Sample records for ultrahigh collection efficiency

  1. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.

    PubMed

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2015-02-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  2. Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence

    NASA Astrophysics Data System (ADS)

    Liao, Jianfei; Xie, Yingmao; Wang, Xinghua; Li, Dongbo; Huang, Tianye

    2017-07-01

    A slot silicon photonic crystal fiber (PCF) is proposed to simultaneously achieve ultrahigh birefringence, large nonlinearity and ultra-flattened nearly-zero dispersion over a wide wavelength range. By taking advantage on the slot effect, ultrahigh birefringence up to 0.0736 and ultrahigh nonlinear coefficient up to 211.48 W-1 m-1 for quasi-TE mode can be obtained at the wavelength of 1.55 μm. Moreover, ultra-flattened dispersion of 0.49 ps/(nm km) for quasi-TE mode can be achieved over a 180 nm wavelength range with low dispersion slope of 1.85 × 10-3 ps/(nm2 km) at 1.55 μm. Leveraging on these advantages, the proposed slot PCF has great potential for efficient all-optical signal processing applications.

  3. Efficient Ultra-High Speed Communication with Simultaneous Phase and Amplitude Regenerative Sampling (SPARS)

    NASA Astrophysics Data System (ADS)

    Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang

    2017-09-01

    For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.

  4. Design of ultrahigh brightness solar-pumped disk laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2012-09-10

    To significantly improve the solar-pumped laser beam brightness, a multi-Fresnel lens scheme is proposed for side-pumping either a single-crystal Nd:YAG or a core-doped ceramic Sm(3+) Nd:YAG disk. Optimum laser system parameters are found through ZEMAX and LASCAD numerical analysis. An ultrahigh laser beam figure of merit B of 53 W is numerically calculated, corresponding to a significant enhancement of more than 180 times over the previous record. 17.7 W/m(2) collection efficiency is also numerically attained. The strong thermal effects that have hampered present-day rod-type solar-pumped lasers can also be largely alleviated.

  5. Ultrahigh pressure extraction of bioactive compounds from plants-A review.

    PubMed

    Xi, Jun

    2017-04-13

    Extraction of bioactive compounds from plants is one of the most important research areas for pharmaceutical and food industries. Conventional extraction techniques are usually associated with longer extraction times, lower yields, more organic solvent consumption, and poor extraction efficiency. A novel extraction technique, ultrahigh pressure extraction, has been developed for the extraction of bioactive compounds from plants, in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yields, and enhance the quality of extracts. The mild processing temperature of ultrahigh pressure extraction may lead to an enhanced extraction of thermolabile bioactive ingredients. A critical review is conducted to introduce the different aspects of ultrahigh pressure extraction of plants bioactive compounds, including principles and mechanisms, the important parameters influencing its performance, comparison of ultrahigh pressure extraction with other extraction techniques, advantages, and disadvantages. The future opportunities of ultrahigh pressure extraction are also discussed.

  6. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W

    2016-09-02

    Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  8. Infinite efficiency of the collisional Penrose process: Can a overspinning Kerr geometry be the source of ultrahigh-energy cosmic rays and neutrinos?

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Harada, Tomohiro; Nakao, Ken-ichi; Joshi, Pankaj S.; Kimura, Masashi

    2016-05-01

    The origin of the ultrahigh-energy particles we receive on Earth from outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper, we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultrahigh-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter a =M (1 +ɛ ) , where we take the limit ɛ →0+. We consider two massive particles starting from rest at infinity that collide at r =M with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultrahigh energies exploiting the collisional Penrose process with the divergent efficiency η ˜1 /√{ɛ }→∞ . Assuming the isotropic emission of massless particles in the center-of-mass frame of the colliding particles, we show that half of the particles created in the collisions escape to infinity with the divergent energies, while the proportion of particles that reach infinity with finite energy is minuscule. To a distant observer, ultrahigh-energy particles appear to originate from a bright spot which is at the angular location ξ ˜2 M /robs with respect to the singularity on the side which is rotating toward the observer. We compute the spectrum of the high-energy massless particles and show that anisotropy in the emission in the center-of-mass frame leaves a distinct signature on its shape. Since the anisotropy is dictated by the differential cross section of the underlying particle physics process, the observation of the spectrum can constrain the particle physics model and serve as a unique probe into fundamental physics at

  9. An analysis of mobile whole blood collection labor efficiency.

    PubMed

    Rose, William N; Dayton, Paula J; Raife, Thomas J

    2011-07-01

    Labor efficiency is desirable in mobile blood collection. There are few published data on labor efficiency. The variability in the labor efficiency of mobile whole blood collections was analyzed. We determined to improve our labor efficiency using lean manufacturing principles. Workflow changes in mobile collections were implemented with the goal of minimizing labor expenditures. To measure success, data on labor efficiency measured by units/hour/full-time equivalent (FTE) were collected. The labor efficiency in a 6-month period before the implementation of changes, and in months 1 to 6 and 7 to 12 after implementation was analyzed and compared. Labor efficiency in the 6-month period preceding implementation was 1.06 ± 0.4 units collected/hour/FTE. In months 1 to 6, labor efficiency declined slightly to 0.92 ± 0.4 units collected/hour/FTE (p = 0.016 vs. preimplementation). In months 7 to 12, the mean labor efficiency returned to preimplementation levels of 1.09 ±0.4 units collected/hour/FTE. Regression analysis correlating labor efficiency with total units collected per drive revealed a strong correlation (R(2) = 0.48 for the aggregate data from all three periods), indicating that nearly half of labor efficiency was associated with drive size. The lean-based changes in workflow were subjectively favored by employees and donors. The labor efficiency of our mobile whole blood drives is strongly influenced by size. Larger drives are more efficient, with diminishing returns above 40 units collected. Lean-based workflow changes were positively received by employees and donors. © 2011 American Association of Blood Banks.

  10. Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homola, Piotr

    One of key scientific objectives of the Pierre Auger Observatory is the search for ultra-high energy photons. Such photons could originate either in the interactions of energetic cosmic-ray nuclei with the cosmic microwave background (so-called cosmogenic photons) or in the exotic scenarios, e.g. those assuming a production and decay of some hypothetical super-massive particles. The latter category of models would imply relatively large fluxes of photons with ultra-high energies at Earth, while the former, involving interactions of cosmic-ray nuclei with the microwave background - just the contrary: very small fractions. The investigations on the data collected so far in themore » Pierre Auger Observatory led to placing very stringent limits to ultra-high energy photon fluxes: below the predictions of the most of the exotic models and nearing the predicted fluxes of the cosmogenic photons. In this paper the status of these investigations and perspectives for further studies are summarized.« less

  11. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm.

    PubMed

    Lim, Hyungsik; Jiang, Yi; Wang, Yimin; Huang, Yu-Chih; Chen, Zhongping; Wise, Frank W

    2005-05-15

    We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution of 2.1 microm in air (<1.6 microm in biological tissue). The generation of a broad bandwidth is robust and efficient. We demonstrate ultrahigh-resolution, time-domain OCT imaging of in vitro and in vivo biological tissues.

  12. Design optimization of ultra-high concentrator photovoltaic system using two-stage non-imaging solar concentrator

    NASA Astrophysics Data System (ADS)

    Wong, C.-W.; Yew, T.-K.; Chong, K.-K.; Tan, W.-C.; Tan, M.-H.; Lim, B.-H.

    2017-11-01

    This paper presents a systematic approach for optimizing the design of ultra-high concentrator photovoltaic (UHCPV) system comprised of non-imaging dish concentrator (primary optical element) and crossed compound parabolic concentrator (secondary optical element). The optimization process includes the design of primary and secondary optics by considering the focal distance, spillage losses and rim angle of the dish concentrator. The imperfection factors, i.e. mirror reflectivity of 93%, lens’ optical efficiency of 85%, circumsolar ratio of 0.2 and mirror surface slope error of 2 mrad, were considered in the simulation to avoid the overestimation of output power. The proposed UHCPV system is capable of attaining effective ultra-high solar concentration ratio of 1475 suns and DC system efficiency of 31.8%.

  13. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  14. Ultra-high pressure waterjets efficient in removing coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    Little if any thought was given to pipeline rehabilitation 50 years, a time when pipe manufacturers often coated the external diameter of pipe with coal tar to help eliminate corrosion. Unfortunately, contractors rehabilitating these pipelines today encounter major difficulties when attempting to remove coal tar with traditional removal processes. A leading pipeline rehabilitation firm, F.F. Yockey Company, Inc. of Magnolia, Texas, faced a constant challenge stripping coal tar with rotating knives and brushes. The process generated heat that melted the tar and caused the machines to jam. Another problem was the damage to the substrate caused by the friction-based cleaningmore » techniques of rotating knives and brushes. The knives also failed to completely clean the substrate, leaving behind a significant amount of residue. Contractors learned that new coating bonded poorly to the substrates covered with residual contaminants, thus yielding unsatisfactory results. As he looked for a solution, Dick Yockey, president and CEO of R.F. Yockey, began exploring the use of ultra-high pressure waterjet surface preparation equipment. This system involved water pressurized at levels ranging from 35,000 to 55,000 psi. The water travels through small orifices in a high-speed rotating nozzle, forming a cohesive stream of water. This paper reviews the design and performance of this system.« less

  15. Efficient High Performance Collective Communication for Distributed Memory Environments

    ERIC Educational Resources Information Center

    Ali, Qasim

    2009-01-01

    Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…

  16. Maximizing fluorescence collection efficiency in multiphoton microscopy

    PubMed Central

    Zinter, Joseph P.; Levene, Michael J.

    2011-01-01

    Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The spatio-angular distribution of fluorescence at the objective back aperture derived from these simulations was used to design a simple, maximally efficient post-objective fluorescence collection system. Monte Carlo simulations corroborated by data from experimental tissue phantoms demonstrate collection efficiency improvements of 50% – 90% over conventional, non-optimized fluorescence collection geometries at large imaging depths. Imaging performance was verified by imaging layer V neurons in mouse cortex to a depth of 850 μm. PMID:21934897

  17. Feature Screening in Ultrahigh Dimensional Cox's Model.

    PubMed

    Yang, Guangren; Yu, Ye; Li, Runze; Buu, Anne

    Survival data with ultrahigh dimensional covariates such as genetic markers have been collected in medical studies and other fields. In this work, we propose a feature screening procedure for the Cox model with ultrahigh dimensional covariates. The proposed procedure is distinguished from the existing sure independence screening (SIS) procedures (Fan, Feng and Wu, 2010, Zhao and Li, 2012) in that the proposed procedure is based on joint likelihood of potential active predictors, and therefore is not a marginal screening procedure. The proposed procedure can effectively identify active predictors that are jointly dependent but marginally independent of the response without performing an iterative procedure. We develop a computationally effective algorithm to carry out the proposed procedure and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. That is, with the probability tending to one, the selected variable set includes the actual active predictors. We conduct Monte Carlo simulation to evaluate the finite sample performance of the proposed procedure and further compare the proposed procedure and existing SIS procedures. The proposed methodology is also demonstrated through an empirical analysis of a real data example.

  18. Influence of multidroplet size distribution on icing collection efficiency

    NASA Technical Reports Server (NTRS)

    Chang, H.-P.; Kimble, K. R.; Frost, W.; Shaw, R. J.

    1983-01-01

    Calculation of collection efficiencies of two-dimensional airfoils for a monodispersed droplet icing cloud and a multidispersed droplet is carried out. Comparison is made with the experimental results reported in the NACA Technical Note series. The results of the study show considerably improved agreement with experiment when multidroplet size distributions are employed. The study then investigates the effect of collection efficiency on airborne particle droplet size sampling instruments. The biased effect introduced due to sampling from different collection volumes is predicted.

  19. Particle Collection Efficiency of a Lens-Liquid Filtration System

    NASA Astrophysics Data System (ADS)

    Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.

    2011-09-01

    Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.

  20. Case study: dairies utilizing ultra-high stocking density grazing in Pennsylvania and New York

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stocking density (UHSD) grazing has gained interest in the forage industry. Proponents of UHSD emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 560,425 kg ha**-1 of beef cattle on small paddocks with rest periods of up t...

  1. Case study: dairies using ultra-high stocking density grazing in the Northeastern U.S.

    USDA-ARS?s Scientific Manuscript database

    Proponents of ultra-high stocking density (UHSD) grazing emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 500,000 lb per acre of beef cattle on small paddocks with rest periods up to 180 days. However, it is unclear if this managem...

  2. Magnetic Resonance Imaging at Ultrahigh Fields

    PubMed Central

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  3. Thermophotonics for ultra-high efficiency visible LEDs

    NASA Astrophysics Data System (ADS)

    Ram, Rajeev J.

    2017-02-01

    The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.

  4. Platelet collection efficiencies of three different platelet-rich plasma preparation systems.

    PubMed

    Aydin, Fatma; Pancar Yuksel, Esra; Albayrak, Davut

    2015-06-01

    Different systems have been used for the preparation of platelet-rich plasma (PRP), but platelet collection efficiencies of these systems are not clear. To evaluate the platelet collection efficiencies of three different PRP preparation systems. Blood samples were obtained from the same 16 volunteers for each system. The samples were centrifuged and PRP was prepared by three systems. The ratio of the total number of platelets in PRP to the total number of platelets of the venous blood sample of the patient expressed in percentage was named as platelet collection efficiency and calculated for each system. Mean platelet collection efficiencies were 66.6 (min: 56.9, max: 76.9), 58.3 (min: 27.3, max: 102.8), 50.8 (min: 27.2, max: 73) for top and bottom bag system, system using citrated tube, and the system using tube with Ficoll and cell extraction kit, respectively. Statistically significant difference was found only between the platelet collection efficiencies of systems using the tube with ficoll and cell extraction kit and the top and bottom bag system (p = 0.002). All three systems could be used for PRP preparation, but top and bottom bag system offers a slight advantage over the system using Ficoll and cell extraction kit regarding the platelet collection efficiency.

  5. Live Ultra-High Definition from the International Space Station

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a 'Super Session' at the National Association of Broadcasters (NAB) in April 2017. The Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. HEVC may also enable live Virtual Reality video downlinks from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a 'live' event was staged when the UHD coming from the ISS had a latency of 10+ seconds. Finally, the paper will discuss how NASA is leveraging commercial technologies for use on-orbit vs. creating technology as was required during the Apollo Moon Program and early space age.

  6. Efficiency of aerosol collection on wires exposed in the stratosphere

    NASA Technical Reports Server (NTRS)

    Lem, H. Y.; Farlow, N. H.

    1979-01-01

    The theory of inertial impaction is briefly presented. Stratospheric aerosol research experiments were performed duplicating Wong et al. experiments. The use of the curve of inertial parameters vs particle collection efficiency, derived from Wong et al., was found to be justified. The results show that stratospheric aerosol particles of all sizes are collectible by wire impaction technique. Curves and tables are presented and used to correct particle counts for collection efficiencies less than 100%.

  7. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atreya, Arvind

    2013-04-15

    non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.« less

  8. Vehicle routing for the eco-efficient collection of household plastic waste.

    PubMed

    Bing, Xiaoyun; de Keizer, Marlies; Bloemhof-Ruwaard, Jacqueline M; van der Vorst, Jack G A J

    2014-04-01

    Plastic waste is a special category of municipal solid waste. Plastic waste collection is featured with various alternatives of collection methods (curbside/drop-off) and separation methods (source-/post-separation). In the Netherlands, the collection routes of plastic waste are the same as those of other waste, although plastic is different than other waste in terms of volume to weight ratio. This paper aims for redesigning the collection routes and compares the collection options of plastic waste using eco-efficiency as performance indicator. Eco-efficiency concerns the trade-off between environmental impacts, social issues and costs. The collection problem is modeled as a vehicle routing problem. A tabu search heuristic is used to improve the routes. Collection alternatives are compared by a scenario study approach. Real distances between locations are calculated with MapPoint. The scenario study is conducted based on real case data of the Dutch municipality Wageningen. Scenarios are designed according to the collection alternatives with different assumptions in collection method, vehicle type, collection frequency and collection points, etc. Results show that the current collection routes can be improved in terms of eco-efficiency performance by using our method. The source-separation drop-off collection scenario has the best performance for plastic collection assuming householders take the waste to the drop-off points in a sustainable manner. The model also shows to be an efficient decision support tool to investigate the impacts of future changes such as alternative vehicle type and different response rates. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Ultrahigh Energy Density in SrTiO3 Film Capacitors.

    PubMed

    Hou, Chuangming; Huang, Weichuan; Zhao, Wenbo; Zhang, Dalong; Yin, Yuewei; Li, Xiaoguang

    2017-06-21

    Solid-state dielectric film capacitors with high-energy-storage density will further promote advanced electronic devices and electrical power systems toward miniaturization, lightweight, and integration. In this study, the influence of interface and thickness on energy storage properties of SrTiO 3 (STO) films grown on La 0.67 Sr 0.33 MnO 3 (LSMO) electrode are systematically studied. The cross-sectional high resolution transmission electron microscopy reveals an ion interdiffusion layer and oxygen vacancies at the STO/LSMO interface. The capacitors show good frequency stability and increased dielectric constant with increasing STO thickness (410-710 nm). The breakdown strength (E b ) increases with decreasing STO thickness and reaches 6.8 MV/cm. Interestingly, the E b under positive field is enhanced significantly and an ultrahigh energy density up to 307 J/cm 3 with a high efficiency of 89% is realized. The enhanced E b may be related to the modulation of local electric field and redistribution of oxygen vacancies at the STO/LSMO interface. Our results should be helpful for potential strategies to design devices with ultrahigh energy density.

  10. Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension

    PubMed Central

    Wang, Lan; Wu, Yichao

    2012-01-01

    Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) it enables us to explore the entire conditional distribution of the response variable given the ultra-high dimensional covariates and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high dimensional parameter space. We introduce a novel sufficient optimality condition which relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information compared with alternative methods. PMID:23082036

  11. Measuring the efficiency of zakat collection process using data envelopment analysis

    NASA Astrophysics Data System (ADS)

    Hamzah, Ahmad Aizuddin; Krishnan, Anath Rau

    2016-10-01

    It is really necessary for each zakat institution in the nation to timely measure and understand their efficiency in collecting zakat for the sake of continuous betterment. Pusat Zakat Sabah, Malaysia which has kicked off its operation in early of 2007, is not excused from this obligation as well. However, measuring the collection efficiency is not a very easy task as it usually incorporates the consideration of multiple inputs or/and outputs. This paper sequentially employed three data envelopment analysis models, namely Charnes-Cooper-Rhodes (CCR) primal model, CCR dual model, and slack based model to quantitatively evaluate the efficiency of zakat collection in Sabah across the year of 2007 up to 2015 by treating each year as a decision making unit. The three models were developed based on two inputs (i.e. number of zakat branches and number of staff) and one output (i.e. total collection). The causes for not achieving efficiency and the suggestions on how the efficiency in each year could have been improved were disclosed.

  12. A CFD Study on the Prediction of Cyclone Collection Efficiency

    NASA Astrophysics Data System (ADS)

    Gimbun, Jolius; Chuah, T. G.; Choong, Thomas S. Y.; Fakhru'L-Razi, A.

    2005-09-01

    This work presents a Computational Fluid Dynamics calculation to predict and to evaluate the effects of temperature, operating pressure and inlet velocity on the collection efficiency of gas cyclones. The numerical solutions were carried out using spreadsheet and commercial CFD code FLUENT 6.0. This paper also reviews four empirical models for the prediction of cyclone collection efficiency, namely Lapple [1], Koch and Licht [2], Li and Wang [3], and Iozia and Leith [4]. All the predictions proved to be satisfactory when compared with the presented experimental data. The CFD simulations predict the cyclone cut-off size for all operating conditions with a deviation of 3.7% from the experimental data. Specifically, results obtained from the computer modelling exercise have demonstrated that CFD model is the best method of modelling the cyclones collection efficiency.

  13. Advanced Photon Source accelerator ultrahigh vacuum guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  14. Design Strategies for Ultra-high Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  15. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  16. Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD

    NASA Astrophysics Data System (ADS)

    Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.

    2006-02-01

    We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.

  17. Hybrid WSe2-In2O3 Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents.

    PubMed

    Guo, Nan; Gong, Fan; Liu, Junku; Jia, Yi; Zhao, Shaofan; Liao, Lei; Su, Meng; Fan, Zhiyong; Chen, Xiaoshuang; Lu, Wei; Xiao, Lin; Hu, Weida

    2017-10-04

    Photodetectors based on low-dimensional materials have attracted tremendous attention because of their high sensitivity and compatibility with conventional semiconductor technology. However, up until now, developing low-dimensional phototransistors with high responsivity and low dark currents over broad-band spectra still remains a great challenge because of the trade-offs in the potential architectures. In this work, we report a hybrid phototransistor consisting of a single In 2 O 3 nanowire as the channel material and a multilayer WSe 2 nanosheet as the decorating sensitizer for photodetection. Our devices show high responsivities of 7.5 × 10 5 and 3.5 × 10 4 A W -1 and ultrahigh detectivities of 4.17 × 10 17 and 1.95 × 10 16 jones at the wavelengths of 637 and 940 nm, respectively. The superior detectivity of the hybrid architecture arises from the extremely low dark currents and the enhanced photogating effect in the depletion regime by the unique design of energy band alignment of the channel and sensitizer materials. Moreover, the visible to near-infrared absorption properties of the multilayer WSe 2 nanosheet favor a broad-band spectral response for the devices. Our results pave the way for developing ultrahigh-sensitivity photodetectors based on low-dimensional hybrid architectures.

  18. Digital voice recording: An efficient alternative for data collection

    Treesearch

    Mark A. Rumble; Thomas M. Juntti; Thomas W. Bonnot; Joshua J. Millspaugh

    2009-01-01

    Study designs are usually constrained by logistical and budgetary considerations that can affect the depth and breadth of the research. Little attention has been paid to increasing the efficiency of data recording. Digital voice recording and translation may offer improved efficiency of field personnel. Using this technology, we increased our data collection by 55...

  19. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Collection Efficiencies of Anaerobic..., Table JJ-6 Table JJ-6 to Subpart JJ of Part 98—Collection Efficiencies of Anaerobic Digesters Anaerobic digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank to...

  20. Improvement in the light sensitivity of the ultrahigh-speed high-sensitivity CCD with a microlens array

    NASA Astrophysics Data System (ADS)

    Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.

    2008-02-01

    We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.

  1. Ultrahigh-Resolution Optical Coherence Tomography in Glaucoma

    PubMed Central

    Wollstein, Gadi; Paunescu, Leila A.; Ko, Tony H.; Fujimoto, James G.; Kowalevicz, Andrew; Hartl, Ingmar; Beaton, Siobahn; Ishikawa, Hiroshi; Mattox, Cynthia; Singh, Omah; Duker, Jay; Drexler, Wolfgang; Schuman, Joel S.

    2007-01-01

    Objective Optical coherence tomography (OCT) has been shown to be a valuable tool in glaucoma assessment. We investigated a new ultrahigh-resolution OCT (UHR-OCT) imaging system in glaucoma patients and compared the findings with those obtained by conventional-resolution OCT. Design Retrospective comparative case series. Participants A normal subject and 4 glaucoma patients representing various stages of glaucomatous damage. Testing All participants were scanned with StratusOCT (axial resolution of ~10 μm) and UHR-OCT (axial resolution of ~3 μm) at the same visit. Main Outcome Measure Comparison of OCT findings detected with StratusOCT and UHR-OCT. Results Ultrahigh-resolution OCT provides a detailed cross-sectional view of the scanned retinal area that allows differentiation between retinal layers. These UHR images were markedly better than those obtained by the conventional-resolution OCT. Conclusions Ultrahigh-resolution OCT provides high-resolution images of the ocular posterior segment, which improves the ability to detect retinal abnormalities due to glaucoma. PMID:15691556

  2. Ultrahigh-speed non-invasive widefield angiography

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Klein, Thomas; Grajciar, Branislav; Schmoll, Tilman; Wieser, Wolfgang; Andre, Raphael; Huber, Robert; Leitgeb, Rainer A.

    2012-07-01

    Retinal and choroidal vascular imaging is an important diagnostic benefit for ocular diseases such as age-related macular degeneration. The current gold standard for vessel visualization is fluorescence angiography. We present a potential non-invasive alternative to image blood vessels based on functional Fourier domain optical coherence tomography (OCT). For OCT to compete with the field of view and resolution of angiography while maintaining motion artifacts to a minimum, ultrahigh-speed imaging has to be introduced. We employ Fourier domain mode locking swept source technology that offers high quality imaging at an A-scan rate of up to 1.68 MHz. We present retinal angiogram over ˜48 deg acquired in a few seconds in a single recording without the need of image stitching. OCT at 1060 nm allows for high penetration in the choroid and efficient separate characterization of the retinal and choroidal vascularization.

  3. High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode.

    PubMed

    Jia, Chuancheng; Ma, Wei; Gu, Chunhui; Chen, Hongliang; Yu, Haomiao; Li, Xinxi; Zhang, Fan; Gu, Lin; Xia, Andong; Hou, Xiaoyuan; Meng, Sheng; Guo, Xuefeng

    2016-06-08

    A heterostructure photovoltaic diode featuring an all-solid-state TiO2/graphene/dye ternary interface with high-efficiency photogenerated charge separation/transport is described here. Light absorption is accomplished by dye molecules deposited on the outside surface of graphene as photoreceptors to produce photoexcited electron-hole pairs. Unlike conventional photovoltaic conversion, in this heterostructure both photoexcited electrons and holes tunnel along the same direction into graphene, but only electrons display efficient ballistic transport toward the TiO2 transport layer, thus leading to effective photon-to-electricity conversion. On the basis of this ipsilateral selective electron tunnelling (ISET) mechanism, a model monolayer photovoltaic device (PVD) possessing a TiO2/graphene/acridine orange ternary interface showed ∼86.8% interfacial separation/collection efficiency, which guaranteed an ultrahigh absorbed photon-to-current efficiency (APCE, ∼80%). Such an ISET-based PVD may become a fundamental device architecture for photovoltaic solar cells, photoelectric detectors, and other novel optoelectronic applications with obvious advantages, such as high efficiency, easy fabrication, scalability, and universal availability of cost-effective materials.

  4. Collection efficiency of a single optical fiber in turbid media.

    PubMed

    Bargo, Paulo R; Prahl, Scott A; Jacques, Steven L

    2003-06-01

    If a single optical fiber is used for both delivery and collection of light, two major factors affect the measurement of collected light: (1) the light transport in the medium that describes the amount of light that returns to the fiber and (2) the light coupling to the optical fiber that depends on the angular distribution of photons entering the fiber. We focus on the importance of the latter factor and describe how the efficiency of the coupling depends on the optical properties of the medium. For highly scattering tissues, the efficiency is well predicted by the numerical aperture (NA) of the fiber. For lower scattering, such as in soft tissues, photons arrive at the fiber from deeper depths, and the coupling efficiency could increase twofold to threefold above that predicted by the NA.

  5. Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Struk, Peter M.; Bidwell, Colin

    2014-01-01

    Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three dimensional unsteady results were produced and then time averaged for the collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Collection efficiencies were generated for three spherical particle sizes, 100, 20, and 5 micron in diameter, using the codes LEWICE3D and LEWICE2D. The free stream Mach number was 0.27, representing a velocity of approximately 86 ms. It was observed that a reduction in velocity of about 15-20 occurred as the flow entered the shroud of the probe.Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the effect of the protective shroud.

  6. RECENT ADVANCES IN ULTRA-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY FOR THE ANALYSIS OF TRADITIONAL CHINESE MEDICINE

    PubMed Central

    Huang, Huilian; Liu, Min; Chen, Pei

    2014-01-01

    Traditional Chinese medicine has been widely used for the prevention and treatment of various diseases for thousands of years in China. Ultra-high performance liquid chromatography (UHPLC) is a relatively new technique offering new possibilities. This paper reviews recent developments in UHPLC in the separation and identification, fingerprinting, quantification, and metabolism of traditional Chinese medicine. Recently, the combination of UHPLC with MS has improved the efficiency of the analysis of these materials. PMID:25045170

  7. Storying energy consumption: Collective video storytelling in energy efficiency social marketing.

    PubMed

    Gordon, Ross; Waitt, Gordon; Cooper, Paul; Butler, Katherine

    2018-05-01

    Despite calls for more socio-technical research on energy, there is little practical advice to how narratives collected through qualitative research may be melded with technical knowledge from the physical sciences such as engineering and then applied in energy efficiency social action strategies. This is despite established knowledge in the environmental management literature about domestic energy use regarding the utility of social practice theory and narrative framings that socialise everyday consumption. Storytelling is positioned in this paper both as a focus for socio-technical energy research, and as one potential practical tool that can arguably enhance energy efficiency interventions. We draw upon the literature on everyday social practices, and storytelling, to present our framework called 'collective video storytelling' that combines scientific and lay knowledge about domestic energy use to offer a practical tool for energy efficiency management. Collective video storytelling is discussed in the context of Energy+Illawarra, a 3-year cross-disciplinary collaboration between social marketers, human geographers, and engineers to target energy behavioural change within older low-income households in regional NSW, Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Separation of major catechins from green tea by ultrahigh pressure extraction.

    PubMed

    Jun, Xi; Shuo, Zhao; Bingbing, Lu; Rui, Zhang; Ye, Li; Deji, Shen; Guofeng, Zhou

    2010-02-15

    This study presents a novel extraction technique, ultrahigh pressure extraction, to obtain major catechins from green tea leaves. The effects of various high pressure level (100, 200, 300, 400, 500, 600 MPa) on the extract are examined. HPLC chromatographic analyses determine the concentration of four major catechins and caffeine. The extraction yields of active ingredients with ultrahigh pressure extraction (400 MPa pressure) for only 15 min were given the same as those of organic solvent extraction for 2h. These excellent results for the ultrahigh pressure extraction are promising for the future separation of active ingredients from traditional Chinese herbal medicine. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Imaging at ultrahigh magnetic fields: History, challenges, and solutions.

    PubMed

    Uğurbil, Kamil

    2018-03-01

    Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Imaging of cartilage degeneration progression in vivo using ultrahigh-resolution OCT

    NASA Astrophysics Data System (ADS)

    Herz, Paul R.; Bourquin, Stephane; Hsiung, Pei-lin; Ko, Tony H.; Schneider, Karl; Fujimoto, James G.; Adams, Samuel, Jr.; Roberts, Mark; Patel, Nirlep; Brezinski, Mark

    2003-10-01

    Ultrahigh resolution OCT is used to visualize experimentally induced osteoarthritis in a rat knee model. Using a Cr4+:Forsterite laser, ultrahigh image resolutions of 5um are achieved. Progression of osteoarthritic remodeling and cartilage degeneration are quantified. The utility of OCT for the assessment of cartilage integrity is demonstrated.

  11. Achievement of ultrahigh solar concentration with potential for efficient laser pumping.

    PubMed

    Gleckman, P

    1988-11-01

    Measurements are reported of the irradiance produced by a two-stage solar concentrator designed to approach the thermodynamic limit. Sunlight is collected by a 40.6-cm diam parabolic primary which forms a 0.98-cm diam image. The image is reconcentrated by a nonimaging refracting secondary with index n = 1.53 to a final aperture 1.27 mm in diameter. Thus the geometrical concentration ratio is 102, 000. The highest irradiance value achieved was 4.4 +/- 0.2 kW cm(-2), or 56,000 +/- 5000 suns, relative to a solar disk insolation of 800 W m(-2). This is greater than the previous peak solar irradiance record by nearly a factor of 3, and it is 68% of that existing at the solar surface itself. The efficiency with which we concentrated 55 W of sunlight to a small spot suggests that our two-stage system would be an excellent candidate for solar pumping of solid state lasers.

  12. High-density grids for efficient data collection from multiple crystals

    PubMed Central

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; Degrado, William F.; Fraser, James S.; Ibrahim, Mohamed; Kern, Jan; Kobilka, Brian K.; Kruse, Andrew C.; Larsson, Karl M.; Lemke, Heinrik T.; Lyubimov, Artem Y.; Manglik, Aashish; McPhillips, Scott E.; Norgren, Erik; Pang, Siew S.; Soltis, S. M.; Song, Jinhu; Thomaston, Jessica; Tsai, Yingssu; Weis, William I.; Woldeyes, Rahel A.; Yachandra, Vittal; Yano, Junko; Zouni, Athina; Cohen, Aina E.

    2016-01-01

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures. PMID:26894529

  13. High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Steidtner, Jens; Pettinger, Bruno

    2007-10-01

    An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.

  14. [Extreme (complicated, ultra-high) refractive errors: terminological misconceptions!?

    PubMed

    Avetisov, S E

    2018-01-01

    The article reviews development mechanisms of different refractive errors accompanied by marked defocus of light rays reaching the retina. Terminology used for such ametropias includes terms extreme, ultra-high and complicated. Justification of their usage for primary ametropias, whose symptom complex is based on changes in axial eye length, is an ongoing discussion. To comply with thesaurus definitions of 'diagnosis' and 'pathogenesis', to characterize refractive and anatomical-functional disorders in patients with primary ametropias it is proposed to use the terms 'hyperaxial and hypoaxial syndromes' with elaboration of specific symptoms instead of such expressions as extreme (ultra-high) myopia and hypermetropia.

  15. Ultra-High Surface Speed for Metal Removal, Artillery Shell

    DTIC Science & Technology

    1981-07-01

    TECHNICAL LIBRARY "y/a^^cr^ AD-E400 660 CONTRACTOR REPORT ARLCD-CR- 81019 ULTRA-HIGH SURFACE SPEED FOR METAL REMOVAL, ARTILLERY SHELL RICHARD F...Report ARLCD-CR- 81019 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) ULTRA-HIGH SURFACE SPEED FOR METAL...UNIT* tuiPPtO 1 MIL -STD-43CA i, ASTM A-274-64 EF A1SI~1340 SEHI FIN FORGING STEEL 6 RC SQ ■ IP 120093* a LIFTS 38 PCS

  16. Increasing the Efficiency of Data Collection with a Research Participation Night

    ERIC Educational Resources Information Center

    Kilb, Angela; Herzig, Kathleen

    2016-01-01

    Data collection can be a frustrating experience for student researchers due to difficulty in scheduling appointments with participants. To increase the efficiency of research project data collection, we organized a Research Participation Night in which volunteers were incentivized to participate in as many experiments as time allowed. By offering…

  17. A solar-pumped Nd:YAG laser in the high collection efficiency regime

    NASA Astrophysics Data System (ADS)

    Lando, Mordechai; Kagan, Jacob; Linyekin, Boris; Dobrusin, Vadim

    2003-07-01

    Solar-pumped lasers can be used for space and terrestrial applications. We report on solar side-pumped Nd:YAG laser experiments, which included comprehensive beam quality measurements and demonstrated record collection efficiency and day long operation. A 6.75 m 2 segmented primary mirror was mounted on a commercial two-axis positioner and focused the solar radiation towards a stationary non-imaging-optics secondary concentrator, which illuminated a Nd:YAG laser rod. Solar side-pumped laser experiments were conducted in both the low and the high pumping density regimes. The low density system was composed of a 89 × 98-mm 2 aperture two-dimensional compound parabolic concentrator (CPC) and a 10-mm diameter 130-mm long Nd:YAG laser rod. The laser emitted up to 46 W and operated continuously for 5 h. The high density system was composed of a three-dimensional CPC with 98 mm entrance diameter and 24 mm exit diameter, followed by a two-dimensional CPC with a rectangular 24 × 33 mm 2 aperture. It pumped a 6-mm diameter 72 mm long Nd:YAG laser rod, which emitted up to 45 W. The results constitute a record collection efficiency of 6.7 W/m 2 of primary mirror. We compare the current results to previous solar side-pumped laser experiments, including experiments at higher pumping density but with low collection efficiency. Finally, we present a scaled up design for a 400 W laser pumped by a solar collection area of 60 m 2, incorporating simultaneously high collection efficiency and high pumping density.

  18. [Application study of qualitatively diagnosing prostate cancer using ultrahigh b-value DWI].

    PubMed

    Ji, L B; Lu, Z H; Yao, H H; Cao, Y; Lu, W W; Qian, W X; Wang, X M; Hu, C H

    2017-07-18

    Objective: To explore the value of ultrahigh b-value DWI in diagnosis of prostate cancer. Methods: From October 2015 to October 2016, a total of 84 cases from Affiliated Changshu Hospital of Soochow University(39 cases of prostate cancer with a total of 57 lesions, 45 cases of benign prostate hyperplasia) were examined with T(2)WI, high b-value DWI (b=1 000 s/mm(2)) and ultrahigh b-value DWI (b=2 000 s/mm(2)) .Three image sets were rated respectively based on PI-RADS V2 by two radiologists and the scores were compared with biopsy results.The differences of the area under the ROC curve (AUC) among the three groups of each observer were compared by Z test. Results: The difference of AUC between ultrahigh b-value DWI and T(2)WI in the diagnosis of peripheral and transitional zone cancer was statistically significant between the two observers ( P =0.009 9, 0.008 2, 0.010 8 and 0.004 5 respectively), and there was no significant difference of AUC between ultrahigh b-value DWI and high b-value DWI in the diagnosis of peripheral and transitional zone cancer.The inter-reader agreement was found to be perfect for all lesions, peripheral zone lesions and transition zone lesions at ultrahigh b-value DWI ( kappa values were 0.738, 0.709 and 0.768 respectively). Conclusion: The diagnostic performance of ultrahigh b-value DWI is superior to high b-value DWI and T(2)WI in both peripheral zone and transition zone cancers.

  19. Observation of ultrahigh-energy cosmic rays and neutrinos from lunar orbit: LORD space experiment

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir; Chechin, Valery; Gusev, German

    increase the statistics and the accuracy of the experiment. Opportunities and prospects of a multi-satellite system for observation of ultrahigh-energy cosmic rays and neutrinos are also investigated. In addition, possibilities of future missions to Jovian satellites are analyzed, insofar as the largest ice planets of the Solar System (Ganymede and Europe) can be considered as convenient targets for registration of ultrahigh-energy particles by orbiting radio detectors. The expected results are compared to those for the lunar target. The conclusion is made that within the Solar System, there are no objects with better registration efficiency for ultrahigh-energy cosmic rays and neutrinos that can be utilized in space experiments of as an alternative to the future space mission Luna-Glob with the LORD orbital radio detector.

  20. Ultrahigh Responsivity and Detectivity Graphene-Perovskite Hybrid Phototransistors by Sequential Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Chang, Po-Han; Liu, Shang-Yi; Lan, Yu-Bing; Tsai, Yi-Chen; You, Xue-Qian; Li, Chia-Shuo; Huang, Kuo-You; Chou, Ang-Sheng; Cheng, Tsung-Chin; Wang, Juen-Kai; Wu, Chih-I.

    2017-04-01

    In this work, graphene-methylammonium lead iodide (MAPbI3) perovskite hybrid phototransistors fabricated by sequential vapor deposition are demonstrated. Ultrahigh responsivity of 1.73 × 107 A W-1 and detectivity of 2 × 1015 Jones are achieved, with extremely high effective quantum efficiencies of about 108% in the visible range (450-700 nm). This excellent performance is attributed to the ultra-flat perovskite films grown by vapor deposition on the graphene sheets. The hybrid structure of graphene covered with uniform perovskite has high exciton separation ability under light exposure, and thus efficiently generates photocurrents. This paper presents photoluminescence (PL) images along with statistical analysis used to study the photo-induced exciton behavior. Both uniform and dramatic PL intensity quenching has been observed over entire measured regions, consistently demonstrating excellent exciton separation in the devices.

  1. Saturation current and collection efficiency for ionization chambers in pulsed beams.

    PubMed

    DeBlois, F; Zankowski, C; Podgorsak, E B

    2000-05-01

    Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.

  2. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    NASA Astrophysics Data System (ADS)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  3. Modeling the Efficiency of a Magnetic Needle for Collecting Magnetic Cells

    PubMed Central

    Butler, Kimberly S; Adolphi, Natalie L.; Bryant, H C; Lovato, Debbie M; Larson, Richard S; Flynn, Edward R

    2014-01-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in 1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and 2) water in which 3, 5, 10 and 100 % of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency vs. time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. PMID:24874577

  4. High-density grids for efficient data collection from multiple crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassettemore » or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. As a result, crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.« less

  5. High-density grids for efficient data collection from multiple crystals

    DOE PAGES

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; ...

    2015-11-03

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassettemore » or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. As a result, crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.« less

  6. Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Struk, Peter M.; Bidwell, Colin

    2014-01-01

    Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three-dimensional unsteady results were produced and then time averaged for the heat transfer and collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Simulations were completed for free stream velocities ranging from 85-135 meters per second, and free stream total pressure of 44.8 and 93.1 kilopascals (6.5 and 13.5 pounds per square inch absolute). In addition, the effect of angle of attack and yaw were investigated by including 5 degree deviations from straight for one of the flow conditions. All but one of the cases simulated a probe in isolation (i.e. in a very large domain without any support strut). One case is included which represents a probe mounted on a support strut within a finite sized wind tunnel. Collection efficiencies were generated, using the LEWICE3D code, for four spherical particle sizes, 100, 50, 20, and 5 micron in diameter. It was observed that a reduction in velocity of about 20% occurred, for all cases, as the flow entered the shroud of the probe. The reduction in velocity within the shroud is not indicative of any error in the probe measurement accuracy. Heat transfer results are presented which agree quite well with a correlation for the circular cross section heated elements. Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than the previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the reduced flow within the protective shroud. As particle size increases differences between the two

  7. [Application of low-intensity and ultrahigh frequency electromagnetic radiation in modern pediatric practice].

    PubMed

    Azov, N A; Azova, E A

    2009-01-01

    The use of an Amfit-0,2/10-01 apparatus generating low-intensity ultrahigh frequency (UHF) electromagnetic radiation improved efficiency of therapy of sick children. This treatment allowed to reduce the frequency of intake of anesthetics in the post-operative period, correct metabolic disorders in children with type 1 diabetes mellitus, reduce severity of diabetic nephropathy and polyneuropathy, prevent formation of fresh foci of lipoid necrobiosis. The results of the study indicate that the use of low-intensity UHF electromagnetic radiation may be recommended for more extensive introduction into practical clinical work of pediatric endocrinologists and surgeons.

  8. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes.

    PubMed

    Niguès, A; Siria, A; Vincent, P; Poncharal, P; Bocquet, L

    2014-07-01

    Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons-Coulomb. Here, by using a 'Christmas cracker'-type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF-AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces.

  9. Ultrahigh 6D-brightness electron beams for the light sources of the next generation

    NASA Astrophysics Data System (ADS)

    Habib, Fahim; Manahan, Grace G.; Scherkl, Paul; Heinemann, Thomas; Sheng, Z. M.; Bruhwiler, D. L.; Cary, J. R.; Rosenzweig, J. B.; Hidding, Bernhard

    2017-10-01

    The plasma photocathode mechanism (aka Trojan Horse) enables a path towards electron beams with nm-level normalized emittance and kA range peak currents, hence ultrahigh 5D-brightness. This ultrahigh 5D-brightness beams hold great prospects to realize laboratory scale free-electron-lasers. However, the GV/m-accelerating gradient in plasma accelerators leads to substantial energy chirp and spread. The large energy spread is a major show-stopper towards key application such as the free-electron-laser. Here we present a novel method for energy chirp compensation which takes advantage of tailored beam loading due to a second ``escort'' bunch released via plasma photocathode. The escort bunch reverses the accelerating field locally at the trapping position of the ultrahigh 5D-brightness beam. This induces a counter-clockwise rotation within the longitudinal phase space and allows to compensate the chirp completely. Analytical scaling predicts energy spread values below 0.01 percentage level. Ultrahigh 5D-brightness combined with minimized energy spread opens a path towards witness beams with unprecedented ultrahigh 6D-brightness.

  10. Ultrahigh Responsivity and Detectivity Graphene–Perovskite Hybrid Phototransistors by Sequential Vapor Deposition

    PubMed Central

    Chang, Po-Han; Liu, Shang-Yi; Lan, Yu-Bing; Tsai, Yi-Chen; You, Xue-Qian; Li, Chia-Shuo; Huang, Kuo-You; Chou, Ang-Sheng; Cheng, Tsung-Chin; Wang, Juen-Kai; Wu, Chih-I

    2017-01-01

    In this work, graphene-methylammonium lead iodide (MAPbI3) perovskite hybrid phototransistors fabricated by sequential vapor deposition are demonstrated. Ultrahigh responsivity of 1.73 × 107 A W−1 and detectivity of 2 × 1015 Jones are achieved, with extremely high effective quantum efficiencies of about 108% in the visible range (450–700 nm). This excellent performance is attributed to the ultra-flat perovskite films grown by vapor deposition on the graphene sheets. The hybrid structure of graphene covered with uniform perovskite has high exciton separation ability under light exposure, and thus efficiently generates photocurrents. This paper presents photoluminescence (PL) images along with statistical analysis used to study the photo-induced exciton behavior. Both uniform and dramatic PL intensity quenching has been observed over entire measured regions, consistently demonstrating excellent exciton separation in the devices. PMID:28422117

  11. Ultra-High Temperature Materials Characterization for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high

  12. Feature Screening for Ultrahigh Dimensional Categorical Data with Applications.

    PubMed

    Huang, Danyang; Li, Runze; Wang, Hansheng

    2014-01-01

    Ultrahigh dimensional data with both categorical responses and categorical covariates are frequently encountered in the analysis of big data, for which feature screening has become an indispensable statistical tool. We propose a Pearson chi-square based feature screening procedure for categorical response with ultrahigh dimensional categorical covariates. The proposed procedure can be directly applied for detection of important interaction effects. We further show that the proposed procedure possesses screening consistency property in the terminology of Fan and Lv (2008). We investigate the finite sample performance of the proposed procedure by Monte Carlo simulation studies, and illustrate the proposed method by two empirical datasets.

  13. Efficiency of Different Sampling Tools for Aquatic Macroinvertebrate Collections in Malaysian Streams

    PubMed Central

    Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo

    2016-01-01

    This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685

  14. Ultrahigh vacuum gauge having two collector electrodes

    NASA Technical Reports Server (NTRS)

    Torney, F. L., Jr. (Inventor)

    1967-01-01

    A gauge for measuring ultrahigh vacuums with great accuracy is described. It provides a means for ionizing the gas whose pressure is being measured, and consists of a collector electrode, a suppressor, radiation shielding, and a second collector.

  15. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    NASA Astrophysics Data System (ADS)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  16. Recent advances in capillary ultrahigh pressure liquid chromatography.

    PubMed

    Blue, Laura E; Franklin, Edward G; Godinho, Justin M; Grinias, James P; Grinias, Kaitlin M; Lunn, Daniel B; Moore, Stephanie M

    2017-11-10

    In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ultrahigh near infrared photoresponsive organic field-effect transistors with lead phthalocyanine/C60 heterojunction on poly(vinyl alcohol) gate dielectric.

    PubMed

    Sun, Lei; Zhang, Jianping; Zhao, Feiyu; Luo, Xiao; Lv, Wenli; li, Yao; Ren, Qiang; Wen, Zhanwei; Peng, Yingquan; Liu, Xingyuan

    2015-05-08

    Performances of photoresponsive organic field-effect transistors (photOFETs) operating in the near infrared (NIR) region utilizing SiO2 as the gate dielectric is generally low due to low carrier mobility of the channel. We report on NIR photOFETs based on lead phthalocyanine (PbPc)/C60 heterojunction with ultrahigh photoresponsivity by utilizing poly(vinyl alcohol) (PVA) as the gate dielectric. For 808 nm NIR illumination of 1.69 mW cm(-2), an ultrahigh photoresponsivity of 21 A W(-1), and an external quantum efficiency of 3230% were obtained at a gate voltage of 30 V and a drain voltage of 80 V, which are 124 times and 126 times as large as the reference device with SiO2 as the gate dielectric, respectively. The ultrahigh enhancement of photoresponsivity is resulted from the huge increase of electron mobility of C60 film grown on PVA dielectric. AFM investigations revealed that the C60 film grown on PVA is much smooth and uniform and the grain size is much larger than that grown on SiO2 dielectric, which together results in four orders of magnitude increase of the field-effect electron mobility of C60 film.

  18. Measuring Charge Collection Efficiency in Diamond Vertex Detectors

    NASA Astrophysics Data System (ADS)

    Josey, Brian; Seidel, Sally; Hoeferkamp, Martin

    2011-10-01

    As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.

  19. Ultrahigh-Resolution Optical Coherence Tomography of Surgically Closed Macular Holes

    PubMed Central

    Ko, Tony H.; Witkin, Andre J.; Fujimoto, James G.; Chan, Annie; Rogers, Adam H.; Baumal, Caroline R.; Schuman, Joel S.; Drexler, Wolfgang; Reichel, Elias; Duker, Jay S.

    2007-01-01

    Objective To evaluate retinal anatomy using ultrahigh-resolution optical coherence tomography (OCT) in eyes after successful surgical repair of full-thickness macular hole. Methods Twenty-two eyes of 22 patients were diagnosed as having macular hole, underwent pars plana vitrectomy, and had flat/closed macular anatomy after surgery, as confirmed with biomicroscopic and OCT examination findings. An ultrahigh-resolution–OCT system developed for retinal imaging, with the capability to achieve approximately 3-μm axial resolution, was used to evaluate retinal anatomy after hole repair. Results Despite successful closure of the macular hole, all 22 eyes had macular abnormalities on ultrahigh-resolution–OCT images after surgery. These abnormalities were separated into the following 5 categories: (1) outer foveal defects in 14 eyes (64%), (2) persistent foveal detachment in 4 (18%), (3) moderately reflective foveal lesions in 12 (55%), (4) epiretinal membranes in 14 (64%), and (5) nerve fiber layer defects in 3 (14%). Conclusions With improved visualization of fine retinal architectural features, ultrahigh-resolution OCT can visualize persistent retinal abnormalities despite anatomically successful macular hole surgery. Outer foveal hyporeflective disruptions of the junction between the inner and outer segments of the photoreceptors likely represent areas of foveal photoreceptor degeneration. Moderately reflective lesions likely represent glial cell proliferation at the site of hole reapproximation. Thin epiretinal membranes do not seem to decrease visual acuity and may play a role in reestablishing foveal anatomy after surgery. PMID:16769836

  20. Efficient Representation and Matching of Texts and Images in Scanned Book Collections

    ERIC Educational Resources Information Center

    Yalniz, Ismet Zeki

    2014-01-01

    Millions of books from public libraries and private collections have been scanned by various organizations in the last decade. The motivation is to preserve the written human heritage in electronic format for durable storage and efficient access. The information buried in these large book collections has always been of major interest for scholars…

  1. Ultrahigh Frequency Lensless Ultrasonic Transducers for Acoustic Tweezers Application

    PubMed Central

    Hsu, Hsiu-Sheng; Li, Ying; Lee, Changyang; Lin, Anderson; Zhou, Qifa; Kim, Eun Sok; Shung, Kirk Koping

    2014-01-01

    Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200-MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press-focused (PF) transducer and zinc oxide self-focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 μm two-dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. PMID:23042219

  2. Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths.

    PubMed

    Tsumori, Nobuhiro; Takahashi, Motoki; Sakuma, Yoshiki; Saiki, Toshiharu

    2011-10-10

    We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths. © 2011 Optical Society of America

  3. An ultrahigh-speed color video camera operating at 1,000,000 fps with 288 frame memories

    NASA Astrophysics Data System (ADS)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Kurita, T.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Saita, A.; Kanayama, S.; Hatade, K.; Kitagawa, S.; Etoh, T. Goji

    2008-11-01

    We developed an ultrahigh-speed color video camera that operates at 1,000,000 fps (frames per second) and had capacity to store 288 frame memories. In 2005, we developed an ultrahigh-speed, high-sensitivity portable color camera with a 300,000-pixel single CCD (ISIS-V4: In-situ Storage Image Sensor, Version 4). Its ultrahigh-speed shooting capability of 1,000,000 fps was made possible by directly connecting CCD storages, which record video images, to the photodiodes of individual pixels. The number of consecutive frames was 144. However, longer capture times were demanded when the camera was used during imaging experiments and for some television programs. To increase ultrahigh-speed capture times, we used a beam splitter and two ultrahigh-speed 300,000-pixel CCDs. The beam splitter was placed behind the pick up lens. One CCD was located at each of the two outputs of the beam splitter. The CCD driving unit was developed to separately drive two CCDs, and the recording period of the two CCDs was sequentially switched. This increased the recording capacity to 288 images, an increase of a factor of two over that of conventional ultrahigh-speed camera. A problem with the camera was that the incident light on each CCD was reduced by a factor of two by using the beam splitter. To improve the light sensitivity, we developed a microlens array for use with the ultrahigh-speed CCDs. We simulated the operation of the microlens array in order to optimize its shape and then fabricated it using stamping technology. Using this microlens increased the light sensitivity of the CCDs by an approximate factor of two. By using a beam splitter in conjunction with the microlens array, it was possible to make an ultrahigh-speed color video camera that has 288 frame memories but without decreasing the camera's light sensitivity.

  4. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, S. P.; Zhou, L. J.; Wang, Z. W.

    2014-03-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency.

  5. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE..., DC 20503 And to Mr. Dana O'Hara, Office of Energy Efficiency and Renewable Energy (EE- 2G), U.S...

  6. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  7. Defect-free ultrahigh flux asymmetric membranes

    DOEpatents

    Pinnau, Ingo; Koros, William J.

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  8. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotz, M; Karsch, L; Pawelke, J

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fitmore » of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for

  9. New Visualization Techniques to Analyze Ultra-High Resolution Four-dimensional Surface Deformation Imagery Collected With Ground-based Tripod LiDAR

    NASA Astrophysics Data System (ADS)

    Kreylos, O.; Bawden, G. W.; Kellogg, L. H.

    2005-12-01

    We are developing a visualization application to display and interact with very large (tens of millions of points) four-dimensional point position datasets in an immersive environment such that point groups from repeated Tripod LiDAR (Light Detection And Ranging) surveys can be selected, measured, and analyzed for land surface change using 3D~interactions. Ground-based tripod or terrestrial LiDAR (T-LiDAR) can remotely collect ultra-high resolution (centimeter to subcentimeter) and accurate (± 4 mm) digital imagery of the scanned target, and at scanning rates of 2,000 (x, y, z, i) (3D~position~+ intensity) points per second over 7~million points can be collected for a given target in an hour. We developed a multiresolution point set data representation based on octrees to display large T-LiDAR point cloud datasets at the frame rates required for immersive display (between 60 Hz and 120 Hz). Data inside an observer's region of interest is shown in full detail, whereas data outside the field of view or far away from the observer is shown at reduced resolution to provide context. Using 3D input devices at the University of California Davis KeckCAVES, users can navigate large point sets, accurately select related point groups in two or more point sets by sweeping regions of space, and guide the software in deriving positional information from point groups to compute their displacements between surveys. We used this new software application in the KeckCAVES to analyze 4D T-LiDAR imagery from the June~1, 2005 Blue Bird Canyon landslide in Laguna Beach, southern California. Over 50~million (x, y, z, i) data points were collected between 10 and 21~days after the landslide to evaluate T-LiDAR as a natural hazards response tool. The visualization of the T-LiDAR scans within the immediate landslide showed minor readjustments in the weeks following the primarily landslide with no observable continued motion on the primary landslide. Recovery and demolition efforts across the

  10. A nanowaveguide platform for collective atom-light interaction

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.

    2015-08-01

    We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.

  11. Fused Silica Ion Trap Chip with Efficient Optical Collection System for Timekeeping, Sensing, and Emulation

    DTIC Science & Technology

    2015-01-22

    applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum

  12. Use of RNA amplification and electrophoresis for studying virus aerosol collection efficiency and their comparison with plaque assays.

    PubMed

    Jiang, Xiao; Pan, Maohua; Hering, Susanne V; Lednicky, John A; Wu, Chang-Yu; Fan, Z Hugh

    2016-10-01

    The spread of virus-induced infectious diseases through airborne routes of transmission is a global concern for economic and medical reasons. To study virus transmission, it is essential to have an effective aerosol collector such as the growth tube collector (GTC) system that utilizes water-based condensation for collecting virus-containing aerosols. In this work, we characterized the GTC system using bacteriophage MS2 as a surrogate for a small RNA virus. We investigated using RNA extraction and reverse transcription- polymerase chain reaction (RT-PCR) to study the total virus collection efficiency of the GTC system. Plaque assays were also used to enumerate viable viruses collected by the GTC system compared to that by a commercially available apparatus, the SKC® Biosampler. The plaque assay counts were used to enumerate viable viruses whereas RT-PCR provides a total virus count, including those viruses inactivated during collection. The effects of relative humidity (RH) and other conditions on collection efficiency were also investigated. Our results suggest that the GTC has a collection efficiency for viable viruses between 0.24 and 1.8% and a total virus collection efficiency between 18.3 and 79.0%, which is 1-2 orders of magnitude higher than that of the SKC® Biosampler. Moreover, higher RH significantly increases both the viable and total collection efficiency of the GTC, while its effect on the collection efficiency of the SKC® Biosampler is not significant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bridging ultrahigh-Q devices and photonic circuits

    NASA Astrophysics Data System (ADS)

    Yang, Ki Youl; Oh, Dong Yoon; Lee, Seung Hoon; Yang, Qi-Fan; Yi, Xu; Shen, Boqiang; Wang, Heming; Vahala, Kerry

    2018-05-01

    Optical microresonators are essential to a broad range of technologies and scientific disciplines. However, many of their applications rely on discrete devices to attain challenging combinations of ultra-low-loss performance (ultrahigh Q) and resonator design requirements. This prevents access to scalable fabrication methods for photonic integration and lithographic feature control. Indeed, finding a microfabrication bridge that connects ultrahigh-Q device functions with photonic circuits is a priority of the microcavity field. Here, an integrated resonator having a record Q factor over 200 million is presented. Its ultra-low-loss and flexible cavity design brings performance to integrated systems that has been the exclusive domain of discrete silica and crystalline microcavity devices. Two distinctly different devices are demonstrated: soliton sources with electronic repetition rates and high-coherence/low-threshold Brillouin lasers. This multi-device capability and performance from a single integrated cavity platform represents a critical advance for future photonic circuits and systems.

  14. Spectral efficiency in crosstalk-impaired multi-core fiber links

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Puttnam, Benjamin J.; Rademacher, Georg; Klaus, Werner; Agrell, Erik; Awaji, Yoshinari; Wada, Naoya

    2018-02-01

    We review the latest advances on ultra-high throughput transmission using crosstalk-limited single-mode multicore fibers and compare these with the theoretical spectral efficiency of such systems. We relate the crosstalkimposed spectral efficiency limits with fiber parameters, such as core diameter, core pitch, and trench design. Furthermore, we investigate the potential of techniques such as direction interleaving and high-order MIMO to improve the throughput or reach of these systems when using various modulation formats.

  15. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    PubMed

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  16. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  17. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.

    PubMed

    Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang

    2016-12-06

    The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.

  18. Mapping the Ice Depth of Europa with Ultrahigh Energy Particles

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, A.; Naudet, C. J.

    2012-12-01

    There has been recent interest in applying radio emission of ultra-high energy neutrinos interacting in the ice of Europa. The idea was first described by Gorham (2004)[1] in the context of ultra-high energy particle detection. Shoji, Kurita, and Tanaka (2011)[2] proposed a technique for measuring ice depth using the radio intensity distribution of radio impulses emitted by interactions deep in the Europan ice. Miller, Schaefer, and Sequeira (2012)[3] follow up this study with a simulation of a radio detector mission to constrain the ice depth of Europa. The radio signal results from an effect proposed by Askar'yan (1962)[4] where the particle shower induced by the neutrino interaction accumulates a charge excess traveling faster than the speed of light in the medium and produces a coherent Cherenkov pulse at radio frequencies. We evaluate the feasibility of such a mission given the current state of knowledge of ultra-high energy particle detection and radio pulse production. References [1] Gorham (2004), Planet-sized Detectors for Ultra-high Energy Neutrinos & Cosmic Rays, NASA Advanced Planning Office's Capability Roadmap Public Workshop, Nov. 30, 2004, astro-ph/0411510 [2] Shoji, Kurita, and Tanaka (2011), Constraint of Europan ice thickness by measuring electromagnetic emissions induced by neutrino interaction, Geophysical Research Letters, 38, L08202 [3] Miller, Shaefer, Sequeira, PRIDE (Passive Radio [frequency] Ice Depth Experiment): An instrument to passively measure ice depth from a Europan orbiter using neutrinos, Icarus 220 877-888 [4] Askar'yan (1962), Excess negative charge of an electron photon shower and its coherent radiation originating from it. Radio recording of showers under the ground and on the Moon, Sov. Phys. JETP, 14, 441-443.

  19. Ultrahigh Field NMR and MRI: Science at a Crossroads Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polenova, Tatyana; Budinger, Thomas F.

    2016-01-04

    The workshop “Ultrahigh Field NMR and MRI: Science at Crossroads”, initiated by the scientific community and supported by the National Science Foundation, the Department of Energy, and the National Institutes of Health, took place on November 12-13, 2015, in Bethesda, MD, on the NIH campus. The meeting was held to assess the science drivers, technological challenges, prospects for achieving field strengths for NMR and MRI nearly double their current value, and strategies on how to provide ultrahigh field NMR/MRI capabilities to a national user community.

  20. Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh performance supercritical fluid based chromatography tandem mass spectrometry.

    PubMed

    Camacho-Muñoz, Dolores; Kasprzyk-Hordern, Barbara; Thomas, Kevin V

    2016-08-31

    In order to assess the true impact of each single enantiomer of pharmacologically active compounds (PACs) in the environment, highly efficient, fast and sensitive analytical methods are needed. For the first time this paper focuses on the use of ultrahigh performance supercritical fluid based chromatography coupled to a triple quadrupole mass spectrometer to develop multi-residue enantioselective methods for chiral PACs in environmental matrices. This technique exploits the advantages of supercritical fluid chromatography, ultrahigh performance liquid chromatography and mass spectrometry. Two coated modified 2.5 μm-polysaccharide-based chiral stationary phases were investigated: an amylose tris-3,5-dimethylphenylcarbamate column and a cellulose tris-3-chloro-4-methylphenylcarbamate column. The effect of different chromatographic variables on chiral recognition is highlighted. This novel approach resulted in the baseline resolution of 13 enantiomers PACs (aminorex, carprofen, chloramphenicol, 3-N-dechloroethylifosfamide, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, imazalil, naproxen, ofloxacin, omeprazole, praziquantel and tetramisole) and partial resolution of 2 enantiomers PACs (ibuprofen and indoprofen) under fast-gradient conditions (<10 min analysis time). The overall performance of the methods was satisfactory. The applicability of the methods was tested on influent and effluent wastewater samples. To the best of our knowledge, this is the first feasibility study on the simultaneous separation of chemically diverse chiral PACs in environmental matrices using ultrahigh performance supercritical fluid based chromatography coupled with tandem mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Improving the Efficiency of Photon Collection by Compton Rescue

    DTIC Science & Technology

    2011-03-01

    burnished by vibratory shot peening,” Acta Physica Polonica , vol. A 110, pp. 739–46, 2006. [4] M. Cunningham et al., “First-generation hybrid compact...Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright...R. Kowash (Member) Date AFIT/GAP/ENP/11-M10 Abstract A method to improve the efficiency of photon collection in thin planar HPGe de- tectors was

  2. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.

    PubMed

    Taheri, Mahboobeh; Mohebbi, Ali

    2008-08-30

    In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.

  3. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  4. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  5. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fuchs, B.; Fujii, T.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lu, L.; Lucero, A.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhu, Y.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-05-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°-75° and 75°-90° as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 ×1 017 eV - 2.5 ×1 019 eV is Eν2d Nν/d Eν<6.4 ×10-9 GeV cm-2 s-1 sr-1 .

  6. REVIEWS OF TOPICAL PROBLEMS: Ultrahigh-energy neutrinos from astrophysical sources and superheavy particle decays

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir A.

    2006-09-01

    Problems in the fields of neutrino astronomy and ultrahigh-energy astrophysics are reviewed. Neutrino fluxes produced in various astrophysical sources (bottom-up acceleration scenarios) and resulting from the decay of superheavy particles (top-down scenarios) are considered. Neutrino oscillation processes and the absorption and regeneration of neutrinos inside the earth are analyzed and some other factors affecting the intensity and flavor composition of astrophysical neutrino fluxes are discussed. Details of ultrahigh-energy neutrino interactions are discussed within the Standard Model, as well as using nonstandard scenarios predicting an anomalous increase in the inelastic neutrino-nucleon cross section. Ultrahigh-energy neutrino detection techniques currently in use in new-generation neutrino telescopes and cosmic ray detectors are also discussed.

  7. The limitation of the proposed collection efficiency for fiber probes on the visible and near-infrared diffuse spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin

    2017-12-01

    A fiber is usually used as a probe in visible and near-infrared diffuse spectra measurement. However, the use of different fiber probes in the same measurement may cause data mismatch problems. Our group has researched the influence of the parameters of fiber probe, including the aperture angle, on the diffuse spectrum by a modified Monte Carlo model. To eliminate the influence of the aperture angle, we proposed a fitted equation of correction coefficient to correct its difference in practical range. However, we did not discuss the limitation of this method. In this work, we explored the collection efficiency in different optical environment with Monte Carlo simulation method, and find the suitable conditions-weak absorbing and strong scattering media, for the proposed collection efficiency. Furthermore, we tried to explain the stability of the collection efficiency in this condition. This work gives suitable conditions for the collection efficiency. The use of collection efficiency can help reduce the influence of different measurement systems and is also helpful to the model translation.

  8. AMANDA Observations Constrain the Ultrahigh Energy Neutrino Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halzen, Francis; /Wisconsin U., Madison; Hooper, Dan

    2006-05-01

    A number of experimental techniques are currently being deployed in an effort to make the first detection of ultra-high energy cosmic neutrinos. To accomplish this goal, techniques using radio and acoustic detectors are being developed, which are optimally designed for studying neutrinos with energies in the PeV-EeV range and above. Data from the AMANDA experiment, in contrast, has been used to place limits on the cosmic neutrino flux at less extreme energies (up to {approx}10 PeV). In this letter, we show that by adopting a different analysis strategy, optimized for much higher energy neutrinos, the same AMANDA data can bemore » used to place a limit competitive with radio techniques at EeV energies. We also discuss the sensitivity of the IceCube experiment, in various stages of deployment, to ultra-high energy neutrinos.« less

  9. Searches for ultra-high energy neutrinos at the Pierre Auger observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez-Muñiz, Jaime; Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe

    2015-07-15

    Neutrinos in the sub-EeV energy range and above can be detected and identified with the Surface Detector array of the Pierre Auger Observatory. The identification can be efficiently done for neutrinos of all flavours interacting in the atmosphere, typically above 60° (downward-going), as well as for “Earth-skimming” neutrino interactions in the case of tau neutrinos (upward-going). Three sets of identification criteria were designed to search for downward-going neutrinos in the zenith angle bins 60° − 75° and 75° − 90° as well as for upward-going neutrinos. The three searches have been recently combined, providing, in the absence of candidates inmore » data from 1 January 04 until 31 December 12, a stringent limit to the diffuse flux of ultra-high energy neutrinos.« less

  10. Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Dinh, Toan; Ina, Ginnosuke; Kermany, Atieh Ranjbar; Qamar, Afzaal; Han, Jisheng; Namazu, Takahiro; Maeda, Ryutaro; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-04-01

    Strain engineering has attracted great attention, particularly for epitaxial films grown on a different substrate. Residual strains of SiC have been widely employed to form ultra-high frequency and high Q factor resonators. However, to date, the highest residual strain of SiC was reported to be limited to approximately 0.6%. Large strains induced into SiC could lead to several interesting physical phenomena, as well as significant improvement of resonant frequencies. We report an unprecedented nanostrain-amplifier structure with an ultra-high residual strain up to 8% utilizing the natural residual stress between epitaxial 3C-SiC and Si. In addition, the applied strain can be tuned by changing the dimensions of the amplifier structure. The possibility of introducing such a controllable and ultra-high strain will open the door to investigating the physics of SiC in large strain regimes and the development of ultra sensitive mechanical sensors.

  11. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less

  12. Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Silk, Joseph

    2017-11-01

    Ultrahigh-energy cosmic rays (UHECRs) can be accelerated by tidal disruption events of stars by black holes. We suggest a novel mechanism for UHECR acceleration wherein white dwarfs (WDs) are tidally compressed by intermediate-mass black holes (IMBHs), leading to their ignition and subsequent explosion as a supernova. Cosmic rays accelerated by the supernova may receive an energy boost when crossing the accretion-powered jet. The rate of encounters between WDs and IMBHs can be relatively high, as the number of IMBHs may be substantially augmented once account is taken of their likely presence in dwarf galaxies. Here we show that this kind of tidal disruption event naturally provides an intermediate composition for the observed UHECRs, and suggest that dwarf galaxies and globular clusters are suitable sites for particle acceleration to ultrahigh energies.

  13. BAKABLE ULTRA-HIGH VACUUM VALVE

    DOEpatents

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  14. Rapid brain MRI acquisition techniques at ultra-high fields

    PubMed Central

    Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.

    2017-01-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884

  15. Application of ultra-high performance concrete to bridge girders.

    DOT National Transportation Integrated Search

    2009-02-01

    "Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...

  16. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE PAGES

    Abreu, P.; Aglietta, M.; Ahlers, M.; ...

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversedmore » a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  17. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    PubMed

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Collection efficiency and acceptance maps of electron detectors for understanding signal detection on modern scanning electron microscopy.

    PubMed

    Agemura, Toshihide; Sekiguchi, Takashi

    2018-02-01

    Collection efficiency and acceptance maps of typical detectors in modern scanning electron microscopes (SEMs) were investigated. Secondary and backscattered electron trajectories from a specimen to through-the-lens and under-the-lens detectors placed on an electron optical axis and an Everhart-Thornley detector mounted on a specimen chamber were simulated three-dimensionally. The acceptance maps were drawn as the relationship between the energy and angle of collected electrons under different working distances. The collection efficiency considering the detector sensitivity was also estimated for the various working distances. These data indicated that the acceptance maps and collection efficiency are keys to understand the detection mechanism and image contrast for each detector in the modern SEMs. Furthermore, the working distance is the dominant parameter because electron trajectories are drastically changed with the working distance.

  19. The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review.

    PubMed

    Glenthøj, Louise Birkedal; Hjorthøj, Carsten; Kristensen, Tina Dam; Davidson, Charlie Andrew; Nordentoft, Merete

    2017-01-01

    Cognitive deficits are prominent features of the ultra-high risk state for psychosis that are known to impact functioning and course of illness. Cognitive remediation appears to be the most promising treatment approach to alleviate the cognitive deficits, which may translate into functional improvements. This study systematically reviewed the evidence on the effectiveness of cognitive remediation in the ultra-high risk population. The electronic databases MEDLINE, PsycINFO, and Embase were searched using keywords related to cognitive remediation and the UHR state. Studies were included if they were peer-reviewed, written in English, and included a population meeting standardized ultra-high risk criteria. Six original research articles were identified. All the studies provided computerized, bottom-up-based cognitive remediation, predominantly targeting neurocognitive function. Four out of five studies that reported a cognitive outcome found cognitive remediation to improve cognition in the domains of verbal memory, attention, and processing speed. Two out of four studies that reported on functional outcome found cognitive remediation to improve the functional outcome in the domains of social functioning and social adjustment. Zero out of the five studies that reported such an outcome found cognitive remediation to affect the magnitude of clinical symptoms. Research on the effect of cognitive remediation in the ultra-high risk state is still scarce. The current state of evidence indicates an effect of cognitive remediation on cognition and functioning in ultra-high risk individuals. More research on cognitive remediation in ultra-high risk is needed, notably in large-scale trials assessing the effect of neurocognitive and/or social cognitive remediation on multiple outcomes.

  20. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  1. Processing of fibre suspensions at ultra-high consistencies

    Treesearch

    Daniel F. Caulfield; Rodney E. Jacobson

    2004-01-01

    Typically the paper physicist considers pulp suspensions greater than 0.5% consistency as high consistency. In our research on cellulose fibre- reinforced engineering plastics we have had to develop a two-step method for the processing of fibers suspensions at ultrahigh consistencies (consistencies greater than 30%).

  2. Determinants of efficiency in the provision of municipal street-cleaning and refuse collection services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito-Lopez, Bernardino, E-mail: benitobl@um.es; Rocio Moreno-Enguix, Maria del, E-mail: mrmoreno@um.es; Solana-Ibanez, Jose, E-mail: jsolana@um.es

    Effective waste management systems can make critical contributions to public health, environmental sustainability and economic development. The challenge affects every person and institution in society, and measures cannot be undertaken without data collection and a quantitative analysis approach. In this paper, the two-stage double bootstrap procedure of is used to estimate the efficiency determinants of Spanish local entities in the provision of public street-cleaning and refuse collection services. The purpose is to identify factors that influence efficiency. The final sample comprised 1072 municipalities. In the first stage, robust efficiency estimates are obtained with Data Envelopment Analysis (DEA). We apply themore » second stage, based on a truncated-regression, to estimate the effect of a group of environmental factors on DEA estimates. The results show the existence of a significant relation between efficiency and all the variables analysed (per capita income, urban population density, the comparative index of the importance of tourism and that of the whole economic activity). We have also considered the influence of a dummy categorical variable - the political sign of the governing party - on the efficient provision of the services under study. The results from the methodology proposed show that municipalities governed by progressive parties are more efficient.« less

  3. Determinants of efficiency in the provision of municipal street-cleaning and refuse collection services.

    PubMed

    Benito-López, Bernardino; Moreno-Enguix, María del Rocio; Solana-Ibañez, José

    2011-06-01

    Effective waste management systems can make critical contributions to public health, environmental sustainability and economic development. The challenge affects every person and institution in society, and measures cannot be undertaken without data collection and a quantitative analysis approach. In this paper, the two-stage double bootstrap procedure of Simar and Wilson (2007) is used to estimate the efficiency determinants of Spanish local entities in the provision of public street-cleaning and refuse collection services. The purpose is to identify factors that influence efficiency. The final sample comprised 1072 municipalities. In the first stage, robust efficiency estimates are obtained with Data Envelopment Analysis (DEA). We apply the second stage, based on a truncated-regression, to estimate the effect of a group of environmental factors on DEA estimates. The results show the existence of a significant relation between efficiency and all the variables analysed (per capita income, urban population density, the comparative index of the importance of tourism and that of the whole economic activity). We have also considered the influence of a dummy categorical variable - the political sign of the governing party - on the efficient provision of the services under study. The results from the methodology proposed show that municipalities governed by progressive parties are more efficient. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    PubMed

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  5. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    PubMed Central

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  6. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    NASA Astrophysics Data System (ADS)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  7. Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries.

    PubMed

    Lim, Won-Gwang; Mun, Yeongdong; Cho, Ara; Jo, Changshin; Lee, Seonggyu; Han, Jeong Woo; Lee, Jinwoo

    2018-05-14

    Lithium-sulfur (Li-S) batteries are regarded as potential high-energy storage devices due to their outstanding energy density. However, the low electrical conductivity of sulfur, dissolution of the active material, and sluggish reaction kinetics cause poor cycle stability and rate performance. A variety of approaches have been attempted to resolve the above issues and achieve enhanced electrochemical performance. However, inexpensive multifunctional host materials which can accommodate large quantities of sulfur and exhibit high electrode density are not widely available, which hinders the commercialization of Li-S batteries. Herein, mesoporous carbon microspheres with ultrahigh pore volume are synthesized, followed by the incorporation of Fe-N-C molecular catalysts into the mesopores, which can act as sulfur hosts. The ultrahigh pore volume of the prepared host material can accommodate up to ∼87 wt % sulfur, while the uniformly controlled spherical morphology and particle size of the carbon microspheres enable high areal/volumetric capacity with high electrode density. Furthermore, the uniform distribution of Fe-N-C (only 0.33 wt %) enhances the redox kinetics of the conversion reaction of sulfur and efficiently captures the soluble intermediates. The resulting electrode with 5.2 mg sulfur per cm 2 shows excellent cycle stability and 84% retention of the initial capacity even after 500 cycles at a 3 C rate.

  8. COLLECTION EFFICIENCY OF THE HIGH VOLUME SMALL SURFACE SAMPLER ON WORN CARPETS

    EPA Science Inventory

    Collection Efficiency of the High Volume Small Surface Sampler on Worn Carpets

    Erik R. Svendsen*?, Peter S. Thorne*, Stephen J. Reynolds*?, Patrick T. O'Shaughnessy*, Alba Quinones*, Dale Zimmerman*, and Nervana Metwali*

    *University of Iowa College of Public Health<...

  9. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.

    PubMed

    Herz, P R; Chen, Y; Aguirre, A D; Schneider, K; Hsiung, P; Fujimoto, J G; Madden, K; Schmitt, J; Goodnow, J; Petersen, C

    2004-10-01

    A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.

  10. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Herz, P. R.; Chen, Y.; Aguirre, A. D.; Schneider, K.; Hsiung, P.; Fujimoto, J. G.; Madden, K.; Schmitt, J.; Goodnow, J.; Petersen, C.

    2004-10-01

    A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-µm axial resolution by use of a femtosecond Crforsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.

  11. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates

    NASA Astrophysics Data System (ADS)

    Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.

    2000-12-01

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  12. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.

    PubMed

    Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P

    2000-12-15

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  13. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  14. 78 FR 34089 - Revision of a Currently Approved Information Collection for the Energy Efficiency and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Approved Information Collection for the Energy Efficiency and Conservation Block Grant Program Status... guidance concerning the Energy Efficiency and Conservation Block Grant (EECBG) Program is available for... Conservation Block Grant (EECBG) Program Status Report''; (3) Type of Review: Revision of currently approved...

  15. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    PubMed

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  16. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li

    2012-08-01

    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Survival of Chinese Hamster Ovary Cells Following Ultrahigh Dose Rate Electron and Bremsstrahlung Radiation

    DTIC Science & Technology

    1990-04-01

    and a stepped lead flattening filter. The electron energy used for these studies was 13 MeV. Dosimetry was performed by the Health Physics Division...VolI LJSAFSAPA-TR-90-4 AD-A222 722 SURVIVAL OF CHINESE HAMSTER OVARY CELLS FOLLOWING ULTRAHIGH DOSE RATE ELECTRON AND BREMISSTRAHLUNG RADIATION...Include Security ;a!. iatcn) Survival of Chinese Hamster Ovary Cells Following Ultrahigh Dose Rate Electron and Bremsstrahlung Radiation 12 PERSONAL

  18. Two-dimensional single-shot diffusion-weighted stimulated EPI with reduced FOV for ultrahigh-b radial diffusion-weighted imaging of spinal cord.

    PubMed

    Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee

    2017-06-01

    High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Ultrahigh-power supercapacitors based on highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon frameworks.

    PubMed

    Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun

    2018-06-22

    In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s -1 to 20 V s -1 , and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s -1 , suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.

  20. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2015-05-26

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as wellmore » as for “Earth-skimming” neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°–75° and 75°–90° as well as for upward-going neutrinos, are combined to give a single limit. In addition, the 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E –2 spectrum in the energy range 1.0 × 10 17 eV – 2.5 × 10 19 eV is E 2 νdN ν/dE ν < 6.4 × 10 –9 GeV cm –2 s –1 sr –1.« less

  1. Ultrahigh-power supercapacitors based on highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun

    2018-06-01

    In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s‑1 to 20 V s‑1, and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s‑1, suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.

  2. Spatially-Resolved Characterization Techniques to Investigate Impact Damage in Ultra-High Performance Concretes

    DTIC Science & Technology

    2013-04-01

    Concretes G eo te ch n ic al a n d S tr u ct u re s La b or at or y Robert D. Moser, Paul G. Allison, and Mei Q. Chandler April 2013 Approved...Impact Damage in Ultra-High Performance Concretes Robert D. Moser, Paul G. Allison, and Mei Q. Chandler Geotechnical and Structures Laboratory US...Portland Cement concrete (OPC) and Ultra-High Performance Concretes (UHPCs) under high-strain impact and penetration loads at lower length scales

  3. 76 FR 70831 - Proposed Information Collection (Survey of Veteran Enrollees (Quality and Efficiency of VA Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... of Veteran Enrollees (Quality and Efficiency of VA Health Care)) Activity; Comment Request AGENCY... of Veteran Enrollees (Quality and Efficiency of VA Health Care), VA Form 10-21088. OMB Control Number... will be used to collect data that is necessary to promote quality and efficient delivery of health care...

  4. Ultrahigh Pressure Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.

    2017-12-01

    Laser-based dynamic compression provides a new opportunity to study the lattice structure and other properties of geological materials to ultrahigh pressure conditions ranging from 100 - 1000 GPa (1 TPa) and beyond. Such studies have fundamental applications to understanding the Earth's core as well as the interior structure of super-Earths and giant planets. This talk will review recent dynamic compression experiments using high-powered lasers on materials including Fe-Si, MgO, and SiC. Experiments were conducted at the Omega laser (University of Rochester) and the Linac Coherent Light Source (LCLS, Stanford). At Omega, laser drives as large as 2 kJ are applied over 10 ns to samples that are 50 microns thick. At peak compression, the sample is probed with quasi-monochromatic X-rays from a laser-plasma source and diffraction is recorded on image plates. At LCLS, shock waves are driven into the sample using a 40-J laser with a 10-ns pulse. The sample is probed with X-rays form the LCLS free electron laser providing 1012 photons in a monochromatic pulse near 10 keV energy. Diffraction is recorded using pixel array detectors. By varying the delay between the laser and the x-ray beam, the sample can be probed at various times relative to the shock wave transiting the sample. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Ramp compression produces less heating than shock compression, allowing samples to be probed to ultrahigh pressures without melting. Results for iron alloys, oxides, and carbides provide new constraints on equations of state and phase transitions that are relevant to the interior structure of large, extrasolar terrestrial-type planets.

  5. Research on compression performance of ultrahigh-definition videos

    NASA Astrophysics Data System (ADS)

    Li, Xiangqun; He, Xiaohai; Qing, Linbo; Tao, Qingchuan; Wu, Di

    2017-11-01

    With the popularization of high-definition (HD) images and videos (1920×1080 pixels and above), there are even 4K (3840×2160) television signals and 8 K (8192×4320) ultrahigh-definition videos. The demand for HD images and videos is increasing continuously, along with the increasing data volume. The storage and transmission cannot be properly solved only by virtue of the expansion capacity of hard disks and the update and improvement of transmission devices. Based on the full use of the coding standard high-efficiency video coding (HEVC), super-resolution reconstruction technology, and the correlation between the intra- and the interprediction, we first put forward a "division-compensation"-based strategy to further improve the compression performance of a single image and frame I. Then, by making use of the above thought and HEVC encoder and decoder, a video compression coding frame is designed. HEVC is used inside the frame. Last, with the super-resolution reconstruction technology, the reconstructed video quality is further improved. The experiment shows that by the proposed compression method for a single image (frame I) and video sequence here, the performance is superior to that of HEVC in a low bit rate environment.

  6. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    PubMed

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental Evaluation of Stagnation Point Collection Efficiency of the NACA 0012 Swept Wing Tip

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Kreeger, Richard E.

    2010-01-01

    This paper presents the experimental work of a number of icing tests conducted in the Icing Research Tunnel at NASA Glenn Research Center to develop a test method for measuring the local collection efficiency of an impinging cloud at the leading edge of a NACA 0012 swept wing and with the data obtained to further calibrate a proposed correlation for such impingement efficiency calculation as a function of the modified inertia parameter and the sweep angle. The preliminary results showed that there could be some limitation of the test method due to the ice erosion problem when encountered, and also found that, for conditions free of such problem, the stagnation point collection efficiency measurement for sweep angles up to 45 could be well approximated by the proposed correlation. Further evaluation of this correlation is recommended in order to assess its applicability for swept-wing icing scaling analysis.

  8. An ultrahigh pressure homogenization technique for easily exfoliating few-layer phosphorene from bulk black phosphorus

    NASA Astrophysics Data System (ADS)

    Guan, Qing-Qing; Zhou, Hua-Jing; Ning, Ping; Lian, Pei-Chao; Wang, Bo; He, Liang; Chai, Xin-Sheng

    2018-05-01

    We have developed an easy and efficient method for exfoliating few-layer sheets of black phosphorus (BP) in N-methyl-2-pyrrolidone, using ultra-high pressure homogenization (UPH). The BP was first exfoliated into sheets that were a few atomic layers thick, using a homogenizer for only 30 min. Next, a double centrifugation procedure was used to separate the material into few-layer nanosheets that were examined by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) spectroscopy. The results show that the products are specimens of phosphorene that are only a few-layer thick.

  9. EFFECT OF IMPACTION, BOUNCE AND REAEROSOLIZATION ON THE COLLECTION EFFICIENCY OF IMPINGERS

    EPA Science Inventory

    The collection efficiency of liquid impingers was studied experimentally as a function of the sampling flow rate with test particles in the bacterial size range. Three impingers were tested: two All-Glass Impingers(AGI-4 and AGI-30),widely used for bioaerosol sampling, and a newl...

  10. 77 FR 3841 - Proposed Information Collection (Survey of Veteran Enrollees (Quality and Efficiency of VA Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... of Veteran Enrollees (Quality and Efficiency of VA Health Care)) Activities Under OMB Review AGENCY... of Veteran Enrollees (Quality and Efficiency of VA Health Care), VA Form 10-21088. OMB Control Number... will be used to collect data that is necessary to promote quality and efficient delivery of health care...

  11. Features of Extrusion Processing of Ultrahigh Molecular Weight Polyethylene. Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Skul‧skii, O. I.; Slavnov, E. V.

    2018-05-01

    Experimental studies have been made of the permissible regimes of processing ultrahigh molecular weight polyethylene GUR 2122 with molecular mass of 4.5 million g/moles in a laboratory extruder with an auger diameter 32 mm and a ratio L/D = 20 at temperatures of 155-165oC. On the basis of rotational viscometry, the rheological properties of the melt are described. A mathematical model and a numerical method for calculating the motion of ultrahigh molecular weight polyethylene melt in the auger and in the moulding rigging are proposed. The velocity and stress fields have been determined.

  12. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less

  13. CCD charge collection efficiency and the photon transfer technique

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Klaasen, K.; Elliott, T.

    1985-01-01

    The charge-coupled device (CCD) has shown unprecendented performance as a photon detector in the areas of spectral response, charge transfer, and readout noise. Recent experience indicates, however, that the full potential for the CCD's charge collection efficiency (CCE) lies well beyond that which is realized in currently available devices. A definition of CCE performance is presented and a standard test tool (the photon transfer technique) for measuring and optimizing this important CCD parameter is introduced. CCE characteristics for different types of CCDs are compared; the primary limitations in achieving high CCE performance are discussed, and the prospects for future improvement are outlined.

  14. Hadron diffractive production at ultrahigh energies and shadow effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    2016-10-01

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies. Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q1→12 ˜ m2/ln2s, q3→32 ˜ m2/ln2s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor ˜ 1 4; initial state rescatterings result in additional factor ˜ 1 2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σinel/σtot → 0 at s →∞ in this mode.

  15. Hadron Diffractive Production at Ultrahigh Energies and Shadow Effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies... Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q^2_{1 to 1} m^2/ ln^2 s, q^2_{3 to 3} m^2/ ln^2 s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor 1/4 initial state rescatterings result in additional factor 1/2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σ_{inel}/σ_{tot} to 0 at √{s}to ∞ in this mode.

  16. Examining the association between social cognition and functioning in individuals at ultra-high risk for psychosis.

    PubMed

    Cotter, Jack; Bartholomeusz, Cali; Papas, Alicia; Allott, Kelly; Nelson, Barnaby; Yung, Alison R; Thompson, Andrew

    2017-01-01

    Social and role functioning are compromised for the majority of individuals at ultra-high risk of psychosis, and it is important to identify factors that contribute to this functional decline. This study aimed to investigate social cognitive abilities, which have previously been linked to functioning in schizophrenia, as potential factors that impact social, role and global functioning in ultra-high risk patients. A total of 30 ultra-high risk patients were recruited from an established at-risk clinical service in Melbourne, Australia, and completed a battery of social cognitive, neurocognitive, clinical and functioning measures. We examined the relationships between all four core domains of social cognition (emotion recognition, theory of mind, social perception and attributional style), neurocognitive, clinical and demographic variables with three measures of functioning (the Global Functioning Social and Role scales and the Social and Occupational Functioning Assessment Scale) using correlational and multiple regression analyses. Performance on a visual theory of mind task (visual jokes task) was significantly correlated with both concurrent role ( r = 0.425, p = 0.019) and global functioning ( r = 0.540, p = 0.002). In multivariate analyses, it also accounted for unique variance in global, but not role functioning after adjusting for negative symptoms and stress. Social functioning was not associated with performance on any of the social cognition tasks. Among specific social cognitive abilities, only a test of theory of mind was associated with functioning in our ultra-high risk sample. Further longitudinal research is needed to examine the impact of social cognitive deficits on long-term functional outcome in the ultra-high risk group. Identifying social cognitive abilities that significantly impact functioning is important to inform the development of targeted intervention programmes for ultra-high risk individuals.

  17. Ultrahigh vacuum process for the deposition of nanotubes and nanowires

    DOEpatents

    Das, Biswajit; Lee, Myung B

    2015-02-03

    A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.

  18. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  19. Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2014-11-01

    Ultra-high performance concrete (UHPC) has garnered interest from the highway infrastructure community for its greatly enhanced mechanical and durability properties. The objective of this research is to extensively evaluate the factors that affect bo...

  20. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-04-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic-ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh energy cosmic rays through the state-of-the-art simulation framework CRPropa 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  1. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-07-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh ENERGY cosmic rays through the state-of-the-art simulation framework CRPROPA 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  2. Neutral ligand TIPA-based two 2D metal-organic frameworks: ultrahigh selectivity of C2H2/CH4 and efficient sensing and sorption of Cr(vi ).

    PubMed

    Fu, Hong-Ru; Zhao, Ying; Zhou, Zhan; Yang, Xiao-Gang; Ma, Lu-Fang

    2018-03-12

    One neutral tripodal semi-rigidity ligand tri(4-imidazolylphenyl)amine (TIPA) with excellent hole-transfer nature, was selected as a linker to construct MOFs. Two two-dimensional (2D) microporous metal-organic frameworks (MOFs) were synthesized solvothermally: [Ni(TIPA)(COO - ) 2 (H 2 O)]·2(DMF)2(H 2 O) (1) and [Cd(TIPA) 2 (ClO 4 - ) 2 ]·(DMF)3(H 2 O) (2). Compound 1 incorporated carboxylic groups into the channel and exhibited the high capacity of light hydrocarbons as well as the remarkable selectivity of C 2 H 2 /CH 4 . The value is in excess of 100 at room temperature, which is the highest value reported to date. Compound 2, as a cationic framework with high water stability, was not only applied as a sensor, displaying the ultrahigh sensitivity against Cr 2 O 7 2- with a detection limit as low as 8 ppb, but also possessed excellent Cr(vi) sorption with good repeatability in aqueous solution. This study provides an efficient strategy to design cationic MOFs for the selective separation of light hydrocarbons and the sensing and trapping of toxic chromate for the purification of water.

  3. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  4. Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection.

    PubMed

    Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez

    2012-11-05

    A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.

  5. Ultrahigh-Repetition Pulse Train with Absolute-Phase Control Produced by AN Adiabatic Raman Process

    NASA Astrophysics Data System (ADS)

    Katsuragawa, M.; Suzuki, T.; Shiraga, K.; Arakawa, M.; Onose, T.; Yokoyama, K.; Hong, F. L.; Misawa, K.

    2010-02-01

    We describe the generation of an ultrahigh-repetition-rate train of ultrashort pulses on the basis of an adiabatic Raman process. We also describe recent progress in studies toward the ultimate regime: realization of an ultrahigh-repetition-rate train of monocycle pulses with control of the absolute phase. We comment on the milestones expected in the near future in terms of the study of such novel light sources and the new field of optical science stimulated by their development.

  6. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Full cost accounting in the analysis of separated waste collection efficiency: A methodological proposal.

    PubMed

    D'Onza, Giuseppe; Greco, Giulio; Allegrini, Marco

    2016-02-01

    Recycling implies additional costs for separated municipal solid waste (MSW) collection. The aim of the present study is to propose and implement a management tool - the full cost accounting (FCA) method - to calculate the full collection costs of different types of waste. Our analysis aims for a better understanding of the difficulties of putting FCA into practice in the MSW sector. We propose a FCA methodology that uses standard cost and actual quantities to calculate the collection costs of separate and undifferentiated waste. Our methodology allows cost efficiency analysis and benchmarking, overcoming problems related to firm-specific accounting choices, earnings management policies and purchase policies. Our methodology allows benchmarking and variance analysis that can be used to identify the causes of off-standards performance and guide managers to deploy resources more efficiently. Our methodology can be implemented by companies lacking a sophisticated management accounting system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of Non-Proprietary Ultra-High Performance Concrete : Final Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...

  9. 42 CFR 420.410 - Establishment of a program to collect suggestions for improving Medicare program efficiency and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for improving Medicare program efficiency and to reward suggesters for monetary savings. 420.410... Program Efficiency and to Reward Suggesters for Monetary Savings § 420.410 Establishment of a program to collect suggestions for improving Medicare program efficiency and to reward suggesters for monetary...

  10. 42 CFR 420.410 - Establishment of a program to collect suggestions for improving Medicare program efficiency and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for improving Medicare program efficiency and to reward suggesters for monetary savings. 420.410... Program Efficiency and to Reward Suggesters for Monetary Savings § 420.410 Establishment of a program to collect suggestions for improving Medicare program efficiency and to reward suggesters for monetary...

  11. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  12. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  13. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles.

    PubMed

    Zhu, Hai; Guo, Zhiguang

    2016-05-21

    Inspired by Namib Desert beetles, a hybrid superhydrophobic surface was fabricated, showing highly efficient fog harvesting with a water collection rate (WCR) of 1309.9 mg h(-1) cm(-2). And, the surface possessed an excellent robustness and self-cleaning property.

  14. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  15. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  16. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  17. Gate-Tunable WSe2/SnSe2 Backward Diode with Ultrahigh-Reverse Rectification Ratio.

    PubMed

    Murali, Krishna; Dandu, Medha; Das, Sarthak; Majumdar, Kausik

    2018-02-14

    Backward diodes conduct more efficiently in the reverse bias than in the forward bias, providing superior high-frequency response, temperature stability, radiation hardness, and 1/f noise performance than a conventional diode conducting in the forward direction. Here, we demonstrate a van der Waals material-based backward diode by exploiting the giant staggered band offsets of WSe 2 /SnSe 2 vertical heterojunction. The diode exhibits an ultrahigh-reverse rectification ratio (R) of ∼2.1 × 10 4 , and the same is maintained up to an unusually large bias of 1.5 V-outperforming existing backward diode reports using conventional bulk semiconductors as well as one- and two-dimensional materials by more than an order of magnitude while maintaining an impressive curvature coefficient (γ) of ∼37 V -1 . The transport mechanism in the diode is shown to be efficiently tunable by external gate and drain bias, as well as by the thickness of the WSe 2 layer and the type of metal contacts used. These results pave the way for practical electronic circuit applications using two-dimensional materials and their heterojunctions.

  18. The effects of leaf size and microroughness on the branch-scale collection efficiency of ultrafine particles

    DOE PAGES

    Huang, C. W.; Lin, M. Y.; Khlystov, A.; ...

    2015-03-02

    In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less

  19. The effects of leaf size and microroughness on the branch-scale collection efficiency of ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C. W.; Lin, M. Y.; Khlystov, A.

    In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less

  20. 40 CFR Table II-2 to Subpart II - Collection Efficiencies of Anaerobic Processes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Collection Efficiencies of Anaerobic Processes II Table II-2 to Subpart II Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98...

  1. 40 CFR Table II-2 to Subpart II - Collection Efficiencies of Anaerobic Processes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Collection Efficiencies of Anaerobic Processes II Table II-2 to Subpart II Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98...

  2. Bond behavior of reinforcing steel in ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2014-10-01

    Ultra-High Performance Concrete (UHPC) is a relatively new class of advanced cementitious composite : materials, which exhibits high compressive [above 21.7 ksi (150 MPa)] and tensile [above 0.72 ksi (5 MPa)] : strengths. The discrete steel fiber rei...

  3. Efficient collective influence maximization in cascading processes with first-order transitions

    PubMed Central

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-01-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988

  4. Efficient collective influence maximization in cascading processes with first-order transitions

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-03-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.

  5. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  6. Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure.

    PubMed

    Zhang, Shouqin; Chen, Ruizhan; Wu, Hua; Wang, Changzheng

    2006-04-11

    A new method of ultrahigh pressure extraction (UPE) was used to extract the ginsenosides from Panax quinquefolium L. (American ginseng) root at room temperature. Several solvents, including water, ethanol, methanol, and n-butanol were used in the UPE. The ginsenosides were quantified by a HPLC equipped with UV-vis detector. The results showed that ethanol is the most efficient solvent among the used ones. Compared with other methods, i.e., Soxhlet extraction, heat reflux extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical CO2 extraction, the UPE has the highest extraction yield in the shortest time. The extraction yield of 0.861% ginsenoside-Rc in 2 min was achieved by the UPE, while the yields of 0.284% and 0.661% were obtained in several hours by supercritical CO2 extraction and the heat reflux extraction, respectively.

  7. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays.

    PubMed

    Hanna, Amir Nabil; Kutbee, Arwa Talal; Subedi, Ram Chandra; Ooi, Boon; Hussain, Muhammad Mustafa

    2018-01-01

    A novel wavy-shaped thin-film-transistor (TFT) architecture, capable of achieving 70% higher drive current per unit chip area when compared with planar conventional TFT architectures, is reported for flexible display application. The transistor, due to its atypical architecture, does not alter the turn-on voltage or the OFF current values, leading to higher performance without compromising static power consumption. The concept behind this architecture is expanding the transistor's width vertically through grooved trenches in a structural layer deposited on a flexible substrate. Operation of zinc oxide (ZnO)-based TFTs is shown down to a bending radius of 5 mm with no degradation in the electrical performance or cracks in the gate stack. Finally, flexible low-power LEDs driven by the respective currents of the novel wavy, and conventional coplanar architectures are demonstrated, where the novel architecture is able to drive the LED at 2 × the output power, 3 versus 1.5 mW, which demonstrates the potential use for ultrahigh resolution displays in an area efficient manner. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Leakage Current Induced by Energetic Disorder in Organic Bulk Heterojunction Solar Cells: Comprehending the Ultrahigh Loss of Open-Circuit Voltage at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Luo, Yongsong; Guo, Pengfei; Sun, Haibin; Yao, Yao

    2017-04-01

    The open-circuit voltage (Voc ) of organic solar cells generally approaches its maximum obtainable values as the temperature decreases. However, recent experiments have revealed that the Voc may suffer from an ultrahigh loss at low temperatures. In order to verify this explanation and investigate the impacts of energetic disorder on the temperature-dependent behaviors of the Voc in general, we calculate the Voc-T plots with the drift-diffusion method under various device working parameters. With the disorder being incorporated into the device model by considering the disorder-suppressed (temperature-dependent) charge-carrier mobilities, it is found that the ultrahigh Voc losses cannot be reproduced under the Onsager-Braun-type charge generation rate. With the charge generation rate being constant or weakly dependent on temperature, for nonselective contacts, the Voc reduces drastically at low temperatures, while for selective contacts, the Voc increases monotonically with decreasing temperature. With higher carrier mobilities or smaller device thicknesses, the ultrahigh loss occurs at lower temperatures. The mechanism is that, since the disorder-suppressed charge mobilities give rise to both low charge-extraction efficiency and small bimolecular recombination rate, plenty of charge carriers can be extracted from the wrong electrode and can form a large leakage current, which counteracts the majority-carrier current and reduces the Voc at low temperatures. Our results thus highlight the essential role of charge-carrier kinetics, except for the charge-filling effect, on dominating the disorder-induced Voc losses.

  9. High-speed and ultrahigh-speed cinematographic recording techniques

    NASA Astrophysics Data System (ADS)

    Miquel, J. C.

    1980-12-01

    A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented

  10. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System.

    PubMed

    Shen, Chih-Lung; Liou, Heng

    2017-11-15

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  11. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    PubMed Central

    Shen, Chih-Lung; Liou, Heng

    2017-01-01

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282

  12. MDOT aims for lower-cost ultra-high performance concrete : research spotlight.

    DOT National Transportation Integrated Search

    2016-08-01

    In recent years, several vendors have developed ultra-high performance : concrete (UHPC) that surpasses traditional concrete mixes by offering : exceptional freeze-thaw resistance, reduced susceptibility to cracking : and far less reinforcement corro...

  13. Achieving energy efficiency during collective communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao

    2012-09-13

    Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although littlemore » attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run« less

  14. Myocardial T2* Mapping at Ultrahigh Field: Physics and Frontier Applications

    NASA Astrophysics Data System (ADS)

    Huelnhagen, Till; Paul, Katharina; Ku, Min-Chi; Serradas Duarte, Teresa; Niendorf, Thoralf

    2017-06-01

    Cardiovascular magnetic resonance imaging (CMR) has become an indispensable clinical tool for the assessment of morphology, function and structure of the heart muscle. By exploiting quantification of the effective transverse relaxation time (T2*) CMR also affords myocardial tissue characterization and probing of cardiac physiology, both being in the focus of ongoing research. These developments are fueled by the move to ultrahigh magnetic field strengths, which permits enhanced sensitivity and spatial resolution that help to overcome limitations of current clinical MR systems with the goal to contribute to a better understanding of myocardial (patho)physiology in vivo. In this context, the aim of this report is to introduce myocardial T2* mapping at ultrahigh magnetic fields as a promising technique to non-invasively assess myocardial (patho)physiology. For this purpose the basic principles of T2* assessment, the biophysical mechanisms determining T2* and (pre)clinical applications of myocardial T2* mapping are presented. Technological challenges and solutions for T2* sensitized CMR at ultrahigh magnetic field strengths are discussed followed by a review of acquisition techniques and post processing approaches. Preliminary results derived from myocardial T2* mapping in healthy subjects and cardiac patients at 7.0 Tesla are presented. A concluding section discusses remaining questions and challenges and provides an outlook on future developments and potential clinical applications.

  15. Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alemohammad, Milad; Yuan, Wu; Mavadia-Shukla, Jessica; Liang, Wenxuan; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    Endoscopic OCT is a promising technology enabling noninvasive in vivo imaging of internal organs, such as the gastrointestinal tract and airways. The past few years have witnessed continued efforts to achieve ultrahigh resolution and speed. It is well-known that the axial resolution in OCT imaging has a quadratic dependence on the central wavelength. While conventional OCT endoscopes operate in 1300 nm wavelength, the second-generation endoscopes are designed for operation around 800 nm where turn-key, broadband sources are becoming readily available. Traditionally 1300 nm OCT endoscopes are scanned at the proximal end, and a broadband fiber-optic rotary joint as a key component in scanning endoscopic OCT is commercially available. Bandwidths in commercial 800 nm rotary joints are unfortunately compromised due to severe chromatic aberration, which limits the resolution afforded by the broadband light source. In the past we remedied this limitation by using a home-made capillary-tube-based rotary joint where the maximum reliable speed is ~10 revolutions/second. In this submission we report our second-generation, home-built high-speed and broadband rotary joint for 800 nm wavelength, which uses achromatic doublets in order achieve broadband achromatic operation. The measured one-way throughput of the rotary joint is >67 % while the fluctuation of the double-pass coupling efficiency during 360° rotation is less than +/-5 % at a speed of 70 revolutions/second. We demonstrate the operation of this rotary joint in conjunction with our ultrahigh-resolution (2.4 µm in air) diffractive catheter by three-dimensional full-circumferential endoscopic imaging of guinea pig esophagus at 70 frames per second in vivo.

  16. Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.; Bredekamp, J. H.

    1975-01-01

    Results of detailed Monte Carlo calculations of the interaction histories of ultrahigh energy cosmic-ray nuclei with intergalactic radiation fields are presented. Estimates of these fields and empirical determinations of photonuclear cross sections are used, including multinuclear disintegrations for nuclei up to 56Fe. Intergalactic and galactic energy loss rates and nucleon loss rates for nuclei up to 56Fe are also given. Astrophysical implications are discussed in terms of expected features in the cosmic-ray spectrum between quintillion and sextillion eV for the universal and supercluster origin hypotheses. The results of these calculations indicate that ultrahigh energy cosmic rays cannot be universal in origin regardless of whether they are protons or nuclei. Both the supercluster and galactic origin hypotheses, however, are possible regardless of nuclear composition.

  17. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

    PubMed Central

    Choi, WooJhon; Mohler, Kathrin J.; Potsaid, Benjamin; Lu, Chen D.; Liu, Jonathan J.; Jayaraman, Vijaysekhar; Cable, Alex E.; Duker, Jay S.; Huber, Robert; Fujimoto, James G.

    2013-01-01

    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ∼32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ∼6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging. PMID:24349078

  18. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography.

    PubMed

    Choi, WooJhon; Mohler, Kathrin J; Potsaid, Benjamin; Lu, Chen D; Liu, Jonathan J; Jayaraman, Vijaysekhar; Cable, Alex E; Duker, Jay S; Huber, Robert; Fujimoto, James G

    2013-01-01

    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ∼32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ∼6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.

  19. Development of Non-Proprietary Ultra-High Performance Concrete : Project Summary Report

    DOT National Transportation Integrated Search

    2017-12-01

    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Thus, elements made with UHPC can be thinner/lighter than elements made with conventional concrete. The enhanced durabilit...

  20. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

    PubMed Central

    Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L.; Yoon, Seok-Jin; Jang, Ho Won

    2012-01-01

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319

  1. Development of a Family of Ultra-High Performance Concrete Pi-Girders

    DOT National Transportation Integrated Search

    2014-01-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material, which tends to exhibit superior properties such as exceptional durability, increased strength, and long-term stability. (See references 1-4.) The use of existing s...

  2. Ultra-high performance concrete for Michigan bridges, material performance : phase I.

    DOT National Transportation Integrated Search

    2008-10-13

    One of the latest advancements in concrete technology is Ultra-High Performance Concrete (UHPC). UHPC is : defined as concretes attaining compressive strengths exceeding 25 ksi (175 MPa). It is a fiber-reinforced, denselypacked : concrete material wh...

  3. Searching for New Physics with Ultrahigh Energy Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.

  4. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  5. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    PubMed

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  6. Terapascal static pressure generation with ultrahigh yield strength nanodiamond

    PubMed Central

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-01-01

    Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944

  7. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  8. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE PAGES

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim; ...

    2017-10-19

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  9. The contribution of collective attack tactics in differentiating handball score efficiency.

    PubMed

    Rogulj, Nenad; Srhoj, Vatromir; Srhoj, Ljerka

    2004-12-01

    The prevalence of 19 elements of collective tactics in score efficient and score inefficient teams was analyzed in 90 First Croatian Handball League--Men games during the 1998-1999 season. Prediction variables were used to describe duration, continuity, system, organization and spatial direction of attacks. Analysis of the basic descriptive and distribution statistical parameters revealed normal distribution of all variables and possibility to use multivariate methods. Canonic discrimination analysis and analysis of variance showed the use of collective tactics elements on attacks to differ statistically significantly between the winning and losing teams. Counter-attacks and uninterrupted attacks predominate in winning teams. Other types of attacks such as long position attack, multiply interrupted attack, attack with one circle runner attack player/pivot, attack based on basic principles, attack based on group cooperation, attack based on independent action, attack based on group maneuvering, rightward directed attack and leftward directed attack predominate in losing teams. Winning teams were found to be clearly characterized by quick attacks against unorganized defense, whereas prolonged, interrupted position attacks against organized defense along with frequent and diverse tactical actions were characteristic of losing teams. The choice and frequency of using a particular tactical activity in position attack do not warrant score efficiency but usually are consequential to the limited anthropologic potential and low level of individual technical-tactical skills of the players in low-quality teams.

  10. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip

    NASA Astrophysics Data System (ADS)

    Lee, Hansuek; Chen, Tong; Li, Jiang; Yang, Ki Youl; Jeon, Seokmin; Painter, Oskar; Vahala, Kerry J.

    2012-06-01

    Ultrahigh-Q optical resonators are being studied across a wide range of fields, including quantum information, nonlinear optics, cavity optomechanics and telecommunications. Here, we demonstrate a new resonator with a record Q-factor of 875 million for on-chip devices. The fabrication of our device avoids the requirement for a specialized processing step, which in microtoroid resonators has made it difficult to control their size and achieve millimetre- and centimetre-scale diameters. Attaining these sizes is important in applications such as microcombs and potentially also in rotation sensing. As an application of size control, stimulated Brillouin lasers incorporating our device are demonstrated. The resonators not only set a new benchmark for the Q-factor on a chip, but also provide, for the first time, full compatibility of this important device class with conventional semiconductor processing. This feature will greatly expand the range of possible `system on a chip' functions enabled by ultrahigh-Q devices.

  11. Experimental system for drilling simulated lunar rock in ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Roepke, W. W.

    1975-01-01

    An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.

  12. Implications of Ultrahigh Energy Air Showers for Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The primary ultrahigh energy particles which produce giant extensive air showers in the Earth atmosphere present an intriguing mystery from two points of view: (1) How are the base particles produced with such astounding energies, eight orders of magnitude higher than those produced by the best man-made terrestrial accelerators? (2) Since they are most likely extragalactic in origin, how do they reach us from extragalactic distances without suffering the severe losses expected from interactions with the 2.7 K thermal cosmic background photons, the so called GZK effect? The answers to these questions may involve new physics: violations of special relativity, grand unification theories, and quantum gravity theories involving large extra dimensions. They may involve new astrophysical sources, "zevatrons". Or some heretofore totally unknown physics or astrophysics may hold the answer. I will discuss here the mysteries involving the production and extragalactic propagation of ultrahigh energy cosmic rays and some suggested possible solutions.

  13. CRPropa 3—a public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista, Rafael Alves; Dundovic, Andrej; Sigl, Guenter

    2016-05-01

    We present the simulation framework CRPropa version 3 designed for efficient development of astrophysical predictions for ultra-high energy particles. Users can assemble modules of the most relevant propagation effects in galactic and extragalactic space, include their own physics modules with new features, and receive on output primary and secondary cosmic messengers including nuclei, neutrinos and photons. In extension to the propagation physics contained in a previous CRPropa version, the new version facilitates high-performance computing and comprises new physical features such as an interface for galactic propagation using lensing techniques, an improved photonuclear interaction calculation, and propagation in time dependent environmentsmore » to take into account cosmic evolution effects in anisotropy studies and variable sources. First applications using highlighted features are presented as well.« less

  14. Digital image analysis to quantify carbide networks in ultrahigh carbon steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu

    A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less

  15. Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.; Bredekamp, J. H.

    1976-01-01

    Results are presented for detailed Monte Carlo calculations of the interaction histories of ultrahigh-energy cosmic-ray nuclei with intergalactic radiation fields, using improved estimates of these fields and empirical determinations of photonuclear cross sections, including multinuclear disintegrations for nuclei up to Fe-56. Intergalactic and galactic energy-loss rates and nucleon-loss rates for nuclei up to Fe-56 are also given. Astrophysical implications are discussed in terms of expected features in the cosmic-ray spectrum between 10 to the 18th and 10 to the 21st power eV for the universal and supercluster origin hypotheses. The results of these calculations indicate that ultrahigh-energy cosmic rays cannot be universal in origin regardless of whether they are protons or nuclei. Both the supercluster and galactic origin hypotheses, however, are possible regardless of nuclear composition.

  16. Effect of ultra-high pressure homogenization on the interaction between bovine casein micelles and ritonavir.

    PubMed

    Corzo-Martínez, M; Mohan, M; Dunlap, J; Harte, F

    2015-03-01

    The aim of this work was to develop a milk-based powder formulation appropriate for pediatric delivery of ritonavir (RIT). Ultra-high pressure homogenization (UHPH) at 0.1, 300 and 500 MPa was used to process a dispersion of pasteurized skim milk (SM) and ritonavir. Loading efficiency was determined by RP-HPLC-UV; characterization of RIT:SM systems was carried out by apparent average hydrodynamic diameter and rheological measurements as well as different analytical techniques including Trp fluorescence, UV spectroscopy, DSC, FTIR and SEM; and delivery capacity of casein micelles was determined by in vitro experiments promoting ritonavir release. Ritonavir interacted efficiently with milk proteins, especially, casein micelles, regardless of the processing pressure; however, results suggest that, at 0.1 MPa, ritonavir interacts with caseins at the micellar surface, whilst, at 300 and 500 MPa, ritonavir is integrated to the protein matrix during UHPH treatment. Likewise, in vitro experiments showed that ritonavir release from micellar casein systems is pH dependent; with a high retention of ritonavir during simulated gastric digestion and a rapid delivery under conditions simulating the small intestine environment. Skim milk powder, especially, casein micelles are potentially suitable and efficient carrier systems to develop novel milk-based and low-ethanol powder formulations of ritonavir appropriate for pediatric applications.

  17. Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Frisari, M.; Thissen, R.; Dutuit, O.; Bonnet, J.-Y.; Quirico, E.; Sciamma O'Brien, E.; Szopa, C.; Carrasco, N.; Somogyi, A.; Smith, M.; Hörst, S. M.; Yelle, R.

    2010-04-01

    We propose here a systematic ultra-high resolution mass spectrometry and MS/MS study in order to provide a more coherent and complete characterization of the structure of the molecules making up the soluble fraction of the Titan tholins.

  18. A search for ultrahigh-energy neutrinos and measurement of cosmic ray radio emission with the Antarctic Impulsive Transient Antenna

    NASA Astrophysics Data System (ADS)

    Hoover, Stephen Lam Douglas

    2010-11-01

    New astronomical messengers may reveal unexpected aspects of the Universe and have often provided a unique source of fresh physical insights. Neutrinos are a promising new messenger particle, capable of carrying information from otherwise inaccessible sources. The ANtarctic Impulsive Transient Antenna (ANITA) seeks to make the first detection of an ultrahigh-energy (E > 1018 eV) neutrino flux. Such a neutrino flux almost certainly exists, produced in interactions of ultrahigh-energy cosmic rays with photons from the cosmic microwave background. ANITA is a balloon payload which monitors large volumes of the Antarctic ice sheet from an altitude of 38 km. An ultrahigh-energy neutrino which interacts in the ice sheet will produce a particle shower which will coherently radiate Cherenkov radiation in radio wavelengths (<3 GHz). Antennas on the balloon payload can then detect the resulting impulsive radio signal. The full ANITA flew for the first time from 15 December 2006 to 19 January 2007. In this dissertation, I will describe the ground calibration system used to transmit calibration signals to the payload in-flight. I will then describe techniques for analysis of ANITA data and give limits on the ultrahigh-energy neutrino flux implied by the null result of that analysis. Finally, I will demonstrate that ANITA is also sensitive to ultrahigh-energy cosmic rays and show the detection of 16 ultrahigh-energy cosmic-ray events during ANITA's first flight. This constitutes the highest frequency and widest bandwidth radio observations of cosmic-ray emission to date I show the average waveform and spectrum of these events and describe their polarization properties, which are strongly correlated with the geomagnetic field.

  19. Caveats when Analyzing Ultra-high Molar Mass Polymers by SEC

    USDA-ARS?s Scientific Manuscript database

    The analysis of ultra-high molar mass (M > 1 million g/mol) polymers via size-exclusion chromatography (SEC) presents a number of non-trivial challenges. Dissolution and full solvation may take days, as is the case for cellulose dissolution in non-complexing non degrading solvents; very low concent...

  20. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  1. Development of Non-Proprietary Ultra-High Performance Concrete : Research Topic Statement

    DOT National Transportation Integrated Search

    2014-05-29

    Ultra-high performance concrete became commercially available in the U.S. in 2000. Since then, UHPC has been actively promoted by the Federal Highway Administration. UHPC has mostly been used in the U.S. for field-cast connections of prefabricated br...

  2. Successful Cleaning and Study of Contamination of Si(001) in Ultrahigh Vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheorghe, N. G.; Lungu, G. A.; Husanu, M. A.

    2011-10-03

    This paper presents the very first surface physics experiment performed in ultrahigh vacuum (UHV) in Romania, using a new molecular beam epitaxy (MBE) installation. Cleaning of a Si(001) wafer was achieved by using a very simple technique: sequences of annealing at 900-1000 deg. C in ultrahigh vacuum: low 10{sup -8} mbar, with a base pressure of 1.5x10{sup -10} mbar. The preparation procedure is quite reproducible and allows repeated cleaning of the Si(001) after contamination in ultrahigh vacuum. The Si(001) single crystal surface is characterized by low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopymore » (AES). The latter technique is utilized in order to investigate the sample contamination by the residual gas in the UHV chamber, as determined by a residual gas analyzer (RGA). Unambiguous assignment of oxidized and unoxidized silicon is provided; also, an important feature is that the LVV Auger peak at 90-92 eV cannot be solely attributed to clean Si (i.e. Si surrounded only by Si), but also to silicon atoms bounded with carbon. Even with a sum of partial pressures of oxygen and carbon containing molecules in the range of 5x10{sup -10} mbar, the sample is contaminated very quickly, having a (1/e) lifetime of about 76 minutes.« less

  3. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Simultaneous structural and environmental loading of an ultra-high performance concrete component

    DOT National Transportation Integrated Search

    2010-07-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...

  5. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  6. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    NASA Astrophysics Data System (ADS)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  7. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection.

    PubMed

    Yin, Kai; Du, Haifeng; Dong, Xinran; Wang, Cong; Duan, Ji-An; He, Jun

    2017-10-05

    Fog collection is receiving increasing attention for providing water in semi-arid deserts and inland areas. Inspired by the fog harvesting ability of the hydrophobic-hydrophilic surface of Namib desert beetles, we present a simple, low-cost method to prepare a hybrid superhydrophobic-hydrophilic surface. The surface contains micro/nanopatterns, and is prepared by incorporating femtosecond-laser fabricated polytetrafluoroethylene nanoparticles deposited on superhydrophobic copper mesh with a pristine hydrophilic copper sheet. The as-prepared surface exhibits enhanced fog collection efficiency compared with uniform (super)hydrophobic or (super)hydrophilic surfaces. This enhancement can be tuned by controlling the mesh number, inclination angle, and fabrication structure. Moreover, the surface shows excellent anti-corrosion ability after immersing in 1 M HCl, 1 M NaOH, and 10 wt% NaCl solutions for 2 hours. This work may provide insight into fabricating hybrid superhydrophobic-hydrophilic surfaces for efficient atmospheric water collection.

  8. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    NASA Astrophysics Data System (ADS)

    Rogers, Forrest J.; Young, David A.

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.

  9. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  10. Spent Fuel Assay with an Ultra-High Rate HPGe Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, James; Fulsom, Bryan; Pitts, Karl

    2015-07-01

    Traditional verification of spent nuclear fuel (SNF) includes determination of initial enrichment, burnup and cool down time (IE, BU, CT). Along with neutron measurements, passive gamma assay provides important information for determining BU and CT. Other gamma-ray-based assay methods such as passive tomography and active delayed gamma offer the potential to measure the spatial distribution of fission products and the fissile isotopic concentration of the fuel, respectively. All fuel verification methods involving gamma-ray spectroscopy require that the spectrometers manage very high count rates while extracting the signatures of interest. PNNL has developed new digital filtering and analysis techniques to producemore » an ultra-high rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This 37% relative efficiency detector has been operated for SNF measurements at input count rates of 500-1300 kcps and throughput in excess of 150 kcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This paper will present the results of both passive and active SNF measurement performed with this system at PNNL. (authors)« less

  11. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected

  12. Development of a driving method suitable for ultrahigh-speed shooting in a 2M-fps 300k-pixel single-chip color camera

    NASA Astrophysics Data System (ADS)

    Yonai, J.; Arai, T.; Hayashida, T.; Ohtake, H.; Namiki, J.; Yoshida, T.; Etoh, T. Goji

    2012-03-01

    We have developed an ultrahigh-speed CCD camera that can capture instantaneous phenomena not visible to the human eye and impossible to capture with a regular video camera. The ultrahigh-speed CCD was specially constructed so that the CCD memory between the photodiode and the vertical transfer path of each pixel can store 144 frames each. For every one-frame shot, the electric charges generated from the photodiodes are transferred in one step to the memory of all the parallel pixels, making ultrahigh-speed shooting possible. Earlier, we experimentally manufactured a 1M-fps ultrahigh-speed camera and tested it for broadcasting applications. Through those tests, we learned that there are cases that require shooting speeds (frame rate) of more than 1M fps; hence we aimed to develop a new ultrahigh-speed camera that will enable much faster shooting speeds than what is currently possible. Since shooting at speeds of more than 200,000 fps results in decreased image quality and abrupt heating of the image sensor and drive circuit board, faster speeds cannot be achieved merely by increasing the drive frequency. We therefore had to improve the image sensor wiring layout and the driving method to develop a new 2M-fps, 300k-pixel ultrahigh-speed single-chip color camera for broadcasting purposes.

  13. Silicon-graphene conductive photodetector with ultra-high responsivity

    PubMed Central

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at −25 °C in our experiment. PMID:28106084

  14. Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.

    PubMed

    Hong, Seunghyun; Constans, Charlotte; Surmani Martins, Marcos Vinicius; Seow, Yong Chin; Guevara Carrió, Juan Alfredo; Garaj, Slaven

    2017-02-08

    Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.

  15. Exploratory Thermal-mechanical Fatigue Results for Rene' 80 in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Sheinker, A. A.

    1978-01-01

    A limited study was conducted of the use of strainage partitioning for predicting the thermalmechanical fatigue life of cast nickel-base superalloy Rene' 80. The fatigue lives obtained by combined inphase thermal and mechanical strain cycling between 400 C (752 F) and 1000 C (1802 F) in an ultrahigh vacuum were considerably shorter than those represented by the four basic partitioned inelastic strainrange fatigue life relationships established previously for this alloy at 871 C (1600 F) and 1000 C (1832 F) in an ultrahigh vacuum. This behavior was attributed to the drastic decrease in ductility with decreasing temperature for this alloy. These results indicated that the prediction of the thermal-mechanical fatigue life of Rene' 80 by the method of strainrange partioning may be improved if based on the four basic fatigue life relationships determined at a lower temperature in the thermal-mechanical strain cycle.

  16. Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening

    PubMed Central

    Pan, Rui; Wang, Hansheng; Li, Runze

    2016-01-01

    This paper is concerned with the problem of feature screening for multi-class linear discriminant analysis under ultrahigh dimensional setting. We allow the number of classes to be relatively large. As a result, the total number of relevant features is larger than usual. This makes the related classification problem much more challenging than the conventional one, where the number of classes is small (very often two). To solve the problem, we propose a novel pairwise sure independence screening method for linear discriminant analysis with an ultrahigh dimensional predictor. The proposed procedure is directly applicable to the situation with many classes. We further prove that the proposed method is screening consistent. Simulation studies are conducted to assess the finite sample performance of the new procedure. We also demonstrate the proposed methodology via an empirical analysis of a real life example on handwritten Chinese character recognition. PMID:28127109

  17. Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil.

    PubMed

    Dou, Yuhai; Tian, Dongliang; Sun, Ziqi; Liu, Qiannan; Zhang, Na; Kim, Jung Ho; Jiang, Lei; Dou, Shi Xue

    2017-03-28

    Developing an effective system to clean up large-scale oil spills is of great significance due to their contribution to severe environmental pollution and destruction. Superwetting membranes have been widely studied for oil/water separation. The separation, however, adopts a gravity-driven approach that is inefficient and discontinuous due to quick fouling of the membrane by oil. Herein, inspired by the crossflow filtration behavior in fish gills, we propose a crossflow approach via a hydrophilic, tilted gradient membrane for spilled oil collection. In crossflow collection, as the oil/water flows parallel to the hydrophilic membrane surface, water is gradually filtered through the pores, while oil is repelled, transported, and finally collected for storage. Owing to the selective gating behavior of the water-sealed gradient membrane, the large pores at the bottom with high water flux favor fast water filtration, while the small pores at the top with strong oil repellency allow easy oil transportation. In addition, the gradient membrane exhibits excellent antifouling properties due to the protection of the water layer. Therefore, this bioinspired crossflow approach enables highly efficient and continuous spilled oil collection, which is very promising for the cleanup of large-scale oil spills.

  18. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    PubMed

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  19. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in

  20. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1983-11-01

    In the previous paper, it was reported that isothermal heat treatment of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel (AISI 4340 type) at 593 K for a short time followed by water quenching, in which a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite is produced, results in the improvement of low temperature mechanical properties (287 to 123 K). The purpose of this paper is to study whether above new heat treatment will still be effective in commercial practice for improving low temperature mechanical properties of the ultrahigh strength steel when applied to a commercial Japanese 0.40 pct C-Cr-Mo ultrahigh strength steel which is economical because it lacks the expensive nickel component (AISI 4140 type). At and above 203 K this new heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved the strength, tensile ductility, and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel. At and above 203 K the new heat treatment also produced superior fracture ductility and notch toughness results at similar strength levels as compared to those obtained by using γ α' repetitive heat treatment for the same steel. However, the new heat treatment remarkably decreased fracture ductility and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel below 203 K, and thus no significant improvement in the mechanical properties was noticeable as compared with the properties produced by the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment. This contrasts with the fact that the new heat treatment, as compared with the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment, dramatically improved the notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel, providing a better combination of strength and ductility throughout the 287 to 123 K temperature range. The difference

  1. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    DOT National Transportation Integrated Search

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  2. Bitter-type magnet plate design with compound conductor of ultrahigh mechanical strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haubenberger, W.D.

    1981-01-01

    A Bitter-type magnet plate design based on a compound conductor of ultrahigh mechanical strength is described. An explosion-bonded and cold-worked copper-austenite compound is jointed by a special procedure with a soft compound sheet.

  3. SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y

    Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. Themore » margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.« less

  4. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.

    PubMed

    Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi

    2018-03-01

    The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    PubMed

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  6. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  7. Ultrahigh energy neutrinos from Centaurus A and the Auger hot spot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuoco, A.; Hannestad, S.

    2008-07-15

    The Pierre Auger Collaboration has reported a correlation between ultrahigh energy cosmic rays (UHECR) and nearby active galactic nuclei (AGN) within {approx}75 Mpc. Two of these events fall within 3 degrees from Centaurus A (Cen A), the nearest AGN, clearly suggesting that this object is a strong UHECR emitter. Here we pursue this hypothesis and forecast the expected rate of ultrahigh energy neutrinos in detectors like IceCube. In our baseline model we find a rate of {approx}0.4-0.6 yr{sup -1} events above a threshold of 100 TeV, the uncertainty of which is mainly related to the poor knowledge of the physicalmore » parameters of the source and details of the model. This situation will improve with detailed high energy gamma ray measurements of Cen A by the upcoming Gamma Ray Large Area Space Telescope (GLAST) satellite. This would make Cen A the first example where the potential of high energy multimessenger astronomy is finally realized.« less

  8. LORD Space Experiment for Investigation of Ultrahigh Energy Cosmic-ray Particles

    NASA Astrophysics Data System (ADS)

    Ryabov, V. A.; Gusev, G. A.; Chechin, V. A.

    2013-02-01

    The problem of detecting cosmic rays and neutrinos of energies above the GZK cutoff is reviewed. Nowadays, it becomes clear that registration of nature's most energetic particles requires approaches based on new principles. First of all, we imply the detection of the coherent Cherenkov radio emission in cascades of ultrahigh-energy particles in radio-transparent natural dense media, i.e., ice shields of Antarctica, mineral salt, and lunar regolith. The Luna-Glob space mission planned for launching in the near future involves the Lunar Orbital Radio Detector (LORD) whose aperture for cosmic rays and neutrinos of energies E >= 1020 eV exceeds all existing ground-based arrays. The feasibility of LORD to detect radio signals from showers initiated by ultrahigh-energy particles interacting with the lunar regolith is examined. The design of the LORD space instrument and its scientific potentialities for registration of low-intense cosmic-ray particle fluxes above the GZK cut-off up to 1025 eV is discussed.

  9. Spectra Optia granulocyte apheresis collections result in higher collection efficiency of viable, functional neutrophils in a randomized, crossover, multicenter trial.

    PubMed

    Cancelas, Jose A; Padmanabhan, Anand; Le, Tuan; Ambruso, Daniel R; Rugg, Neeta; Worsham, D Nicole; Pinkard, Susan L; Graminske, Sharon; Buck, Jennifer; Goldberg, Julie; Bill, Jerry

    2015-04-01

    Granulocyte transfusion from healthy donors is used in the treatment of patients with granulocyte function defects, or transient neutropenia and severe bacterial or fungal infections resistant to maximal antimicrobial treatment. This study evaluated the performance and safety of the newly developed granulocyte collection protocol of the Spectra Optia in a prospective, multicenter, open-label, randomized, paired crossover trial compared with the COBE Spectra apheresis system in a population of 32 evaluable healthy subjects. All subjects received granulocyte-colony-stimulating factor and dexamethasone before collection. Granulocyte procedures from Spectra Optia apheresis procedures had an approximately 23% higher polymorphonuclear (PMN) collection efficiency (CE) than the COBE Spectra collections (mean, 53.7% vs. 43.2%; p < 0.01), while the platelet CE (10.9% vs. 10.8%, respectively) and hematocrit (7.4% vs. 7.4%) were comparable between collections on both devices. Spectra Optia collections generated a higher total PMN yield per liter of blood processed than those produced by the COBE Spectra (with means of 8.6 × 10(10) vs. 6.8 × 10(10) , respectively). Granulocyte viability was more than 99% with both devices, and chemotaxic and bacterial killing activities of circulating versus collected granulocytes were similarly preserved. Fewer operator adjustments were required with Spectra Optia and there was no significant difference in the number or intensity of adverse events between instruments. CE of the granulocyte collection procedure with the Spectra Optia was approximately 10 percentage points higher than with the COBE Spectra, required less operator involvement, and is safe for clinical implementation. © 2014 AABB.

  10. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management.

    PubMed

    Sinnecker, Tim; Kuchling, Joseph; Dusek, Petr; Dörr, Jan; Niendorf, Thoralf; Paul, Friedemann; Wuerfel, Jens

    2015-01-01

    Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management.

  11. EFFECT OF ULTRA-HIGH PRESSURE HOMOGENIZATION ON THE INTERACTION BETWEEN BOVINE CASEIN MICELLES AND RITONAVIR

    PubMed Central

    Corzo-Martínez, M.; Mohan, M.; Dunlap, J.; Harte, F.

    2014-01-01

    Purpose The aim of this work was to develop a milk-based powder formulation appropriate for pediatric delivery of ritonavir (RIT). Methods Ultra-high pressure homogenization (UHPH) at 0.1, 300 and 500 MPa was used to process a dispersion of pasteurized skim milk (SM) and ritonavir. Loading efficiency was determined by RP-HPLC-UV; characterization of RIT:SM systems was carried out by apparent average hydrodynamic diameter and rheological measurements as well as different analytical techniques including Trp fluorescence, UV spectroscopy, DSC, FTIR and SEM; and delivery capacity of casein micelles was determined by in vitro experiments promoting ritonavir release. Results Ritonavir interacted efficiently with milk proteins, especially, casein micelles, regardless of the processing pressure; however, results suggest that, at 0.1 MPa, ritonavir interacts with caseins at the micellar surface, whilst, at 300 and 500 MPa, ritonavir is integrated to the protein matrix during UHPH treatment. Likewise, in vitro experiments showed that ritonavir release from micellar casein systems is pH dependent; with a high retention of ritonavir during simulated gastric digestion and a rapid delivery under conditions simulating the small intestine environment. Conclusions Skim milk powder, especially, casein micelles are potentially suitable and efficient carrier systems to develop novel milk-based and low-ethanol powder formulations of ritonavir appropriate for pediatric applications. PMID:25270571

  12. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  13. Ultrahigh-resolution FT-ICR mass spectrometry characterization of a-pinene ozonolysis SOA

    EPA Science Inventory

    Secondary organic aerosol (SOA) of α-pinene ozonolysis with and without hydroxyl radical scavenging hexane was characterized by ultrahigh-resolution. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Molecular formulas for more than 900 negative ions were i...

  14. The impact of an efficient collection sites location on the zoning phase in municipal solid waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghiani, Gianpaolo, E-mail: gianpaolo.ghiani@unisalento.it; Manni, Andrea, E-mail: andrea.manni@unisalento.it; Manni, Emanuele, E-mail: emanuele.manni@unisalento.it

    2014-11-15

    Highlights: • We study the problems of locating collection areas and zoning the service territory in a municipal waste management system. • We investigate the impact that an efficient collection sites location has on the subsequent zoning phase. • On a real-world test case, we show that the proposed approach could allow achieving significant monetary savings. - Abstract: In this paper, we study two decisional problems arising when planning the collection of solid waste, namely the location of collection sites (together with bin allocation) and the zoning of the service territory, and we assess the potential impact that an efficientmore » location has on the subsequent zoning phase. We first propose both an exact and a heuristic approach to locate the unsorted waste collection bins in a residential town, and to decide the capacities and characteristics of the bins to be located at each collection site. A peculiar aspect we consider is that of taking into account the compatibility between the different types of bins when allocating them to collection areas. Moreover, we propose a fast and effective heuristic approach to identify homogeneous zones that can be served by a single collection vehicle. Computational results on data related to a real-life instance show that an efficient location is fundamental in achieving consistent monetary savings, as well as a reduced environmental impact. These reductions are the result of one vehicle less needed to perform the waste collection operations, and an overall traveled distance reduced by about 25% on the average.« less

  15. First principles study of iron-bearing MgO under ultrahigh pressure

    NASA Astrophysics Data System (ADS)

    Umemoto, K.; Hsu, H.

    2017-12-01

    Understanding of minerals under ultrahigh pressure is essential to model interiors of super-Earths. Chemical compositions of the super-Earths are expected to be similar to those of the Earth. Computational studies on Mg-Si-O ternary systems under ultrahigh pressures, which are difficult to be achieved by diamond-anvil-cell experiments, have been intensively performed (e.g., [1] for MgO, [2,3] for SiO2, and [4,5] for MgSiO3). However, as far as we know, these studies have been restricted to pure Mg-Si-O systems. In the mantles of super-Earths, we expect that there should be impurities as in the Earth's mantle. Among candidates of impurities, iron is especially important to model interiors of super-Earths. Here, we investigate iron-bearing MgO under ultrahigh pressures by first principles. We clarify effects of iron on the phase transition of MgO and thermodynamic quantities by first principles. The role of the 3d electrons will be elucidated. [1] Z. Wu, R. M. Wentzcovitch, K. Umemoto, B. Li, K. Hirose, and J. C. Zheng, J. Geophys. Res. 113, B06204 (2008). [2] S. Q. Wu, K. Umemoto, M. Ji, C. Z. Wang, K. M. Ho, and R. M. Wentzcovitch, Phys. Rev. B 83, 184102 (2011). [3] T. Tsuchiya and J. Tsuchiya, Proc. Nat. Acad. Sci. 108, 1252 (2011) [4] S. Q. Wu, M. Ji, C. Z. Wang, M. C. Nguye, X. Zhao, K. Umemoto, R. M. Wentzcovitch, and K. M. Ho, J. Phys.: Condens. Matter 26, 035402 (2014). [5] H. Niu, A. R. Oganov, X.-C. Chen, and D. Li, Sci. Rep. 5, 18347 (2015).

  16. Precision requirements and innovative manufacturing for ultrahigh precision laser interferometry of gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Han, Sen; Jin, Tao

    2016-11-01

    With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while

  17. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor

    PubMed Central

    Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han

    2017-01-01

    In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices. PMID:28332629

  18. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S

    2005-10-01

    To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high

  19. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing

    NASA Astrophysics Data System (ADS)

    He, An; Liu, Wenwen; Xue, Wei; Yang, Huan; Cao, Yu

    2018-03-01

    Recently, metallic superhydrophobic surfaces with ultrahigh adhesion have got plentiful attention on account of their significance in scientific researches and industrial applications like droplet transport, drug delivery and novel microfluidic devices. However, the long lead time and transience hindered its in-depth development and industrial application. In this work, nanosecond laser ablation was carried out to construct grid of micro-grooves on copper surface, whereafter, by applying fast ethanol assisted low-temperature annealing, we obtained surface with superhydrophobicity and ultrahigh adhesion within hours. And the ultrahigh adhesion force was found tunable by varying the groove spacing. Using ultrasonic cleaning as the simulation of natural wear and tear in service, the renewability of superhydrophobicity was also investigated, and the result shows that the contact angle can rehabilitate promptly by the processing of ethanol assisted low-temperature annealing, which gives a promising fast and cheap circuitous strategy to realize the long wish durable metallic superhydrophobic surfaces in practical applications.

  20. CPAC: Energy-Efficient Data Collection through Adaptive Selection of Compression Algorithms for Sensor Networks

    PubMed Central

    Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon

    2014-01-01

    We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763

  1. Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6

    NASA Astrophysics Data System (ADS)

    Kono, Yoshio; Kenney-Benson, Curtis; Ikuta, Daijo; Shibazaki, Yuki; Wang, Yanbin; Shen, Guoyin

    2016-03-01

    Knowledge of pressure-induced structural changes in glasses is important in various scientific fields as well as in engineering and industry. However, polyamorphism in glasses under high pressure remains poorly understood because of experimental challenges. Here we report new experimental findings of ultrahigh-pressure polyamorphism in GeO2 glass, investigated using a newly developed double-stage large-volume cell. The Ge-O coordination number (CN) is found to remain constant at ∼6 between 22.6 and 37.9 GPa. At higher pressures, CN begins to increase rapidly and reaches 7.4 at 91.7 GPa. This transformation begins when the oxygen-packing fraction in GeO2 glass is close to the maximal dense-packing state (the Kepler conjecture = ∼0.74), which provides new insights into structural changes in network-forming glasses and liquids with CN higher than 6 at ultrahigh-pressure conditions.

  2. Nanotechnologies for efficient solar and wind energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

  3. Design of Ultra-High Temperature Ceramics for Improved Performance

    DTIC Science & Technology

    2009-02-28

    e.g., grain boundary chemistry or change in impurity concentrations) or physical (e.g., residual stress) effects. 600 co 500 a. oi400 c CD i...SA037 Effects of oxygen content on the properties of supcr-high-teiiiperature resistant Si-AI- C fibers D.f. Zhao (National University of Defense...of Technology, China) 15:05 S A034 Oxyacetylene ablation behavior of carbon fibers reinforced carbon matrix and ultra-high temperature

  4. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  5. Baking enables McLeod gauge to measure in ultrahigh vacuum range

    NASA Technical Reports Server (NTRS)

    Kreisman, W. S.

    1965-01-01

    Accurate measurements in the ultrahigh vacuum range by a conventional McLeod gage requires degassing of the gage's glass walls. A closed system, in which mercury is forced into the gage by gravity alone, and in which the gage components are baked out for long periods, is used to achieve this degassing.

  6. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Chen, Haichao; Jiang, Jianjun; Zhang, Li; Xia, Dandan; Zhao, Yuandong; Guo, Danqing; Qi, Tong; Wan, Houzhao

    2014-05-01

    Self-standing NiCo2S4 nanotube arrays have been in situ grown on Ni foam by the anion-exchange reaction and directly used as the electrode for supercapacitors. The NiCo2S4 nanotube in the arrays effectively reduces the inactive material and increases the electroactive surface area because of the ultrathin wall, which is quite competent to achieve high utilization efficiency at high electroactive materials mass loading. The NiCo2S4 nanotube arrays hybrid electrode exhibits an ultrahigh specific capacitance of 14.39 F cm-2 at 5 mA cm-2 with excellent rate performance (67.7% retention for current increases 30 times) and cycling stability (92% retention after 5000 cycles) at a high mass loading of 6 mg cm-2. High areal capacitance (4.68 F cm-2 at 10 mA cm-2), high energy density (31.5 Wh kg-1 at 156.6 W kg-1) and high power density (2348.5 W kg-1 at 16.6 Wh kg-1) can be achieved by assembling asymmetric supercapacitor with reduced graphene oxide at a total active material mass loading as high as 49.5 mg. This work demonstrates that NiCo2S4 nanotube arrays structure is a superior electroactive material for high-performance supercapacitors even at a mass loading of potential application-specific scale.

  7. Ultrahigh pressure fast size exclusion chromatography for top-down proteomics.

    PubMed

    Chen, Xin; Ge, Ying

    2013-09-01

    Top-down MS-based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top-down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size-based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high-resolution separation of intact proteins for top-down proteomics. Fast separation of intact proteins (6-669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP-SEC provides high-resolution separation of intact proteins using a MS-friendly volatile solvent system, allowing the direct top-down MS analysis of SEC-eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP-SEC is an attractive LC strategy for the size separation of proteins with great potential for top-down proteomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Graphene-copper composite with micro-layered grains and ultrahigh strength

    PubMed Central

    Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong

    2017-01-01

    Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance. PMID:28169306

  9. Ultra-high efficiency moving wire combustion interface for on-line coupling of HPLC

    PubMed Central

    Thomas, Avi T.; Ognibene, Ted; Daley, Paul; Turteltaub, Ken; Radousky, Harry; Bench, Graham

    2011-01-01

    We describe a 100% efficient moving-wire interface for on-line coupling of high performance liquid chromatography which transmits 100% of carbon in non-volatile analytes to a CO2 gas accepting ion source. This interface accepts a flow of analyte in solvent, evaporates the solvent, combusts the remaining analyte, and directs the combustion products to the instrument of choice. Effluent is transferred to a periodically indented wire by a coherent jet to increase efficiency and maintain peak resolution. The combustion oven is plumbed such that gaseous combustion products are completely directed to an exit capillary, avoiding the loss of combustion products to the atmosphere. This system achieves the near complete transfer of analyte at HPLC flow rates up to 125 μL/min at a wire speed of 6 cm/s. This represents a 30x efficiency increase and 8x maximum wire loading compared to the spray transfer technique used in earlier moving wire interfaces. PMID:22004428

  10. Model-Free Conditional Independence Feature Screening For Ultrahigh Dimensional Data.

    PubMed

    Wang, Luheng; Liu, Jingyuan; Li, Yong; Li, Runze

    2017-03-01

    Feature screening plays an important role in ultrahigh dimensional data analysis. This paper is concerned with conditional feature screening when one is interested in detecting the association between the response and ultrahigh dimensional predictors (e.g., genetic makers) given a low-dimensional exposure variable (such as clinical variables or environmental variables). To this end, we first propose a new index to measure conditional independence, and further develop a conditional screening procedure based on the newly proposed index. We systematically study the theoretical property of the proposed procedure and establish the sure screening and ranking consistency properties under some very mild conditions. The newly proposed screening procedure enjoys some appealing properties. (a) It is model-free in that its implementation does not require a specification on the model structure; (b) it is robust to heavy-tailed distributions or outliers in both directions of response and predictors; and (c) it can deal with both feature screening and the conditional screening in a unified way. We study the finite sample performance of the proposed procedure by Monte Carlo simulations and further illustrate the proposed method through two real data examples.

  11. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  12. Durability and smart condition assessment of ultra-high performance concrete in cold climates.

    DOT National Transportation Integrated Search

    2016-12-31

    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...

  13. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  14. 76 FR 66317 - Notice of Submission of Proposed Information Collection to OMB Energy Efficient Mortgages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... and Community Development Act of 1992 (Section 106 of the Energy Policy Act of 1992). DATES: Comments... the Housing and Community Development Act of 1992 (Section 106 of the Energy Policy Act of 1992... Proposed Information Collection to OMB Energy Efficient Mortgages AGENCY: Office of the Chief Information...

  15. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  16. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    DOT National Transportation Integrated Search

    2009-09-01

    Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possibl...

  17. Characterization of the punching shear capacity of thin ultra-high performance concrete slabs.

    DOT National Transportation Integrated Search

    2005-01-01

    Ultra-high performance concrete (UHPC) is a relatively new type of concrete that exhibits mechanical properties that are far superior to those of conventional concrete and in some cases rival those of steel. The main characteristics that distinguish ...

  18. Ultrahigh-resolution mapping of peatland microform using ground-based structure from motion with multiview stereo

    NASA Astrophysics Data System (ADS)

    Mercer, Jason J.; Westbrook, Cherie J.

    2016-11-01

    Microform is important in understanding wetland functions and processes. But collecting imagery of and mapping the physical structure of peatlands is often expensive and requires specialized equipment. We assessed the utility of coupling computer vision-based structure from motion with multiview stereo photogrammetry (SfM-MVS) and ground-based photos to map peatland topography. The SfM-MVS technique was tested on an alpine peatland in Banff National Park, Canada, and guidance was provided on minimizing errors. We found that coupling SfM-MVS with ground-based photos taken with a point and shoot camera is a viable and competitive technique for generating ultrahigh-resolution elevations (i.e., <0.01 m, mean absolute error of 0.083 m). In evaluating 100+ viable SfM-MVS data collection and processing scenarios, vegetation was found to considerably influence accuracy. Vegetation class, when accounted for, reduced absolute error by as much as 50%. The logistic flexibility of ground-based SfM-MVS paired with its high resolution, low error, and low cost makes it a research area worth developing as well as a useful addition to the wetland scientists' toolkit.

  19. Case study: dairies utilizing ultra-high stock density grazing in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...

  20. Ultra-high cooling rate utilizing thin film evaporation

    NASA Astrophysics Data System (ADS)

    Su, Fengmin; Ma, Hongbin; Han, Xu; Chen, Hsiu-hung; Tian, Bohan

    2012-09-01

    This research introduces a cell cryopreservation method, which utilizes thin film evaporation and provides an ultra-high cooling rate. The microstructured surface forming the thin film evaporation was fabricated from copper microparticles with an average diameter of 50 μm. Experimental results showed that a cooling rate of approximately 5×104 °C/min was achieved in a temperature range from 10 °C to -187 °C. The current investigation will give birth to a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.

  1. Ultrahigh-frequency ultrasound of fascicles in the median nerve at the wrist.

    PubMed

    Cartwright, Michael S; Baute, Vanessa; Caress, James B; Walker, Francis O

    2017-10-01

    An ultrahigh-frequency (70 MHZ) ultrasound device has recently been approved for human use. This study seeks to determine whether this device facilitates counting of fascicles within the median nerve at the wrist. Twenty healthy volunteers underwent imaging of the median nerve at the wrist bilaterally. The number of fascicles in each nerve was counted by two independent raters. The mean fascicle number was 22.68. Correlation was strong between the two raters (r = 0.68, P < 0.001). Age, sex, body mass index, and nerve area did not predict fascicle number. Those with bifid median nerves and persistent median arteries had lower fascicle density than those without anatomic anomalies (1.79 vs. 2.29; P = 0.01). Fascicles within the median nerve at the wrist can be readily imaged. Ultrahigh-frequency ultrasound technology may be informative in a variety of disorders affecting the peripheral nervous system. Muscle Nerve 56: 819-822, 2017. © 2017 Wiley Periodicals, Inc.

  2. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk; Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the resultsmore » of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.« less

  3. Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-12-01

    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 1 09 GeV , based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5 ×1 05 GeV to above 1 011 GeV . Two neutrino-induced events with an estimated deposited energy of (2.6 ±0.3 )×1 06 GeV , the highest neutrino energy observed so far, and (7.7 ±2.0 )×1 05 GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6 σ . The hypothesis that the observed events are of cosmogenic origin is also rejected at >99 % CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ -ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

  4. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    PubMed

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons

    PubMed Central

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-01-01

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372

  6. Quantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.

    PubMed

    Webb, James E A; Chen, Kai; Prasad, Shyamal K K; Wojciechowski, Jonathan P; Falber, Alexander; Thordarson, Pall; Hodgkiss, Justin M

    2016-01-21

    Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.

  7. Case study: dairies utilizing ultra-high stock density grazing in the northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing (also loosely referred to as ‘mob grazing’) has attracted a lot of attention and press in the forage industry. Numerous anecdotal articles can be found in trade magazines that promote the perceived benefits of UHSD grazing. However, there is little credible re...

  8. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  9. Direct chemical profiling of olive (Olea europaea) fruit epicuticular waxes by direct electrospray-ultrahigh resolution mass spectrometry.

    PubMed

    Vichi, Stefania; Cortés-Francisco, Nuria; Romero, Agustí; Caixach, Josep

    2015-03-01

    In the present paper, an electrospray ionization (ESI)-Orbitrap method is proposed for the direct chemical profiling of epicuticular wax (EW) from Olea europaea fruit. It constitutes a rapid and efficient tool suitable for a wide-ranging screening of a large number of samples. In a few minutes, the method provides a comprehensive characterization of total EW extracts, based on the molecular formula of their components. Accurate mass measurements are obtained by ultrahigh resolution mass spectrometry, and compositional restrictions are set on the basis of the information available from previous studies of olive EW. By alternating positive and negative ESI modes within the same analysis, complementary results are obtained and a wide range of chemical species is covered. This provides a detailed compositional overview that otherwise would only be available by applying multiple analytical techniques. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Ultra-high performance concrete : a state-of-the-art report for the bridge community.

    DOT National Transportation Integrated Search

    2013-06-01

    "The term Ultra-High Performance Concrete (UHPC) refers to a relatively new class of advanced cementitious : composite materials whose mechanical and durability properties far surpass those of conventional concrete. This : class of concrete has been ...

  11. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency.

    PubMed

    Li, Jinglei; Li, Fei; Xu, Zhuo; Zhang, Shujun

    2018-06-26

    The utilization of antiferroelectric (AFE) materials is thought to be an effective approach to enhance the energy density of dielectric capacitors. However, the high energy dissipation and inferior reliability that are associated with the antiferroelectric-ferroelectric phase transition are the main issues that restrict the applications of antiferroelectric ceramics. Here, simultaneously achieving high energy density and efficiency in a dielectric ceramic is proposed by combining antiferroelectric and relaxor features. Based on this concept, a lead-free dielectric (Na 0.5 Bi 0.5 )TiO 3 -x(Sr 0.7 Bi 0.2 )TiO 3 (NBT-xSBT) system is investigated and the corresponding multilayer ceramic capacitors (MLCCs) are fabricated. A record-high energy density of 9.5 J cm -3 , together with a high energy efficiency of 92%, is achieved in NBT-0.45SBT multilayer ceramic capacitors, which consist of ten dielectric layers with the single-layer thickness of 20 µm and the internal electrode area of 6.25 mm 2 . Furthermore, the newly developed capacitor exhibits a wide temperature usage range of -60 to 120 °C, with an energy-density variation of less than 10%, and satisfactory cycling reliability, with degradation of less than 8% over 10 6 cycles. These characteristics demonstrate that the NBT-0.45SBT multilayer ceramic is a promising candidate for high-power energy storage applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  13. Cortico-Striatal GABAergic and Glutamatergic Dysregulations in Subjects at Ultra-High Risk for Psychosis Investigated with Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Reyes-Madrigal, Francisco; Mao, Xiangling; León-Ortiz, Pablo; Rodríguez-Mayoral, Oscar; Solís-Vivanco, Rodolfo; Favila, Rafael; Graff-Guerrero, Ariel; Shungu, Dikoma C.

    2016-01-01

    Background: Dysregulations of the major inhibitory and excitatory amino neurotransmitter systems of γ-aminobutyric acid and glutamate, respectively, have been described in patients with schizophrenia. However, it is unclear whether these abnormalities are present in subjects at ultra-high risk for psychosis. Methods: Twenty-three antipsychotic naïve subjects at ultra-high risk and 24 healthy control subjects, matched for age, sex, handedness, cigarette smoking, and parental education, underwent proton magnetic resonance spectroscopy scans in the dorsal caudate bilaterally and the medial prefrontal cortex at 3T. Levels of γ-aminobutyric acid and of the combined resonance of glutamate and glutamine (Glx) were obtained using the standard J-editing technique and expressed as peak area ratios relative to the synchronously acquired unsuppressed voxel water signal. Results: Higher levels of γ-aminobutyric acid (P<.001) and Glx (P=.007) were found in the dorsal caudate of the subjects at ultra-high risk than in the healthy controls. In the medial prefrontal cortex, likewise, both γ-aminobutyric acid (P=.03) and Glx (P=.006) levels were higher in the ultra-high risk group than in the healthy controls. No group differences were found for any of the other metabolites (N-acetylaspartate, total choline, or total creatine) in the 2 regions of interest. Conclusions: This study presents the first evidence of abnormal elevations, in subjects at ultra-high risk, of γ-aminobutyric acid and Glx in 2 brain regions that have been implicated in the pathophysiology of psychosis, warranting longitudinal studies to assess whether these neurotransmitter abnormalities can serve as noninvasive biomarkers of conversion risk to psychosis as well as of illness progression and treatment response. PMID:26364273

  14. Efficiently Maintaining a National Resource of Historical and Contemporary Biological Collections: The NHLBI Biorepository Model.

    PubMed

    Shea, Katheryn E; Wagner, Elizabeth L; Marchesani, Leah; Meagher, Kevin; Giffen, Carol

    2017-02-01

    Reducing costs by improving storage efficiency has been a focus of the National Heart, Lung, and Blood Institute (NHLBI) Biologic Specimen Repository (Biorepository) and Biologic Specimen and Data Repositories Information Coordinating Center (BioLINCC) programs for several years. Study specimen profiles were compiled using the BioLINCC collection catalog. Cost assessments and calculations on the return on investments to consolidate or reduce a collection, were developed and implemented. Over the course of 8 months, the NHLBI Biorepository evaluated 35 collections that consisted of 1.8 million biospecimens. A total of 23 collections were selected for consolidation, with a total of 1.2 million specimens located in 21,355 storage boxes. The consolidation resulted in a savings of 4055 boxes of various sizes and 10.2 mechanical freezers (∼275 cubic feet) worth of space. As storage costs in a biorepository increase over time, the development and use of information technology tools to assess the potential advantage and feasiblity of vial consolidation can reduce maintenance expenses.

  15. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography

    PubMed Central

    Wang, Ruikang K.; An, Lin; Francis, Peter; Wilson, David J.

    2010-01-01

    We demonstrate the depth-resolved and detailed ocular perfusion maps within retina and choroid can be obtained from an ultrahigh sensitive optical microangiography (OMAG). As opposed to the conventional OMAG, we apply the OMAG algorithm along the slow scanning axis to achieve the ultrahigh sensitive imaging to the slow flows within capillaries. We use an 840nm system operating at an imaging rate of 400 frames/sec that requires 3 sec to complete one 3D scan of ~3x3 mm2 area on retina. We show the superior imaging performance of OMAG to provide functional images of capillary level microcirculation at different land-marked depths within retina and choroid that correlate well with the standard retinal pathology. PMID:20436605

  16. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.

    PubMed

    Lai, Jianping; Guo, Shaojun

    2017-12-01

    Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube.

    PubMed

    Aartsen, M G; Abraham, K; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Becker Tjus, J; Becker, K-H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H-P; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Cross, R; Day, M; de André, J P A M; De Clercq, C; Del Pino Rosendo, E; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eller, P; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C-C; Franckowiak, A; Friedman, E; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Ghorbani, K; Giang, W; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Grant, D; Griffith, Z; Haack, C; Haj Ismail, A; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Hoshina, K; Huang, F; Huber, M; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Kittler, T; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, M; Krückl, G; Krüger, C; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lauber, F; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mancina, S; Mandelartz, M; Maruyama, R; Mase, K; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Mohrmann, L; Montaruli, T; Moulai, M; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke Pollmann, A; Olivas, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Penek, Ö; Pepper, J A; Pérez de Los Heros, C; Pieloth, D; Pinat, E; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relethford, B; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Rysewyk, D; Sabbatini, L; Sanchez Herrera, S E; Sandrock, A; Sandroos, J; Sarkar, S; Satalecka, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Tenholt, F; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Rossem, M; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Weiss, M J; Wendt, C; Westerhoff, S; Whelan, B J; Wickmann, S; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wolf, M; Wood, T R; Woolsey, E; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-12-09

    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9}  GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5}  GeV to above 10^{11}  GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6}  GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5}  GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

  18. Ultrahigh resolution multicolor colocalization of single fluorescent probes

    DOEpatents

    Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.

    2005-01-18

    A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.

  19. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  20. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  1. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  2. Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator

    NASA Technical Reports Server (NTRS)

    Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.

    1993-01-01

    A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.

  3. Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure.

    PubMed

    Li, Hongwei; Wu, Kunjie; Xu, Zeyang; Wang, Zhongwu; Meng, Yancheng; Li, Liqiang

    2018-06-20

    High-sensitivity pressure sensors are crucial for the ultrasensitive touch technology and E-skin, especially at the tiny-pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to 200 kPa -1 and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa -1 using short-channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 μs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny-pressure range, including light-emitting diode switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.

  4. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  5. Ultra-high resolution spectral domain optical coherence tomography using supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yatagai, Toyohiko; Otani, Yukitoshi

    2016-04-01

    An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680-940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.

  6. Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures

    PubMed Central

    Prescher, Clemens; Prakapenka, Vitali B.; Stefanski, Johannes; Jahn, Sandro; Skinner, Lawrie B.; Wang, Yanbin

    2017-01-01

    We investigated the structure of SiO2 glass up to 172 GPa using high-energy X-ray diffraction. The combination of a multichannel collimator with diamond anvil cells enabled the measurement of structural changes in silica glass with total X-ray diffraction to previously unachievable pressures. We show that SiO2 first undergoes a change in Si–O coordination number from fourfold to sixfold between 15 and 50 GPa, in agreement with previous investigations. Above 50 GPa, the estimated coordination number continuously increases from 6 to 6.8 at 172 GPa. Si–O bond length shows first an increase due to the fourfold to sixfold coordination change and then a smaller linear decrease up to 172 GPa. We reconcile the changes in relation to the oxygen-packing fraction, showing that oxygen packing decreases at ultrahigh pressures to accommodate the higher than sixfold Si–O coordination. These results give experimental insight into the structural changes of silicate glasses as analogue materials for silicate melts at ultrahigh pressures. PMID:28874582

  7. Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures.

    PubMed

    Prescher, Clemens; Prakapenka, Vitali B; Stefanski, Johannes; Jahn, Sandro; Skinner, Lawrie B; Wang, Yanbin

    2017-09-19

    We investigated the structure of SiO 2 glass up to 172 GPa using high-energy X-ray diffraction. The combination of a multichannel collimator with diamond anvil cells enabled the measurement of structural changes in silica glass with total X-ray diffraction to previously unachievable pressures. We show that SiO 2 first undergoes a change in Si-O coordination number from fourfold to sixfold between 15 and 50 GPa, in agreement with previous investigations. Above 50 GPa, the estimated coordination number continuously increases from 6 to 6.8 at 172 GPa. Si-O bond length shows first an increase due to the fourfold to sixfold coordination change and then a smaller linear decrease up to 172 GPa. We reconcile the changes in relation to the oxygen-packing fraction, showing that oxygen packing decreases at ultrahigh pressures to accommodate the higher than sixfold Si-O coordination. These results give experimental insight into the structural changes of silicate glasses as analogue materials for silicate melts at ultrahigh pressures.

  8. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  9. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations

    DOE PAGES

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...

    2017-01-18

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  10. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  11. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    PubMed

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  12. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.

    1999-02-01

    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  13. Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes.

    PubMed

    Lushnikov, K V; Shumilina, Yu V; Yakushina, V S; Gapeev, A B; Sadovnikov, V B; Chemeris, N K

    2004-04-01

    Low-intensity ultrahigh frequency electromagnetic radiation (42 GHz, 100 microW/cm(2)) reduces the severity of inflammation and inhibits production of active oxygen forms by inflammatory exudate neutrophils only in mice with inflammatory process. These data suggest that some therapeutic effects of electromagnetic radiation can be explained by its antiinflammatory effect which is realized via modulation of functional activity of neutrophils in the focus of inflammation.

  14. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  15. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles

    PubMed Central

    2010-01-01

    Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. Results The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic

  16. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles.

    PubMed

    Nørgaard, Thomas; Dacke, Marie

    2010-07-16

    In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. The differences in

  17. Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur

    2016-06-01

    Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1-x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices.

  18. Development of ultra-high temperature material characterization capabilities using digital image correlation analysis

    NASA Astrophysics Data System (ADS)

    Cline, Julia Elaine

    2011-12-01

    Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.

  19. A Contamination-Free Ultrahigh Precision Formation Flying Method for Micro-, Nano-, and Pico-Satellites with Nanometer Accuracy

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    2006-01-01

    Formation flying of clusters of micro-, nano- and pico-satellites has been recognized to be more affordable, robust and versatile than building a large monolithic satellite in implementing next generation space missions requiring large apertures or large sample collection areas and sophisticated earth imaging/monitoring. We propose a propellant free, thus contamination free, method that enables ultrahigh precision satellite formation flying with intersatellite distance accuracy of nm (10-9 m) at maximum estimated distances in the order of tens of km. The method is based on ultrahigh precision CW intracavity photon thrusters and tethers. The pushing-out force of the intracavity photon thruster and the pulling-in force of the tether tension between satellites form the basic force structure to stabilize crystalline-like structures of satellites and/or spacecrafts with a relative distance accuracy better than nm. The thrust of the photons can be amplified by up to tens of thousand times by bouncing them between two mirrors located separately on pairing satellites. For example, a 10 W photon thruster, suitable for micro-satellite applications, is theoretically capable of providing thrusts up to mN, and its weight and power consumption are estimated to be several kgs and tens of W, respectively. The dual usage of photon thruster as a precision laser source for the interferometric ranging system further simplifies the system architecture and minimizes the weight and power consumption. The present method does not require propellant, thus provides significant propulsion system mass savings, and is free from propellant exhaust contamination, ideal for missions that require large apertures composed of highly sensitive sensors. The system can be readily scaled down for the nano- and pico-satellite applications.

  20. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  1. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  2. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  3. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  4. Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1996-01-01

    The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.

  5. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    PubMed

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  6. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1994-04-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.

  7. Efficient light collection from crystal scintillators using a compound parabolic concentrator coupled to an avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Jenke, P. A.; Briggs, M. S.; Bhat, P. N.; Reardon, P.; Connaughton, V.; Wilson-Hodge, C.

    2013-09-01

    In support of improved gamma-ray detectors for astrophysics and observations of Terrestrial Gamma-ray Flashes (TGFs), we have designed a new approach for the collection and detection of optical photons from scintillators such as Sodium Iodide and Lanthanum Bromide using a light concentrator coupled to an Avalanche photodiode (APD). The APD has many advantages over traditional photomultiplier tubes such as their low power consumption, their compact size, their durability, and their very high quantum efficiency. The difficulty in using these devices in gamma-ray astronomy has been coupling their relatively small active area to the large scintillators necessary for gamma-ray science. Our solution is to use an acrylic Compound Parabolic Concentrator (CPC) to match the large output area of the scintillation crystal to the smaller photodiode. These non-imaging light concentrators exceed the light concentration of focused optics and are light and inexpensive to produce. We present our results from the analysis and testing of such a system including gains in light collecting efficiency, energy resolution of nuclear decay lines, as well as our design for a new, fast TGF detector.

  8. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices.

    PubMed

    Wang, Wenyan; Hao, Yuying; Cui, Yanxia; Tian, Ximin; Zhang, Ye; Wang, Hua; Shi, Fang; Wei, Bin; Huang, Wei

    2014-03-10

    Metal nanogratings as one of the promising architectures for effective light trapping in organic photovoltaics (OPVs) have been actively studied over the past decade. Here we designed a novel metal nanowall grating with ultra-small period and ultra-high aspect-ratio as the back electrode of the OPV device. Such grating results in the strong hot spot effect in-between the neighboring nanowalls and the localized surface plasmon effect at the corners of nanowalls. These combined effects make the integrated absorption efficiency of light over the wavelength range from 400 to 650 nm in the active layer for the proposed structure, with respect to the equivalent planar structure, increases by 102% at TM polarization and by 36.5% at the TM/TE hybrid polarization, respectively. Moreover, it is noted that the hot spot effect in the proposed structure is more effective for ultra-thin active layers, which is very favorable for the exciton dissociation and charge collection. Therefore such a nanowall grating is expected to improve the overall performance of OPV devices.

  9. Improved rolling element bearings provide low torque and small temperature rise in ultrahigh vacuum environment

    NASA Technical Reports Server (NTRS)

    Glenn, D. C.

    1966-01-01

    Rolling element bearing with stainless steel races and rolling elements and a porous bronze cage successfully operates in ultrahigh vacuum environments at a low torque and with small temperature rise. All components are burnished in molybdenum disulfide.

  10. Splice length of prestressing strand in field-cast ultra-high performance concrete connections, TechBrief

    DOT National Transportation Integrated Search

    2014-02-02

    The objective of this research was to determine the lap splice length of untensioned prestressing strand in field-cast ultrahigh performance concrete (UHPC). This document is a technical summary of the Federal Highway Administration report, Splice Le...

  11. Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cancelo, G.; Cavanna, F.; Escobar, C. O.

    The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. Here in this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA workingmore » principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.« less

  12. Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap

    DOE PAGES

    Cancelo, G.; Cavanna, F.; Escobar, C. O.; ...

    2018-03-26

    The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. Here in this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA workingmore » principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.« less

  13. Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap

    NASA Astrophysics Data System (ADS)

    Cancelo, G.; Cavanna, F.; Escobar, C. O.; Kemp, E.; Machado, A. A.; Para, A.; Segreto, E.; Totani, D.; Warner, D.

    2018-03-01

    The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. In this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA working principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.

  14. Stunning Aurora Borealis from Space - Ultra-High Definition 4K

    NASA Image and Video Library

    2016-04-17

    NASA Television’s newest offering, NASA TV UHD, brings ultra-high definition video to a new level with the kind of imagery only the world’s leader in space exploration could provide. Harmonic produced this show exclusively for NASA TV UHD, using time-lapses shot from the International Space Station, showing both the Aurora Borealis and Aurora Australis phenomena that occur when electrically charged electrons and protons in the Earth's magnetic field collide with neutral atoms in the upper atmosphere.

  15. Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials

    PubMed Central

    Han, Tae-Hee; Choi, Mi-Ri; Jeon, Chan-Woo; Kim, Yun-Hi; Kwon, Soon-Ki; Lee, Tae-Woo

    2016-01-01

    Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLEDs fabricated using a solution process. We report very efficient solution-processed simple-structured small-molecule OLEDs that use novel universal electron-transporting host materials based on tetraphenylsilane with pyridine moieties. These materials have wide band gaps, high triplet energy levels, and good solution processabilities; they provide balanced charge transport in a mixed-host emitting layer. Orange-red (~97.5 cd/A, ~35.5% photons per electron), green (~101.5 cd/A, ~29.0% photons per electron), and white (~74.2 cd/A, ~28.5% photons per electron) phosphorescent OLEDs exhibited the highest recorded electroluminescent efficiencies of solution-processed OLEDs reported to date. We also demonstrate a solution-processed flexible solid-state lighting device as a potential application of our devices. PMID:27819053

  16. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less

  17. Techniques for measuring ultrahigh-pressure Hugoniot equation of state on a three-stage gas gun

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Hu, Jianbo; Dai, Chengda; Wang, Qiangsong; Bo, Jingsong; Tan, Hua; Yu, Yuying

    2011-06-01

    A three-stage gas gun was developed by mounting an extending launcher tube on a two-stage gas gun, and was successfully applied to perform ultrahigh-pressure Hugoniot measurements for Ta and Pt by using this three-stage gun. Here we introduced the three-stag gas gun launcher and Hugoniot measurement techniques, including shock front shape diagnosis, shock wave velocity and impact velocity measurement as well as numerical simulation. By using this three-stage gun, Ta or Pt impactors were launched up to ~10 km/s, and the Hugoniot data were respectively measured with high accuracy up to 750 GPa for Ta and 1TPa for Pt. It is demonstrated that the three-stage gas gun is a promising technique for studying the ultrahigh-pressure properties of materials, which never before obtained by utilizing two-stage light-gas-gun.

  18. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  19. A comparison of the wear of cross-linked polyethylene against itself with the wear of ultra-high molecular weight polyethylene against itself.

    PubMed

    Joyce, T J; Unsworth, A

    1996-01-01

    Wear tests were carried out on reciprocating pin-on-plate machines which had pins loaded at 10 N and 40 N. The materials tested were irradiated cross-linked polyethylene sliding against itself, irradiated ultra-high molecular weight polyethylene sliding against itself and non-irradiated ultra-high molecular weight polyethylene sliding against itself. After 153.5 km of sliding, the non-irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads, or a nominal contact stress of 0.51 MPa, of 84.0 x 10(-6) mm3/N m for the plates and 81.3 x 10(-6) mm3/N m for the pins. Under 40 N loads, or a nominal contact stress of 2.04 MPa, the non-irradiated ultra-high molecular weight polyethylene pins sheared at 22.3 km. At the last measurement point prior to this failure, 19.1 km, wear factors of 158 x 10(-6) mm3/N m for the plates and 85.0 x 10(-6) mm3/N m for the pins had been measured. After 152.8 km. the irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads of 59.8 x 10(-6) mm3/N m for the plates and 31.1 x 10(-6) mm3/N m for the pins. In contrast, after 150.2 km, a mean wear factor of 0.72 x 10(-6) mm3/N m was found for the irradiated cross-linked polyethylene plates compared with 0.053 x 10(-6) mm3/N m for the irradiated cross-linked polyethylene pins.

  20. Clinical Performance of an Ultrahigh Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders.

    PubMed

    Ho, Karen S; Twede, Hope; Vanzo, Rena; Harward, Erin; Hensel, Charles H; Martin, Megan M; Page, Stephanie; Peiffer, Andreas; Mowery-Rushton, Patricia; Serrano, Moises; Wassman, E Robert

    2016-01-01

    Copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) significantly contribute to the etiology of neurodevelopmental disorders, such as developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD). This study summarizes the results of 3.5 years of CMA testing by a CLIA-certified clinical testing laboratory 5487 patients with neurodevelopmental conditions were clinically evaluated for rare copy number variants using a 2.8-million probe custom CMA optimized for the detection of CNVs associated with neurodevelopmental disorders. We report an overall detection rate of 29.4% in our neurodevelopmental cohort, which rises to nearly 33% when cases with DD/ID and/or MCA only are considered. The detection rate for the ASD cohort is also significant, at 25%. Additionally, we find that detection rate and pathogenic yield of CMA vary significantly depending on the primary indications for testing, the age of the individuals tested, and the specialty of the ordering doctor. We also report a significant difference between the detection rate on the ultrahigh resolution optimized array in comparison to the array from which it originated. This increase in detection can significantly contribute to the efficient and effective medical management of neurodevelopmental conditions in the clinic.

  1. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    PubMed

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  2. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    PubMed Central

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-01-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry. PMID:28150692

  3. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3 -Based Lead-Free Ceramics.

    PubMed

    Li, Peng; Zhai, Jiwei; Shen, Bo; Zhang, Shujun; Li, Xiaolong; Zhu, Fangyuan; Zhang, Xingmin

    2018-02-01

    High-performance lead-free piezoelectric materials are in great demand for next-generation electronic devices to meet the requirement of environmentally sustainable society. Here, ultrahigh piezoelectric properties with piezoelectric coefficients (d 33 ≈700 pC N -1 , d 33 * ≈980 pm V -1 ) and planar electromechanical coupling factor (k p ≈76%) are achieved in highly textured (K,Na)NbO 3 (KNN)-based ceramics. The excellent piezoelectric properties can be explained by the strong anisotropic feature, optimized engineered domain configuration in the textured ceramics, and facilitated polarization rotation induced by the intermediate phase. In addition, the nanodomain structures with decreased domain wall energy and increased domain wall mobility also contribute to the ultrahigh piezoelectric properties. This work not only demonstrates the tremendous potential of KNN-based ceramics to replace lead-based piezoelectrics but also provides a good strategy to design high-performance piezoelectrics by controlling appropriate phase and crystallographic orientation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    NASA Astrophysics Data System (ADS)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  5. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity.

    PubMed

    Xu, Li-Chun; Du, Aijun; Kou, Liangzhi

    2016-10-05

    The recent synthesis of monolayer borophene (triangular boron monolayer) on a substrate has opened the era of boron nanosheets (Science, 2015, 350, 1513), but the structural instability and a need to explore the novel physical properties are still open issues. Here we demonstrated that borophene can be stabilized by full surface hydrogenation (borophane), from first-principles calculations. Most interestingly, our calculations show that borophane has direction-dependent Dirac cones, which are mainly caused by the in-plane p x and p y orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity of up to 3.5 × 10 6 m s -1 under the HSE06 level, which is 4 times higher than that of graphene. The Young's moduli are calculated to be 190 and 120 GPa nm along two different directions, which are comparable to those of steel. The ultrahigh Fermi velocity and good mechanical features render borophane ideal for nanoelectronic applications.

  6. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  7. Laser Direct Writing of Tree-Shaped Hierarchical Cones on a Superhydrophobic Film for High-Efficiency Water Collection.

    PubMed

    Wang, Meng; Liu, Qian; Zhang, Haoran; Wang, Chuang; Wang, Lei; Xiang, Bingxi; Fan, Yongtao; Guo, Chuan Fei; Ruan, Shuangchen

    2017-08-30

    Directional water collection has stimulated a great deal of interest because of its potential applications in the field of microfluidics, liquid transportation, fog harvesting, and so forth. There have been some bio or bioinspired structures for directional water collection, from one-dimensional spider silk to two-dimensional star-like patterns to three-dimensional Nepenthes alata. Here we present a simple way for the accurate design and highly controllable driving of tiny droplets: by laser direct writing of hierarchical patterns with modified wettability and desired geometry on a superhydrophobic film, the patterned film can precisely and directionally drive tiny water droplets and dramatically improve the efficiency of water collection with a factor of ∼36 compared with the original superhydrophobic film. Such a patterned film might be an ideal platform for water collection from humid air and for planar microfluidics without tunnels.

  8. Ultrahigh pressure deformation of polycrystaline hcp-cobalt

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Antonangeli, D.; Fiquet, G.; Yagi, T.

    2003-12-01

    During the past few years, a novel set of methods has been developed allowing direct measurements on elasticity and rheology under static ultrahigh pressures using synchrotron x-ray diffraction and the diamond anvil cell. In particular, the analysis on the development of texture and uniaxial stress in a polycrystalline sample under ultrahigh pressure and non-hydrostatic conditions yielded to very interesting results on the microscopic deformation mechanisms and strength of MgO, silicate perovskite or ɛ -Fe [eg. Merkel et al. 2002, Merkel et al. 2003]. However, our understanding of the properties of the ɛ phase of iron remains poor. There are considerable uncertainties and disagreement on the results of various experiments or first-principles calculations. In particular, the results of the radial diffraction measurement on ɛ -Fe [Mao et al. 1998] have been highly controversial. In order to address this issue, we performed investigations on polycrystalline hcp-cobalt. Its properties such as the bulk modulus and thermal expansion are very close to those of ɛ -Fe and it is readily available under ambient conditions. Thus, it is a well known material and results from the high pressure radial diffraction experiments can be compared with those from well-established techniques. In the present analysis, we performed a new set a measurements between 0 and 20 GPa under ambient temperature conditions at the ESRF synchrotron source using amorphous boron gasket, monochromatic x-ray beam, and imaging plate techniques. From such an experiment, we are able to extract information on non-hydrostatic stress, elasticity, and preferred orientations of the sample in-situ under high pressure and compare them with results obtained previously on ɛ -Fe. Documenting the evolution of stress, elasticity and texture in hcp metals is of great interest for our understanding of the bulk properties and seismic anisotropy of the Earth's inner core. S. Merkel et al., J. Geophys. Res. 107 (2002

  9. Five task clusters that enable efficient and effective digitization of biological collections

    PubMed Central

    Nelson, Gil; Paul, Deborah; Riccardi, Gregory; Mast, Austin R.

    2012-01-01

    Abstract This paper describes and illustrates five major clusters of related tasks (herein referred to as task clusters) that are common to efficient and effective practices in the digitization of biological specimen data and media. Examples of these clusters come from the observation of diverse digitization processes. The staff of iDigBio (The U.S. National Science Foundation’s National Resource for Advancing Digitization of Biological Collections) visited active biological and paleontological collections digitization programs for the purpose of documenting and assessing current digitization practices and tools. These observations identified five task clusters that comprise the digitization process leading up to data publication: (1) pre-digitization curation and staging, (2) specimen image capture, (3) specimen image processing, (4) electronic data capture, and (5) georeferencing locality descriptions. While not all institutions are completing each of these task clusters for each specimen, these clusters describe a composite picture of digitization of biological and paleontological specimens across the programs that were observed. We describe these clusters, three workflow patterns that dominate the implemention of these clusters, and offer a set of workflow recommendations for digitization programs. PMID:22859876

  10. Sub-10-Minute Characterization of an Ultrahigh Molar Mass Polymer by Multi-detector Hydrodynamic Chromatography

    USDA-ARS?s Scientific Manuscript database

    Molar mass averages, distributions, and architectural information of polymers are routinely obtained using size-exclusion chromatography (SEC). It has previously been shown that ultrahigh molar mass polymers may experience degradation during SEC analysis, leading to inaccurate molar mass averages a...

  11. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids.

    PubMed

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  12. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  13. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Cheol; Xue, Weiqi; Piels, Molly; Zibar, Darko; Mørk, Jesper; Semenova, Elizaveta; Chung, Il-Sug

    2016-12-01

    For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.

  14. Multiresidue analysis of sulfonamides, quinolones, and tetracyclines in animal tissues by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Zhiwen; Li, Xiaowei; Ding, Shuangyang; Jiang, Haiyang; Shen, Jianzhong; Xia, Xi

    2016-08-01

    A multiresidue method for the efficient identification and quantification of 38 compounds from 3 different classes of antibiotics (tetracyclines, sulfonamides, and quinolones) in animal tissues has been developed. The method optimization involved the selection of extraction solutions, comparison of different solid-phase extraction cartridges and different mobile phases. As a result, the samples were extracted with Mcllvaine and phosphate buffers, followed by clean-up step based on solid-phase extraction with Oasis HLB cartridge. All compounds were determined by ultra-high performance liquid chromatography-tandem mass spectrometry, in one single injection with a chromatographic run time of only 9min. The method efficiency was evaluated in 5 tissues including muscle, liver, and kidney, and the mean recoveries ranged from 54% to 102%, with inter-day relative standard deviation lower than 14%. The limits of quantification were between 0.5 and 10μg/kg, which were satisfactory to support future surveillance monitoring. The developed method was applied to the analysis of swine liver and chicken samples from local markets, and sulfamethazine was the most commonly detected compound in the animal samples, with the highest residue level of 998μg/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.

    PubMed

    In, Sungjun; Park, Namkyoo

    2016-02-23

    We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.

  16. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.

    PubMed

    Chou, Tsu-Chin; Doong, Ruey-An; Hu, Chi-Chang; Zhang, Bingsen; Su, Dang Sheng

    2014-03-01

    A promising energy storage material, MnO2 /hierarchically porous carbon (HPC) nanocomposites, with exceptional electrochemical performance and ultrahigh energy density was developed for asymmetric supercapacitor applications. The microstructures of MnO2 /HPC nanocomposites were characterized by transmission electron microscopy, scanning transmission electron microscopy, and electron dispersive X-ray elemental mapping analysis. The 3-5 nm MnO2 nanocrystals at mass loadings of 7.3-10.8 wt % are homogeneously distributed onto the HPCs, and the utilization efficiency of MnO2 on specific capacitance can be enhanced to 94-96 %. By combining the ultrahigh utilization efficiency of MnO2 and the conductive and ion-transport advantages of HPCs, MnO2 /HPC electrodes can achieve higher specific capacitance values (196 F g(-1) ) than those of pure carbon electrodes (60.8 F g(-1) ), and maintain their superior rate capability in neutral electrolyte solutions. The asymmetric supercapacitor consisting of a MnO2 /HPC cathode and a HPC anode shows an excellent performance with energy and power densities of 15.3 Wh kg(-1) and 19.8 kW kg(-1) , respectively, at a cell voltage of 2 V. Results obtained herein demonstrate the excellence of MnO2 /HPC nanocomposites as energy storage material and open an avenue to fabricate the next generation supercapacitors with both high power and energy densities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Collection Efficiency and Ice Accretion Characteristics of Two Full Scale and One 1/4 Scale Business Jet Horizontal Tails

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Papadakis, Michael

    2005-01-01

    Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.

  18. 25  W/m2 collection efficiency solar-pumped Nd:YAG laser by a heliostat-parabolic mirror system.

    PubMed

    Liang, D; Almeida, J; Vistas, C R

    2016-09-20

    A large aspheric fused silica lens was used to couple efficiently the concentrated solar radiation from the focal zone of a 1.5-m-diameter primary concentrator into a 4-mm-diameter, 35-mm-long Nd:YAG single-crystal rod within a conical pump cavity. Continuous-wave laser power of 29.3 W was measured, attaining 25.0  W/m2 solar laser collection efficiency, corresponding to a 19% increase over the previous record. Its laser beam figure of merit-the ratio between laser power and the product of Mx2, My2 beam quality factors-of 0.01 W is 1.6 times higher than that of a direct tracking solar laser with 30  W/m2 collection efficiency. A strong dependency of solar laser power on laser resonator cavity length was found.

  19. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  20. Dewaterability of five sewage sludges in Guangzhou conditioned with Fenton's reagent/lime and pilot-scale experiments using ultrahigh pressure filtration system.

    PubMed

    Liang, Jialin; Huang, Shaosong; Dai, Yongkang; Li, Lei; Sun, Shuiyu

    2015-11-01

    Sludge conditioning with Fenton's reagent and lime is a valid method for sludge dewatering. This study investigated the influence of different organic matter content sludge on sludge dewatering and discussed the main mechanism of sludge conditioning by combined Fenton's reagent and lime. The results indicated that the specific resistance to filterability (SRF) of sludge was reduced efficiently by approximately 90%, when conditioned with Fenton's reagent and lime. Through single factor experiments, the optimal conditioning combinations were found. In addition, the relationship between VSS% and consumption of the reagents was detected. Furthermore, it was also demonstrated that the SRF and filtrate TOC values had a significant correlation with VSS% of sludge (including raw and conditioned). The main mechanism of sludge dewatering was also investigated. Firstly, it revealed that the dewaterability of sludge was closely correlated to extracellular polymeric substances (EPS) and bound water contents. Secondly, the results of scanning electron microscopy (SEM) stated that sludge particles were to be smaller and thinner after conditioning. And this structure could easily form outflow channels for releasing free water. Additionally, with the ultrahigh pressure filtration system, the water content of sludge cake conditioned with Fenton's reagent and lime could be reduced to below 50%. Moreover, the economic assessment shows that Fenton's reagent and lime combined with ultrahigh pressure filtration system can be an economical and viable technology for sewage sludge dewatering. Finally, three types of sludge were classified: (1) Fast to dewater; (2) Moderately fast to dewater; (3) Slow to dewater sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping.

    PubMed

    Branco, Paulo; Seixas, Daniela; Castro, São Luís

    2018-03-01

    Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    PubMed

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  3. Jeffamine derivatized TentaGel beads and poly(dimethylsiloxane) microbead cassettes for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound combinatorial small molecule libraries.

    PubMed

    Townsend, Jared B; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S

    2010-09-13

    A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated poly(dimethylsiloxane) (PDMS) cassette for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting trifunctional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry resulting in beads with increased loading capacity, hydrophilicity, and porosity at the outer layer. We have found that such bead configuration can facilitate ultrahigh-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 min) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel were then layered over the microbead cassette to immobilize the compound-beads. After 24 h of incubation at 37 °C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These compounds

  4. Rapid determination of the various native forms of vitamin B6 and B2 in cow's milk using ultra-high performance liquid chromatography.

    PubMed

    Schmidt, A; Schreiner, M G; Mayer, H K

    2017-06-02

    As the formation of pyridoxal phosphate, the active cofactor of vitamin B 6 , is dependent on riboflavin 5-phosphate, we propose a fast and simple ultra-high performance liquid chromatography method for the simultaneous determination of the native B 6 vitamers pyridoxal, pyridoxine, pyridoxamine, their mono phosphorus esters and 4-pyridoxic acid as well as vitamin B 2 as riboflavin and its phosphorus ester riboflavin 5-phosphate in milk. Separation was achieved under 6.0min by reversed-phase and pH gradient elution. Sample preparation was optimized regarding various acids and pH levels. Changes in those parameters led to significant deviations of sample matrix breakdown efficiency. The optimized method was then validated regarding specificity, accuracy, precision, linearity, range, detection and quantification limits. As the method performed satisfactory, is was used to study commercial liquid cow's milk (n=31), regarding effects of the employed preservation technique (pasteurization, extended shelf-life, ultra-high temperature) on the composition and content of B 6 and B 2 vitamers. In cow's milk, vitamin B 6 mostly consists of pyridoxal and its phosphate ester, with pyridoxal phosphate being the bulk component. The catabolite of the vitamin B 6 metabolism, 4-pyridoxic acid was present in significant amounts in all studied samples, with up to 2.69μmolL -1 . Vitamin B 2 was present as riboflavin and its phosphate ester up to 12.86μmolL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters

    NASA Astrophysics Data System (ADS)

    Ierodiaconou, Daniel; Schimel, Alexandre C. G.; Kennedy, David; Monk, Jacquomo; Gaylard, Grace; Young, Mary; Diesing, Markus; Rattray, Alex

    2018-06-01

    Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.

  6. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    PubMed

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  7. Fatigue Properties of the Ultra-High Strength Steel TM210A

    PubMed Central

    Kang, Xia; Zhao, Gui-ping

    2017-01-01

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = −1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 107 cycles. A double weighted least square method was then used to fit the stress-life (S–N) curve. The S–N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69. PMID:28891934

  8. Review of total cross sections and forward scattering parameters at ultra-high energies

    NASA Astrophysics Data System (ADS)

    Block, M. M.; White, A. R.

    1991-10-01

    We review the field of the elastic scattering of pp and (bar p)p at the ultra-high energies. The recent total cross section, sigma (sub tot), and rho-value results from the Fermilab Tevatron Collider experiments presented at the 4th 'Blois' Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field.

  9. Empirical analysis shows reduced cost data collection may be an efficient method in economic clinical trials

    PubMed Central

    2012-01-01

    Background Data collection for economic evaluation alongside clinical trials is burdensome and cost-intensive. Limiting both the frequency of data collection and recall periods can solve the problem. As a consequence, gaps in survey periods arise and must be filled appropriately. The aims of our study are to assess the validity of incomplete cost data collection and define suitable resource categories. Methods In the randomised KORINNA study, cost data from 234 elderly patients were collected quarterly over a 1-year period. Different strategies for incomplete data collection were compared with complete data collection. The sample size calculation was modified in response to elasticity of variance. Results Resource categories suitable for incomplete data collection were physiotherapy, ambulatory clinic in hospital, medication, consultations, outpatient nursing service and paid household help. Cost estimation from complete and incomplete data collection showed no difference when omitting information from one quarter. When omitting information from two quarters, costs were underestimated by 3.9% to 4.6%. With respect to the observed increased standard deviation, a larger sample size would be required, increased by 3%. Nevertheless, more time was saved than extra time would be required for additional patients. Conclusion Cost data can be collected efficiently by reducing the frequency of data collection. This can be achieved by incomplete data collection for shortened periods or complete data collection by extending recall windows. In our analysis, cost estimates per year for ambulatory healthcare and non-healthcare services in terms of three data collections was as valid and accurate as a four complete data collections. In contrast, data on hospitalisation, rehabilitation stays and care insurance benefits should be collected for the entire target period, using extended recall windows. When applying the method of incomplete data collection, sample size calculation has

  10. Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids

    NASA Astrophysics Data System (ADS)

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards ‘single-layer’ graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml-1, and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  11. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  12. Salting-out assisted liquid-liquid extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of tetracycline residues in infant foods.

    PubMed

    Moreno-González, David; García-Campaña, Ana M

    2017-04-15

    The use of salting-out assisted liquid-liquid extraction (SALLE) combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been evaluated for the determination of tetracyclines in infant foods based on meat and vegetables or in milk. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized. Analytical performances of the method were satisfactory, obtaining limits of quantification lower than 0.48μgkg -1 in all cases. The precision, expressed as relative standard deviation (%, RSD) was below 11.3%. The extraction efficiency for fortified samples ranged from 89.2 to 96.8%, with RSDs lower than 7.3%. Matrix effect was evaluated for all samples studied, being lower than |21|% in all cases. In relation to the low solvent consumption, the proposed methodology could be considered rapid, cheap and environmentally friendly. Its applicability has been successfully tested in a wide range of infant foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Millisecond newly born pulsars as efficient accelerators of electrons

    NASA Astrophysics Data System (ADS)

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-09-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.

  14. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.

    PubMed

    Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan

    2016-06-22

    Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.

  15. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.

    PubMed

    Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira

    2018-02-16

    High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.

  16. Unprecedented ultrahigh photocatalytic activity of δ-Bi2O3 for cylindrospermopsin decomposition

    NASA Astrophysics Data System (ADS)

    Sudrajat, Hanggara

    2017-11-01

    The delta phase of bismuth oxide (δ-Bi2O3) is an important metal oxide due to its highest conductivity of any oxide material. However, it is only stable over a narrow high temperature range, and thus, incorporation of small, high-valence cation is a prerequisite for stabilizing its cubic structure to room temperature. The δ-Bi2O3 is also known to have low photocatalytic activity because of its low conduction band edge. As a consequence, the conduction band electrons cannot be consumed by the dissolved oxygen to produce superoxide radicals. Herein, for the first time, the δ-Bi2O3 has been successfully synthesized through a facile hydrothermal route without addition of any dopant. The as-synthesized δ-Bi2O3 shows ultrahigh photocatalytic activity for cylindrospermopsin decomposition. Within only 20 min of UV irradiation, the degradation efficiency for cylindrospermopsin by 0.5 g/L of the δ-Bi2O3 with a cylindrospermopsin concentration of 5 mg/L reaches 98%. Restricted charge carrier recombination and effective consumption of the conduction band electrons are behind such an unprecedented high photocatalytic activity of the δ-Bi2O3. [Figure not available: see fulltext.

  17. Pulp extrusion at ultra-high consistencies : selection of water soluble polymers for process optimization

    Treesearch

    C. Tim Scott

    2002-01-01

    Pulp extrusion at ultra-high consistencies (20% to 40% solids) is a new process developed at USDA Forest Service, Forest Products Laboratory (FPL) to convert recovered papers, wastepaper, and papermill residuals into solid sheets or profiles for compression molding. This process requires adding a water-soluble polymer (WSP) to alter the rheological properties of the...

  18. Single-Event Rapid Word Collection Workshops: Efficient, Effective, Empowering

    ERIC Educational Resources Information Center

    Boerger, Brenda H.; Stutzman, Verna

    2018-01-01

    In this paper we describe single-event Rapid Word Collection (RWC) workshop results in 12 languages, and compare these results to fieldwork lexicons collected by other means. We show that this methodology of collecting words by semantic domain by community engagement leads to obtaining more words in less time than conventional collection methods.…

  19. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response

    DOE PAGES

    Feng, Wei; Wu, Jing-Bin; Li, Xiaoli; ...

    2015-05-20

    In this paper, we demonstrate the strategies and principles for the performance improvement of layered semiconductor based photodetectors using multilayer indium selenide (InSe) as the model material. It is discovered that multiple reflection interference at the interfaces in the phototransistor device leads to a thickness-dependent photo-response, which provides a guideline to improve the performance of layered semiconductor based phototransistors. The responsivity and detectivity of InSe nanosheet phototransistor can be adjustable using applied gate voltage. Our InSe nanosheet phototransistor exhibits ultrahigh responsivity and detectivity. An ultrahigh external photo-responsivity of ~10 4 A W -1 can be achieved from broad spectra rangingmore » from UV to near infrared wavelength using our InSe nanosheet photodetectors. The detectivity of multilayer InSe devices is ~10 12 to 10 13 Jones, which surpasses that of the currently exploited InGaAs photodetectors (10 11 to 10 12 Jones). Finally, this research shows that multilayer InSe nanosheets are promising materials for high performance photodetectors.« less

  20. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  1. Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve

    Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.

  2. Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection.

    PubMed

    Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik

    2015-07-01

    Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system

  3. TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections.

    PubMed

    Kim, Minjeong; Kang, Kyeongpil; Park, Deokgun; Choo, Jaegul; Elmqvist, Niklas

    2017-01-01

    Topic modeling, which reveals underlying topics of a document corpus, has been actively adopted in visual analytics for large-scale document collections. However, due to its significant processing time and non-interactive nature, topic modeling has so far not been tightly integrated into a visual analytics workflow. Instead, most such systems are limited to utilizing a fixed, initial set of topics. Motivated by this gap in the literature, we propose a novel interaction technique called TopicLens that allows a user to dynamically explore data through a lens interface where topic modeling and the corresponding 2D embedding are efficiently computed on the fly. To support this interaction in real time while maintaining view consistency, we propose a novel efficient topic modeling method and a semi-supervised 2D embedding algorithm. Our work is based on improving state-of-the-art methods such as nonnegative matrix factorization and t-distributed stochastic neighbor embedding. Furthermore, we have built a web-based visual analytics system integrated with TopicLens. We use this system to measure the performance and the visualization quality of our proposed methods. We provide several scenarios showcasing the capability of TopicLens using real-world datasets.

  4. Differential renal effects of candesartan at high and ultra-high doses in diabetic mice–potential role of the ACE2/AT2R/Mas axis

    PubMed Central

    Callera, Glaucia E.; Antunes, Tayze T.; Correa, Jose W.; Moorman, Danielle; Gutsol, Alexey; He, Ying; Cat, Aurelie Nguyen Dinh; Briones, Ana M.; Montezano, Augusto C.; Burns, Kevin D.; Touyz, Rhian M.

    2016-01-01

    High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes. PMID:27612496

  5. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator

    NASA Astrophysics Data System (ADS)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2018-05-01

    We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra-high quality factor of 1.5 × 104 at 0.62 THz. The WGMs are observed in a high resistivity float zone silicon spherical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker theory allows us to unambiguously identify the observed higher order radial THz WGMs.

  6. Improving the toughness of ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Sato, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors. Chapter 1 reviews the mechanical properties of ultrahigh strength steels and the physical metallurgy of AerMet 100. It also describes the fracture mechanisms of steel, i.e. ductile microvoid coalescence, brittle transgranular cleavage, and intergranular separation. Chapter 2 examines the strength-toughness relationship for three heats of AerMet 100. A wide variation of toughness is obtained at the same strength level. The toughness varies despite the fact that all heat fracture in the ductile fracture mode. The difference originates from the inclusion content. Lower inclusion volume fraction and larger inclusion spacing gives rise to a greater void growth factor and subsequently a higher fracture toughness. The fracture toughness value, JIc, is proportional to the particle spacing of the large non-metallic inclusions. Chapter 3 examines the ductile-brittle transition of AerMet 100 and the effect of a higher austenitization temperature, using the Charpy V-notch test. The standard heat treatment condition of AerMet 100 shows a gradual ductile-brittle transition due to its fine effective grain size. Austenitization at higher temperature increases the prior austenite grain size and packet size, leading to a steeper transition at a higher temperature. Both transgranular cleavage and intergranular separation are observed in the brittle fracture mode. Chapter 4 examines the effect of inclusion content, prior austenite grain size, and the amount of austenite on the strength-toughness relationship. The highest toughness is achieved by low inclusion content, small prior austenite grain size

  7. Pseudolinear gradient ultrahigh-pressure liquid chromatography using an injection valve assembly.

    PubMed

    Xiang, Yanqiao; Liu, Yansheng; Stearns, Stanley D; Plistil, Alex; Brisbin, Martin P; Lee, Milton L

    2006-02-01

    The use of ultrahigh pressures in liquid chromatography (UHPLC) imposes stringent requirements on hardware such as pumps, valves, injectors, connecting tubing, and columns. One of the most difficult components of the UHPLC system to develop has been the sample injector. Static-split injection, which can be performed at pressures up to 6900 bar (100,000 psi), consumes a large sample volume and is very irreproducible. A pressure-balanced injection valve provided better reproducibility, shorter injection time, reduced sample consumption, and greater ease of use; however, it could only withstand pressures up to approximately 1000 bar (15,000 psi). In this study, a new injection valve assembly that can operate at pressures as high as 2070 bar (30,000 psi) was evaluated for UHPLC. This assembly contains six miniature electronically controlled needle valves to provide accurate and precise volumes for introduction into the capillary LC column. It was found that sample volumes as small as several tenths of a nanoliter can be injected, which are comparable to the results obtained from the static-split injector. The reproducibilities of retention time, efficiency, and peak area were investigated, and the results showed that the relative standard deviations of these parameters were small enough for quantitative analyses. Separation experiments using the UHPLC system with this new injection valve assembly showed that this new injector is suitable for both isocratic and gradient operation modes. A newly designed capillary connector was used at a pressure as high as 2070 bar (30,000 psi).

  8. Grand unified theories, topological defects, and ultrahigh-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani; Hill, Christopher T.; Schramm, David N.

    1992-01-01

    The ultrahigh-energy (UHE) proton and neutrino spectra resulting from collapse or annihilations of topological defects surviving from the GUT era are calculated. Irrespective of the specific process under consideration (which determines the overall normalization of the spectrum), the UHE proton spectrum always 'recovers' at approximately 1.8 x 10 exp 11 GeV after a partial Greisen-Zatsepin-Kuz'min 'cutoff' at approximately 5 x 10 exp 10 GeV and continues to a GUT-scale energy with a universal shape determined by the physics of hadronic jet fragmentation. Implications of the results are discussed.

  9. The Galactic Magnetic Field and Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Urban, Federico R.

    The Galactic Magnetic Field is a peeving and importune screen between Ultra-High Energy Cosmic Rays and us cosmologists, engaged in the combat to unveil their properties and origin, as it deviates their paths towards the Earth in unpredictable ways. I will, in this order: briefly review the available field models on the market; explain a little trick which allows one to obtain cosmic rays deflection variances without even knowing what the (random) GMF model is; and argue that there is a lack of anisotropy in the large scales cosmic rays signal, which the Galactic field can do nothing about.

  10. Investigating the origin of ultrahigh-energy cosmic rays with CRPropa

    NASA Astrophysics Data System (ADS)

    Bouchachi, Dallel; Attallah, Reda

    2016-07-01

    Ultrahigh-energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. Yet, their sources and acceleration mechanisms are still unknown. To better understand the origin of these particles, we carried out extensive numerical simulations of their propagation in extragalactic space. We used the public CRPropa code which considers all relevant particle interactions and magnetic deflections. We examined the energy spectrum, the mass composition, and the distribution of arrival directions under different scenarios. Such a study allows, in particular, to properly interpret the data of modern experiments like "The Pierre Auger Observatory" and "The Telescope Array".

  11. Grand unified theories, topological defects and ultrahigh-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani; Hill, Christopher T.; Schramm, David N.

    1991-01-01

    The ultrahigh-energy (UHE) proton and neutrino spectra resulting from collapse or annihilations of topological defects surviving from the GUT era are calculated. Irrespective of the specific process under consideration (which determines the overall normalization of the spectrum), the UHE proton spectrum always 'recovers' at approximately 1.8 x 10 exp 11 GeV after a partial Greisen-Zatsepin-Kuz'min 'cutoff' at approximately 5 x 10 exp 10 GeV and continues to a GUT-scale energy with a universal shape determined by the physics of hadronic jet fragmentation. Implications of our results are discussed.

  12. Ultrahigh-Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Ellerby, Donald T.; Beckman, Sarah E.; Irby, Edward; Gasch, Matthew J.; Gusman, Michael I.

    2007-01-01

    Ultrahigh temperature ceramics (UHTCs) are a class of materials that include the diborides of metals such as hafnium and zirconium. The materials are of interest to NASA for their potential utility as sharp leading edges for hypersonic vehicles. Such an application requires that the materials be capable of operating at temperatures, often in excess of 2,000 C. UHTCs are highly refractory and have high thermal conductivity, an advantage for this application. UHTCs are potentially applicable for other high-temperature processing applications, such as crucibles for molten-metal processing and high-temperature electrodes. UHTCs were first studied in the 1960 s by the U.S. Air Force. NASA s Ames Research Center concentrated on developing materials in the HfB2/SiC family for a leading-edge application. The work focused on developing a process to make uniform monolithic (2-phase) materials, and on the testing and design of these materials. Figure 1 shows arc-jet models made from UHTC materials fabricated at Ames. Figure 2 shows a cone being tested in the arc-jet. Other variations of these materials being investigated elsewhere include zirconium based materials and fiber-reinforced composites. Current UHTC work at Ames covers four broad topics: monoliths, coatings, composites, and processing. The goals include improving the fracture toughness, thermal conductivity and oxidation resistance of monolithic UHTCs and developing oxidation-resistant UHTC coatings for thermal-protection-system substrates through novel coating methods. As part of this effort, researchers are exploring compositions and processing changes that have yielded improvements in properties. Computational materials science and nanotechnology are being explored as approaches to reduce materials development time and improve and tailor properties.

  13. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    DOE PAGES

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    2017-07-03

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less

  14. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range.

    PubMed

    Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.

  15. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less

  16. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs <30 Ω/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  17. Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window.

    PubMed

    Zhang, Panpan; Zhu, Feng; Wang, Faxing; Wang, Jinhui; Dong, Renhao; Zhuang, Xiaodong; Schmidt, Oliver G; Feng, Xinliang

    2017-02-01

    Stimulus-responsive micro-supercapacitors (SR-MSCs) with ultrahigh volumetric energy density and reversible electrochromic effect are successfully fabricated by employing a vanadium pentoxide and electrochemical exfoliated graphene-based hybrid nanopaper and viologen as electrode and stimulus-responsive material, respectively. The fabricated high-performance SR-MSCs offer new opportunities for intuitively observing the working state of energy devices without the aid of extra equipment and techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Kimura, Taishi

    2018-06-01

    The material yield of Ga during GaN growth via halogen-free vapor-phase epitaxy (HF-VPE) was systematically investigated and found to be much higher than that obtained using conventional hydride VPE. This is attributed to the much lower process pressure and shorter seed-to-source distance, owing to the inherent chemical reactions and corresponding reactor design used for HF-VPE growth. Ultrahigh-yield GaN growth was demonstrated on a 4-in.-diameter sapphire seed substrate.

  19. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  20. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  1. Improving collection efficiency through remote monitoring of charity assets.

    PubMed

    McLeod, Fraser; Erdogan, Gunes; Cherrett, Tom; Bektas, Tolga; Davies, Nigel; Shingleton, Duncan; Speed, Chris; Dickinson, Janet; Norgate, Sarah

    2014-02-01

    Collection costs associated with servicing a major UK charity's donation banks and collecting unsold goods from their retail shops can account for up to 20% of the overall income gained. Bank and shop collections are commingled and are typically made on fixed days of the week irrespective of the amounts of materials waiting to be collected. Using collection records from a major UK charity, this paper considers what vehicle routing and scheduling benefits could accrue if bank and shop servicing requirements were monitored, the former using remote sensing technology to allow more proactive collection scheduling. A vehicle routing and scheduling algorithm employing tabu search methods was developed, and suggested time and distance savings of up to 30% over the current fixed schedules when a minimum bank and shop fill level of between 50% and 60% was used as a collection trigger. For the case study investigated, this led to a potential revenue gain of 5% for the charity and estimated CO2 savings of around 0.5 tonnes per week across the fleet of six heterogeneous vehicles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second

    PubMed Central

    Potsaid, Benjamin; Gorczynska, Iwona; Srinivasan, Vivek J.; Chen, Yueli; Jiang, James; Cable, Alex; Fujimoto, James G.

    2009-01-01

    We demonstrate ultrahigh speed spectral / Fourier domain optical coherence tomography (OCT) using an ultrahigh speed CMOS line scan camera at rates of 70,000 - 312,500 axial scans per second. Several design configurations are characterized to illustrate trade-offs between acquisition speed, resolution, imaging range, sensitivity and sensitivity roll-off performance. Ultrahigh resolution OCT with 2.5 - 3.0 micron axial image resolution is demonstrated at ∼ 100,000 axial scans per second. A high resolution spectrometer design improves sensitivity roll-off and imaging range performance, trading off imaging speed to 70,000 axial scans per second. Ultrahigh speed imaging at >300,000 axial scans per second with standard image resolution is also demonstrated. Ophthalmic OCT imaging of the normal human retina is investigated. The high acquisition speeds enable dense raster scanning to acquire densely sampled volumetric three dimensional OCT (3D-OCT) data sets of the macula and optic disc with minimal motion artifacts. Imaging with ∼ 8 - 9 micron axial resolution at 250,000 axial scans per second, a 512 × 512 × 400 voxel volumetric 3D-OCT data set can be acquired in only ∼ 1.3 seconds. Orthogonal registration scans are used to register OCT raster scans and remove residual axial eye motion, resulting in 3D-OCT data sets which preserve retinal topography. Rapid repetitive imaging over small volumes can visualize small retinal features without motion induced distortions and enables volume registration to remove eye motion. Cone photoreceptors in some regions of the retina can be visualized without adaptive optics or active eye tracking. Rapid repetitive imaging of 3D volumes also provides dynamic volumetric information (4D-OCT) which is shown to enhance visualization of retinal capillaries and should enable functional imaging. Improvements in the speed and performance of 3D-OCT volumetric imaging promise to enable earlier diagnosis and improved monitoring of disease

  3. Fluctuating Dermatoglyphic Asymmetries in Youth at Ultrahigh-risk for Psychotic Disorders

    PubMed Central

    Russak, Olivia Diane Fern; Ives, Lindsay; Mittal, Vijay A.; Dean, Derek J.

    2015-01-01

    Fluctuating dermatoglyphic asymmetry represents one specific class of minor physical anomaly that has been proposed to reflect prenatal insult and vulnerability to psychosis. However, very little is known about fluctuating dermatoglyphic asymmetry in youth showing symptoms of ultrahigh risk (UHR) for psychosis. Using high-resolution photographs of fingerprints and clinical interviews, the UHR group in this study showed greater fluctuating dermatoglyphic asymmetry compared to controls; however, this was not further linked to symptomatology. The results of this study provide an important perspective on potential biomarkers and support neurodevelopmental conceptions of psychosis. PMID:26723845

  4. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  5. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less

  6. Competition-Driven Network Dynamics: Emergence of a Scale-Free Leadership Structure and Collective Efficiency

    NASA Astrophysics Data System (ADS)

    Anghel, M.; Toroczkai, Zoltán; Bassler, Kevin E.; Korniss, G.

    2004-02-01

    Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.

  7. Fornax A, Centaurus A other radio galaxies as sources of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2018-06-01

    The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.

  8. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    PubMed

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  9. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L.

    2017-06-01

    We present a strong hint of a connection between high-energy γ-ray emitting blazars, very high energy neutrinos, and ultrahigh-energy cosmic rays. We first identify potential hadronic sources by filtering γ-ray emitters in spatial coincidence with the high-energy neutrinos detected by IceCube. The neutrino filtered γ-ray emitters are then correlated with the ultrahigh-energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in γ-ray flux (Fγ) and angular separation (θ) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at θ ≤ 10° from the neutrino-filtered γ-ray emitters selected from the second hard Fermi-LAT catalogue (2FHL) and for Fγ(>50 GeV) ≥ 1.8 × 10-11 ph cm-2 s-1. The probability for this to happen is 2.4 × 10-5, which translates to ˜2.4 × 10-3 after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of γ-ray emitters (I.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino-filtered and the complement source samples with the cosmic rays favours a connection between neutrino-filtered emitters and cosmic rays with a probability of ˜1.8 × 10-3 (2.9σ) after compensation for all the considered trials. The neutrino-filtered γ-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.

  10. Ultra-High Temperature Materials Characterization for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  11. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratz, Marcel; Galvosas, Petrik

    2008-12-05

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  12. Modelling the global efficiency of dissolved air flotation.

    PubMed

    Leppinen, D M; Dalziel, S B; Linden, P F

    2001-01-01

    The purpose of this paper is to examine how the efficiency of dissolved air flotation is affected by the size of bubbles and particles. The rise speed of bubble/particle agglomerates is modelled as a function of bubble and particle size, while the kinematics of the bubble attachment process is modelled using the population balance approach adopted by Matsui, Fukushi and Tambo. It is found that flotation, in general, is enhanced by the use of larger particles and larger bubbles. In particular, it is concluded that for the ultra-high surface loading rates of 25 m/hr or more planned for future flotation tanks, bubble size will have to be increased by a factor of two over the size currently employed in many facilities during dissolved air flotation.

  13. Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangopadhyay, Subhashis; Schmidt, Thomas, E-mail: tschmidt@ifp.uni-bremen.de; Kruse, Carsten

    The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600 °C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300 °C, active-nitrogen exposure at temperaturesmore » as high as 700 °C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.« less

  14. Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers

    PubMed Central

    Nam, Sungho; Seo, Jooyeok; Woo, Sungho; Kim, Wook Hyun; Kim, Hwajeong; Bradley, Donal D. C.; Kim, Youngkyoo

    2015-01-01

    Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor. PMID:26656447

  15. Development of Non-Proprietary Ultra-High Performance Concrete for Use in the Highway Bridge Sector : TechBrief

    DOT National Transportation Integrated Search

    2013-10-01

    The long-term goals of this study are to facilitate the use of ultra-high performance concrete (UHPC) among U.S. suppliers and contractors, accelerate its application in U.S. construction, and promote a more resilient and sustainable future U.S. infr...

  16. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols.

    PubMed

    Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong

    2013-11-01

    In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Ultrahigh b-values MRI in normal human prostate: Initial research on reproducibility and age-related differences.

    PubMed

    Shi, Changzheng; Zhang, Dong; Xiao, Zeyu; Wang, Li; Ma, Rong; Chen, Hanwei; Luo, Liangping

    2017-09-01

    To investigate the reproducibility of diffusion-weighted imaging (DWI) with ultrahigh b-values, and analyze the age-related differences in normal prostates. In all, 67 healthy participants were divided into three age groups (group A, 15-30 years; group B, 31-50 years; group C, ≥51 years), and underwent DWI scanning twice with 15 b-factors from 0 to 3000 at 3.0T. Triexponential fits were applied to calculate the molecular diffusion coefficient (D), the pseudo-diffusion coefficient (D*), the ultrahigh apparent diffusion coefficient (ADC uh ), and perfusion fraction (f). The interobserver and short-term interscan reproducibility were evaluated, and the change in these parameters with age were assessed. The D, ADC uh , and f values presented good to excellent reproducibility. With increasing age, a trend of increasing D values was observed, with significant difference in both peripheral zone (PZ, P = 0.01) and central gland (CG, P = 0.01) of normal prostate tissue. The f value increased in the CG beginning at 50 years of age while the ADC uh value decreased in the PZ after 50 years of age; all of them showed significant differences between groups A and C and groups B and C (P = 0.01/0.01). The D, ADC uh , and f values have good to excellent reproducibility in the normal prostate, and these values change with age. The ultrahigh b-values magnetic resonance imaging (MRI) can provide additional information (ADC uh ), which is different from the IVIM (intravoxel incoherent motion)-derived parameters. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:801-812. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandreas, D.E.; Allen, R.C.; Berley, D.

    1991-03-01

    Data from an extensive air shower detector of ultrahigh-energy cosmic rays shows shadowing of the cosmic-ray flux by the Moon and the Sun with significance of 4.9 standard deviations. This is the first observation of such shadowing. The effect has been used to determine that the angular resolution of the detector is 0.75{degree} {sub {minus}0.90{degree}}{sup +0.13{degree}}.

  19. Characterization of an Ultra-High Temperature Ceramic Composite

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Opila, Elizabeth J.; Robinson, Raymond C.; Lorincz, Jonathan A.

    2004-01-01

    Ultra-high temperature ceramics (UHTC) are of interest for hypersonic vehicle leading edge applications. Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites (UHTCC) are being investigated as a possible approach to overcome these deficiencies. In this study a small sample of a UHTCC was evaluated by limited mechanical property tests, furnace oxidation exposures, and oxidation exposures in a flowing environment generated by an oxy-acetylene torch. The composite was prepared from a carbon fiber perform using ceramic particulates and a pre-cerns about microcracking due to thermal expansion mismatch between the matrix and the carbon fiber reinforcements, and about the oxidation resistance of the HfB2-SiC coating layer and the composite constituents. However, positive performance in the torch test warrants further study of this concept.

  20. Plasma-based generation and control of a single few-cycle high-energy ultrahigh-intensity laser pulse.

    PubMed

    Tamburini, M; Di Piazza, A; Liseykina, T V; Keitel, C H

    2014-07-11

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 10(23)  W/cm(2) can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.

  1. Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS)

    PubMed Central

    Gielen, Fabrice; Hours, Raphaelle; Emond, Stephane; Fischlechner, Martin; Schell, Ursula

    2016-01-01

    Ultrahigh-throughput screening, in which members of enzyme libraries compartmentalized in water-in-oil emulsion droplets are assayed, has emerged as a powerful format for directed evolution and functional metagenomics but is currently limited to fluorescence readouts. Here we describe a highly efficient microfluidic absorbance-activated droplet sorter (AADS) that extends the range of assays amenable to this approach. Using this module, microdroplets can be sorted based on absorbance readout at rates of up to 300 droplets per second (i.e., >1 million droplets per hour). To validate this device, we implemented a miniaturized coupled assay for NAD+-dependent amino acid dehydrogenases. The detection limit (10 μM in a coupled assay producing a formazan dye) enables accurate kinetic readouts sensitive enough to detect a minimum of 1,300 turnovers per enzyme molecule, expressed in a single cell, and released by lysis within a droplet. Sorting experiments showed that the AADS successfully enriched active variants up to 2,800-fold from an overwhelming majority of inactive ones at ∼100 Hz. To demonstrate the utility of this module for protein engineering, two rounds of directed evolution were performed to improve the activity of phenylalanine dehydrogenase toward its native substrate. Fourteen hits showed increased activity (improved >4.5-fold in lysate; kcat increased >2.7-fold), soluble protein expression levels (up 60%), and thermostability (Tm, 12 °C higher). The AADS module makes the most widely used optical detection format amenable to screens of unprecedented size, paving the way for the implementation of chromogenic assays in droplet microfluidics workflows. PMID:27821774

  2. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    PubMed

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.

  3. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Roth, Mark C. (Inventor); Smith, Russell W. (Inventor); Sikora, Joseph G. (Inventor); Rivers, H. Kevin (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  4. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.

  5. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  6. The Road to FUNCTIONAL IMAGING and ULTRAHIGH FIELDS

    PubMed Central

    Uğurbil, Kâmil

    2012-01-01

    The Center for Magnetic Resonance (CMRR) at the University of Minnesota was one of laboratories where the work that simultaneously and independently introduced functional magnetic resonance imaging (fMRI) of human brain activity was carried out. However, unlike other laboratories pursuing fMRI at the time, our work was performed at 4 Tesla magnetic field and coincided with the effort to push human magnetic resonance imaging to field strength significantly beyond 1.5 Tesla which was the high-end standard of the time. The human fMRI experiments performed in CMRR were planned between two colleagues who had known each other and had worked together previously in Bell Laboratories, namely Seiji Ogawa and myself, immediately after the Blood Oxygenation Level Dependent (BOLD) contrast was developed by Seiji. We were waiting for our first human system, a 4 Tesla system, to arrive in order to attempt at imaging brain activity in the human brain and these were the first experiments we performed on the 4 Tesla instrument in CMRR when it became marginally operational. This was a prelude to a subsequent systematic push we initiated for exploiting higher magnetic fields to improve the accuracy and sensitivity of fMRI maps, first going to 9.4 Tesla for animal model studies and subsequently developing a 7 Tesla human system for the first time. Steady improvements in high field instrumentation and ever expanding armamentarium of image acquisition and engineering solutions to challenges posed by ultrahigh fields has brought fMRI to submillimeter resolution in the whole brain at 7 Tesla, the scale necessary to reach cortical columns and laminar differentiation in the whole brain. The solutions that emerged in response to technological challenges posed by 7 Tesla also propagated and continues to propagate to lower field clinical systems, a major advantage of the ultrahigh fields effort that is underappreciated. Further improvements at 7T are inevitable. Further translation of these

  7. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  8. Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms.

    PubMed

    Ferraro Petrillo, Umberto; Roscigno, Gianluca; Cattaneo, Giuseppe; Giancarlo, Raffaele

    2018-06-01

    Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in the realm of genome assembly. However, they are so specialized to this domain that they do not extend easily to the computation of informational and linguistic indices, concurrently on sets of genomes. Following the well-established approach in many disciplines, and with a growing success also in bioinformatics, to resort to MapReduce and Hadoop to deal with 'Big Data' problems, we present KCH, the first set of MapReduce algorithms able to perform concurrently informational and linguistic analysis of large collections of genomic sequences on a Hadoop cluster. The benchmarking of KCH that we provide indicates that it is quite effective and versatile. It is also competitive with respect to the parallel and distributed algorithms highly specialized to k-mer statistics collection for genome assembly problems. In conclusion, KCH is a much needed addition to the growing number of algorithms and tools that use MapReduce for bioinformatics core applications. The software, including instructions for running it over Amazon AWS, as well as the datasets are available at http://www.di-srv.unisa.it/KCH. umberto.ferraro@uniroma1.it. Supplementary data are available at Bioinformatics online.

  9. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.

    PubMed

    Ma, Lianbo; Yuan, Hao; Zhang, Wenjun; Zhu, Guoyin; Wang, Yanrong; Hu, Yi; Zhao, Peiyang; Chen, Renpeng; Chen, Tao; Liu, Jie; Hu, Zheng; Jin, Zhong

    2017-12-13

    Lithium-sulfur (Li-S) batteries hold great promise for the applications of high energy density storage. However, the performances of Li-S batteries are restricted by the low electrical conductivity of sulfur and shuttle effect of intermediate polysulfides. Moreover, the areal loading weights of sulfur in previous studies are usually low (around 1-3 mg cm -2 ) and thus cannot fulfill the requirement for practical deployment. Herein, we report that porous-shell vanadium nitride nanobubbles (VN-NBs) can serve as an efficient sulfur host in Li-S batteries, exhibiting remarkable electrochemical performances even with ultrahigh areal sulfur loading weights (5.4-6.8 mg cm -2 ). The large inner space of VN-NBs can afford a high sulfur content and accommodate the volume expansion, and the high electrical conductivity of VN-NBs ensures the effective utilization and fast redox kinetics of polysulfides. Moreover, VN-NBs present strong chemical affinity/adsorption with polysulfides and thus can efficiently suppress the shuttle effect via both capillary confinement and chemical binding, and promote the fast conversion of polysulfides. Benefiting from the above merits, the Li-S batteries based on sulfur-filled VN-NBs cathodes with 5.4 mg cm -2 sulfur exhibit impressively high areal/specific capacity (5.81 mAh cm -2 ), superior rate capability (632 mAh g -1 at 5.0 C), and long cycling stability.

  10. Influence of heteroatom pre-selection on the molecular formula assignment of soil organic matter components determined by ultrahigh resolution mass spectrometry.

    PubMed

    Ohno, Tsutomu; Ohno, Paul E

    2013-04-01

    Soil organic matter (SOM) is involved in many important ecosystem processes. Ultrahigh resolution mass spectrometry has become a powerful technique in the chemical characterization of SOM, allowing assignment of elemental formulae for thousands of peaks resolved in a typical mass spectrum. We investigated how the addition of N, S, and P heteroatoms in the formula calculation stage of the mass spectra processing workflow affected the formula assignments of mass spectra peaks. Dissolved organic matter extracted from plant biomass and soil as well as the soil humic acid fraction was studied. We show that the addition of S and P into the molecular formula calculation increased peak assignments on average by 17.3 % and 10.7 %, respectively, over the assignments based on the CHON elements frequently reported by SOM researchers using ultrahigh resolution mass spectrometry. The organic matter chemical characteristics as represented by van Krevelen diagrams were appreciably affected by differences in the heteroatom pre-selection for the three organic matter samples investigated, especially so for the wheat-derived dissolved organic matter. These results show that inclusion of both S and P heteroatoms into the formula calculation step, which is not routinely done, is important to obtain a more chemically complete interpretation of the ultrahigh resolution mass spectra of SOM.

  11. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    PubMed

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  12. Argentation chromatography coupled to ultrahigh-resolution mass spectrometry for the separation of a heavy crude oil.

    PubMed

    Molnárné Guricza, Lilla; Schrader, Wolfgang

    2017-02-10

    Simplification of highly complex mixtures such as crude oil by using chromatographic methods makes it possible to get more detailed information about the composition of the analyte. Separation by argentation chromatography can be achieved based on the interaction of different strength between the silver ions (Ag + ) immobilized through a spacer on the silica gel surface and the π-bonds of the analytes. Heavy crude oils contain compounds with a high number of heteroatoms (N, O, S) and a high degree of unsaturation thus making them the perfect analyte for argentation chromatography. The direct coupling of argentation chromatography and ultrahigh-resolution mass spectrometry allows to continuously tracking the separation of the many different compounds by retention time and allows sensitive detection on a molecular level. Direct injection of a heavy crude oil into a ultrahigh-resolution mass spectrometer showed components with DBE of up to 25, whereas analytes with DBE of up to 35 could be detected only after separation with argentation chromatography. The reduced complexity achieved by the separation helps increasing the information depth. Copyright © 2016. Published by Elsevier B.V.

  13. Anisotropy in the Arrival Directions of Ultrahigh-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Villaseñor, Luis

    2017-06-01

    In this article we illustrate, in an interactive way, the analysis and visualization of anisotropy properties in the arrival directions of ultrahigh-energy cosmic rays detected by the Telescope Array and the Pierre Auger experiments by using data released by both collaborations. We describe the use of several programs that we have written in Python and Julia languages for this purpose. We also discuss the potential sources and analyse the effect of correcting the arrival directions to take into account the deflections of the cosmic rays by the magnetic field of our galaxy for one specific model of the galactic magnetic field under several assumptions about the composition of the primary cosmic rays.

  14. A selective ultrahigh responding high temperature ethanol sensor using TiO2 nanoparticles.

    PubMed

    Arafat, M M; Haseeb, A S M A; Akbar, Sheikh A

    2014-07-28

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.

  15. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry.

    PubMed

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Zheng, Hongdie; Yang, Min

    2014-03-18

    Brominated disinfection byproducts (Br-DBPs), formed from the reaction of disinfectant(s) with natural organic matter in the presence of bromide in raw water, are generally more cytotoxic and genotoxic than their chlorinated analogues. To date, only a few Br-DBPs in drinking water have been identified, while a significant portion of Br-DBPs in drinking water is still unknown. In this study, negative ion electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown Br-DBPs in artificial drinking water. In total, 441 formulas for one-bromine-containing products and 37 formulas for two-bromine-containing products, most of which had not been previously reported, were detected in the chlorinated sample. Most Br-DBPs have corresponding chlorine-containing analogues with identical CHO composition. In addition, on-resonance collision-induced dissociation (CID) of single ultrahigh resolved bromine containing mass peaks was performed in the ICR cell to isolate single bromine-containing components in a very complex natural organic matter spectrum and provide structure information. Relatively abundant neutral loss of CO2 was observed in MS-MS spectra, indicating that the unknown Br-DBPs are rich in carboxyl groups. The results demonstrate that the ESI FT-ICR MS method could provide valuable molecular composition and structure information on unknown Br-DBPs.

  16. A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles

    PubMed Central

    Arafat, M. M.; Haseeb, A. S. M. A.; Akbar, Sheikh A.

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346

  17. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  18. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  19. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua

    Ultrahigh surface area carbons (USACs, e.g., >2000 m 2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m 2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. Thismore » strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m 2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g -1) even at a scan rate of 1000 mV s -1. Thus, a simple and efficient strategy to USACs has been presented.« less

  20. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE PAGES

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; ...

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m 2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m 2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. Thismore » strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m 2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g -1) even at a scan rate of 1000 mV s -1. Thus, a simple and efficient strategy to USACs has been presented.« less

  1. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    PubMed

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  2. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ultrahigh-Energy Density Lithium-Ion Cable Battery Based on the Carbon-Nanotube Woven Macrofilms.

    PubMed

    Wu, Ziping; Liu, Kaixi; Lv, Chao; Zhong, Shengwen; Wang, Qinghui; Liu, Ting; Liu, Xianbin; Yin, Yanhong; Hu, Yingyan; Wei, Di; Liu, Zhongfan

    2018-05-01

    Moore's law predicts the performance of integrated circuit doubles every two years, lasting for more than five decades. However, the improvements of the performance of energy density in batteries lag far behind that. In addition, the poor flexibility, insufficient-energy density, and complexity of incorporation into wearable electronics remain considerable challenges for current battery technology. Herein, a lithium-ion cable battery is invented, which is insensitive to deformation due to its use of carbon nanotube (CNT) woven macrofilms as the charge collectors. An ultrahigh-tap density of 10 mg cm -2 of the electrodes can be obtained, which leads to an extremely high-energy density of 215 mWh cm -3 . The value is approximately seven times than that of the highest performance reported previously. In addition, the battery displays very stable rate performance and lower internal resistance than conventional lithium-ion batteries using metal charge collectors. Moreover, it demonstrates excellent convenience for connecting electronics as a new strategy is applied, in which both electrodes can be integrated into one end by a CNT macrorope. Such an ultrahigh-energy density lithium-ion cable battery provides a feasible way to power wearable electronics with commercial viability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modal analysis of the ultrahigh finesse Haroche QED cavity

    NASA Astrophysics Data System (ADS)

    Marsic, Nicolas; De Gersem, Herbert; Demésy, Guillaume; Nicolet, André; Geuzaine, Christophe

    2018-04-01

    In this paper, we study a high-order finite element approach to simulate an ultrahigh finesse Fabry–Pérot superconducting open resonator for cavity quantum electrodynamics. Because of its high quality factor, finding a numerically converged value of the damping time requires an extremely high spatial resolution. Therefore, the use of high-order simulation techniques appears appropriate. This paper considers idealized mirrors (no surface roughness and perfect geometry, just to cite a few hypotheses), and shows that under these assumptions, a damping time much higher than what is available in experimental measurements could be achieved. In addition, this work shows that both high-order discretizations of the governing equations and high-order representations of the curved geometry are mandatory for the computation of the damping time of such cavities.

  5. Acceleration of ultrahigh-energy cosmic rays in starburst superwinds

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis Alfredo

    2018-03-01

    The sources of ultrahigh-energy cosmic rays (UHECRs) have been stubbornly elusive. However, the latest report of the Pierre Auger Observatory provides a compelling indication for a possible correlation between the arrival directions of UHECRs and nearby starburst galaxies. We argue that if starbursts are sources of UHECRs, then particle acceleration in the large-scale terminal shock of the superwind that flows from the starburst engine represents the best known concept model in the market. We investigate new constraints on the model and readjust free parameters accordingly. We show that UHECR acceleration above about 1 011 GeV remains consistent with observation. We also show that the model could accommodate hard source spectra as required by Auger data. We demonstrate how neutrino emission can be used as a discriminator among acceleration models.

  6. Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application

    DTIC Science & Technology

    2005-07-01

    load cracking behavior of maraging steels in hydrogen. Corrosion , 29, 1973, 299-304. D.A. Jones, A.F. Jankowski and G.A. Davidson, "Diffusion of...short crack case. This behavior is relevant to small surface cracks in coated UHSS components such as a landing gear. IV.B. Effect of Steel Composition ...PRESSURE (k N /m 2) Figure 26. The effect of H2 pressure on the HEAC growth rate for a ultra-high strength 18Ni Maraging steel stressed in a highly

  7. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    NASA Astrophysics Data System (ADS)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  8. Data collection framework for energy efficient privacy preservation in wireless sensor networks having many-to-many structures.

    PubMed

    Bahşi, Hayretdin; Levi, Albert

    2010-01-01

    Wireless sensor networks (WSNs) generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-to-many structures evolved due to the need for conveying collected event information to multiple sinks. Privacy preserved data collection models in the literature do not solve the problems of WSN applications in which network has multiple un-trusted sinks with different level of privacy requirements. This study proposes a data collection framework bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks at the same anonymized output. If the same output is formed, it can be multicasted to all sinks. The other trivial solution is to produce different anonymized outputs for each sink and send them to related sinks. Multicasting is an energy efficient data sending alternative for some sensor nodes. Since minimization of energy consumption is an important design criteria for WSNs, multicasting the same event information to multiple sinks reduces the energy consumption of overall network.

  9. Dipole-modified graphene with ultrahigh gas sensibility

    NASA Astrophysics Data System (ADS)

    Jia, Ruokun; Xie, Peng; Feng, Yancong; Chen, Zhuo; Umar, Ahmad; Wang, Yao

    2018-05-01

    This study reports the supramolecular assembly of functional graphene-based materials with ultrahigh gas sensing performances which are induced by charge transfer enhancement. Two typical Donor-π-Accepter (D-π-A) structure molecules 4-aminoquinoline (4AQ, μ = 3.17 Debye) and 4-hydroxyquinoline (4HQ, μ = 1.98 Debye), with different charge transfer enhancing effects, were selected to modify reduce oxide graphene (rGO) via supramolecular assembly. Notably, compared to the 4HQ-rGO, the 4AQ-rGO exhibits more significant increase of gas response (Ra/Rg = 3.79) toward 10 ppm NO2, which is ascribed to the larger dipole moment (μ) of 4AQ and hence the more intensive enhancing effect of charge transfer on the interface of rGO. Meanwhile, 4AQ-rGO sensors also reveal superior comprehensive gas sensing performances, including excellent gas sensing selectivity, linearity, repeatability and stability. It is believed that the present work demonstrates an effective supramolecular approach of modifying rGO with strong dipoles to significantly improve gas sensing properties of graphene-based materials.

  10. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    PubMed

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  11. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries.

    PubMed

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Xia, Jing; Wang, Xianyou; Xiang, Kaixiong; Zeng, Peng; Zhang, Yan; Jamil, Sidra

    2018-04-25

    A high sulfur loading cathode is the most crucial component for lithium-sulfur batteries (LSBs) to obtain considerable energy density for commercialization applications. The major challenges associated with high sulfur loading electrodes are poor material utilization caused via the nonconductivity of the charged product (S) and the discharged product (Li 2 S), poor stability arisen from dissolution of lithium polysulfides (LiPSs) into most organic electrolytes and pulverization, and structural damage of the electrode caused by large volumetric expansion. A multifunctional synergistic composite enables ultrahigh sulfur content for advanced LSBs, which comprises the sulfur particle encapsulated with an ion-selective polymer with conductive carbon nanotubes and dispersed around Magnéli phase Ti 4 O 7 (MS-3) by the bottom-up method. The ion-selective polymer provides a physical shield and electrostatic repulsion against the shuttling of polysulfides with negative charge, whereas it can permit the transmission of lithium ion (Li + ) through the polymer membrane, and the carbon nanotubes twined around the sulfur promote electronic conductivity and sulfur utilization as well as strong chemical adsorption of LiPSs by means of Ti 4 O 7 . Because of this hierarchical construction, the cathode possesses a lofty final sulfur loading of 72% and large sulfur areal mass loading of 3.56 mg cm -2 , which displays the large areal specific capacity of 4.22 mA h cm -2 . In the same time, it can provide excellent cyclic performance with the corresponding capacity attenuation ratio of 0.08% per cycle at 0.5 C after 300 cycles. Especially, while sulfur areal mass loading is sharply enhanced to 5.11 mg cm -2 , the MS-3 composite exhibits a large initial areal capacity of 5.04 mA h cm -2 and still keeps a high reversible capacity of 696 mA h g -1 at 300th cycle even at a 1.0 C. The design of high sulfur content cathodes is a viable approach for boosting practical commercialized

  12. Clinical applications at ultrahigh field (7  T). Where does it make the difference?

    PubMed

    Trattnig, Siegfried; Bogner, Wolfgang; Gruber, Stephan; Szomolanyi, Pavol; Juras, Vladimir; Robinson, Simon; Zbýň, Štefan; Haneder, Stefan

    2016-09-01

    Presently, three major MR vendors provide commercial 7-T units for clinical research under ethical permission, with the number of operating 7-T systems having increased to over 50. This rapid increase indicates the growing interest in ultrahigh-field MRI because of improved clinical results with regard to morphological as well as functional and metabolic capabilities. As the signal-to-noise ratio scales linearly with the field strength (B0 ) of the scanner, the most obvious application at 7 T is to obtain higher spatial resolution in the brain, musculoskeletal system and breast. Of specific clinical interest for neuro-applications is the cerebral cortex at 7 T, for the detection of changes in cortical structure as a sign of early dementia, as well as for the visualization of cortical microinfarcts and cortical plaques in multiple sclerosis. In the imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology can be visualized with excellent resolution. The dynamic and static blood oxygenation level-dependent contrast increases linearly with the field strength, which significantly improves the pre-surgical evaluation of eloquent areas before tumor removal. Using susceptibility-weighted imaging, the plaque-vessel relationship and iron accumulation in multiple sclerosis can be visualized for the first time. Multi-nuclear clinical applications, such as sodium imaging for the evaluation of repair tissue quality after cartilage transplantation and (31) P spectroscopy for the differentiation between non-alcoholic benign liver disease and potentially progressive steatohepatitis, are only possible at ultrahigh fields. Although neuro- and musculoskeletal imaging have already demonstrated the clinical superiority of ultrahigh fields, whole-body clinical applications at 7 T are still limited, mainly because of the lack of suitable coils. The purpose of this article was therefore to review the clinical studies that have been performed thus

  13. Experimental Investigation of Magnetic Superconducting and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures using Designer Diamond Anvils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun

    Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the Universitymore » of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures ({approx}1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the

  14. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties.

    PubMed

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  15. Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water.

    PubMed

    Wu, Minghuo; Qian, Yichao; Boyd, Jessica M; Hrudey, Steve E; Le, X Chris; Li, Xing-Fang

    2014-09-12

    Acesulfame (ACE) and sucralose (SUC) have become recognized as ideal domestic wastewater contamination indicators. Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis is commonly used; however, the sensitivity of SUC is more than two orders of magnitude lower than that of ACE, limiting the routine monitoring of SUC. To address this issue, we examined the ESI behavior of both ACE and SUC under various conditions. ACE is ionic in aqueous solution and efficiently produces simple [M-H](-) ions, but SUC produces multiple adduct ions, limiting its sensitivity. The formic acid (FA) adducts of SUC [M+HCOO](-) are sensitively and reproducibly generated under the LC-MS conditions. When [M+HCOO](-) is used as the precursor ion for SUC detection, the sensitivity increases approximately 20-fold compared to when [M-H](-) is the precursor ion. To further improve the limit of detection (LOD), we integrated the large volume injection approach (500μL injection) with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which reduced the method detection limit (MDL) to 0.2ng/L for ACE and 5ng/L for SUC. To demonstrate the applicability of this method, we analyzed 100 well water samples collected in Alberta. ACE was detected in 24 wells at concentrations of 1-1534ng/L and SUC in 8 wells at concentrations of 65-541ng/L. These results suggest that wastewater is the most likely source of ACE and SUC impacts in these wells, suggesting the need for monitoring the quality of domestic well water. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cosmic PeV neutrinos and the sources of ultrahigh energy protons

    NASA Astrophysics Data System (ADS)

    Kistler, Matthew D.; Stanev, Todor; Yüksel, Hasan

    2014-12-01

    The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ˜1 018 eV , where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

  17. The development of a portable ultrahigh vacuum chamber via silicon block.

    PubMed

    Chuang, Ho-Chiao; Huang, Chia-Shiuan

    2014-05-01

    This paper describes a nonmetallic, light weight portable chamber for ultra-high vacuum (UHV) applications. The chamber consists of a processed silicon block anodically bonding five polished Pyrex glass windows and a Pyrex glass adapter, without using any screws, bolts or vacuum adhesives. The design features provide an alternative chamber for UHV applications which require nonmetallic components. We have cyclically baked the chamber up to 180 °C for 160 h and have achieved an ultimate pressure of 1.4 × 10(-9) Torr (limited by our pumping station), with no leak detected. Both Pyrex glass windows and Pyrex glass adapter have been used successfully.

  18. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes.

    PubMed

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-02

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  19. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Miller, M. Coleman; Kotera, Kumiko

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expectedmore » to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ∼10{sup −6} Mpc{sup −3}. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a ∼>5σ detection of UHE neutrino sources with a uniform density, n {sub s} {sub ∼}10{sup −7}−10{sup −5} Mpc{sup −3}, at least ∼100−1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.« less

  20. Ultrahigh vacuum, high temperature, low cycle fatigue of coated and uncoated Rene 80

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1976-01-01

    A study was conducted on the ultrahigh vacuum strain controlled by low cycle fatigue behavior of uncoated and CODEP B-1 aluminide coated Rene' 80 nickel-base superalloy at 1000 C (1832 F) and 871 C (1600 F). The results indicated little effect of coating or temperature on the fatigue properties. There was, however, a significant effect on fatigue life when creep was introduced into the strain cycles. The effect of this creep component was analyzed in terms of the method of strainrange partitioning.

  1. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene.

    PubMed

    Huang, Yan-Fei; Xu, Jia-Zhuang; Li, Jian-Shu; He, Ben-Xiang; Xu, Ling; Li, Zhong-Ming

    2014-08-01

    The low efficiency of fabrication of ultrahigh molecular weight polyethylene (UHMWPE)-based artificial knee joint implants is a bottleneck problem because of its extremely high melt viscosity. We prepared melt processable UHMWPE (MP-UHMWPE) by addition of 9.8 wt% ultralow molecular weight polyethylene (ULMWPE) as a flow accelerator. More importantly, an intense shear flow was applied during injection molding of MP-UHMWPE, which on one hand, promoted the self-diffusion of UHMWPE chains, thus effectively reducing the structural defects; on the other hand, increased the overall crystallinity and induced the formation of self-reinforcing superstructure, i.e., interlocked shish-kebabs and oriented lamellae. Aside from the good biocompatibility, and the superior fatigue and wear resistance to the compression-molded UHMWPE, the injection-molded MP-UHMWPE exhibits a noteworthy enhancement in tensile properties and impact strength, where the yield strength increases to 46.3 ± 4.4 MPa with an increment of 128.0%, the ultimate tensile strength and Young's modulus rise remarkably up to 65.5 ± 5.0 MPa and 1248.7 ± 45.3 MPa, respectively, and the impact strength reaches 90.6 kJ/m(2). These results suggested such melt processed and self-reinforced UHMWPE parts hold a great application promise for use of knee joint implants, particularly for younger and more active patients. Our work sets up a new method to fabricate high-performance UHMWPE implants by tailoring the superstructure during thermoplastic processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Note: reliable and reusable ultrahigh vacuum optical viewports.

    PubMed

    Arora, P; Sen Gupta, A

    2012-04-01

    We report a simple technique for the realization of ultrahigh vacuum optical viewports. The technique relies on using specially designed thin copper knife-edges and using a thin layer of Vacseal(®) on tip of the knife-edges between the optical flat and the ConFlat(®) (CF) flange. The design of the windows is such that it gives uniform pressure on the flat without breaking it. The assembled window is a complete unit, which can be mounted directly onto a CF flange of the vacuum chamber. It can be removed and reused without breaking the window seal. The design is reliable as more than a dozen such windows have survived several bake out and cooling cycles and have been leak tested up to 10(-11) Torr l/s level with a commercial Helium leak detector. The advantages of this technique are ease of assembly and leak proof sealing that survives multiple temperature cycling making the windows reliable and reusable. © 2012 American Institute of Physics

  3. A locally-blazed ant trail achieves efficient collective navigation despite limited information

    PubMed Central

    Fonio, Ehud; Heyman, Yael; Boczkowski, Lucas; Gelblum, Aviram; Kosowski, Adrian; Korman, Amos; Feinerman, Ofer

    2016-01-01

    Any organism faces sensory and cognitive limitations which may result in maladaptive decisions. Such limitations are prominent in the context of groups where the relevant information at the individual level may not coincide with collective requirements. Here, we study the navigational decisions exhibited by Paratrechina longicornis ants as they cooperatively transport a large food item. These decisions hinge on the perception of individuals which often restricts them from providing the group with reliable directional information. We find that, to achieve efficient navigation despite partial and even misleading information, these ants employ a locally-blazed trail. This trail significantly deviates from the classical notion of an ant trail: First, instead of systematically marking the full path, ants mark short segments originating at the load. Second, the carrying team constantly loses the guiding trail. We experimentally and theoretically show that the locally-blazed trail optimally and robustly exploits useful knowledge while avoiding the pitfalls of misleading information. DOI: http://dx.doi.org/10.7554/eLife.20185.001 PMID:27815944

  4. Study of ultra-high energy emission from Cygnus X-3 and Hercules X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingus, B.L.

    1988-11-01

    The CYGNUS experiment, consisting of an extensive air shower detector and a muon detector, was built at Los Alamos, New Mexico (latitude 36 N, longitude 107W, altitude 2310 meters), to search for point sources of ultra-high energy (>10/sup 14/ eV) particles. These particles must be long-lived neutral particles because of the long source distances and the presence of the intragalactic magnetic field. Gamma rays are the most likely candidates because of the short neutron lifetime and the small neutrino cross section. Therefore, the muon content of the source showers is examined to determine if these events are muon poor asmore » is expected for gamma-initiated showers. The data set from April 1986 to July 1987 is searched for continual emission from Cygnus X-3 and Hercules X-1, and an upper bound to flux is determined for both sources. The flux limit for Cygnus X-3, 2.0 /times/ 10/sup /minus/13/ cm/sup /minus/2/ sec/sup /minus/1/ above 50 TeV, is lower than previous ultra-high energy observations. Hercules X-1 has never been observed continually at ultra-high energies. Cygnus X-3 is observed for a shorter interval of time, beginning on 17 April 1986 and ending 1 June 1986. There is one chance in 300 that the observation is due to a random fluctuation. The signal is correlated with the 4.8 hour orbital period, and the muon content of the showers in the signal is inconsistent with the conventional prediction of gamma- initiated showers. An episodic signal is also reported for Hercules X-1, and it consists of two bursts of less than one hour duration on 24 July 1986. The probability is one chance in 12,000 that this observation is not associated with Hercules X-1. The signal is pulsed at frequency near, but significantly different from, the x-ray pulsar frequency. The muon content of the signal showers is also anomalous, assuming the showers are initiated by gamma rays. 62 refs., 60 figs.« less

  5. Energy-Efficient Data Collection Method for Sensor Networks by Integrating Asymmetric Communication and Wake-Up Radio

    PubMed Central

    Iwata, Masanari; Tang, Suhua; Obana, Sadao

    2018-01-01

    In large-scale wireless sensor networks (WSNs), nodes close to sink nodes consume energy more quickly than other nodes due to packet forwarding. A mobile sink is a good solution to this issue, although it causes two new problems to nodes: (i) overhead of updating routing information; and (ii) increased operating time due to aperiodic query. To solve these problems, this paper proposes an energy-efficient data collection method, Sink-based Centralized transmission Scheduling (SC-Sched), by integrating asymmetric communication and wake-up radio. Specifically, each node is equipped with a low-power wake-up receiver. The sink node determines transmission scheduling, and transmits a wake-up message using a large transmission power, directly activating a pair of nodes simultaneously which will communicate with a normal transmission power. This paper further investigates how to deal with frame loss caused by fading and how to mitigate the impact of the wake-up latency of communication modules. Simulation evaluations confirm that using multiple channels effectively reduces data collection time and SC-Sched works well with a mobile sink. Compared with the conventional duty-cycling method, SC-Sched greatly reduces total energy consumption and improves the network lifetime by 7.47 times in a WSN with 4 data collection points and 300 sensor nodes. PMID:29642397

  6. Multifunctional Nucleus-targeting Nanoparticles with Ultra-high Gene Transfection Efficiency for In Vivo Gene Therapy

    PubMed Central

    Li, Ling; Li, Xia; Wu, Yuzhe; Song, Linjiang; Yang, Xi; He, Tao; Wang, Ning; Yang, Suleixin; Zeng, Yan; Wu, Qinjie; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2017-01-01

    Cancer stem cell-like cells (CSCL) are responsible for tumor recurrence associated with conventional therapy (e.g. surgery, radiation, and chemotherapy). Here, we developed a novel multifunctional nucleus-targeting nanoparticle-based gene delivery system which is capable of targeting and eradicating CSCL. These nanoparticles can facilitate efficient endosomal escape and spontaneously penetrate into nucleus without additional nuclear localization signal. They also induced extremely high gene transfection efficiency (>95%) even in culture medium containing 30% serum, which significantly surpassed that of some commercial transfection reagents, such as Lipofectamine 2000 and Lipofectamine 3000 etc. Especially, when loaded with the TRAIL gene, this system mediated remarkable depletion of CSCL. Upon systemic administration, the nanoparticles accumulated in tumor sites while sparing the non-cancer tissues and significantly inhibited the growth of tumors with no evident systemic toxicity. Taken together, our results suggest that these novel multifunctional, nucleus-targeting nanoparticles are a very promising in vivo gene delivery system capable of targeting CSCL and represent a new treatment candidate for improving the survival of cancer patients. PMID:28529641

  7. Ultra-high resolution crystal structure of recombinant caprine β-lactoglobulin.

    PubMed

    Crowther, Jennifer M; Lassé, Moritz; Suzuki, Hironori; Kessans, Sarah A; Loo, Trevor S; Norris, Gillian E; Hodgkinson, Alison J; Jameson, Geoffrey B; Dobson, Renwick C J

    2014-11-03

    β-Lactoglobulin (βlg) is the most abundant whey protein in the milks of ruminant animals. While bovine βlg has been subjected to a vast array of studies, little is known about the caprine ortholog. We present an ultra-high resolution crystal structure of caprine βlg complemented by analytical ultracentrifugation and small-angle X-ray scattering data. In both solution and crystalline states caprine βlg is dimeric (K(D)<5 μM); however, our data suggest a flexible quaternary arrangement of subunits within the dimer. These structural findings will provide insight into relationships among structural, processing, nutritional and immunological characteristics that distinguish cow's and goat's milk. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency.

    PubMed

    Xin, Xukai; Liu, Hsiang-Yu; Ye, Meidan; Lin, Zhiqun

    2013-11-21

    By combining the ease of producing ZnO nanoflowers with the advantageous chemical stability of TiO2, hierarchically structured hollow TiO2 flower-like clusters were yielded via chemical bath deposition (CBD) of ZnO nanoflowers, followed by their conversion into TiO2 flower-like clusters in the presence of TiO2 precursors. The effects of ZnO precursor concentration, precursor amount, and reaction time on the formation of ZnO nanoflowers were systematically explored. Dye-sensitized solar cells fabricated by utilizing these hierarchically structured ZnO and TiO2 flower clusters exhibited a power conversion efficiency of 1.16% and 2.73%, respectively, under 100 mW cm(-2) illumination. The intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) studies suggested that flower-like structures had a fast electron transit time and their charge collection efficiency was nearly 100%.

  9. Development of ultrahigh-resolution inelastic x-ray scattering optics

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Rong; Zhong, Zhong; Cai, Yong Q.; Coburn, S.

    2008-08-01

    One of the major goals of the National Synchrotron Light Source II project is to achieve ultrahigh energy resolution up to 0.1 meV for medium-energy inelastic X-ray scattering spectroscopy based on the angular dispersion optics employing extremely asymmetric backscattering geometry. In this papaer, we describe the complete monochromatization mechanisms underlying the new optics. We have also designed and tested a CDW-CDW prototype under ambient condition, with which we have successfully demonstrated the important angular dispersion effect, the Borrman enhanced transmission effect, and other optical principles involved in every step of the entire diffraction process, and found good agreement with the theoretical expectations. These studies indicate that the new optics are feasible in principle but face some technical challenges that need to be solved by our future systematic research and development activities before their practical applications.

  10. The efficiency of light-emitting diode suction traps for the collection of South African livestock-associated Culicoides species.

    PubMed

    Venter, G J; Boikanyo, S N B; De Beer, C J

    2018-06-28

    Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of a range of orbiviruses that cause important veterinary diseases such as bluetongue and African horse sickness. The effective monitoring of Culicoides species diversity and abundance, both at livestock and near potential wildlife hosts, is essential for risk management. The Onderstepoort 220-V ultraviolet (UV) light trap is extensively used for this purpose. Reducing its power requirements by fitting low-energy light-emitting diodes (LEDs) can lead to greater flexibility in monitoring. A comparison of the efficiency of the 220-V Onderstepoort trap (8-W fluorescent UV light) with the efficiency of the 220-V or 12-V Onderstepoort traps fitted with red, white, blue or green LEDs or a 12-V fluorescent Onderstepoort trap demonstrated the 220-V Onderstepoort trap to be the most efficient. All the results showed nulliparous Culicoides imicola Kieffer females to be the dominant grouping. Despite the lower numbers collected, 12-V traps can be used in field situations to determine the most abundant species. © 2018 The Royal Entomological Society.

  11. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.

    2018-04-01

    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.

  12. Interpersonal sensitivity and functioning impairment in youth at ultra-high risk for psychosis.

    PubMed

    Masillo, A; Valmaggia, L R; Saba, R; Brandizzi, M; Lindau, J F; Solfanelli, A; Curto, M; Narilli, F; Telesforo, L; Kotzalidis, G D; Di Pietro, D; D'Alema, M; Girardi, P; Fiori Nastro, P

    2016-01-01

    A personality trait that often elicits poor and uneasy interpersonal relationships is interpersonal sensitivity. The aim of the present study was to explore the relationship between interpersonal sensitivity and psychosocial functioning in individuals at ultra-high risk for psychosis as compared to help-seeking individuals who screened negative for an ultra-high risk of psychosis. A total sample of 147 adolescents and young adult who were help seeking for emerging mental health problems participated in the study. The sample was divided into two groups: 39 individuals who met criteria for an ultra-high-risk mental state (UHR), and 108 (NS). The whole sample completed the Interpersonal Sensitivity Measure (IPSM) and the Global Functioning: Social and Role Scale (GF:SS; GF:RS). Mediation analysis was used to explore whether attenuated negative symptoms mediated the relationship between interpersonal sensitivity and social functioning. Individuals with UHR state showed higher IPSM scores and lower GF:SS and GF:RS scores than NS participants. A statistically negative significant correlation between two IPSM subscales (Interpersonal Awareness and Timidity) and GF:SS was found in both groups. Our results also suggest that the relationship between the aforementioned aspects of interpersonal sensitivity and social functioning was not mediated by negative prodromal symptoms. This study suggests that some aspects of interpersonal sensitivity were associated with low level of social functioning. Assessing and treating interpersonal sensitivity may be a promising therapeutic target to improve social functioning in young help-seeking individuals.

  13. Nontargeted Screening Method for Illegal Additives Based on Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometry.

    PubMed

    Fu, Yanqing; Zhou, Zhihui; Kong, Hongwei; Lu, Xin; Zhao, Xinjie; Chen, Yihui; Chen, Jia; Wu, Zeming; Xu, Zhiliang; Zhao, Chunxia; Xu, Guowang

    2016-09-06

    Identification of illegal additives in complex matrixes is important in the food safety field. In this study a nontargeted screening strategy was developed to find illegal additives based on ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). First, an analytical method for possible illegal additives in complex matrixes was established including fast sample pretreatment, accurate UHPLC separation, and HRMS detection. Second, efficient data processing and differential analysis workflow were suggested and applied to find potential risk compounds. Third, structure elucidation of risk compounds was performed by (1) searching online databases [Metlin and the Human Metabolome Database (HMDB)] and an in-house database which was established at the above-defined conditions of UHPLC-HRMS analysis and contains information on retention time, mass spectra (MS), and tandem mass spectra (MS/MS) of 475 illegal additives, (2) analyzing fragment ions, and (3) referring to fragmentation rules. Fish was taken as an example to show the usefulness of the nontargeted screening strategy, and six additives were found in suspected fish samples. Quantitative analysis was further carried out to determine the contents of these compounds. The satisfactory application of this strategy in fish samples means that it can also be used in the screening of illegal additives in other kinds of food samples.

  14. Identification of sinensetin metabolites in rat urine by an isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Wei, Guor-Jien; Sheen, Jenn-Feng; Lu, Wen-Chien; Hwang, Lucy Sun; Ho, Chi-Tang; Lin, Ching-I

    2013-05-29

    Sinensetin (SIN), one of the major polymethoxyflavones (PMFs) contained mainly in the citrus peels, has been reported to possess various bioactivities, including antifungal, antimutagenic, anticancer, and anti-inflammatory activities. Although the biotransformation of SIN in fungi and insects has been reported, the information about the metabolism of SIN in mammals is still unclear. In this study, formation of SIN metabolites in rats was investigated. Four isotope-labeled SINs ([4'-D3]SIN, [3'-D3]SIN, [5-D3]SIN, and [6-D3]SIN) were synthesized and administered to rat. The urine samples were collected and main metabolites were monitored by ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. The administered compound and four SIN metabolites were detected in rat urine. These metabolites were identified as 4'-hydroxy-5,6,7,3'-tetramethoxyflavone, 5-hydroxy-6,7,3',4'-tetramethoxyflavone, 6-hydroxy-5,7,3',4'-tetramethoxyflavone, and 7-hydroxy-5,6,3',4'-tetramethoxyflavone sulfate.

  15. 77 FR 30007 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... smears and vaccines; poor self- management of conditions such as asthma and diabetes; and higher rates of... delivery of such care, including activities with respect to the quality, effectiveness, efficiency... Information Collection Activities: Proposed Collection; Comment Request AGENCY: Agency for Healthcare Research...

  16. Elemental Composition Analysis to Investigate NOx Effects on Secondary Organic Aerosol from α-Pinene Using Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lim, H. J.; Park, J. H.; Babar, Z.

    2015-12-01

    Secondary organic aerosol (SOA) accounts for 20-70% of atmospheric fine aerosol. NOx plays crucial roles in SOA formation and consequently affects the composition and yield of SOA. SOA component speciation is incomplete due to its complex composition of polar oxygenated and multifunctional species. In this study, ultrahigh resolution mass spectrometry (UHR MS) was applied to improve the understanding of NOx effects on biogenic SOA formation by identifying the elemental composition of SOA. Additional research aim was to investigate oligomer components that are considered as a driving force for SOA formation and growth. In this study α-pinene SOA from photochemical reaction was examined. SOA formation was performed in the absence and presence of NOx at dry condition (<5% RH) of room temperature (~25oC) in ~8 m3 KNU smog chamber. SOA was collected on Teflon-coated glass fiber filter, which was extracted using acetonitrile and analyzed by ultrahigh resolution 15T FT-ICR MS. UHR MS data were interpreted in various ways including molecular formula, Kendrick diagram, van Krevelen diagram, and double bond equivalent values. Substantially large fractions of them are nitrogen containing species. Thousands of individual species of SOA were identified. For SOA in the absence of NOx. intensity normalized mean O/C, H/C, N/C, OM/OC ratios were 0.43, 1.52, 0.02, and 1.68, respectively. For SOA in the presence of NOx, those ratios were 0.52, 0.95, 0.08, and 1.48, respectively. 4 different oligomer formation mechanisms (addition, H abstraction, hydrolysis and de-hydrolysis reaction) were examined on the basis of SOA compositions. Detailed discussion will be presented on the molecular structure and building block of oligomers in SOA as well as the evolution of individual elemental composition by multi-generation reactions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-01350000).

  17. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries

    PubMed Central

    Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi

    2017-01-01

    Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm−2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm−2, which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm−2). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity. PMID:28378746

  18. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  19. A quick, easy, cheap, effective, rugged, and safe method for the simultaneous detection of four triazolone herbicides in cereals combined with ultrahigh performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Tao, Yan; Xu, Jun; Liu, Xingang; Cheng, Youpu; Liu, Na; Chen, Zenglong; Dong, Fengshou; Zheng, Yonguan

    2014-09-01

    This paper describes a novel, rapid, and sensitive analytical method for monitoring four triazolone herbicides in cereals (wheat, rice, corn, and soybean), using a quick, easy, cheap, effective, rugged, and safe sample extraction procedure followed by ultrahigh performance liquid chromatography coupled with tandem mass spectrometry. The four triazolone herbicides (amicarbazone, carfentrazone-ethyl, sulfentrazone, and thiencarbazone-methyl) were extracted using acidified acetonitrile (containing 1% v/v formic acid) and subsequently purified with octadecylsilane (C18 ) prior to sample analysis. Ultrahigh performance liquid chromatography coupled with tandem mass spectrometry was operated in positive and negative ionization switching mode. Amicarbazone and carfentrazone-ethyl were detected in the positive mode (ESI+), while sulfentrazone and thiencarbazone-methyl were detected in the negative mode (ESI-). All compounds were successfully separated in less than 3.0 min. Further optimization achieved desired recoveries ranging from 74.5 to 102.1% for all analytes with relative standard deviation values ≤17.2% in all tested matrices at three levels (10, 100, and 500 μg/kg). The limits of detection for all compounds were ≤2.3 μg/kg, and the limits of quantitation did not exceed 7.1 μg/kg. The developed method showed excellent linearity (R(2) ≥ 0.994) and was proven to be highly efficient and reliable for the routine monitoring of triazolone herbicides in cereals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Process for the production of ultrahigh purity silane with recycle from separation columns

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor)

    1982-01-01

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  1. Process for the production of ultrahigh purity silane with recycle from separation columns

    DOEpatents

    Coleman, Larry M.

    1982-07-20

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  2. High-Collection-Efficiency Fluorescence Detection Cell

    NASA Technical Reports Server (NTRS)

    Hanisco, Thomas; Cazorla, Maria; Swanson, Andrew

    2013-01-01

    A new fluorescence cell has been developed for the laser induced fluorescence (LIF) detection of formaldehyde. The cell is used to sample a flow of air that contains trace concentrations of formaldehyde. The cell provides a hermetically sealed volume in which a flow of air containing formaldehyde can be illuminated by a laser. The cell includes the optics for transmitting the laser beam that is used to excite the formaldehyde and for collecting the resulting fluorescence. The novelty of the cell is its small size and simple design that provides a more robust and cheaper alternative to the state of the art. Despite its simplicity, the cell provides the same sensitivity to detection as larger, more complicated cells.

  3. Determination of colistin in animal tissues, egg, milk, and feed by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Fu, Qin; Li, Xiaowei; Zheng, Kangni; Ke, Yuebin; Wang, Yingyu; Wang, Lina; Yu, Fugen; Xia, Xi

    2018-05-15

    A confirmatory method for the determination of colistin in animal tissues, egg, milk, and feed was developed and validated. Colistin A and colistin B were extracted from samples with the mixture of 10% trichloroacetic acid-acetonitrile and isolated with mixed-mode weak cation exchange cartridge. Analytes were separated from matrix components using ultra-high performance liquid chromatography, and detected with electrospray ionization on a triple quadrupole mass spectrometer. Mean recoveries ranged from 78.0% to 115.6% with intra-day and inter-day relative standard deviation lower than 8.4% and 12.4%, respectively. The quantitation limits for different matrices were between 5 and 30 μg/kg, which was satisfactory for surveillance monitoring. The developed method was applied to the analysis of real samples collected from different provinces of China, and 19 out of 348 samples were found to be contaminated, with the highest concentration of approximately 12,000 μg/kg colistin A and 10,000 μg/kg colistin B in feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection.

    PubMed

    Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine

    2014-03-01

    Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa

    2015-08-01

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.

  6. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  7. 75 FR 8722 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Efficient Health Care in Federal Government Administered or Sponsored Health Care Programs,'' performance... collection for the proper performance of the agency's functions; (2) the accuracy of the estimated burden; (3... of Information Collection: Part C and D Complaints Resolution Performance Measures: Use: Part C...

  8. Thumbnail‐based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes

    USGS Publications Warehouse

    Bossu, Remy; Landes, Matthieu; Roussel, Frederic; Steed, Robert; Mazet-Roux, Gilles; Martin, Stacey S.; Hough, Susan E.

    2017-01-01

    The collection of earthquake testimonies (i.e., qualitative descriptions of felt shaking) is essential for macroseismic studies (i.e., studies gathering information on how strongly an earthquake was felt in different places), and when done rapidly and systematically, improves situational awareness and in turn can contribute to efficient emergency response. In this study, we present advances made in the collection of testimonies following earthquakes around the world using a thumbnail‐based questionnaire implemented on the European‐Mediterranean Seismological Centre (EMSC) smartphone app and its website compatible for mobile devices. In both instances, the questionnaire consists of a selection of thumbnails, each representing an intensity level of the European Macroseismic Scale 1998. We find that testimonies are collected faster, and in larger numbers, by way of thumbnail‐based questionnaires than by more traditional online questionnaires. Responses were received from all seismically active regions of our planet, suggesting that thumbnails overcome language barriers. We also observed that the app is not sufficient on its own, because the websites are the main source of testimonies when an earthquake strikes a region for the first time in a while; it is only for subsequent shocks that the app is widely used. Notably though, the speed of the collection of testimonies increases significantly when the app is used. We find that automated EMSC intensities as assigned by user‐specified thumbnails are, on average, well correlated with “Did You Feel It?” (DYFI) responses and with the three independently and manually derived macroseismic datasets, but there is a tendency for EMSC to be biased low with respect to DYFI at moderate and large intensities. We address this by proposing a simple adjustment that will be verified in future earthquakes.

  9. Simulation of the Acoustic Pulse Expected from the Interaction of Ultra-High Energy Neutrinos and Seawater

    DTIC Science & Technology

    2006-03-01

    the diameter. This equation is given by Sulak et. al. [1979] as: Eq 3 2 2 sin 8 o p EK cP C r d x ≅ x ’ Where sinLx π θ λ ⎛ ⎞= ⎜ ⎟ ⎝ ⎠ , L is...and others, "Sensitivity of an Underwater Acoustic Array to Ultra-High Energy Neutrinos", Astroparticle Physics, n.17, 2002. Sulak , L., Armstrong

  10. Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro-Supercapacitors with Ultrahigh Power Output.

    PubMed

    Ye, Jianglin; Tan, Huabing; Wu, Shuilin; Ni, Kun; Pan, Fei; Liu, Jie; Tao, Zhuchen; Qu, Yan; Ji, Hengxing; Simon, Patrice; Zhu, Yanwu

    2018-05-17

    High-performance yet flexible micro-supercapacitors (MSCs) hold great promise as miniaturized power sources for increasing demand of integrated electronic devices. Herein, this study demonstrates a scalable fabrication of multilayered graphene-based MSCs (MG-MSCs), by direct laser writing (DLW) of stacked graphene films made from industry-scale chemical vapor deposition (CVD). Combining the dry transfer of multilayered CVD graphene films, DLW allows a highly efficient fabrication of large-areal MSCs with exceptional flexibility, diverse planar geometry, and capability of customer-designed integration. The MG-MSCs exhibit simultaneously ultrahigh energy density of 23 mWh cm -3 and power density of 1860 W cm -3 in an ionogel electrolyte. Notably, such MG-MSCs demonstrate an outstanding flexible alternating current line-filtering performance in poly(vinyl alcohol) (PVA)/H 2 SO 4 hydrogel electrolyte, indicated by a phase angle of -76.2° at 120 Hz and a resistance-capacitance constant of 0.54 ms, due to the efficient ion transport coupled with the excellent electric conductance of the planar MG microelectrodes. MG-polyaniline (MG-PANI) hybrid MSCs fabricated by DLW of MG-PANI hybrid films show an optimized capacitance of 3.8 mF cm -2 in PVA/H 2 SO 4 hydrogel electrolyte; an integrated device comprising MG-MSCs line filtering, MG-PANI MSCs, and pressure/gas sensors is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.

    1995-08-29

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.

  12. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.

    1995-01-01

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.

  13. Modeling of venturi scrubber efficiency

    NASA Astrophysics Data System (ADS)

    Crowder, Jerry W.; Noll, Kenneth E.; Davis, Wayne T.

    The parameters affecting venturi scrubber performance have been rationally examined and modifications to the current modeling theory have been developed. The modified model has been validated with available experimental data for a range of throat gas velocities, liquid-to-gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency. Most striking among the observations is the prediction of a new design parameter termed the minimum contactor length. Also noted is the prediction of little effect on collection efficiency with increasing liquid-to-gas ratio above about 2ℓ m-3. Indeed, for some cases a decrease in collection efficiency is predicted for liquid rates above this value.

  14. Diagnostic Validity of the Eppendorf Schizophrenia Inventory (ESI): A Self-Report Screen for Ultrahigh Risk and Acute Psychosis

    ERIC Educational Resources Information Center

    Niessen, Maurice A. J.; Dingemans, Peter M. A. J.; van de Fliert, Reinaud; Becker, Hiske E.; Nieman, Dorien H.; Linszen, Don

    2010-01-01

    Providers of mental health services need tools to screen for acute psychosis and ultrahigh risk (UHR) for transition to psychosis in help-seeking individuals. In this study, the Eppendorf Schizophrenia Inventory (ESI) was examined as a screening tool and for its ability to correctly predict diagnostic group membership (e.g., help seeking, mild…

  15. Two-stage optical recording: photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory.

    PubMed

    Hu, Yanlei; Wu, Dong; Li, Jiawen; Huang, Wenhao; Chu, Jiaru

    2016-10-03

    Ultrahigh density data storage is in high demand in the current age of big data and thus motivates many innovative storage technologies. Femtosecond laser induced multi-dimensional optical data storage is an appealing method to fulfill the demand of ultrahigh storage capacity. Here we report a femtosecond laser induced two-stage optical storage in bisazobenzene copolymer films by manipulating the recording energies. Different mechanisms can be selected for specified memory use: two-photon isomerization (TPI) and laser induced surface deformation. Giant birefringence can be generated by TPI and brings about high signal-to-noise ratio (>20 dB) multi-dimensional reversible storage. Polarization-dependent surface deformation arises when increasing the recording energy, which not only facilitates the multi-level storage by black bits (dots), but also enhances the bits' readout signal and storing stability. This facile bits recording method, which enables completely different recording mechanisms in an identical storage medium, paves the way for sustainable big data storage.

  16. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    PubMed

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg 2 NiH 4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg 2 NiH 4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol -1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 76 FR 34076 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... in use without an OMB control number; Title of Information Collection: Medicare Beneficiary and... Satisfaction flows from the proposed sampling approach. While it was feasible to conduct the 9th SOW via... not seem efficient to maintain a telephone only data collection approach. Based on recent literature...

  18. Low Cost and Efficient 3d Indoor Mapping Using Multiple Consumer Rgb-D Cameras

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, B. S.; Song, S.

    2016-06-01

    Driven by the miniaturization, lightweight of positioning and remote sensing sensors as well as the urgent needs for fusing indoor and outdoor maps for next generation navigation, 3D indoor mapping from mobile scanning is a hot research and application topic. The point clouds with auxiliary data such as colour, infrared images derived from 3D indoor mobile mapping suite can be used in a variety of novel applications, including indoor scene visualization, automated floorplan generation, gaming, reverse engineering, navigation, simulation and etc. State-of-the-art 3D indoor mapping systems equipped with multiple laser scanners product accurate point clouds of building interiors containing billions of points. However, these laser scanner based systems are mostly expensive and not portable. Low cost consumer RGB-D Cameras provides an alternative way to solve the core challenge of indoor mapping that is capturing detailed underlying geometry of the building interiors. Nevertheless, RGB-D Cameras have a very limited field of view resulting in low efficiency in the data collecting stage and incomplete dataset that missing major building structures (e.g. ceilings, walls). Endeavour to collect a complete scene without data blanks using single RGB-D Camera is not technic sound because of the large amount of human labour and position parameters need to be solved. To find an efficient and low cost way to solve the 3D indoor mapping, in this paper, we present an indoor mapping suite prototype that is built upon a novel calibration method which calibrates internal parameters and external parameters of multiple RGB-D Cameras. Three Kinect sensors are mounted on a rig with different view direction to form a large field of view. The calibration procedure is three folds: 1, the internal parameters of the colour and infrared camera inside each Kinect are calibrated using a chess board pattern, respectively; 2, the external parameters between the colour and infrared camera inside each

  19. Ultrahigh piezoelectricity in ferroelectric ceramics by design

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R.; Zhang, Shujun

    2018-03-01

    Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity ɛ33/ɛ0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

  20. Ultrahigh piezoelectricity in ferroelectric ceramics by design.

    PubMed

    Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R; Zhang, Shujun

    2018-04-01

    Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d 33 of up to 1,500 pC N -1 and dielectric permittivity ε 33 /ε 0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.