effect of long-range transboundary sources, whereas for ultrafine particle counts and CO, local traffic is the main source.

  14. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  15. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  16. Coalescence growth mechanism of ultrafine metal particles

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.

    1990-01-01

    Ultrafine particles produced by a gas-evaporation technique show clear-cut crystal habits. The convection of an inert gas makes distinct growth zones in a metal smoke. The coalescence stages of hexagonal plates and multiply twinned particles are observed in the outer zone of a smoke. A model of the coalescence growth of particles with different crystal habits is proposed. Size distributions can be calculated by counting the ratio of the number of collisions by using the effective cross section of collisions and the existence probability of the volume of a particle. This simulation model makes clear the effect on the growth rate of coalescence growth derived from crystal habit.

  17. Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis.

    PubMed

    Song, Sanghwan; Lee, Kiyoung; Lee, Young-Mi; Lee, Jung-Hyun; Lee, Sang Il; Yu, Seung-Do; Paek, Domyung

    2011-04-01

    Although ambient particulate pollutants have been shown to exacerbate existing allergic symptoms of mucous membranes including rhinitis and asthma, the effects on skin such as atopic dermatitis in childhood deserve further study. We investigated the effects of urban particulate pollutants including ultrafine particles on atopic severity in children with atopic dermatitis. We included 41 schoolchildren, 8-12 years old, who had been diagnosed with atopic dermatitis. For 67 consecutive days, all of them measured their symptoms in a diary. To assess exposure, the daily ambient mass concentrations of particulate matter less than 10, 2.5 and 1 μm (PM(10), PM(2.5) and PM(1), respectively) and concentrations of submicron particles (0.01- 1 μm) were measured at a local school. The mean mass concentrations of PM(10), PM(2.5) and PM(1) were 74.0, 57.8 and 50.8 μg/m(3), respectively. The mean concentrations were 41,335/cm(3) ultrafine particles (UFPs) and 8577/cm(3) accumulation mode (0.1-1 μm) particles. Significant associations were found between the concentrations of ultrafine particles and the itchiness symptom in children with atopic dermatitis. An interquartile range (IQR) increase in previous day ultrafine particles concentration (IQR: 28-140/m(3)) was significantly associated with a 3.1% (95% confidence interval, 0.2-6.1) increase in the itch symptom score for children with atopic dermatitis. The results suggested that the concentration of ambient ultrafine particles may exacerbate skin symptoms in children with atopic dermatitis. Copyright © 2011. Published by Elsevier Inc.

  18. Ultrafine particles of Ulmus davidiana var. japonica induce apoptosis of gastric cancer cells via activation of caspase and endoplasmic reticulum stress.

    PubMed

    Ahn, Joungjwa; Lee, Jong Suk; Yang, Kyung Mi

    2014-06-01

    Small-sized particles are more suitable for targeted delivery and are therapeutically more effective than large-sized particles. In this study, we investigated the anticancer effects of ultrafine particles of Ulmus davidiana var. japonica (ufUJ) on human gastric cancer cell lines SNU-1, SNU-216, and SNU-484. ufUJ induced apoptosis by the proteolytic activation of caspase-9, caspase-6, and caspase-3 and cleavage of poly (ADP-ribose) polymerase. The expression levels of the endoplasmic reticulum stress-related protein BiP markedly increased after ufUJ treatment. BiP knockdown decreased ufUJ-induced cell death. ufUJ-induced apoptosis was inhibited by the caspase-3 inhibitor z-DEVD-fmk, caspase-6 inhibitor z-VEID-fmk, and caspase-9 inhibitor z-LEHD-fmk, and by siRNAs against caspases 3, 6, and 9. Gastric cancer cells did not show anchorage-independent growth in the presence of ufUJ. However, cells treated with caspase inhibitors showed an enhanced colony-forming ability. These findings may be helpful in the prevention of gastric cancer and in the development of functional foods.

  19. Lead acetate trihydrate precursor route to synthesize novel ultrafine lead oxide from spent lead acid battery pastes

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Yang, Jiakuan; Zhang, Wei; Zhu, Xinfeng; Hu, Yuchen; Yang, Danni; Yuan, Xiqing; Yu, Wenhao; Dong, Jinxin; Wang, Haifeng; Li, Lei; Vasant Kumar, R.; Liang, Sha

    2014-12-01

    A novel green recycling process is investigated to prepare lead acetate trihydrate precursors and novel ultrafine lead oxide from spent lead acid battery pastes. The route contains the following four processes. (1) The spent lead pastes are desulphurized by (NH4)2CO3. (2) The desulphurized pastes are converted into lead acetate solution by leaching with acetic acid solution and H2O2; (3) The Pb(CH3COO)2·3H2O precursor is crystallized and purified from the lead acetate solution with the addition of glacial acetic acid; (4) The novel ultrafine lead oxide is prepared by the calcination of lead acetate trihydrate precursor in N2 or air at 320-400 °C. Both the lead acetate trihydrate and lead oxide products are characterized by TG-DTA, XRD, and SEM techniques. The calcination products are mainly α-PbO, β-PbO, and a small amount of metallic Pb. The particle size of the calcination products in air is significantly larger than that in N2. Cyclic voltammetry measurements of the novel ultrafine lead oxide products show good reversibility and cycle stability. The assembled batteries using the lead oxide products as cathode active materials show a good cyclic stability in 80 charge/discharge cycles with the depth of discharge (DOD) of 100%.

  20. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphousmore » carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.« less

  1. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  2. [Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].

    PubMed

    Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming

    2012-12-01

    A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.

  3. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-03-18

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.

  4. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  5. [Worker exposure to ultrafine particles during carbon black treatment].

    PubMed

    Mikołajczyk, Urszula; Bujak-Pietrek, Stella; Szadkowska-Stańczyk, Irena

    2015-01-01

    The aim of the project was to assess the exposure of workers to ultrafine particles released during handling and packing of carbon black. The assessment included the results of the measurements performed in a carbon black handling plant before, during, and after work shift. The number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was assayed by a condensation particle counter (CPC). The mass concentration of particles was determined by a DustTrak II DRX aerosol concentration monitor. The surface area concentration of the particles potentially deposited in the alveolar (A) and tracheo-bronchial (TB) regions was estimated by an AeroTrak 9000 nanoparticle monitor. An average mass concentration of particles during the process was 6-fold higher than that before its start, while a 3-fold increase in the average number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was observed during the process. At the same time a 4-fold increase was found in the surface area concentration of the particles potentially deposited in the A and TB regions. During the process of carbon black handling and packing a significantly higher values of each of the analysed parameters, characterizing the exposure to ultrafine particles, were noted. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  7. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    NASA Astrophysics Data System (ADS)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  8. Vascular effects of ultrafine particles in persons with type 2 diabetes

    EPA Science Inventory

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  9. Effects of Ambient Coarse, Fine, and Ultrafine Particles and Their Biological Constituents on Systemic Biomarkers: A Controlled Human Exposure Study

    PubMed Central

    Urch, Bruce; Poon, Raymond; Szyszkowicz, Mieczyslaw; Speck, Mary; Gold, Diane R.; Wheeler, Amanda J.; Scott, James A.; Brook, Jeffrey R.; Thorne, Peter S.; Silverman, Frances S.

    2015-01-01

    Background Ambient coarse, fine, and ultrafine particles have been associated with mortality and morbidity. Few studies have compared how various particle size fractions affect systemic biomarkers. Objectives We examined changes of blood and urinary biomarkers following exposures to three particle sizes. Methods Fifty healthy nonsmoking volunteers, mean age of 28 years, were exposed to coarse (2.5–10 μm; mean, 213 μg/m3) and fine (0.15–2.5 μm; mean, 238 μg/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (< 0.3 μm; mean, 136 μg/m3) and filtered medical air. Exposures lasted 130 min, separated by ≥ 2 weeks. Blood/urine samples were collected preexposure and 1 hr and 21 hr postexposure to determine blood interleukin-6 and C-reactive protein (inflammation), endothelin-1 and vascular endothelial growth factor (VEGF; vascular mediators), and malondialdehyde (lipid peroxidation); as well as urinary VEGF, 8-hydroxy-deoxy-guanosine (DNA oxidation), and malondialdehyde. Mixed-model regressions assessed pre- and postexposure differences. Results One hour postexposure, for every 100-μg/m3 increase, coarse CAP was associated with increased blood VEGF (2.41 pg/mL; 95% CI: 0.41, 4.40) in models adjusted for O3, fine CAP with increased urinary malondialdehyde in single- (0.31 nmol/mg creatinine; 95% CI: 0.02, 0.60) and two-pollutant models, and ultrafine CAP with increased urinary 8-hydroxydeoxyguanosine in single- (0.69 ng/mg creatinine; 95% CI: 0.09, 1.29) and two-pollutant models, lasting < 21 hr. Endotoxin was significantly associated with biomarker changes similar to those found with CAPs. Conclusions Ambient particles with various sizes/constituents may influence systemic biomarkers differently. Endotoxin in ambient particles may contribute to vascular mediator changes and oxidative stress. Citation Liu L, Urch B, Poon R, Szyszkowicz M, Speck M, Gold DR, Wheeler AJ, Scott

  10. [Adverse effects of ultrafine particles on the cardiovascular system and its mechanisms].

    PubMed

    Yi, Tie-ci; Li, Jian-ping

    2014-12-18

    Cardiovascular disease is one of the major threats to human. Air pollution, which , as it become a problem too serious to be ignored in China, is known to be an important risk factor for cardiovascular disease. Among all pollutants, ultrafine particles ( UFPs) , defined as particles with their diameter less than 0. 1 f.Lm, are a specific composition. They are very small in size, large in quantity and surface area, and most important, capable of passing through the air-blood barrier. These unique features of UFPs make them special in their impact on cardiovascular system. Nowadays, the influence of UFPs on the cardiovascular system has become a hot topic. On the one side, studies have shown that UFPs can cause inflammation and oxidative stress in the lung, and then induce systemic inflammation by releasing cytokine and reactive oxygen species into the circulation. On the other side, UFPs themselves can "spillout"into the circulation and interact with their targets. By this way, UFPs directly affect endothelial cells, myocardial cells and the autonomic nervous system, which ultimately result in increased cardiovascular events. We intend to make an overview about the recent progress about the influence of UFPs on human cardiovascular disease and the related mechanisms, and argue for more attention to this issue.

  11. Insights on wood combustion generated proinflammatory ultrafine particles (UFP).

    PubMed

    Corsini, Emanuela; Ozgen, Senem; Papale, Angela; Galbiati, Valentina; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Becagli, Silvia; Caruso, Donatella; Vecchi, Roberta; Galli, Corrado L; Marinovich, Marina

    2017-01-15

    This study aimed to collect, characterize ultrafine particles (UFP) generated from the combustion of wood pellets and logs (softwood and hardwood) and to evaluate their pro-inflammatory effects in THP-1 and A549 cells. Both cell lines responded to UFP producing interleukin-8 (IL-8), with wood log UFP being more active compared to pellet UFP. With the exception of higher effect observed with beech wood log UFP in THP-1, the ability of soft or hard woods to induce IL-8 release was similar. In addition, on weight mass, IL-8 release was similar or lower compared to diesel exhaust particles (DEP), arguing against higher biological activity of smaller size particles. UFP-induced IL-8 could be reduced by SB203580, indicating a role of p38MAPK activation in IL-8 production. The higher activity of beech wood log UFP in THP-1 was not due to higher uptake or endotoxin contamination. Qualitatively different protein adsorption profiles were observed, with less proteins bound to beech UFP compared to conifer UFP or DEP, which may provide higher intracellular availability of bioactive components, i.e. levoglucosan and galactosan, toward which THP-1 were more responsive compared to A549 cells. These results contribute to our understanding of particles emitted by domestic appliances and their biological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Corona-assisted flame synthesis of ultrafine titania particles

    NASA Astrophysics Data System (ADS)

    Vemury, Srinivas; Pratsinis, Sotiris E.

    1995-06-01

    Synthesis of ultrafine titania particles is investigated in a diffusion flame aerosol reactor in the presence of a gaseous electric discharge (corona) created by two needle electrodes. The corona wind flattens the flame and reduces the particle residence time at high temperatures, resulting in smaller primary particle sizes and lower level of crystallinity. Increasing the applied potential from 5 to 8 kV reduces the particle size from 50 to 25 nm and the rutile content from 20 to 8 wt %. Coronas provide a clean and simple technique that facilitates gas phase synthesis of nanosized materials with controlled size and crystallinity.

  13. Ultrafine particle and fiber production in micro-gravity

    NASA Technical Reports Server (NTRS)

    Webb, George W.

    1987-01-01

    The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.

  14. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.

    PubMed

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-08-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter < or = 2.5 microm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30-50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses--a relatively rapid (approximately 30 min), bright but diffuse fluorescence followed by the slower (2-4 hr) appearance of punctate cytoplasmic fluorescence--after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells.

  15. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice.

    PubMed

    Wardoyo, Arinto Y P; Juswono, Unggul P; Noor, Johan A E

    2018-01-01

    Ultrafine particles (UFPs) are one of motorcycle exhaust emissions which can penetrate the lung alveoli and deposit in the kidney. This study was aimed to investigate mice kidney cell physical damage (deformation) due to motorcycle exhaust emission exposures. The motorcycle exhaust emissions were sucked from the muffler with the rate of 33 cm 3 /s and passed through an ultrafine particle filter system before introduced into the mice exposure chamber. The dose concentration of the exhaust emissions was varied by setting the injected time of the 20s, 40s, 60s, 80s, and 100s. The mice were exposed to the smoke in the chamber for 100 s twice a day. The impact of the ultrafine particles on the kidney was observed by identifying the histological image of the kidney cell deformation using a microscope. The exposure was conducted for 10 days. The kidney observations were carried out on day 11. The results showed that there was a significant linear correlation between the total concentration of ultrafine particles deposited in the kidneys and the physical damage percentages. The increased concentrations of ultrafine particles caused larger cell deformation to the kidneys.

  16. Aviation Emissions Impact Ambient Ultrafine Particle Concentrations in the Greater Boston Area.

    PubMed

    Hudda, N; Simon, M C; Zamore, W; Brugge, D; Durant, J L

    2016-08-16

    Ultrafine particles are emitted at high rates by jet aircraft. To determine the possible impacts of aviation activities on ambient ultrafine particle number concentrations (PNCs), we analyzed PNCs measured from 3 months to 3.67 years at three sites within 7.3 km of Logan International Airport (Boston, MA). At sites 4.0 and 7.3 km from the airport, average PNCs were 2- and 1.33-fold higher, respectively, when winds were from the direction of the airport compared to other directions, indicating that aviation impacts on PNC extend many kilometers downwind of Logan airport. Furthermore, PNCs were positively correlated with flight activity after taking meteorology, time of day and week, and traffic volume into account. Also, when winds were from the direction of the airport, PNCs increased with increasing wind speed, suggesting that buoyant aircraft exhaust plumes were the likely source. Concentrations of other pollutants [CO, black carbon (BC), NO, NO2, NOx, SO2, and fine particulate matter (PM2.5)] decreased with increasing wind speed when winds were from the direction of the airport, indicating a different dominant source (likely roadway traffic emissions). Except for oxides of nitrogen, other pollutants were not correlated with flight activity. Our findings point to the need for PNC exposure assessment studies to take aircraft emissions into consideration, particularly in populated areas near airports.

  17. CARDIOVASCULAR EFFECTS OF ULTRAFINE CARBON PARTICLES IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Rationale: Epidemiological evidence suggests that ultrafine particles are associated with adverse cardiovascular effects, specifically in elderly individuals with preexisting cardiovascular disease. The objective of this study was (i) to assess cardiopulmonary responses in adult ...

  18. Combustion-Derived Ultrafine Particles Transport Organic Toxicants to Target Respiratory Cells

    PubMed Central

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-01-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30–50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses—a relatively rapid (~ 30 min), bright but diffuse fluorescence followed by the slower (2–4 hr) appearance of punctate cytoplasmic fluorescence—after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells. PMID:16079063

  19. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  20. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    PubMed

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  1. Apportionment of motor vehicle emissions from fast changes in number concentration and chemical composition of ultrafine particles near a roadway intersection.

    PubMed

    Klems, Joseph P; Pennington, M Ross; Zordan, Christopher A; McFadden, Lauren; Johnston, Murray V

    2011-07-01

    High frequency spikes in ultrafine number concentration near a roadway intersection arise from motor vehicles that accelerate after a red light turns green. The present work describes a method to determine the contribution of motor vehicles to the total ambient ultrafine particle mass by correlating these number concentration spikes with fast changes in ultrafine particle chemical composition measured with the nano aerosol mass spectrometer, NAMS. Measurements were performed at an urban air quality monitoring site in Wilmington, Delaware during the summer and winter of 2009. Motor vehicles were found to contribute 48% of the ultrafine particle mass in the winter measurement period, but only 16% of the ultrafine particle mass in the summer period. Chemical composition profiles and contributions to the ultrafine particle mass of spark vs diesel vehicles were estimated by correlating still camera images, chemical composition and spike contribution at each time interval.. The spark and diesel contributions were roughly equal, but the uncertainty in the split was large. The distribution of emissions from individual vehicles was determined by correlating camera images with the spike contribution to particle number concentration at each time interval. A small percentage of motor vehicles were found to emit a disproportionally large concentration of ultrafine particles, and these high emitters included both spark ignition and diesel vehicles.

  2. UPREGULATION OF TISSUE FACTOR IN HUMAN ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Epidemiology studies have linked the exposure to air pollutant particles with increased cardiovascular mortality and morbidity, but the mechanisms remain unknown. In our laboratory we have tested the hypothesis that the ultrafine fraction of ambient pollutant particles would cau...

  3. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    EPA Science Inventory

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  4. Fine and ultrafine particle emissions from microwave popcorn.

    PubMed

    Zhang, Q; Avalos, J; Zhu, Y

    2014-04-01

    This study characterized fine (PM2.5 ) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre-packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil-lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150-560 and 350-800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil-lined original package with a brown paper bag significantly reduced the peak concentration by 24-87% for total particle number and 36-70% for PM2.5 . A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 10(10) to 8.0 × 10(10) No./min for total particle number and from 134 to 249 μg/min for PM2.5 . © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. MECHANISMS BY WHICH ULTRAFINE, FINE, AND COARSE PARTICLES CAUSE ADVERSE HEALTH EFFECTS

    EPA Science Inventory

    A small number of recent studies suggest that different size particles may cause different health effects. There are clearly differences in the chemical makeup of coarse, fine, and ultrafine particles, and this different chemistry may well drive different health responses. The ...

  6. Processing and Fabrication of High Temperature Oxide Superconductors

    DTIC Science & Technology

    1992-11-30

    I. Gusman and S. M. Johnson, "Cryochemical Method of Preparing Ultrafine Particles of High-Purity Superconducting Oxides," U.S. Patent 4,975,415...Supercon- PREPARING ULTRAFINE PARTICLES OF ducting-MRS EA 11, Apr. 1987, pp. 265-267. HIGH-PURITY SUPERCONDUCTING Materials and Processing Report vol. 2, No... ULTRAFINE PARTICLES OF HIGH-PURITY A. W. Sleight in U.S. Pa&. No. 3,932.315 discloses SUPERCONDUCTING OXIDES superconductive barium-lead-bismuth oxides of

  7. HUMAN CLINICAL STUDIES OF CONCENTRATED AMBIENT ULTRAFINE AND FINE PARTICLES

    EPA Science Inventory

    Confirmation of our hypothesis that exposure to ambient ultrafine and fine particles promotes coagulation and alters cardiac function will have important implications for air pollution regulatory efforts, and will provide new approaches for the prevention of cardiovascular hea...

  8. A Jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles.

    PubMed

    Xia, Mingcan; Harb, Hani; Saffari, Arian; Sioutas, Constantinos; Chatila, Talal A

    2018-04-05

    Exposure to traffic-related particulate matter promotes asthma and allergic diseases. However, the precise cellular and molecular mechanisms by which particulate matter exposure acts to mediate these effects remain unclear. We sought to elucidate the cellular targets and signaling pathways critical for augmentation of allergic airway inflammation induced by ambient ultrafine particles (UFP). We used in vitro cell-culture assays with lung-derived antigen-presenting cells and allergen-specific T cells and in vivo mouse models of allergic airway inflammation with myeloid lineage-specific gene deletions, cellular reconstitution approaches, and antibody inhibition studies. We identified lung alveolar macrophages (AM) as the key cellular target of UFP in promoting airway inflammation. Aryl hydrocarbon receptor-dependent induction of Jagged 1 (Jag1) expression in AM was necessary and sufficient for augmentation of allergic airway inflammation by UFP. UFP promoted T H 2 and T H 17 cell differentiation of allergen-specific T cells in a Jag1- and Notch 4-dependent manner. Treatment of mice with an anti-Notch 4 antibody abrogated exacerbation of allergic airway inflammation induced by UFP. UFP exacerbate allergic airway inflammation by promoting a Jag1-Notch 4-dependent interaction between AM and allergen-specific T cells, leading to augmented T H cell differentiation. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Deposition of ultrafine (nano) particles in the human lung.

    PubMed

    Asgharian, Bahman; Price, Owen T

    2007-10-01

    Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.

  10. Ultrafine particles affect the balance of endogenous pro- and anti-inflammatory lipid mediators in the lung: in-vitro and in-vivo studies

    PubMed Central

    2012-01-01

    Background Exposure to ultrafine particles exerts diverse harmful effects including aggravation of pulmonary diseases like asthma. Recently we demonstrated in a mouse model for allergic airway inflammation that particle-derived oxidative stress plays a crucial role during augmentation of allergen-induced lung inflammation by ultrafine carbon particle (UfCP) inhalation. The mechanisms how particle inhalation might change the inflammatory balance in the lungs, leading to accelerated inflammatory reactions, remain unclear. Lipid mediators, known to be immediately generated in response to tissue injury, might be strong candidates for priming this particle-triggered change of the inflammatory balance. Methods We hypothesize that inhalation of UfCP may disturb the balance of pro- and anti-inflammatory lipid mediators in: i) a model for acute allergic pulmonary inflammation, exposing mice for 24 h before allergen challenge to UfCP inhalation (51.7 nm, 507 μg/m3), and ii) an in-vitro model with primary rat alveolar macrophages (AM) incubated with UfCP (10 μg/1 x 106 cells/ml) for 1 h. Lungs and AM were analysed for pro- and anti-inflammatory lipid mediators, namely leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 15(S)-hydroxy-eicosatetraenoic acid (15(S)-HETE), lipoxin A4 (LXA4) and oxidative stress marker 8-isoprostane by enzyme immunoassays and immunohistochemistry. Results In non-sensitized mice UfCP exposure induced a light non-significant increase of all lipid mediators. Similarly but significantly in rat AM all lipid mediators were induced already within 1 h of UfCP stimulation. Also sensitized and challenge mice exposed to filtered air showed a partially significant increase in all lipid mediators. In sensitized and challenged mice UfCP exposure induced highest significant levels of all lipid mediators in the lungs together with the peak of allergic airway inflammation on day 7 after UfCP inhalation. The levels of LTB4, 8-isoprostane and PGE2 were significantly

  11. Mammalian cell-transforming potential of traffic-linked ultrafine particulate matter PM0.056 in urban roadside atmosphere.

    PubMed

    Verma, Mukesh K; Poojan, Shiv; Sultana, Sarwat; Kumar, Sushil

    2014-09-01

    We examined the clastogenic and cell-transforming potential of ultrafine particulate matter fraction PM0.056 of urban ambient aerosol using mammalian cells. PM1.0, PM0.56 and PM0.056 fractions were sampled from roadside atmosphere of an urban area using the cascade impactor MOUDI-NR-110. The potential to induce cytotoxicity, DNA damage and micronuclei formation was examined at the test concentrations of 3, 6, 12.5, 25, 50 and 100 μg/ml using the 3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the plasmid relaxation assay and the C3H10T1/2 (10T1/2) cells. The cell-transforming potential was investigated in vitro using 10T1/2 cell transformation assay and the soft agar assay. PM1, PM0.56 and PM0.056 fractions were found to be toxic in dose-dependent manner. These induced cytotoxicity at five test concentrations, the ultrafine particle fraction PM0.056 showed greater cytotoxic potential. PM0.056 induced micronucleus formation in 10T1/2 cells. The effect was statistically significant. The DNA-damaging potential was measured in a plasmid relaxation assay. Both fine and ultrafine particle fraction PM0.56 and PM0.056 displayed greater effect as compared to larger PM1 fraction. DNA damage was found to be dependent on particulate matter intrinsic pro-oxidant chemicals. The ability of the ultrafine particle fraction PM0.056 to induce morphological cell transformation was demonstrated by significant and dose-dependent increases in type III focus formation by morphologically transformed cells in culture flasks and their clonal expansion in soft agar. It is concluded that the traffic-linked ultrafine particle fraction PM0.056 in the atmosphere by the roadside of an urban area is clastogenic and able to induce morphological transformation of mammalian cells. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions

  12. C-reactive protein (CRP) and long-term air pollution with a focus on ultrafine particles.

    PubMed

    Pilz, Veronika; Wolf, Kathrin; Breitner, Susanne; Rückerl, Regina; Koenig, Wolfgang; Rathmann, Wolfgang; Cyrys, Josef; Peters, Annette; Schneider, Alexandra

    2018-04-01

    Long-term exposure to ambient air pollution contributes to the global burden of disease by particularly affecting cardiovascular (CV) causes of death. We investigated the association between particle number concentration (PNC), a marker for ultrafine particles, and other air pollutants and high sensitivity C-reactive protein (hs-CRP) as a potential link between air pollution and CV disease. We cross-sectionally analysed data from the second follow up (2013 and 2014) of the German KORA baseline survey which was conducted in 1999-2001. Residential long-term exposure to PNC and various other size fractions of particulate matter (PM 10 with size of <10 μm in aerodynamic diameter, PM coarse 2.5-10 μm or PM 2.5  < 2.5 μm, respectively), soot (PM 2.5 abs: absorbance of PM 2.5 ), nitrogen oxides (nitrogen dioxide NO 2 or oxides NO x , respectively) and ozone (O 3 ) were estimated by land-use regression models. Associations between annual air pollution concentrations and hs-CRP were modeled in 2252 participants using linear regression models adjusted for several confounders. Potential effect-modifiers were examined by interaction terms and two-pollutant models were calculated for pollutants with Spearman inter-correlation <0.70. Single pollutant models for PNC, PM 10 , PM coarse , PM 2.5 abs, NO 2 and NO x showed positive but non-significant associations with hs-CRP. For PNC, an interquartile range (2000 particles/cm 3 ) increase was associated with a 3.6% (95% CI: -0.9%, 8.3%) increase in hs-CRP. A null association was found for PM 2.5 . Effect estimates were higher for women, non-obese participants, for participants without diabetes and without a history of cardiovascular disease whereas ex-smokers showed lower estimates compared to smokers or non-smokers. For O 3 , the dose-response function suggested a non-linear relationship. In two-pollutant models, adjustment for PM 2.5 strengthened the effect estimates for PNC and PM 10 (6.3% increase per 2000 particles

  13. Ultrafine particles in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    PubMed

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. CARDIOVASCULAR RESPONSES TO ULTRAFINE CARBON PARTICLE EXPOSURES IN RATS

    EPA Science Inventory

    TD-02-042 (U. KODAVANTI) GPRA # 10108

    Cardiovascular Responses to Ultrafine Carbon Particle Exposures in Rats.
    V. Harder1, B. Lentner1, A. Ziesenis1, E. Karg1, L. Ruprecht1, U. Kodavanti2, A. Stampfl3, J. Heyder1, H. Schulz1
    GSF- Institute for Inhalation Biology1, I...

  16. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOEpatents

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  17. Ultrafine particles, and PM 2.5 generated from cooking in homes

    NASA Astrophysics Data System (ADS)

    Wan, Man-Pun; Wu, Chi-Li; Sze To, Gin-Nam; Chan, Tsz-Chun; Chao, Christopher Y. H.

    2011-11-01

    Exposure to airborne particulate matters (PM) emitted during cooking can lead to adverse health effects. An understanding of the exposure to PM during cooking at home provides a foundation for the quantification of possible health risks. The concentrations of airborne particles covering the ultrafine (14.6-100 nm) and accumulation mode (100-661.2 nm) size ranges and PM 2.5 (airborne particulate matters smaller than 2.5 μm in diameter) during and after cooking activities were measured in 12 naturally ventilated, non-smoking homes in Hong Kong, covering a total of 33 cooking episodes. The monitored homes all practiced Chinese-style cooking. Cooking elevated the average number concentrations of ultrafine particles (UFPs) and accumulation mode particles (AMPs) by 10 fold from the background level in the living room and by 20-40 fold in the kitchen. PM 2.5 mass concentrations went up to the maximum average of about 160 μg m -3 in the kitchen and about 60 μg m -3 in the living room. Cooking emitted particles dispersed quickly from the kitchen to the living room indicating that the health impact is not limited to occupants in the kitchen. Particle number and mass concentrations remained elevated for 90 min in the kitchen and for 60 min in the living room after cooking. Particles in cooking emissions were mainly in the ultrafine size range in terms of the number count while AMPs contributed to at least 60% of the surface area concentrations in the kitchen and 73% in the living room. This suggests that AMPs could still be a major health concern since the particle surface area concentration is suggested to have a more direct relationship with inhalation toxicity than with number concentration. Particle number concentration (14.6-661.2 nm) in the living room was about 2.7 times that in the outdoor environment, suggesting that better ventilation could help reduce exposure.

  18. SOURCE STRENGTHS OF ULTRAFINE AND FINE PARTICLES DUE TO COOKING WITH A GAS STOVE

    EPA Science Inventory

    Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were us...

  19. Health hazards of ultrafine metal and metal oxide powders

    NASA Technical Reports Server (NTRS)

    Boylen, G. W., Jr.; Chamberlin, R. I.; Viles, F. J.

    1969-01-01

    Study reveals that suggested threshold limit values are from two to fifty times lower than current recommended threshold limit values. Proposed safe limits of exposure to the ultrafine dusts are based on known toxic potential of various materials as determined in particle size ranges.

  20. Soft-X-ray-enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections.

    PubMed

    Kettleson, Eric M; Schriewer, Jill M; Buller, R Mark L; Biswas, Pratim

    2013-02-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.

  1. Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections

    PubMed Central

    Kettleson, Eric M.; Schriewer, Jill M.; Buller, R. Mark L.

    2013-01-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems. PMID:23263945

  2. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, Giorgio, E-mail: buonanno@unicas.it; Stabile, Luca; Avino, Pasquale

    2011-11-15

    Highlights: > Particle size distributions and total concentrations measurement at the stack and before the fabric filter of an incinerator. > Chemical characterization of UFPs in terms of heavy metal concentration through a nuclear method. > Mineralogical investigation through a Transmission Electron Microscope equipped with an Energy Dispersive Spectrometer. > Heavy metal concentrations on UFPs as function of the boiling temperature. > Different mineralogical and morphological composition amongst samples collected before the fabric filter and at the stack. - Abstract: Waste combustion processes are responsible of particles and gaseous emissions. Referring to the particle emission, in the last years specificmore » attention was paid to ultrafine particles (UFPs, diameter less than 0.1 {mu}m), mainly emitted by combustion processes. In fact, recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas. To these purposes, in the present work an experimental campaign aimed to monitor UFPs was carried out at the incineration plant in San Vittore del Lazio (Italy). Particle size distributions and total concentrations were measured both at the stack and before the fabric filter inlet in order to evaluate the removal efficiency of the filter in terms of UFPs. A chemical characterization of UFPs in terms of heavy metal concentration was performed through a nuclear method, i.e. Instrumental Neutron Activation Analysis (INAA), as well as a mineralogical investigation was carried out through a Transmission Electron Microscope (TEM) equipped with an Energy Dispersive Spectrometer (EDS) in order to evaluate shape, crystalline state and mineral compound of sampled particles. Maximum values of 2.7 x 10{sup 7} part

  3. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses.

    PubMed

    Holmén, Britt A; Ayala, Alberto

    2002-12-01

    This paper addresses how current technologies effective for reducing PM emissions of heavy-duty engines may affect the physical characteristics of the particles emitted. Three in-use transit bus configurations were compared in terms of submicron particle size distributions using simultaneous SMPS measurements under two dilution conditions, a minidiluter and the legislated constant volume sampler (CVS). The compressed natural gas (CNG)-fueled and diesel particulate filter (DPF)-equipped diesel configurations are two "green" alternatives to conventional diesel engines. The CNG bus in this study did not have an oxidation catalyst whereas the diesel configurations (with and without particulate filter) employed catalysts. The DPF was a continuously regenerating trap (CRT). Particle size distributions were collected between 6 and 237 nm using 2-minute SMPS scans during idle and 55 mph steady-state cruise operation. Average particle size distributions collected during idle operation of the diesel baseline bus operating on ultralow sulfur fuel showed evidence for nanoparticle growth under CVS dilution conditions relative to the minidiluter. The CRT effectively reduced both accumulation and nuclei mode concentrations by factors of 10-100 except under CVS dilution conditions where nuclei mode concentrations were measured during 55 mph steady-state cruise that exceeded baseline diesel concentrations. The CVS data suggest some variability in trap performance. The CNG bus had accumulation mode concentrations 10-100x lower than the diesel baseline but often displayed large nuclei modes, especially under CVS dilution conditions. Partly this may be explained by the lack of an oxidation catalyst on the CNG, but differences between the minidiluter and CVS size distributions suggest that dilution ratio, temperature-related wall interactions, and differences in tunnel background between the diluters contributed to creating nanoparticle concentrations that sometimes exceeded diesel

  4. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    PubMed

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  5. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors.

    PubMed

    Bliss, Bishop; Tran, Kevin Ivan; Sioutas, Constantinos; Campbell, Arezoo

    2018-02-01

    Exposure to ambient particulate matter (PM) has been linked to adverse pulmonary and cardiovascular health effects. Activation of both inflammatory and oxidative stress pathways has been observed and may be a probable cause of these outcomes. We tested the hypothesis that in human monocytes, PM-induced oxidative and inflammatory responses are interrelated. A human monocytic cell line (THP-1) was used to determine if dose and differentiation state plays a role in the cellular response after a 24hr exposure to particles. Primary human monocytes derived from eight female, non-smoker donors (aged: 21, 24, 27, 28, 48, 49, 54 & 60yo) were used to determine if the age of donors modulates the response. Cells were treated with aqueous suspensions of ambient ultrafine particles (UFP, defined as smaller than 0.2µm in size) or a media control for 24hr. After exposure, reactive oxygen species (ROS) formation was increased irrespective of dose or differentiation state of THP-1 cells. In the primary human monocytes, ROS formation was not significantly changed. The release of the proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), was dose-dependent and greatest in differentiated compared to undifferentiated THP-1 cells exposed to UFP. In the Primary human monocytes, TNF-α secretion was increased irrespective of the age of the donor. Our results suggest that after a 24hr exposure to particles, general reactive oxygen species formation was nonspecific and uncorrelated to cytokine secretion which was consistently enhanced. Cytokines play an important role in orchestrating many immune responses and thus the ability of ambient particles to enhance robust secretion of a proinflammatory cytokine from primary human monocytes, and how this may influence the response to pathogens and alter disease states, needs to be further evaluated. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of Particle Filters and Accelerated Engine Replacement on Heavy-Duty Diesel Vehicle Emissions of Black Carbon, Nitrogen Oxides, and Ultrafine Particles

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.

    2013-12-01

    Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately

  7. Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores.

    PubMed

    Goix, Sylvaine; Lévêque, Thibaut; Xiong, Tian-Tian; Schreck, Eva; Baeza-Squiban, Armelle; Geret, Florence; Uzu, Gaëlle; Austruy, Annabelle; Dumat, Camille

    2014-08-01

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO(4), Sb(2)O(3), and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl2~CdO>CuO>PbO>ZnO>PbSO(4)>Sb(2)O(3). Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb(2)O(3) threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Exposure to diesel exhaust fumes in the context of exposure to ultrafine particles.

    PubMed

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Kamińska, Irena; Cieślak, Małgorzata; Szadkowska-Stańczyk, Irena

    2016-01-01

    Diesel exhaust fumes emission is a significant source of ultrafine particles, the size of which is expressed in nanometers. People occupationally exposed to diesel exhaust particles include mainly workers servicing vehicles with engines of this type. This article presents the analysis of measurements of ultrafine particle concentrations occurring in the bus depot premises during the work connected with everyday technical servicing of buses. The measurements were carried out in the everyday servicing (ES) room of the bus depot before, during and after the work connected with bus servicing. Determinations included: particle concentrations in terms of particle number and particle surface area, and mass concentrations of aerosol. Mean value of number concentration of 10- to 1000-nm particles increased almost 20-fold, from 7600 particles/cm3 before starting bus servicing procedures to 130 000 particles/cm3 during the bus servicing procedures in the room. During the procedures, the mean surface area concentration of particles potentially deposited in the alveolar (A) region was almost 3 times higher than that of the particles depositing in the tracheo-bronchial (TB) region: 356.46 μm2/cm3 vs. 95.97 μm2/cm3, respectively. The mass concentration of the fraction of particulate matter with aerodynamic diameter 0.02-1 μm (PM1) increased 5-fold during the analyzed procedures and was 0.042 mg/m3 before, and 0.298 mg/m3 while the procedures continued. At the time when bus servicing procedures continued in the ES room, a very high increase in all parameters of the analyzed particles was observed. The diesel exhaust particles exhibit a very high degree of fragmentation and, while their number is very high and their surface area is very large, their mass concentration is relatively low. The above findings confirm that ultrafine particles found in diesel exhaust fumes may be harmful to the health of the exposed people, and to their respiratory tract in particular. This work is

  9. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-09-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  10. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  11. Reduced ultrafine particle levels in São Paulo's atmosphere during shifts from gasoline to ethanol use.

    PubMed

    Salvo, Alberto; Brito, Joel; Artaxo, Paulo; Geiger, Franz M

    2017-07-18

    Despite ethanol's penetration into urban transportation, observational evidence quantifying the consequence for the atmospheric particulate burden during actual, not hypothetical, fuel-fleet shifts, has been lacking. Here we analyze aerosol, meteorological, traffic, and consumer behavior data and find, empirically, that ambient number concentrations of 7-100-nm diameter particles rise by one-third during the morning commute when higher ethanol prices induce 2 million drivers in the real-world megacity of São Paulo to substitute to gasoline use (95% confidence intervals: +4,154 to +13,272 cm -3 ). Similarly, concentrations fall when consumers return to ethanol. Changes in larger particle concentrations, including US-regulated PM2.5, are statistically indistinguishable from zero. The prospect of increased biofuel use and mounting evidence on ultrafines' health effects make our result acutely policy relevant, to be weighed against possible ozone increases. The finding motivates further studies in real-world environments. We innovate in using econometrics to quantify a key source of urban ultrafine particles.The biofuel ethanol has been introduced into urban transportation in many countries. Here, by measuring aerosols in São Paulo, the authors find that high ethanol prices coincided with an increase in harmful nanoparticles by a third, as drivers switched from ethanol to cheaper gasoline, showing a benefit of ethanol.

  12. Antibacterial activities of amorphous cefuroxime axetil ultrafine particles prepared by high gravity antisolvent precipitation (HGAP).

    PubMed

    Zhao, Hong; Kang, Xu-liang; Chen, Xuan-li; Wang, Jie-xin; Le, Yuan; Shen, Zhi-gang; Chen, Jian-feng

    2009-01-01

    In vitro and in vivo antibacterial activities on the Staphylococcus aureus and Escherichia coli of the amorphous cefuroxime axetil (CFA) ultrafine particles prepared by HGAP method were investigated in this paper. The conventional sprayed CFA particles were studied as the control group. XRD, SEM, BET tests were performed to investigate the morphology changes of the samples before and after sterile. The in vitro dissolution test, minimal inhibitory concentrations (MIC) and the in vivo experiment on mice were explored. The results demonstrated that: (i) The structure, morphology and amorphous form of the particles could be affected during steam sterile process; (ii) CFA particles with different morphologies showed varied antibacterial activities; and (iii) the in vitro and in vivo antibacterial activities of the ultrafine particles prepared by HGAP is markedly stronger than that of the conventional sprayed amorphous particles.

  13. The formation of ultrafine iodine particles from coastal macroalgae

    NASA Astrophysics Data System (ADS)

    McFiggans, G.; Coe, H.; Allan, J. D.; Plane, J. M. C.; Saunders, R.

    2003-04-01

    We will present the first direct evidence for iodine-containing ultrafine particle (ufp) production from macroalgae in the intertidal zone. Ultrafine particles in the coastal environment have been the subject of intense interest(1,2,3) due to their potentially important contributions to both the direct radiation scattering budget and, by activation to form cloud droplets, to the indirect radiative effect. Based on a variety of laboratory studies, it has recently been proposed that photochemical production of condensable iodine oxides is responsible for their formation(4-9). This work shows that previous studies investigating the mechanisms and kinetics of particle formation due to iodine photochemistry are largely untargeted in that they assume gaseous iodocarbons are the precursor material. Models aiming to simulate coastal new particle formation suffer from the same lack of basic understanding of the formation mechanisms (and indeed precursor identities)(7-9). Following measurements of iodine monoxide(10,11) and iodocarbons(12) in the coastal atmosphere, modelling studies have demonstrated the importance of inorganic iodine in gaseous photochemical cycles(13). Volatile iodocarbons have a number of sources, but intertidal macroalgal beds(14) appear to dominate in the coastal zone(15). However, no direct evidence for a relationship between the macroalgae and iodine-containing particle formation have been reported. During the NERC-funded NAMBLEX field project at Mace Head on the west coast of Ireland in August 2002, we conducted a series of experiments on macroalgae in the intertidal zone. A reactor containing Laminaria digitata cropped from an intertidal rock pool was exposed to an ozonised stream of initially particle-free air. Using a scanning mobility particle sizer (SMPS) to sample the reactor output, it was found that extremely large numbers of particles were formed. By increasing the exposure time to the airstream, the particles were allowed to grow above the

  14. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    PubMed Central

    Möller, Winfried; Brown, David M; Kreyling, Wolfgang G; Stone, Vicki

    2005-01-01

    Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only. PMID:16202162

  15. Urban and rural ultrafine (PM 0.1) particles in the Helsinki area

    NASA Astrophysics Data System (ADS)

    Pakkanen, Tuomo A.; Kerminen, Veli-Matti; Korhonen, Christina H.; Hillamo, Risto E.; Aarnio, Päivi; Koskentalo, Tarja; Maenhaut, Willy

    In June 1996-June 1997 Berner low-pressure impactors were used at an urban and at a rural site in the Helsinki area for sampling ultrafine particles (UFP, PM 0.1). Ten sample pairs, each pair measured simultaneously, were collected in the size range of 0.03-15 μm of particle aerodynamic diameter. More than 40 chemical components were measured. Surprisingly, the average UFP mass concentration was higher at the rural site (520 ng/m 3) than at the urban site (490 ng/m 3). The average chemical composition of UFP was similar at the two sites. The most abundant of the measured components were sulphate (32 and 40 ng/m 3 for the urban and rural sites, respectively), ammonium (22 and 25 ng/m 3), nitrate (4 and 11 ng/m 3) and the Ca 2+ ion (5 and 7 ng/m 3). The most important metals at both sites were Ca, Na, Fe, K and Zn with concentrations between 0.7 and 5 ng/m 3. Of the heavy metals, Ni, V, Cu, and Pb were important with average ultrafine concentrations between about 0.1 and 0.2 ng/m 3. Also the organic anions oxalate (urban 2.1 ng/m 3 and rural 1.9 ng/m 3) and methanesulphonate (1.3 and 1.7 ng/m 3) contributed similarly at both sites. The measured species accounted for only about 15-20% of the total ultrafine mass. The fraction that was not measured includes mainly carbonaceous material and water. It was estimated that the amount of water was about 10% (50 ng/m 3) and that of carbonaceous material about 70% (350 ng/m 3) at both sites. Aitken modes were observed for most components with the average mass mean mode diameters being between about 0.06 and 0.12 μm. The average concentrations in the Aitken mode differed clearly from those in the UFP for several components. The average contribution of ultrafine mass to the fine particle mass (PM 2.5) was about 7% at the urban site and 8.5% at the rural site. At both sites the contribution of ultrafine to fine was especially high for Se, Ag, B, and Ni (10-20%) and at the rural site also for Co (20%), Ca 2+ (16%) and Mo (11

  16. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data

  17. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  18. Redox activity of urban quasi-ultrafine particles from primary and secondary sources

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Ning, Zhi; Cho, Arthur K.; Schauer, James J.; Shafer, Martin M.; Sioutas, Constantinos

    2009-12-01

    To characterize the redox activity profiles of atmospheric aerosols from primary (traffic) and secondary photochemical sources, ambient quasi-ultrafine particles were collected near downtown Los Angeles in two different time periods - morning (6:00-9:00 PDT) and afternoon (11:00-14:00 PDT) in the summer of 2008. Detailed chemical analysis of the collected samples, including water-soluble elements, inorganic ions, organic species and water soluble organic carbon (WSOC) was conducted and redox activity of the samples was measured by two different assays: the dithiothreitol (DTT) and the macrophage reactive oxygen species (ROS) assays. Tracers of secondary photochemical reactions, such as sulfate and organic acids were higher (2.1 ± 0.6 times for sulfate, and up to 3 times for the organic acids) in the afternoon period. WSOC was also elevated by 2.5 ± 0.9 times in the afternoon period due to photo-oxidation of primary particles during atmospheric aging. Redox activity measured by the DTT assay was considerably higher for the samples collected during the afternoon; on the other hand, diurnal trends in the ROS-based activity were not consistent between the morning and afternoon periods. A linear regression between redox activity and various PM chemical constituents showed that the DTT assay was highly correlated with WSOC ( R2 = 0.80), while ROS activity was associated mostly with water soluble transition metals (Vanadium, Nickel and Cadmium; R2 > 0.70). The DTT and ROS assays, which are based on the generation of different oxidizing species by chemical PM constituents, provide important information for elucidating the health risks related to PM exposure from different sources. Thus, both primary and secondary particles possess high redox activity; however, photochemical transformations of primary emissions with atmospheric aging enhance the toxicological potency of primary particles in terms of generating oxidative stress and leading to subsequent damage in cells.

  19. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goix, Sylvaine; UMR 5245 CNRS-INP-UPS, EcoLab; Lévêque, Thibaut

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score duemore » to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.« less

  20. The measurement of ultrafine particles: A pilot study using a portable particle counting technique to measure generated particles during a micromachining process

    NASA Astrophysics Data System (ADS)

    Handy, Rodney G.; Jackson, Mark J.; Robinson, Grant M.; Lafreniere, Michael D.

    2006-04-01

    The accurate measurement of airborne particles in the nanometer range is a challenging task. Because several studies have linked exposures to airborne ultrafine particles to elevated human health risks, the need to assess the concentrations of particles in the workplace that are below 100 nm in diameter is imperative. Several different techniques for monitoring nanoparticles are now available, and others are currently being tested for their merit. Laboratory condensation particle counters (CPC), field-portable CPC, nanometer differential mobility analyzers, electron microscopy, and other novel and experimental approaches to measuring nanoparticles have been recently used in investigations. The first part of this article gives an overview of these techniques, and provides the advantages and disadvantages for each. The second part of this article introduces a portable technique, coupling two particle measurement devices that are capable of characterizing microscale and nanoscale particles in the field environment. Specifically, this pilot study involved the use of a direct-reading CPC and a laser particle counter to measure airborne concentrations of ultrafine particles during a laboratory machining process. The measurements were evaluated in real time, and subsequently, decisions regarding human exposure could be made in an efficient and effective manner. Along with the results from this study, further research efforts in related areas are discussed.

  1. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  2. Thermal degradation events as health hazards - Particle vs gas phase effects, mechanistic studies with particles

    NASA Technical Reports Server (NTRS)

    Oberdoerster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    1992-01-01

    Experiments on animal subjects are performed to demonstrate that significant lung injury can result from the inhalation of ultrafine TiO2 or Al2O3 particles. The methods include intratracheal instillation of particles, long-term inhalation of particles, and in vitro studies of alveolar macrophages (AMs) to study the production of fibroplast growth factors. The ultrafine TiO2 particles are shown to induce more acute inflammatory reactions than larger particles and lead to persistent chronic effects in the AM-mediated clearance function of particles. The ultrafine particles also induce cytokines more readily, and the data generally suggests that the occurrence of such particles in thermal degradation events makes the fumes highly toxic. The exposure to thermal degradation products is therefore a critical concern for manned space missions with potentially degradable plastic products.

  3. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children.

    PubMed

    Evans, Kristin A; Halterman, Jill S; Hopke, Philip K; Fagnano, Maria; Rich, David Q

    2014-02-01

    Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1-7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. We conducted a pilot study using data from 3 to 10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088p/cm(3); OR=1.27; 95% CI=0.90-1.79) and 7-day mean carbon monoxide (interquartile range=0.17ppm; OR=1.63; 95% CI=1.03-2.59). Relative odds

  4. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    PubMed Central

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  5. Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer

    NASA Astrophysics Data System (ADS)

    Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard

    2017-05-01

    Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.

  6. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  7. Fingerprint of Lung Fluid Ultrafine Particles, a Novel Marker of Acute Lung Inflammation.

    PubMed

    Bar-Shai, Amir; Alcalay, Yifat; Sagiv, Adi; Rotem, Michal; Feigelson, Sara W; Alon, Ronen; Fireman, Elizabeth

    2015-01-01

    Acute lung inflammation can be monitored by various biochemical readouts of bronchoalveolar lavage fluid (BALF). To analyze the BALF content of ultrafine particles (UFP; <100 nm) as an inflammatory biomarker in early diagnosis of acute and chronic lung diseases. Mice were exposed to different stress conditions and inflammatory insults (acute lipopolysaccharide inhalation, tobacco smoke and lethal dose of total body irradiation, i.e. 950 rad). After centrifugation, the cellular pellet was assessed while cytokines and ultrafine particles were measured in the soluble fraction of the BALF. A characteristic UFP distribution with a D50 (i.e. the dimension of the 50th UFP percentile) was shared by all tested mouse strains in the BALF of resting lungs. All tested inflammatory insults similarly shifted this size distribution, resulting in a unique UFP fingerprint with an averaged D50 of 58.6 nm, compared with the mean UFP D50 of 23.7 nm for resting BALF (p < 0.0001). This UFP profile was highly reproducible and independent of the intensity or duration of the inflammatory trigger. It returned to baseline after resolution of the inflammation. Neither total body irradiation nor induction of acute cough induced this fingerprint. The UFP fingerprint in the BALF of resting and inflamed lungs can serve as a binary biomarker of healthy and acutely inflamed lungs. This marker can be used as a novel readout for the onset of inflammatory lung diseases and for complete lung recovery from different insults.

  8. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  9. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  10. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice.

    PubMed

    Noël, A; Xiao, R; Perveen, Z; Zaman, H M; Rouse, R L; Paulsen, D B; Penn, A L

    2016-02-24

    Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m(3) in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6

  11. UP-REGULATION OF TISSUE FACTOR IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS AFTER ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Background: Epidemiology studies have linked exposure to pollutant particles to

    increased cardiovascular mortality and morbidity, but the mechanisms remain unknown.

    Objectives: We tested the hypothesis that the ultrafine fraction of ambient pollutant

    particle...

  12. Transition metals in coarse, fine, very fine and ultra-fine particles from an interstate highway transect near Detroit

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Lawton, Jonathan A.; Miller, Roger; Spada, Nicholas; Willis, Robert D.; Kimbrough, Sue

    2016-11-01

    As one component of a study investigating the impact of vehicle emissions on near-road air quality, human exposures, and potential health effects, particles were measured from September 21 to October 30, 2010 on both sides of a major roadway (Interstate-96) in Detroit. Traffic moved freely on this 12 lane freeway with a mean velocity of 69 mi/hr. with little braking and acceleration. The UC Davis DELTA Group rotating drum (DRUM) impactors were used to collect particles in 8 size ranges at sites nominally 100 m south, 10 m north, 100 m north, and 300 m north of the highway. Ultra-fine particles were continuously collected at the 10 m north and 100 m north sites. Samples were analyzed every 3 h for mass (soft beta ray transmission), 42 elements (synchrotron-induced x-ray fluorescence) and optical attenuation (350-800 nm spectroscopy). A three day period of steady southerly winds along the array allowed direct measurement of freeway emission rates for coarse (10 > Dp > 1.0 μm), PM2.5, very fine (0.26 > Dp > 0.09 μm), and ultra-fine (Dp < 0.09 μm) particles. The PM2.5 mass concentrations were modeled using literature emission rates during the south to north wind periods, and averaged 1.6 ± 0.5 μg/m3, versus the measured value of 2.0 ± 0.7 μg/m3. Using European freeway emission rates from 2010, and modeling them at the I-96 site, we would predict roughly 3.1 μg/m3 of PM2.5 particles, corrected from the 4.9 PM10 value by their measured road dust contributions. Using California car and truck emission rates of 1973, this value would have been about 16 μg/m3, corrected down from the 19 μg/m3 PM5.0 using measured roadway dust contributions. This would have included 2.7 μg/m3 of lead, versus the 0.0033 μg/m3 measured. Very fine particles were distributed across the array with a relatively weak falloff versus distance. For the ultra-fine particles, emissions of soot and metals seen in vehicular braking studies correlated with traffic at the 10 m site, but only the

  13. Exposure of Children to Ultrafine Particles in Primary Schools in Portugal.

    PubMed

    Rufo, João Cavaleiro; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Pereira, Cristiana; Teixeira, João Paulo; Pinto, Mariana; Moreira, André; Fernandes, Eduardo de Oliveira

    2015-01-01

    Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.

  14. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells.

    PubMed

    Karlsson, Hanna L; Nilsson, Lennart; Möller, Lennart

    2005-01-01

    Epidemiological studies have shown an association between airborne particles and a wide range of adverse health effects. The mechanisms behind these effects include oxidative stress and inflammation. Even though traffic gives rise to high levels of particles in the urban air, people are exposed to even higher levels in the subway. However, there is a lack of knowledge regarding how particles from different urban subenvironments differ in toxicity. The main aim of the present study was to compare the ability of particles from a subway station and a nearby very busy urban street, respectively, to damage DNA and to induce oxidative stress. Cultured human lung cells (A549) were exposed to particles, DNA damage was analyzed using single cell gel electrophoresis (the comet assay), and the ability to induce oxidative stress was measured as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in lung cell DNA. We found that the subway particles were approximately eight times more genotoxic and four times more likely to cause oxidative stress in the lung cells. When the particles, water extracts from the particles, or particles treated with the metal chelator deferoxamine mesylate were incubated with 2'-deoxyguanosine (dG) and 8-oxodG was analyzed, we found that the oxidative capacity of the subway particles was due to redox active solid metals. Furthermore, analysis of the atomic composition showed that the subway particles to a dominating degree (atomic %) consisted of iron, mainly in the form of magnetite (Fe3O4). By using electron microscopy, the interaction between the particles and the lung cells was shown. The in vitro reactivity of the subway particles in combination with the high particle levels in subway systems give cause of concern due to the high number of people that are exposed to subway particles on a daily basis. To what extent the subway particles cause health effects in humans needs to be further evaluated.

  15. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber.

    PubMed

    Afshari, A; Matson, U; Ekberg, L E

    2005-04-01

    Humans and their activities are known to generate considerable amounts of particulate matter indoors. Some of the activities are cooking, smoking and cleaning. In this study 13 different particle sources were for the first time examined in a 32 m3 full-scale chamber with an air change rate of 1.7 +/- 0.1/h. Two different instruments, a condensation particle counter (CPC) and an optical particle counter (OPC) were used to quantitatively determine ultrafine and fine particle emissions, respectively. The CPC measures particles from 0.02 microm to larger than 1.0 microm. The OPC was adjusted to measure particle concentrations in eight fractions between 0.3 and 1.0 microm. The sources were cigarette side-stream smoke, pure wax candles, scented candles, a vacuum cleaner, an air-freshener spray, a flat iron (with and without steam) on a cotton sheet, electric radiators, an electric stove, a gas stove, and frying meat. The cigarette burning, frying meat, air freshener spray and gas stove showed a particle size distribution that changed over time towards larger particles. In most of the experiments the maximum concentration was reached within a few minutes. Typically, the increase of the particle concentration immediately after activation of the source was more rapid than the decay of the concentration observed after deactivation of the source. The highest observed concentration of ultrafine particles was approximately 241,000 particles/cm3 and originated from the combustion of pure wax candles. The weakest generation of ultrafine particles (1.17 x 10(7) particles per second) was observed when ironing without steam on a cotton sheet, which resulted in a concentration of 550 particles/cm3 in the chamber air. The highest generation rate (1.47 x 10(10) particles per second) was observed in the radiator test. Humans and their activities are known to generate substantial amounts of particulate matter indoors and potentially they can have a strong influence on short-term exposure

  16. Comparison of Mutagenic Activities of Various Ultra-Fine Particles.

    PubMed

    Park, Chang Gyun; Cho, Hyun Ki; Shin, Han Jae; Park, Ki Hong; Lim, Heung Bin

    2018-04-01

    Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.

  17. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: Implication of chemical components and NF-κB signaling

    PubMed Central

    2010-01-01

    Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold), MCP-1 (3.9 ± 0.4-fold), and VCAM (6.5 ± 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 ± 7.5, UFP1 = 106.7 ± 12.5, UFP2 = 137.0 ± 8.0, n = 3, P < 0.05). Adenovirus NF-κB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-κB activities. NF-κB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct

  18. Micromechanics of Ultrafine Particle Adhesion—Contact Models

    NASA Astrophysics Data System (ADS)

    Tomas, Jürgen

    2009-06-01

    Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.

  19. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves

    NASA Astrophysics Data System (ADS)

    Hwang, Hee-Jae; Yook, Se-Jin; Ahn, Kang-Ho

    2011-12-01

    Soot particles emitted from vehicles are one of the major sources of air pollution in urban areas. In this study, five kinds of trees were selected as Pinus densiflora, Taxus cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba, and the removal of submicron (<1 μm) and ultrafine (<0.1 μm) soot particles by tree leaves was quantitatively compared in terms of deposition velocity. Soot particles were produced by a diffusion flame burner using acetylene as the fuel. The sizes of monodisperse soot particles classified with the Differential Mobility Analyzers (DMA) were 30, 55, 90, 150, 250, 400, and 600 nm. A deposition chamber was designed to simulate the omni-directional flow condition around the tree leaves. Deposition velocities onto the needle-leaf trees were higher than those onto the broadleaf trees. P. densiflora showed the greatest deposition velocity, followed by T. cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba. In addition, from the comparison of deposition velocity between two groups of Platanus occidentalis leaves, i.e. one group of leaves with front sides only and the other with back sides only, it was supposed in case of the broadleaf trees that the removal of airborne soot particles of submicron and ultrafine sizes could be affected by the surface roughness of tree leaves, i.e. the veins and other structures on the leaves.

  20. Ultrafine particle concentrations and exposures in seven residences in northern California.

    PubMed

    Bhangar, S; Mullen, N A; Hering, S V; Kreisberg, N M; Nazaroff, W W

    2011-04-01

    Human exposures to ultrafine particles (UFP) are poorly characterized given the potential associated health risks. Residences are important sites of exposure. To characterize residential exposures to UFP in some circumstances and to investigate governing factors, seven single-family houses in California were studied during 2007-2009. During multiday periods, time-resolved particle number concentrations were monitored indoors and outdoors and information was acquired concerning occupancy, source-related activities, and building operation. On average, occupants were home for 70% of their time. The geometric mean time-average residential exposure concentration for 21 study subjects was 14,500 particles per cm(3) (GSD = 1.8; arithmetic mean ± standard deviation = 17,000 ± 10,300 particles per cm(3)). The average contribution to residential exposures from indoor episodic sources was 150% of the contribution from particles of outdoor origin. Unvented natural-gas pilot lights contributed up to 19% to exposure for the two households where present. Episodic indoor source activities, most notably cooking, caused the highest peak exposures and most of the variation in exposure among houses. Owing to the importance of indoor sources and variations in the infiltration factor, residential exposure to UFP cannot be characterized by ambient measurements alone. Indoor and outdoor sources each contribute to residential ultrafine particle (UFP) concentrations and exposures. Under the conditions investigated, peak exposure concentrations indoors were associated with cooking, using candles, or the use of a furnace. Active particle removal systems can mitigate exposure by reducing the persistence of particles indoors. Eliminating the use of unvented gas pilot lights on cooking appliances could also be beneficial. The study results indicate that characterization of human exposure to UFP, an air pollutant of emerging public health concern, cannot be accomplished without a good

  1. Children exposure to indoor ultrafine particles in urban and rural school environments.

    PubMed

    Cavaleiro Rufo, João; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Aguiar, Lívia; Teixeira, João Paulo; Moreira, André; Oliveira Fernandes, Eduardo

    2016-07-01

    Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.

  2. Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva.

    PubMed

    Vriens, Annette; Nawrot, Tim S; Saenen, Nelly D; Provost, Eline B; Kicinski, Michal; Lefebvre, Wouter; Vanpoucke, Charlotte; Van Deun, Jan; De Wever, Olivier; Vrijens, Karen; De Boever, Patrick; Plusquin, Michelle

    2016-07-26

    Ultrafine particles (<100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI:10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva.

  3. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    NASA Technical Reports Server (NTRS)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  4. Thermal degradation events as health hazards: Particle vs gas phase effects, mechanistic studies with particles

    NASA Astrophysics Data System (ADS)

    Oberdörster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO 2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO 2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO 2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO 2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in

  5. Speciation and pulmonary effects of acidic SO x formed on the surface of ultrafine zinc oxide aerosols

    NASA Astrophysics Data System (ADS)

    Amdur, Mary O.; Chen, Lung Chi; Guty, John; Lam, Hua Fuan; Miller, Patricia D.

    Ultrafine metal oxides and SO 2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SO x layer. A ZnO-SO 2-H 2O (mixed 500°C) system generates such particles to provide greatly needed information on both quantitative composition of the surface layer and its effects on the lung. Total S on the particles is related to ZnO concentration and is predominantly S VI. As a surface layer, 20 μg m -3 H 2SO 4 decreases pulmonary diffusing capacity in guinea pigs after four daily 3-h exposures and produces bronchial hypersensitivity following a single 1-h exposure. That 200 μg m -3 H 2SO 4 aerosols of equivalent particle size are needed to produce the same degree of bronchial hypersensitivity emphasizes the importance of the surface layer.

  6. ANALYSIS OF TOTAL RESPIRATORY DEPOSITION OF INHALED ULTRAFINE PARTICLES IN ADULT SUBJECTS AT VARIOUS BREATHING PATTERNS

    EPA Science Inventory

    Ultrafine particles are ubiquitous in the ambient air and their unique physicochemical characteristics may pose a potential health hazard. Accurate lung dose information is essential to assess a potential health risk to exposure to these particles. In the present study, we measur...

  7. Exposure to airborne ultrafine particles from cooking in Portuguese homes.

    PubMed

    Bordado, J C; Gomes, J F; Albuquerque, P C

    2012-10-01

    Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 microm2/cm3 (increased to 72.9 microm2/cm3 due to gas burning) to a maximum of 890.3 microm2/cm3 measured during fish boiling in water and a maximum of 4500 microm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities. The approach of this study considers the determination of alveolar deposited surface area of aerosols generated from cooking activities, namely, typical Portuguese dishes. This type of measurement has not been done so far, in spite of the recognition that cooking activity is a main source of submicrometer and ultrafine aerosols. The results have shown that the levels of generated aerosols surpass the outdoor concentrations in a major European town, which calls for further determinations, contributing to a better assessment of exposure of individuals to domestic activities such as this one.

  8. Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study

    PubMed Central

    2014-01-01

    Background Epidemiological and experimental studies suggest that exposure to ultrafine particles (UFP) might aggravate the allergic inflammation of the lung in asthmatics. Methods We exposed 12 allergic asthmatics in two subgroups in a double-blinded randomized cross-over design, first to freshly generated ultrafine carbon particles (64 μg/m3; 6.1 ± 0.4 × 105 particles/cm3 for 2 h) and then to filtered air or vice versa with a 28-day recovery period in-between. Eighteen hours after each exposure, grass pollen was instilled into a lung lobe via bronchoscopy. Another 24 hours later, inflammatory cells were collected by means of bronchoalveolar lavage (BAL). (Trial registration: NCT00527462) Results For the entire study group, inhalation of UFP by itself had no significant effect on the allergen induced inflammatory response measured with total cell count as compared to exposure with filtered air (p = 0.188). However, the subgroup of subjects, which inhaled UFP during the first exposure, exhibited a significant increase in total BAL cells (p = 0.021), eosinophils (p = 0.031) and monocytes (p = 0.013) after filtered air exposure and subsequent allergen challenge 28 days later. Additionally, the potential of BAL cells to generate oxidant radicals was significantly elevated at that time point. The subgroup that was exposed first to filtered air and 28 days later to UFP did not reveal differences between sessions. Conclusions Our data demonstrate that pre-allergen exposure to UFP had no acute effect on the allergic inflammation. However, the subgroup analysis lead to the speculation that inhaled UFP particles might have a long-term effect on the inflammatory course in asthmatic patients. This should be reconfirmed in further studies with an appropriate study design and sufficient number of subjects. PMID:25204642

  9. [Health effects of ambient ultrafine particles--the project UFIREG].

    PubMed

    Dostál, Miroslav; Pastorková, Anna; Lanzinger, Stefanie; Schneider, Alexandra; Bastian, Susanne; Senghaas, Monika; Erzen, Ziva; Novák, Jiří; Kolodnitska, Teťana; Šrám, Radim J; Peters, Annette

    2015-01-01

    The project "Ultrafine particles--an evidence based contribution to the development of regional and European environmental and health policy" (UFIREG) started in July 2011 and ended in December 2014. It was implemented through the Central Europe Programme and co-financed by the European Regional Development Fund. Five cities in four Central European countries participated in the study: Augsburg (Germany), Chernivtsi (Ukraine), Dresden (Germany), Ljubljana (Slovenia) and Prague (Czech Republic). The aim of the UFIREG project was to improve the knowledge base on possible health effects of ambient ultrafine particles (UFP) and to raise overall awareness of environmental and health care authorities and the population. Epidemiological studies in the frame of the UFIREG project have assessed the short-term effects of UFP on human mortality and morbidity, especially in relation to cardiovascular and respiratory diseases. Official statistics were used to determine the association between air pollution concentration and daily (cause-specific: respiratory and cardiovascular) hospital admissions and mortality. Associations of UFP levels and health effects were analysed for each city by use of Poisson regression models adjusting for a number of confounding factors. Results on morbidity and mortality effects of UFP were heterogeneous across the five European cities investigated. Overall, an increase in respiratory hospital admissions and mortality could be detected for increases in UFP concentrations. Results on cardiovascular health were less conclusive. Further multi-centre studies such as UFIREG are needed preferably investigating several years in order to produce powerful results.

  10. Fine and ultrafine particles in small cities. A case study in the south of Europe.

    PubMed

    Aranda, A; Díaz-de-Mera, Y; Notario, A; Rodríguez, D; Rodríguez, A

    2015-12-01

    Ultrafine particles, PM2.5 and PM10 mass concentration, NO(x), Ozone, SO2, back-trajectories of air masses and meteorological parameters were studied in a small city over the period February, 2013 to June, 2014. The profiles of PM2.5 and PM10 particles are provided, showing averaged values of 16.6 and 21.6 μg m(-3), respectively. The average number concentration of particles in the range of diameters 5.6-560 nm was 1.2 × 10(4)#/ cm(3) with contributions of 42, 51 and 7% from the nucleation, Aitken, and accumulation modes, respectively. The average number concentration of ultrafine particles was 1.1 × 10(4)#/ cm(3). The results obtained are evidence for some differences in the pollution of ambient air by particles in the studied town in comparison to bigger cities. Nucleation events due to emissions from the city were not observed, and traffic emissions amount to a small contribution to PM2.5 and PM10 particles which are mainly due to crustal origin from the arid surroundings and long-range transport from the Sahara Desert.

  11. Performance of school bus retrofit systems: ultrafine particles and other vehicular pollutants.

    PubMed

    Zhang, Qunfang; Zhu, Yifang

    2011-08-01

    This study evaluated the performance of retrofit systems for diesel-powered school buses, a diesel oxidation catalyst (DOC) muffler and a spiracle crankcase filtration system (CFS), regarding ultrafine particles (UFPs) and other air pollutants from tailpipe emissions and inside bus cabins. Tailpipe emissions and in-cabin air pollutant levels were measured before and after retrofitting when the buses were idling and during actual pick-up/drop off routes. Retrofit systems significantly reduced tailpipe emissions with a reduction of 20-94% of total particles with both DOC and CFS installed. However, no unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The AC/fan unit and the surrounding air pollutant concentrations played more important roles for determining the in-cabin air quality of school buses than did retrofit technologies. Although current retrofit systems reduce children's exposure while waiting to board at a bus station, retrofitting by itself does not protect children satisfactorily from in-cabin particle exposures. Turning on the bus engine increased in-cabin UFP levels significantly only when the wind blew from the bus' tailpipe toward its hood with its windows open. This indicated that wind direction and window position are significant factors determining how much self-released tailpipe emissions may penetrate into the bus cabin. The use of an air purifier was found to remove in-cabin particles by up to 50% which might be an alternative short-to-medium term strategy to protect children's health.

  12. Respiratory Health Effects of Ultrafine Particles in Children: A Literature Review

    PubMed Central

    Heinzerling, Amy; Hsu, Joy; Yip, Fuyuen

    2015-01-01

    By convention, airborne particles ≤0.1 μm (100 nm) are defined as ultrafine particles (UFPs). UFPs can comprise a large number of particles in particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5). Despite the documented respiratory health effects of PM2.5 and concerns that UFPs might be more toxic than larger particular matter, the effects of UFPs on the respiratory system are not well-described. Even less is known about the respiratory health effects of UFPs among particularly vulnerable populations including children. We reviewed studies examining respiratory health effects of UFPs in children and identified 12 relevant articles. Most (8/12) studies measured UFP exposure using central ambient monitors, and we found substantial heterogeneity in UFP definitions and study designs. No long-term studies were identified. In single pollutant models, UFPs were associated with incident wheezing, current asthma, lower spirometric values, and asthma-related emergency department visits among children. Also, higher exhaled nitric oxide levels were positively correlated with UFP dose among children with asthma or allergy to house dust mites in 1 study. Multivariate models accounting for potential co-pollutant confounding yielded no statistically significant results. Although evidence for a relationship between UFPs and children's respiratory is accumulating, the literature remains inconclusive. Interpretation of existing data is constrained by study heterogeneity, limited accounting for UFP spatial variation, and lack of significant findings from multi-pollutant models. PMID:26783373

  13. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children.

    PubMed

    Clifford, Sam; Mazaheri, Mandana; Salimi, Farhad; Ezz, Wafaa Nabil; Yeganeh, Bijan; Low-Choy, Samantha; Walker, Katy; Mengersen, Kerrie; Marks, Guy B; Morawska, Lidia

    2018-05-01

    It is known that ultrafine particles (UFP, particles smaller than 0.1 μm) can penetrate deep into the lungs and potentially have adverse health effects. However, epidemiological data on the health effects of UFP is limited. Therefore, our objective was to test the hypothesis that exposure to UFPs is associated with respiratory health status and systemic inflammation among children aged 8 to 11 years. We conducted a cross-sectional study among 655 children (43.3% male) attending 25 primary (elementary) schools in the Brisbane Metropolitan Area, Australia. Ultrafine particle number concentration (PNC) was measured at each school and modelled at homes using Land Use Regression to derive exposure estimates. Health outcomes were respiratory symptoms and diagnoses, measured by parent-completed questionnaire, spirometric lung function, exhaled nitric oxide (FeNO), and serum C reactive protein (CRP). Exposure-response models, adjusted for potential personal and environmental confounders measured at the individual, home and school level, were fitted using Bayesian methods. PNC was not independently associated with respiratory symptoms, asthma diagnosis or spirometric lung function. However, PNC was positively associated with an increase in CRP (1.188-fold change per 1000 UFP cm -3 day/day (95% credible interval 1.077 to 1.299)) and an increase in FeNO among atopic participants (1.054 fold change per 1000 UFP cm -3 day/day (95% CrI 1.005 to 1.106)). UFPs do not affect respiratory health outcomes in children but do have systemic effects, detected here in the form of a positive association with a biomarker for systemic inflammation. This is consistent with the known propensity of UFPs to penetrate deep into the lung and circulatory system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Physico-Chemical Characterization of Fine and Ultrafine Particles Emitted during Diesel Particulate Filter Active Regeneration of Euro5 Diesel Vehicles.

    PubMed

    R'Mili, Badr; Boréave, Antoinette; Meme, Aurelie; Vernoux, Philippe; Leblanc, Mickael; Noël, Ludovic; Raux, Stephane; D'Anna, Barbara

    2018-03-06

    Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.

  15. ¹¹¹Indium-labeled ultrafine carbon particles; a novel aerosol for pulmonary deposition and retention studies.

    PubMed

    Sanchez-Crespo, Alejandro; Klepczynska-Nyström, Anna; Lundin, Anders; Larsson, Britt Marie; Svartengren, Magnus

    2011-02-01

    Continuous environmental or occupational exposure to airborne particulate pollution is believed to be a major hazard for human health. A technique to characterize their deposition and clearance from the lungs is fundamental to understand the underlying mechanisms behind their negative health effects. In this work, we describe a method for production and follow up of ultrafine carbon particles labeled with radioactive ¹¹¹Indium (¹¹¹In). The physicochemical and biological properties of the aerosol are described in terms of particle size and concentration, agglomeration rate, chemical bonding stability, and human lung deposition and retention. Preliminary in vivo data from a healthy human pilot exposure and 1-week follow up of the aerosol is presented. More than 98% of the generated aerosol was labeled with Indium and with particle sizes log normally distributed around 79  nm count median diameter. The aerosol showed good generation reproducibility and chemical stability, about 5% leaching 7 days after generation. During human inhalation, the particles were deposited in the alveolar space, with no central airways involvement. Seven days after exposure, the cumulative activity retention was 95.3%. Activity leaching tests from blood and urine samples confirmed that the observed clearance was explained by unbound activity, suggesting that there was no significant elimination of ultrafine particles. Compared to previously presented methods based on Technegas, ¹¹¹In-labelled ultrafine carbon particles allow for extended follow-up assessments of particulate pollution retention in healthy and diseased lungs.

  16. Personal exposure to ultrafine particles.

    PubMed

    Wallace, Lance; Ott, Wayne

    2011-01-01

    Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25 h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM₂.₅ or PM₁₀, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total).

  17. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response.

    PubMed

    Forest, Valérie; Pailleux, Mélanie; Pourchez, Jérémie; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Sennour, Mohamed; Hochepied, Jean-François; Grosseau, Philippe; Cottier, Michèle

    2014-08-01

    Boehmite (γ-AlOOH) nanoparticles (NPs) are used in a wide range of industrial applications. However, little is known about their potential toxicity. This study aimed at a better understanding of the relationship between the physico-chemical properties of these NPs and their in vitro biological activity. After an extensive physico-chemical characterization, the cytotoxicity, pro-inflammatory response and oxidative stress induced by a bulk industrial powder and its ultrafine fraction were assessed using RAW264.7 macrophages. Although the bulk powder did not trigger a significant biological activity, pro-inflammatory response was highly enhanced with the ultrafine fraction. This observation was confirmed with boehmite NPs synthesized at the laboratory scale, with well-defined and tightly controlled physico-chemical features: toxicity was increased when NPs were dispersed. In conclusion, the agglomerates size of boehmite NPs has a major impact on their toxicity, highlighting the need to study not only raw industrial powders containing NPs but also the ultrafine fractions representative of respirable particles.

  18. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  19. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells.

    PubMed

    Marabini, Laura; Ozgen, Senem; Turacchi, Silvia; Aminti, Stefania; Arnaboldi, Francesca; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Vecchi, Roberta; Becagli, Silvia; Caruso, Donatella; Corrado, Galli L; Marinovich, Marina

    2017-08-01

    In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques. Comet assay and γ-H2AX evaluation show a significant DNA damage after 24h treatment. The interpretation of the results is based on the correlation among toxicological results, chemical-physical properties of UFPs, and the type and efficiency conditions in residential pellet or logwood stoves. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Associations between short-term exposure to particulate matter and ultrafine particles and myocardial infarction in Augsburg, Germany.

    PubMed

    Wolf, Kathrin; Schneider, Alexandra; Breitner, Susanne; Meisinger, Christa; Heier, Margit; Cyrys, Josef; Kuch, Bernhard; von Scheidt, Wolfgang; Peters, Annette

    2015-08-01

    Short-term exposure to increased particulate matter (PM) concentration has been reported to trigger myocardial infarction (MI). However, the association with ultrafine particles remains unclear. We aimed to assess the effects of short-term air pollution and especially ultrafine particles on registry-based MI events and coronary deaths in the area of Augsburg, Germany. Between 1995 and 2009, the MONICA/KORA myocardial infarction registry recorded 15,417 cases of MI and coronary deaths. Concentrations of PM<10μm (PM10), PM<2.5μm (PM2.5), particle number concentration (PNC) as indicator for ultrafine particles, and meteorological parameters were measured in the study region. Quasi-Poisson regression adjusting for time trend, temperature, season, and weekday was used to estimate immediate, delayed and cumulative effects of air pollutants on the occurrence of MI. The daily numbers of total MI, nonfatal and fatal events as well as incident and recurrent events were analysed. We observed a 1.3% risk increase (95%-confidence interval: [-0.9%; 3.6%]) for all events and a 4.4% [-0.4%; 9.4%] risk increase for recurrent events per 24.3μg/m(3) increase in same day PM10 concentrations. Nonfatal events indicated a risk increase of 3.1% [-0.1%; 6.5%] with previous day PM10. No association was seen for PM2.5 which was only available from 1999 on. PNC showed a risk increase of 6.0% [0.6%; 11.7%] for recurrent events per 5529 particles/cm(3) increase in 5-day average PNC. Our results suggested an association between short-term PM10 concentration and numbers of MI, especially for nonfatal and recurrent events. For ultrafine particles, risk increases were notably high for recurrent events. Thus, persons who already suffered a MI seemed to be more susceptible to air pollution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  3. Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy

    NASA Astrophysics Data System (ADS)

    Cattani, Giorgio; Gaeta, Alessandra; di Menno di Bucchianico, Alessandro; de Santis, Antonella; Gaddi, Raffaela; Cusano, Mariacarmela; Ancona, Carla; Badaloni, Chiara; Forastiere, Francesco; Gariazzo, Claudio; Sozzi, Roberto; Inglessis, Marco; Silibello, Camillo; Salvatori, Elisabetta; Manes, Fausto; Cesaroni, Giulia; The Viias Study Group

    2017-05-01

    The health effects of long-term exposure to ultrafine particles (UFPs) are poorly understood. Data on spatial contrasts in ambient ultrafine particles (UFPs) concentrations are needed with fine resolution. This study aimed to assess the spatial variability of total particle number concentrations (PNC, a proxy for UFPs) in the city of Rome, Italy, using land use regression (LUR) models, and the correspondent exposure of population here living. PNC were measured using condensation particle counters at the building facade of 28 homes throughout the city. Three 7-day monitoring periods were carried out during cold, warm and intermediate seasons. Geographic Information System predictor variables, with buffers of varying size, were evaluated to model spatial variations of PNC. A stepwise forward selection procedure was used to develop a "base" linear regression model according to the European Study of Cohorts for Air Pollution Effects project methodology. Other variables were then included in more enhanced models and their capability of improving model performance was evaluated. Four LUR models were developed. Local variation in UFPs in the study area can be largely explained by the ratio of traffic intensity and distance to the nearest major road. The best model (adjusted R2 = 0.71; root mean square error = ±1,572 particles/cm³, leave one out cross validated R2 = 0.68) was achieved by regressing building and street configuration variables against residual from the "base" model, which added 3% more to the total variance explained. Urban green and population density in a 5,000 m buffer around each home were also relevant predictors. The spatial contrast in ambient PNC across the large conurbation of Rome, was successfully assessed. The average exposure of subjects living in the study area was 16,006 particles/cm³ (SD 2165 particles/cm³, range: 11,075-28,632 particles/cm³). A total of 203,886 subjects (16%) lives in Rome within 50 m from a high traffic road and they

  4. Ultrafine particles from power plants: Evaluation of WRF-Chem simulations with airborne measurements

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Junkermann, Wolfgang

    2017-04-01

    Ultrafine particles (UFP, particles with a diameter < 100 nm) are an acknowledged risk to human health and have a potential effect on climate as their presence affects the number concentration of cloud condensation nuclei. Despite of the possibly hazardous effects no regulations exist for this size class of ambient air pollution particles. While ground based continuous measurements of UFP are performed in Germany at several sites (e.g. the German Ultrafine Aerosol Network GUAN, Birmili et al. 2016, doi:10.5194/essd-8-355-2016) information about the vertical distribution of UFP within the atmospheric boundary layer is only scarce. This gap has been closed during the last years by regional-scale airborne surveys for UFP concentrations and size distributions over Germany (Junkermann et al., 2016, doi: 10.3402/tellusb.v68.29250) and Australia (Junkermann and Hacker, 2015, doi: 10.3402/tellusb.v67.25308). Power stations and refineries have been identified as a major source of UFP in Germany with observed particle concentrations > 50000 particles cm-3 downwind of these elevated point sources. Nested WRF-Chem simulations with 2 km grid width for the innermost domain are performed with UFP emission source strengths derived from the measurements in order to study the advection and vertical exchange of UFP from power plants near the Czech and Polish border and their impact on planetary boundary layer particle patterns. The simulations are evaluated against the airborne observations and the downward mixing of the UFP from the elevated sources is studied.

  5. Transcriptional profiling of human bronchial epithelial cell BEAS-2B exposed to diesel and biomass ultrafine particles.

    PubMed

    Grilli, Andrea; Bengalli, Rossella; Longhin, Eleonora; Capasso, Laura; Proverbio, Maria Carla; Forcato, Mattia; Bicciato, Silvio; Gualtieri, Maurizio; Battaglia, Cristina; Camatini, Marina

    2018-04-27

    Emissions from diesel vehicles and biomass burning are the principal sources of primary ultrafine particles (UFP). The exposure to UFP has been associated to cardiovascular and pulmonary diseases, including lung cancer. Although many aspects of the toxicology of ambient particulate matter (PM) have been unraveled, the molecular mechanisms activated in human cells by the exposure to UFP are still poorly understood. Here, we present an RNA-seq time-course experiment (five time point after single dose exposure) used to investigate the differential and temporal changes induced in the gene expression of human bronchial epithelial cells (BEAS-2B) by the exposure to UFP generated from diesel and biomass combustion. A combination of different bioinformatics tools (EdgeR, next-maSigPro and reactome FI app-Cytoscape and prioritization strategies) facilitated the analyses the temporal transcriptional pattern, functional gene set enrichment and gene networks related to cellular response to UFP particles. The bioinformatics analysis of transcriptional data reveals that the two different UFP induce, since the earliest time points, different transcriptional dynamics resulting in the activation of specific genes. The functional enrichment of differentially expressed genes indicates that the exposure to diesel UFP induces the activation of genes involved in TNFα signaling via NF-kB and inflammatory response, and hypoxia. Conversely, the exposure to ultrafine particles from biomass determines less distinct modifications of the gene expression profiles. Diesel UFP exposure induces the secretion of biomarkers associated to inflammation (CCXL2, EPGN, GREM1, IL1A, IL1B, IL6, IL24, EREG, VEGF) and transcription factors (as NFE2L2, MAFF, HES1, FOSL1, TGIF1) relevant for cardiovascular and lung disease. By means of network reconstruction, four genes (STAT3, HIF1a, NFKB1, KRAS) have emerged as major regulators of transcriptional response of bronchial epithelial cells exposed to diesel

  6. Atmospheric ultrafine particles promote vascular calcification via the NF-κB signaling pathway

    PubMed Central

    Li, Rongsong; Mittelstein, David; Kam, Winnie; Pakbin, Payam; Du, Yunfeng; Tintut, Yin; Navab, Mohamad; Sioutas, Constantinos

    2013-01-01

    Exposure to atmospheric fine particulate matter (PM2.5) is a modifiable risk factor of cardiovascular disease. Ultrafine particles (UFP, diameter <0.1 μm), a subfraction of PM2.5, promote vascular oxidative stress and inflammatory responses. Epidemiologic studies suggest that PM exposure promotes vascular calcification. Here, we assessed whether UFP exposure promotes vascular calcification via NF-κB signaling. UFP exposure at 50 μg/ml increased alkaline phosphatase (ALP) activity by 4.4 ± 0.2-fold on day 3 (n = 3, P < 0.001) and matrix calcification by 3.5 ± 1.7-fold on day 10 (n = 4, P < 0.05) in calcifying vascular cells (CVC), a subpopulation of vascular smooth muscle cells with osteoblastic potential. Treatment of CVC with conditioned media derived from UFP-treated macrophages (UFP-CM) also led to an increase in ALP activities and matrix calcification. Furthermore, both UFP and UFP-CM significantly increased NF-κB activity, and cotreatment with an NF-κB inhibitor, JSH23, attenuated both UFP- and UFP-CM-induced ALP activity and calcification. When low-density lipoprotein receptor-null mice were exposed to UFP at 359.5 μg/m3 for 10 wk, NF-κB activation and vascular calcification were detected in the regions of aortic roots compared with control filtered air-exposed mice. These findings suggest that UFP promotes vascular calcification via activating NF-κB signaling. PMID:23242187

  7. Pedestrians in Traffic Environments: Ultrafine Particle Respiratory Doses

    PubMed Central

    Manigrasso, Maurizio; Natale, Claudio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-01-01

    Particulate matter has recently received more attention than other pollutants. PM10 and PM2.5 have been primarily monitored, whereas scientists are focusing their studies on finer granulometric sizes due both to their high number concentration and their high penetration efficiency into the respiratory system. The purpose of this study is to investigate the population exposure to UltraFine Particles (UFP, submicrons in general) in outdoor environments. The particle number doses deposited into the respiratory system have been compared between healthy individuals and persons affected by Chronic Obstructive Pulmonary Disease (COPD). Measurements were performed by means of Dust Track and Nanoscan analyzers. Forty minute walking trails through areas with different traffic densities in downtown Rome have been considered. Furthermore, particle respiratory doses have been estimated for persons waiting at a bus stop, near a traffic light, or along a high-traffic road, as currently occurs in a big city. Large differences have been observed between workdays and weekdays: on workdays, UFP number concentrations are much higher due to the strong contribution of vehicular exhausts. COPD-affected individuals receive greater doses than healthy individuals due to their higher respiratory rate. PMID:28282961

  8. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany.

    PubMed

    Wolf, Kathrin; Cyrys, Josef; Harciníková, Tatiana; Gu, Jianwei; Kusch, Thomas; Hampel, Regina; Schneider, Alexandra; Peters, Annette

    2017-02-01

    Important health relevance has been suggested for ultrafine particles (UFP) and ozone, but studies on long-term effects are scarce, mainly due to the lack of appropriate spatial exposure models. We designed a measurement campaign to develop land use regression (LUR) models to predict the spatial variability focusing on particle number concentration (PNC) as indicator for UFP, ozone and several other air pollutants in the Augsburg region, Southern Germany. Three bi-weekly measurements of PNC, ozone, particulate matter (PM 10 , PM 2.5 ), soot (PM 2.5 abs) and nitrogen oxides (NO x , NO 2 ) were performed at 20 sites in 2014/15. Annual average concentration were calculated and temporally adjusted by measurements from a continuous background station. As geographic predictors we offered several traffic and land use variables, altitude, population and building density. Models were validated using leave-one-out cross-validation. Adjusted model explained variance (R 2 ) was high for PNC and ozone (0.89 and 0.88). Cross-validation adjusted R 2 was slightly lower (0.82 and 0.81) but still indicated a very good fit. LUR models for other pollutants performed well with adjusted R 2 between 0.68 (PM coarse ) and 0.94 (NO 2 ). Contrary to previous studies, ozone showed a moderate correlation with NO 2 (Pearson's r=-0.26). PNC was moderately correlated with ozone and PM 2.5 , but highly correlated with NO x (r=0.91). For PNC and NO x , LUR models comprised similar predictors and future epidemiological analyses evaluating health effects need to consider these similarities. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Exposure to fine and ultrafine particles from secondhand smoke in public places before and after the smoking ban, Italy 2005.

    PubMed

    Valente, Pasquale; Forastiere, Francesco; Bacosi, Antonella; Cattani, Giorgio; Di Carlo, Simonetta; Ferri, Monica; Figà-Talamanca, Irene; Marconi, Achille; Paoletti, Luigi; Perucci, Carlo; Zuccaro, Piergiorgio

    2007-10-01

    A smoking ban in all indoor public places was enforced in Italy on 10 January 2005. We compared indoor air quality before and after the smoking ban by monitoring the indoor concentrations of fine (<2.5 microm diameter, PM2.5) and ultrafine particulate matter (<0.1 microm diameter, UFP). PM2.5 and ultrafine particles were measured in 40 public places (14 bars, six fast food restaurants, eight restaurants, six game rooms, six pubs) in Rome, before and after the introduction of the law banning smoking (after 3 and 12 months). Measurements were taken using real time particle monitors (DustTRAK Mod. 8520 TSI; Ultra-fine Particles Counter-TRAK Model 8525 TSI). The PM2.5 data were scaled using a correction equation derived from a comparison with the reference method (gravimetric measurement). The study was completed by measuring urinary cotinine, and pre-law and post-law enforcement among non-smoking employees at these establishments In the post-law period, PM2.5 decreased significantly from a mean concentration of 119.3 microg/m3 to 38.2 microg/m3 after 3 months (p<0.005), and then to 43.3 microg/m3 a year later (p<0.01). The UFP concentrations also decreased significantly from 76,956 particles/cm3 to 38,079 particles/cm3 (p<0.0001) and then to 51,692 particles/cm3 (p<0.01). Similarly, the concentration of urinary cotinine among non-smoking workers decreased from 17.8 ng/ml to 5.5 ng/ml (p<0.0001) and then to 3.7 ng/ml (p<0.0001). The application of the smoking ban led to a considerable reduction in the exposure to indoor fine and ultrafine particles in hospitality venues, confirmed by a contemporaneous reduction of urinary cotinine.

  10. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1999-01-01

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  11. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra-fine

  12. Attempt to form ultrafine particles with hydride and amorphous structure

    NASA Astrophysics Data System (ADS)

    Yatsuya, S.; Yanagida, A.; Yamauchi, K.; Mihama, K.

    1984-12-01

    TiH 2 particles with fcc structure can be produced in an atmosphere of reduced pressure of H 2, instead of an ordinary inactive gas, by the gas evaporation technique. The habit of the particles grown in the intermediate zone of a smoke is determined by means of electron microscope to be dodecahedral and consists of 8 {111} and 4 {100}. As in the case of Ti particles, the growth mechanism can be considered as follows: The bcc TiH 2 particles initially formed, the high temperature phase, are transformed into fcc structure, the low temperature phase, through the martensite transformation with a slight change of the habit, from the rhombic dodecahedral to simple dodecahedral. For the preparation of amorphous particles, first the quenching rate of a particle, d T/d t was estimated to be more than 10 4°C/s. The quenching rate was estimated from measurements of the temperature gradient around the evaporation source, d T/d x and the rising velocity of the particles along the convection flow of residual gas, d x/d t. The preparation of ultrafine particles of Pd 80Si 20 chosen as a test material was attempted. However, the particles showed crystalline rather than amorphous structure.

  13. Long-term assessment of ultrafine particles on major roadways in Las Vegas, Nevada and Detroit, Michigan

    EPA Science Inventory

    This is a presentation at the National Air Monitoring conference, given at the request of OAQPS partners. The presentation will cover ultrafine particle data collected at three locations - Las Vegas, Detroit, and Research Triangle Park.

  14. The Effects of Vegetation Barriers on Near-road Ultrafine Particle Number and Carbon Monoxide Concentrations

    EPA Science Inventory

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant t...

  15. Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity.

    PubMed

    de Haar, Colin; Kool, Mirjam; Hassing, Ine; Bol, Marianne; Lambrecht, Bart N; Pieters, Raymond

    2008-05-01

    The adjuvant activity of air pollution particles on allergic airway sensitization is well known, but the cellular mechanisms underlying this adjuvant potential are not clear. We sough to study the role of dendritic cells and the costimulatory molecules CD80 and CD86 in the adjuvant activity of ultrafine carbon black particles (CBP). The proliferation of CFSE-labeled DO11.10 CD4 cells was studied after intranasal exposure to particles and ovalbumin (OVA). Next the frequency of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells and their expression of CD80 and CD86 were studied in the peribronchial lymph nodes (PBLNs). The expression of costimulatory molecules was also studied on bone marrow-derived mDCs after exposure to CBPs in vitro, and the importance of costimulation in CBP adjuvant activity was assessed by using CD80/CD86-deficient mice or cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-Ig in vivo. Our data show that CBPs plus OVA caused proliferation of DO11.10 CD4 cells and high levels of cytokine production in the PBLNs. Furthermore, the combined CBP plus OVA exposure increased the number of mDCs and expression of costimulatory molecules in the PBLNs. In addition, CBPs upregulated the expression of CD80/CD86 molecules on dendritic cells in vitro, which are necessary for the particle adjuvant effects in vivo. Together this study shows the importance of dendritic cells and costimulation in particle adjuvant activity. Furthermore, we show for the first time that CBPs can also directly induce maturation of dendritic cells.

  16. [The study of ultra-fine diamond powder used in magnetic head polishing slurry].

    PubMed

    Jin, Hong-Yun; Hou, Shu-En; Pan, Yong; Xiao, Hong-Yan

    2008-05-01

    In the present paper, atomic absorption spectrometry(AAS), inductively-coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and laser Raman spectroscopy (RM) were employed to study the commercial ultra-fine diamond powders prepared by the static pressure-catalyst method and used in magnetic head polishing slurry. The results of AAS and ICP-MS indicated that there were silicon oxide, Fe, Ni, Al and some other metal elements in the ultra-fine powders. XRD patterns showed the peaks of SiO2 at 2theta = 35.6 degrees, 39.4 degrees and 59.7 degrees and diamond sharp peaks in agreement with the results above. Diamond sharp peaks implied perfect crystal and high-hardness beneficial to high-efficiency in polishing. The broader Raman band of graphite at 1 592 cm(-1) observed by Raman analysis proved graphite existing in the diamond powders. In the TEM images, the size of ultra-fine powders was estimated between 0.1 and 0.5 microm distributed in a wide scope, however, sharp edges of the powder particles was useful to polish. The ultra-fine diamond powders have many advantages, for example, high-hardness, well abrasion performance, high-polishing efficiency and being useful in magnetic head polishing slurry. But, the impurities influence the polishing efficiency, shortening its service life and the wide distribution reduces the polishing precision. Consequently, before use the powders must be purified and classified. The purity demands is 99.9% and trace silicon oxide under 0.01% should be reached. The classification demands that the particle distribution should be in a narrower scope, with the mean size of 100 nm and the percentage of particles lager than 200 nm not over 2%.

  17. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge

    PubMed Central

    Miller, Mark R.; Clift, Martin J.D.; Elder, Alison; Mills, Nicholas L.; Møller, Peter; Schins, Roel P.F.; Vogel, Ulla; Kreyling, Wolfgang G.; Alstrup Jensen, Keld; Kuhlbusch, Thomas A.J.; Schwarze, Per E.; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C. Lang; Cassee, Flemming R.

    2017-01-01

    Background: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. Objectives: NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. Methods: A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Discussion: Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. Conclusion: There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424 PMID:29017987

  18. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge.

    PubMed

    Stone, Vicki; Miller, Mark R; Clift, Martin J D; Elder, Alison; Mills, Nicholas L; Møller, Peter; Schins, Roel P F; Vogel, Ulla; Kreyling, Wolfgang G; Alstrup Jensen, Keld; Kuhlbusch, Thomas A J; Schwarze, Per E; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C Lang; Cassee, Flemming R

    2017-10-10

    A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424.

  19. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

    PubMed Central

    Oberdörster, Günter; Oberdörster, Eva; Oberdörster, Jan

    2005-01-01

    Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need

  20. Ultrafine Angelica gigas powder normalizes ovarian hormone levels and has antiosteoporosis properties in ovariectomized rats: particle size effect.

    PubMed

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-10-01

    The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake.

  1. Exposure of patient and dental staff to fine and ultrafine particles from scanning spray.

    PubMed

    Rupf, Stefan; Berger, Hendrik; Buchter, Axel; Harth, Volker; Ong, Mei Fang; Hannig, Matthias

    2015-05-01

    Sprays containing fine and ultrafine particles are commonly used for optical scanning. The aim of this study was to measure the particle exposure of patient and dentist during application of scanning spray and to evaluate measures for its reduction. A lower molar in a dental simulator was powdered with scanning spray. Patient's particle exposure was measured by a condensation particle counter in the nasal region of the simulator without (P) and with rubber dam (PC). Dentist's exposure (D) was measured behind a surgical mask. Particle concentrations were determined 5-fold without suction (NS), using conventional dental suction (CDS), or high volume evacuation (HVE). Mean background air particle concentrations for the patient were 3.3 × 10(3) and 1.3 × 10(3) pt/cm(3) for the dentist. Particle concentrations increased after spraying; mean cumulated additional particle exposures for the patient were the following: P-NS 7.2 × 10(6), P-CDS 4.6 × 10(6), P-HVE 2.4 × 10(4); using rubber dam: PC-NS 3.6 × 10(6), PC-CDS 3.3 × 10(5), PC-HVE 2.2 × 10(5). The particle exposures of the dentist were the following: D-NS 9.7 × 10(5), D-CDS 1.8 × 10(5), D-HVE 1.6 × 10(4). The use of HVE is recommended to reduce exposure of patients and dental staff to fine and ultrafine particles when using scanning sprays. Effective protection is available for staff and patient by means of high volume evacuation. In patients suffering from obstructive lung diseases, the use of scanning sprays should be avoided altogether.

  2. Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research

    PubMed Central

    Sioutas, Constantinos; Delfino, Ralph J.; Singh, Manisha

    2005-01-01

    Epidemiologic research has shown increases in adverse cardiovascular and respiratory outcomes in relation to mass concentrations of particulate matter (PM) ≤2.5 or ≤10 μm in diameter (PM2.5, PM10, respectively). In a companion article [Delfino RJ, Sioutas C, Malik S. 2005. Environ Health Perspect 113(8):934–946]), we discuss epidemiologic evidence pointing to underlying components linked to fossil fuel combustion. The causal components driving the PM associations remain to be identified, but emerging evidence on particle size and chemistry has led to some clues. There is sufficient reason to believe that ultrafine particles < 0.1 μm (UFPs) are important because when compared with larger particles, they have order of magnitudes higher particle number concentration and surface area, and larger concentrations of adsorbed or condensed toxic air pollutants (oxidant gases, organic compounds, transition metals) per unit mass. This is supported by evidence of significantly higher in vitro redox activity by UFPs than by larger PM. Although epidemiologic research is needed, exposure assessment issues for UFPs are complex and need to be considered before undertaking investigations of UFP health effects. These issues include high spatial variability, indoor sources, variable infiltration of UFPs from a variety of outside sources, and meteorologic factors leading to high seasonal variability in concentration and composition, including volatility. To address these issues, investigators need to develop as well as validate the analytic technologies required to characterize the physical/chemical nature of UFPs in various environments. In the present review, we provide a detailed discussion of key characteristics of UFPs, their sources and formation mechanisms, and methodologic approaches to assessing population exposures. PMID:16079062

  3. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  4. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume

    PubMed Central

    Pesch, Beate

    2012-01-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging. PMID:22539559

  5. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  6. Ultrafine Angelica gigas Powder Normalizes Ovarian Hormone Levels and Has Antiosteoporosis Properties in Ovariectomized Rats: Particle Size Effect

    PubMed Central

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-01-01

    Abstract The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake. PMID:23039111

  7. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    PubMed

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  8. Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications.

    PubMed

    Giri, Jyotsnendu; Ray, Amlan; Dasgupta, S; Datta, D; Bahadur, D

    2003-01-01

    Superparamagnetic as well as fine ferrimagnetic particles such as Fe3O4, have been extensively used in magnetic field induced localized hyperthermia for the treatment of cancer. The magnetic materials with Curie temperature (Tc) between 42 and 50 degrees C, with sufficient biocompatibility are the best candidates for effective treatment such that during therapy it acts as in vivo temperature control switch and thus over heating could be avoided. Ultrafine particles of substituted ferrite Co(1-a)Zn(a)Fe2O4 and substituted yttrium-iron garnet Y3Fe(5-x)Al(x)O12 have been prepared through microwave refluxing and citrate-gel route respectively. Single-phase compounds were obtained with particle size below 100 nm. In order to make these magnetic nano particles biocompatible, we have attempted to coat these above said composition by alumina. The coating of alumina was done by hydrolysis method. The coating of hydrous aluminium oxide has been done over the magnetic particles by aging the preformed solid particles in the solution of aluminium sulfate and formamide at elevated temperatures. In vitro study is carried out to verify the innocuousness of coated materials towards cells. In vitro biocompatibility study has been carried out by cell culture method for a period of three days using human WBC cell lines. Study of cell counts and SEM images indicates the cells viability/growth. The in vitro experiments show that the coated materials are biocompatible.

  9. [Catalytic degradation of PCB77 by microwave-induced nano-particle metal oxides in diatomite].

    PubMed

    Huang, Guan-yi; Zhao, Ling; Dong, Yuan-hua

    2009-08-15

    The degradation of PCB77 in diatomite by microwave-induced catalytic oxidation was studied in a sealed vial, including four effects such as microwave (MV) radiating time, addition of different nano-particle metal oxides, concentration and type of acids and dosage of MnO2. The results indicated that PCB77 could be removed significantly by microwave-induced catalytic oxidation. Compared to control reactor (without MV radiation), the removal rate of PCB77 increased by twice after 1 min. In addition, the removal rate of PCB77 under MV radiation was gradually increased with time of radiation and then reached equilibrium after 10 min. The removal rates are about 50% and 20% by addition of H2SO4 and ultrapure water respectively. No significant removal was observed by addition of NaOH and without aqueous media. Moreover, catalytic degradation of PCB77 by microwave-induced nano-particle MnO2 had best removal rate was up to 90% after 1 min, in contrast with addition of nano-particle Fe2O3, CuO and Al2O3. The removal rate raised from 37.0% to 98.5% rapidly with the concentration of H2SO4 ranged from 1 mol/L to 8 mol/L, and H2SO4 mainly played a role of acidification but not oxidation. The addition of 0.01, 0.03 and 0.05 g MnO2 showed the similar result.

  10. Method for the production of ultrafine particles by electrohydrodynamic micromixing

    DOEpatents

    DePaoli, David W.; Hu, Zhong Cheng; Tsouris, Constantinos

    2001-01-01

    The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.

  11. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Hsiao-Chi; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Cheng, Yi-Ling

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposuremore » to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The

  12. Preparation of an Ultrafine Rebamipide Ophthalmic Suspension with High Transparency.

    PubMed

    Matsuda, Takakuni; Hiraoka, Shogo; Urashima, Hiroki; Ogura, Ako; Ishida, Tatsuhiro

    2017-01-01

    A 2% commercially available, milky-white, rebamipide micro-particle suspension is used to treat dry eyes, and it causes short-term blurring of the patient's vision. In the current study, to improve the transparency of a rebamipide suspension, we attempted to obtain a clear rebamipide suspension by transforming the rebamipide particles to an ultrafine state. In the initial few efforts, various rebamipide suspensions were prepared using a neutralizing crystallization method with additives, but the suspensions retained their opaque quality. However, as a consequence of several critical improvements in the neutralizing crystallization methods such as selection of additives for crystallization, process parameters during crystallization, the dispersion method, and dialysis, we obtained an ultrafine rebamipide suspension (2%) that was highly transparent (transmittance at 640 nm: 59%). The particle size and transparency demonstrated the fewest level of changes at 25°C after 3 years, compared to initial levels. During that period, no obvious particle sedimentation was observed. The administration of this ultrafine rebamipide suspension (2%) increased the conjunctival mucin, which was comparable to the commercially available micro-particle suspension (2%). The corneal and conjunctival concentration of rebamipide following ocular administration of the ultrafine suspension was slightly higher than that of the micro-particle suspension. The ultrafine rebamipide suspension (eye-drop formulation) with a highly transparent ophthalmic clearness should improve a patient's QOL by preventing even a shortened period of blurred vision.

  13. Monte Carlo N-Particle Tracking of Ultrafine Particle Flow in Bent Micro-Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Loyalka, Sudarsham K.

    2016-02-16

    The problem of large pressure-differential driven laminar convective-diffusive ultrafine aerosol flow through bent micro-tubes is of interest in several contemporary research areas including; release of contents from pressurized containment vessels, aerosol sampling equipment, advanced scientific instruments, gas-phase micro-heat exchangers, and microfluidic devices. In each of these areas, the predominant problem is the determination of the fraction of particles entering the micro-tube that is deposited within the tube and the fraction that is transmitted through. Due to the extensive parameter restrictions of this class of problems, a Lagrangian particle tracking method making use of the coupling of the analytical stream linemore » solutions of Dean and the simplified Langevin equation is quite a useful tool in problem characterization. This method is a direct analog to the Monte Carlo N-Particle method of particle transport extensively used in nuclear physics and engineering. In this work, 10 nm diameter particles with a density of 1 g/cm3 are tracked within micro-tubes with toroidal bends with pressure differentials ranging between 0.2175 and 0.87 atmospheres. The tubes have radii of 25 microns and 50 microns and the radius of curvature is between 1 m and 0.3183 cm. The carrier gas is helium, and temperatures of 298 K and 558 K are considered. Numerical convergence is considered as a function of time step size and of the number of particles per simulation. Particle transmission rates and deposition patterns within the bent micro-tubes are calculated.« less

  14. Aviation-Related Impacts on Ultrafine Particle Number Concentrations Outside and Inside Residences near an Airport

    PubMed Central

    2018-01-01

    Jet engine exhaust is a significant source of ultrafine particles and aviation-related emissions can adversely impact air quality over large areas surrounding airports. We investigated outdoor and indoor ultrafine particle number concentrations (PNC) from 16 residences located in two study areas in the greater Boston metropolitan area (MA, USA) for evidence of aviation-related impacts. During winds from the direction of Logan International Airport, that is, impact-sector winds, an increase in outdoor and indoor PNC was clearly evident at all seven residences in the Chelsea study area (∼4–5 km from the airport) and three out of nine residences in the Boston study area (∼5–6 km from the airport); the median increase during impact-sector winds compared to other winds was 1.7-fold for both outdoor and indoor PNC. Across all residences during impact-sector and other winds, median outdoor PNC were 19 000 and 10 000 particles/cm3, respectively, and median indoor PNC were 7000 and 4000 particles/cm3, respectively. Overall, our results indicate that aviation-related outdoor PNC infiltrate indoors and result in significantly higher indoor PNC. Our study provides compelling evidence for the impact of aviation-related emissions on residential exposures. Further investigation is warranted because these impacts are not expected to be unique to Logan airport. PMID:29411612

  15. Exposure and toxicity assessment of ultrafine particles from nearby traffic in urban air in seoul, Korea.

    PubMed

    Yang, Ji-Yeon; Kim, Jin-Yong; Jang, Ji-Young; Lee, Gun-Woo; Kim, Soo-Hwan; Shin, Dong-Chun; Lim, Young-Wook

    2013-01-01

    We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with PM10 and PM2.5 inlets. The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to 3.2 µm. The mass concentrations of the metals in fine particles (0.1 to 1.8 µm) accounted for 45.6 to 80.4% of the mass concentrations of metals in PM10. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the PM10 mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. We found that exposure to PM2.5 and PM10 from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the PM2.5 treatment were higher than those with PM10. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.

  16. Multi-metric measurement of personal exposure to ultrafine particles in selected urban microenvironments

    NASA Astrophysics Data System (ADS)

    Spinazzè, Andrea; Cattaneo, Andrea; Scocca, Damiano R.; Bonzini, Matteo; Cavallo, Domenico M.

    2015-06-01

    At the beginning of the study, our hypothesis was that visiting certain microenvironments (MEs) is one of the most important determinants of personal exposure to ultrafine particles (UFP) and that moving between microenvironments significantly differentiates exposure. The overall aim of this study is to perform relevant exposure measurements to extend our knowledge on environmental exposure to UFP in urban environments. The UFP concentrations in different urban MEs were measured by personal monitoring in repeated sampling campaigns along a fixed route. The measurement runs were performed on one-week periods and at different times of day (AM: 08.00-10.30; PM: 16.00-18.30) and repeated in different periods of the year (winter, spring, summer, and autumn) for a total of 56 runs (>110 h). Measurements included on-line monitoring of the UFP particle number concentration (PNC), mean diameter (mean-d) and lung-deposited surface-area (LDSA). Additionally, the PNC, particle mass concentration (PMC) profiles for quasi-ultrafine particles (QUFP; PM0.25) were estimated. A significant seasonal difference in the PNC and PMC, mean diameter and surface area was observed as well as between different times of the day and days of the week. In addition, differences in the UFP concentrations were also found in each ME, and there were specific mean-diameter and surface area concentrations. In general, the mean particle diameters showed an inverse relationship with the PNC, while the LDSA had the opposite behaviour. Appreciable differences among all MEs and monitoring periods were observed; the concentration patterns and variations seemed related to the typical sources of urban pollutants (traffic), proximity to sources and time of day. The highest exposures were observed for walking or biking along high-trafficked routes and while using public buses. The UFP exposure levels in modern cars, equipped with high-efficiency filters and in air recirculation mode, were significantly lower.

  17. Feasibility of granular bed filtration of an aerosol of ultrafine metallic particles including a pressure drop regeneration system.

    PubMed

    Bémer, D; Wingert, L; Morele, Y; Subra, I

    2015-09-01

    A process for filtering an aerosol of ultrafine metallic particles (UFP) has been designed and tested, based on the principle of a multistage granular bed. The filtration system comprised a succession of granular beds of varying thickness composed of glass beads of different diameters. This system allows the pressure drop to be regenerated during filtration ("on-line" mode) using a vibrating probe. Tests monitoring the pressure drop were conducted on a "10-L/min" low airflow rate device and on a "100-m(3)/hr" prototype. Granular bed unclogging is automated on the latter. The cyclic operation and filtration performances are similar to that of filter medium-based industrial dust collectors. Filtration of ultrafine metallic particles generated by different industrial processes such as arc welding, metal cutting, or spraying constitutes a difficult problem due to the high filter clogging properties of these particles and to the high temperatures generally encountered. Granular beds represent an advantageous means of filtering these aerosols with difficult properties.

  18. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    NASA Astrophysics Data System (ADS)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors' knowledge, no other

  19. Ultra Fine Particles from Diesel Engines Induce Vascular Oxidative Stress via JNK Activation

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2011-01-01

    Exposure of particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultra fine particles (UFP) from diesel vehicle engines have been shown to be pro-atherogenic in apoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induced vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intra-cellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2·-) production in human aortic endothelial cells (HAEC). Flow cytometry (FACS) showed that UFP increased MitoSOX Red intensity specific for mitochondrial superoxide. Protein carbonyl content is increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated hemeoxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pre-treatment with antioxidant, N-acetyl cysteine (NAC), significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP stimulated O2·- production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation play an important role in UFP-induced oxidative stress and stress response gene expression. PMID:19154785

  20. Exposure to ultrafine particles in hospitality venues with partial smoking bans.

    PubMed

    Neuberger, Manfred; Moshammer, Hanns; Schietz, Armin

    2013-01-01

    Fine particles in hospitality venues with insufficient smoking bans indicate health risks from passive smoking. In a random sample of Viennese inns (restaurants, cafes, bars, pubs and discotheques) effects of partial smoking bans on indoor air quality were examined by measurement of count, size and chargeable surface of ultrafine particles (UFPs) sized 10-300 nm, simultaneously with mass of particles sized 300-2500 nm (PM2.5). Air samples were taken in 134 rooms unannounced during busy hours and analyzed by a diffusion size classifier and an optical particle counter. Highest number concentrations of particles were found in smoking venues and smoking rooms (median 66,011 pt/cm(3)). Even non-smoking rooms adjacent to smoking rooms were highly contaminated (median 25,973 pt/cm(3)), compared with non-smoking venues (median 7408 pt/cm(3)). The particle number concentration was significantly correlated with the fine particle mass (P<0.001). We conclude that the existing tobacco law in Austria is ineffective to protect customers in non-smoking rooms of hospitality premises. Health protection of non-smoking guests and employees from risky UFP concentration is insufficient, even in rooms labeled "non-smoking". Partial smoking bans with separation of smoking rooms failed.

  1. Fine and ultrafine particle exposures on 73 trips by car to 65 non-smoking restaurants in the San Francisco Bay Area.

    PubMed

    Ott, W R; Wallace, L A; McAteer, J M; Hildemann, L M

    2017-01-01

    A number of studies indicate cooking is a major source of exposure to particulate matter, but few studies have measured indoor air pollution in restaurants, where cooking predominates. We made 73 visits by car to 65 different non-smoking restaurants in 10 Northern California towns while carrying portable continuous monitors that unobtrusively measured ultrafine (down to 10 nm) and fine (PM 2.5 ) particles to characterize indoor restaurant exposures, comparing them with exposures in the car. The mean ultrafine number concentrations in the restaurants on dinner visits averaging 1.4 h was 71 600 particles/cm 3 , or 4.3 times the mean concentration on car trips, and 12.3 times the mean background concentration in the residence. Restaurants that cooked dinner in the same room as the patrons had higher ultrafine concentrations than restaurants with separate kitchens. Restaurant PM 2.5 mass concentrations averaged 36.3 μg/m 3 , ranging from 1.5 to 454 μg/m 3 , but were relatively low on most visits: 43% of the indoor means were below 10 μg/m 3 and 66% were below 20 μg/m 3 , with 5.5% above 100 μg/m 3 . Exposure to fine and ultrafine particles when visiting a restaurant exceeded the exposure a person received while traveling by car to and from the restaurant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. CONTINUOUS MONITORING OF ULTRAFINE, FINE, AND COARSE PARTICLES IN A RESIDENCE FOR 18 MONTHS IN 1999-2000

    EPA Science Inventory

    Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in...

  3. Local lung deposition of ultrafine particles in healthy adults: experimental results and theoretical predictions.

    PubMed

    Sturm, Robert

    2016-11-01

    Ultrafine particles (UFP) of biogenic and anthropogenic origin occur in high numbers in the ambient atmosphere. In addition, aerosols containing ultrafine powders are used for the inhalation therapy of various diseases. All these facts make it necessary to obtain comprehensive knowledge regarding the exact behavior of UFP in the respiratory tract. Theoretical simulations of local UFP deposition are based on previously conducted inhalation experiments, where particles with various sizes (0.04, 0.06, 0.08, and 0.10 µm) were administered to the respiratory tract by application of the aerosol bolus technique. By the sequential change of the lung penetration depth of the inspired bolus, different volumetric lung regions could be generated and particle deposition in these regions could be evaluated. The model presented in this contribution adopted all parameters used in the experiments. Besides the obligatory comparison between practical and theoretical data, also advanced modeling predictions including the effect of varying functional residual capacity (FRC) and respiratory flow rate were conducted. Validation of the UFP deposition model shows that highest deposition fractions occur in those volumetric lung regions corresponding to the small and partly alveolated airways of the tracheobronchial tree. Particle deposition proximal to the trachea is increased in female probands with respect to male subjects. Decrease of both the FRC and the respiratory flow rate results in an enhancement of UFP deposition. The study comes to the conclusion that deposition of UFP taken up via bolus inhalation is influenced by a multitude of factors, among which lung morphometry and breathing conditions play a superior role.

  4. Local lung deposition of ultrafine particles in healthy adults: experimental results and theoretical predictions

    PubMed Central

    2016-01-01

    Background Ultrafine particles (UFP) of biogenic and anthropogenic origin occur in high numbers in the ambient atmosphere. In addition, aerosols containing ultrafine powders are used for the inhalation therapy of various diseases. All these facts make it necessary to obtain comprehensive knowledge regarding the exact behavior of UFP in the respiratory tract. Methods Theoretical simulations of local UFP deposition are based on previously conducted inhalation experiments, where particles with various sizes (0.04, 0.06, 0.08, and 0.10 µm) were administered to the respiratory tract by application of the aerosol bolus technique. By the sequential change of the lung penetration depth of the inspired bolus, different volumetric lung regions could be generated and particle deposition in these regions could be evaluated. The model presented in this contribution adopted all parameters used in the experiments. Besides the obligatory comparison between practical and theoretical data, also advanced modeling predictions including the effect of varying functional residual capacity (FRC) and respiratory flow rate were conducted. Results Validation of the UFP deposition model shows that highest deposition fractions occur in those volumetric lung regions corresponding to the small and partly alveolated airways of the tracheobronchial tree. Particle deposition proximal to the trachea is increased in female probands with respect to male subjects. Decrease of both the FRC and the respiratory flow rate results in an enhancement of UFP deposition. Conclusions The study comes to the conclusion that deposition of UFP taken up via bolus inhalation is influenced by a multitude of factors, among which lung morphometry and breathing conditions play a superior role. PMID:27942511

  5. Exposure for ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats*

    EPA Science Inventory

    Rationale: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the related molecular mechanisms are poorly understood. Previously we studied cardiovascular responses in healthy WKY rats following inhalation exposure to ultrafine carbon particles (UfCPs...

  6. Measurement of Ultrafine Particles and Other Air Pollutants Emitted by Cooking Activities

    PubMed Central

    Zhang, Qunfang; Gangupomu, Roja H.; Ramirez, David; Zhu, Yifang

    2010-01-01

    Cooking emissions show a strong dependence on cooking styles and parameters. Measurements of the average ultrafine particle (UFP) concentration, PM2.5 and black carbon concentrations emitted by cooking activities ranged from 1.34 × 104 to 6.04 × 105 particles/cm3, 10.0 to 230.9 μg/m3 and 0.1 to 0.8 μg/m3, respectively. Lower UFP concentrations were observed during boiling, while higher levels were emitted during frying. The highest UFP concentrations were observed when using a gas stove at high temperature with the kitchen exhaust fan turned off. The observed UFP profiles were similar in the kitchen and in another room, with a lag of approximately 10 min. PMID:20617057

  7. Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses.

    PubMed

    Fonseca, J; Slezakova, K; Morais, S; Pereira, M C

    2014-12-01

    The aim of this work was to assess ultrafine particles (UFP) number concentrations in different microenvironments of Portuguese preschools and to estimate the respective exposure doses of UFP for 3-5-year-old children (in comparison with adults). UFP were sampled both indoors and outdoors in two urban (US1, US2) and one rural (RS1) preschool located in north of Portugal for 31 days. Total levels of indoor UFP were significantly higher at the urban preschools (mean of 1.82 × 10(4) and 1.32 × 10(4) particles/cm(3) at US1 an US2, respectively) than at the rural one (1.15 × 10(4) particles/cm(3) ). Canteens were the indoor microenvironment with the highest UFP (mean of 5.17 × 10(4) , 3.28 × 10(4) , and 4.09 × 10(4) particles/cm(3) at US1, US2, and RS1), whereas the lowest concentrations were observed in classrooms (9.31 × 10(3) , 11.3 × 10(3) , and 7.14 × 10(3) particles/cm(3) at US1, US2, and RS1). Mean indoor/outdoor ratios (I/O) of UFP at three preschools were lower than 1 (0.54-0.93), indicating that outdoor emissions significantly contributed to UFP indoors. Significant correlations were obtained between temperature, wind speed, relative humidity, solar radiation, and ambient UFP number concentrations. The estimated exposure doses were higher in children attending urban preschools; 3-5-year-old children were exposed to 4-6 times higher UFP doses than adults with similar daily schedules. This study reports information on ultrafine particles (UFPs) in various indoor and outdoor microenvironments (canteens, classrooms, gymnasiums, and outdoor) of urban and rural preschools. It identifies the potential sources and origins, characterizes the influence of meteorological parameters on UFP levels, and performs a comparison with other existing international studies. To this date, relatively few studies have investigated UFP in preschools (none in Portugal) and none assessed exposure dose for different age-groups. The obtained findings showed that levels of UFP in

  8. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1998-01-01

    An ultrafine cementitious grout having a particle size 90% of which are less than 6 .mu.m in diameter and an average size of about 2.5 .mu.m or less, and preferably 90% of which are less than 5 .mu.m in diameter and an average size of about 2 .mu.m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4-0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  9. Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings

    PubMed Central

    Campagna, Marcello; Pilia, Ilaria; Marcias, Gabriele; Frattolillo, Andrea; Pili, Sergio; Bernabei, Manuele; d’Aloja, Ernesto; Cocco, Pierluigi; Buonanno, Giorgio

    2017-01-01

    (1) Background: The assessment of airborne particulate matter (PM) and ultrafine particles (UFPs) in battlefield scenarios is a topic of particular concern; (2) Methods: Size distribution, concentration, and chemical composition of UFPs during operative military training activities (target drone launches, ammunition blasting, and inert bomb impact) were investigated using an electric low-pressure impactor (ELPI+) and a scanning electron microscope (SEM), equipped with energy-dispersive spectroscopy (EDS); (3) Results: The median of UFPs, measured for all sampling periods and at variable distance from sources, was between 1.02 × 103 and 3.75 × 103 particles/cm3 for drone launches, between 3.32 × 103 and 15.4 × 103 particles/cm3 for the ammunition blasting and from 7.9 × 103 to 1.3 × 104 particles/cm3 for inert launches. Maximum peak concentrations, during emitting sources starting, were 75.5 × 106 and 17.9 × 106 particles/cm3, respectively. Particles from the drone launches were predominantly composed of silicon (Si), iron (Fe) and calcium (Ca), and those from the blasting campaigns by magnesium (Mg), sulphur (S), aluminum (Al), iron (Fe), barium (Ba) and silicon (Si); (4) Conclusions: The investigated sources produced UFPs with median values lower than other anthropogenic sources, and with a similar chemical composition. PMID:28556812

  10. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    DOE PAGES

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; ...

    2018-01-26

    Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP <50) can be abundant in the troposphere, but are conventionally considered too small to affect cloud formation. However, observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP <50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses andmore » forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.« less

  11. Perspectives on individual to ensembles of ambient fine and ultrafine particles and their sources

    NASA Astrophysics Data System (ADS)

    Bein, Keith James

    By combining Rapid Single-ultrafine-particle Mass Spectrometry (RSMS) measurements during the Pittsburgh Supersite experiment with a large array of concurrent PM, gas and meteorological data, a synthesis of data and analyses is employed to characterize sources, emission trends and dynamics of ambient fine and ultrafine particles. Combinatorial analyses elicit individual to ensemble descriptions of particles, their sources, their changes in state from atmospheric processing and the scales of motion driving their transport and dynamics. Major results include (1) Particle size and composition are strong indicators of sources/source categories and real-time measurements allow source attribution at the single particle and point source level. (2) Single particle source attribution compares well to factor analysis of chemically-speciated bulk phase data and both resulted in similar conclusions but independently revealed new sources. (3) RSMS data can quantitatively estimate composition-resolved, number-based particle size distribution. Comparison to mass-based data yielded new information about physical and chemical properties of particles and instrument sensitivity. (4) Source-specific signatures and real-time monitoring allow passing plumes to be tracked and characterized. (5) The largest of three identified coal combustion sources emits ˜ 2.4 x 10 17 primary submicron particles per second. (6) Long-range transport has a significant impact on the eastern U.S. including specific influences of eight separate wildfire events. (7) Pollutant dynamics in the Pittsburgh summertime air shed, and Northeastern U.S., is characterized by alternating periods of stagnation and cleansing. The eight wildfire events were detected in between seven successive stagnation events. (8) Connections exist between boreal fire activity, southeast subsiding transport of the emissions, alternating periods of stagnation and cleansing at the receptor and the structure and propagation of

  12. A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems

    EPA Science Inventory

    Ultrafine particle (UFP) emissions and particle number size distributions (PNSD) are critical in the evaluation of air pollution impacts on human health and climate change. Residential cookstove emissions are a major source of many air pollutants; however, data on UFP number emis...

  13. STUDY OF ULTRAFINE PARTICLES NEAR A MAJOR HIGHWAY WITH HEAVY-DUTY DIESEL TRAFFIC. (R827352C011)

    EPA Science Inventory

    Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 small mu, Greekm) in an urban environment. Zhu et al. (J. Air Waste Manage. As...

  14. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    PubMed

    Badding, Melissa A; Schwegler-Berry, Diane; Park, Ju-Hyeong; Fix, Natalie R; Cummings, Kristin J; Leonard, Stephen S

    2015-01-01

    Indium-tin oxide (ITO) is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO), and ventilation dust particles activated nuclear factor kappa B (NFκB) within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8) within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue.

  15. Ultrafine particle concentrations in and around idling school buses

    NASA Astrophysics Data System (ADS)

    Zhang, Qunfang; Fischer, Heidi J.; Weiss, Robert E.; Zhu, Yifang

    2013-04-01

    Unnecessary school bus idling increases children's exposure to diesel exhaust, but to what extent children are exposed to ultrafine particles (UFPs, diameter < 100 nm) in and around idling school buses remains unclear. This study employed nine school buses and simulated five scenarios by varying emissions source, wind direction, and window position. The purpose was to investigate the impact of idling on UFP number concentration and PM2.5 mass concentration inside and near school buses. Near the school buses, total particle number concentration increased sharply from engine off to engine on under all scenarios, by a factor of up to 26. The impact of idling on UFP number concentration inside the school buses depended on wind direction and window position: wind direction was important and statistically significant while the effect of window positions depended on wind direction. Under certain scenarios, idling increased in-cabin total particle number concentrations by a factor of up to 5.8, with the significant increase occurring in the size range of 10-30 nm. No significant change of in-cabin PM2.5 mass concentration was observed due to idling, regardless of wind direction and window position, indicating that PM2.5 is not a good indicator for primary diesel exhaust particle exposure. The deposition rates based on total particle number concentration inside school bus cabins varied between 1.5 and 5.0 h-1 across nine tested buses under natural convection conditions, lower than those of passenger cars but higher than those of indoor environments.

  16. Ultrafine particle emissions from essential-oil-based mosquito repellent products.

    PubMed

    Liu, J; Fung, D; Jiang, J; Zhu, Y

    2014-06-01

    Ultrafine particle (UFP) emissions from three essential-oil-based mosquito repellent products (lemon eucalyptus (LE), natural insects (NI), and bite shield (BS)) were tested in a 386 l chamber at a high air exchange rate of 24/h with filtered laboratory air. Total particle number concentration and size distribution were monitored by a condensation particle counter and a scanning mobility particle sizer, respectively. UFPs were emitted from all three products under indoor relevant ozone concentrations (~ 17 ppb). LE showed a nucleation burst followed by a relatively stable and continuous emission while the other two products (NI and BS) showed episodic emissions. The estimated maximum particle emission rate varied from 5.4 × 10(9) to 1.2 × 10(12) particles/min and was directly related to the dose of mosquito repellent used. These rates are comparable to those due to other indoor activities such as cooking and printing. The emission duration for LE lasted for 8-78 min depending on the dose applied while the emission duration for NI and BS lasted for 2-3 h. Certain essential-oil-based mosquito repellents can produce high concentrations of UFPs when applied, even at low ozone levels. Household and personal care products that contain essential oil may need to be tested at indoor relevant ozone levels to determine their potential to increase personal UFP exposures. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution.

    PubMed

    Chen, Rui; Hu, Bin; Liu, Ying; Xu, Jianxun; Yang, Guosheng; Xu, Diandou; Chen, Chunying

    2016-12-01

    Air pollution constitutes the major threat to human health, whereas their adverse impacts and underlying mechanisms of different particular matters are not clearly defined. Ultrafine particles (UFPs) are high related to the anthropogenic emission sources, i.e. combustion engines and power plants. Their composition, source, typical characters, oxidative effects, potential exposure routes and health risks were thoroughly reviewed. UFPs play a major role in adverse impacts on human health and require further investigations in future toxicological research of air pollution. Unlike PM2.5, UFPs may have much more impacts on human health considering loads of evidences emerging from particulate matters and nanotoxicology research fields. The knowledge of nanotoxicology contributes to the understanding of toxicity mechanisms of airborne UFPs in air pollution. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants

    EPA Science Inventory

    Ultrafine particles (UFPs, diameter <100 run) emitted by traffic are a potential direct health threat to nearby populations and may additionally act as a tracer for co-emitted pollutants. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and d...

  19. Ultrafine cementitious grout

    DOEpatents

    Ahrens, E.H.

    1998-07-07

    An ultrafine cementitious grout is described having a particle size 90% of which are less than 6 {micro}m in diameter and an average size of about 2.5 {micro}m or less, and preferably 90% of which are less than 5 {micro}m in diameter and an average size of about 2 {micro}m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4--0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {micro}m in width. 4 figs.

  20. Synthesis of zinc ultrafine powders via the Guen–Miller flow-levitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jigatch, A. N., E-mail: jan@chph.ras.ru; Leipunskii, I. O.; Kuskov, M. L.

    2015-12-15

    Zinc ultrafine powders (UFPs) with the average particle size of 0.175 to 1.24 μm are synthesized via the flow-levitation method. The peculiarities of the formation of zinc UFPs are considered with respect to the carrier gas properties (heat capacity, thermal conductivity, and diffusion coefficient), as well as the gas flow parameters (pressure and flow rate). The obtained zinc particles are studied via scanning electron microscopy and X-ray diffraction. The factors determining the crystal structure of zinc particles and their size distribution are discussed as well. The data on oxidation of zinc stored in unsealed containers under normal conditions are alsomore » presented.« less

  1. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The

  2. Ultrafine and respirable particle exposure during vehicle fire suppression

    PubMed Central

    Fent, Kenneth W.

    2015-01-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction

  3. Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings.

    PubMed

    Campagna, Marcello; Pilia, Ilaria; Marcias, Gabriele; Frattolillo, Andrea; Pili, Sergio; Bernabei, Manuele; d'Aloja, Ernesto; Cocco, Pierluigi; Buonanno, Giorgio

    2017-05-30

    (1) Background: The assessment of airborne particulate matter (PM) and ultrafine particles (UFPs) in battlefield scenarios is a topic of particular concern; (2) Methods: Size distribution, concentration, and chemical composition of UFPs during operative military training activities (target drone launches, ammunition blasting, and inert bomb impact) were investigated using an electric low-pressure impactor (ELPI+) and a scanning electron microscope (SEM), equipped with energy-dispersive spectroscopy (EDS); (3) Results: The median of UFPs, measured for all sampling periods and at variable distance from sources, was between 1.02 × 10³ and 3.75 × 10³ particles/cm³ for drone launches, between 3.32 × 10³ and 15.4 × 10³ particles/cm³ for the ammunition blasting and from 7.9 × 10³ to 1.3 × 10⁴ particles/cm³ for inert launches. Maximum peak concentrations, during emitting sources starting, were 75.5 × 10⁶ and 17.9 × 10⁶ particles/cm³, respectively. Particles from the drone launches were predominantly composed of silicon (Si), iron (Fe) and calcium (Ca), and those from the blasting campaigns by magnesium (Mg), sulphur (S), aluminum (Al), iron (Fe), barium (Ba) and silicon (Si); (4) Conclusions: The investigated sources produced UFPs with median values lower than other anthropogenic sources, and with a similar chemical composition.

  4. A modified Brownian force for ultrafine particle penetration through building crack modeling

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhao, Bin

    2017-12-01

    Combustion processes related to industry, traffic, agriculture, and waste treatment and disposal increase the amount of outdoor ultrafine particles (UFPs), which have adverse effects on human health. Given that people spend the majority of their time indoors, it is critical to understand the penetration of outdoor UFPs through building cracks in order to estimate human exposure to outdoor-originated UFPs. Lagrangian tracking is an efficient approach for modeling particle penetration. However, the Brownian motion for Lagrangian tracking in ANSYS Fluent®, a widely used software for particle dispersion modeling, is not able to model UFP dispersion accurately. In this study, we modified the Brownian force by rewriting the Brownian diffusion coefficient and particle integration time step with a user-defined function in ANSYS Fluent® to model particle penetration through building cracks. The results obtained using the modified model agree much better with the experimental results, with the averaged relative error less than 14% for the smooth crack cases and 21% for the rough crack case. We expect the modified Brownian force model proposed herein to be applied for UFP dispersion modeling in more indoor air quality studies.

  5. Gene expression profile in circulating mononuclear cells after exposure to ultrafine carbon particles

    PubMed Central

    Huang, Yuh-Chin T.; Schmitt, Michael; Yang, Zhonghui; Que, Loretta G.; Stewart, Judith C.; Frampton, Mark W.; Devlin, Robert B.

    2013-01-01

    Context Exposure to particulate matter (PM) is associated with systemic health effects, but the cellular and molecular mechanisms are unclear. Objective We hypothesized that, if circulating mononuclear cells play an important role in mediating systemic effects of PM, they would show gene expression changes following exposure. Materials and methods Peripheral blood samples were collected before (0 hour) and at 24 hours after exposure from healthy subjects who participated in previous controlled exposures to ultrafine carbon particles (UFP, 50 μg/m3) or filtered air (FA)(n = 3 each). RNA from mononuclear cell fraction (>85% lymphocytes) was extracted, amplified and hybridized to Affymetrix HU133 plus 2 microarrays. Results We identified 1713 genes (UFP 24 hours vs. FA 0 and 24 hours, p < 0.05, FDR 0.01). The top 10 upregulated genes (fold) were CDKN1C (1.86), ZNF12 (1.83), SRGAP2 (1.82), FYB (1.79), LSM14B (1.79), CD93 (1.76), NCSTN (1.70), DUSP6 (1.69), TACC1 (1.68) and H2AFY (1.68). Upregulation of CDKN1C and SRGAP2 was confirmed by RT-PCR using samples from additional 5 subjects exposed to FA and UFP. We entered 1020 genes with a ratio >1.1 or <−1.1 into the Ingenuity Pathway Analysis and identified many canonical pathways related to inflammation, tissue growth and host defense against environmental insults, including IGF-1 signaling, insulin receptor signaling and NRF2-mediated oxidative stress response pathway. Discussion and conclusions Two-hour exposures to UFP produced gene expression changes in circulating mononuclear cells. These gene changes provide biologically plausible links to PM-induced systemic health effects, especially those in the cardiovascular system and glucose metabolism. PMID:20507211

  6. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.
    R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  7. INDOOR AND OUTDOOR ULTRA-FINE PARTICLE COUNTS IN A 1999 TWO-SEASON FRESNO, CALIFORNIA, USA ACUTE CARDIAC PANEL STUDY

    EPA Science Inventory

    Indoor and Outdoor Ultrafine Particle Counts in a 1999 Two-Season Fresno, California, USA Acute Cardiac Panel Study.

    John Creason, Debra Walsh, Lucas Neas, US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects R...

  8. Continuous Near-Road Monitoring of Ultrafine Particles from 2010-2015 in Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Su, Y.; Sofowote, U.; Debosz, J.; Munoz, T.

    2015-12-01

    Ultrafine particles (UFPs) have an aerodynamic diameter less than 100 nanometre (nm). Their large surface areas per unit mass favor absorption of toxic chemicals in air. UFPs could penetrate deep into the respiratory or cardiovascular systems and pose adverse health effects. Recent studies showed the association between children exposure to UFPs and their systolic blood pressure. In urban environments, primary sources of UFPs are from road traffic emissions and account for most of the total particle numbers. Controls on UPFs rely on better understanding of their emission sources and environmental behaviour. Ontario Ministry of the Environment and Climate Change have monitored UFPs since 2010 at two near-road stations in Toronto by using TSI 3031 UFP monitors. One station is located in mixed residential and industrial area and 16 meters from a major road with over 20,000 vehicles per day. The other station is surrounded by mixed residential and commercial buildings and 20 meters from a major road with over 20,000 vehicles per day. UFPs concentrations were monitored using six size channels: 20-30nm, 30-50nm, 50-70nm, 70-100nm, 100-200nm, and 200-450nm. The TSI 3031 monitors generally performed well for long-term UFP monitoring. Multi-year measurements of UFPs at the two stations show no apparent inter-annual variation or seasonality. Smaller particles (i.e., 20-50 nm) were found to be composed of over 50% of the measured particles. The observations are generally consistent with the theoretical understanding of particle nuclei mode and accumulation mode. When air mass originated from road traffic, UFPs were elevated in morning traffic hours and to a less extent in the late afternoon. The elevated UFPs number concentrations coincided with other traffic-related air pollutants like nitrogen oxides and black carbon. Moreover, higher number concentrations were found on weekdays than weekends. The observations suggest that UFPs are mostly from vehicle emissions.

  9. Real-time gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel.

    PubMed

    Jayaram, Varalakshmi; Agrawal, Harshit; Welch, William A; Miller, J Wayne; Cocker, David R

    2011-03-15

    Emissions from harbor-craft significantly affect air quality in populated regions near ports and inland waterways. This research measured regulated and unregulated emissions from an in-use EPA Tier 2 marine propulsion engine on a ferry operating in a bay following standard methods. A special effort was made to monitor continuously both the total Particulate Mass (PM) mass emissions and the real-time Particle Size Distribution (PSD). The engine was operated following the loads in ISO 8178-4 E3 cycle for comparison with the certification standards and across biodiesel blends. Real-time measurements were also made during a typical cruise in the bay. Results showed the in-use nitrogen oxide (NOx) and PM(2.5) emission factors were within the not to exceed standard for Tier 2 marine engines. Comparing across fuels we observed the following: a) no statistically significant change in NO(x) emissions with biodiesel blends (B20, B50); b) ∼ 16% and ∼ 25% reduction of PM(2.5) mass emissions with B20 and B50 respectively; c) a larger organic carbon (OC) to elemental carbon (EC) ratio and organic mass (OM) to OC ratio with B50 compared to B20 and B0; d) a significant number of ultrafine nuclei and a smaller mass mean diameter with increasing blend-levels of biodiesel. The real-time monitoring of gaseous and particulate emissions during a typical cruise in the San Francisco Bay (in-use cycle) revealed important effects of ocean/bay currents on emissions: NO(x) and CO(2) increased 3-fold; PM(2.5) mass increased 6-fold; and ultrafine particles disappeared due to the effect of bay currents. This finding has implications on the use of certification values instead of actual in-use emission values when developing inventories. Emission factors for some volatile organic compounds (VOCs), carbonyls, and poly aromatic hydrocarbons (PAHs) are reported as supplemental data.

  10. Technique for the control of the crystal habit of ultrafine particles in the gas-evaporation technique

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.; Mihama, K.

    1986-12-01

    Magnesium ultrafine particles have clear-cut habits such as hexagonal plates and polyhedra. When magnesium is evaporated downwards using a tube with holes at the bottom, hexagonal plates are formed exclusively throughout the smoke. Their size is controlled by selecting an inert gas. The growth process of an hexagonal plate can be considered to be a coalescent growth of other hexagonal plates.

  11. Long-term study of urban ultrafine particles and other pollutants

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Chalupa, David C.; Utell, Mark J.

    2011-12-01

    Continuous measurements of number size distributions of ultrafine particles (UFPs) and other pollutants (PM 2.5, SO 2, CO and O 3) have been performed in Rochester, New York since late November 2001. The 2002-2009 average number concentrations of particles in three size ranges (10-50 nm, 50-100 nm and 100-500 nm) were 4730 cm -3, 1838 cm -3, and 1073 cm -3, respectively. The lowest annual average number concentrations of particles in 10-50 nm and 50-100 nm were observed during 2008-2009. The lowest monthly average number concentration of 10-50 nm particles was observed in July and the highest in February. The daily patterns of 10-50 nm particles had two peaks at early morning (7-8 AM) and early afternoon (2 PM). There was a distinct declining trend in the peak number concentrations from 2002-2005 to 2008-2009. Large reductions in SO 2 concentrations associated with northerly winds between 2007 and 2009 were observed. The most significant annual decrease in the frequency of morning particle nucleation was observed from 2005 to 2007. The monthly variation in the morning nucleation events showed a close correlation with number concentrations of 10-50 nm particles ( r = 0.89). The frequency of the local SO 2-related nucleation events was much higher before 2006. All of these results suggest significant impacts of highway traffic and industrial sources. The decrease in particle number concentrations and particle nucleation events likely resulted from a combination of the U.S. EPA 2007 Heavy-Duty Highway Rule implemented on October 1, 2006, the closure of a large coal-fired power plant in May 2008, and the reduction of Eastman Kodak emissions.

  12. Magnetic Hysteresis in Nanocomposite Films Consisting of a Ferromagnetic AuCo Alloy and Ultrafine Co Particles

    PubMed Central

    Chinni, Federico; Spizzo, Federico; Montoncello, Federico; Mattarello, Valentina; Maurizio, Chiara; Mattei, Giovanni; Del Bianco, Lucia

    2017-01-01

    One fundamental requirement in the search for novel magnetic materials is the possibility of predicting and controlling their magnetic anisotropy and hence the overall hysteretic behavior. We have studied the magnetism of Au:Co films (~30 nm thick) with concentration ratios of 2:1, 1:1, and 1:2, grown by magnetron sputtering co-deposition on natively oxidized Si substrates. They consist of a AuCo ferromagnetic alloy in which segregated ultrafine Co particles are dispersed (the fractions of Co in the AuCo alloy and of segregated Co increase with decreasing the Au:Co ratio). We have observed an unexpected hysteretic behavior characterized by in-plane anisotropy and crossed branches in the loops measured along the hard magnetization direction. To elucidate this phenomenon, micromagnetic calculations have been performed for a simplified system composed of two exchange-coupled phases: a AuCo matrix surrounding a Co cluster, which represents an aggregate of particles. The hysteretic features are qualitatively well reproduced provided that the two phases have almost orthogonal anisotropy axes. This requirement can be plausibly fulfilled assuming a dominant magnetoelastic character of the anisotropy in both phases. The achieved conclusions expand the fundamental knowledge on nanocomposite magnetic materials, offering general guidelines for tuning the hysteretic properties of future engineered systems. PMID:28773075

  13. Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites

    PubMed Central

    Li, Rongsong; Yang, Jieping; Saffari, Arian; Jacobs, Jonathan; Baek, Kyung In; Hough, Greg; Larauche, Muriel H.; Ma, Jianguo; Jen, Nelson; Moussaoui, Nabila; Zhou, Bill; Kang, Hanul; Reddy, Srinivasa; Henning, Susanne M.; Campen, Matthew J.; Pisegna, Joseph; Li, Zhaoping; Fogelman, Alan M.; Sioutas, Constantinos; Navab, Mohamad; Hsiai, Tzung K.

    2017-01-01

    Ambient particulate matter (PM) exposure is associated with atherosclerosis and inflammatory bowel disease. Ultrafine particles (UFP, dp < 0.1–0.2 μm) are redox active components of PM. We hypothesized that orally ingested UFP promoted atherogenic lipid metabolites in both the intestine and plasma via altered gut microbiota composition. Low density lipoprotein receptor-null (Ldlr−/−) mice on a high-fat diet were orally administered with vehicle control or UFP (40 μg/mouse/day) for 3 days a week. After 10 weeks, UFP ingested mice developed macrophage and neutrophil infiltration in the intestinal villi, accompanied by elevated cholesterol but reduced coprostanol levels in the cecum, as well as elevated atherogenic lysophosphatidylcholine (LPC 18:1) and lysophosphatidic acids (LPAs) in the intestine and plasma. At the phylum level, Principle Component Analysis revealed significant segregation of microbiota compositions which was validated by Beta diversity analysis. UFP-exposed mice developed increased abundance in Verrocomicrobia but decreased Actinobacteria, Cyanobacteria, and Firmicutes as well as a reduced diversity in microbiome. Spearman’s analysis negatively correlated Actinobacteria with cecal cholesterol, intestinal and plasma LPC18:1, and Firmicutes and Cyanobacteria with plasma LPC 18:1. Thus, ultrafine particles ingestion alters gut microbiota composition, accompanied by increased atherogenic lipid metabolites. These findings implicate the gut-vascular axis in a atherosclerosis model. PMID:28211537

  14. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: effect of commute mode.

    PubMed

    Both, Adam F; Westerdahl, Dane; Fruin, Scott; Haryanto, Budi; Marshall, Julian D

    2013-01-15

    We measured real-time exposure to PM(2.5), ultrafine PM (particle number) and carbon monoxide (CO) for commuting workers school children, and traffic police, in Jakarta, Indonesia. In total, we measured exposures for 36 individuals covering 93 days. Commuters in private cars experienced mean (st dev) exposures of 22 (9.4) ppm CO, 91 (38) μg/m(3)PM(2.5), and 290 (150)×10(3) particles cm(-3). Mean concentrations were higher in public transport than in private cars for PM(2.5) (difference in means: 22%) and particle counts (54%), but not CO, likely reflecting in-vehicle particle losses in private cars owing to air-conditioning. However, average commute times were longer for private car commuters than public transport commuters (in our sample, 24% longer: 3.0 vs. 2.3 h per day). Commute and traffic-related exposures experienced by Jakarta residents are among the highest in the world, owing to high on-road concentrations and multi-hour commutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort

    PubMed Central

    Zhang, Xian; Staimer, Norbert; Gillen, Daniel L.; Tjoa, Tomas; Schauer, James J.; Shafer, Martin M.; Hasheminassab, Sina; Pakbin, Payam; Vaziri, Nosratola D.; Sioutas, Constantinos; Delfino, Ralph J.

    2016-01-01

    Background Exposure to air pollution has been associated with cardiorespiratory morbidity and mortality. However, the chemical constituents and pollution sources underlying these associations remain unclear. Method We conducted a cohort panel study involving 97 elderly subjects living in the Los Angeles metropolitan area. Airway and circulating biomarkers of oxidative stress and inflammation were measured weekly over 12 weeks and included, exhaled breath condensate malondialdehyde (EBC MDA), fractional exhaled nitric oxide (FeNO), plasma oxidized low-density lipoprotein (oxLDL), and plasma interleukin-6 (IL-6). Exposures included 7-day personal nitrogen oxides (NOX), daily criteria-pollutant data, five-day average particulate matter (PM) measured in three size-fractions and characterized by chemical components including transition metals, and in vitro PM oxidative potential (dithiothreitol and macrophage reactive oxygen species). Associations between biomarkers and pollutants were assessed using linear mixed effects regression models. Results We found significant positive associations of airway oxidative stress and inflammation with traffic-related air pollutants, ultrafine particles and transition metals. Positive but nonsignificant associations were observed with PM oxidative potential. The strongest associations were observed among PM variables in the ultrafine range (PM <0.18 μm). It was estimated that an interquartile increase in 5-day average ultrafine polycyclic aromatic hydrocarbons was associated with a 6.3% (95% CI: 1.1%, 11.6%) increase in EBC MDA and 6.7% (95% CI: 3.4%, 10.2%) increase in FeNO. In addition, positive but nonsignificant associations were observed between oxLDL and traffic-related pollutants, ultrafine particles and transition metals while plasma IL-6 was positively associated with 1-day average traffic-related pollutants. Conclusion Our results suggest that exposure to pollutants with high oxidative potential (traffic-related pollutants

  16. Size and oxidative susceptibility of low-density lipoprotein particles in breast cancer patients with tamoxifen-induced fatty liver.

    PubMed

    Wakatsuki, Akihiko; Ogawa, Yasuhiro; Saibara, Toshiji; Okatani, Yuji; Fukaya, Takao

    2002-08-01

    The purpose of the present study was to investigate the effects of tamoxifen on the size and oxidative susceptibility of low-density lipoprotein (LDL) particles in breast cancer patients with tamoxifen-induced fatty liver. We investigated the following breast cancer patients: 13 receiving no tamoxifen (group A), 13 receiving tamoxifen 40 mg daily but without fatty liver (group B), and 13 receiving tamoxifen 40 mg daily with fatty liver (group C). Plasma lipids and diameter of LDL particles were measured. Susceptibility of LDL to oxidation was analyzed by incubation with CuSO(4) while monitoring conjugated diene formation and assaying thiobarbituric acid reactive substances (TBARS). Plasma total and LDL cholesterol concentrations in groups B and C were significantly lower than those in group A. In group C, concentrations of plasma triglyceride (TG) and TBARS were significantly greater, but LDL particle diameter and lag time for LDL oxidation were significantly smaller than those in groups A and B. Plasma TG concentrations correlated negatively with computed tomography ratio of liver to spleen (r = -0.76; P < 0.001). LDL particle diameter correlated negatively with plasma TG (r = -0.62; P < 0.001) and TBARS (r = -0.44; P < 0.01), but positively with LDL lag time (r = 0.47; P < 0.01). Tamoxifen-induced fatty liver in breast cancer patients may be atherogenic, via increased TG and consequent small, easily oxidized LDL particles.

  17. Ultrafine particulate matter exposure in vitro impairs vasorelaxant response in superoxide dismutase 2 deficient and aged murine aortic rings

    EPA Science Inventory

    Epidemiological studies positively associate exposure to inhaled ultrafine particulate matter (UFPM) and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure....

  18. Measurements of ultrafine particles from a gas-turbine burning biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouis, C.; Beretta, F.; Minutolo, P.

    2010-04-15

    Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distributionmore » function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the

  19. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  20. Outdoor ultrafine particle concentrations in front of fast food restaurants.

    PubMed

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.

  1. Linking In-Vehicle Ultrafine Particle Exposures to On-Road Concentrations

    PubMed Central

    Hudda, Neelakshi; Eckel, Sandrah P.; Knibbs, Luke D.; Sioutas, Constantinos; Delfino, Ralph J.; Fruin, Scott A.

    2013-01-01

    For traffic-related pollutants like ultrafine particles (UFP, Dp < 100 nm), a significant fraction of overall exposure occurs within or close to the transit microenvironment. Therefore, understanding exposure to these pollutants in such microenvironments is crucial to accurately assessing overall UFP exposure. The aim of this study was to develop models for predicting in-cabin UFP concentrations if roadway concentrations are known, taking into account vehicle characteristics, ventilation settings, driving conditions and air exchange rates (AER). Particle concentrations and AER were measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving speeds. Multiple linear regression (MLR) and generalized estimating equation (GEE) regression models were used to identify and quantify the factors that determine inside-to-outside (I/O) UFP ratios and AERs across a full range of vehicle types and ages. AER was the most significant determinant of UFP I/O ratios, and was strongly influenced by ventilation setting (recirculation or outside air intake). Inclusion of ventilation fan speed, vehicle age or mileage, and driving speed explained greater than 79% of the variability in measured UFP I/O ratios. PMID:23888122

  2. GENE PROFILING AND THE ROLE OF COAGULATION FACTORS IN INFLAMMATION SIGNALING IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLES EXPOUSRE

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate air pollution and increased cardiovascular mortality and morbidity, however, the mechanisms are not clear. Ultrafine particles within air pollution represent a particular area of concern because the small size fraction o...

  3. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G. P.; Salimi, F.; Morawska, L.; Sioutas, C.; Querol, X.

    2015-05-01

    Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long-term data sets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-means clustering analysis, we categorized the collected aerosol size distributions into three main categories: "Traffic" (prevailing 44-63% of the time), "Nucleation" (14-19%) and "Background pollution and Specific cases" (7-22%). Measurements from Rome (Italy) and Los Angeles (USA) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles' burst lasted 1-4 h, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. Nucleation events lasting for 2 h or more occurred on 55% of the days, this extending to > 4 h in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In

  4. Exposure assessment of a cyclist to PM10 and ultrafine particles.

    PubMed

    Berghmans, P; Bleux, N; Int Panis, L; Mishra, V K; Torfs, R; Van Poppel, M

    2009-02-01

    Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. In Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers.

  5. Modelling component evaporation and composition change of traffic-induced ultrafine particles during travel from street canyon to urban background.

    PubMed

    Nikolova, Irina; MacKenzie, A Rob; Cai, Xiaoming; Alam, Mohammed S; Harrison, Roy M

    2016-07-18

    We developed a model (CiTTy-Street-UFP) of traffic-related particle behaviour in a street canyon and in the nearby downwind urban background that accounts for aerosol dynamics and the variable vapour pressure of component organics. The model simulates the evolution and fate of traffic generated multicomponent ultrafine particles (UFP) composed of a non-volatile core and 17 Semi-Volatile Organic Compounds (SVOC, modelled as n-alkane proxies). A two-stage modelling approach is adopted: (1) a steady state simulation inside the street canyon is achieved, in which there exists a balance between traffic emissions, condensation/evaporation, deposition, coagulation and exchange with the air above roof-level; and (2) a continuing simulation of the above-roof air parcel advected to the nearby urban park during which evaporation is dominant. We evaluate the component evaporation and associated composition changes of multicomponent organic particles in realistic atmospheric conditions and compare our results with observations from London (UK) in a street canyon and an urban park. With plausible input conditions and parameter settings, the model can reproduce, with reasonable fidelity, size distributions in central London in 2007. The modelled nucleation-mode peak diameter, which is 23 nm in the steady-state street canyon, decreases to 9 nm in a travel time of just 120 s. All modelled SVOC in the sub-10 nm particle size range have evaporated leaving behind only non-volatile material, whereas modelled particle composition in the Aitken mode contains SVOC between C26H54 and C32H66. No data on particle composition are available in the study used for validation, or elsewhere. Measurements addressing in detail the size resolved composition of the traffic emitted UFP in the atmosphere are a high priority for future research. Such data would improve the representation of these particles in dispersion models and provide the data essential for model validation. Enhanced knowledge of the

  6. Fine and ultrafine particle doses in the respiratory tract from digital printing operations.

    PubMed

    Voliotis, Aristeidis; Karali, Irene; Kouras, Athanasios; Samara, Constantini

    2017-01-01

    In this study, we report for the first time particle number doses in different parts of the human respiratory tract and real-time deposition rates for particles in the 10 nm to 10 μm size range emitted by digital printing operations. Particle number concentrations (PNCs) and size distribution were measured in a typical small-sized printing house using a NanoScan scanning mobility particle sizer and an optical particle sizer. Particle doses in human lung were estimated applying a multiple-path particle dosimetry model under two different breathing scenarios. PNC was dominated by the ultrafine particle fractions (UFPs, i.e., particles smaller than 100 nm) exhibiting almost nine times higher levels in comparison to the background values. The average deposition rate fοr each scenario in the whole lung was estimated at 2.0 and 2.9 × 10 7 particles min -1 , while the respective highest particle dose in the tracheobronchial tree (2.0 and 2.9 × 10 9 particles) was found for diameter of 50 nm. The majority of particles appeared to deposit in the acinar region and most of them were in the UFP size range. For both scenarios, the maximum deposition density (9.5 × 10 7 and 1.5 × 10 8 particles cm -2 ) was observed at the lobar bronchi. Overall, the differences in the estimated particle doses between the two scenarios were 30-40% for both size ranges.

  7. Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and Sources: Results from the California Teachers Study Cohort

    PubMed Central

    Hu, Jianlin; Goldberg, Debbie; Reynolds, Peggy; Hertz, Andrew; Bernstein, Leslie; Kleeman, Michael J.

    2015-01-01

    Background Although several cohort studies report associations between chronic exposure to fine particles (PM2.5) and mortality, few have studied the effects of chronic exposure to ultrafine (UF) particles. In addition, few studies have estimated the effects of the constituents of either PM2.5 or UF particles. Methods We used a statewide cohort of > 100,000 women from the California Teachers Study who were followed from 2001 through 2007. Exposure data at the residential level were provided by a chemical transport model that computed pollutant concentrations from > 900 sources in California. Besides particle mass, monthly concentrations of 11 species and 8 sources or primary particles were generated at 4-km grids. We used a Cox proportional hazards model to estimate the association between the pollutants and all-cause, cardiovascular, ischemic heart disease (IHD), and respiratory mortality. Results We observed statistically significant (p < 0.05) associations of IHD with PM2.5 mass, nitrate, elemental carbon (EC), copper (Cu), and secondary organics and the sources gas- and diesel-fueled vehicles, meat cooking, and high-sulfur fuel combustion. The hazard ratio estimate of 1.19 (95% CI: 1.08, 1.31) for IHD in association with a 10-μg/m3 increase in PM2.5 is consistent with findings from the American Cancer Society cohort. We also observed significant positive associations between IHD and several UF components including EC, Cu, metals, and mobile sources. Conclusions Using an emissions-based model with a 4-km spatial scale, we observed significant positive associations between IHD mortality and both fine and ultrafine particle species and sources. Our results suggest that the exposure model effectively measured local exposures and facilitated the examination of the relative toxicity of particle species. Citation Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, Kleeman MJ. 2015. Associations of mortality with long-term exposures to fine and ultrafine

  8. [Concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing].

    PubMed

    Ni, Yang; Tu, Xing-ying; Zhu, Yi-dan; Guo, Xin-biao; Deng, Fu-rong

    2014-06-18

    To study the concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing. Real-time monitoring of particles' mass and number concentrations were conducted in an area of Beijing from February 7(th) to 27(th), 2013. At the same time, the meteorological data were also collected from the Beijing meteorological website. Differences of the particles' mass and number concentrations during different periods were analyzed using Mann-Whitney U test. Meanwhile, the influenced factors were also analyzed. The mean concentrations of fine particulate matters and ultrafine particles were (157.2 ± 142.8) μg/m³ and (25 018 ± 9 309) particles/cm³, respectively. The particles' number and mass concentrations in haze days were 1.27 times and 2.91 times higher than those in non-haze days, respectively. The mass concentrations of fine particulate matters in the self-monitoring site were higher than those in the nearest central monitoring sites, and the hourly-average concentrations of particles were significantly consistent with those at the commuter times. Meanwhile, the setting off of fireworks/firecrackers during the Spring Festival could lead to short-term increases of the particles' number and mass concentrations. When the wind speed was low and the related humidity was high, the concentrations of particulate matters were relatively high, and the mass concentrations of fine particulate matters were lagged about 1-2 d. The level of the particulate matters in this area was high. Heavy traffic, setting off of fireworks/firecrackers and meteorological factors may be some of the main factors affecting the concentrations of the particulate matters in this area. Among those factors, the effect of setting off of fireworks/firecrackers didn't last long and the effect of the meteorological factors had a hysteresis effect.

  9. Personal exposure to airborne ultrafine particles in the urban area of Milan

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Garramone, G.; Taronna, M.; Peruzzo, C.; Cavallo, D. M.

    2009-02-01

    The relevance of health effects related to ultrafine particles (UFPs; aerodynamic diameter < 100 nm) can be better evaluated using high-resolution strategies for measuring particle number concentrations. In this study, two different portable Condensation Particle Counters (CPCs) were used to measure personal exposure to UFPs in the central area of Milan for one week period during spring, with three sampling sessions per day. Experimental data were continuously collected along an established urban pathway, moving afoot or by different private and public means of transport. Correlation analysis between data measured by two CPCs was performed and general results showed a good agreement, especially at concentrations lower than 2×105 particles /cm3. UFPs measures were divided on the basis of crossed environments or micro-environments, days of the week and day time (hours). The highest measured mean concentrations and data variability were observed during walking time and moving on motorized vehicles (bus and car), indicating that the highest exposure to UFPs can be reached near motorized traffic. The lowest exposures were observed in green areas and in office microenvironments. An appreciable difference between working and non-working days was observed. Concentration patterns and variation by days of the week and time periods appears related to time trends in traffic intensity.

  10. XRF-analysis of fine and ultrafine particles emitted from laser printing devices.

    PubMed

    Barthel, Mathias; Pedan, Vasilisa; Hahn, Oliver; Rothhardt, Monika; Bresch, Harald; Jann, Oliver; Seeger, Stefan

    2011-09-15

    In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants.

  11. Airborne ultrafine particles in a naturally ventilated metro station: Dominant sources and mixing state determined by particle size distribution and volatility measurements.

    PubMed

    Mendes, Luís; Gini, Maria I; Biskos, George; Colbeck, Ian; Eleftheriadis, Konstantinos

    2018-08-01

    Ultrafine particle number concentrations and size distributions were measured on the platform of a metro station in Athens, Greece, and compared with those recorded at an urban background station. The volatility of the sampled particles was measured in parallel, providing further insights on the mixing state and composition of the sampled particles. Particle concentration exhibited a mean value of 1.2 × 10 4 # cm -3 and showed a weak correlation with train passage frequency, but exhibited a strong correlation with urban background particle concentrations. The size distribution appears to be strongly influenced by outdoor conditions, such as the morning traffic rush hour and new particle formation events observed at noon. The aerosol in the metro was externally mixed throughout the day, with particle populations being identified (1) as fully refractory particles being more dominant during the morning traffic rush hours, (2) as core-shell structure particles having a non-volatile core coated with volatile material, and (3) fully volatile particles. The evolution of particle volatility and size throughout the day provide additional support that most nanoparticles in the metro station originate from outdoor urban air. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Ultrafine particle emissions by in-use diesel buses of various generations at low-load regimes

    NASA Astrophysics Data System (ADS)

    Tartakovsky, L.; Baibikov, V.; Comte, P.; Czerwinski, J.; Mayer, A.; Veinblat, M.; Zimmerli, Y.

    2015-04-01

    Ultrafine particles (UFP) are major contributors to air pollution due to their easy gas-like penetration into the human organism, causing adverse health effects. This study analyzes UFP emissions by buses of different technologies (from Euro II till Euro V EEV - Enhanced Environmentally-friendly Vehicle) at low-load regimes. Additionally, the emission-reduction potential of retrofitting with a diesel particle filter (DPF) is demonstrated. A comparison of the measured, engine-out, particle number concentrations (PNC) for buses of different technological generations shows that no substantial reduction of engine-out emissions at low-load operating modes is observed for newer bus generations. Retrofitting the in-use urban and interurban buses of Euro II till Euro IV technologies by the VERT-certified DPF confirmed its high efficiency in reduction of UFP emissions. Particle-count filtration efficiency values of the retrofit DPF were found to be extremely high - greater than 99.8%, similar to that of the OEM filter in the Euro V bus.

  13. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors.

    PubMed

    Liu, Fangyan; Su, Hai; Jin, Long; Zhang, Haitao; Chu, Xiang; Yang, Weiqing

    2017-11-01

    The ultrafine Co 3 O 4 nanoparticles are successfully prepared by a novel solvothermal-precipitation approach which exploits the supernatant liquid of Co 3 O 4 nanoflake micropheres synthesized by solvothermal method before. Interestingly, the water is only employed to obtain the ultrafine nanoparticles in supernatant liquid which was usually thrown away before. The microstructure measurement results of the as-grown samples present the homogeneous disperse ultrafine Co 3 O 4 nanoparticles with the size of around 5-10nm. The corresponding synthesis mechanism of the ultrafine Co 3 O 4 nanoparticles is proposed. More importantly, these ultrafine Co 3 O 4 nanoparticles obtained at 250°C show the highest specific capacitance of 523.0Fg -1 at 0.5Ag -1 , 2.6 times that of Co 3 O 4 nanoflake micropheres due to the quantum size effect. Meanwhile, the sample annealed under 350°C possesses the best cycling stability with capacitance retention of 104.9% after 1500 cycles. These results unambiguously demonstrate that this work not only provides a novel, facile, and eco-friendly approach to prepare high-performance Co 3 O 4 nanoparticles electrode materials for supercapacitors but also develops a widely used method for the preparation of other materials on a large scale. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Reduced Ultrafine Particle Concentration in Urban Air: Changes in Nucleation and Anthropogenic Emissions.

    PubMed

    Saha, Provat K; Robinson, Ellis S; Shah, Rishabh U; Zimmerman, Naomi; Apte, Joshua S; Robinson, Allen L; Presto, Albert A

    2018-06-19

    Nucleation is an important source of ambient ultrafine particles (UFP). We present observational evidence of the changes in the frequency and intensity of nucleation events in urban air by analyzing long-term particle size distribution measurements at an urban background site in Pittsburgh, Pennsylvania during 2001-2002 and 2016-2017. We find that both frequency and intensity of nucleation events have been reduced by 40-50% over the past 15 years, resulting in a 70% reduction in UFP concentrations from nucleation. On average, the particle growth rates are 30% slower than 15 years ago. We attribute these changes to dramatic reductions in SO 2 (more than 90%) and other pollutant concentrations. Overall, UFP concentrations in Pittsburgh have been reduced by ∼48% in the past 15 years, with a ∼70% reduction in nucleation, ∼27% in weekday local sources (e.g., weekday traffic), and 49% in the regional background. Our results highlight that a reduction in anthropogenic emissions can considerably reduce nucleation events and UFP concentrations in a polluted urban environment.

  15. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    PubMed Central

    Traboulsi, Hussein; Guerrina, Necola; Iu, Matthew; Maysinger, Dusica; Ariya, Parisa; Baglole, Carolyn J.

    2017-01-01

    Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease. PMID:28125025

  16. Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children.

    PubMed

    Iskandar, Amne; Andersen, Zorana Jovanovic; Bønnelykke, Klaus; Ellermann, Thomas; Andersen, Klaus Kaae; Bisgaard, Hans

    2012-03-01

    Short-term exposure to air pollution can trigger hospital admissions for asthma in children, but it is not known which components of air pollution are most important. There are no available studies on the particular effect of ultrafine particles (UFPs) on paediatric admissions for asthma. To study whether short-term exposure to air pollution is associated with hospital admissions for asthma in children. It is hypothesised that (1) the association between asthma admissions and air pollution is stronger with UFPs than with coarse (PM10) and fine (PM2.5) particles, nitrogen oxides (NOx) or nitrogen dioxide (NO2); and (2) infants are more susceptible to the effects of exposure to air pollution than older children. Daily counts of admissions for asthma in children aged 0-18 years to hospitals located within a 15 km radius of the central fixed background urban air pollution measurement station in Copenhagen between 2001 and 2008 were extracted from the Danish National Patient Registry. A time-stratified case crossover design was applied and data were analysed using conditional logistic regression to estimate the effect of air pollution on asthma admissions. A significant association was found between hospital admissions for asthma in children aged 0-18 years and NOx (OR 1.11; 95% CI 1.05 to 1.17), NO2 (1.10; 95% CI 1.04 to 1.16), PM10 (1.07; 95% CI 1.03 to 1.12) and PM2.5 (1.09; 95% CI 1.04 to 1.13); there was no association with UFPs. The association was stronger in infants than in older children for all pollutants, but no statistically significant interaction was detected. Short-term exposure to air pollution can trigger hospital admission for asthma in children, with infants possibly being most susceptible. These effects seemed to be mediated by larger particles and traffic-related gases, whereas UFPs showed no effect.

  17. Method for coating ultrafine particles, system for coating ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less

  18. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    PubMed

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences.

    PubMed

    Zhao, H; Stephens, B

    2017-01-01

    Much of human exposure to particulate matter of outdoor origin occurs inside buildings, particularly in residences. The particle penetration factor through leaks in a building's exterior enclosure assembly is a key parameter that governs the infiltration of outdoor particles. However, experimental data for size-resolved particle penetration factors in real buildings, as well as penetration factors for fine particles less than 2.5 μm (PM 2.5 ) and ultrafine particles less than 100 nm (UFPs), remain limited, in part because of previous limitations in instrumentation and experimental methods. Here, we report on the development and application of a modified test method that utilizes portable particle sizing instrumentation to measure size-resolved infiltration factors and envelope penetration factors for 0.01-2.5 μm particles, which are then used to estimate penetration factors for integral measures of UFPs and PM 2.5 . Eleven replicate measurements were made in an unoccupied apartment unit in Chicago, IL to evaluate the accuracy and repeatability of the test procedure and solution methods. Mean estimates of size-resolved penetration factors ranged from 0.41 ± 0.14 to 0.73 ± 0.05 across the range of measured particle sizes, while mean estimates of penetration factors for integral measures of UFPs and PM 2.5 were 0.67 ± 0.05 and 0.73 ± 0.05, respectively. Average relative uncertainties for all particle sizes/classes were less than 20%. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D < 100 nm) is a challenge due to the complex nature of the urban environments. Although vehicular emissions have long been considered one of the major sources of ultrafine particles in urban areas, the contribution of other major urban sources is not yet fully understood. This paper aims to determine and quantify the contribution of local ground traffic, nucleated particle (NP) formation and distant non-traffic (e.g. airport, oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date

  1. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes.

    PubMed

    Melstrom, Paul; Koszowski, Bartosz; Thanner, Meridith Hill; Hoh, Eunha; King, Brian; Bunnell, Rebecca; McAfee, Tim

    2017-09-01

    Few studies have examined the extent of inhalation or dermal contact among bystanders following short-term, secondhand e-cigarette exposure. Measure PM2.5 (particles < 2.5 microns), UF (ultrafine particles < 100 nm), and nicotine in air and deposited on surfaces and clothing pre-/during/post- a short-term (2-hour) e-cigarette exposure. E-cigarettes were used ad libitum by three experienced users for 2 hours during two separate sessions (disposable e-cigarettes, then tank-style e-cigarettes, or "tanks") in a 1858 ft3 room. We recorded: uncorrected PM2.5 (using SidePak); UF (using P-Trak); air nicotine concentrations (using air samplers; SKC XAD-4 canisters); ambient air exchange rate (using an air capture hood). Wipe samples were taken by wiping 100 cm2 room surfaces pre- and post- both sessions, and clean cloth wipes were worn during the exposure and collected at the end. Uncorrected PM2.5 and UF were higher (p < .0001) during sessions than before or after. Median PM2.5 during exposure was higher using tanks (0.515 mg/m3) than disposables (0.035 mg/m3) (p < .0001). Median UF during exposure was higher using disposables (31 200 particles/cm3) than tanks (25 200 particles/cm3)(p < .0001). Median air nicotine levels were higher (p < .05) during both sessions (disposables = 0.697 ng/L, tanks = 1.833 ng/L) than before (disposables = 0.004 ng/L, tanks = 0.010 ng/L) or after (disposables = 0.115 ng/L, tanks = 0.147 ng/L). Median accumulation rates of nicotine on surface samples were 2.1 ng/100 cm2/h using disposables and 4.0 ng/100 cm2/h using tanks; for cloth samples, it was 44.4 ng/100 cm2/h using disposables and 69.6 ng/100 cm2/h using tanks (p < .01). Mean room ventilation rate was ~5 air changes per hour during both sessions. Short-term e-cigarette use can produce: elevated PM2.5; elevated UF; nicotine in the air; and accumulation of nicotine on surfaces and clothing. Short-term indoor e-cigarette use produced accumulation of nicotine on surfaces and clothing, which

  2. Release of ultrafine particles from three simulated building processes

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Mulheron, Mike; Som, Claudia

    2012-03-01

    Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5-560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near-steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri-modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei (<10 nm), nucleation (10-30 nm) and accumulation (30-300 nm) modes for individual activities. The measured background size distributions showed modal peaks at about 13 and 49 nm with average background PNCs 1.47 × 104 cm-3. These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and `dry' and `wet' recycling events were measured as 0.77, 19.1, 22.7 and 1.76 (×104) cm-3, respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; 95, 79, 73 and 90% of total PNCs, and 71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling

  3. Plasma-Assisted Synthesis of Monodispersed and Robust Ruthenium Ultrafine Nanocatalysts for Organosilane Oxidation and Oxygen Evolution Reactions.

    PubMed

    Gnanakumar, Edwin S; Ng, Wesley; Coşkuner Filiz, Bilge; Rothenberg, Gadi; Wang, Sheng; Xu, Hualong; Pastor-Pérez, Laura; Pastor-Blas, M Mercedes; Sepúlveda-Escribano, Antonio; Yan, Ning; Shiju, N Raveendran

    2017-11-23

    We report a facile and general approach for preparing ultrafine ruthenium nanocatalysts by using a plasma-assisted synthesis at <100 °C. The resulting Ru nanoparticles are monodispersed (typical size 2 nm) and remain that way upon loading onto carbon and TiO 2 supports. This gives robust catalysts with excellent activities in both organosilane oxidation and the oxygen evolution reaction.

  4. Exposure to ultrafine particles and respiratory hospitalisations in five European cities.

    PubMed

    Samoli, Evangelia; Andersen, Zorana Jovanovic; Katsouyanni, Klea; Hennig, Frauke; Kuhlbusch, Thomas A J; Bellander, Tom; Cattani, Giorgio; Cyrys, Josef; Forastiere, Francesco; Jacquemin, Bénédicte; Kulmala, Markku; Lanki, Timo; Loft, Steffen; Massling, Andreas; Tobias, Aurelio; Stafoggia, Massimo

    2016-09-01

    Epidemiological evidence on the associations between exposure to ultrafine particles (UFP), with aerodynamic electrical mobility diameters <100 nm, and health is limited. We gathered data on UFP from five European cities within 2001-2011 to investigate associations between short-term changes in concentrations and respiratory hospitalisations.We applied city-specific Poisson regression models and combined city-specific estimates to obtain pooled estimates. We evaluated the sensitivity of our findings to co-pollutant adjustment and investigated effect modification patterns by period of the year, age at admission and specific diagnoses.Our results for the whole time period do not support an association between UFP and respiratory hospitalisations, although we found suggestive associations among those 0-14 years old. We nevertheless report consistent adverse effect estimates during the warm period of the year, statistically significant after lag 2 when an increase by 10 000 particles per cm(3) was associated with a 4.27% (95% CI 1.68-6.92%) increase in hospitalisations. These effect estimates were robust to particles' mass or gaseous pollutants adjustment.Considering that our findings during the warm period may reflect better exposure assessment and that the main source of non-soluble UFP in urban areas is traffic, our results call for improved regulation of traffic emissions. Copyright ©ERS 2016.

  5. A case study of exposure to ultrafine particles from secondhand tobacco smoke in an automobile.

    PubMed

    Liu, S; Zhu, Y

    2010-10-01

    Secondhand tobacco smoke (SHS) in enclosed spaces is a major source of potentially harmful airborne particles. To quantify exposure to ultrafine particles (UFP) because of SHS and to investigate the interaction between pollutants from SHS and vehicular emissions, number concentration and size distribution of UFP and other air pollutants (CO, CO(2) , and PM(2.5)) were measured inside a moving vehicle under five different ventilation conditions. A major interstate freeway with a speed limit of 60 mph and an urban roadway with a speed limit of 30 mph were selected to represent typical urban routes. In a typical 30-min commute on urban roadways, the SHS of one cigarette exposed passengers to approximately 10 times the UFP and 120 times the PM(2.5) of ambient air. The most effective solution to protect passengers from SHS exposure is to abstain from smoking in the vehicle. Opening a window is an effective method for decreasing pollutant exposures on most urban roadways. However, under road conditions with high UFP concentrations, such as tunnels or busy freeways with high proportion of heavy-duty diesel trucks (such as the 710 Freeway in Los Angeles, CA, USA), opening a window is not a viable method to reduce UFPs. Time budget studies show that Americans spend, on average, more than 60 min each day in enclosed vehicles. Smoking inside vehicles can expose the driver and other passengers to high levels of pollutants. Thus, an understanding of the variations and interactions of secondhand tobacco smoke (SHS) and vehicular emissions under realistic driving conditions is necessary. Results of this study indicated that high ventilation rates can effectively dilute ultrafine particles (UFP) inside moving vehicles on urban routes. However, driving with open windows and an increased air exchange rate (AER) are not recommended on tunnels and heavily travelled freeways.

  6. ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.

    PubMed

    Vasyanovich, M; Mostafa, M Y A; Zhukovsky, M

    2017-11-01

    Cascade impactors based on inertial deposition of aerosols are widely used to determine the size distribution of radioactive aerosols. However, there are situations where radioactive aerosols are represented by particles with a diameter of 1-5 nm. In this case, ultrafine aerosols can be deposited on impactor cascades by diffusion mechanism. The influence of ultrafine aerosols (1-5 nm) on the response of three different types of cascade impactors was studied. It was shown that the diffusion deposition of ultrafine aerosols can distort the response of the cascade impactor. The influence of diffusion deposition of ultrafine aerosols can be considerably removed by the use of mesh screens or diffusion battery installed before cascade impactor during the aerosol sampling. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    PubMed

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  8. [Oxidative stress derived from airborne fine and ultrafine particles and the effects on brain-nervous system: part 1].

    PubMed

    Sagai, Masaru; Win-Shwe, Tin Tin

    2015-01-01

    Traffic-related air pollution is a major contributor to urban air pollution. Diesel exhaust (DE) is the most important component of near-road and urban air pollution and is commonly used as a surrogate model of air pollution in health effects studies. In particular, diesel exhaust particles (DEP) and the nanoparticles in DEP are considered hazardous components on health effects. It is widely known that exposure to DEP is associated with mortality due to respiratory and cardiovascular diseases. Recently, there has been accumulating evidence that DEP and the nanoparticles in DEP may be causes of neurodegenerative disorders. Here, we introduce the evidence suggesting their association with such disorders. First, we describe the chemical components and the translocation of DEP and nanoparticles to the brain, and then introduce the evidence and a mechanism by which reactive oxygen species (ROS) and any inflammatory mediators can be produced by DEP phagocytosis of macrophages, microglia and astrocyte cells in the brain. There are many lines of evidence showing that the neurodegenerative disorders are profoundly associated with enhanced oxidative and inflammatory events. Second, we describe a mechanism by which neurodegenerative diseases, such as stroke, Alzheimer's disease and Parkinson's disease, are induced via oxidative stress and inflammatory events.

  9. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    NASA Astrophysics Data System (ADS)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  10. Combustion of PTFE: The Effects of Gravity and Pigmentation on Ultrafine Particle Generation

    NASA Technical Reports Server (NTRS)

    McKinnon, J. Thomas; Srivastava, Rajiv; Todd, Paul

    1997-01-01

    Ultrafine particles generated during polymer thermodegradation are a major health hazard, owing to their unique pathway of processing in the lung. This hazard in manned spacecraft is poorly understood, because the particulate products of polymer thermodegradation are generated under low gravity conditions. Particulate generated from the degradation of PolyTetraFluoroEthylene (PTFE), insulation coating for 20 AWG copper wire (representative of spacecraft application) under intense ohmic heating were studied in terrestrial gravity and microgravity. Microgravity tests were done in a 1.2-second drop tower at the Colorado School of Mines (CSM). Thermophoretic sampling was used for particulate collection. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) were used to examine the smoke particulates. Image software was used to calculate particle size distribution. In addition to gravity, the color of PTFE insulation has an overwhelming effect on size, shape and morphology of the particulate. Nanometer-sized primary particles were found in all cases, and aggregation and size distribution was dependent on both color and gravity; higher aggregation occurred in low gravity. Particulates from white, black, red and yellow colored PTFE insulations were studied. Elemental analysis of the particulates shows the presence of inorganic pigments.

  11. Probing the oxidation kinetics of small permalloy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu

    2017-02-15

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in

  12. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere.

    PubMed

    Utsunomiya, Satoshi; Jensen, Keld A; Keeler, Gerald J; Ewing, Rodney C

    2004-04-15

    Exposure to airborne particulates containing low concentrations of heavy metals, such as Pb, As, and Se, may have serious health effects. However, little is known about the speciation and particle size of these airborne metals. Fine- and ultrafine particles with heavy metals in aerosol samples from the Detroit urban area, Michigan, were examined in detail to investigate metal concentrations and speciation. The characterization of individual particles was completed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with conventional high-resolution TEM techniques. The trace elements, Pb, As, La, Ce, Sr, Zn, Cr, Se, Sn, Y, Zr, Au, and Ag, were detected, and the elemental distributions were mapped in situ atthe nanoscale. The crystal structures of the particles containing Pb, Sr, Zn, and Au were determined from their electron diffraction patterns. Based on the characterization of the representative trace element particles, the potential health effects are discussed. Most of the trace element particles detected in this study were within a range of 0.01-1.0 microm in size, which has the longest atmospheric residence time (approximately 100 days). Increased chemical reactivity owing to the size of nanoparticles may be expected for most of the trace metal particles observed.

  13. Direct evidence for coastal iodine particles from Laminaria macroalgae - linkage to emissions of molecular iodine

    NASA Astrophysics Data System (ADS)

    McFiggans, G.; Coe, H.; Burgess, R.; Allan, J.; Cubison, M.; Rami Alfarra, M.; Saunders, R.; Saiz-Lopez, A.; Plane, J. M. C.; Wevill, D.; Carpenter, L.; Rickard, A. R.; Monks, P. S.

    2004-02-01

    Renewal of ultrafine aerosols in the marine boundary layer may lead to repopulation of the marine distribution and ultimately determine the concentration of cloud condensation nuclei (CCN). Thus the formation of nanometre-scale particles can lead to enhanced scattering of incoming radiation and a net cooling of the atmosphere. The recent demonstration of the chamber formation of new particles from the photolytic production of condensable iodine-containing compounds from diiodomethane (CH2I2), (O'Dowd et al., 2002; Kolb, 2002; Jimenez et al., 2003a; Burkholder and Ravishankara, 2003), provides an additional mechanism to the gas-to-particle conversion of sulphuric acid formed in the photo-oxidation of dimethylsulphide for marine aerosol repopulation. CH2I2 is emitted from seaweeds (Carpenter et al., 1999, 2000) and has been suggested as an initiator of particle formation. We demonstrate here for the first time that ultrafine iodine-containing particles are produced by intertidal macroalgae exposed to ambient levels of ozone. The particle composition is very similar both to those formed in the chamber photo-oxidation of diiodomethane and in the oxidation of molecular iodine by ozone. The particles formed in all three systems are similarly aspherical and behave alike when exposed to increased humidity environments. Direct coastal boundary layer observations of molecular iodine, ultrafine particle production and iodocarbons are reported. Using a newly measured molecular iodine photolysis rate, it is shown that, if atomic iodine is involved in the observed particle bursts, it is of the order of at least 1000 times more likely to result from molecular iodine photolysis than diiodomethane photolysis. A hypothesis for molecular iodine release from intertidal macroalgae is presented and the potential importance of macroalgal iodine particles in their contribution to CCN and global radiative forcing are discussed.

  14. Impact of primary and secondary organic sources on the oxidative potential of quasi-ultrafine particles (PM0.25) at three contrasting locations in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Saffari, Arian; Hasheminassab, Sina; Wang, Dongbin; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2015-11-01

    To investigate the changing contribution of primary and secondary sources on the oxidative potential of particulate matter (PM) in a real-world urban atmosphere, 7 sets of quasi-ultrafine particles (PM0.25) were collected at three contrasting locations in the Los Angeles Basin, California, USA. Samples were collected in the coastal area of Long Beach during the morning rush hour period, representing fresh primary emissions from nearby freeways and the LA port; in central Los Angeles during midday, representing a mixture of fresh primary emissions and early products of photochemical secondary organic aerosol (SOA) formation; and at a downwind site (Upland) during afternoon, when the impacts of photochemically aged secondary PM are significant. Chemical composition showed distinctive trends, with the lowest fraction of water soluble organic carbon (WSOC) and other organic tracers of SOA formation (e.g. organic acids) at Long Beach, and the lowest abundance of organic tracers of primary vehicular emissions (such as polycyclic aromatic hydrocarbons and hopanes) at Upland. A molecular marker-based chemical mass balance (MM-CMB) model indicated that 72% of the total organic carbon at Long Beach was comprised of primary vehicular sources (combined heavy duty and light duty vehicles), while the vehicular fraction was found to be 50% and 39% at Los Angeles and Upland, respectively. Regression analysis suggested that at Long Beach, the variation in oxidative potential of PM0.25 (quantified using a macrophage-based reactive oxygen species (ROS) assay) was mainly driven by mobile vehicular emissions and the water-insoluble fraction of the organic carbon. In contrast, at Upland, where photochemical processing and secondary aerosol formation was the highest, WSOC and secondary organics were the major drivers of the oxidative potential variation. The multivariate regression analysis also indicated that as much as 58% of the overall spatial and temporal variation in the oxidative

  15. Importance of indoor dust biological ultrafine particles in the pathogenesis of chronic inflammatory lung diseases.

    PubMed

    Yang, Jinho; Kim, Yoon-Keun; Kang, Tae Soo; Jee, Young-Koo; Kim, You-Young

    2017-01-01

    The role of infectious agents in the etiology of inflammatory diseases once believed to be non-infectious is increasingly being recognized. Many bacterial components in the indoor dust can evoke inflammatory lung diseases. Bacteria secrete nanometer-sized vesicles into the extracellular milieu, so-called extracellular vesicles (EV). which are pathophysiologically related to inflammatory diseases. Microbiota compositions in the indoor dust revealed the presence of both Gram-negative and Gram-positive bacteria. Escherichia coli is a model organism of Gram-negative Enterobacteriaceae. The repeated inhalation of E. coli-derived EVs caused neutrophilic inflammation and emphysema in a dose-dependent manner. The emphysema induced by E. coli-derived EVs was partially eliminated by the absence of Interferon-gamma or interleukin-17, suggesting that Th1 and/or Th17 cell responses are important in the emphysema development. Meanwhile, the repeated inhalation of Staphylococcus aureus-derived EVs did not induce emphysema, although they induced neutrophilic inflammation in the lung. In terms of microbial EV compositions in the indoor dust, genera Pseudomonas, Acinetobacter, Enterobacter, and Staphylococcus were dominant. As for the clinical significance of sensitization to EVs in the indoor dust, EV sensitization was closely associated with asthma, chronic obstructive pulmonary disorder (COPD), and lung cancer. These data indicate that biological ultrafine particles in the indoor dust, which are mainly composed of microbial EVs, are important in the pathogenesis of chronic lung diseases associated with neutrophilic inflammation. Taken together, microbial EVs in the indoor dust are an important diagnostic and therapeutic target for the control of chronic lung diseases, such as asthma, COPD, and lung cancer.

  16. Inhalation of ultrafine carbon particles alters heart rate and heart rate variability in people with type 2 diabetes.

    PubMed

    Vora, Rathin; Zareba, Wojciech; Utell, Mark J; Pietropaoli, Anthony P; Chalupa, David; Little, Erika L; Oakes, David; Bausch, Jan; Wiltshire, Jelani; Frampton, Mark W

    2014-07-16

    Diabetes may confer an increased risk for the cardiovascular health effects of particulate air pollution, but few human clinical studies of air pollution have included people with diabetes. Ultrafine particles (UFP, ≤100 nm in diameter) have been hypothesized to be an important component of particulate air pollution with regard to cardiovascular health effects. 17 never-smoker subjects 30-60 years of age, with stable type 2 diabetes but otherwise healthy, inhaled either filtered air (0-10 particles/cm3) or elemental carbon UFP (~107 particles/cm3, ~50 ug/m3, count median diameter 32 nm) by mouthpiece, for 2 hours at rest, in a double-blind, randomized, crossover study design. A digital 12-lead electrocardiogram (ECG) was recorded continuously for 48 hours, beginning 1 hour prior to exposure. Analysis of 5-minute segments of the ECG during quiet rest showed reduced high-frequency heart rate variability with UFP relative to air exposure (p = 0.014), paralleled by non-significant reductions in time-domain heart rate variability parameters. In the analysis of longer durations of the ECG, we found that UFP exposure increased the heart rate relative to air exposure. During the 21- to 45-hour interval after exposure, the average heart rate increased approximately 8 beats per minute with UFP, compared to 5 beats per minute with air (p = 0.045). There were no UFP effects on cardiac rhythm or repolarization. Inhalation of elemental carbon ultrafine particles alters heart rate and heart rate variability in people with type 2 diabetes. Our findings suggest that effects may occur and persist hours after a single 2-hour exposure.

  17. Personal exposure to ultrafine particles: the influence of time-activity patterns.

    PubMed

    Buonanno, G; Stabile, L; Morawska, L

    2014-01-15

    Exposure to ultrafine particles (UFPs) is deemed to be a major risk affecting human health. Therefore, airborne particle studies were performed in the recent years to evaluate the most critical micro-environments, as well as identifying the main UFP sources. Nonetheless, in order to properly evaluate the UFP exposure, personal monitoring is required as the only way to relate particle exposure levels to the activities performed and micro-environments visited. To this purpose, in the present work, the results of experimental analysis aimed at showing the effect of the time-activity patterns on UFP personal exposure are reported. In particular, 24 non-smoking couples (12 during winter and summer time, respectively), comprised of a man who worked full-time and a woman who was a homemaker, were analyzed using personal particle counter and GPS monitors. Each couple was investigated for a 48-h period, during which they also filled out a diary reporting the daily activities performed. Time activity patterns, particle number concentration exposure and the related dose received by the participants, in terms of particle alveolar-deposited surface area, were measured. The average exposure to particle number concentration was higher for women during both summer and winter (Summer: women 1.8 × 10(4) part. cm(-3); men 9.2 × 10(3) part. cm(-3); Winter: women 2.9 × 10(4) part. cm(-3); men 1.3 × 10(4) part. cm(-3)), which was likely due to the time spent undertaking cooking activities. Staying indoors after cooking also led to higher alveolar-deposited surface area dose for both women and men during the winter time (9.12 × 10(2) and 6.33 × 10(2) mm(2), respectively), when indoor ventilation was greatly reduced. The effect of cooking activities was also detected in terms of women's dose intensity (dose per unit time), being 8.6 and 6.6 in winter and summer, respectively. On the contrary, the highest dose intensity activity for men was time spent using transportation (2.8 in

  18. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  19. Measurements of ultrafine particles carrying different number of charges in on- and near-freeway environments

    NASA Astrophysics Data System (ADS)

    Lee, Eon S.; Xu, Bin; Zhu, Yifang

    2012-12-01

    This paper presents measurements of electrical charges on ultrafine particles (UFPs) of different electrical mobility diameters (30, 50, 80, and 100 nm) in on- and near-freeway environments. Using a tandem Differential Mobility Analyzer (DMA) system, we first examined the fraction of UFPs carrying different number of charges on two distinctive freeways: a gasoline-vehicle dominated freeway (I-405) and a heavy-duty diesel truck dominated freeway (I-710). The fractions of UFPs of a given size carrying one or more charges were significantly higher on the freeways than in the background. The background UFPs only carried up to two charges but freeway UFPs could have up to three charges. The total fraction of charged particles was higher on the I-710 than I-405 across the studied electrical mobility diameters. Near the I-405 freeway, we observed a strong decay of charged particles on the downwind side of the freeway. We also found fractional decay of the charged particles was faster than total particle number concentrations, but slower than total ion concentrations downwind from the freeway I-405. Among charged particles, the highest decay rate was observed for particles carrying three charges. Near the I-710 freeway, we found strong net positive charges on nucleation mode particles, suggesting that UFPs were not at steady-state charge equilibrium near freeways.

  20. Oxidative and cytotoxic stress induced by inorganic granular and fibrous particles.

    PubMed

    Helmig, Simone; Walter, Dirk; Putzier, Julia; Maxeiner, Hagen; Wenzel, Sibylle; Schneider, Joachim

    2018-06-01

    The hazards of granular and fibrous particles have been associated with the generation of reactive oxygen species (ROS), which in turn is often associated with physicochemical properties exhibited by these particles. In the present study, the ability of various types of fibrous and granular dusts to generate oxidative stress, and their cytotoxicity, was investigated. Biopersistent granular dusts employed in the present study included micro‑ and nanosized titanium dioxide with rutile or anatase crystal structure modifications. Additionally, glass fibres, chrysotile and crocidolite asbestos representative of fibrous dust were selected. Detailed characterisation of particles was performed using scanning electron microscopy, and the effect of exposure to these particles on cell viability and intracellular ROS generation was assessed by PrestoBlue and 2',7'‑dichlorofluorescein assays, respectively. A549 human lung epithelial adenocarcinoma cells were exposed to increasing concentrations (0.1‑10 µg/cm2) of particles and fibres for 24 h. Subsequently, the gene expression of X‑linked inhibitor of apoptosis (XIAP), superoxide dismutase (SOD)1 and SOD2 were analysed by reverse transcription‑quantitative polymerase chain reaction. All investigated granular particles induce ROS production in A549 lung carcinoma cells within 24 h. Hematite increased ROS production in a dose‑dependent manner. A concentration of >1 µg/cm2 TiO2 na with its disordered surface, demonstrated the greatest ability to generate ROS. Therefore, the crystalline surface structure of the particle may be considered as a determinant of the extent of ROS induction by the particle. Fibrous particle compared with granular particles were associated with a lower ability to generate ROS. Glass fibres did not significantly increase ROS production in A549 cells, but elevated gene expression of SOD2 was observed. The results demonstrated that in general, the ability of particles to generate ROS

  1. Aerosol Measurements of the Fine and Ultrafine Particle Content of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Chen, Da-Ren; Smith, Sally A.

    2007-01-01

    We report the first quantitative measurements of the ultrafine (20 to 100 nm) and fine (100 nm to 20 m) particulate components of Lunar surface regolith. The measurements were performed by gas-phase dispersal of the samples, and analysis using aerosol diagnostic techniques. This approach makes no a priori assumptions about the particle size distribution function as required by ensemble optical scattering methods, and is independent of refractive index and density. The method provides direct evaluation of effective transport diameters, in contrast to indirect scattering techniques or size information derived from two-dimensional projections of high magnification-images. The results demonstrate considerable populations in these size regimes. In light of the numerous difficulties attributed to dust exposure during the Apollo program, this outcome is of significant importance to the design of mitigation technologies for future Lunar exploration.

  2. Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.

    1971-01-01

    The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.

  3. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-07-01

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  4. Determinants of spikes in ultrafine particle concentration whilst commuting by bus

    NASA Astrophysics Data System (ADS)

    Lim, Shanon; Dirks, Kim N.; Salmond, Jennifer A.; Xie, Shanju

    2015-07-01

    This paper examines concentration of ultrafine particles (UFPs) based on data collected using high-resolution UFP monitors whilst travelling by bus during rush hour along three different urban routes in Auckland, New Zealand. The factors influencing in-bus UFP concentration were assessed using a combination of spatial, statistical and GIS analysis techniques to determine both spatial and temporal variability. Results from 68 bus trips showed that concentrations varied more within a route than between on a given day, despite differences in urban morphology, land use and traffic densities between routes. A number of trips were characterised by periods of very rapid increases in UFPs (concentration 'spikes'), followed by slow declines. Trips which recorded at least one spike (an increase of greater than 10,000 pt/cm3) resulted in significantly higher mean concentrations. Spikes in UFPs were significantly more likely to occur when travelling at low speeds and when passengers were alighting and boarding at bus stops close to traffic light intersections.

  5. Workplace Measurements of Ultrafine Particles-A Literature Review.

    PubMed

    Viitanen, Anna-Kaisa; Uuksulainen, Sanni; Koivisto, Antti J; Hämeri, Kaarle; Kauppinen, Timo

    2017-08-01

    Workers are exposed to ultrafine particles (UFP) in a number of occupations. In order to summarize the current knowledge regarding occupational exposure to UFP (excluding engineered nanoparticles), we gathered information on UFP concentrations from published research articles. The aim of our study was to create a basis for future epidemiological studies that treat UFP as an exposure factor. The literature search found 72 publications regarding UFP measurements in work environments. These articles covered 314 measurement results and tabled concentrations. Mean concentrations were compared to typical urban UFP concentration level, which was considered non-occupational background concentration. Mean concentrations higher than the typical urban UFP concentration were reported in 240 workplace measurements. The results showed that workers' exposure to UFP may be significantly higher than their non-occupational exposure to background concentration alone. Mean concentrations of over 100 times the typical urban UFP concentration were reported in welding and metal industry. However, according to the results of the review, measurements of the UFP in work environments are, to date, too limited and reported too heterogeneous to allow us to draw general conclusions about workers' exposure. Harmonization of measurement strategies is essential if we are to generate more reliable and comparable data in the future. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Plume Mechanics and Particle Growth Processes.

    DTIC Science & Technology

    1981-02-10

    ini- tiated by a critical review, subsequently published (1), of the kinetics of ultrafine particles . This review has had an IA 2 important influence...particles were found in the size range 0.01-0.25 p.m (7). 8 Publications and Technical Reports 1. Brock, J. R., "The Kinetics of Ultrafine Particles ," in...of Ultrafine Particles ," Sub- mitted for publication. 4. Brock, J. R., "On the Growth of Condensation Aerosols," Submitted for publication. 5. Brock

  7. Experimental Investigation of the Opacity of Small Particles

    DTIC Science & Technology

    1965-04-01

    Ultrafine Particles , ed. by W. E. Kuhn, H. Lamprey and C. Sheer. John Wiley and Sons, New York, 1963, pp. 262-270. 14 12. Quantinetz, M., et al: The...713-716. 14. Loftman, K. A.: Coatings Incorporating Ultrafine Particles . Ultrafine Particles , ed. by W. Kuhn, H. Lamprey and C. Sheer, John Wiley and

  8. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-08-15

    Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20 μg/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor α, interleukin 6 and interleukin 1β. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities

    NASA Astrophysics Data System (ADS)

    Azarmi, Farhad; Kumar, Prashant; Mulheron, Mike; Colaux, Julien L.; Jeynes, Chris; Adhami, Siavash; Watts, John F.

    2015-08-01

    Understanding of the emissions of coarse (PM10 ≤10 μm), fine (PM2.5 ≤2.5 μm) and ultrafine particles (UFP <100 nm) from refurbishment activities and their dispersion into the nearby environment is of primary importance for developing efficient risk assessment and management strategies in the construction and demolition industry. This study investigates the release, occupational exposure and physicochemical properties of particulate matter, including UFPs, from over 20 different refurbishment activities occurring at an operational building site. Particles were measured in the 5-10,000-nm-size range using a fast response differential mobility spectrometer and a GRIMM particle spectrometer for 55 h over 8 days. The UFPs were found to account for >90 % of the total particle number concentrations and <10 % of the total mass concentrations released during the recorded activities. The highest UFP concentrations were 4860, 740, 650 and 500 times above the background value during wall-chasing, drilling, cementing and general demolition activities, respectively. Scanning electron microscopy, X-ray photoelectron spectroscopy and ion beam analysis were used to identify physicochemical characteristics of particles and attribute them to probable sources considering the size and the nature of the particles. The results confirm that refurbishment activities produce significant levels (both number and mass) of airborne particles, indicating a need to develop appropriate regulations for the control of occupational exposure of operatives undertaking building refurbishment.

  10. Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges

    2016-02-15

    Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less

  11. Synthesis and reactivity of ultra-fine coal liquefaction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Fulton, J.L.

    1992-10-01

    The Pacific Northwest Laboratory is currently developing ultra-fine iron-based coal liquefaction catalysts using two new particle production technologies: (1) modified reverse micelles (MRM) and (2) rapid thermal decomposition of solutes (RTDS). These methodologies have been shown to allow control over both particle size (from 1 nm to 60 nm) and composition when used to produce ultra-fine iron-based materials. Powders produced using these methods are found to be selective catalysts for carbon-carbon bond scission using the naphthyl bibenzylmethane model compound, and to promote the production of THF soluble coal products during liquefaction studies. This report describes the materials produced by bothmore » MRM and the RTDS methods and summarizes the results of preliminary catalysis studies using these materials.« less

  12. Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity.

    PubMed

    Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan

    2011-12-01

    The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.

  13. Electrosurgical Smoke: Ultrafine Particle Measurements and Work Environment Quality in Different Operating Theatres.

    PubMed

    Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M

    2017-01-30

    Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel's exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems.

  14. Electrosurgical Smoke: Ultrafine Particle Measurements and Work Environment Quality in Different Operating Theatres

    PubMed Central

    Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M.

    2017-01-01

    Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel’s exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems. PMID:28146089

  15. In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Guo, Zai Ping; Du, Guodong; Nuli, Yanna; Hassan, Mohd Faiz; Jia, Dianzeng

    Ultra-fine, porous, tin oxide-carbon (SnO 2/C) nanocomposites are fabricated by a molten salt method at 300 °C, and malic acid is decomposed as the carbon source. In situ synthesis is favourable for the combination of carbon and SnO 2. The structure and morphology are confirmed by X-ray diffraction analysis, specific surface-area measurements, and transmission electron microscopy (TEM). Examination of TEM images reveals that the SnO 2 nanoparticles are embedded in the carbon matrix, with sizes between 2 and 5 nm. The electrochemical measurements show that the nanocomposite delivers a high capacity with good capacity retention as an anode material for lithium-ion batteries, due to the combination of the ultra-fine porous structure and the carbon component.

  16. Composition of Metallic Elements and Size Distribution of Fine and Ultrafine Particles in a Steelmaking Factory.

    PubMed

    Marcias, Gabriele; Fostinelli, Jacopo; Catalani, Simona; Uras, Michele; Sanna, Andrea Maurizio; Avataneo, Giuseppe; De Palma, Giuseppe; Fabbri, Daniele; Paganelli, Matteo; Lecca, Luigi Isaia; Buonanno, Giorgio; Campagna, Marcello

    2018-06-07

    The characteristics of aerosol, in particular particle size and chemical composition, can have an impact on human health. Particle size distribution and chemical composition is a necessary parameter in occupational exposure assessment conducted in order to understand possible health effects. The aim of this study was to characterize workplace airborne particulate matter in a metallurgical setting by synergistically using two different approaches; Methodology: Analysis of inhalable fraction concentrations through traditional sampling equipment and ultrafine particles (UFP) concentrations and size distribution was conducted by an Electric Low-Pressure Impactor (ELPI+™). The determination of metallic elements (ME) in particles was carried out by inductively coupled plasma mass spectrometry; Results: Inhalable fraction and ME concentrations were below the limits set by Italian legislation and the American Conference of Governmental Industrial Hygienists (ACGIH, 2017). The median of UFP was between 4.00 × 10⁴ and 2.92 × 10⁵ particles/cm³. ME concentrations determined in the particles collected by ELPI show differences in size range distribution; Conclusions: The adopted synergistic approach enabled a qualitative and quantitative assessment of the particles in steelmaking factories. The results could lead to a better knowledge of occupational exposure characterization, in turn affording a better understanding of occupational health issues due to metal fumes exposure.

  17. On the spatial distribution and evolution of ultrafine particles in Barcelona

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Alastuey, A.; O'Dowd, C.; Harrison, R. M.; Wenger, J.; Gómez-Moreno, F. J.

    2013-01-01

    Sources and evolution of ultrafine particles were investigated both horizontally and vertically in the large urban agglomerate of Barcelona, Spain. Within the SAPUSS project (Solving Aerosol Problems by Using Synergistic Strategies), a large number of instruments was deployed simultaneously at different monitoring sites (road, two urban background, regional background, urban tower 150 m a.s.l., urban background tower site 80 m a.s.l.) during a 4 week period in September-October 2010. Particle number concentrations (N>5 nm) are highly correlated with black carbon (BC) at all sites only under strong vehicular traffic influences. By contrast, under cleaner atmospheric conditions (low condensation sink, CS) such correlation diverges towards much higher N/BC ratios at all sites, indicating additional sources of particles including secondary production of freshly nucleated particles. Size-resolved aerosol distributions (N10-500) as well as particle number concentrations (N>5 nm) allow us to identify three types of nucleation and growth events: (1) a regional type event originating in the whole study region and impacting almost simultaneously the urban city of Barcelona and the surrounding urban background area; (2) a regional type event impacting only the regional background area but not the urban agglomerate; (3) an urban type event which originates only within the city centre but whose growth continues while transported away from the city to the regional background. Furthermore, during these clean air days, higher N are found at tower level than at ground level only in the city centre whereas such a difference is not so pronounced at the remote urban background tower. In other words, this study suggests that the column of air above the city ground level possesses the optimal combination between low CS and high vapour source, hence enhancing the concentrations of freshly nucleated particles. By contrast, within stagnant polluted atmospheric conditions, higher N and BC

  18. Importance of indoor dust biological ultrafine particles in the pathogenesis of chronic inflammatory lung diseases

    PubMed Central

    Kim, Yoon-Keun; Kang, Tae Soo; Kim, You-Young

    2017-01-01

    The role of infectious agents in the etiology of inflammatory diseases once believed to be non-infectious is increasingly being recognized. Many bacterial components in the indoor dust can evoke inflammatory lung diseases. Bacteria secrete nanometer-sized vesicles into the extracellular milieu, so-called extracellular vesicles (EV). which are pathophysiologically related to inflammatory diseases. Microbiota compositions in the indoor dust revealed the presence of both Gram-negative and Gram-positive bacteria. Escherichia coli is a model organism of Gram-negative Enterobacteriaceae. The repeated inhalation of E. coli-derived EVs caused neutrophilic inflammation and emphysema in a dose-dependent manner. The emphysema induced by E. coli-derived EVs was partially eliminated by the absence of Interferon-gamma or interleukin-17, suggesting that Th1 and/or Th17 cell responses are important in the emphysema development. Meanwhile, the repeated inhalation of Staphylococcus aureus-derived EVs did not induce emphysema, although they induced neutrophilic inflammation in the lung. In terms of microbial EV compositions in the indoor dust, genera Pseudomonas, Acinetobacter, Enterobacter, and Staphylococcus were dominant. As for the clinical significance of sensitization to EVs in the indoor dust, EV sensitization was closely associated with asthma, chronic obstructive pulmonary disorder (COPD), and lung cancer. These data indicate that biological ultrafine particles in the indoor dust, which are mainly composed of microbial EVs, are important in the pathogenesis of chronic lung diseases associated with neutrophilic inflammation. Taken together, microbial EVs in the indoor dust are an important diagnostic and therapeutic target for the control of chronic lung diseases, such as asthma, COPD, and lung cancer. PMID:29161804

  19. ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD

    EPA Science Inventory

    Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...

  20. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes

    NASA Astrophysics Data System (ADS)

    Ragettli, Martina S.; Corradi, Elisabetta; Braun-Fahrländer, Charlotte; Schindler, Christian; de Nazelle, Audrey; Jerrett, Michael; Ducret-Stich, Regina E.; Künzli, Nino; Phuleria, Harish C.

    2013-10-01

    A better understanding of ultrafine particle (UFP) exposure in different urban transport microenvironments is important for epidemiological exposure assessments and for policy making. Three sub-studies were performed to characterize personal exposure to UFP concentration and average particle size distribution diameters in frequently traveled commuter microenvironments in the city of Basel, Switzerland. First, the spatial variation of sidewalk UFP exposures within urban areas and transport-specific microenvironments was explored. Second, exposure to UFP concentration and average particle size were quantified for five modes of transportation (walking, bicycle, bus, tram, car) during different times of the day and week, along the same route. Finally, the contribution of bicycle commuting along two different routes (along main roads, away from main roads) to total daily exposures was assessed by 24-h personal measurements. In general, smaller average particle sizes and higher UFP levels were measured at places and for travel modes in close proximity to traffic. Average trip UFP concentrations were higher in car (31,784 particles cm-³) and on bicycle (22,660 particles cm-³) compared to walking (19,481 particles cm-³) and public transportation (14,055-18,818 particles cm-³). Concentrations were highest for all travel modes during weekday morning rush hours, compared to other time periods. UFP concentration was lowest in bus, regardless of time period. Bicycle travel along main streets between home and work place (24 min on average) contributed 21% and 5% to total daily UFP exposure in winter and summer, respectively. Contribution of bicycle commutes to total daily UFP exposure could be reduced by half if main roads are avoided. Our results show the importance of considering commuter behavior and route choice in exposure assessment studies.

  1. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3

    NASA Astrophysics Data System (ADS)

    Sivkov, Alexander; Naiden, Evgenii; Ivashutenko, Alexander; Shanenkov, Ivan

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe3O4, hematite α-Fe2O3 and ε-Fe2O3. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe2O3 is increased up to 50% at the same time with decreasing the Fe3O4 phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe2O3 on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe2O3, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz.

  2. Total deposition of ultrafine particles in the lungs of healthy men and women: experimental and theoretical results.

    PubMed

    Sturm, Robert

    2016-06-01

    Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s(-1)). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40-70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by airway generation

  3. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  4. Ultrafine particles generated from coloring with scented markers in the presence of ozone.

    PubMed

    Fung, C-C D; Shu, S; Zhu, Y

    2014-10-01

    High concentrations of ultrafine particles (UFPs) have been previously reported during school art activities. This is possibly due to secondary organic aerosols (SOAs) formed from reactions between ozone and volatile organic compounds emitted from art products. Four brands of markers, three scented and one unscented, were tested inside a stainless steel chamber at eight different ozone concentrations between 0 and 300 ppb. Out of the 32 tested markers, only the lemon- and orange-scented markers from one brand reacted with ozone to form UFPs. Limonene, pinene, and several other terpenes were identified as ingredients of ink in SOA-forming markers. Coloring with one lemon-scented marker for 1 min without ozone generated on average approximately 26 ± 4 ppb of limonene inside the chamber. At 150 ppb ozone, using one lemon marker for 1 min formed on average 7.7 × 10(10) particles. The particle size distribution indicated an initial mode of 15 nm which grew to 40 nm. At 50 ppb ozone and below, no significant SOA formation occurred. The number of particles formed is moderately correlated with the mass of ink used (R(2)  = 0.68). Based on these data, scented markers are not likely a strong source of SOA under normal indoor ozone levels. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Exposure to ultrafine particles and PM 2.5 in four Sydney transport modes

    NASA Astrophysics Data System (ADS)

    Knibbs, Luke D.; de Dear, Richard J.

    2010-08-01

    Concentrations of ultrafine (<0.1 μm) particles (UFPs) and PM 2.5 (<2.5 μm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM 2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM 2.5 ranged from 2.8 (train) to 8.4 (bus) × 10 4 particles cm -3 and 22.6 (automobile) to 29.6 (bus) μg m -3, respectively, and a statistically significant difference ( p < 0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 10 3 (train) and 2.2 × 10 5 (bus) particles cm -3 and 9.5 (train) to 78.7 (train) μg m -3. Estimated commuter exposures were variable, and the highest return trip mean PM 2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM 2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.

  6. Neuropathological Consequences of Gestational Exposure to Concentrated Ambient Fine and Ultrafine Particles in the Mouse.

    PubMed

    Klocke, Carolyn; Allen, Joshua L; Sobolewski, Marissa; Mayer-Pröschel, Margot; Blum, Jason L; Lauterstein, Dana; Zelikoff, Judith T; Cory-Slechta, Deborah A

    2017-04-01

    Increasing evidence indicates that the central nervous system (CNS) is a target of air pollution. We previously reported that postnatal exposure of mice to concentrated ambient ultrafine particles (UFP; ≤100 nm) via the University of Rochester HUCAPS system during a critical developmental window of CNS development, equivalent to human 3rd trimester, produced male-predominant neuropathological and behavioral characteristics common to multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), in humans. The current study sought to determine whether vulnerability to fine (≤2.5 μm) and UFP air pollution exposure extends to embryonic periods of brain development in mice, equivalent to human 1st and 2nd trimesters. Pregnant mice were exposed 6 h/day from gestational days (GDs) 0.5-16.5 using the New York University VACES system to concentrated ambient fine/ultrafine particles at an average concentration of 92.69 μg/m3 over the course of the exposure period. At postnatal days (PNDs) 11-15, neuropathological consequences were characterized. Gestational air pollution exposures produced ventriculomegaly, increased corpus callosum (CC) area and reduced hippocampal area in both sexes. Both sexes demonstrated CC hypermyelination and increased microglial activation and reduced total CC microglia number. Analyses of iron deposition as a critical component of myelination revealed increased iron deposition in the CC of exposed female offspring, but not in males. These findings demonstrate that vulnerability of the brain to air pollution extends to gestation and produces features of several neurodevelopmental disorders in both sexes. Further, they highlight the importance of the commonalities of components of particulate matter exposures as a source of neurotoxicity and common CNS alterations. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  7. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact.

    PubMed

    Hedberg, Yolanda; Midander, Klara; Wallinder, Inger Odnevall

    2010-07-01

    detection, <0.008% of particles released or dissolved as iron or chromium) for the alloy particles (ferrochromium alloy and stainless steel), the pure Cr particles, and the metal oxide particles. The released fraction of Cr (Cr/[Cr + Fe]) varied with the material investigated, the test medium, and the exposure time and cannot be predicted from either the bulk or the surface composition. Chromium was released as noncomplexed Cr(III) and in addition in very low concentrations (<3 microg/L). Nickel released was under the limit of detection (0.5 microg/L), except for ultrafine stainless steel particles (<10 microg/L). It is evident that media chemistry and material properties from a bulk and surface perspective, as well as other particle characteristics, and the chemical speciation of released metals have to be considered when assessing any potential hazard or risk induced by sparingly soluble metal or alloy particles. (c) 2010 SETAC.

  8. Desorption of SVOCs from Heated Surfaces in the Form of Ultrafine Particles.

    PubMed

    Wallace, Lance A; Ott, Wayne R; Weschler, Charles J; Lai, Alvin C K

    2017-02-07

    Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.

  9. Direct evidence for coastal iodine particles from Laminaria macroalgae - linkage to emissions of molecular iodine

    NASA Astrophysics Data System (ADS)

    McFiggans, G.; Coe, H.; Burgess, R.; Allan, J.; Cubison, M.; Alfarra, M. R.; Saunders, R.; Saiz-Lopez, A.; Plane, J. M. C.; Wevill, D.; Carpenter, L.; Rickard, A. R.; Monks, P. S.

    2004-05-01

    Renewal of ultrafine aerosols in the marine boundary layer may lead to repopulation of the marine distribution and ultimately determine the concentration of cloud condensation nuclei (CCN). Thus the formation of nanometre-scale particles can lead to enhanced scattering of incoming radiation and a net cooling of the atmosphere. The recent demonstration of the chamber formation of new particles from the photolytic production of condensable iodine-containing compounds from diiodomethane (CH2I2), (O'Dowd et al., 2002; Kolb, 2002; Jimenez et al., 2003a; Burkholder and Ravishankara, 2003), provides an additional mechanism to the gas-to-particle conversion of sulphuric acid formed in the photo-oxidation of dimethylsulphide for marine aerosol repopulation. CH2I2 is emitted from seaweeds (Carpenter et al., 1999, 2000) and has been suggested as an initiator of particle formation. We demonstrate here for the first time that ultrafine iodine-containing particles are produced by intertidal macroalgae exposed to ambient levels of ozone. The particle composition is very similar both to those formed in the chamber photo-oxidation of diiodomethane and in the oxidation of molecular iodine by ozone. The particles formed in all three systems are similarly aspherical. When small, those formed in the molecular iodine system swell only moderately when exposed to increased humidity environments, and swell progressively less with increasing size; this behaviour occurs whether they are formed in dry or humid environments, in contrast to those in the CH2I2 system. Direct coastal boundary layer observations of molecular iodine, ultrafine particle production and iodocarbons are reported. Using a newly measured molecular iodine photolysis rate, it is shown that, if atomic iodine is involved in the observed particle bursts, it is of the order of at least 1000 times more likely to result from molecular iodine photolysis than diiodomethane photolysis. A hypothesis for molecular iodine release from

  10. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    PubMed Central

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-01-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones. PMID:27827413

  11. Analysis of the ultrafine fraction of the Apollo 14 regolith

    NASA Technical Reports Server (NTRS)

    Finkelman, R. B.

    1973-01-01

    Analyses were obtained on more than 2400 randomly selected particles from the sub-37 micron (ultrafine) fraction of ten Apollo 14 regolith samples. The analyses were conducted with an energy dispersive electron microprobe system. The semiquantitative data were used to group the particles into ten categories. The pyroxene/plagioclase and olivine/plagioclase ratios are inconsistent with those ratios in the Apollo 14 breccias and rocks. The data suggest that fragmented basalts similar to Apollo 12 olivine basalts may have made significant contributions to the ultrafine fraction of the Fra Mauro regolith. Among a number of unusual particles encountered are brown, birefringent lath-shaped grains with 60 wt % SiO2 and 34 wt % FeO(FeSi2O5) and a glass with 20 to 25 wt % CaO, 0 to 8 wt % MgO, 40 to 45 wt % Al2O3 and approximately 30 wt % SiO2.

  12. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls.

    PubMed

    Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O

    2017-10-01

    There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles

    PubMed Central

    Lane, Kevin J; Levy, Jonathan I; Scammell, Madeleine Kangsen; Patton, Allison P; Durant, John L; Mwamburi, Mkaya; Zamore, Wig; Brugge, Doug

    2015-01-01

    Exposures to ultrafine particles (<100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year for a subset of participants (n=140) in the Community Assessment of Freeway Exposure and Health study. We modified the ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home. Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves exposure assessment for air pollutants that vary greatly in space and time. PMID:25827314

  14. Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain.

    PubMed

    Mazaheri, Mandana; Reche, Cristina; Rivas, Ioar; Crilley, Leigh R; Álvarez-Pedrerol, Mar; Viana, Mar; Tobias, Aurelio; Alastuey, Andrés; Sunyer, Jordi; Querol, Xavier; Morawska, Lidia

    2016-03-01

    Ambient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona. PNC modes were analysed with respect to ambient temperature, land use and urban characteristics, combined with the measured elemental carbon concentrations, NOx (Brisbane) and NO2 (Barcelona). The trends and modes of the quantified weekday average daily cycles of ambient PNC exhibited significant differences between the two cities. PNC increases were observed during traffic rush hours in both cases. However, the mid-day peak was dominant in Brisbane schools and had the highest contribution to total PNC for both indoors and outdoors. In Barcelona, the contribution from traffic was highest for ambient PNC, while the mid-day peak had a slightly higher contribution for indoor concentrations. Analysis of the relationships between PNC and land use characteristics in Barcelona schools showed a moderate correlation with the percentage of road network area and an anti-correlation with the percentage of green area. No statistically significant correlations were found for Brisbane. Overall, despite many similarities between the two cities, school-based exposure patterns were different. The main source of ambient PNC at schools was shown to be traffic in Barcelona and mid-day new particle formation in Brisbane. The mid-day PNC peak in Brisbane could have been driven by the combined effect of background and meteorological conditions, as well as other local/distant sources. The results have implications for urban development

  15. High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium.

    PubMed

    Xue, Sichuang; Fan, Zhe; Lawal, Olawale B; Thevamaran, Ramathasan; Li, Qiang; Liu, Yue; Yu, K Y; Wang, Jian; Thomas, Edwin L; Wang, Haiyan; Zhang, Xinghang

    2017-11-21

    Aluminium typically deforms via full dislocations due to its high stacking fault energy. Twinning in aluminium, although difficult, may occur at low temperature and high strain rate. However, the 9R phase rarely occurs in aluminium simply because of its giant stacking fault energy. Here, by using a laser-induced projectile impact testing technique, we discover a deformation-induced 9R phase with tens of nm in width in ultrafine-grained aluminium with an average grain size of 140 nm, as confirmed by extensive post-impact microscopy analyses. The stability of the 9R phase is related to the existence of sessile Frank loops. Molecular dynamics simulations reveal the formation mechanisms of the 9R phase in aluminium. This study sheds lights on a deformation mechanism in metals with high stacking fault energies.

  16. Daily trends and source apportionment of ultrafine particulate mass (PM0.1) over an annual cycle in a typical California city.

    PubMed

    Kuwayama, Toshihiro; Ruehl, Chris R; Kleeman, Michael J

    2013-12-17

    Toxicology studies indicate that inhalation of ultrafine particles (Dp < 0.1 μm) causes adverse health effects, presumably due to their large surface area-to-volume ratio that can drive heterogeneous reactions. Epidemiological associations between ultrafine particles and health effects, however, have been difficult to identify due to the lack of appropriate long-term monitoring and exposure data. The majority of the existing ultrafine particle epidemiology studies are based on exposure to particle number, although an independent analysis suggests that ultrafine particle mass (PM0.1) correlates better with particle surface area. More information is needed to characterize PM0.1 exposure to fully evaluate the health effects of ultrafine particles using epidemiology. The present study summarizes 1 year of daily PM0.1 chemistry and source apportionment at Sacramento, CA, USA. Positive matrix factorization (PMF) was used to resolve PM0.1 source contributions from old-technology diesel engines, residential wood burning, rail, regional traffic, and brake wear/road dust. Diesel PM0.1 and total PM0.1 concentrations were reduced by 97 and 26%, respectively, as a result of the adoption of cleaner diesel technology. The strong linear correlation between PM0.1 and particle surface area in central California suggests that the adoption of clean diesel engines reduced particle surface area by similar amounts. PM0.1 sulfate reduction occurred as a result of reduced primary particle surface area available for sulfate condensation. The current study demonstrates the capability of measuring PM0.1 source contributions over a 12 month period and identifies the extended benefits of emissions reduction efforts for diesel engines on ambient concentrations of primary and secondary PM0.1.

  17. Assessing and reducing fine and ultrafine particles inside Los Angeles taxis

    NASA Astrophysics Data System (ADS)

    Yu, Nu; Shu, Shi; Lin, Yan; Zhu, Yifang

    2018-05-01

    Taxi drivers and passengers are exposed to high levels of traffic-related air pollutants, but their exposures to fine (PM2.5) and ultrafine particles (UFPs) and related mitigation strategies are rarely explored. In this study, UFP and PM2.5 concentrations were monitored concurrently inside and outside of 22 taxis under different ventilation and mitigation conditions. Under realistic working conditions (no mitigation; NM), the average UFP and PM2.5 levels inside taxis were 1.46 × 104 particles/cm3 and 26 μg/m3, respectively. When the taxi ventilation was set to outside air mode and the windows kept closed, in-cabin UFP and PM2.5 concentrations are significantly associated with on-road concentrations, driving speed, and cabin air filter usage. The average in-cabin to on-roadway (I/O) ratios for UFP and PM2.5 were reduced from 0.60 to 0.75 under NM, to 0.47 and 0.52 under the most stringent mitigation strategy of keeping the windows closed and operating a high efficiency cabin air filter (WC + HECA). Among all tested taxi models, Toyota Prius exhibited the lowest UFP and PM2.5 I/O ratios under WC + HECA. Switching cabin air filters from the originally equipped manufacturer filter (OEM) to a HECA filter reduced the UFP and PM2.5 I/O ratios most effectively in Toyota Prius taxis as well.

  18. Measurements of fine and ultrafine particles formation in photocopy centers in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Wei; Hsu, Der-Jen

    This study investigates the levels of particulate matter smaller than 2.5 μm (PM 2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM 2.5 in the 12 photocopy centers ranged from 10 to 83 μg m -3 with an average of 40 μg m -3. The 24-h indoor PM 2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m -3, the 24-h indoor PM 2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm -3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be

  19. Airborne ultrafine particles in a Pacific Island country: Characteristics, sources and implications for human exposure.

    PubMed

    Isley, C F; Nelson, P F; Taylor, M P; Mazaheri, M; Morawska, L; Atanacio, A J; Stelcer, E; Cohen, D D; Morrison, Anthony L

    2017-12-01

    The Pacific Islands carry a perception of having clean air, yet emissions from transport and burning activities are of concern in regard to air quality and health. Ultrafine particle number concentrations (PNCs), one of the best metrics to demonstrate combustion emissions, have not been measured either in Suva or elsewhere in the Islands. This work provides insight into PNC variation across Suva and its relationship with particle mass (PM) concentration and composition. Measurements over a short monitoring campaign provide a vignette of conditions in Suva. Ambient PNCs were monitored for 8 day at a fixed location, and mobile PNC sampling for two days. These were compared with PM concentration (TSP, PM 10 , PM 2.5 , PM 1 ) and are discussed in relation to black carbon (BC) content and PM 2.5 sources, determined from elemental concentrations; for the October 2015 period and longer-term data. Whilst Suva City PM levels remained fairly low, PM 2.5  = 10-12 μg m -3 , mean PNC (1.64 ± 0.02 × 10 4  cm -3 ) was high compared to global data. PNCs were greater during mobile sampling, with means of 10.3 ± 1.4 × 10 4  cm -3 and 3.51 ± 0.07 × 10 4  cm -3 when travelling by bus and taxi, respectively. Emissions from road vehicles, shipping, diesel and open burning were identified as PM sources for the October 2015 period. Transport related ultrafine particle emissions had a significant impact on microscale ambient concentrations, with PNCs near roads being 1.5 to 2 times higher than nearby outdoor locations and peak PNCs occurring during peak traffic times. Further data, particularly on transport and wet-season exposures, are required to confirm results. Understanding PNC in Suva will assist in formulating effective air emissions control strategies, potentially reducing population exposure across the Islands and in developing countries with similar emission characteristics. Suva's PNC was high in comparison to global data; high exposures were related

  20. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    NASA Astrophysics Data System (ADS)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  1. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  2. Total deposition of ultrafine particles in the lungs of healthy men and women: experimental and theoretical results

    PubMed Central

    2016-01-01

    Background Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Methods Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s−1). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Results Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40–70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by

  3. Human peripheral blood mononuclear cells (PBMCs) from smokers release higher levels of IL-1-like cytokines after exposure to combustion-generated ultrafine particles.

    PubMed

    De Falco, Gianluigi; Terlizzi, Michela; Sirignano, Mariano; Commodo, Mario; D'Anna, Andrea; Aquino, Rita P; Pinto, Aldo; Sorrentino, Rosalinda

    2017-02-22

    Ultrafine particles (UFP) generated by combustion processes are often associated with adverse health effects. However, little is known about the inflammatory processes generated by UFP that may underlie their toxicological activity. Murine macrophages (J774.1 cells) and human peripheral blood mononuclear cells (PBMCs) were used to evaluate the molecular mechanism underlying the pro-inflammatory activity of UFP. The addition of soot particles to J774.1 cells induced a concentration-dependent release of IL-1α, IL-1β and IL-33 This effect was not associated with cell death and, in contrast to literature, was pronounced at very low concentrations (5-100 pg/ml). Similarly, UFP induced the release of IL-1α, IL-18 and IL-33 by PBMCs. However, this effect was solely observed in PBMCs obtained from smokers, as the PBMCs from non-smokers instead released higher levels of IL-10. The release of these cytokines after UFP exposure was caspase-1- and NLRP3 inflammasome-dependent in PBMCs from healthy smokers, whereas IL-1α release was calpain-dependent. These results show that UFP at very low concentrations are able to give rise to an inflammatory process that is responsible for IL-1α, IL-18 and IL-33 release, which is pronounced in PBMCs from smokers, confirming that these individuals are especially susceptible to inflammatory-based airway diseases once exposed to air pollution.

  4. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  5. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  6. Concentration levels and source apportionment of ultrafine particles in road microenvironments

    NASA Astrophysics Data System (ADS)

    Argyropoulos, G.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Voliotis, A.; Tsakis, A.; Chasapidis, L.; Konstandopoulos, A.; Eleftheriadis, K.

    2016-03-01

    A mobile laboratory unit (MOBILAB) with on-board instrumentation (Scanning Mobility Particle Sizer, SMPS; Ambient NOx analyzer) was used to measure size-resolved particle number concentrations (PNCs) of quasi-ultrafine particles (UFPs, 9-372 nm), along with NOx, in road microenvironments. On-road measurements were carried out in and around a large Greek urban agglomeration, the Thessaloniki Metropolitan Area (TMA). Two 2-week measurement campaigns were conducted during the warm period of 2011 and the cold period of 2012. During each sampling campaign, MOBILAB was driven through a 5-day inner-city route and a second 5-day external route covering in total a wide range of districts (urban, urban background, industrial and residential), and road types (major and minor urban roads, freeways, arterial and interurban roads). All routes were conducted during working days, in morning and in afternoon hours under real-world traffic conditions. Spatial classification of MOBILAB measurements involved the assignment of measurement points to location bins defined by the aspect ratio of adjacent urban street canyons (USCs). Source apportionment was further carried out, by applying Positive Matrix Factorization (PMF) to particle size distribution data. Apportioned PMF factors were interpreted, by employing a two-step methodology, which involved (a) statistical association of PMF factor contributions with 12 h air-mass back-trajectories ending at the TMA during MOBILAB measurements, and (b) Multiple Linear Regression (MLR) using PMF factor contributions as the dependent variables, while relative humidity, solar radiation flux, and vehicle speed were used as the independent variables. The applied data analysis showed that low-speed cruise and high-load engine operation modes are the two dominant sources of UFPs in most of the road microenvironments in the TMA, with significant contributions from background photochemical processes during the warm period, explaining the reversed

  7. Quantifying primary and secondary source contributions to ultrafine particles in the UK urban background

    NASA Astrophysics Data System (ADS)

    Hama, S. M. L.; Cordell, R. L.; Monks, P. S.

    2017-10-01

    Total particle number (TNC, ≥7 nm diameter), particulate matter (PM2.5), equivalent black carbon (eBC) and gaseous pollutants (NO, NO2, NOx, O3, CO) have been measured at an urban background site in Leicester over two years (2014 and 2015). A derived chemical climatology for the pollutants showed maximum concentrations for all pollutants during the cold period except O3 which peaked during spring. Quantification of primary and secondary sources of ultrafine particles (UFPs) was undertaken using eBC as a tracer for the primary particle number concentration in the Leicester urban area. At the urban background site, which is influenced by fresh vehicle exhaust emissions, TNC was segregated into two components, TNC = N1 + N2. The component N1 represents components directly emitted as particles and compounds which nucleate immediately after emission. The component N2 represents the particles formed during the dilution and cooling of vehicle exhaust emissions and by in situ new particle formation (NPF). The values of highest N1 (49%) were recorded during the morning rush hours (07:00-09:00 h), correlating with NOx, while the maximum contribution of N2 to TNC was found at midday (11:00-14:00 h), at around 62%, correlated with O3. Generally, the percentage of N2 (57%) was greater than the percentage of N1 (43%) for all days at the AURN site over the period of the study. For the first time the impact of wind speed and direction on N1 and N2 was explored. The overall data analysis shows that there are two major sources contributing to TNC in Leicester: primary sources (traffic emissions) and secondary sources, with the majority of particles being of secondary origin.

  8. Methods for producing monodispersed particles of barium titanate

    DOEpatents

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  9. Oxidant production from source-oriented particulate matter - Part 1: Oxidative potential using the dithiothreitol (DTT) assay

    NASA Astrophysics Data System (ADS)

    Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.

    2015-03-01

    Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these end points are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species in the body, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA, using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single-particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a factor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular emissions, regional source mix, commute hours, daytime mixed layer, and nighttime inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other organics, account for 30%. During nighttime, soluble copper and manganese largely explain the oxidative potential of PM, while daytime has a larger contribution from unknown (likely organic) species.

  10. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOEpatents

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  11. Spatio-temporal variation of urban ultrafine particle number concentrations

    NASA Astrophysics Data System (ADS)

    Ragettli, Martina S.; Ducret-Stich, Regina E.; Foraster, Maria; Morelli, Xavier; Aguilera, Inmaculada; Basagaña, Xavier; Corradi, Elisabetta; Ineichen, Alex; Tsai, Ming-Yi; Probst-Hensch, Nicole; Rivera, Marcela; Slama, Rémy; Künzli, Nino; Phuleria, Harish C.

    2014-10-01

    Methods are needed to characterize short-term exposure to ultrafine particle number concentrations (UFP) for epidemiological studies on the health effects of traffic-related UFP. Our aims were to assess season-specific spatial variation of short-term (20-min) UFP within the city of Basel, Switzerland, and to develop hybrid models for predicting short-term median and mean UFP levels on sidewalks. We collected measurements of UFP for periods of 20 min (MiniDiSC particle counter) and determined traffic volume along sidewalks at 60 locations across the city, during non-rush hours in three seasons. For each monitoring location, detailed spatial characteristics were locally recorded and potential predictor variables were derived from geographic information systems (GIS). We built multivariate regression models to predict local UFP, using concurrent UFP levels measured at a suburban background station, and combinations of meteorological, temporal, GIS and observed site characteristic variables. For a subset of sites, we assessed the relationship between UFP measured on the sidewalk and at the nearby residence (i.e., home outdoor exposure on e.g. balconies). The average median 20-min UFP levels at street and urban background sites were 14,700 ± 9100 particles cm-3 and 9900 ± 8600 particles cm-3, respectively, with the highest levels occurring in winter and the lowest in summer. The most important predictor for all models was the suburban background UFP concentration, explaining 50% and 38% of the variability of the median and mean, respectively. While the models with GIS-derived variables (R2 = 0.61) or observed site characteristics (R2 = 0.63) predicted median UFP levels equally well, mean UFP predictions using only site characteristic variables (R2 = 0.62) showed a better fit than models using only GIS variables (R2 = 0.55). The best model performance was obtained by using a combination of GIS-derived variables and locally observed site characteristics (median: R2 = 0

  12. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    PubMed Central

    2011-01-01

    Background Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM). The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs), in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma. Methods Neonatal rats (7-days of age) were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP), non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed. Results Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated. Conclusions Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes. PMID:21388553

  13. Exposure assessment in Beijing, China: biological agents, ultrafine particles, and lead.

    PubMed

    Dong, Shuofei; Yao, Maosheng

    2010-11-01

    In this study, air samples were taken using a BioSampler and gelatin filters from six sites in Beijing: office, hospital, student dormitory, train station, subway, and a commercial street. Dust samples were also collected using a surface sampler from the same environments. Limulus amoebocyte lysate (LAL) and Glucatell assays were used to quantify sample endotoxin and (1,3)-β-d-glucan concentration levels, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to measure the dust mite allergens (Der p 1 and Der f 1). Ultrafine particle and lead concentrations in these sampling sites were also measured using P-Trak and atomic absorption spectrometer, respectively. Analysis of variance (ANOVA) and linear regression analysis were used to analyze the concentration data. Higher culturable bacteria (12,639 CFU/m3) and fungi (1,806 CFU/m3) concentrations were observed for the train station and the subway system, respectively. For the rest of sampling sites, their concentrations were comparable to those found in western countries, ranging from 990 to 2,276 CFU/m3 for bacteria, and from 119 to 269 CFU/m3 for fungi. ANOVA analysis indicated that there were statistically significant differences between the culturable bacterial and fungal concentration levels obtained for different sites (p value=0.0001 and 0.0047). As for dust allergens, endotoxin, and (1,3)-β-D-glucan, their concentrations also seemed to be comparable to those found in the developed countries. Airborne allergen concentrations ranged from 16 to 68 ng/m3. The dust-borne allergen concentration was observed to range from 0.063 to 0.327 ng/mg. As for endotoxin, the highest airborne concentration of 25.24 ng/m3 was observed for the commercial street, and others ranged from 0.0427 to 0.1259 ng/m3. And dust-borne endotoxin concentration ranged from 58.83 to 6,427.4 ng/mg. For (1,3)-β-D-glucan, the airborne concentration ranged from 0.02 to 1.2 ng/m3. Linear regression analyses showed that there existed

  14. Characterisation of Exposure to Ultrafine Particles from Surgical Smoke by Use of a Fast Mobility Particle Sizer.

    PubMed

    Ragde, Siri Fenstad; Jørgensen, Rikke Bramming; Føreland, Solveig

    2016-08-01

    Electrosurgery is a method based on a high frequency current used to cut tissue and coagulate small blood vessels during surgery. Surgical smoke is generated due to the heat created by electrosurgery. The carcinogenic potential of this smoke was assumed already in the 1980's and there has been a growing interest in the potential adverse health effects of exposure to the particles in surgical smoke. Surgical smoke is known to contain ultrafine particles (UFPs) but the knowledge about the exposure to UFPs produced by electrosurgery is however sparse. The aims of the study were therefore to characterise the exposure to UFPs in surgical smoke during different types of surgical procedures and on different job groups in the operating room, and to characterise the particle size distribution. Personal exposure measurements were performed on main surgeon, assistant surgeon, surgical nurse, and anaesthetic nurse during five different surgical procedures [nephrectomy, breast reduction surgery, abdominoplasty, hip replacement surgery, and transurethral resection of the prostate (TURP)]. The measurements were performed with a Fast Mobility Particle Sizer (FMPS) to assess the exposure to UPFs and to characterize the particle size distribution. Possible predictors of exposure were investigated using Linear Mixed Effect Models. The exposure to UFPs was highest during abdominoplasty arithmetic mean (AM) 3900 particles cm(-3) and lowest during hip replacement surgeries AM 400 particles cm(-3). The different job groups had similar exposure during the same types of surgical procedures. The use of electrosurgery resulted in short term high peak exposure (highest maximum peak value 272 000 particles cm(-3)) to mainly UFPs. The size distribution of particles varied between the different types of surgical procedures, where nephrectomy, hip replacement surgery, and TURP produced UFPs with a dominating mode of 9nm while breast reduction surgery and abdominoplasty produced UFPs with a

  15. Characterizing ultrafine particles and other air pollutants in and around school buses.

    PubMed

    Zhu, Yifang; Zhang, Qunfang

    2014-03-01

    Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter < 100 nm). Children are particularly at risk because of their immature respiratory systems and higher breathing rates per body mass. This study aimed to characterize UFP, PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter), and other vehicular-emitted pollutants in and around school buses. Four sub-studies were conducted, including: 1. On-road tests to measure in-cabin air pollutant levels while school buses were being driven; 2. Idling tests to determine the contributions of tailpipe emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age

  16. Human peripheral blood mononuclear cells (PBMCs) from smokers release higher levels of IL-1-like cytokines after exposure to combustion-generated ultrafine particles

    PubMed Central

    De Falco, Gianluigi; Terlizzi, Michela; Sirignano, Mariano; Commodo, Mario; D’Anna, Andrea; Aquino, Rita P.; Pinto, Aldo; Sorrentino, Rosalinda

    2017-01-01

    Ultrafine particles (UFP) generated by combustion processes are often associated with adverse health effects. However, little is known about the inflammatory processes generated by UFP that may underlie their toxicological activity. Murine macrophages (J774.1 cells) and human peripheral blood mononuclear cells (PBMCs) were used to evaluate the molecular mechanism underlying the pro-inflammatory activity of UFP. The addition of soot particles to J774.1 cells induced a concentration-dependent release of IL-1α, IL-1β and IL-33 This effect was not associated with cell death and, in contrast to literature, was pronounced at very low concentrations (5–100 pg/ml). Similarly, UFP induced the release of IL-1α, IL-18 and IL-33 by PBMCs. However, this effect was solely observed in PBMCs obtained from smokers, as the PBMCs from non-smokers instead released higher levels of IL-10. The release of these cytokines after UFP exposure was caspase-1- and NLRP3 inflammasome-dependent in PBMCs from healthy smokers, whereas IL-1α release was calpain-dependent. These results show that UFP at very low concentrations are able to give rise to an inflammatory process that is responsible for IL-1α, IL-18 and IL-33 release, which is pronounced in PBMCs from smokers, confirming that these individuals are especially susceptible to inflammatory-based airway diseases once exposed to air pollution. PMID:28223692

  17. Ambient ultrafine particle levels at residential and reference sites in urban and rural Switzerland.

    PubMed

    Meier, Reto; Eeftens, Marloes; Aguilera, Inmaculada; Phuleria, Harish C; Ineichen, Alex; Davey, Mark; Ragettli, Martina S; Fierz, Martin; Schindler, Christian; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-03-03

    Although there is evidence that ultrafine particles (UFP) do affect human health there are currently no legal ambient standards. The main reasons are the absence of spatially resolved exposure data to investigate long-term health effects and the challenge of defining representative reference sites for monitoring given the high dependence of UFP on proximity to sources. The objectives of this study were to evaluate the spatial distribution of UFP in four areas of the Swiss Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) and to investigate the representativeness of routine air monitoring stations for residential sites in these areas. Repeated UFP measurements during three seasons have been conducted at a total of 80 residential sites and four area specific reference sites over a median duration of 7 days. Arithmetic mean residential PNC scattered around the median of 10,800 particles/cm(3) (interquartile range [IQR] = 7800 particles/cm(3)). Spatial within area contrasts (90th/10th percentile ratios) were around two; increased contrasts were observed during weekday rush-hours. Temporal UFP patterns were comparable at reference and residential sites in all areas. Our data show that central monitoring sites can represent residential conditions when locations are well chosen with respect to the local sources--namely traffic. For epidemiological research, locally resolved spatial models are needed to estimate individuals' long-term exposures to UFP of outdoor origin at home, during commute and at work.

  18. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations.

    PubMed

    Hudda, N; Fruin, S A

    2016-04-05

    We measured particle size distributions and spatial patterns of particle number (PN) and particle surface area concentrations downwind from the Los Angeles International Airport (LAX) where large increases (over local background) in PN concentrations routinely extended 18 km downwind. These elevations were mostly comprised of ultrafine particles smaller than 40 nm. For a given downwind distance, the greatest increases in PN concentrations, along with the smallest mean sizes, were detected at locations under the landing jet trajectories. The smaller size of particles in the impacted area, as compared to the ambient urban aerosol, increased calculated lung deposition fractions to 0.7-0.8 from 0.5-0.7. A diffusion charging instrument (DiSCMini), that simulates alveolar lung deposition, measured a fivefold increase in alveolar-lung deposited surface area concentrations 2-3 km downwind from the airport (over local background), decreasing steadily to a twofold increase 18 km downwind. These ratios (elevated lung-deposited surface area over background) were lower than the corresponding ratios for elevated PN concentrations, which decreased from tenfold to twofold over the same distance, but the spatial patterns of elevated concentrations were similar. It appears that PN concentration can serve as a nonlinear proxy for lung deposited surface area downwind of major airports.

  19. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.

    PubMed

    Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey

    2016-03-01

    Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE PAGES

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; ...

    2016-06-27

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  1. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  2. Effect of cabin ventilation rate on ultrafine particle exposure inside automobiles.

    PubMed

    Knibbs, Luke D; de Dear, Richard J; Morawska, Lidia

    2010-05-01

    We alternately measured on-road and in-vehicle ultrafine (<100 nm) particle (UFP) concentration for 5 passenger vehicles that comprised an age range of 18 years. A range of cabin ventilation settings were assessed during 301 trips through a 4 km road tunnel in Sydney, Australia. Outdoor air flow (ventilation) rates under these settings were quantified on open roads using tracer gas techniques. Significant variability in tunnel trip average median in-cabin/on-road (I/O) UFP ratios was observed (0.08 to approximately 1.0). Based on data spanning all test automobiles and ventilation settings, a positive linear relationship was found between outdoor air flow rate and I/O ratio, with the former accounting for a substantial proportion of variation in the latter (R(2) = 0.81). UFP concentrations recorded in-cabin during tunnel travel were significantly higher than those reported by comparable studies performed on open roadways. A simple mathematical model afforded the ability to predict tunnel trip average in-cabin UFP concentrations with good accuracy. Our data indicate that under certain conditions, in-cabin UFP exposures incurred during tunnel travel may contribute significantly to daily exposure. The UFP exposure of automobile occupants appears strongly related to their choice of ventilation setting and vehicle.

  3. Ultrafine Particle Metrics and Research Considerations: Review of the 2015 UFP Workshop

    EPA Science Inventory

    In February 2015, the United States Environmental Protection Agency (EPA) sponsored a workshop in Research Triangle Park, North Carolina, USA to review the current state of the science on emissions, air quality impacts, and health effects associated with exposures to ultrafine pa...

  4. A hybrid chip based on aerodynamics and electrostatics for the size-dependent classification of ultrafine and nano particles.

    PubMed

    Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun

    2009-09-21

    Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.

  5. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    PubMed

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  6. Hygroscopic properties of ultrafine particles at an urban site in northern Japan during the summer of 2011

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2013-04-01

    To investigate the hygroscopic property of ultrafine particles, hygroscopic growth factors [g(RH)] of size-segregated atmospheric particles were measured at an urban site in Sapporo, northern Japan, during the summer of 2011. Hygroscopic growth factors at 85% RH [g(85%)] of freshly formed nucleation mode particles ranged from 1.11 to 1.28 with an average of 1.16 ± 0.06. These values are similar to those of secondary organic aerosols, suggesting that low volatile organic vapors are important to the growth of nucleated clusters into quasi-stable aerosol particles larger than 3 nm. Higher g(85%) values (range: 1.21-1.31, AVG: 1.27 ± 0.04) were obtained for grown Aitken mode nucleated particles. This result may indicate that the growth of freshly formed nucleation mode particles to the Aitken mode particles at the urban site can be attributed to condensation not only of low volatility organic vapors but also of highly water-soluble inorganic compounds like sulfuric acid. Diel variations in the number concentrations of less-hygroscopic particles [g(85%) <1.05] were similar to those in NO concentrations, suggesting that less-hygroscopic particles are mainly produced by local anthropogenic emissions such as traffic. Higher g(85%) values (1.27 ± 0.05) were obtained at a dry particle diameter of 120 nm when the air masses originated from downwind areas of the Asian continent, whereas lower g(85%) values (1.19 ± 0.06) were obtained when clean marine air masses arrived in the urban site. These results indicate that the hygroscopic property of large Aitken and small accumulation mode particles (80-165 nm) are highly influenced by the long-range transport of atmospheric particles.

  7. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Heon; Traub, Alison; Evans, Greg J.

    2017-04-01

    Ultrafine particle (UFP), black carbon (BC) and lung deposited surface area (LDSA) concentrations measured during 43 trips on diesel-powered commuter trains revealed elevated exposures under some conditions. When the passenger coaches were pulled by a locomotive, the geometric mean concentrations of UFP, LDSA, and BC were 18, 10, and 6 times higher than the exposure levels when the locomotive pushed the coaches, respectively. In addition, UFP, LDSA, and BC concentrations in pull-trains were 5, 3, and 4 times higher than concentrations measured while walking on city sidewalks, respectively. Exposure to these pollutants was most elevated in the coach located closest to the locomotive: geometric means were 126,000 # cm-3 for UFP, 249 μm2 cm-3 for LDSA, and 17,800 ng m-3 of BC; these concentrations are much higher than those previously reported for other modes of public transportation. Markedly high levels of diesel exhaust are present in passenger trains powered by diesel locomotives operated in pull-mode. Thus, it is recommended that immediate steps be taken to evaluate, and where needed, mitigate exposure in diesel-powered passenger trains, both commuter and inter-city.

  8. Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry.

    PubMed

    Viana, M; Fonseca, A S; Querol, X; López-Lilao, A; Carpio, P; Salmatonidis, A; Monfort, E

    2017-12-01

    Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100nm) and nanoparticles (<50nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10nm-20μm were simultaneously monitored at the emission source, in the potential worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micron-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significantly high UFP concentrations (up to 3.3×10 6 /cm 3 ) inside the spraying chamber, which impacted exposure concentrations in the worker area outside the spraying chamber (up to 8.3×10 5 /cm 3 ). Environmental release of UFPs was also detected (3.9×10 5 /cm 3 , outside the exhaust tube). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micron-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of UFP exposure in the worker area. These findings demonstrate the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Oxidant production from source-oriented particulate matter - Part 1: Oxidative potential using the dithiothreitol (DTT) assay

    NASA Astrophysics Data System (ADS)

    Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.

    2014-09-01

    Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these endpoints are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine (Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a actor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular Emissions, Regional Source Mix, Commute Hours, Daytime Mixed Layer and Nighttime Inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion the volume-normalized oxidative potential, which also accounts for the source's prevalence, cooking sources account for 18-29% of the total DTT loss while mobile (traffic) sources account for 16-28%. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other

  10. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  11. Air quality in the German-Czech border region: A focus on harmful fractions of PM and ultrafine particles

    NASA Astrophysics Data System (ADS)

    Schladitz, Alexander; Leníček, Jan; Beneš, Ivan; Kováč, Martin; Skorkovský, Jiří; Soukup, Aleš; Jandlová, Jana; Poulain, Laurent; Plachá, Helena; Löschau, Gunter; Wiedensohler, Alfred

    2015-12-01

    A comprehensive air quality study has been carried out at two urban background sites in Annaberg-Buchholz (Germany) and Ústí nad Labem (Czech Republic) in the German-Czech border region between January 2012 and June 2014. Special attention was paid to quantify harmful fractions of particulate matter (PM) and ultrafine particle number concentration (UFP) from solid fuel combustion and vehicular traffic. Source type contributions of UFP were quantified by using the daily concentration courses of UFP and nitrogen oxide. Two different source apportionment techniques were used to quantify relative and absolute mass contributions: positive matrix factorization for total PM2.5 and elemental carbon in PM2.5 and chemical mass balance for total PM1 and organic carbon in PM1. Contributions from solid fuel combustion strongly differed between the non-heating period (April-September) and the heating period (October-March). Major sources of solid fuel combustion in this study were wood and domestic coal combustion, while the proportion of industrial coal combustion was low (<3%). In Ústí nad Labem combustion of domestic brown coal was the most important source of organic carbon ranging from 34% to 43%. Wood combustion was an important source of organic carbon in Annaberg-Buchholz throughout the year. Heavy metals and less volatile polycyclic aromatic hydrocarbons (PAH) in the accumulation mode were related to solid fuel combustion with enhanced concentrations during the heating period. In contrast, vehicular PAH emissions were allocated to the Aitken mode. Only in Ústí nad Labem a significant contribution of photochemical new particle formation (e.g. from sulfur dioxide) to UFP of almost 50% was observed during noontime. UFPs from traffic emissions (nucleation particles) and primary emitted soot particles dominated at both sites during the rest of the day. The methodology of a combined source apportionment of UFP and PM can be adapted to other regions of the world with

  12. The impact of inland ships and recreational boats on measured NOx and ultrafine particle concentrations along the waterways

    NASA Astrophysics Data System (ADS)

    van der Zee, Saskia C.; Dijkema, Marieke B. A.; van der Laan, Jorrit; Hoek, Gerard

    2012-08-01

    In Amsterdam, many inhabitants reside in proximity to inland waters. The aim of this study was to assess the impact of passing inland ships and recreational boats, including touring boats, on the air quality near houses close to the water. A measurement campaign was performed at five sites in Amsterdam. Two sites were located along the inland waterways used by cargo ships and recreational boats. The other three sites were located along the canals in the historical city centre, used by touring boats and private recreational boats. At each site, measurements were performed at the waterside and at the facade of houses. Nitrogen oxides (NO and NO2) and ultrafine particles (particle number (PN) concentration), were measured continuously during one afternoon per site, while time and type of passing ships and road traffic was registered. Linear regression analysis was used to analyze the association between passing ships and concentration, adjusted for passing road traffic. There was substantial variation in the impact of passing ships on concentrations at each measuring site, as well as between sites. On average, cargo ships contributed 5 and 4 μg m-3 to NO and NO2, respectively, and 3000 particles cm-3 to PN concentration near houses during the sampling period. Peak concentrations were occasionally substantially higher. Emissions from touring boats had a small but significant impact on NO concentration near houses but not on NO2, with the exception of one site located near the edge of two canals, where boats use extra power to travel around the bent. At this site, touring boats contributed 5 μg m-3 to the local NO2 concentration. No consistent impact of touring boats on PN concentration was observed. Emissions from private recreational boats were not consistently associated with increased NOx or PN concentration. Road traffic intensity was low at the selected measurement sites. Nevertheless, a significant impact of passing diesel-operated delivery vans on house

  13. Relationships of outdoor and indoor ultrafine particles at residences downwind of a major international border crossing in Buffalo, NY.

    PubMed

    McAuley, T R; Fisher, R; Zhou, X; Jaques, P A; Ferro, A R

    2010-08-01

    During winter 2006, indoor and outdoor ultrafine particle (UFP) size distribution measurements for particles with diameters from 5.6 to 165 nm were taken at five homes in a neighborhood directly adjacent to the Peace Bridge Complex (PBC), a major international border crossing connecting Buffalo, New York to Fort Erie, Ontario. Monitoring with 1-s time resolution was conducted for several hours at each home. Participants were instructed to keep all external windows and doors closed and to refrain from cooking, smoking, or other activity that may result in elevating the indoor UFP number concentration. Although the construction and age for the homes were similar, indoor-to-outdoor comparisons indicate that particle infiltration rates varied substantially. Overall, particle concentrations indoors were lower and less variable than particle concentrations outdoors, with average indoor-outdoor ratios ranging from 0.1 to 0.5 (mean 0.34) for particles between 5.6 and 165 nm in diameter. With no indoor sources, the average indoor-outdoor ratios were lowest (0.2) for 20-nm particles, higher (0.3) for particles <10 nm, and highest (0.5) for particles 70-165 nm. This study provides insight into the penetration of UFP into homes and the resulting change in particle size distributions as particles move indoors near a major diesel traffic source. Although people spend most of their time in their homes, exposure estimates for epidemiological studies are generally determined using ambient concentrations. The findings of this study will contribute to improved size-resolved UFP exposure estimates for near roadway exposure assessments and epidemiological studies.

  14. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Qunfang; Zhu, Yifang

    2010-01-01

    Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children's exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.

  15. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position.

    PubMed

    Rim, Donghyun; Wallace, Lance; Nabinger, Steven; Persily, Andrew

    2012-08-15

    Cooking stoves, both gas and electric, are one of the strongest and most common sources of ultrafine particles (UFP) in homes. UFP have been shown to be associated with adverse health effects such as DNA damage and respiratory and cardiovascular diseases. This study investigates the effectiveness of kitchen exhaust hoods in reducing indoor levels of UFP emitted from a gas stove and oven. Measurements in an unoccupied manufactured house monitored size-resolved UFP (2 nm to 100 nm) concentrations from the gas stove and oven while varying range hood flow rate and burner position. The air change rate in the building was measured continuously based on the decay of a tracer gas (sulfur hexafluoride, SF(6)). The results show that range hood flow rate and burner position (front vs. rear) can have strong effects on the reduction of indoor levels of UFP released from the stove and oven, subsequently reducing occupant exposure to UFP. Higher range hood flow rates are generally more effective for UFP reduction, though the reduction varies with particle diameter. The influence of the range hood exhaust is larger for the back burner than for the front burner. The number-weighted particle reductions for range hood flow rates varying between 100 m(3)/h and 680 m(3)/h range from 31% to 94% for the front burner, from 54% to 98% for the back burner, and from 39% to 96% for the oven. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  17. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells

    PubMed Central

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S.; Guo, Bing; Barakat, Abdul I.; Kennedy, Ian M.

    2010-01-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001–50 μg/ml) of CeO2 nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y2O3 and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition. PMID:19558244

  18. TRANSLOCATION AND POTENTIAL NEUROLOGICAL EFFECTS OF FINE AND ULTRAFINE PARTICLES: A CRITICAL UPDATE

    EPA Science Inventory

    This proceedings book is a collection of seminars presented in a symposium organized by by Munich's GSF-National Research Center for Environment and Health. Research presented at this symposium indicated inhaled ultrafine particulate matter quickly exits the lungs and target...

  19. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  20. SEASONAL VARIATIONS IN AIR POLLUTION PARTICLE-INDUCED INFLAMMATORY MEDIATOR RELEASE AND OXIDATIVE STRESS

    EPA Science Inventory

    Normal human bronchial epithelial (NHBE) cells and alveolar macrophages (AMs) were exposed to equal mass of coarse [PM with aerodynamic diameter of 2.510 �m (PM2.510)], fine (PM2.5), and ultrafine (PM < 0.1) ambient PM from Chapel Hill, North Carolina, during October 2001 (f...

  1. Ultrafine particle exposures while walking, cycling, and driving along an urban residential roadway

    NASA Astrophysics Data System (ADS)

    Quiros, David C.; Lee, Eon S.; Wang, Rui; Zhu, Yifang

    2013-07-01

    Elevated concentrations of ultrafine particles (UFPs, <0.1 μm), which have been linked to adverse health effects, are commonly found along roadways. This study reports UFP and PM2.5 concentrations and respiratory exposures among four transportation modes on an urban residential street in Santa Monica, California while walking, cycling, and driving with windows open and windows closed (with air recirculation on). Repeated measurements were made for nine days during morning (7:30-9:30), afternoon (12:30-14:30), and evening (17:00-19:00) periods. Median UFP concentrations ranged 1-3 × 104 particles cm-3, were 70% lower in afternoon or evening periods compared to the morning, and were 60% lower when driving with windows closed than open. Median PM2.5 ranged 2-15 μg m-3, well below the annual National Ambient Air Quality standard of 15 μg m-3. Respiratory UFP exposure (particles inhaled trip-1) was ˜2 times higher while driving with windows open, ˜15 times higher when cycling, and ˜30 times higher walking, than driving with windows closed. During one evening session with perpendicular rather than parallel wind conditions, absolute UFP concentration was 80% higher, suggesting influence of off-roadway sources. Under parallel wind conditions, a parameter called emissions-weighted traffic volume, used to account for higher and lower emitting vehicles, was correlated with beach-site-subtracted UFP using second-order polynomial model (R2 = 0.61). Based on this model, an 83% on-roadway UFP reduction could be achieved by (1) requiring all trucks to meet California 2007 model-year engine standards, (2) reducing light-duty vehicle flows by 25%, and (3) replacing high-emitting light-duty vehicles (pre 1978) with newer 2010 fleet-average vehicles.

  2. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    PubMed

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen

    2012-06-05

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced

  3. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    NASA Astrophysics Data System (ADS)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  4. Development of Age-Hardening Technology for Ultrafine-Grained Al-Li-Cu Alloys Fabricated by High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Motoshima, Hiroaki; Hirosawa, Shoichi; Lee, Seungwon; Horita, Zenji; Matsuda, Kenji; Terada, Daisuke

    The age-hardening behavior and precipitation microstructures with high dislocation density and ultrafine grains have been studied for cold-rolled and severely deformed 2091 Al-Li-Cu alloy. The age-hardenability at 463K was reduced by high-pressure torsion (HPT) due to the accelerated formation of larger 8-AlLi precipitates at grain boundaries, in place of transgranular precipitation of refined δ'-Al3Li particles that are predominantly observable in the no-deformed and 10%-rolled specimens. When aged at 373K, however, it was successfully achieved for the HPT specimen to increase the hardness up to 290HV, the highest level of hardness among conventional wrought aluminum alloys. The corresponding TEM microstructures confirmed that refined δ' particles precipitate within ultrafine grains while keeping the grain size at 206nm. This result suggests that the combined processing of severe plastic deformation with age-hardening technique enables the fabrication of novel aluminum alloys concurrently strengthened by ultrafine-grained and precipitation hardenings.

  5. Occupational exposure to ultrafine particles in police officers: no evidence for adverse respiratory effects.

    PubMed

    Jordakieva, G; Grabovac, I; Valic, E; Schmidt, K E; Graff, A; Schuster, A; Hoffmann-Sommergruber, K; Oberhuber, C; Scheiner, O; Goll, A; Godnic-Cvar, J

    2018-01-01

    Inhalation exposure to fine and ultrafine particles (UFPs) has been associated with respiratory diseases. However, little is known on the quality, threshold levels and concentration of these particles causing adverse health effects. The impact of occupational exposure to submicrometer and UFPs was assessed in 30 healthy police shooting instructors by clinical investigation, self-assessment questionnaire, sputum and spirometry and compared to a control group. General laboratory chemistry parameters, circulating cytokines (interleukin [IL]-2, IL-4, IL-5, IL-6, IL-8, interferon-gamma [IFN-γ]), and granulocyte macrophage colony-stimulating factor (GM-CSF) in serum were measured. UFP exposure was recorded by Scanning Mobility Particle Sizer. Concentrations of submicrometer sized airborne particles (< 700 nm) measured between 3.34 × 10 5 /cm 3 and 7.58 × 10 5 /cm 3 at shooting sites, with highest concentrations found in the UFP range (< 100 nm). The size of the monodispersed particles ranged from 54.74 ± 16.25 nm to 98.19 ± 22.83 nm. Short term exposure (4 h) to high levels of UFPs caused an increase of IFN-γ in exposed subjects ( p  = 0.022). 24 h after exposure a significant decrease of IgG, albumin fibrinogen and factor VII was found. Neither directly after 4 h of high levels UFPs exposure nor 24 h after exposure subjective complaints or objective measurements indicating adverse respiratory effects in exposed subjects were found. No consistent indications for adverse respiratory or inflammatory effects directly following exposure and 24 h after exposure to high levels of UFPs in our study group were detected. However we showed the assessment of short-term exposure effects at a genuine occupational setting, which might is relevant when a risk assessment of high level occupational exposures to UFPs is considered.

  6. Custom-designed nanomaterial libraries for testing metal oxide toxicity

    PubMed Central

    Pokhrel, Suman; Nel, André E.; Mädler, Lutz

    2014-01-01

    Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152

  7. [Polycyclic aromatic hydrocarbons in ultrafine particles of diesel exhaust fumes--the use of ultrafast liquid chromatography].

    PubMed

    Małgorzata Szewczyńska; Małgorzata Pośniak

    2014-01-01

    The article presents the results of the determination of polycyclic aromatic hydrocarbons (PAHs) in the fine par ticles fraction emitted from 3 types of diesel fuels using ultra-high pressure liquid chromatography. Samples of diesel Eco, Verwa and Bio exhaust combustion fumes were generated at the model station which consisted of a diesel engine from the 2007 Diesel TDI 2.0. Personal Cascade Sioutas Impactor (IPCSI) with Teflon filters was used to collect samples of exhaust fume ultrafine particles. PAHs adsorbed on particulate fractions were analyzed by ultra-high pressure liquid chromatography with fluorescence detection (UHPLC/FL). Phenanthrene, fluoranthene, pyrene and chrysene present the highest concentration in the particulate matter emitted by an engine. The total contents of fine particles collected during engine operation on fuels Eco, Verwa and Bio were 134.2 μg/g, 183.8 μg/g and 153.4 μg/g, respectively, which makes 75%, 90% and 83% of the total PAHs, respectively. The highest content of benzo(a)pyrene determined in particles emitted during the combustion of fuels Eco and Bio was 1.5 μg/g and 1 μg/g, respectively. The study of the PAH concentration in the particles of fine fraction below 0.25 μm emitted from different fuels designed for diesel engines indicate that the exhaust gas content of carcinogens, including PAHs deposited on particulates, is still significant, regardless of the fuel. Application of ultrahigh pressure liquid chromatography with fluorescence detection for the analysis ofPAHs in the particles emitted in the fine fraction of diesel exhaust allowed to shorten the analysis time from 35 min to 8 min.

  8. Surface Raman Spectroscopy for Evaluation of Conformal Wafer Level Union Architectures

    DTIC Science & Technology

    1990-05-01

    require that it be returned. Final Report for Expert Science-Task-A-9-1911 Order #18 by J. Chaiken One goal was to produce ultrafine particles which could...that we have synthesized thin films of nonstoichiometric tungsten oxides by a unique photochemical/physical mechanism involving ultrafine particles /clusters...appropriate data base is underway. In this Final Report we first present a section dealing with the fabrication of the metal-metal oxide ultrafine

  9. Lung cancer risk of airborne particles for Italian population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, G., E-mail: buonanno@unicas.it; International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street 2, 4001 Brisbane, Qld.; Giovinco, G., E-mail: giovinco@unicas.it

    Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried outmore » on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter. - Highlights: • Lung cancer risk for non-smoking Italian population due to particle inhalation. • The average lung cancer risk for Italian population is equal to 1.90×10{sup −2}. • Ultrafine particle is the aerosol metric mostly contributing to lung cancer risk. • B(a)P is the main (particle-bounded) compound

  10. Ultrafine particle levels at an international port of entry between the US and Mexico: exposure implications for users, workers, and neighbors.

    PubMed

    Olvera, Hector A; Lopez, Mario; Guerrero, Veronica; Garcia, Humberto; Li, Wen-Whai

    2013-01-01

    Exposure to diesel-emitted particles has been linked to increased cancer risk and cardiopulmonary diseases. Because of their size (<100 nm), exposure to ultrafine particles (UFPs) emitted from heavy-duty diesel vehicles (HDDV) might result in greater health risks than those associated with larger particles. Seasonal UFP levels at the International Bridge of the Americas, which connects the US and Mexico and has high HDDV traffic demands, were characterized. Hourly average UFP concentrations ranged between 1.7 × 10(3)/cc and 2.9 × 10(5)/cc with a mean of 3.5 × 10(4)/cc. Wind speeds <2 m s(-1) and temperatures <15 °C were associated with particle number concentrations above normal conditions. The presence of HDDV had the strongest impact on local UFP levels. Varying particle size distributions were associated with south- and northbound HDDV traffic. Peak exposure occurred on weekday afternoons. Although in winter, high exposure episodes were also observed in the morning. Particle number concentrations were estimated to reach background levels at 400 m away from traffic. The populations exposed to UFP above background levels include law enforcement officers, street vendors, private commuters, and commercial vehicle drivers as well as neighbors on both sides of the border, including a church and several schools.

  11. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares

    PubMed Central

    Li, Ning; Harkema, Jack R.; Lewandowski, Ryan P.; Wang, Meiying; Bramble, Lori A.; Gookin, Glenn R.; Ning, Zhi; Kleinman, Michael T.; Sioutas, Constantinos

    2010-01-01

    We have previously demonstrated that intranasal administration of ambient ultrafine particles (UFP) acts as an adjuvant for primary allergic sensitization to ovalbumin (OVA) in Balb/c mice. It is important to find out whether inhaled UFP exert the same effect on the secondary immune response as a way of explaining asthma flares in already-sensitized individuals due to traffic exposure near a freeway. The objective of this study is to determine whether inhalation exposure to ambient UFP near an urban freeway could enhance the secondary immune response to OVA in already-sensitized mice. Prior OVA-sensitized animals were exposed to concentrated ambient UFP at the time of secondary OVA challenge in our mobile animal laboratory in Los Angeles. OVA-specific antibody production, airway morphometry, allergic airway inflammation, cytokine gene expression, and oxidative stress marker were assessed. As few as five ambient UFP exposures were sufficient to promote the OVA recall immune response, including generating allergic airway inflammation in smaller and more distal airways compared with the adjuvant effect of intranasally instilled UFP on the primary immune response. The secondary immune response was characterized by the T helper 2 and IL-17 cytokine gene expression in the lung. In summary, our results demonstrated that inhalation of prooxidative ambient UFP could effectively boost the secondary immune response to an experimental allergen, indicating that vehicular traffic exposure could exacerbate allergic inflammation in already-sensitized subjects. PMID:20562226

  12. Mixtures of Berkson and classical covariate measurement error in the linear mixed model: Bias analysis and application to a study on ultrafine particles.

    PubMed

    Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette

    2018-05-01

    The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN VIVO AND IN VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE AND COARSE AMBIENT PARTICLES. PART I: DEVELOPMENT AND LABORATORY CHARACTERIZATION. (R827352C001)

    EPA Science Inventory

    This study presents the development and bench-testing of a versatile aerosol concentration enrichment system (VACES) capable of simultaneously concentrating ambient particles of the coarse, fine and ultrafine size fractions for conducting in vivo and in vitro studies. The VACE...

  14. Real-Time Ultrafine Aerosol Measurements from Wastewater Treatment Facilities.

    PubMed

    Piqueras, P; Li, F; Castelluccio, V; Matsumoto, M; Asa-Awuku, A

    2016-10-18

    Airborne particle emissions from wastewater treatment plants (WWTP) have been associated with health repercussions but particulate quantification studies are scarce. In this study, particulate matter (PM) number concentrations and size distributions in the ultrafine range (7-300 nm) were measured from two different sources: a laboratory-scale aerobic bioreactor and the activated sludge aeration basins at Orange County Sanitation District (OCSD). The relationships between wastewater parameters (total organic carbon (TOC), chemical oxygen demand (COD), and total suspended solids (TSS)), aeration flow rate and particle concentrations were also explored. A significant positive relationship was found between particle concentration and WWTP variables (COD: r(10) = 0.876, p <.001, TOC: r(10) = 0.664, p <.05, TSS: r(10) = 0.707, p <.05, aeration flow rate: r(8) = 0.988, p <.0001). A theoretical model was also developed from empirical data to compare real world WWTP aerosol number emission fluxes with laboratory data. Aerosol number fluxes at OCSD aerated basins (9.8 × 10 4 lbs/min·cm 2 ) and the bioreactor (7.95 × 10 4 lbs/min·cm 2 ) were calculated and showed a relatively small difference (19%). The ultrafine size distributions from both systems were consistent, with a mode of ∼48 nm. The average mass concentration (7.03 μg/cm 3 ) from OCSD was relatively small compared to other urban sources. However, the in-tank average number concentration of airborne particles (14 480 lbs/cm 3 ) was higher than background ambient concentrations.

  15. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  16. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India

    NASA Astrophysics Data System (ADS)

    Apte, Joshua, S.; Kirchstetter, Thomas W.; Reich, Alexander, H.; Deshpande, Shyam J.; Kaushik, Geetanjali; Chel, Arvind; Marshall, Julian D.; Nazaroff, William W.

    2011-08-01

    Concentrations of air pollutants from vehicles are elevated along roadways, indicating that human exposure in transportation microenvironments may not be adequately characterized by centrally located monitors. We report results from ˜180 h of real-time measurements of fine particle and black carbon mass concentration (PM 2.5, BC) and ultrafine particle number concentration (PN) inside a common vehicle, the auto-rickshaw, in New Delhi, India. Measured exposure concentrations are much higher in this study (geometric mean for ˜60 trip-averaged concentrations: 190 μg m -3 PM 2.5, 42 μg m -3 BC, 280 × 10 3 particles cm -3; GSD ˜1.3 for all three pollutants) than reported for transportation microenvironments in other megacities. In-vehicle concentrations exceeded simultaneously measured ambient levels by 1.5× for PM 2.5, 3.6× for BC, and 8.4× for PN. Short-duration peak concentrations (averaging time: 10 s), attributable to exhaust plumes of nearby vehicles, were greater than 300 μg m -3 for PM 2.5, 85 μg m -3 for BC, and 650 × 10 3 particles cm -3 for PN. The incremental increase of within-vehicle concentration above ambient levels—which we attribute to in- and near-roadway emission sources—accounted for 30%, 68% and 86% of time-averaged in-vehicle PM 2.5, BC and PN concentrations, respectively. Based on these results, we estimate that one's exposure during a daily commute by auto-rickshaw in Delhi is as least as large as full-day exposures experienced by urban residents of many high-income countries. This study illuminates an environmental health concern that may be common in many populous, low-income cities.

  17. Study on preparation of ultrafine amorphous particles by chemical reduction

    NASA Astrophysics Data System (ADS)

    Song, Xu; Yusheng, Xu; Huali, Jiang; Qing, Xue

    1993-04-01

    Ultrafine amorphous FeNiB powder was prepared by potassium borohydride reduction by mixing the aqueous solutions in a bath of supersonic oscillator. Different mixing ratios of potassium borohydride to metal salt were applied. Analysis of the composition of the sample and the Fe 2+ and Ni 2+ remaining in the filtrate after preparation shows that a quantity of KBH 4 about 1.5 times the stoichiometrical quantity is enough. Mössbauer measurements were performed at room temperature and it was found that excess KBH 4 makes no distinct difference in the spectra of the samples.

  18. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  20. Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Xue, Jinjuan; Zhang, Xiaolei; He, Guangyu; Chen, Haiqun

    2017-04-01

    A novel composite ultrafine cobalt nanoparticles-reduced graphene oxide (Co-RGO) was firstly synthesized through a modified one-step solvothermal method with Co(OH)2 as the precursor. The prepared low-cost Co-RGO composite exhibited excellent catalytic activity for the reduction of highly toxic Cr(VI) to nontoxic Cr(III) at room temperature when formic acid (HCOOH) was employed as the reductant, and its catalytic performance was even comparable with that of noble metal-based catalysts in the same reduction reaction. Moreover, Co-RGO composite could be readily recovered under an external magnetic field and efficiently participated in recycled reaction for Cr(VI) reduction.

  1. Comparison of detonation spreading in pressed ultra-fine and nano-TATB

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Wixom, Ryan; Knepper, Robert; Yarrington, Cole; Patel, Rajen; Stepanov, Victor

    2017-06-01

    Detonation spreading behavior in insensitive high explosives is an important performance characteristic for initiation-train design. In the past, several variations of the floret test have been used to study this phenomenon. Commonly, dent blocks or multi-fiber optical probes were employed for reduced cost and complexity. We devised a floret-like test, using minimal explosive material, to study the detonation spreading in nano-TATB as compared to ultra-fine TATB. Our test uses a streak camera, combined with photonic Doppler velocimetry, to image the breakout timing and quantify the output particle velocity. The TATB acceptor pellets are initiated using an explosively-driven aluminum flyer with a well characterized velocity. We characterized the two types of TATB by assessing purity, particle morphology, and the microstructure of the consolidated pellets. Our results align with published data for ultra-fine TATB, however the nano-TATB shows a distinct difference where output has a strong dependence on density. The results indicate that control over pellet pore size and pressing density may be used to optimize detonation spreading behavior.

  2. Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions.

    PubMed

    Eeftens, Marloes; Meier, Reto; Schindler, Christian; Aguilera, Inmaculada; Phuleria, Harish; Ineichen, Alex; Davey, Mark; Ducret-Stich, Regina; Keidel, Dirk; Probst-Hensch, Nicole; Künzli, Nino; Tsai, Ming-Yi

    2016-04-18

    Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models. Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data. Model explained variance (R(2)) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R(2) range 0.52-0.89) outperformed combined-area alpine (R (2)  = 0.53) and non-alpine (R (2)  = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors. LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study

  3. On-road ultrafine particle concentration in the M5 East road tunnel, Sydney, Australia

    NASA Astrophysics Data System (ADS)

    Knibbs, Luke D.; de Dear, Richard J.; Morawska, Lidia; Mengersen, Kerrie L.

    The human health effects following exposure to ultrafine (<100 nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4 km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 10 4 p cm -3 to 5.95 × 10 6 p cm -3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 10 4 p cm -3 to 1.73 × 10 6 p cm -3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 10 4 p cm -3 and 1.55 × 10 5 p cm -3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore ( R2 = 0.87), but much less so in the westbound bore ( R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.

  4. The effect of image force and diffusion on the deposition of ultrafine particle to vegetation

    NASA Astrophysics Data System (ADS)

    Lin, M. Y.; Katul, G. G.; Huang, C. W.; CHU, C. R.; Khlystov, A.

    2017-12-01

    Ultrafine particles (UFP) along with their sources and sinks are gaining significant attention due to their dual role in cloud microphysics and human health. Due to its expansive areal extent, vegetation is a significant sink for UFP thus prompting interest in how UFP deposit onto vegetated surfaces. Single fiber theory reasonably explains deposition of zero charge UFP onto vegetation by treating vegetation as filter media. However, the ability of the single fiber theory to predict deposition of charged UFP onto vegetation remains unknown and frames the scope of this presentation. Wind tunnel experiments are used to investigate UFP deposition (size range 12.6 - 102 nm) onto Juniper branches (Juniperus chinesis) and their results are interpreted using single fiber theory. Three different wind speeds (0.3, 0.6, and 0.9 m/s) are investigated to study deposition of singly-charged particles and these deposition values are contrasted with neutrally charged particles. The wind tunnel experiments indicate that single fiber theory can be used to describe deposition of singly-charged particles onto vegetation if both the image force and Brownian diffusion are simultaneously considered. The image force was found to be proportional to KIM0.5 when the image force dimensionless number (KIM) is smaller than 10-8, a common condition for singly charged UFP particle. The proportionality constant was found to be 27.6 (i.e. 27.6×KIM0.5) and is larger than a previously reported value (9.7) derived for KIM between 10-7 10-5, primarily due to the lower KIM (<10-8) in this study. Another study also showed that this proportionality constant increases with decreasing KIM. With this representation for the image force, the single fiber filtration model and measurements agree to within 20%. The work here offers a new perspective on the role of image force at small KIM (10-10 10-8) and its role in enhanced deposition of charged UFP onto vegetation.

  5. Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies.

    PubMed

    Xie, Yike; Shi, Baokui; Xia, Fei; Qi, Jianping; Dong, Xiaochun; Zhao, Weili; Li, Tonglei; Wu, Wei; Lu, Yi

    2018-01-28

    Little is known about the in vivo fate of drug particles taken orally, in particular, the drug release kinetics and interaction with the gastrointestinal (GI) membrane. Lacking is analytical means that can reliably identify the integrity of drug particles under the complexity of biological environment. Herein, we explored fluorescent probes whose signals become quenched upon being released from drug carriers. Taking advantage of so-called the aggregation caused quenching (ACQ), particles may be identified by the integrated fluorophores, which are "turned off" when the particles become destructed and dyes are released. In the current study, ultrafine amorphous particles (UAPs) of cyclosporin A (CsA) were prepared with synthesized ACQ dyes physically entrapped. The fluorescence intensity of suspension of these UAPs was found correlated well with the dissolution of the particles. When given to rats orally, it was found that some of the administered UAPs could survive the animal's GI tracts for as long as 18h. Whole-body fluorescence imaging detected fluorescent signals in the liver and lungs. Particularly noticed in sections of jejunum and ileum, the detection suggested the possibility of direct absorption of UAPs through epithelial membranes. Moreover, 250nm particles were absorbed faster via transepithelia than larger ones (550nm), while the latter were preferably taken up by M cells in the follicle-associated epithelium (FAE) region of Peyer's patches. In vitro permeation studies with Caco-2 cells confirmed the transmembrane transport of the dye-integrated UAPs. Our study supports the idea of using ACQ fluorophores for imaging and characterizing the fate of intact particles in a biological environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Oxidative Stress Derived from Airborne Fine and Ultrafine Particles and the Effects on Brain-Nervous System: Part 2].

    PubMed

    Sagai, Masaru; Tin Win-Shwe, Tin

    2015-01-01

    Traffic-related air pollution is a major contributor to urban air pollution. Diesel exhaust (DE) is its most important component of near-road and urban air pollutions and is commonly used as a surrogate model of air pollution in health effects studies. In particular, diesel exhaust particles (DEPs) and nanoparticles in DEPs are the components considered hazardous for health. It is widely known that exposure to DEPs is associated with mortality caused by respiratory and cardiovascular diseases. Recently, evidence has been accumulating showing that DEPs and nanoparticles may cause neurodegenerative disorders. Here, we introduce evidence suggesting their association with these disorders. The chemical components and the translocation of DEPs and nanoparticles to the brain are described in part 1. In part 2, we introduce the mechanism of development of neurodegenerative diseases such as stroke, Alzheimer's disease, and Parkinson's disease via oxidative stress and inflammatory events. Furthermore, there are many lines of epidemiological evidence showing that the particulates impair cognitive function and ability of memory through oxidative and inflammatory events in the brain. These lines of evidences are supported by many animal experiments on neurological disorders.

  7. An hourly regression model for ultrafine particles in a near-highway urban area

    PubMed Central

    Patton, Allison P.; Collins, Caitlin; Naumova, Elena N.; Zamore, Wig; Brugge, Doug; Durant, John L.

    2015-01-01

    Estimating ultrafine particle number concentrations (PNC) near highways for exposure assessment in chronic health studies requires models capable of capturing PNC spatial and temporal variations over the course of a full year. The objectives of this work were to describe the relationship between near-highway PNC and potential predictors, and to build and validate hourly log-linear regression models. PNC was measured near Interstate 93 (I-93) in Somerville, MA (USA) using a mobile monitoring platform driven for 234 hours on 43 days between August 2009 and September 2010. Compared to urban background, PNC levels were consistently elevated within 100–200 m of I-93, with gradients impacted by meteorological and traffic conditions. Temporal and spatial variables including wind speed and direction, temperature, highway traffic, and distance to I-93 and major roads contributed significantly to the full regression model. Cross-validated model R2 values ranged from 0.38–0.47, with higher values achieved (0.43–0.53) when short-duration PNC spikes were removed. The model predicts highest PNC near major roads and on cold days with low wind speeds. The model allows estimation of hourly ambient PNC at 20-m resolution in a near-highway neighborhood. PMID:24559198

  8. PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation

    NASA Astrophysics Data System (ADS)

    Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.

    2016-04-01

    The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine

  9. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    PubMed

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-06-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  10. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes

    PubMed Central

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-01-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. PMID:26046580

  11. Thrombosis and systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles and the effect of nootkatone thereon.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Beegam, Sumaya; Yuvaraju, Priya; Ali, Badreldin H

    2018-05-01

    Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particle-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEPs) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1 h before intratracheal instillation of DEPs (30 μg/mouse). Twenty-four hours after the intratracheal administration of DEPs, various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEPs in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEPs. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6, and lipid peroxidation induced by DEPs. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 expression by cardiac myocytes and endothelial cells after DEP exposure, and these effects were enhanced in mice treated with nootkatone + DEPs. Likewise, heme oxygenase-1 was increased in mice treated with nootkatone + DEPs compared with those treated with DEPs or nootkatone + saline. The DNA damage caused by DEPs was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation. NEW & NOTEWORTHY Nootkatoone, a sesquiterpenoid found in grapefruit

  12. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    PubMed Central

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W.; Brown, Paul D.; Dunin-Borkowski, Rafal E.

    2014-01-01

    Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information. PMID:25300366

  13. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles.

    PubMed

    Almeida, Trevor P; Kasama, Takeshi; Muxworthy, Adrian R; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W; Brown, Paul D; Dunin-Borkowski, Rafal E

    2014-10-10

    Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information.

  14. A practice of ultra-fine tailings disposal as filling material in a gold mine.

    PubMed

    Deng, D Q; Liu, L; Yao, Z L; Song, K I-I L; Lao, D Z

    2017-07-01

    A practice of cemented backfill technology with ultra-fine tailings in a gold mine was comprehensively presented, and a series of tests were conducted in accordance with the peculiar properties of ultra-fine tailings and the mining technology conditions. The test results show that, the tailings from Shuiyindong Gold Mine have a great grinding fineness, with the average particle diameter 22.03 μm, in which the ultra-fine particles with the diameter below 20 μm occupying 66.13%. The analysis results of chemical components of tailings indicate that the content of SiO 2 is relatively low, i.e., 33.08%, but the total content of CaO, MgO and Al 2 O 3 is relatively high i.e., 36.5%. After the settlement of 4-6 h, the tailing slurry with the initial concentration of 40% has the maximum settling concentration of 54.692%, and the corresponding maximum settling unit weight is 1.497 g/cm 3 . During the field application, the ultra-fine tailings and PC32.5 cement were mixed with the cement-tailings ratios of 1:3-1:8, and the slurry concentration of 50 wt% was prepared. Using the slurry pump, the prepared cemented backfill slurries flowed into the goaf, and then the strength of the cemented backfill body met the mining technique requirements in Shuiyindong Gold Mine, where the ore body has a smooth occurrence, with the average thickness of approximately 2 m and the inclination angle ranging from 5 to 10°. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fine Particle Emissions from Residual Fuel Oil Combustion: Characterization and Mechanisms of Formation

    DTIC Science & Technology

    2000-08-04

    another apparent factor influencing health impact is the presence of ultrafine particles (0.1 lm in diameter) [2]. All three characteristics...between 0.5 and 100 lm. The ultrafine particles from both combustion systems were consistent with the accumulation of an evolving aerosol formed by the

  16. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis of ultrafine ZrB2 powders by sol-gel process

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Zhu, Shi-Zhen; Xu, Qiang; Yan, Zhen-Yu; Liu, Ling

    2010-09-01

    Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.

  18. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments.

    PubMed

    Azimi, Parham; Zhao, Dan; Pouzet, Claire; Crain, Neil E; Stephens, Brent

    2016-02-02

    Previous research has shown that desktop 3D printers can emit large numbers of ultrafine particles (UFPs, particles less than 100 nm) and some hazardous volatile organic compounds (VOCs) during printing, although very few filament and 3D printer combinations have been tested to date. Here we quantify emissions of UFPs and speciated VOCs from five commercially available filament extrusion desktop 3D printers utilizing up to nine different filaments by controlled experiments in a test chamber. Median estimates of time-varying UFP emission rates ranged from ∼10(8) to ∼10(11) min(-1) across all tested combinations, varying primarily by filament material and, to a lesser extent, bed temperature. The individual VOCs emitted in the largest quantities included caprolactam from nylon-based and imitation wood and brick filaments (ranging from ∼2 to ∼180 μg/min), styrene from acrylonitrile butadiene styrene (ABS) and high-impact polystyrene (HIPS) filaments (ranging from ∼10 to ∼110 μg/min), and lactide from polylactic acid (PLA) filaments (ranging from ∼4 to ∼5 μg/min). Results from a screening analysis of potential exposure to these products in a typical small office environment suggest caution should be used when operating many of the printer and filament combinations in poorly ventilated spaces or without the aid of combined gas and particle filtration systems.

  19. Exposure To An Organic PM Component Induces Inflammatory And Adaptive Gene Expression Through Mitochondrial Oxidative Stress

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor to the fine and ultrafine PM burden in ambient air. Toxicological studi...

  20. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction

    PubMed Central

    Nurkiewicz, Timothy R; Porter, Dale W; Hubbs, Ann F; Cumpston, Jared L; Chen, Bean T; Frazer, David G; Castranova, Vincent

    2008-01-01

    Background We have shown that pulmonary exposure to fine particulate matter (PM) impairs endothelium dependent dilation in systemic arterioles. Ultrafine PM has been suggested to be inherently more toxic by virtue of its increased surface area. The purpose of this study was to determine if ultrafine PM (or nanoparticle) inhalation produces greater microvascular dysfunction than fine PM. Rats were exposed to fine or ultrafine TiO2 aerosols (primary particle diameters of ~1 μm and ~21 nm, respectively) at concentrations which do not alter bronchoalveolar lavage markers of pulmonary inflammation or lung damage. Results By histopathologic evaluation, no significant inflammatory changes were seen in the lung. However, particle-containing macrophages were frequently seen in intimate contact with the alveolar wall. The spinotrapezius muscle was prepared for in vivo microscopy 24 hours after inhalation exposures. Intraluminal infusion of the Ca2+ ionophore A23187 was used to evaluate endothelium-dependent arteriolar dilation. In control rats, A23187 infusion produced dose-dependent arteriolar dilations. In rats exposed to fine TiO2, A23187 infusion elicited vasodilations that were blunted in proportion to pulmonary particle deposition. In rats exposed to ultrafine TiO2, A23187 infusion produced arteriolar constrictions or significantly impaired vasodilator responses as compared to the responses observed in control rats or those exposed to a similar pulmonary load of fine particles. Conclusion These observations suggest that at equivalent pulmonary loads, as compared to fine TiO2, ultrafine TiO2 inhalation produces greater remote microvascular dysfunction. PMID:18269765

  1. Contribution of indoor-generated particles to residential exposure

    NASA Astrophysics Data System (ADS)

    Isaxon, C.; Gudmundsson, A.; Nordin, E. Z.; Lönnblad, L.; Dahl, A.; Wieslander, G.; Bohgard, M.; Wierzbicka, A.

    2015-04-01

    The majority of airborne particles in residences, when expressed as number concentrations, are generated by the residents themselves, through combustion/thermal related activities. These particles have a considerably smaller diameter than 2.5 μm and, due to the combination of their small size, chemical composition (e.g. soot) and intermittently very high concentrations, should be regarded as having potential to cause adverse health effects. In this study, time resolved airborne particle measurements were conducted for seven consecutive days in 22 randomly selected homes in the urban area of Lund in southern Sweden. The main purpose of the study was to analyze the influence of human activities on the concentration of particles in indoor air. Focus was on number concentrations of particles with diameters <300 nm generated by indoor activities, and how these contribute to the integrated daily residential exposure. Correlations between these particles and soot mass concentration in total dust were also investigated. It was found that candle burning and activities related to cooking (using a frying pan, oven, toaster, and their combinations) were the major particle sources. The frequency of occurrence of a given concentration indoors and outdoors was compared for ultrafine particles. Indoor data was sorted into non-occupancy and occupancy time, and the occupancy time was further divided into non-activity and activity influenced time. It was found that high levels (above 104 cm-3) indoors mainly occur during active periods of occupancy, while the concentration during non-activity influenced time differs very little from non-occupancy time. Total integrated daily residential exposure of ultrafine particles was calculated for 22 homes, the contribution from known activities was 66%, from unknown activities 20%, and from background/non-activity 14%. The collected data also allowed for estimates of particle source strengths for specific activities, and for some activities

  2. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    PubMed

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water.

    PubMed

    Song, Lei; Yang, Kun; Jiang, Wei; Du, Peng; Xing, Baoshan

    2012-06-01

    In this work, the influence of particle size and surface functional groups on the adsorption behavior of bovine serum albumin (BSA) by three types of oxide nanoparticles (NPs), TiO(2) (50±5 nm), SiO(2) (30±5 nm), and Al(2)O(3) (150±5 nm for α type and 60±5 nm for γ type) was investigated in deionized water, in order to explore their interaction mechanisms without competitive influence of other ions. Bulkparticles (BPs) were also used for comparison with NPs. BSA adsorption maxima on oxide particles were controlled by the surface area and hydrogen content, while adsorption process was primarily induced by electrostatic interaction, hydrophobic interaction and ligand exchange between BSA and oxide surfaces. With the increase of hydrogen content, the BSA adsorption mechanism switched from mainly hydrophobic interaction to hydrogen bonding and ligand exchange. Calculations, based on surface area and BSA size, suggested that a multilayer of BSA covered on α-Al(2)O(3), and single layer on the other oxide particle surfaces. BPs led to greater conformational change of BSA molecules after the adsorption on the surfaces of oxide particles though NPs adsorbed more BSA than BPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Modeling Population Exposure to Ultrafine Particles in a Major Italian Urban Area

    PubMed Central

    Spinazzè, Andrea; Cattaneo, Andrea; Peruzzo, Carlo; Cavallo, Domenico M.

    2014-01-01

    Average daily ultrafine particles (UFP) exposure of adult Milan subpopulations (defined on the basis of gender, and then for age, employment or educational status), in different exposure scenarios (typical working day in summer and winter) were simulated using a microenvironmental stochastic simulation model. The basic concept of this kind of model is that time-weighted average exposure is defined as the sum of partial microenvironmental exposures, which are determined by the product of UFP concentration and time spent in each microenvironment. In this work, environmental concentrations were derived from previous experimental studies that were based on microenvironmental measurements in the city of Milan by means of personal or individual monitoring, while time-activity patterns were derived from the EXPOLIS study. A significant difference was observed between the exposures experienced in winter (W: 28,415 pt/cm3) and summer (S: 19,558 pt/cm3). Furthermore, simulations showed a moderate difference between the total exposures experienced by women (S: 19,363 pt/cm3; W: 27,623 pt/cm3) and men (S: 18,806 pt/cm3; W: 27,897 pt/cm3). In addition, differences were found as a function of (I) age, (II) employment status and (III) educational level; accordingly, the highest total exposures resulted for (I) 55–59 years old people, (II) housewives and students and (III) people with higher educational level (more than 10 years of scholarity). Finally, significant differences were found between microenvironment-specific exposures. PMID:25321878

  5. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  6. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  7. Contributions of aircraft arrivals and departures to ultrafine particle counts near Los Angeles International Airport.

    PubMed

    Hsu, Hsiao-Hsien; Adamkiewicz, Gary; Houseman, E Andres; Zarubiak, Darcy; Spengler, John D; Levy, Jonathan I

    2013-02-01

    While commercial aircraft are known sources of ultrafine particulate matter (UFP), the relationship between airport activity and local real-time UFP concentrations has not been quantified. Understanding these associations will facilitate interpretation of the exposure and health risk implications of UFP related to aviation emissions. We used time-resolved UFP data along with flight activity and meteorological information to determine the contributions of aircraft departures and arrivals to UFP concentrations. Aircraft flight activity and near-field continuous UFP concentrations (≧ 6 nm) were measured at five monitoring sites over a 42-day field campaign at Los Angeles International Airport (LAX). We developed regression models of UFP concentrations as a function of time-lagged landing and take-off operations (LTO) activity, in the form of arrivals or departures weighted by engine-specific estimates of fuel consumption. Our regression models demonstrate a strong association between departures and elevated total UFP concentrations at the end of the departure runway, with diminishing magnitude and time-lagged impacts with distance from the source. LTO activity contributed a median (95th, 99th percentile) UFP concentration of approximately 150,000 particles/cm(3) (2,000,000, 7,100,000) at a monitor at the end of the departure runway, versus 19,000 particles/cm(3) (80,000, 140,000), and 17,000 particles/cm(3) (50,000, 72,000) for monitors 250 m and 500 m further downwind, respectively. We demonstrated significant contributions from aircraft departure activities to UFP concentrations in close proximity to departure runways, with evidence of rapid plume evolution in the near field. Our methods can inform source attribution and interpretation of dispersion modeling outputs. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model.

    PubMed

    Weichenthal, Scott; Van Ryswyk, Keith; Goldstein, Alon; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2016-01-01

    Exposure models are needed to evaluate the chronic health effects of ambient ultrafine particles (<0.1 μm) (UFPs). We developed a land use regression model for ambient UFPs in Toronto, Canada using mobile monitoring data collected during summer/winter 2010-2011. In total, 405 road segments were included in the analysis. The final model explained 67% of the spatial variation in mean UFPs and included terms for the logarithm of distances to highways, major roads, the central business district, Pearson airport, and bus routes as well as variables for the number of on-street trees, parks, open space, and the length of bus routes within a 100 m buffer. There was no systematic difference between measured and predicted values when the model was evaluated in an external dataset, although the R(2) value decreased (R(2) = 50%). This model will be used to evaluate the chronic health effects of UFPs using population-based cohorts in the Toronto area. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  10. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE PAGES

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang; ...

    2017-11-15

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  11. A novel film-pore-surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding.

    PubMed

    Zhang, Haiyan; Chen, Longjian; Lu, Minsheng; Li, Junbao; Han, Lujia

    2016-01-01

    Ultrafine grinding is an environmentally friendly pretreatment that can alter the degree of polymerization, the porosity and the specific surface area of lignocellulosic biomass and can, thus, enhance cellulose hydrolysis. Enzyme adsorption onto the substrate is a prerequisite for the enzymatic hydrolysis process. Therefore, it is necessary to investigate the enzyme adsorption properties of corn stover pretreated by ultrafine grinding. The ultrafine grinding pretreatment was executed on corn stover. The results showed that ultrafine grinding pretreatment can significantly decrease particle size [from 218.50 μm of sieve-based grinding corn stover (SGCS) to 17.45 μm of ultrafine grinding corn stover (UGCS)] and increase the specific surface area (SSA), pore volume (PV) and surface composition (SSA: from 1.71 m(2)/g of SGCS to 2.63 m(2)/g of UGCS, PV: from 0.009 cm(3)/g of SGCS to 0.024 m(3)/g of UGCS, cellulose surface area: from 168.69 m(2)/g of SGCS to 290.76 m(2)/g of UGCS, lignin surface area: from 91.46 m(2)/g of SGCS to 106.70 m(2)/g of UGCS). The structure and surface composition changes induced by ultrafine grinding increase the enzyme adsorption capacity from 2.83 mg/g substrate of SGCS to 5.61 mg/g substrate of UGCS. A film-pore-surface diffusion model was developed to simultaneously predict the enzyme adsorption kinetics of both the SGCS and UGCS. Satisfactory predictions could be made with the model based on high R (2) and low RMSE values (R (2) = 0.95 and RMSE = 0.16 mg/g for the UGCS, R (2) = 0.93 and RMSE = 0.09 mg/g for the SGCS). The model was further employed to analyze the rate-limiting steps in the enzyme adsorption process. Although both the external-film and internal-pore mass transfer are important for enzyme adsorption on the SGCS and UGCS, the UGCS has a lower internal-pore resistance compared to the SGCS. Ultrafine grinding pretreatment can enhance the enzyme adsorption onto corn stover by altering structure and

  12. Influence of external mass transfer limitation on apparent kinetic parameters of penicillin G acylase immobilized on nonporous ultrafine silica particles.

    PubMed

    Kheirolomoom, Azadeh; Khorasheh, Farhad; Fazelinia, Hossein

    2002-01-01

    Immobilization of enzymes on nonporous supports provides a suitable model for investigating the effect of external mass transfer limitation on the reaction rate in the absence of internal diffusional resistance. In this study, deacylation of penicillin G was investigated using penicillin acylase immobilized on ultrafine silica particles. Kinetic studies were performed within the low-substrate-concentration region, where the external mass transfer limitation becomes significant. To predict the apparent kinetic parameters and the overall effectiveness factor, knowledge of the external mass transfer coefficient, k(L)a, is necessary. Although various correlations exist for estimation of k(L)a, in this study, an optimization scheme was utilized to obtain this coefficient. Using the optimum values of k(L)a, the initial reaction rates were predicted and found to be in good agreement with the experimental data.

  13. Simple approach to detection and estimation of photoactivity of silver particles on graphene oxide in aqueous-organic dispersion

    NASA Astrophysics Data System (ADS)

    Vlasov, D. V.; Vlasova, T. D.; Apresyan, L. A.; Krasovskiy, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The effect of sediment flotation was observed in dispersion of graphene oxide flakes with Ag-particles deposited thereon in the aqueous-organic (containing dimethylformamide) under the visible light action, with subsequent stabilization of the dispersion, which does not occur in the absence of Ag-particles. The main reason for this laser light induced movement of sediment graphene oxide flakes may be associated with the appearance of small bubbles. The further development of this approach seem to be able to estimate the of graphene flakes photoactivity with different activating particles.

  14. Impact of meteorology, traffic characteristics, and distance from roadway on roadside concentrations of ultrafine particulate matter

    EPA Science Inventory

    Traffic-laden roadways are major contributors to poor air quality in developed areas, elevating pollutants such as particulate matter (PM) and ozone. Among the numerous air pollutants emitted by vehicles, ultrafine particles (UFPs, diameter <100 nm) are of interest as a potentia...

  15. Ion-induced nucleation of pure biogenic particles.

    PubMed

    Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-05-26

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

  16. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects.

    PubMed

    Li, Ning; Georas, Steve; Alexis, Neil; Fritz, Patricia; Xia, Tian; Williams, Marc A; Horner, Elliott; Nel, Andre

    2016-08-01

    Ultrafine particles (UFPs) are airborne particulates of less than 100 nm in aerodynamic diameter. Examples of UFPs are diesel exhaust particles, products of cooking, heating, and wood burning in indoor environments, and, more recently, products generated through the use of nanotechnology. Studies have shown that ambient UFPs have detrimental effects on both the cardiovascular and respiratory systems, including a higher incidence of atherosclerosis and exacerbation rate of asthma. UFPs have been found to alter in vitro and in vivo responses of the immune system to allergens and can also play a role in allergen sensitization. The inflammatory properties of UFPs can be mediated by a number of different mechanisms, including the ability to produce reactive oxygen species, leading to the generation of proinflammatory cytokines and airway inflammation. In addition, because of their small size, UFPs also have unique distribution characteristics in the respiratory tree and circulation and might be able to alter cellular function in ways that circumvent normal signaling pathways. Additionally, UFPs can penetrate intracellularly and potentially cause DNA damage. The recent advances in nanotechnology, although opening up new opportunities for the advancement of technology and medicine, could also lead to unforeseen adverse health effects in exposed human subjects. Further research is needed to clarify the safety of nanoscale particles, as well as the elucidation of the possible beneficial use of these particulates to treat disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  17. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  18. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    PubMed

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  19. Imaging of DNA Ultrafine Bridges in Budding Yeast.

    PubMed

    Quevedo, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.

  20. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house.

    PubMed

    Singer, B C; Delp, W W; Black, D R; Walker, I S

    2017-07-01

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE PAGES

    Singer, B. C.; Delp, W. W.; Black, D. R.; ...

    2016-12-05

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  2. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Delp, William W.; Black, Douglas R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM 2.55 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  3. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, B. C.; Delp, W. W.; Black, D. R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  4. Some Characteristics of Free Cell Population in the Airways of Rats after Intratracheal Instillation of Copper-Containing Nano-Scale Particles

    PubMed Central

    Privalova, Larisa I.; Katsnelson, Boris A.; Loginova, Nadezhda V.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Beikin, Yakov B.; Sutunkova, Marina P.; Minigalieva, Ilzira A.; Shishkina, Ekaterina V.; Pichugova, Svetlana V.; Tulakina, Ludmila G.; Beljayeva, Svetlana V.

    2014-01-01

    We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity. PMID:25421246

  5. Miniaturized ultrafine particle sizer and monitor

    NASA Technical Reports Server (NTRS)

    Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)

    2011-01-01

    An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.

  6. Optimum Particle Size for Gold-Catalyzed CO Oxidation

    PubMed Central

    2018-01-01

    The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098

  7. Size-Dependent Neurotoxicity of Aluminum Oxide Particles: a Comparison Between Nano- and Micrometer Size on the Basis of Mitochondrial Oxidative Damage.

    PubMed

    Mirshafa, Atefeh; Nazari, Mehdi; Jahani, Daniel; Shaki, Fatemeh

    2018-06-01

    Aluminum nanoparticles (AlNPs) are among the most abundantly produced nanosized particles in the market. There is limited information about the potential harmful effects of aluminum oxide due to its particle size on human health. Considering the toxic effects of Al on brain as its target tissue, in this study, the toxicity of nanoparticles, microparticles, and ionic forms of Al on rat brain and isolated mitochondria was evaluated. Sixty male Wistar rats were divided into ten groups (six rats each), in which group I was the control, and the other groups were administered different doses of Al nanoparticles, Al microparticles (AlMP), and Al ionic forms (2, 4, and 8 mg/kg, i.p.) for 28 days. After 24 h, the animals were killed, brain tissue was separated, the mitochondrial fraction was isolated, and oxidative stress markers were measured. Also, mitochondrial function was assayed by MTT test. The results showed that all forms of Al particles induced ROS formation, lipid peroxidation, protein oxidation, glutathione depletion, mitochondrial dysfunction, and gait abnormalities in a dose-dependent manner. In addition, Al particles decreased mitochondrial membrane potential. These data indicated that oxidative stress might contribute to the toxicity effects of Al. Comparison of oxidative stress markers between all forms of Al revealed that the toxic effect of AlNP on brain tissue was substantially more than that caused by AlMP and bulk form. This study showed more neurotoxicity of AlNPs compared to other forms on brain oxidative damage that probably is due to more penetration into the brain.

  8. Effects of heavy particle irradiation and diet on amphetamine- and lithium chloride-induced taste avoidance learning in rats

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Shukitt-Hale, Barbara; Szprengiel, Aleksandra; Joseph, James A.

    2002-01-01

    Rats were maintained on diets containing either 2% blueberry or strawberry extract or a control diet for 8 weeks prior to being exposed to 1.5 Gy of 56Fe particles in the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Three days following irradiation, the rats were tested for the effects of irradiation on the acquisition of an amphetamine- or lithium chloride-induced (LiCl) conditioned taste avoidance (CTA). The rats maintained on the control diet failed to show the acquisition of a CTA following injection of amphetamine. In contrast, the rats maintained on antioxidant diets (strawberry or blueberry extract) continued to show the development of an amphetamine-induced CTA following exposure to 56Fe particles. Neither irradiation nor diet had an effect on the acquisition of a LiCl-induced CTA. The results are interpreted as indicating that oxidative stress following exposure to 56Fe particles may be responsible for the disruption of the dopamine-mediated amphetamine-induced CTA in rats fed control diets; and that a reduction in oxidative stress produced by the antioxidant diets functions to reinstate the dopamine-mediated CTA. The failure of either irradiation or diet to influence LiCl-induced responding suggests that oxidative stress may not be involved in CTA learning following injection of LiCl.

  9. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

    NASA Astrophysics Data System (ADS)

    Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie

    2017-10-01

    Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

  10. Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale.

    PubMed

    Luo, DanDan; Qu, Chao; Zhang, ZhenBiao; Xie, JianHui; Xu, LieQiang; Yang, HongMei; Li, CaiLan; Lin, GuoSheng; Wang, HongFeng; Su, ZiRen

    2017-02-01

    Constipation is a common disorder that is a significant source of morbidity among people around the world ranging from 2% to 28%. Dendrobium officinale Kimura et Migo is a traditional herbal medicine and health food used for tonicity of the stomach and promotion of body fluid production in China. This study aimed to prepare the ultrafine powder of Dendrobium officinale (UDO) and investigate its laxative effect and potential mechanism in mice with diphenoxylate-induced constipation. Results indicated that the mean diameter (d 50 ) of UDO obtained by ball milling was 6.56 μm. UDO (62.5, 125, and 250 mg/kg, p.o.) could significantly enhance the gastrointestinal transit ratio and promote fecal output. Moreover, UDO treatment resulted in significant increases in the serum levels of acetylcholinesterase (AChE), gastrin (Gas), motilin (MTL), and substance P (SP), and obviously decreased serum contents of somatostatin (SS). Taken together, UDO, which can be easily obtained through milling to a satisfactory particle size, exhibited obvious laxative effect in diphenoxylate-induced constipated mice, and the mechanism might be associated with elevated levels of AChE, Gas, MTL, SP, and reduced production of SS. UDO has the potential for further development into an alternative effective diet therapy for constipation.

  11. Ultrafine particles and platelet activation in patients with coronary heart disease – results from a prospective panel study

    PubMed Central

    Rückerl, Regina; Phipps, Richard P; Schneider, Alexandra; Frampton, Mark; Cyrys, Josef; Oberdörster, Günther; Wichmann, H Erich; Peters, Annette

    2007-01-01

    Background Epidemiological studies on health effects of air pollution have consistently shown adverse cardiovascular effects. Toxicological studies have provided evidence for thrombogenic effects of particles. A prospective panel study in a susceptible population was conducted in Erfurt, Germany, to study the effects of daily changes in ambient particles on various blood cells and soluble CD40ligand (sCD40L, also known as CD154), a marker for platelet activation that can cause increased coagulation and inflammation. Blood cells and plasma sCD40L levels were repeatedly measured in 57 male patients with coronary heart disease (CHD) during winter 2000/2001. Fixed effects linear regression models were applied, adjusting for trend, weekday and meteorological parameters. Hourly data on ultrafine particles (UFP, number concentration of particles from 0.01 to 0.1 μm), mass concentration of particles less than 10 and 2.5 μm in diameter (PM10, PM2.5), accumulation mode particle counts (AP, 0.1–1.0 μm), elemental and organic carbon, gaseous pollutants and meteorological data were collected at central monitoring sites. Results An immediate increase in plasma sCD40L was found in association with UFP and AP (% change from geometric mean: 7.1; CI: [0.1, 14.5] and 6.9; CI: [0.5, 13.8], respectively). Platelet counts decreased in association with UFP showing an immediate, a three days delayed (lag 3) and a 5-day average response (% change from the mean: -1.8; CI: [-3.4,-0.2]; -2.4; CI: [-4.5,-0.3] and -2.2; CI: [-4.0,-0.3] respectively). Conclusion The increased plasma sCD40L levels support the hypothesis that higher levels of ambient air pollution lead to an inflammatory response in patients with CHD thus providing a possible explanation for the observed association between air pollution and cardiovascular morbidity and mortality in susceptible parts of the population. PMID:17241467

  12. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    PubMed

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  13. Arterial blood pressure responses to short-term exposure to fine and ultrafine particles from indoor sources - A randomized sham-controlled exposure study of healthy volunteers.

    PubMed

    Soppa, Vanessa J; Schins, Roel P F; Hennig, Frauke; Nieuwenhuijsen, Mark J; Hellack, Bryan; Quass, Ulrich; Kaminski, Heinz; Sasse, Birgitta; Shinnawi, Samir; Kuhlbusch, Thomas A J; Hoffmann, Barbara

    2017-10-01

    Particulate air pollution is linked to adverse cardiovascular effects. The aim of the study was to investigate the effect of short-term exposure to indoor particles on blood pressure (BP). We analyzed the association of particle emissions from indoor sources (candle burning, toasting bread, frying sausages) with BP changes in 54 healthy volunteers in a randomized cross-over controlled exposure study. Particle mass concentration (PMC), size-specific particle number concentration (PNC) and lung-deposited particle surface area concentration (PSC) were measured during the 2h exposure. Systolic and diastolic blood pressure were measured before, during, directly, 2, 4 and 24h after exposure. We performed multiple mixed linear regression analyses of different particle metrics and BP. BP significantly increased with increasing PMC, PSC and PNC resulting from toasting bread. For example, an increase per 10µg/m 3 PM 10 and PM 2.5 , systolic BP increased at all time points with largest changes 1h after exposure initiation of 1.5mmHg (95%-CI: 1.1; 1.9) and of 2.2mmHg (95%-CI: 1.3; 3.1), respectively. Our study suggests an association of short-term exposure to fine and ultrafine particles emitted from toasting bread with increases in BP. Particles emitted from frying sausages and candle burning did not consistently affect BP. Copyright © 2017. Published by Elsevier Inc.

  14. Characterisation of particle emissions from the driving car fleet and the contribution to ambient and indoor particle concentrations

    NASA Astrophysics Data System (ADS)

    Palmgren, Finn; Wåhlin, Peter; Kildesø, Jan; Afshari, Alireza; Fogh, Christian L.

    The population is mainly exposed to high air pollution concentrations in the urban environment, where motor vehicle emissions constitute the main source of fine and ultrafine particles. These particles can penetrate deep into the respiratory system, and studies indicate that the smaller the particle, the larger the health impacts. The chemical composition, surface reactivity and physical properties are also important. However, the knowledge about chemical and physical properties of particles and the temporal and spatial variability of the smallest particles is still very limited. The present study summarises the first results of a larger project with the aims to improve the knowledge. The concentration and the emissions of ultrafine particles from petrol and diesel vehicles, respectively, have been quantified using Scanning Mobility Particle Sizer of ultrafine particles in the size range 6-700 nm and routine monitoring data from urban streets and urban background in Denmark. The quantification was carried out using receptor modelling. The number size distributions of petrol and diesel emissions showed a maximum at 20-30 nm and non-traffic at ≈100 nm. The contribution of ultrafine particles from diesel vehicles is dominating in streets. The same technique has been applied on PM 10, and ≈50% contribution from non-traffic. The technique has also been introduced in relation to elemental and organic carbon, and the first data showed strong correlation between traffic pollution and elemental carbon. The outdoor air quality has a significant effect on indoor pollution levels, and we spend most of the time indoors. Knowledge about the influence of ambient air pollution on the concentrations in the indoor environment is therefore crucial for assessment of human health effects of traffic pollution. The results of our studies will be included in air quality models for calculation of human exposure. Preliminary results from our first campaign showed, that the deposition

  15. Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments

    NASA Astrophysics Data System (ADS)

    Collins, Douglas B.; Burkart, Julia; Chang, Rachel Y.-W.; Lizotte, Martine; Boivin-Rioux, Aude; Blais, Marjolaine; Mungall, Emma L.; Boyer, Matthew; Irish, Victoria E.; Massé, Guillaume; Kunkel, Daniel; Tremblay, Jean-Éric; Papakyriakou, Tim; Bertram, Allan K.; Bozem, Heiko; Gosselin, Michel; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2017-11-01

    The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol-cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP) formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research icebreaker CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm) in the range of 101-104 cm-3 were observed during the two seasons, with concentrations greater than 103 cm-3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h-1 in 2016 and 2.2 h-1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h-1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere-atmosphere interactions within the Arctic marine environment to explain the production of UFP and their growth to sizes

  16. Occupational Exposure to Ultrafine Particles among Airport Employees - Combining Personal Monitoring and Global Positioning System

    PubMed Central

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper; Loft, Steffen; Bonde, Jens Peter; Mikkelsen, Sigurd; Brauer, Charlotte

    2014-01-01

    Background Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported at several airports, especially on the apron, but knowledge on individual exposure profiles among different occupational groups working at an airport is lacking. Purpose The aim of this study was to compare personal exposure to UFP among five different occupational groups working at Copenhagen Airport (CPH). Method 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days distributed over two weeks in October 2012. The overall differences between the groups were assessed using linear mixed model. Results Data showed significant differences in exposure levels among the groups when adjusted for variation within individuals and for effect of time and date (p<0.01). Baggage handlers were exposed to 7 times higher average concentrations (geometric mean, GM: 37×103 UFP/cm3, 95% CI: 25–55×103 UFP/cm3) than employees mainly working indoors (GM: 5×103 UFP/cm3, 95% CI: 2–11×103 UFP/cm3). Furthermore, catering drivers, cleaning staff and airside security were exposed to intermediate concentrations (GM: 12 to 20×103 UFP/cm3). Conclusion The study demonstrates a strong gradient of exposure to UFP in ambient air across occupational groups of airport employees. PMID:25203510

  17. Occupational exposure to ultrafine particles among airport employees--combining personal monitoring and global positioning system.

    PubMed

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper; Loft, Steffen; Bonde, Jens Peter; Mikkelsen, Sigurd; Brauer, Charlotte

    2014-01-01

    Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported at several airports, especially on the apron, but knowledge on individual exposure profiles among different occupational groups working at an airport is lacking. The aim of this study was to compare personal exposure to UFP among five different occupational groups working at Copenhagen Airport (CPH). 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days distributed over two weeks in October 2012. The overall differences between the groups were assessed using linear mixed model. Data showed significant differences in exposure levels among the groups when adjusted for variation within individuals and for effect of time and date (p<0.01). Baggage handlers were exposed to 7 times higher average concentrations (geometric mean, GM: 37×103 UFP/cm(3), 95% CI: 25-55 × 10(3) UFP/cm(3)) than employees mainly working indoors (GM: 5 × 10(3) UFP/cm(3), 95% CI: 2-11 × 103 UFP/cm(3)). Furthermore, catering drivers, cleaning staff and airside security were exposed to intermediate concentrations (GM: 12 to 20 × 10(3) UFP/cm(3)). The study demonstrates a strong gradient of exposure to UFP in ambient air across occupational groups of airport employees.

  18. Contribution of various microenvironments to the daily personal exposure to ultrafine particles: Personal monitoring coupled with GPS tracking

    NASA Astrophysics Data System (ADS)

    Bekö, Gabriel; Kjeldsen, Birthe Uldahl; Olsen, Yulia; Schipperijn, Jasper; Wierzbicka, Aneta; Karottki, Dorina Gabriela; Toftum, Jørn; Loft, Steffen; Clausen, Geo

    2015-06-01

    Exposure to ultrafine particles (UFP) may have adverse health effects. Central monitoring stations do not represent the personal exposure to UFP accurately. Few studies have previously focused on personal exposure to UFP. Sixty non-smoking residents living in Copenhagen, Denmark were asked to carry a backpack equipped with a portable monitor, continuously recording particle number concentrations (PN), in order to measure the real-time individual exposure over a period of ˜48 h. A GPS logger was carried along with the particle monitor and allowed us to estimate the contribution of UFP exposure occurring in various microenvironments (residence, during active and passive transport, other indoor and outdoor environments) to the total daily exposure. On average, the fractional contribution of each microenvironment to the daily integrated personal exposure roughly corresponded to the fractions of the day the subjects spent in each microenvironment. The home environment accounted for 50% of the daily personal exposure. Indoor environments other than home or vehicles contributed with ˜40%. The highest median UFP concentration was obtained during passive transport (vehicles). However, being in transit or outdoors contributed 5% or less to the daily exposure. Additionally, the subjects recorded in a diary the periods when they were at home. With this approach, 66% of the total daily exposure was attributable to the home environment. The subjects spent 28% more time at home according to the diary, compared to the GPS. These results may indicate limitations of using diaries, but also possible inaccuracy and miss-classification in the GPS data.

  19. The Special Features of the Deformation Behavior of an Ultrafine-Grained Aluminum Alloy of the Al-Mg-Li System at Room Temperature

    NASA Astrophysics Data System (ADS)

    Naydenkin, E. V.; Mishin, I. P.; Ivanov, K. V.

    2015-04-01

    The special features of the deformation behavior of an ultrafine-grained aluminum alloy produced by severe plastic deformation are investigated. Unlike ultrafine-grained pure aluminum, the second-phase particles precipitated in the bulk and at the grain boundaries of the alloy are shown to hinder the development of grain boundary sliding and plastic strain localization. This increases the length of the strain hardening stage and uniformity of elongation of a heterogeneous aluminum alloy specimen as compared to pure aluminum.

  20. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  1. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  2. Association of Long-Term Near-Highway Exposure to Ultrafine Particles with Cardiovascular Diseases, Diabetes and Hypertension.

    PubMed

    Li, Yu; Lane, Kevin J; Corlin, Laura; Patton, Allison P; Durant, John L; Thanikachalam, Mohan; Woodin, Mark; Wang, Molin; Brugge, Doug

    2017-04-26

    Ultrafine particle (UFP) concentrations are elevated near busy roadways, however, their effects on prevalence of cardiovascular diseases, diabetes, and hypertension are not well understood. To investigate these associations, data on demographics, diseases, medication use, and time of activities were collected by in-home surveys for 704 participants in three pairs of near-highway and urban background neighborhoods in and near Boston (MA, USA). Body mass index (BMI) was measured for a subset of 435 participants. Particle number concentration (PNC, a measure of UFP) was collected by mobile monitoring in each area. Intra-neighborhood spatial-temporal regression models (approximately 20 m resolution) were used to estimate hourly ambient PNC at the residences of participants. We used participant time activity information to adjust annual average residential PNC values and assign individualized time activity adjusted annual average PNC exposures (TAA-PNC). Using multivariate logistic regression models, we found an odds ratio (OR) of 1.35 (95% CI: 0.83, 2.22) of TAA-PNC with stroke and ischemic heart diseases (S/IHD), an OR of 1.14 (95% CI: 0.81, 1.62) with hypertension, and an OR of 0.71 (95% CI: 0.46, 1.10) for diabetes. A subset analysis controlling for BMI produced slightly stronger associations for S/IHD (OR = 1.61, 95% CI: 0.88, 2.92) and hypertension (OR = 1.28, 95% CI: 0.81, 2.02), and no association with diabetes (OR = 1.09, 95% CI = 0.61, 1.96). Further research is needed with larger sample sizes and longitudinal follow-up.

  3. Spectroscopic Assessment of the Reliability of Metal/Metal Oxide Interfaces

    DTIC Science & Technology

    1994-10-01

    vapor deposition(LCVD)1, 2 of thin films, clusters and ultrafine particles offers many unique opportunities in materials synthesis. As precursors for LCVD...films, the chemistry is directly applicable to other oxidizable metals. Puretsky and Demyanenko9 reported that gas phase clusters and ultrafine ... particles can be synthesized using excimer laser dissociation of all group six metal hexacarbonyls. Our earlier work on platinum clusters and our current

  4. Short-term exposure to PM 10, PM 2.5, ultrafine particles and CO 2 for passengers at an intercity bus terminal

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Chang, Hsiao-Peng; Hsieh, Cheng-Ju

    2011-04-01

    The Taipei Bus Station is the main transportation hub for over 50 bus routes to eastern, central, and southern Taiwan. Daily traffic volume at this station is about 2500 vehicles, serving over 45,000 passengers daily. The station is a massive 24-story building housing a bus terminal, a business hotel, a shopping mall, several cinemas, offices, private residential suites, and over 900 parking spaces. However, air quality inside this bus terminal is a concern as over 2500 buses are scheduled to run daily. This study investigates the PM 10, PM 2.5, UFP and CO 2 levels inside and outside the bus terminal. All measurements were taken between February and April 2010. Measurement results show that coarse PM inside the bus terminal was resuspended by the movement of large numbers of passengers. The fine and ultrafine PM in the station concourse were from outside vehicles. Moreover, fine and ultrafine PM at waiting areas were exhausted directly from buses in the building. The CO 2 levels at waiting areas were likely elevated by bus exhaust and passengers exhaling. The PM 10, PM 2.5 and CO 2 levels at the bus terminal were lower than Taiwan's EPA suggested standards for indoor air quality. However, UFP levels at the bus terminal were significantly higher than those in the urban background by about 10 times. Therefore, the effects of UFPs on the health of passengers and workers must be addressed at this bus terminal since the levels of UFPs are higher than >1.0 × 10 5 particles cm -3.

  5. Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing.

    PubMed

    Heitbrink, William A; Evans, Douglas E; Ku, Bon Ki; Maynard, Andrew D; Slavin, Thomas J; Peters, Thomas M

    2009-01-01

    This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R2 = 0.6 for both plants) than in the summer (R2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 mu m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.

  6. Oxidative particle mixtures for groundwater treatment

    DOEpatents

    Siegrist, Robert L.; Murdoch, Lawrence C.

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  7. Synthesis of ultrafine Si3N4 powder in RF-RF plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Michitaka; Nishio, Hiroaki

    1991-10-01

    A newly designed plasma-CVD apparatus mounted with the RF-RF type plasma torch was introduced to synthesize ultrafine powders of silicon nitride (Si3N4). The RF-RF plasma system (the combination of a main (lower) and controlling (upper) RF plasma) improved the stability of simple RF plasma and solved the impurity problem of dc-RF hybrid plasma. The reaction of SiCl4 and NH3, which were radially injected into the tail flames of the upper and lower plasmas, respectively, yielded near-stoichiometric amorphous powders of Si3N4. The nitrogen content in the products largely depended on the flow rate of the quenching gas, a mixture of NH3more » (reactant) and H2. The oxygen content and metal impurities are 2-3 wt pct and less than 200 ppm, respectively. The powder particles had an average diameter of about 15 nm with a narrow size distribution, and showed extreme air sensitivity. Conspicuous crystallazation and particle growth occurred when heated at temperatures above 1400 C. These results suggested that the RF-RF system was a potential reactor for the synthesis of ultrafine powders with excellent sinterability at relatively low temperatures. 9 refs.« less

  8. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.

    PubMed

    Kiliç, Mehtap Gülsün; Hoşten, Cetin; Demirci, Sahinde

    2009-11-15

    This paper attempts to compare electrocoagulation using aluminum anodes and stainless steel cathodes with conventional coagulation by aluminum sulfate dosing on aqueous suspensions of ultrafine quartz. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine quartz suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of quartz particles from suspensions. Coagulation, however, was more effective in a wider pH range (pH 6-9) than electrocoagulation which yielded optimum effectiveness in a relatively narrower pH range around 9, where, in both methods, these pH values corresponded to near-zero zeta potentials of quartz particles. Furthermore, experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (<10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.

  9. Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse

    NASA Astrophysics Data System (ADS)

    Wallace, Lance A.; Emmerich, Steven J.; Howard-Reed, Cynthia

    Airborne particles are implicated in morbidity and mortality of certain high-risk subpopulations. Exposure to particles occurs mostly indoors, where a main removal mechanism is deposition to surfaces. Deposition can be affected by the use of forced-air circulation through ducts or by air filters. In this study, we calculate the deposition rates of particles in an occupied house due to forced-air circulation and the use of in-duct filters such as electrostatic precipitators (ESP) and fibrous mechanical filters (MECH). Deposition rates are calculated for 128 size categories ranging from 0.01 to 2.5 μm. More than 110 separate "events" (mostly cooking, candle burning, and pouring kitty litter) were used to calculate deposition rates for four conditions: fan off, fan on, MECH installed, ESP installed. For all cases, deposition rates varied in a "U"-shaped distribution with the minimum occurring near 0.1 μm, as predicted by theory. The use of the central fan with no filter or with a standard furnace filter increased deposition rates by amounts on the order of 0.1-0.5 h -1. The MECH increased deposition rates by up to 2 h -1 for ultrafine and fine particles but was ineffective for particles in the 0.1-0.5 μm range. The ESP increased deposition rates by 2-3 h -1 and was effective for all sizes. However, the ESP lost efficiency after several weeks and needed regular cleaning to maintain its effectiveness. A reduction of particle levels by 50% or more could be achieved by use of the ESP when operating properly. Since the use of fans and filters reduces particle concentrations from both indoor and outdoor sources, it is more effective than the alternative approach of reducing ventilation by closing windows or insulating homes more tightly. For persons at risk, use of an air filter may be an effective method of reducing exposure to particles.

  10. Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Chieh; Hsu, Shih-Chieh; Tsai, Chuen-Jinn; Chou, Charles C.-K.; Lin, Neng-Huei; Lee, Chung-Te; Roam, Gwo-Dong; Pui, David Y. H.

    2013-10-01

    The characteristics of atmospheric ultrafine particles (i.e. <100 nm, nanoparticles or PM0.1), PM2.5 and PM10 were studied at the Lulin Atmospheric Background Station (LABS, 2862 m a.s.l., Taiwan) as part of the 7SEAS/Dongsha campaign. Sampling was conducted in July and August of 2009 and September to November of 2010, during which two 96-h and four 72-h PM samples were taken. Real-time particle size distributions were measured continuously from July to August of 2009 and July to November of 2010. PM0.1, PM2.5 and PM10 were collected by using two MOUDIs (micro-orifice uniform deposit impactor, MSP 110) and a Dichotomous PM10 sampler (Andersen SA-241) while real-time size distributions of particles of 5.5-350 nm in diameter were measured by an SMPS (scanning mobility particle sizer, TSI 3936). Filter samples were analyzed for gravimetric mass and chemical compositions, including organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Meteorology parameters and gaseous O3 and CO concentrations were also monitored along with the SMPS data for studying particle nucleation, condensation, SOA (secondary organic aerosol) formation and long-range air pollutant transport at the LABS. SMPS data showed that nanoparticle concentrations at the LABS remained relatively stable at low level (˜300-500 #/cm3) during the nighttime (22:00-04:00), increased during daytime, and reached a maximum (˜2000-4000 #/cm3) in the afternoon (12:00-16:00). The NMD (number median diameter) showed an opposite trend with the peak number concentrations observed in the afternoon corresponding to the smallest NMD (20-40 nm). These results indicate the dominance of local sources rather than the transport from other atmospheric air because that the lifetime of nanoparticles was only few minutes. Chemical analysis of filter samples showed that the concentrations of trace elements K and Mn, which serve as biomass burning markers, were elevated in the fine particle fractions during

  11. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  12. Surfactant-Modified Ultrafine Gold Nanoparticles with Magnetic Responsiveness for Reversible Convergence and Release of Biomacromolecules.

    PubMed

    Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz

    2017-03-28

    It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (<2 nm) based on a conventional method via coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (<2 nm) magnetic gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.

  13. FORMATION OF FINE PARTICLES FROM RESIDUAL OIL COMBUSTION: REDUCING ULTRAFINE NUCLEI THROUGH THE ADDITION OF INORGANIC SORBENT

    EPA Science Inventory

    The paper gives results of an investigation, using an 82-kW-rated laboratory-scale refractory-lined combustor, of the characteristics of particulate matter emitted from residual oil combustion and the reduction of ultrafine nuclei by postflame sorbent injection. Without sorbent a...

  14. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Jin, Tingting; Jin, Yachao; Wu, Leihong; Hu, Bin; Tian, Yu; Fan, Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury.

  15. Soot, organics and ultrafine ash from air- and oxy-fired coal ...

    EPA Pesticide Factsheets

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant stoichiometric ratios (SR = 1.2-1.4), but with the ability to maintain constant residence times (2.3 s). Experiments were conducted using a pulverized bituminous coal under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Size-classified fly ash samples were collected, and measurements focused on the composition of the total and ultrafine (<0.6 µm) fly ash produced, in particular the soot, elemental carbon (EC), and organic carbon (OC) fractions. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Subsequent analyses of the carbonaceous component on particles <0.6 µm by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100 and 550 °C with the remaining

  16. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J.; Ho, Pauline

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  17. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    NASA Astrophysics Data System (ADS)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  18. Formation and alteration of airborne particles in the subway environment.

    PubMed

    Moreno, T; Querol, X; Martins, V; Minguillón, M C; Reche, C; Ku, L H; Eun, H R; Ahn, K H; Capdevila, M; de Miguel, E

    2017-01-25

    Most particles in the rail subway environment are sub-micron sized ferruginous flakes and splinters generated mechanically by frictional wear of brake pads, wheels and rails. To better understand the mechanisms of formation and the alteration processes affecting inhalable particles in subways, PM samples (1-2.5 μm and 2.5-10 μm) were collected in the Barcelona Metro and then studied under a scanning electron microscope. Most particles in these samples are hematitic (up to 88%), with relatively minor amounts of mineral matter (up to 9%) and sulphates (up to 5%). Detailed microscopy (using back scattered and TEM-DRX imaging) reveals how many of the metallic particles comprise the metallic Fe nucleus surrounded by hematite (Fe 2 O 3 ) and a coating of sulphate and chloride salts mixed with mineral matter (including Ca-carbonates, clay minerals and quartz). These observations record the emission of fine to ultrafine FePM by frictional wear at elevated temperatures that promote rapid partial (or complete) oxidation of the native metal. Water condensing on the PM surface during cooling leads to the adsorption of inorganic mineral particles that coat the iron oxide. The distinctively layered polymineralic structure that results from these processes is peculiar to particles generated in the subway environment and very different from PM typically inhaled outdoors.

  19. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  20. Particle Size Distribution in Aluminum Manufacturing Facilities.

    PubMed

    Liu, Sa; Noth, Elizabeth M; Dixon-Ernst, Christine; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-10-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM 2.5 measured by PMI was compared to PM 2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM 1.0 ) and quasi-ultrafine (PM 0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM 2.5 versus MiniMOUDI_PM 2.5 was 1.03 mg/m 3 per mg/m 3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM 10 which was PM 1.0 or PM 0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities.

  1. Report: Combustion Byproducts and Their Health Effects: Summary of the 10th International Congress

    PubMed Central

    Dellinger, Barry; D'Alessio, Antonio; D'Anna, Andrea; Ciajolo, Anna; Gullett, Brian; Henry, Heather; Keener, Mel; Lighty, JoAnn; Lomnicki, Slawomir; Lucas, Donald; Oberdörster, Günter; Pitea, Demetrio; Suk, William; Sarofim, Adel; Smith, Kirk R.; Stoeger, Tobias; Tolbert, Paige; Wyzga, Ron; Zimmermann, Ralf

    2008-01-01

    Abstract The 10th International Congress on Combustion Byproducts and their Health Effects was held in Ischia, Italy, from June 17–20, 2007. It is sponsored by the US NIEHS, NSF, Coalition for Responsible Waste Incineration (CRWI), and Electric Power Research Institute (EPRI). The congress focused on: the origin, characterization, and health impacts of combustion-generated fine and ultrafine particles; emissions of mercury and dioxins, and the development/application of novel analytical/diagnostic tools. The consensus of the discussion was that particle-associated organics, metals, and persistent free radicals (PFRs) produced by combustion sources are the likely source of the observed health impacts of airborne PM rather than simple physical irritation of the particles. Ultrafine particle-induced oxidative stress is a likely progenitor of the observed health impacts, but important biological and chemical details and possible catalytic cycles remain unresolved. Other key conclusions were: (1) In urban settings, 70% of airborne fine particles are a result of combustion emissions and 50% are due to primary emissions from combustion sources, (2) In addition to soot, combustion produces one, possibly two, classes of nanoparticles with mean diameters of ~10 nm and ~1 nm. (3) The most common metrics used to describe particle toxicity, viz. surface area, sulfate concentration, total carbon, and organic carbon, cannot fully explain observed health impacts, (4) Metals contained in combustion-generated ultrafine and fine particles mediate formation of toxic air pollutants such as PCDD/F and PFRs. (5) The combination of metal-containing nanoparticles, organic carbon compounds, and PFRs can lead to a cycle generating oxidative stress in exposed organisms. PMID:22476005

  2. Personal measurement of exposure to black carbon and ultrafine particles in schoolchildren from PARIS cohort (Paris, France).

    PubMed

    Paunescu, A-C; Attoui, M; Bouallala, S; Sunyer, J; Momas, I

    2017-07-01

    This study aimed to measure in French children personal exposure concentrations of black carbon (BC) and ultrafine particles (UFP) and to quantify the contribution of different microenvironments (home, school, places of extracurricular activities, transport) to their total exposure. It was conducted on 96 9-year-old children from the PARIS birth cohort. BC and UFP were continuously measured by portable devices (microAeth ® AE51 and DiSCmini ® ) for a minimum of 24 hours, while participating families simultaneously filled in a space-time-activities-budget questionnaire. BC exposure concentration was higher during trips (principally metro/train and bus), while UFP exposure concentration was higher during indoor activities (mainly eating at restaurants) and in trips. The most important UFP peaks were measured at home, especially during cooking. Home and school together accounted for much of the total exposure, 83.8% for BC and 85.3% for UFP. The contribution of transport to total exposure was 12.4% for BC and 9.7% for UFP, while extracurricular activities were responsible for 3.8% and 5% of the total exposure to BC and UFP, respectively. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Altering Iron Oxide Nanoparticle Surface Properties Induce Cortical Neuron Cytotoxicity

    PubMed Central

    Rivet, Christopher J.; Yuan, Yuan; Borca-Tasciuc, Diana-Andra; Gilbert, Ryan J.

    2014-01-01

    Superparamagnetic iron oxide nanoparticles, with diameters in the range of a few tens of nanometers, display the ability to cross the blood-brain barrier and are envisioned as diagnostic and therapeutic tools in neuro-medicine. However, despite the numerous applications being explored, insufficient information is available on their potential toxic effect on neurons. While iron oxide has been shown to pose a decreased risk of toxicity, surface functionalization, often employed for targeted delivery, can significantly alter the biological response. This aspect is addressed in the present study, which investigates the response of primary cortical neurons to iron oxide nanoparticles with coatings frequently used in biomedical applications: aminosilane, dextran, and polydimethylamine. Prior to administering the particles to neuronal cultures, each particle type was thoroughly characterized to assess the (1) size of individual nanoparticles, (2) concentration of the particles in solution and (3) agglomeration size and morphology. Culture results show that polydimethylamine functionalized nanoparticles induce cell death at all concentrations tested by swift and complete removal of the plasma membrane. Aminosilane coated particles affected metabolic activity only at higher concentrations while leaving the membrane intact and dextran-coated nanoparticles partially altered viability at higher concentrations. These findings suggest that nanoparticle characterization and primary cell-based cytotoxicity evaluation should be completed prior to applying nanomaterials to the nervous system. PMID:22111864

  4. Microstructure and properties of ultrafine grained structure of Cu-Zn-Si alloy fabricated by heavy cold rolling

    NASA Astrophysics Data System (ADS)

    Miura, H.; Kobayashi, T.; Kobayashi, M.

    2014-08-01

    Cu-18.2Zn-1.5Si-0.25Fe (mass%) alloy was heavily cold rolled. Ultrafine grained (UFGed) structure, containing a mixture of lamellar and mechanical twins, was easily and homogeneously formed. The average grain size was approximately 100 nm. The as-rolled sample showed quite high ultimate tensile strength (UTS) over 1 GPa. The UTS was higher than those obtained by multi directional forging. When the samples were annealed at relatively low temperatures between 553 K and 653 K, they showed slight hardening followed by large softening due to occurrence of static recrystallization (SRX). Annealing of UFGed structure at relatively low temperature of around 0.4 Tm caused extensive SRX that, in turn, induces ultrafine RXed grained structure. The grain size of the RXed sample was as fine as 200 nm. Although the annealing induced recovery of ductility while UTS gradually reduces, UTS over 1 GPa with ductility of 15 % were attained. The RXed grains mainly contained ultrafine annealing twins. Therefore, UFGed structure and superior mechanical properties could be achieved by a simple process of cold rolling, i.e., without severe plastic deformation.

  5. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    PubMed

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative.

  6. Development of a High-Strength Ultrafine-Grained Ferritic Steel Nanocomposite

    NASA Astrophysics Data System (ADS)

    Rahmanifard, Roohollah; Farhangi, Hasan; Novinrooz, Abdul Javad; Moniri, Samira

    2013-02-01

    This article describes the microstructural and mechanical properties of 12YWT oxide-dispersion-strengthened (ODS)-ferritic steel nanocomposite. According to the annealing results obtained from X-ray diffraction line profile analysis on mechanically alloyed powders milled for 80 hours, the hot extrusion at 1123 K (850 °C) resulted in a nearly equiaxed ultrafine structure with an ultimate tensile strength of 1470 MPa, yield strength of 1390 MPa, and total elongation of 13 pct at room temperature comparable with high-strength 14YWT ODS steel. Maximum total elongation was found at 973 K (600 °C) where fractography of the tensile specimen showed a fully ductile dimple feature compared with the splitting cracks and very fine dimpled structure observed at room temperature. The presence of very small particles on the wall of dimples at 1073 K (800 °C) with nearly chemical composition of the matrix alloy was attributed to the activation of the boundaries decohesion mechanism as a result of diffusion of solute atoms. The results of Charpy impact test also indicated significant improvement of transition temperature with respect to predecessor 12YWT because of the decreased grain size and more homogeneity of grain size distribution. Hence, this alloy represented a good compromise between the strength and Charpy impact properties.

  7. Embedding ultrafine ZnSnO3 nanoparticles into reduced graphene oxide composites as high-performance electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Yuhang; Jiang, Ranran; Li, Dan; Dong, Yutao; Liu, Yushan; Zhang, Jianmin

    2018-05-01

    Ultrafine ZnSnO3 nanoparticles, with an average diameter of 45 nm, homogeneously grown on reduced graphene oxide (rGO) have been successfully fabricated via methods of low temperature coprecipitation, colloid electrostatic self-assembly, and hydrothermal treatment. The uniformly distributed ZnSnO3 nanocrystals could inhibit the restacking of rGO sheets. In turn, the existence of rGO could hinder the growth and aggregation of ZnSnO3 nanoparticles in the synthesis process, increase the conductivity of the composite, and buffer the volume expansion of the ZnSnO3 nanocrystals upon lithium ion insertion and extraction. The obtained ZnSnO3/rGO exhibited superior cycling stability with a discharge/charge capacity of 718/696 mA h g-1 after 100 cycles at a current density of 0.1 A g-1.

  8. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials.

    PubMed

    Xiu, Fu-Rong; Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang; Zhang, Fu-Shen; Chen, Mengjun

    2017-02-01

    In this study, supercritical methanol (SCM) process was successfully used for the preparation of ultrafine copper materials from waste printed circuit boards (PCBs) after nitric acid pretreatment. Waste PCBs were pretreated twice in nitric acid. Sn and Pb were recovered by the first nitric acid pretreatment. The leach liquor with a high concentration of copper ions after the second nitric acid leaching was subjected to SCM process. The mixture of Cu and Cu 2 O with poor uniformity of particle size was formed due to the effect of ferric iron contained in the leach liquor of waste PCBs, while more uniform and spherical Cu particles with high monodispersity and smaller size could be prepared after the removal of Fe. The size of Cu particles increased obviously with the decline of SCM temperature, and particles became highly aggregated when the reaction temperature decreased to 300°C. The size of Cu particles decreased markedly with the decrease of initial concentration of copper ion in the leach liquor of waste PCBs. It is believed that the process developed in this study is simple and practical for the preparation of ultrafine copper materials from waste PCBs with the aim of recycling these waste resources as a high value-added product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Particle size distribution of mainstream tobacco and marijuana smoke. Analysis using the electrical aerosol analyzer.

    PubMed

    Anderson, P J; Wilson, J D; Hiller, F C

    1989-07-01

    Accurate measurement of cigarette smoke particle size distribution is important for estimation of lung deposition. Most prior investigators have reported a mass median diameter (MMD) in the size range of 0.3 to 0.5 micron, with a small geometric standard deviation (GSD), indicating few ultrafine (less than 0.1 micron) particles. A few studies, however, have suggested the presence of ultrafine particles by reporting a smaller count median diameter (CMD). Part of this disparity may be due tot he inefficiency to previous sizing methods in measuring ultrafine size range, to evaluate size distribution of smoke from standard research cigarettes, commercial filter cigarettes, and from marijuana cigarettes with different delta 9-tetrahydrocannabinol contents. Four 35-cm3, 2-s puffs were generated at 60-s intervals, rapidly diluted, and passed through a charge neutralizer and into a 240-L chamber. Size distribution for six cigarettes of each type was measured, CMD and GSD were determined from a computer-generated log probability plot, and MMD was calculated. The size distribution parameters obtained were similar for all cigarettes tested, with an average CMD of 0.1 micron, a MMD of 0.38 micron, and a GSD of 2.0. The MMD found using the EAA is similar to that previously reported, but the CMD is distinctly smaller and the GSD larger, indicating the presence of many more ultrafine particles. These results may explain the disparity of CMD values found in existing data. Ultrafine particles are of toxicologic importance because their respiratory tract deposition is significantly higher than for particles 0.3 to 0.5 micron and because their large surface area facilitates adsorption and delivery of potentially toxic gases to the lung.

  10. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders.

    PubMed

    Allen, J L; Oberdorster, G; Morris-Schaffer, K; Wong, C; Klocke, C; Sobolewski, M; Conrad, K; Mayer-Proschel, M; Cory-Slechta, D A

    2017-03-01

    Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Developmental Neurotoxicity of Inhaled Ambient Ultrafine Particle Air Pollution: Parallels with Neuropathological and Behavioral Features of Autism and Other Neurodevelopmental Disorders

    PubMed Central

    Allen, J. L.; Oberdorster, G.; Morris-Schafer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D. A.

    2016-01-01

    Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. PMID:26721665

  12. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  13. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  14. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  15. Assessment of the temporal relationship between daily summertime ultra-fine particulate count concentration with PM2.5 and black carbon soot in Washington, DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, G.; Abt, E.; Koutrakis, P.

    Several recent epidemiological studies have shown a significant relationship between ambient daily particulate mass concentrations and human health effects as measured by cardio-pulmonary morbidity and mortality. Much of the current research aimed at determining causal agents of these PM health effects focuses on fine mass (PM2.5), which is primarily the combustion-related component of PM10. Some studies have suggested that ultra-fine aerosols (typically defined as those particles that are less than 0.1 or 0.15 micrometers in diameter) may be an important category of particulate matter to consider, as opposed to or in addition to other measures of fine particle mass. Onemore » of the postulated toxicological mechanisms for ultra-fine particles is that it is the number of particles which is most important, and not necessarily their composition or mass. Some studies suggest that the count concentration could be important by overwhelming macrophages. Another possible particle metric that could be important in health-effect outcomes is particle surface area, which may serve as a condensation surface for gas phase components that are then deposited deep in the lung.« less

  16. Observation of oxide particles below the apparent oxygen solubility limit in tantalum

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1973-01-01

    The apparent solubility of oxygen in polycrystalline tantalum as determined by the X-ray diffraction lattice parameter technique is about 1.63 atomic percent at 820 C. However, oxide particles were identified in samples containing as low as 0.5 atomic percent of oxygen. These oxide particles were present at the grain boundaries and within the grains. The number of oxide particles increased with increasing oxygen concentration in tantalum. The presence of oxide particles suggests that the true solubility of oxygen in the polycrystalline tantalum metal is probably significantly lower than that reported in the literature.

  17. Wood combustion particles induce adverse effects to normal and diseased airway epithelia.

    PubMed

    Krapf, Manuel; Künzi, Lisa; Allenbach, Sandrine; Bruns, Emily A; Gavarini, Ilaria; El-Haddad, Imad; Slowik, Jay G; Prévôt, André S H; Drinovec, Luka; Močnik, Griša; Dümbgen, Lutz; Salathe, Matthias; Baumlin, Nathalie; Sioutas, Constantinos; Baltensperger, Urs; Dommen, Josef; Geiser, Marianne

    2017-04-19

    Residential wood burning is a major source of poorly characterized, deleterious particulate matter, whose composition and toxicity may vary with wood type, burning condition and photochemical age. The causative link between ambient wood particle constituents and observed adverse health effects is currently lacking. Here we investigate the relationship between chemical properties of primary and atmospherically aged wood combustion particles and acute toxicity in human airway epithelial cells. Emissions from a log wood burner were diluted and injected into a smog chamber for photochemical aging. After concentration-enrichment and removal of oxidizing gases, directly emitted and atmospherically aged particles were deposited on cell cultures at the air-liquid interface for 2 hours in an aerosol deposition chamber mimicking physiological conditions in lungs. Cell models were fully differentiated normal and diseased (cystic fibrosis and asthma) human bronchial epithelia (HBE) and the bronchial epithelial cell line BEAS-2B. Cell responses were assessed at 24 hours after aerosol exposure. Atmospherically relevant doses of wood combustion particles significantly increased cell death in all but the asthma cell model. Expression of oxidative stress markers increased in HBE from all donors. Increased cell death and inflammatory responses could not be assigned to a single chemical fraction of the particles. Exposure to primary and aged wood combustion particles caused adverse effects to airway epithelia, apparently induced by several interacting components.

  18. Pseudophasic extraction method for the separation of ultra-fine minerals

    DOEpatents

    Chaiko, David J.

    2002-01-01

    An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.

  19. PROJECT 2: THE ROLE OF OXIDATIVE STRESS IN PM-INDUCED ADVERSE HEALTH EFFECTS

    EPA Science Inventory

    We expect that due to the presence of redox cycling chemicals, ambient PM induce a series of pro-oxidative and pro-inflammatory effects which enhance asthma and atherosclerosis. We expect that these effects will be related to particle dose, size, source, composition, and seas...

  20. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    NASA Astrophysics Data System (ADS)

    Vaattovaara, P.; Huttunen, P. E.; Yoon, Y. J.; Joutsensaari, J.; Lehtinen, K. E. J.; O'Dowd, C. D.; Laaksonen, A.

    2006-04-01

    Newly-formed nanometer-sized particles have been observed at coastal and marine environments worldwide. Interestingly, organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm) at the Mace Head research station. Furthermore, effects of those nucleation events to potential CCN (cloud condensation nuclei) were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and high biological activity (HBA, i.e. a high mass concentration of chlorophyll a of the ocean) in spring 2002. Additionally, a PHA-UCPC (pulse height analyzer ultrafine condensation particle counter) technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity (LBA, i.e. a lower mass concentration of chlorophyll a of the ocean) in October 2002. The overall results of the UFO-TDMA and the PHA-UCPC measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine/coastal biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation by iodine, hydroxyl radical, and ozone. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the UFO-TDMA results suggest that the secondary organic compounds may, in addition to