Sample records for ultraluminous infared galaxies

  1. Ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Neugebauer, G.; Scoville, N. Z.; Madore, B. F.; Danielson, G. E.; Elias, J. H.; Matthews, K.; Persson, C. J.; Persson, S. E.

    1987-01-01

    The IRAS survey of the local universe has revealed the existence of a class of ultraluminous infrared galaxies with L(8 to 1000 micrometer) greater than 10 to the 12th L sub 0 that are slightly more numerous, and as luminous as optically selected quasars at similar redshift. Optical CCD images of these infrared galaxies show that nearly all are advanced mergers. Millimeter wave CO observations indicate that these interacting systems are extremely rich in molecular gas with total H2 masses 1 to 3 x 10 to the 10th power M sub 0. Nearly all of the ultraluminous infrared galaxies show some evidence in their optical spectra for nonthermal nuclear activity. It is proposed that their infrared luminosity is powered by an embedded active nucleus and a nuclear starburst both of which are fueled by the tremendous reservoir of molecular gas. Once these merger nuclei shed their obscuring dust, allowing the AGN to visually dominate the decaying starburst, they become the optically selected quasars.

  2. Hot Dust in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Shchekinov, Yu. A.; Vasiliev, E. O.

    2017-12-01

    Ultraluminous infrared galaxies with total luminosities an order of magnitude greater than that of our galaxy over wavelengths of λλ = 10-800 μm are characterized by a high mass concentration of dust. Because of this, the optical thickness of the interstellar gas is extremely high, especially in the central regions of the galaxies, ranging from 1 at millimeter wavelengths to 104 in the visible. The average temperature of the dust in them is about Td=30 K, but the variations from one galaxy to another are large, with Td=20-70 K. The main source of dust in these galaxies seems to be type II supernova bursts and the main heating source is stars. In addition, given that shock waves from supernovae are an effective mechanism for destruction of interstellar dust in our galaxy and the high optical thickness of the gas with respect to the heating radiation from the stars, this conclusion merits detailed analysis. This paper provides estimates of the dust mass balance and details of its heating in these galaxies based on the example of the ultraluminous galaxy closest to us, Arp 220. It is shown that when supernovae are dominant in the production and destruction of dust in the interstellar gas, the resultant dust mass fraction is close to the observed value for Arp 220. It is also found that the observed stellar population of this galaxy can support a high ( Td ≃ 67 K ) temperature if the dust in its central region is concentrated in small, dense (n 105 cm-3) clouds with radii of 0.003 ≲ pc. Mechanisms capable of maintaining an interstellar gas structure in this state are discussed.

  3. Spectroscopy of luminous infrared galaxies at 2 microns: 1. The ultraluminous galaxies (L(sub IR) approximately greater than 10 (exp 12) solar luminosity)

    NASA Technical Reports Server (NTRS)

    Goldader, Jeffrey D.; Joseph, R. D.; Doyon, Rene; Sanders, D. B.

    1995-01-01

    We present high-quality spectra covering the K window at a resolving power of 340 for a sample of 13 ultraluminous (L(sub IR) approximately greater than 10(exp 12) solar luminosity) infrared-selected galaxies, and line fluxes for a comparison sample of 24 lower luminosity galaxies. The 2 micrometers spectra of 10 of the ultraluminous galaxies are characterized by emission and absorption features commonly associated with stars and star formation; two others have the red power-law spectra and Br gamma line widths of Seyfert 1 galaxies; the final galaxy has strong emission from hot dust. We have found no broad-line active nuclei not already known from optical observations, despite the fact that the extinction at 2 micrometers is 1/10 that at optical wavelengths; any putative Seyfert 1 nuclei must be deeply buried. Powerful continua and emission lines from H2 and Br gamma are detected in all the ultraluminous galaxies. Comparing the H2 1-0 S(1), Br gamma, and 2 micrometers and far-infrared luminosities to those of the lower luminosity galaxies yields several major results. First, the dereddened Br gamma emission, relative to the far-infrared luminosity is significantly depressed in the ultraluminous sample, when compared to the lower luminosity galaxies. Five of the ultraluminous galaxies have L(sub Br gamma)L(sub IR) ratios lower than for any of the comparison objects. Second, the H2 1-0 S(1) luminosity is also responsible, directly or indirectly, for producing the excited H2, and that the H2 apparently comes from optically thin regions in both classes of objects. Third, eight of the 13 ultraluminous systems have lower 2 micrometers/far-infrared luminosity ratios than any of the lower luminosity galaxies, and five of these are the galaxies also deficient in Br gamma. These three findings may be understood if the the H2, Br gamma, and 2 mircometers continua in the ultraluminous galaxies arise from spatially distinct regions, with the continuum and Br gamma largely

  4. OSSE observations of the ultraluminous infrared galaxies ARP 220 and MRK 273

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Shier, L. M.; Sturner, S. J.; McNaron-Brown, K.; Bland-Hawthorn, J.

    1997-01-01

    The results of oriented scintillation spectrometer experiment (OSSE) observations of the ultraluminous infrared galaxies Arp 220 and Mrk 273 are reported. The pointings of Arp 220 and Mrk 273 concentrated on their upper limits. The gamma ray luminosities from these sources were found to be between one and two orders of magnitude smaller than the infrared luminosities. Multiwavelength luminosity spectra are produced from the radio to the gamma ray regime, and are compared with the typical multiwavelength spectra of active galactic nuclei. The lack of measured gamma ray emission provides no evidence for the existence of buried active galactic nuclei in these ultraluminous infrared galaxies, but is consistent with an origin of the infrared luminosity from starburst activity.

  5. The Statistical Properties of Galaxies Containing Ultraluminous X-Ray Objects

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Colbert, E.

    2004-05-01

    We present a statistical analysis of the properties of galaxies containing ultraluminous X-ray objects (ULXs). Our primary goal is to establish the fraction of galaxies containing a ULX as a function of ULX luminosity. Our sample is based on ROSAT HRI observations of galaxies. We find that ~12% of galaxies contain at least one ULX with LX>1039 ergs s-1, and ~1% of galaxies contain at least one ULX with LX>1040 ergs s-1. These ULX frequencies are lower limits, since ROSAT HRI observations would miss absorbed ULXs (i.e., with NH>~1021cm-2) and those within ~10" of the nucleus (due to the positional error circle of the ROSAT HRI). The Hubble type distribution of galaxies with a ULX differs significantly from the distribution of types for nearby Third Reference Catalog galaxies but does not differ significantly from the galaxy type distribution of galaxies observed by the HRI in general. We find no increase in the mean far-infrared (FIR) luminosity or FIR/K-band luminosity ratio for galaxies with a ULX relative to galaxies observed by the HRI in general; however, this result is also most likely biased by the soft bandpass of the HRI and the relatively low number of high star formation rate galaxies observed by the HRI with enough sensitivity to detect a ULX.

  6. Cosmic ray driven outflows in an ultraluminous galaxy

    NASA Astrophysics Data System (ADS)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  7. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  8. Buried Quasars in Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2004-01-01

    We were awarded l00OkS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order io measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  9. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  10. ALMA Multiple-transition Observations of High-density Molecular Tracers in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2018-04-01

    We present the results of our ALMA observations of 11 (ultra)luminous infrared galaxies ((U)LIRGs) at J = 4–3 of HCN, HCO+, and HNC and J = 3–2 of HNC. This is an extension of our previously published HCN and HCO+ J = 3–2 observations to multiple rotational J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ultraluminous infrared galaxies (ULIRGs) that contain or may contain luminous obscured active galactic nuclei (AGNs) tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J = 4–3 and J = 3–2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J = 3–2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v 2 = 1f) HCN J = 4–3 emission line is seen in one ULIRG, IRAS 12112‑0305 NE. P Cygni profiles are detected in the HCO+ J = 4–3 and J = 3–2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ∼250–750 M ⊙ yr‑1. The SiO J = 6–5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.

  11. HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Solomon, Philip M.

    2004-05-01

    We report systematic HCN J=1-0 (and CO) observations of a sample of 53 infrared (IR) and/or CO-bright and/or luminous galaxies, including seven ultraluminous infrared galaxies, nearly 20 luminous infrared galaxies, and more than a dozen of the nearest normal spiral galaxies. This is the largest and most sensitive HCN survey of galaxies to date. All galaxies observed so far follow the tight correlation between the IR luminosity LIR and the HCN luminosity LHCN initially proposed by Solomon, Downes, & Radford, which is detailed in a companion paper. We also address here the issue of HCN excitation. There is no particularly strong correlation between LHCN and the 12 μm luminosity; in fact, of all the four IRAS bands, the 12 μm luminosity has the weakest correlation with the HCN luminosity. There is also no evidence of stronger HCN emission or a higher ratio of HCN and CO luminosities LHCN/LCO for galaxies with excess 12 μm emission. This result implies that mid-IR radiative pumping, or populating, of the J=1 level of HCN by a mid-IR vibrational transition is not important compared with the collisional excitation by dense molecular hydrogen. Furthermore, large velocity gradient calculations justify the use of HCN J=1-0 emission as a tracer of high-density molecular gas (>~3×104/τcm-3) and give an estimate of the mass of dense molecular gas from HCN observations. Therefore, LHCN may be used as a measure of the total mass of dense molecular gas, and the luminosity ratio LHCN/LCO may indicate the fraction of molecular gas that is dense.

  12. The SCUBA-2 cosmology legacy survey: Ultraluminous star-forming galaxies in a z = 1.6 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smail, Ian; Swinbank, A. M.; Danielson, A. L. R.

    2014-02-10

    We analyze new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z = 1.62 cluster, Cl 0218.3–0510, which lies in the UKIRT Infrared Deep Sky Survey/Ultra-Deep Survey field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star-formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities ≳10{sup 12} L {sub ☉} and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit ALMA submillimeter continuum observations, which cover onemore » of these sources, to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalized sense) than clusters at z ∼ 0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z = 1.6, M{sub H} ∼ –23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present day that are less luminous than the descendants of those galaxies that were already passive at z ∼ 1.6 (M{sub H} ∼ –20.5 and M{sub H} ∼ –21.5, respectively, at z ∼ 0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z = 1.6 and that in Cl 0218.3–0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.« less

  13. Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Pence, W. D.; Snowden, S. L.; Kuntz, K. D.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.

  14. A Radio Study of the Ultra-luminous FIR Galaxy NGC 6240

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Wilson, A. S.; Bland-Hawthorn, J.

    1993-05-01

    A number of galaxies observed in the IRAS mission are noted to emit ~ 99% of their bolometric flux in the FIR, with FIR luminosities in excess of 10(11) Lsun. The interacting galaxy NGC 6240 has often been referred to as the ``proto-typical'' ultra-luminous (L_FIR >~ 10(12) Lsun) FIR galaxy. The origin of the FIR excess remains a disputed subject in the literature. New observations of NGC 6240 were taken with the VLA at 20cm in the B-configuration, and at 3.6cm in the A-configuration. No significant radio emission was detected from or near the possible ultra-massive ``dark core'' hypothesized by Bland-Hawthorn et. al. (1991); however, approximately 30% of Seyfert galaxies have 20 cm radio luminosities weaker than the upper limit derived from the radio maps. The non-thermal radio emission from luminous FIR galaxies is tightly correlated with the FIR emission. Previous radio observations of NGC 6240 revealed two compact, steep-spectrum nuclear sources, nearly coincident with the two nuclear sources seen in optical images. The 2 images from the new VLA observations and 5 images from previous VLA observations are used to identify the morphological and spectral features of the strong, compact components in the nuclear regions (<~ 1.5 kpc; D=100 Mpc) and of the weaker ``clumps'' of diffuse emission south and west (>~ 3 kpc) from the nucleus. Feasible explanations for the radio emission are discussed. The models that have been proposed in the literature for the FIR excess of NGC 6240 are evaluated for consistency with the observed radio emission.

  15. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies.

    PubMed

    Irwin, Jimmy A; Maksym, W Peter; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M

    2016-10-20

    A flaring X-ray source was found near the galaxy NGC 4697 (ref. 1). Two brief flares were seen, separated by four years. During each flare, the flux increased by a factor of 90 on a timescale of about one minute. There is no associated optical source at the position of the flares, but if the source was at the distance of NGC 4697, then the luminosities of the flares were greater than 10 39 erg per second. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar flares. We found two ultraluminous flaring sources in globular clusters or ultracompact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 × 10 40 erg per second; the other flared five times to 10 40 erg per second. The rise times of all of the flares were less than one minute, and the flares then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron-star or black-hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft γ repeaters that have repetitive flares of similar luminosities.

  16. Radio emission from an ultraluminous x-ray source.

    PubMed

    Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas

    2003-01-17

    The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.

  17. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, M.; Diaz, R.; Levenson, N. A.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [Omore » III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.« less

  18. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harborsmore » an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.« less

  19. Impact of ultraluminous X-ray sources on photoabsorption in the first galaxies

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Khabibullin, I.

    2018-05-01

    In the local Universe, integrated X-ray emission from high-mass X-ray binaries (HMXBs) is dominated by the brightest ultraluminous X-ray sources (ULXs) with luminosity ≳1040 erg s-1. Such rare objects probably also dominated the production of X-rays in the early Universe. We demonstrate that a ULX with LX ˜ 1040-1041 erg s-1 (isotropic-equivalent luminosity in the 0.1-10 keV energy band) shining for ˜105 yr (the expected duration of a supercritically accreting phase in HMXBs) can significantly ionize the ISM in its host dwarf galaxy of total mass M ˜ 107-108 M⊙ and thereby reduce its opacity to soft X-rays. As a result, the fraction of the soft X-ray (below 1 keV) radiation from the ULX escaping into the intergalactic medium (IGM) can increase from ˜20-50 per cent to ˜30-80 per cent over its lifetime. This implies that HMXBs can induce a stronger heating of the IGM at z ≳ 10 compared to estimates neglecting the ULX feedback on the ISM. However, larger galaxies with M ≳ 3 × 108 M⊙ could not be significantly ionized even by the brightest ULXs in the early Universe. Since such galaxies probably started to dominate the global star formation rate at z ≲ 10, the overall escape fraction of soft X-rays from the HMXB population probably remained low, ≲30 per cent, at these epochs.

  20. The Ultra-Luminous X-ray Source Population from the Chandra Archive of Galaxies

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Ghosh, Kajal K.; Tennant, Allen F.; Wu, Kinwah

    2004-01-01

    One hundred fifty-four discrete non-nuclear Ultra-Luminous X-ray (ULX) sources, with spectroscopically-determined intrinsic X-ray luminosities greater than 1 e39 ergs/s, are identified in 82 galaxies observed with Chandra's Advanced CCD Imaging Spectrometer. Source positions, X-ray luminosities, and spectral and timing characteristics are tabulated. Statistical comparisons between these X-ray properties and those of the weaker discrete sources in the same fields (mainly neutron star and stellar-mass black hole binaries) are made. Sources above approximately le38 ergs per second display similar spatial, spectral, color, and variability distributions. In particular, there is no compelling evidence in the sample for a new and distinct class of X-ray object such as the intermediate-mass black holes. 83% of ULX candidates have spectra that can be described as absorbed power laws with index = 1.74 and column density = 2.24e21 l per square centimeter, or approximately 5 times the average Galactic column. About 20% of the ULX's have much steeper indices indicative of a soft, and likely thermal, spectrum. The locations of ULXs in their host galaxies are strongly peaked towards their galaxy centers. The deprojected radial distribution of the ULX candidates is somewhat steeper than an exponential disk, indistinguishable from that of the weaker sources. About 5--15% of ULX candidates are variable during the Chandra observations (which average 39.5 ks). Comparison of the cumulative X-ray luminosity functions of the ULXs to Chandra Deep Field results suggests approximately 25% of the sources may be background objects including 14% of the ULX candidates in the sample of spiral galaxies and 44% of those in elliptical galaxies implying the elliptical galaxy ULX population is severely compromised by background active galactic nuclei. Correlations with host galaxy properties confirm the number and total X-ray luminosity of the ULXs are associated with recent star formation

  1. The Nature of Deeply Buried Ultraluminous Infrared Galaxies: A Unified Model for Highly Obscured Dusty Galaxy Emission

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Elitzur, M.; Armus, L.; Diaz-Santos, T.; Charmandaris, V.

    2018-05-01

    We present models of deeply buried ultraluminous infrared galaxy (ULIRG) spectral energy distributions (SEDs) and use them to construct a three-dimensional diagram for diagnosing the nature of observed ULIRGs. Our goal is to construct a suite of SEDs for a very simple model ULIRG structure, and to explore how well this simple model can (by itself) explain the full range of observed ULIRG properties. We use our diagnostic to analyze archival Spitzer Space Telescope Infrared Spectrograph data of ULIRGs and find that: (1) in general, our model does provide a comprehensive explanation of the distribution of mid-IR ULIRG properties; (2) >75% (in some cases 100%) of the bolometric luminosities of the most deeply buried ULIRGs must be powered by a dust-enshrouded active galactic nucleus; (3) an unobscured “keyhole” view through ≲10% of the obscuring medium surrounding a deeply buried ULIRG is sufficient to make it appear nearly unobscured in the mid-IR; (4) the observed absence of deeply buried ULIRGs with large polycyclic aromatic hydrocarbon (PAH) equivalent widths is naturally explained by our models, showing that deep absorption features are “filled-in” by small quantities of foreground unobscured PAH emission (e.g., from the host galaxy disk) at the level of ∼1% the bolometric nuclear luminosity. The modeling and analysis we present will also serve as a powerful tool for interpreting the high angular resolution spectra of high-redshift sources to be obtained with the James Webb Space Telescope.

  2. The Ultraluminous X-Ray Source X-37 Is a Background Quasar in the Antennae Galaxies

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Christopher, M. H.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2005-10-01

    In this Letter we report that a bright, X-ray source in the Antennae galaxies (NGC 4038/9), previously identified as an ultraluminous X-ray source (ULX), is in fact a background quasar. We identify an isolated infrared and optical counterpart within 0.3" +/- 0.5" of the X-ray source X-37. After acquiring an optical spectrum of its counterpart, we use the narrow [O III] and broad Hα emission lines to identify X-37 as a quasar at a redshift of z=0.26. Through a U, V, and Ks photometric analysis, we demonstrate that most of the observable light along this line of sight is from the quasar. We discuss the implications of this discovery and the importance of acquiring spectra for optical and IR counterparts to ULXs.

  3. A new catalogue of ultraluminous X-ray sources (and more!)

    NASA Astrophysics Data System (ADS)

    Roberts, T.; Earnshaw, H.; Walton, D.; Middleton, M.; Mateos, S.

    2017-10-01

    Many of the critical issues of ultraluminous X-ray source (ULX) science - for example the prevalence of IMBH and/or ULX pulsar candidates within the wider ULX population - can only be addressed by studying statistical samples of ULXs. Similarly, characterising the range of properties displayed by ULXs, and so understanding their accretion physics, requires large samples of objects. To this end, we introduce a new catalogue of 376 ultraluminous X-ray sources and 1092 less luminous point X-ray sources associated with nearby galaxies, derived from the 3XMM-DR4 catalogue. We highlight applications of this catalogue, for example the identification of new IMBH candidates from the most luminous ULXs; and examining the physics of objects at the Eddington threshold, where their luminosities of ˜ 10^{39} erg s^{-1} indicate their accretion rates are ˜ Eddington. We also show how the catalogue can be used to start to examine a wider range of lower luminosity (sub-ULX) point sources in star forming galaxies than previously accessible through spectral stacking, and argue why this is important for galaxy formation in the high redshift Universe.

  4. Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-09-01

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  5. Complex Lyα Profiles in Redshift 6.6 Ultraluminous Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Hu, E. M.; Barger, A. J.; Cowie, L. L.; Hasinger, G.; Rosenwasser, B.; Waters, C.

    2018-06-01

    We report on a search for ultraluminous Lyα-emitting galaxies (LAEs) at z = 6.6 using the NB921 filter on the Hyper Suprime-Cam on the Subaru telescope. We searched a 30 deg2 area around the north ecliptic pole, which we observed in broadband g‧, r‧, i‧, z‧, and y‧ and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z‧-NB921 > 1.3. This corresponds to a selection of log L(Lyα) > 43.5 erg s‑1. We followed up seven candidate LAEs (out of 13) with the Keck DEIMOS spectrograph and confirmed five z = 6.6 LAEs, one z = 6.6 AGN with a broad Lyα line and a strong red continuum, and one low-redshift ([O III] 5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower-luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z = 6.6 ultraluminous LAEs are systematically different from those of lower-luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyα profile of the galaxy—including any blue wings—to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ∼ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.

  6. Morphology and Structure of Ultraluminous Infrared Galaxies at z ≈ 2 in the EGS Field

    NASA Astrophysics Data System (ADS)

    Fang, G. W.; Ma, Z. Y.; Chen, Y.; Kong, X.

    2014-11-01

    Using high-resolution HST WFC3 (Hubble Space Telescope Wide Field Camera 3) F160W imaging from the CANDELS-EGS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-Extended Groth Strip) field, we present the morphology analysis of 9 ultraluminous infrared galaxies (ULIRGs) at z≈2. We find a wide range of morphological diversities for these ULIRGs, from spheroid to multiple bright nuclei or diffuse structures, e.g., double nuclei, bridges, dual asymmetries, irregular, or elliptical structures. In quantitative, these sources show a lower Gini coefficient (G) and a higher moment (M_{20}) in the rest-frame optical morphology, compared to the lower redshift counterparts, indicating less concentrated and symmetric spatial distribution of the stellar mass of ULIRGs at z≈2. Moreover, we derive accurate effective radii of these ULIRGs through 2-D profile fitting, which range from 2.4 to 5.8 kpc, with a mean value of (3.9±1.1) kpc. We find that the sizes of these ULIRGs at z≈2 are on average one to two times smaller than those of the local star-forming galaxies with analogous stellar mass. Our results are consistent with those studies at similar redshift and infrared luminosity.

  7. Unveiling the hearts of luminous and ultra-luminous infrared galaxy mergers with laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.

    2013-03-01

    Gas-rich galaxies across cosmic time exhibit one or both of two phenomena: ongoing star formation and an active galactic nucleus indicating current black hole accretion. These two processes are important mechanisms through which galaxies evolve and grow, but their effects are difficult to disentangle. Both will use up some available gas, and both are capable of producing winds strong enough to eject remaining gas from the galaxy. One must look at high spatial resolutions in order to separate the dynamical effects of star formation going on near the nucleus of a galaxy from the black hole growth going on in the nucleus. We present high spatial resolution integral field spectroscopy of fifteen nearby luminous and ultra-luminous infrared galaxies. These systems are extremely bright in the infrared exactly because they host powerful starbursts and active nuclei, which in turn heat the surrounding dust. Our data provide resolved stellar and gaseous kinematics of the central kiloparsec of each of these systems by removing atmospheric blurring with adaptive optics, an observing technique that measures the turbulence in the Earth's atmosphere and then uses a deformable mirror to correct the resulting distortions. Our kinematic maps reveal nuclear disks of gas and stars with radii ˜ a few hundred parsecs surrounding the central black holes. Because the stellar and gas kinematics match well, we conclude that the stars are forming in situ from the gas in the disks. These disks may be the progenitors of kinematically decoupled cores seen in many isolated elliptical galaxies, and may have a significant effect on the merger rate of binary black holes. Additionally, these disks may be used to measure black hole masses which, when combined with host galaxy properties and placed on scaling relations, indicate that black holes grow as or more quickly than their host galaxies during a merger. This suggests that a sudden burst of black hole growth at in the final stages of the merger

  8. The Ly(alpha) Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    NASA Technical Reports Server (NTRS)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-01-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.

  9. From merging galaxies to quasars: The evolution of nuclear activity in luminous and ultraluminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Teng, Stacy H.

    We present the largest X-ray survey (˜80 objects) of luminous and ultraluminous infrared galaxies (U/LIRGs) to date. The large infrared luminosities in these objects are thought to arise from either star formation triggered by the merging of disk galaxies or by nuclear activity. U/LIRGs have been purported to be the progenitors of some quasars. In this thesis, we utilize data from Chandra, XMM-Newton, and Suzaku X-ray observatories to quantify the contribution to the overall power of U/LIRGs by starbursts or active galactic nuclei (AGNs). A goal of this project is to statistically examine how the starburst-to-AGN ratio evolves as a function of merger stage. We find that a majority of U/LIRGs are X-ray faint. This may be a result of high obscuration or weak nuclear activity. The dearth of detected counts makes traditional fitting difficult. As a solution, we developed a method of using hardness ratios (HR) to estimate the spectral shapes of these weak sources. Both observational evidence and simulations show that this method is effective for sources with intrinsic column densities below ˜10 22 cm-2 and applicable to sources with only tens of detected counts. Applying the HR method and traditional spectral fitting to the U/LIRG data and that of 26 PG quasars, we find a correlation of AGN dominance with dust temperature, optical spectral type, and merger stage. The probability of having a powerful AGN increases along the merger sequence. However, the AGNs can turn on at any time, as evidenced by a large number of AGNs detected in binary U/LIRGs. Starburst dominates the total power in U/LIRGs prior to the merger. Then the black hole grows rapidly during coalescence. At this time, the AGN is likely to begin driving galactic scale winds which will quench star formation, resulting in a luminous quasar. These conclusions are in general agreement with results obtained at other wavelengths and current theoretical models.

  10. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Song; Qiu, Yanli; Liu, Jifeng

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm withmore » good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.« less

  11. Morphology and Structure of Ultraluminous Infrared Galaxies at z ∼ 2 in the EGS Field

    NASA Astrophysics Data System (ADS)

    Fang, Guan-Wen; Ma, Zhong-Yang; Chen, Yang; Kong, Xu

    2015-04-01

    Using the high-resolution F160W images observed by the HST WFC3 (Hubble Space Telescope Wide Field Camera 3) in the CANDELS-EGS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-Extended Groth Strip) field, we have studied the morphological and structural features of 9 ultraluminous infrared galaxies (ULIRGs) at z ∼ 2. We find a wide range of morphological diversity for these ULIRGs, from ellipsoids to multiple bright nuclei or diffuse structures, e.g., the double nuclei, gaseous bridges, dual asym- metries, irregular or elliptical structures. In order to study the morphology of these ULIRGs quantitatively, their morphological parameters (the Gini coeffcient G and moment index M20) are measured in the rest-frame optical wave- band. Compared with the low-redshift counterparts, the high-redshift ULIRGs show a smaller value of G and a larger value of M20, indicating a less concen- tricity and a larger asymmetry of the stellar population distribution in these ULIRGs. Based on a 2-D fitting of the brightness profiles of these ULIRGs, we have derived their effective radii, which are distributed in a range from 2.4 to kpc, with a mean value of (3.9 ± 1.1) kpc. Moreover, we find that in average the sizes of the high-redshift ULIRGs are one to two times smaller than those of the nearby star-forming galaxies of analogous stellar mass. Our results are consistent with those of other studies under the similar conditions of redshift and infrared luminosity.

  12. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.

  13. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Feng, H.

    2015-04-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.

  14. INTEGRAL Spectroscopy of IRAS 17208-0014: Implications for the Evolutionary Scenarios of Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Arribas, Santiago; Colina, Luis

    2003-07-01

    New integral field optical fiber spectroscopy obtained with the INTEGRAL system, together with archival HST WFPC2 and NICMOS images, has been used to investigate the ultraluminous infrared galaxy (ULIRG) IRAS 17208-0014, one of the coldest and most luminous objects in the IRAS 1 Jy sample. We have found that the optical nucleus is not coincident with the true (near-IR and dynamical) nucleus, but that it is displaced by 1.3 kpc (1.5") from it. As a consequence, the previous optical spectral classifications for the nucleus of this galaxy have to be changed from H II to LINER. The ionized gas emission is concentrated around the optical nucleus, where a young (5-6 Myr), massive [(3+/-1)×108 Msolar], and luminous [(6+/-2)×1010 Lsolar] starburst is detected. Contrary to what is found in dynamically young ULIRGs, no strong line emission tracing star-forming regions, or tidal dwarf galaxies, is detected in the inner parts of the tidal tails. The two-dimensional gas velocity field identifies the optically faint K-band nucleus as the dynamical nucleus of the galaxy and shows that the 3 kpc, tilted (i~35deg) disk is rotating at Δvsini=250 km s-1. Radial motions of gas are found along the minor kinematic axis, which, according to the geometry of the system, are well interpreted as inflows perpendicular to the inner disk. The existence of such inflows supports the idea that, as a consequence of the merging process, gas is channeling from the external regions, several kiloparsecs away, into the nuclear regions where the massive starburst reported above is taking place. The kinematical, morphological, and photometric evidence presented here supports the idea that in IRAS 17208-0014 we are witnessing a luminous, cool ULIRG that is at the final coalescence phase of a system composed of two spiral galaxies with m<=m* and a mass ratio of ~2:1, each consisting of a disk+bulge internal structure, that have been involved in a prograde encounter. This system will most likely evolve

  15. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  16. Star Formation and AGN Activity in Ultraluminous Infrared Galaxies at z > 1.15

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Kartaltepe, J.

    2012-01-01

    We studied active galactic nucleus (AGN) activity and star formation in a sample of 52 luminous and ultraluminous infrared galaxies ((U)LIRGs) with 1.17 < z < 1.602 and LIR > 1011.5 Lsolar. ULIRGs get their extreme infrared luminosities from the heating of dust by star formation and/or AGN. Studies done in the local universe have revealed that all local ULIRGs are mergers (Sanders & Mirabel 1996), and have proposed evolutionary schemes in which early merger stages are dominated by starbursts, intermediate merger stages are dominated by starburst-AGN composite objects, and late merger stages are dominated by AGN (Yuan et al. 2010). They have also shown that most ULIRGs with LIR > 1012.4-12.5 Lsolar appear AGN-like (Tran et al. 2001). We used near infrared spectroscopy in order to determine whether these trends extend to high redshift, utilizing the [NII]/H-alpha and [OIII]/H-beta line ratios to plot our objects on a BPT diagram which classifies them as star forming, AGN, or composite. We find that many of the objects in our sample show evidence of mergers or interactions, and that all objects in our sample with LIR >1012.5 Lsolar are AGN or composite objects. Vivienne Baldassare was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  17. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  18. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (THE SUPERANTENNAE): X-Ray Emission From the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy M.; Braito, Valantina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (G = 1.3) and an He-like Fe Ka line with equivalent width 1.5 keV, consistent with previous observations. The Fe Ka line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is 6 × 1040 erg s-1 if the emission is isotropic and the source is associated with the Superantennae.

  19. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  20. Observations of Ultra-Luminous X-ray Sources, and Implications

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.

    2004-05-01

    I will review observations of Ultra-Luminous X-ray Sources (ULXs; Lx > 1E39 erg/s), in particular those observations that have helped reveal the nature of these curious objects. Some recent observations suggest that ULXs are a heterogenous class. Although ULX phenomenology is not fully understood, I will present some examples from the (possibly overlapping) sub-classes. Since ULXs are the most luminous objects in starburst galaxies, they, and ``normal'' luminous black-hole high-mass X-ray binaries are intimately tied to the global galaxian X-ray-star-formation connection. Further work is needed to understand how ULXs form, and how they are associated with the putative population of intermediate-mass black holes.

  1. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  2. Searching for Intermediate Mass Black Holes in Ultraluminous X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fritze, Hannah; Wright, Simon; Kilgard, Roy

    2018-01-01

    X-ray observations of nearby galaxies provide one of the best laboratories in the universe for studying two exotic classes of object: black holes and neutron stars. These observations allow us to study the dramatic effect such objects have on their surroundings, as well as the high-energy physics involved in their emission. We conduct a volume-limited archival survey of X-ray sources in all galaxies observed with the Chandra X-ray observatory within 15 Mpc, and identify a set of ultraluminous X-ray sources for detailed spectral analysis. We perform this analysis with the aim of searching for signatures of spectral state transitions and super-Eddington accretion that could indicate the presence of an Intermediate Mass Black Hole (IMBH) binary system. Here, we identify 43 potential IMBH sources that have signatures of super-Eddington accretion. We plan to follow up this initial selection with a multiwavelength analysis of these sources, in order to place further constraints on their nature and surrounding environment.

  3. Starbursts in interacting galaxies: Observations and models

    NASA Technical Reports Server (NTRS)

    Bernloehr, Konrad

    1990-01-01

    Starbursts have been a puzzling field of research for more than a decade. It is evident that they played a significant role in the evolution of many galaxies but still quite little is known about the starburst mechanisms. A way towards a better interpretation of the available data is the comparison with evolution models of starburst. The modelling of starbursts and the fitting of such model starbursts to observed data is discussed. The models were applied to a subset of starburst and post-starburst galaxies in a sample of 30 interacting systems. These galaxies are not ultraluminous far infrared (FIR) galaxies but rather ordinary starburst galaxies with FIR luminosities of a few 10(exp 10) to a few 10(exp 11) solar luminosities.

  4. Implications of the Observed Ultraluminous X-Ray Source Luminosity Function

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko

    2012-01-01

    We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.

  5. Ultraluminous X-ray Sources in NGC 6946.

    NASA Astrophysics Data System (ADS)

    Sánchez Cruces, Mónica; Rosado, Margarita; Fuentes-Carrera, Isaura L.

    2016-07-01

    Ultra-luminous X-ray sources (ULXs) are the most X-ray luminous off-nucleus objects in nearby galaxies with X-ray luminosities between 10^{39} - 10^{41} erg s^{-1} in the 0.5-10 keV band. Since these luminosities cannot be explained by the standard accretion of a stellar mass black hole, these sources are often associated with intermediate-mass black holes (IMBHs, 10^{2}-10^{4} solar masses). However significantly beamed stellar binary systems could also explain these luminosities. Observational knowledge of the angular distribution of the source emission is essential to decide between these two scenarios. In this work, we present the X-ray analysis of five ULXs in the spiral galaxy NGC 6949, along with the kinematical analysis of the ionized gas surrounding each of these sources. For all sources, X-ray observations reveal a typical ULX spectral shape (with a soft excess below 2 keV and a hard curvature above 2 keV) which can be fit with a power-law + multi-color disk model. However, even if ULXs are classified as point-like objects, one of the sources in this galaxy displays an elongated shape in the Chandra images. Regarding the analysis of the emission lines of the surrounding ˜300 pc around each ULX, scanning Fabry-Perot observations show composite profiles for three of the five ULXs. The main component of these profiles follows the global rotation of the galaxy, while the faint secondary component seems to be associated with asymmetrical gas expansion. These sources have also been located in archive images of NGC 6946 in different wavelengths in order to relate them to different physical processes occurring in this galaxy. Though ULXs are usually located in star formation regions, we find that two of the sources lie a few tenths of parsecs away from different HII regions. Based on the X-ray morphology of each ULX, the velocities and distribution of the surrounding gas, as well as the location of the source in the context of the whole galaxy, we give the most

  6. VizieR Online Data Catalog: Galaxies and QSOs FIR size and surface brightness (Lutz+, 2016)

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Berta, S.; Contursi, A.; Forster Schreiber, N. M.; Genzel, R.; Gracia-Carpio, J.; Herrera-Camus, R.; Netzer, H.; Sturm, E.; Tacconi, L. J.; Tadaki, K.; Veilleux, S.

    2016-08-01

    We use 70, 100, and 160um images from scan maps obtained with PACS on board Herschel, collecting archival data from various projects. In order to cover a wide range of galaxy properties, we first obtain an IR-selected local sample ranging from normal galaxies up to (ultra)luminous infrared galaxies. For that purpose, we searched the Herschel archive for all cz>=2000km/s objects from the IRAS Revised Bright Galaxy Sample (RBGS, Sanders et al., 2003, Cat. J/AJ/126/1607). (1 data file).

  7. Obscured Active Galactic Nuclei in Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Shier, L. M.; Rieke, M. J.; Rieke, G. H.

    1996-10-01

    We examine the nature of the central power source in very luminous infrared galaxies. The infrared properties of the galaxies, including their far-infrared and 2.2 micron fluxes, CO indices, and Brackett line fluxes are compared to models of starburst stellar populations. Among seven galaxies we found two dominated by emission from young stars, two dominated by emission from an AGN, and three transition cases. Our results are consistent with evidence for active nuclei in the same galaxies at other wavelengths. Nuclear mass measurements obtained for the galaxies indicate an initial mass function biased toward high-mass stars in two galaxies. After demonstrating our methods in well-studied galaxies, we define complete samples of high luminosity and ultraluminous galaxies. We find that the space density of embedded and unembedded quasars in the local universe is similar for objects of similar luminosity. If quasars evolve from embedded sources to optically prominent objects, it appears that the lifetime of a quasar is no more than about 108 yr.

  8. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  9. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    PubMed

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10 41 erg second[Formula: see text]) might harbor NSs. Copyright © 2017, American Association for the Advancement of Science.

  10. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN/HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected.more » The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.« less

  11. Clustering of very luminous infrared galaxies and their environment

    NASA Technical Reports Server (NTRS)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  12. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  13. Ammonia as a Temperature Tracer in the Ultraluminous Galaxy Merger Arp 220

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Henkel, Christian; Braatz, James A.; Weiß, Axel

    2011-12-01

    We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH3) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH3(1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 ± 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from ~0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH3(1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold (lsim 20 K) gas layer with an estimated column density of <~ 2 × 1014 cm-2. This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are ~120-430 km s-1, in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to ~1800 km s-1 previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 ± 19) K, corresponding to a kinetic temperature of T kin = (186 ± 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH3) = (1.7 ± 0.1) × 1016 cm-2 and (8.4 ± 0.5) × 1016 cm-2, respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are consistent with an ortho-to-para-ammonia ratio of unity, implying that the ammonia formation temperature exceeds ~30 K. In the context of a model with a molecular ring that

  14. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-05

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  15. A new ultraluminous X-ray source in the galaxy NGC 5907

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Belfiore, A.; Novara, G.; Salvaterra, R.; Marelli, M.; De Luca, A.; Rigoselli, M.; Israel, G.; Rodriguez, G.; Mereghetti, S.; Wolter, A.; Walton, D. J.; Fuerst, F.; Ambrosi, E.; Zampieri, L.; Tiengo, A.; Salvaggio, C.

    2018-06-01

    We report on the serendipitous discovery of a new transient in NGC 5907, at a peak luminosity of 6.4 × 1039 erg s-1. The source was undetected in previous 2012 Chandra observations with a 3σ upper limit on the luminosity of 1.5 × 1038 erg s-1, implying a flux increase of a factor of >35. We analysed three recent 60 ks/50 ks Chandra and 50 ks XMM-Newton observations, as well as all the available Swift/XRT observations performed between 2017 August and 2018 March. Until the first half of 2017 October, Swift/XRT observations did not show any emission from the source. The transient entered the ultraluminous X-ray source (ULX) regime in less than two weeks and its outburst was still on-going at the end of 2018 February. The 0.3-10 keV spectrum is consistent with a single multicolour blackbody disc (kT ˜ 1.5 keV). The source might be an ˜30 M⊙ black hole accreting at the Eddington limit. However, although we did not find evidence of pulsations, we cannot rule out the possibility that this ULX hosts an accreting NS.

  16. Perspectives on Ultraluminous X-ray sources after the discovery of Ultraluminous Pulsars

    NASA Astrophysics Data System (ADS)

    Zampieri, L.; Ambrosi, E.; Fiore, A.; Pintore, F.; Turolla, R.; Israel, GL.; Stella, L.; Casella, P.; Papitto, A.; Rodriguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Belfiore, A.; Esposito, P.; Marelli, M.; Novara, G.; Salvaterra, R.; Salvetti, D.; Mereghetti, S.; Wolter, A.

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are observationally defined as non-nuclear extragalactic X-ray point sources with inferred (isotropic) luminosity exceeding the Eddington limit for a ˜ 10 M_{⊙} compact object. While in the past few years a certain evidence (and a general consensus) has been gathered in favour of the existence of black hole (BH) remnants in ULXs, the recent discovery of three Ultraluminous X-ray Pulsars has unexpectedly revealed what is likely to be a significant population of neutron star (NS) ULXs. These findings challenge more than ever our present understanding of these sources, their accretion mechanism/history, and their formation pathways. After reviewing some of these intriguing observational facts, we will summarize some perspective studies that we are carrying out to model the multiwavelength variability and broadband spectra of ULXs, including the contribution of an accretion column for NS systems. We derive the luminosity emitted by the latter assuming that a multipolar component dominates the magnetic field close to the NS. The focus is on comparing the simulated multiwavelength emission properties of stellar-mass/massive BHs to those of NS systems, and on confronting the model predictions with the available observations of Pulsar ULXs.

  17. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pintore, F.; Mereghetti, S.; Zampieri, L.

    2017-02-10

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M {sub ⊙} black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model,more » consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.« less

  18. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  19. Probing Radiation Pressure and Hot Gas Feedback through Spectral Simulation of Mid-IR to Submillimeter Fine-Structure Lines in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Fischer, Jacqueline

    Recent observational studies have shown that the deeply buried phase found in local ultraluminous infrared galaxies (ULIRGs) is often characterized by powerful feedback thought to be an important mechanism involved in the transformation of gas-rich mergers into gas-poor red and dead galaxies. Based on Herschel studies of multilevel OH transitions in ULIRGs, we have shown that many of the molecular outflows are driven by a combination of an active galactic nucleus (AGN) and a nuclear starburst, as a result of radiation pressure, winds, and supernova remnants. In some sources, however, powerful AGN feedback is required in which the pressure supplied by radiation alone appears insufficient to supply the large outflow momentum fluxes. These outflows appear to be stochastic, strong AGN feedback events that occur throughout the merging process and may involve forces due to hot gas pressure in order to supply the needed momentum fluxes. Numerous theoretical studies have shown that the ratio of the ionizing photon number density to the particle density, commonly denoted as the ionization parameter, is an important diagnostic of the relative dynamical importance of radiation pressure and hot gas pressure in quasar and starburst feedback in galaxies. In optically selected quasars, measured ionization parameters indicate that the current average hot gas pressures are insufficient to power the observed outflows, and optical depths of the AGN radiation are not expected to be high enough to provide the necessary momentum boosts. It has been suggested, however, that during the buried stage of quasar and host galaxy evolution exemplified by ULIRGs, the hot gas pressures could be higher, prior to the development of leaky paths from which the gas can escape, and that infrared fine-structure lines can be used to probe and test this mechanism. The goal of this work is to further our understanding of this phase of galactic evolution by assembling and analyzing the highest quality

  20. The evolution of and starburst-agn connection in luminous and ultraluminous infrared galaxies and their link to globular cluster formation

    NASA Astrophysics Data System (ADS)

    Fiorenza, Stephanie Lynn

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011 < LIR < 1012 L[special character omitted]) and ultraluminous infrared galaxies (ULIRGs; 1012 < LIR < 1013 L[special character omitted]), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, I first spectroscopically examine U/LIRGs (1011 < LIR < 1013 L[special character omitted]) within the IRAS 2 Jansky Redshift Survey with 0.05 < z < 0.16. Using new spectrophotometric data, I classify the primary source of IR radiation as being a nuclear starburst or a type of AGN by using the Baldwin-Phillips-Terlevich (BPT) diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hdelta)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive evolutionary paths on the BPT diagram involving [N II]/Halpha that are based on how these properties vary between two U/LIRGs positioned at the end-points. The paths involve U/LIRGs that decrease in SFR and increase in AGN activity. Paths with U/LIRGs that evolve into high luminosity AGN likely do so due to recent, strong starbursts. Second, to study how the properties of the IR power sources in U/LIRGs vary, I use a combination of photometric data points that I carefully measure (using photometry from SDSS, 2MASS, WISE, and Spitzer) and that I retrieve from catalogues (IRAS, AKARI, and ISO) to perform UV to FIR SED-fitting with CIGALE (Code Investigating GALaxy Emission) for 34 U/LIRGs from the IRAS 2 Jy Redshift Survey with 0.01 < z < 0.16. I find evidence that the nuclear starburst forms first in U/LIRGs, and also find that U/LIRGs with relatively similar SFRs show

  1. Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minjin; Ho, Luis C.; Im, Myungshin

    2017-08-01

    The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observations obtained using Gemini Multi-Object Spectrographs on the Gemini-North telescope. In addition to confirming that the ionized gas in the vicinity of the ULX is kinematically associated with NGC 5252, the new observations reveal ordered motions consistent with rotation around the ULX. The close coincidence of the excitation source of the line-emitting gas with the position of the ULX further suggests that ULX itself is directlymore » responsible for the ionization of the gas. The spatially resolved measurements of [N ii] λ 6584/H α surrounding the ULX indicate a low gas-phase metallicity, consistent with those of other known low-mass active galaxies but not that of its more massive host galaxy. These findings strengthen the proposition that the ULX is not a background source but rather that it is the nucleus of a small, low-mass galaxy accreted by NGC 5252.« less

  2. Suzaku Observation of Two Ultraluminous X-ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Mushotzky, R.F.; hide

    2007-01-01

    TA study was made of two ultraluminous X-ray sources (ULXs) in the nearby faceon, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The o.4-10keV X-ray luminosity was measured. For X-1, the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.00 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. The spectrum of X-2 in fainter phase is presented by a multicolor disk blackbody model.

  3. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; hide

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  4. An Archival Search For Young Globular Clusters in Galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad

    1995-07-01

    One of the most intriguing results from HST has been the discovery of ultraluminous star clusters in interacting and merging galaxies. These clusters have the luminosities, colors, and sizes that would be expected of young globular clusters produced by the interaction. We propose to use the data in the HST Archive to determine how prevalent this phenomena is, and to determine whether similar clusters are produced in other environments. Three samples will be extracted and studied in a systematic and consistent manner: 1} interacting and merging galaxies, 2} starburst galaxies, 3} a control sample of ``normal'' galaxies. A preliminary search of the archives shows that there are at least 20 galaxies in each of these samples, and the number will grow by about 50 observations become available. The data will be used to determine the luminosity function, color histogram , spatial distribution, and structural properties of the clusters using the same techniques employed in our study of NGC 7252 {``Atoms -for-Peace'' galaxy} and NGC 4038/4039 {``The Antennae''}. Our ultimate goals are: 1} to understand how globular clusters form, and 2} to use the clusters as evolutionary tracers to unravel the histories of interacting galaxies.

  5. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow

  6. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  7. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  8. Monitoring variable X-ray sources in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  9. Modelling high-resolution ALMA observations of strongly lensed highly star-forming galaxies detected by Herschel

    NASA Astrophysics Data System (ADS)

    Dye, S.; Furlanetto, C.; Dunne, L.; Eales, S. A.; Negrello, M.; Nayyeri, H.; van der Werf, P. P.; Serjeant, S.; Farrah, D.; Michałowski, M. J.; Baes, M.; Marchetti, L.; Cooray, A.; Riechers, D. A.; Amvrosiadis, A.

    2018-06-01

    We have modelled ˜0.1 arcsec resolution Atacama Large Millimetre/submillimeter Array imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed submillimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high-redshift submillimetre galaxies and low-redshift ultra-luminous infrared galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.

  10. Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.

    1997-01-01

    The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.

  11. The dust masses of powerful radio galaxies: clues to the triggering of their activity

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Dicken, D.; Morganti, R.; Konyves, V.; Ysard, N.; Nesvadba, N.; Ramos Almeida, C.

    2014-11-01

    We use deep Herschel Space Observatory observations of a 90 per cent complete sample of 32 intermediate-redshift 2Jy radio galaxies (0.05 < z < 0.7) with strong emission lines to estimate the dust masses of their host galaxies and thereby investigate the triggering mechanisms for their quasar-like AGN. The dust masses derived for the radio galaxies (7.2 × 105 < Md < 2.6 × 108 M⊙) are intermediate between those of quiescent elliptical galaxies on the one hand, and ultraluminous infrared galaxies (ULIRGs) on the other. Consistent with simple models for the co-evolution of supermassive black holes and their host galaxies, these results suggest that most radio galaxies represent the late time re-triggering of AGN activity via mergers between the host giant elliptical galaxies and companion galaxies with relatively low gas masses. However, a minority of the radio galaxies in our sample (˜20 per cent) have high, ULIRG-like dust masses, along with evidence for prodigious star formation activity. The latter objects are more likely to have been triggered in major, gas-rich mergers that represent a rapid growth phase for both their host galaxies and their supermassive black holes.

  12. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  13. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  14. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  15. Ultra-high-energy cosmic rays from radio galaxies

    NASA Astrophysics Data System (ADS)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  16. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    PubMed

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  17. The Nature of Ultraluminous Galaxies: Infrared Space Observatory Analysis and Instrument Team

    NASA Technical Reports Server (NTRS)

    Satyapal, Shobita

    2001-01-01

    The scientific goal of the proposed research was to investigate the physical conditions in the nuclear regions of infrared luminous galaxies by carrying out detailed infrared spectroscopic observations of a large sample of infrared luminous galaxies. During the past year, these observations have been successfully analyzed and extensive modeling using photoionization and photodissociation codes has been carried out. Two first-author publications and a second-author publication have been submitted to the Astrophysical Journal and results were presented at two invited talks. Four additional journal papers are in preparation and will be submitted during year 2 of the grant. The secondary project included in this program was the development of a near-infrared cryogenic Fabry-Perot interferometer for use on future large aperture telescopes. System integration and room temperature testing was successfully carried out for this project during year 1.

  18. Are starburst galaxies proton calorimeters?

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.

    2018-03-01

    Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.

  19. Ultraluminous X-ray sources as neutrino pulsars

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Suleimanov, Valery F.; Poutanen, Juri

    2018-05-01

    The classical limit on the accretion luminosity of a neutron star is given by the Eddington luminosity. The advanced models of accretion on to magnetized neutron stars account for the appearance of magnetically confined accretion columns and allow the accretion luminosity to be higher than the Eddington value by a factor of tens. However, the recent discovery of pulsations from ultraluminous X-ray source (ULX) in NGC 5907 demonstrates that the accretion luminosity can exceed the Eddington value up to by a factor of 500. We propose a model explaining observational properties of ULX-1 in NGC 5907 without any ad hoc assumptions. We show that the accretion column at extreme luminosity becomes advective. Enormous energy release within a small geometrical volume and advection result in very high temperatures at the bottom of accretion column, which demand to account for the energy losses due to neutrino emission which can be even more effective than the radiation energy losses. We show that the total luminosity at the mass accretion rates above 1021 g s-1 is dominated by the neutrino emission similarly to the case of core-collapse supernovae. We argue that the accretion rate measurements based on detected photon luminosity in case of bright ULXs powered by neutron stars can be largely underestimated due to intense neutrino emission. The recently discovered pulsating ULX-1 in galaxy NGC 5907 with photon luminosity of {˜ } 10^{41} {erg s^{-1}} is expected to be even brighter in neutrinos and is thus the first known Neutrino Pulsar.

  20. Exploring ultraluminous X-ray sources using the optical regime

    NASA Astrophysics Data System (ADS)

    Gladstone, J.

    2013-09-01

    Ultraluminous X-ray sources (ULXs) are extragalactic objects located outside the nucleus of their host galaxy, with luminosities >10^39 erg/s. Such high luminosities are in excess of the Eddington limit for a black hole that is about 10 times the mass of our Sun (MSun). ULXs have long been touted as evidence of intermediate mass black holes (MBH = 10^2-10^5 MSun), which are thought to be the building blacks of supermassive black holes. The alternative is that ULXs could be stellar mass (< 100 MSun) black holes accreting at extreme rates, which could explain the rapid growth of super-massive black holes in the early universe. Either option has important cosmological implications, and as a result, mass measurements of these black holes have been a topic of intense interest. Here we present optical analysis of these exotic sources, designed to identify and constrain the companion stars to these black holes. We discuss results from the imaging analysis of 33 nearby ULXs using data from Chandra and the Hubble Space Telescope. We will also present findings from spectroscopic analysis of both pilot and multi-epoch data from 3 of these sources using the Gemini Observatory. By combing this information, we will summarize the implications this work has on both the nature of black holes and companion stars in these systems.

  1. Infrared to millimetre photometry of ultra-luminous IR galaxies: New evidence favouring a 3-stage dust model

    NASA Astrophysics Data System (ADS)

    Klaas, U.; Haas, M.; Müller, S. A. H.; Chini, R.; Schulz, B.; Coulson, I.; Hippelein, H.; Wilke, K.; Albrecht, M.; Lemke, D.

    2001-12-01

    Infrared to millimetre spectral energy distributions (SEDs) have been obtained for 41 bright ultra-luminous infrared galaxies (ULIRGs). The observations were carried out with ISOPHOT between 10 and 200 mu m and supplemented for 16 sources with JCMT/SCUBA at 450 and 850 mu m and with SEST at 1.3 mm. In addition, seven sources were observed at 1.2 and 2.2 mu m with the 2.2 m telescope on Calar Alto. These new SEDs represent the most complete set of infrared photometric templates obtained so far on ULIRGs in the local universe. The SEDs peak at 60-100 mu m and show often a quite shallow Rayleigh-Jeans tail. Fits with one single modified blackbody yield a high FIR opacity and small dust emissivity exponent beta < 2. However, this concept leads to conflicts with several other observational constraints, like the low PAH extinction or the extended filamentary optical morphology. A more consistent picture is obtained using several dust components with beta = 2, low to moderate FIR opacity and cool (50 K > T > 30 K) to cold (30 K > T > 10 K) temperatures. This provides evidence for two dust stages, the cool starburst dominated one and the cold cirrus-like one. The third stage with several hundred Kelvin warm dust is identified in the AGN dominated ULIRGs, showing up as a NIR-MIR power-law flux increase. While AGNs and SBs appear indistinguishable at FIR and submm wavelengths, they differ in the NIR-MIR. This suggests that the cool FIR emitting dust is not related to the AGN, and that the AGN only powers the warm and hot dust. In comparison with optical and MIR spectroscopy, a criterion based on the SED shapes and the NIR colours is established to reveal AGNs among ULIRGs. Also the possibility of recognising evolutionary trends among the ULIRGs via the relative amounts of cold, cool and warm dust components is investigated. Based on observations with the Infrared Space Observatory ISO, the James Clerk Maxwell Telescope JCMT, the Swedish ESO Submillimetre Telescope SEST and

  2. From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Alston, W.; Soria, R.; Middleton, M. J.; Walton, D. J.; Sutton, A. D.; Fabian, A. C.; Earnshaw, H.; Urquhart, R.; Kara, E.; Roberts, T. P.

    2017-07-01

    In recent work with high-resolution reflection grating spectrometers (RGS) aboard XMM-Newton, Pinto et al. have discovered that two bright and archetypal ultraluminous X-ray sources (ULXs) have strong relativistic winds in agreement with theoretical predictions of high accretion rates. It has been proposed that such winds can become optically thick enough to block and reprocess the disc X-ray photons almost entirely, making the source appear as a soft thermal emitter or ultraluminous supersoft X-ray source (ULS). To test this hypothesis, we have studied a ULX where the wind is strong enough to cause significant absorption of the hard X-ray continuum: NGC 55 ULX. The RGS spectrum of NGC 55 ULX shows a wealth of emission and absorption lines blueshifted by significant fractions of the light speed (0.01-0.20)c indicating the presence of a powerful wind. The wind has a complex dynamical structure with the ionization state increasing with the outflow velocity, which may indicate launching from different regions of the accretion disc. The comparison with other ULXs such as NGC 1313 X-1 and NGC 5408 X-1 suggests that NGC 55 ULX is being observed at higher inclination. The wind partly absorbs the source flux above 1 keV, generating a spectral drop similar to that observed in ULSs. The softening of the spectrum at lower (˜ Eddington) luminosities and the detection of a soft lag agree with the scenario of wind clumps crossing the line of sight, partly absorbing and reprocessing the hard X-rays from the innermost region.

  3. A gravitationally lensed starburst galaxy at z=1.03 detected by SOFIA/HAWC+

    NASA Astrophysics Data System (ADS)

    Brown, Arianna; Ma, Jingzhe; Cooray, Asantha; Nayyeri, Hooshang; Timmons, Nicholas

    2018-01-01

    We present a high S/N~20 detection at 89 micron (in 15 mins) of the Herschel-selected gravitationally lensed starburst galaxy HATLASJ1429-0028 with the High-resolution Airborne Wideband Camera-plus (HAWC+) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectacular lensing system consists of an edge-on foreground disk galaxy at z=0.22 and a nearly complete Einstein ring of an intrinsic ultra-luminous infrared galaxy at z=1.03. Is this high luminosity powered by pure star formation (SF) or an active galactic nucleus (AGN)? Previous nebular line diagnostics indicate that it is star-formation dominated. SOFIA/HAWC+ allows the broad-band spectral energy distribution of the galaxy to be studied between 20 - 100 micron, which is an important wavelength range for further constraining the fractional AGN contribution to the total IR luminosity. Multi-wavelength SED modeling constrains the AGN fraction to be < 1%. The detection of a source at z of 1 shows the potential of utilizing SOFIA/HAWC+ for distant galaxy studies and the potential to decompose SF/AGN that cannot be obtained with other current facilities.

  4. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-03

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

  5. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  6. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  7. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter

    2013-08-20

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M)more » ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.« less

  8. {sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with resultsmore » in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.« less

  9. A Bridge from Optical to Infrared Galaxies: Explaining Local Properties and Predicting Galaxy Counts and the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Takeuchi, Tsutomu T.

    2002-05-01

    We give an explanation for the origin of various properties observed in local infrared galaxies and make predictions for galaxy counts and cosmic background radiation (CBR) using a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies and that (2) the large-grain dust temperature Tdust is calculated based on a physical consideration for energy balance rather than by using the empirical relation between Tdust and total infrared luminosity LIR found in local galaxies, which has been employed in most previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, LIR-Tdust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μm) and CBR using this model. We found results considerably different from those of most previous works based on the empirical LIR-Tdust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40-80 K), as often seen in starburst galaxies or ultraluminous infrared galaxies in the local and high-z universe. This indicates that intense starbursts of forming elliptical galaxies should have occurred at z~2-3, in contrast to the previous results that significant starbursts beyond z~1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma

  10. The global star formation law of galaxies revisited in the radio continuum

    NASA Astrophysics Data System (ADS)

    Liu, LiJie; Gao, Yu

    2012-02-01

    We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-1012 L⊙), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 μm) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationships. We find that the galaxy disk-averaged surface density of dense molecular gas mass has the tightest correlation with that of SFR (scatter ˜0.26 dex), and is linear in log-log space (power-law slope of N=1.03±0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (˜0.48 dex), and is best fit by a power-law with slope 1.45±0.02. However, the slope changes from ˜1 when only normal spirals are considered, to ˜1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.

  11. Tidal interactions and infrared-bright QSOs

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.

    1988-01-01

    Deep direct images of five IRAS-selected QSOs with similar IR luminosities and spectral indices have been analyzed. The present objects possess IR luminosities similar to those of the IRAS flux-lined sample of ultraluminous galaxies, but have IR spectral indices similar to those of normal QSOs. Four of the objects are in strong tidal interaction and have blue host galaxies and reddened nuclei. It is suggested that these objects are QSOs and AGN in an intermediate stage of their activity, which lies between that of ultraluminous galaxies and optically selected QSOs.

  12. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  13. Hot DOGs: The Most Luminous Galaxies Found by WISE

    NASA Astrophysics Data System (ADS)

    Eisenhardt, Peter; Tsai, Chao-Wei; Wu, Jingwen; Griffith, Roger; Yan, Lin; Stern, Daniel; Stanford, Adam; Blain, Andrew; Benford, Dominic; Bridge, Carrie; Assef, Roberto; Petty, Sara

    2013-02-01

    NASA's Wide-field Infrared Survey Explorer (WISE) has achieved its fundamental goal by delivering its all-sky survey at 3.4, 4.6, 12 and 22 (micron) (W1, W2, W3, and W4), reaching sensitivities hundreds of times deeper than IRAS. One of the two primary science objectives for WISE is to identify the most luminous galaxies in the Universe (Ultra-Luminous IR Galaxies, or ULIRGs). We have used WISE photometry to select an all- sky sample of objects which are extremely luminous, and for which Herschel far-IR follow-up observations are underway. The objects are prominent in W3 and W4, but faint or undetected in W1 and W2. Available spectroscopy and far IR photometry for these objects show they typically have redshifts z > 2 and luminosities over 10^13 L_odot, with about 10% exceeding 10^14 L_odot and rivaling the brightest known QSOs. Their dust is more than twice as hot as other IR luminous objects: they are hot dust obscured galaxies or ``hot DOGs," and may represent a new phase in galaxy evolution. We request NOAO time to obtain redshifts and optical and near IR photometry for the all-sky sample of the brightest hot DOGs, all of which are in our Herschel program. With existing and allocated observations, this request should complete the acquisition of these crucial data for this primary WISE science objective.

  14. PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J. M.; Bachetti, M.; Barret, D.

    2014-04-10

    The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations.more » Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.« less

  15. The Production of Cold Gas Within Galaxy Outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Evan

    2017-03-01

    I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simplemore » steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.« less

  16. Evidence for a Population of High-Redshift Submillimeter Galaxies from Interferometric Imaging

    NASA Astrophysics Data System (ADS)

    Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Lai, Kamson; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Iono, Daisuke; Kohno, Kotaro; Kawabe, Ryohei; Hughes, David H.; Aretxaga, Itziar; Webb, Tracy; Martínez-Sansigre, Alejo; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.; Schinnerer, Eva; Smolčić, Vernesa

    2007-12-01

    We have used the Submillimeter Array to image a flux-limited sample of seven submillimeter galaxies, selected by the AzTEC camera on the JCMT at 1.1 mm, in the COSMOS field at 890 μm with ~2" resolution. All of the sources-two radio-bright and five radio-dim-are detected as single point sources at high significance (>6 σ), with positions accurate to ~0.2" that enable counterpart identification at other wavelengths observed with similarly high angular resolution. All seven have IRAC counterparts, but only two have secure counterparts in deep HST ACS imaging. As compared to the two radio-bright sources in the sample, and those in previous studies, the five radio-dim sources in the sample (1) have systematically higher submillimeter-to-radio flux ratios, (2) have lower IRAC 3.6-8.0 μm fluxes, and (3) are not detected at 24 μm. These properties, combined with size constraints at 890 μm (θ<~1.2''), suggest that the radio-dim submillimeter galaxies represent a population of very dusty starbursts, with physical scales similar to local ultraluminous infrared galaxies, with an average redshift higher than radio-bright sources.

  17. ALMA Multiple-transition Molecular Line Observations of the Ultraluminous Infrared Galaxy IRAS 20551-4250: Different HCN, HCO+, and HNC Excitation, and Implications for Infrared Radiative Pumping

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2017-11-01

    We present our ALMA multi-transition molecular line observational results for the ultraluminous infrared galaxy IRAS 20551-4250, which is known to contain a luminous buried active galactic nucleus and shows detectable vibrationally excited (v 2 = 1f) HCN and HNC emission lines. The rotational J = 1-0, 4-3, and 8-7 of HCN, {{HCO}}+, and HNC emission lines were clearly detected at a vibrational ground level (v = 0). Vibrationally excited (v 2 = 1f) J = 4-3 emission lines were detected for HCN and HNC, but not for {{HCO}}+. Their observed flux ratios further support our previously obtained suggestion, based on J = 3-2 data, that (1) infrared radiative pumping plays a role in rotational excitation at v = 0, at least for HCN and HNC, and (2) HCN abundance is higher than {{HCO}}+ and HNC. The flux measurements of the isotopologue H13CN, {{{H}}}13{{CO}}+, and HN13C J = 3-2 emission lines support the higher HCN abundance scenario. Based on modeling with collisional excitation, we constrain the physical properties of these line-emitting molecular gases, but find that higher HNC rotational excitation than HCN and {{HCO}}+ is difficult to explain, due to the higher effective critical density of HNC. We consider the effects of infrared radiative pumping using the available 5-30 μm infrared spectrum and find that our observational results are well-explained if the radiation source is located at 30-100 pc from the molecular gas. The simultaneously covered very bright CO J = 3-2 emission line displays a broad emission wing, which we interpret as being due to molecular outflow activity with the estimated rate of ˜ 150 {M}⊙ {{yr}}-1.

  18. VizieR Online Data Catalog: Chandra ACIS survey in nearby galaxies. II (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Qiu, Y.; Liu, J.; Bregman, J. N.

    2018-03-01

    Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α{\\sim}1.50{\\pm}0.07) to elliptical ({\\sim}1.21{\\pm}0.02), to spirals ({\\sim}0.80{\\pm}0.02), to peculiars ({\\sim}0.55{\\pm}0.30), and to irregulars ({\\sim}0.26{\\pm}0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D25 and 2D25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24{\\pm}0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4x1040erg/s, and this break may suggest a mild boundary between the stellar black hole population possibly including 30M{\\sun} black holes with super-Eddington radiation and intermediate mass black holes. (1 data file).

  19. Combining physical galaxy models with radio observations to constrain the SFRs of high-z dusty star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Lo Faro, B.; Silva, L.; Franceschini, A.; Miller, N.; Efstathiou, A.

    2015-03-01

    We complement our previous analysis of a sample of z ˜ 1-2 luminous and ultraluminous infrared galaxies [(U)LIRGs], by adding deep Very Large Array radio observations at 1.4 GHz to a large data set from the far-UV to the submillimetre, including Spitzer and Herschel data. Given the relatively small number of (U)LIRGs in our sample with high signal-to-noise (S/N) radio data, and to extend our study to a different family of galaxies, we also include six well-sampled near-infrared (near-IR)-selected BzK galaxies at z ˜ 1.5. From our analysis based on the radtran spectral synthesis code GRASIL, we find that, while the IR luminosity may be a biased tracer of the star formation rate (SFR) depending on the age of stars dominating the dust heating, the inclusion of the radio flux offers significantly tighter constraints on SFR. Our predicted SFRs are in good agreement with the estimates based on rest-frame radio luminosity and the Bell calibration. The extensive spectrophotometric coverage of our sample allows us to set important constraints on the star formation (SF) history of individual objects. For essentially all galaxies, we find evidence for a rather continuous SFR and a peak epoch of SF preceding that of the observation by a few Gyr. This seems to correspond to a formation redshift of z ˜ 5-6. We finally show that our physical analysis may affect the interpretation of the SFR-M⋆ diagram, by possibly shifting, with respect to previous works, the position of the most dust obscured objects to higher M⋆ and lower SFRs.

  20. The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster

    NASA Astrophysics Data System (ADS)

    Rex, M.; Rawle, T. D.; Egami, E.; Pérez-González, P. G.; Zemcov, M.; Aretxaga, I.; Chung, S. M.; Fadda, D.; Gonzalez, A. H.; Hughes, D. H.; Horellou, C.; Johansson, D.; Kneib, J.-P.; Richard, J.; Altieri, B.; Fiedler, A. K.; Pereira, M. J.; Rieke, G. H.; Smail, I.; Valtchanov, I.; Blain, A. W.; Bock, J. J.; Boone, F.; Bridge, C. R.; Clement, B.; Combes, F.; Dowell, C. D.; Dessauges-Zavadsky, M.; Ilbert, O.; Ivison, R. J.; Jauzac, M.; Lutz, D.; Omont, A.; Pelló, R.; Rodighiero, G.; Schaerer, D.; Smith, G. P.; Walth, G. L.; van der Werf, P.; Werner, M. W.; Austermann, J. E.; Ezawa, H.; Kawabe, R.; Kohno, K.; Perera, T. A.; Scott, K. S.; Wilson, G. W.; Yun, M. S.

    2010-07-01

    The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Data presented in this paper were analyzed using “The Herschel interactive processing environment (HIPE)”, a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia.Table 1 and Figs. 3, 4 are only available in electronic form at http://www.aanda.org

  1. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micrometer [C II] fine-structure line emission from MIPS J 142824.0+3526l9, a hyperluminous (L(sub IR) approx. 10(exp 13) Solar Luminosity starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L[C II]/L(sub FIR) approx. equals 2 x l0(exp -3) of the far-IR(FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approx. 10(exp 4.2)/cu cm., and that are illuminated by a far-UV radiation field approx. 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L[C II]/L(sub F1R) ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L[CII]/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies

  2. The infrared luminosity function of AKARI 90 μm galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Kilerci Eser, Ece; Goto, Tomotsugu

    2018-03-01

    Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.

  3. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  4. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  5. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

  6. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.

  7. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Done, C.; hide

    2001-01-01

    A study was made of two ultraluminous X-ray soures (ULXs) in the nearby face-on, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The 0.4-10 keV X-ray luminosity was measured to be 2.5 x 10(exp 40) erg per second and 5.8 x 10 erg per second for X-1 and X-2, respectively, requiring a black hole of 50-200 solar mass in order not to exceed the Eddingtion limit. For X-1: the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.0 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. Oxygen abundance of the NGC 1313 circumstellar matter toward X-1 was found to be subsolar, viz. O/H = (5.0 plus or minus 1.0) x 10(exp -4). The spectrum of X-2 in fainter phase is best represented by a multicolor disk blackbody model with T (sub in) = 1.2-1.3 keV and becomes flatter as the flux increases; the source is interpreted to be in a slim disk state.

  8. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  9. Submillimetre observations of WISE-selected high-redshift, luminous, dusty galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.; Blain, Andrew W.; Stern, Daniel; Assef, Roberto J.; Bridge, Carrie R.; Eisenhardt, Peter; Petty, Sara; Wu, Jingwen; Tsai, Chao-Wei; Cutri, Roc; Wright, Edward L.; Yan, Lin

    2014-09-01

    We present SCUBA-2 (Submillimetre Common-User Bolometer Array) 850 μm submillimetre (submm) observations of the fields of 10 dusty, luminous galaxies at z ˜ 1.7-4.6, detected at 12 and/or 22 μm by the Wide-field Infrared Survey Explorer (WISE) all-sky survey, but faint or undetected at 3.4 and 4.6 μm; dubbed hot, dust-obscured galaxies (Hot DOGs). The six detected targets all have total infrared luminosities greater than 1013 L⊙, with one greater than 1014 L⊙. Their spectral energy distributions (SEDs) are very blue from mid-infrared to submm wavelengths and not well fitted by standard active galactic nuclei (AGN) SED templates, without adding extra dust extinction to fit the WISE 3.4 and 4.6 μm data. The SCUBA-2 850 μm observations confirm that the Hot DOGs have less cold and/or more warm dust emission than standard AGN templates, and limit an underlying extended spiral or ULIRG-type galaxy to contribute less than about 2 or 55 per cent of the typical total Hot DOG IR luminosity, respectively. The two most distant and luminous targets have similar observed submm to mid-infrared ratios to the rest, and thus appear to have even hotter SEDs. The number of serendipitous submm galaxies detected in the 1.5-arcmin-radius SCUBA-2 850 μm maps indicates there is a significant overdensity of serendipitous sources around Hot DOGs. These submm observations confirm that the WISE-selected ultraluminous galaxies have very blue mid-infrared to submm SEDs, suggesting that they contain very powerful AGN, and are apparently located in unusual arcmin-scale overdensities of very luminous dusty galaxies.

  10. Interferometric CO observations of the ultraluminous IRAS galaxies ARP 220, IC 694/NGC 3690, NGC 6420 and NGC 7469

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Sanders, D. B.; Scoville, N. Z.; Soifer, B. T.

    1987-01-01

    High resolution CO observations of the IRAS galaxies Arp 220, IC 694/NGC 3690, NGC 6240 and NGC 7469 were made with the Millimeter Wave Interferometer of the Owen Valley Radio Observatory. These yield spatial information on scales of 1 to 5 kpc and allow the separation of compact condensations from the more extended emission in the galaxies. In the case of the obviously interacting system IC 694/NGC 3690 the contributions of each component can be discerned. For that galaxy, and also for Arp 220, the unusually high lumonisities may be produced by nonthermal processes rather than by intense bursts of star formation.

  11. SHOCK EXCITED MOLECULES IN NGC 1266: ULIRG CONDITIONS AT THE CENTER OF A BULGE-DOMINATED GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, E. W.; Smith, J. D.; Crocker, A. F.

    We investigate the far infrared (IR) spectrum of NGC 1266, a S0 galaxy that contains a massive reservoir of highly excited molecular gas. Using the Herschel Fourier Transform Spectrometer, we detect the {sup 12}CO ladder up to J = (13-12), [C I] and [N II] lines, and also strong water lines more characteristic of UltraLuminous IR Galaxies (ULIRGs). The {sup 12}CO line emission is modeled with a combination of a low-velocity C-shock and a photodissociation region. Shocks are required to produce the H{sub 2}O and most of the high-J CO emission. Despite having an IR luminosity 30 times less than a typicalmore » ULIRG, the spectral characteristics and physical conditions of the interstellar medium of NGC 1266 closely resemble those of ULIRGs, which often harbor strong shocks and large-scale outflows.« less

  12. IRAS 14348-1447, an Ultraluminous Pair of Colliding, Gas-Rich Galaxies: The Birth of a Quasar?

    PubMed

    Sanders, D B; Scoville, N Z; Soifer, B T

    1988-02-05

    Ground-based observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at far-infrared wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of our galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dustenshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected. The derived mass of interstellar molecular hydrogen is 6 x 10(10) solar masses. This value is approximately 20 times that of the molecular gas content of the Milky Way and is similar to the largest masses of atomic hydrogen found in galaxies. A large mass of molecular gas may be a prerequisite for the formation of quasars during strong galactic collisions.

  13. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  14. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs havemore » power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.« less

  15. A physical model for z ~ 2 dust-obscured galaxies

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Dey, Arjun; Hayward, Christopher C.; Cox, Thomas J.; Bussmann, R. Shane; Brodwin, Mark; Jonsson, Patrik; Hopkins, Philip F.; Groves, Brent; Younger, Joshua D.; Hernquist, Lars

    2010-09-01

    We present a physical model for the origin of z ~ 2 dust-obscured galaxies (DOGs), a class of high-redshift ultraluminous infrared galaxies (ULIRGs) selected at 24μm which are particularly optically faint (F24μm/FR > 1000). By combining N-body/smoothed particle hydrodynamic simulations of high-redshift galaxy evolution with 3D polychromatic dust radiative transfer models, we find that luminous DOGs (with F24 >~ 0.3mJy at z ~ 2) are well modelled as extreme gas-rich mergers in massive (~5 × 1012-1013Msolar) haloes, with elevated star formation rates (SFR; ~500-1000Msolaryr-1) and/or significant active galactic nuclei (AGN) growth , whereas less luminous DOGs are more diverse in nature. At final coalescence, merger-driven DOGs transition from being starburst dominated to AGN dominated, evolving from a `bump' to a power-law (PL) shaped mid-IR (Infrared Array Camera, IRAC) spectral energy distribution (SED). After the DOG phase, the galaxy settles back to exhibiting a `bump' SED with bluer colours and lower SFRs. While canonically PL galaxies are associated with being AGN dominated, we find that the PL mid-IR SED can owe both to direct AGN contribution and to a heavily dust obscured stellar bump at times that the galaxy is starburst dominated. Thus, PL galaxies can be either starburst or AGN dominated. Less luminous DOGs can be well-represented either by mergers or by massive (Mbaryon ~ 5 × 1011Msolar) secularly evolving gas-rich disc galaxies (with SFR >~ 50Msolaryr-1). By utilizing similar models as those employed in the submillimetre galaxy (SMG) formation study of Narayanan et al., we investigate the connection between DOGs and SMGs. We find that the most heavily star-forming merger-driven DOGs can be selected as submillimetre galaxies, while both merger-driven and secularly evolving DOGs typically satisfy the BzK selection criteria. The model SEDs from the simulated galaxies match observed data reasonably well, though Mrk 231 and Arp 220 templates provide

  16. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-08-07

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  17. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  18. IRAS 14348-1447, an ultraluminous pair of colliding, gas-rich galaxies - The birth of a quasar?

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Scoville, N. Z.

    1988-01-01

    Ground-baed observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at FIR wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of the Galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dust-enshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected.

  19. AKARI IRC 2.5-5 μm spectroscopy of infrared galaxies over a wide luminosity range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, Kohei; Ueda, Yoshihiro; Imanishi, Masatoshi

    2014-10-20

    We present the result of a systematic infrared 2.5-5 μm spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10{sup 10} L {sub ☉} < L {sub IR} < 10{sup 13} L {sub ☉}) obtained from the AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature from star-forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction ofmore » buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10{sup 10} L {sub ☉} to 10{sup 13} L {sub ☉}, including normal infrared galaxies with L {sub IR} < 10{sup 11} L {sub ☉}. The energy contribution from AGNs in the total infrared luminosity is only ∼7% in LIRGs and ∼20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGNs. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.« less

  20. Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Schawinski, K.; Privon, G. C.; Blecha, L.; Arevalo, P.; Armus, L.; Harrison, F.; Ho, L. C.; Iwasawa, K.; Sanders, D. B.; Stern, D.

    2017-06-01

    Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which can activate rapid accretion on to supermassive black holes (SMBHs), giving rise to active galactic nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local luminous and ultraluminous infrared galaxies in different merger stages in the hard X-ray band, where radiation is less affected by absorption, we find that the amount of material around SMBHs increases during the last phases of the merger. We find that the fraction of Compton-thick (CT, N H ≥ 1024 cm- 2) AGN in late-merger galaxies is higher (f_ CT=65^{+12}_{-13}{per cent}) than in local hard X-ray selected AGN (f CT = 27 ± 4 per cent), and that obscuration reaches its maximum when the nuclei of the two merging galaxies are at a projected distance of D12 ≃ 0.4-10.8 kpc (f_ CT=77_{-17}^{+13}{per cent}). We also find that all AGN of our sample in late-merger galaxies have N H > 1023 cm- 2, which implies that the obscuring material covers 95^{+4}_{-8}{per cent} of the X-ray source. These observations show that the material is most effectively funnelled from the galactic scale to the inner tens of parsecs during the late stages of galaxy mergers, and that the close environment of SMBHs in advanced mergers is richer in gas and dust with respect to that of SMBHs in isolated galaxies, and cannot be explained by the classical AGN unification model in which the torus is responsible for the obscuration.

  1. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent

  2. The Dust Content and Opacity of Actively Star-Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Armus, Lee; Bohlin, Ralph C.; Kinney, Anne L.; Koornneef, Jan; Storchi-Bergmann, Thaisa

    2000-01-01

    ), UV - bright star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys, unless: (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.

  3. CHILES Con Pol: An ultra-deep JVLA survey probing galaxy evolution and cosmic magnetism

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Momjian, Emmanuel; van Gorkom, Jacqueline; Rupen, Michael P.; Greiner, Maksim; Ensslin, Torsten A.; Bonzini, Margherita; Padovani, Paolo; Harrison, Ian; Brown, Michael L.; Gim, Hansung; Yun, Min S.; Maddox, Natasha; Stewart, Adam; Fender, Rob P.; Tremou, Evangelia; Chomiuk, Laura; Peters, Charee; Wilcots, Eric M.; Lazio, Joseph

    2015-08-01

    We are undertaking a 1000 hour campaign with the Karl G. Jansky VLA to survey 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz. Our observations are part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an SKA-era sensitivity of 500 nJy per 4 arcsecond resolving beam, the deepest view of the radio sky yet. CHILES Con Pol will open new and fertile parameter space, with sensitivity to star formation rates of 10 Msun per year out to an unprecedented redshift of z=2, and ultra-luminous infrared galaxies and sub-millimeter galaxies out to redshifts of z=8 and beyond. This rich resource will extend the utility of radio band studies beyond the usual radio quasar and radio galaxy populations, opening sensitivity to the starforming and radio-quiet AGN populations that form the bulk of extragalactic sources detected in the optical, X-ray, and infrared bands. In this talk I will outline the key science of CHILES Con Pol, including galaxy evolution and novel measurements of intergalactic magnetic fields. I will present initial results from the first 180 hours of the survey and describe our forthcoming Data Release 1. I invite the astronomical community to consider unique science that can be pursued with CHILES Con Pol radio data.

  4. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  5. Understanding Local Luminous Infrared Galaxies in the Herschel Era

    NASA Astrophysics Data System (ADS)

    Chu, Jason; Sanders, David B.; Larson, Kirsten L.; Mazzarella, Joseph M.; Howell, Justin; Diaz Santos, Tanio; Xu, C. Kevin; Paladini, Roberta; Schulz, Bernhard; Shupe, David L.; Appleton, Philip N.; Armus, Lee; Billot, Nicolas; Pan Chan, Hiu; Evans, Aaron S.; Fadda, Dario; Frayer, David T.; Haan, Sebastian; Mie Ishida, Catherine; Iwasawa, Kazushi; Kim, Dong-Chan; Lord, Steven D.; Murphy, Eric J.; Petric, Andreea; Privon, George C.; Surace, Jason A.; Treister, Ezequiel; Great Observatories All-Sky LIRG Survey, Cosmic Evolution Survey

    2017-06-01

    Luminous and ultraluminous infrared galaxies [(U)LIRGs] are some of the most extreme objects in the universe with their elevated star formation rates and/or presence of a powerful AGN, playing a central role in the evolution of galaxies throughout cosmic history. The 201 local (U)LIRGs (z<0.088) within the Great Observatories All-Sky LIRG Survey (GOALS) provide an unmatched opportunity to characterize the diverse properties in a large, statistically significant sample, in addition to comparisons with their high redshift counterparts. In this thesis talk I will first present the Herschel PACS and SPIRE far infrared image atlas of the entire GOALS sample (encompassing the 70-500 micron wavelength range), and demonstrate the excellent data quality. The Herschel GOALS images presented here are the highest resolution, most sensitive and comprehensive far-infrared imaging survey of the nearest (U)LIRGs to date. This allows us for the first time to directly probe the critical far infrared and submillimeter wavelength regime of these systems, enabling us to accurately determine the bolometric luminosities, infrared surface brightnesses, star formation rates, and dust masses and temperatures on spatial scales of 2-5 kpc. In addition, the superb resolution of Herschel means we can resolve many of the galaxy pairs and systems within the GOALS sample, allowing us to measure far infrared fluxes of component galaxies. Finally, using the Herschel photometry in conjunction with Spitzer, WISE, and IRAS data, I will show our first results on the global properties of (U)LIRGs such as their average 3-500 micron infrared SEDs and far infrared colors, and compare them to lower infrared luminosity objects. We will also compare and contrast their infrared SED shapes with previously published SED templates from the literature. If time permits, I will also show initial results from our rest-frame optical spectroscopy program on z~2.3 infrared selected galaxies in the COSMOS field.

  6. Characterising the Dense Molecular Gas in Exceptional Local Galaxies

    NASA Astrophysics Data System (ADS)

    Tunnard, Richard C. A.

    2016-08-01

    The interferometric facilities now coming online (the Atacama Large Millimetre Array (ALMA) and the NOrthern Extended Millimeter Array (NOEMA)) and those planned for the coming decade (the Next Generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA)) in the radio to sub-millimetre regimes are opening a window to the molecular gas in high-redshift galaxies. However, our understanding of similar galaxies in the local universe is still far from complete and the data analysis techniques and tools needed to interpret the observations in consistent and comparable ways are yet to be developed. I first describe the Monte Carlo Markov Chain (MCMC) script developed to empower a public radiative transfer code. I characterise both the public code and MCMC script, including an exploration of the effect of observing molecular lines at high redshift where the Cosmic Microwave Background (CMB) can provide a significant background, as well as the effect this can have on well-known local correlations. I present two studies of ultraluminous infrared galaxies (ULIRGs) in the local universe making use of literature and collaborator data. In the first of these, NGC6240, I use the wealth of available data and the geometry of the source to develop a multi-phase, multi-species model, finding evidence for a complex medium of hot diffuse and cold dense gas in pressure equilibrium. Next, I study the prototypical ULIRG Arp 220; an extraordinary galaxy rendered especially interesting by the controversy over the power source of the western of the two merger nuclei and its immense luminosity and dust obscuration. Using traditional grid based methods I explore the molecular gas conditions within the nuclei and find evidence for chemical differentiation between the two nuclei, potentially related to the obscured power source. Finally, I investigate the potential evolution of proto-clusters over cosmic time with sub-millimetre observations of 14 radio galaxies, unexpectedly finding

  7. THE EGNoG SURVEY: GAS EXCITATION IN NORMAL GALAXIES AT z Almost-Equal-To 0.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauermeister, A.; Blitz, L.; Wright, M.

    As observations of molecular gas in galaxies are pushed to lower star formation rate (SFR) galaxies at higher redshifts, it is becoming increasingly important to understand the conditions of the gas in these systems to properly infer their molecular gas content. The rotational transitions of the carbon monoxide (CO) molecule provide an excellent probe of the gas excitation conditions in these galaxies. In this paper, we present the results from the gas excitation sample of the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey at the Combined Array for Research in Millimeter-wave Astronomy (CARMA). This subset of the fullmore » EGNoG sample consists of four galaxies at z Almost-Equal-To 0.3 with SFRs of 40-65 M {sub Sun} yr{sup -1} and stellar masses of Almost-Equal-To 2 Multiplication-Sign 10{sup 11} M {sub Sun }. Using the 3 mm and 1 mm bands at CARMA, we observe both the CO(J = 1 {yields} 0) and CO(J = 3 {yields} 2) transitions in these four galaxies in order to probe the excitation of the molecular gas. We report robust detections of both lines in three galaxies (and an upper limit on the fourth), with an average line ratio, r {sub 31} = L'{sub CO(3-2)}/L'{sub CO(1-0)}, of 0.46 {+-} 0.07 (with systematic errors {approx}< 40%), which implies sub-thermal excitation of the CO(J = 3 {yields} 2) line. We conclude that the excitation of the gas in these massive, highly star-forming galaxies is consistent with normal star-forming galaxies such as local spirals, not starbursting systems like local ultraluminous infrared galaxies. Since the EGNoG gas excitation sample galaxies are selected from the main sequence (MS) of star-forming galaxies, we suggest that this result is applicable to studies of MS galaxies at intermediate and high redshifts, supporting the assumptions made in studies that find molecular gas fractions in star-forming galaxies at z {approx} 1-2 to be an order of magnitude larger than what is observed locally.« less

  8. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with thosemore » from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.« less

  9. Evidence for a Variable Ultrafast Outflow in the Newly Discovered Ultraluminous Pulsar NGC 300 ULX-1

    NASA Astrophysics Data System (ADS)

    Kosec, P.; Pinto, C.; Walton, D. J.; Fabian, A. C.; Bachetti, M.; Brightman, M.; Fürst, F.; Grefenstette, B. W.

    2018-06-01

    Ultraluminous pulsars are a definite proof that persistent super-Eddington accretion occurs in nature. They support the scenario according to which most Ultraluminous X-ray Sources (ULXs) are super-Eddington accretors of stellar mass rather than sub-Eddington intermediate mass black holes. An important prediction of theories of supercritical accretion is the existence of powerful outflows of moderately ionized gas at mildly relativistic speeds. In practice, the spectral resolution of X-ray gratings such as RGS onboard XMM-Newton is required to resolve their observational signatures in ULXs. Using RGS, outflows have been discovered in the spectra of 3 ULXs (none of which are currently known to be pulsars). Most recently, the fourth ultraluminous pulsar was discovered in NGC 300. Here we report detection of an ultrafast outflow (UFO) in the X-ray spectrum of the object, with a significance of more than 3σ, during one of the two simultaneous observations of the source by XMM-Newton and NuSTAR in December 2016. The outflow has a projected velocity of 65000 km/s (0.22c) and a high ionisation factor with a log value of 3.9. This is the first direct evidence for a UFO in a neutron star ULX and also the first time that this its evidence in a ULX spectrum is seen in both soft and hard X-ray data simultaneously. We find no evidence of the UFO during the other observation of the object, which could be explained by either clumpy nature of the absorber or a slight change in our viewing angle of the accretion flow.

  10. On The Nature of the Ultraluminous X-Ray Transient in Cen A (NGC 5128)

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Finger, Mark H.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah

    2005-01-01

    We combine 20 ROSAT, Chandra, and XMM-Newton observations of the Cen A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F(sub X) > 10(exp -12) ergs/sq cm/s during a 10 day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 x 10(exp 39) ergs/s, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected at the 3 sigma level during a second bright episode (F(sub x) > 3 x 10(exp -13) ergs/sq cm/s) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m(sub F555W) approx. 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in Hubble images taken 195 days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. The X-ray and optical behavior of 1RXH J132519.8-430312 is therefore similar to the transient Be/X-ray pulsar A 0538-66.

  11. Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.

    1994-12-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  12. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  13. The Stellar Populations of Ultra-Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Karick, Arna; Gregg, M. D.

    2006-12-01

    We have discovered an intracluster population of ultra-luminous compact stellar systems in the Fornax cluster. Originally coined "ultra-compact dwarf galaxies" (UCDs), these objects were thought to be remnant nuclei of tidally stripped dE,Ns. Subsequent searches in Fornax (2dF+VLT) have revealed many fainter UCDs; making them the most numerous galaxy type in the cluster and fueling controversy over their origin. UCDs may be the bright tail of the globular cluster (GCs) population associated with NGC1399. Alternatively they may be real intracluster GCs, resulting from hierarchical cluster formation and merging in intracluster space. Determining the stellar populations of these enigmatic objects is challenging. UCDs are unresolved from the ground but our HST/STIS+ACS imaging reveals faint halos around the brightest UCDs. Here we present deep u'g'r'i'z' images of the cluster core using the CTIO 4m Mosaic. Combined with GALEX/UV imaging and using SSP isochrones, UCDs appear to be old, red and unlike cluster dEs. In contrast, our recent IMACS and Keck/LRIS+ESI spectroscopy shows that UCDs are unlike GCs and have intermediate stellar populations with significant variations in their Mg and Hβ line strength indices. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  14. The Topsy-Turvy Galaxy

    NASA Astrophysics Data System (ADS)

    2006-11-01

    NGC 1313's appearance suggests it has seen troubled times: its spiral arms look lop-sided and gas globules are spread out widely around them. This is more easily seen in ESO 43b/06, showing a larger area of the sky around the galaxy. Moreover, observations with ESO's 3.6-m telescope at La Silla have revealed that its 'real' centre, around which it rotates, does not coincide with the central bar. Its rotation is therefore also off kilter. Strangely enough NGC 1313 seems to be an isolated galaxy. It is not part of a group and has no neighbour, and it is not clear whether it may have swallowed a small companion in its past. So what caused its asymmetry and stellar baby boom? An explanation based on the presence of the central bar also does not hold for NGC 1313: the majority of its star formation is actually taking place not in its bar but in dense gassy regions scattered around the arms. By what mechanism the gas is compressed for stars to form at this staggering rate, astronomers simply aren't sure. Probing further into NGC 1313's insides reveals yet more mysteries. In the midst of the cosmic violence of the starburst regions lie two objects that emit large amounts of highly energetic X-rays - so-called ultra-luminous X-ray sources (ULX). Astronomers suspect that they might be black holes with masses of perhaps a few hundred times the mass of our Sun each, that formed as part of a binary star system. How such objects are created out of ordinary stars cannot be conclusively explained by current models. NGC 1313 is an altogether very intriguing target for astronomy. This image, obtained with ESO's Very Large Telescope, demonstrates once again how the imager FORS is ideally suited to capturing the beauty and stunning complexity of galaxies by observing them in different wavelength filters, combined here to form a stunning colour image. A high resolution image (with zoom-in possibilities) and its caption is available on this page.

  15. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  16. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-06-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  17. Spitzer Observations of MF 16 Nebula and the Associated Ultraluminous X-Ray Source

    DTIC Science & Technology

    2012-06-01

    reserved. Printed in the U.S.A. SPITZER OBSERVATIONS OF MF 16 NEBULA AND THE ASSOCIATED ULTRALUMINOUS X-RAY SOURCE C. T. Berghea and R. P. Dudik United...associated nebula MF 16. This ULX has very similar properties to the famous Holmberg II ULX, the first ULX to show a prominent infrared [O iv] emission...the most interesting developments in ULX history is the discovery in recent years of large ionized bubble nebulae around some of the most famous ULXs

  18. Superwind evolution: the young starburst-driven wind galaxy NGC 2782

    NASA Astrophysics Data System (ADS)

    Bravo-Guerrero, Jimena; Stevens, Ian R.

    2017-06-01

    We present results from a 30-ks Chandra observation of the important starburst galaxy NGC 2782, covering the 0.3-10 keV energy band. We find evidence of a superwind of small extent, which is likely in an early stage of development. We find a total of 27 X-ray point sources within a region of radius 2D25 of the galaxy centre and that are likely associated with the galaxy. Of these, 13 are ultraluminous X-ray point sources (ULXs; LX ≥ 1039 erg s- 1) and a number have likely counterparts. The X-ray luminosities of the ULX candidates are 1.2-3.9 × 1039 erg s- 1. NGC 2782 seems to have an unusually large number of ULXs. Central diffuse X-ray emission extending to ˜3 kpc from the nuclear region has been detected. We also find an X-ray structure to the south of the nucleus, coincident with Hα filaments and with a 5-GHz radio source. We interpret this as a blow-out region of a forming superwind. This X-ray bubble has a total luminosity (0.3-10 keV) of 5 × 1039 erg s-1 (around 15 per cent of the total luminosity of the extended emission), and an inferred wind mass of 1.5 × 106 M⊙ . We also discuss the nature of the central X-ray source in NGC 2782, and conclude that it is likely a low-luminosity active galactic nucleus, with a total X-ray luminosity of LX = 6 × 1040 erg s-1, with strong Fe line emission at 6.4 keV.

  19. The Wide-Field Infrared Explorer

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Hacking, Perry

    1993-01-01

    More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.

  20. Spectra of black hole accretion models of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Sa̧dowski, Aleksander; Soria, Roberto

    2017-08-01

    We present general relativistic radiation magnetohydrodynamics simulations of super-Eddington accretion on a 10 M⊙ black hole. We consider a range of mass accretion rates, black hole spins and magnetic field configurations. We compute the spectra and images of the models as a function of viewing angle and compare them with the observed properties of ultraluminous X-ray sources (ULXs). The models easily produce apparent luminosities in excess of 1040 erg s-1 for pole-on observers. However, the angle-integrated radiative luminosities rarely exceed 2.5 × 1039 erg s-1 even for mass accretion rates of tens of Eddington. The systems are thus radiatively inefficient, though they are energetically efficient when the energy output in winds and jets is also counted. The simulated models reproduce the main empirical types of spectra - disc-like, supersoft, soft, hard - observed in ultraluminous X-ray sources (ULXs). The magnetic field configuration, whether 'standard and normal evolution' (SANE) or 'magnetically arrested disc' (MAD), has a strong effect on the results. In SANE models, the X-ray spectral hardness is almost independent of accretion rate, but decreases steeply with increasing inclination. MAD models with non-spinning black holes produce significantly softer spectra at higher values of \\dot{M}, even at low inclinations. MAD models with rapidly spinning black holes are unique. They are radiatively efficient (efficiency factor ˜10-20 per cent), superefficient when the mechanical energy output is also included (70 per cent) and produce hard blazar-like spectra. In all models, the emission shows strong geometrical beaming, which disagrees with the more isotropic illumination favoured by observations of ULX bubbles.

  1. The AT-LESS CO(1-0) survey of submillimetre galaxies in the Extended Chandra Deep Field South: First results on cold molecular gas in galaxies at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Emonts, B. H. C.; Kimball, A. E.; Seymour, N.; Smail, Ian; Swinbank, A. M.; Brandt, W. N.; Casey, C. M.; Chapman, S. C.; Dannerbauer, H.; Hodge, J. A.; Ivison, R. J.; Schinnerer, E.; Thomson, A. P.; van der Werf, P.; Wardlow, J. L.

    2017-05-01

    We present the first results from our ongoing Australia Telescope Compact Array survey of 12CO(1-0) in Atacama Large Millimeter Array (ALMA)-identified submillimetre galaxies (SMGs) in the Extended Chandra Deep Field South. Strong detections of 12CO(1-0) emission from two SMGs, ALESS 122.1 (z = 2.0232) and ALESS 67.1 (z = 2.1230), were obtained. We estimate gas masses of Mgas ˜ 1.3 × 1011 M⊙ and Mgas ˜ 1.0 × 1011 M⊙ for ALESS 122.1 and ALESS 67.1, respectively, adopting αCO = 1.0. Dynamical mass estimates from the kinematics of the 12CO(1-0) line yields Mdyn sin2 I = (2.1 ± 1.1) × 1011 M⊙ and (3.2 ± 0.9) × 1011 M⊙ for ALESS 122.1 and ALESS 67.1, respectively. This is consistent with the total baryonic mass estimates of these two systems. We examine star formation efficiency, using the LFIR versus L^' }_{CO(1-0)} relation for samples of local ultraluminous infrared galaxies (ULIRGs) and Luminous Infrared Galaxies (LIRGs), and more distant star-forming galaxies, with 12CO(1-0) detections. We find some evidence of a shallower slope for ULIRGs and SMGs compared to less luminous systems, but a larger sample is required for definite conclusions. We determine gas-to-dust ratios of 170 ± 30 and 140 ± 30 for ALESS 122.1 and ALESS 67.1, respectively, showing that ALESS 122.1 has an unusually large gas reservoir. By combining the 38.1 GHz continuum detection of ALESS 122.1 with 1.4 and 5.5 GHz data, we estimate that the free-free contribution to radio emission at 38.1 GHz is 34 ± 17 μJy, yielding a star formation rate (1400 ± 700 M⊙ yr-1) consistent with that from the infrared luminosity.

  2. MAPPING THE CLUMPY STRUCTURES WITHIN SUBMILLIMETER GALAXIES USING LASER-GUIDE STAR ADAPTIVE OPTICS SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menendez-Delmestre, Karin; Goncalves, Thiago S.; Blain, Andrew W.

    2013-04-20

    We present the first integral-field spectroscopic observations of high-redshift submillimeter-selected galaxies (SMGs) using Laser-Guide Star Adaptive Optics. We target H{alpha} emission of three SMGs at redshifts z {approx} 1.4-2.4 with the OH-Suppressing Infrared Imaging Spectrograph on Keck. The spatially resolved spectroscopy of these galaxies reveals unresolved broad-H{alpha} line regions (FWHM >1000 km s{sup -1}) likely associated with an active galactic nucleus (AGN) and regions of diffuse star formation traced by narrow-line H{alpha} emission (FWHM {approx}< 500 km s{sup -1}) dominated by multiple H{alpha}-bright stellar clumps, each contributing 1%-30% of the total clump-integrated H{alpha} emission. We find that these SMGs hostmore » high star formation rate surface densities, similar to local extreme sources, such as circumnuclear starbursts and luminous infrared galaxies. However, in contrast to these local environments, SMGs appear to be undergoing such intense activity on significantly larger spatial scales as revealed by extended H{alpha} emission over 4-16 kpc. H{alpha} kinematics show no evidence of ordered global motion as would be found in a disk, but rather large velocity offsets ({approx}few Multiplication-Sign 100 km s{sup -1}) between the distinct stellar clumps. Together with the asymmetric distribution of the stellar clumps around the AGN in these objects, it is unlikely that we are unveiling a clumpy disk structure as has been suggested in other high-redshift populations of star-forming galaxies. The SMG clumps in this sample may correspond to remnants of originally independent gas-rich systems that are in the process of merging, hence triggering the ultraluminous SMG phase.« less

  3. The Role of Major Gas-rich Mergers on the Evolution of Galaxies from the Blue Cloud to the Red Sequence

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, X. Y.; Mao, Shude; Shi, Yong

    2016-07-01

    With the aim of exploring the fast evolutionary path from the blue cloud of star-forming galaxies to the red sequence of quiescent galaxies in the local universe, we select a local advanced merging infrared luminous and ultraluminous galaxy (adv-merger (U)LIRGs) sample and perform careful dust extinction corrections to investigate their positions in the star formation rate-M *, u - r, and NUV - r color-mass diagrams. The sample consists of 89 (U)LIRGs at the late merger stage, obtained from cross-correlating the Infrared Astronomical Satellite Point Source Catalog Redshift Survey and 1 Jy ULIRGs samples with the Sloan Digital Sky Survey DR7 database. Our results show that 74 % +/- 5 % of adv-merger (U)LIRGs are localized above the 1σ line of the local star-forming galaxy main sequence. We also find that all adv-merger (U)LIRGs are more massive than and as blue as the blue cloud galaxies after corrections for Galactic and internal dust extinctions, with 95 % +/- 2 % and 81 % +/- 4 % of them outside the blue cloud on the u - r and NUV - r color-mass diagrams, respectively. These results, combined with the short timescale for exhausting the molecular gas reservoir in adv-merger (U)LIRGs (3× {10}7 to 3× {10}8 years), imply that the adv-merger (U)LIRGs are likely at the starting point of the fast evolutionary track previously proposed by several groups. While the number density of adv-merger (U)LIRGs is only ˜ 0.1 % of the blue cloud star-forming galaxies in the local universe, this evolutionary track may play a more important role at high redshift.

  4. MAJOR-MERGER GALAXY PAIRS IN THE COSMOS FIELD-MASS-DEPENDENT MERGER RATE EVOLUTION SINCE z = 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, C. Kevin; Zhao, Yinghe; Gao, Y.

    2012-03-10

    We present results of a statistical study of the cosmic evolution of the mass-dependent major-merger rate since z = 1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band-selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting function of f{sub pair} = 10{sup -1.88({+-}0.03)}(1 + z){sup 2.2({+-}0.2)}. The best-fitting function for the merger rate is R{sub mg} (Gyr{sup -1}) = 0.053 Multiplication-Signmore » (M{sub star}/10{sup 10.7} M{sub Sun} ){sup 0.3}(1 + z){sup 2.2}/(1 + z/8). This rate implies that galaxies of M{sub star} {approx} 10{sup 10}-10{sup 11.5} M{sub Sun} have undergone {approx}0.5-1.5 major mergers since z = 1. Our results show that, for massive galaxies (M{sub star} {>=} 10{sup 10.5} M{sub Sun }) at z {<=} 1, major mergers involving star-forming galaxies (i.e., wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs of M{sub star} {approx}< 10{sup 10.3} M{sub Sun }. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies (M{sub star} {>=} 10{sup 11.3} M{sub Sun }), but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass-dependent (ultra)luminous infrared galaxies ((U)LIRG) rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.« less

  5. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.

    2013-09-10

    , related to more luminous HMXBs such as ultraluminous X-ray sources, drive the elevated L{sub X}/SFR observed in our sample of z < 0.1 LBAs. The relatively metal-poor, active mode of star formation in LBAs and distant z > 2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local universe.« less

  6. Cosmological implications of a stellar initial mass function that varies with the Jeans mass in galaxies

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Davé, Romeel

    2012-07-01

    Observations of star-forming galaxies at high z have suggested discrepancies in the inferred star formation rates (SFRs) either between data and models or between complementary measures of the SFR. These putative discrepancies could all be alleviated if the stellar initial mass function (IMF) is systematically weighted towards more high-mass star formation in rapidly star-forming galaxies. Here, we explore how the IMF might vary under the central assumption that the turnover mass in the IMF, ?, scales with the Jeans mass in giant molecular clouds (GMCs), ?. We employ hydrodynamic simulations of galaxies coupled with radiative transfer models to predict how the typical GMC Jeans mass, and hence the IMF, varies with galaxy properties. We then study the impact of such an IMF on the star formation law, the SFR-M* relation, sub-millimetre galaxies (SMGs) and the cosmic SFR density. Our main results are: the H2 mass-weighted Jeans mass in a galaxy scales well with the SFR when the SFR is greater than a few M⊙ yr-1. Stellar population synthesis modelling shows that this results in a non-linear relation between SFR and Lbol, such that SFR ?. Using this model relation, the inferred SFR of local ultraluminous infrared galaxies decreases by a factor of ˜2, and that of high-z SMGs decreases by a factor of ˜3-5. At z˜ 2, this results in a lowered normalization of the SFR-M* relation in better agreement with models, a reduced discrepancy between the observed cosmic SFR density and stellar mass density evolution, and SMG SFRs that are easier to accommodate in current hierarchical structure formation models. It further results in a Kennicutt-Schmidt star formation law with a slope of ˜1.6 when utilizing a physically motivated form for the CO-H2 conversion factor that varies with galaxy physical property. While each of the discrepancies considered here could be alleviated without appealing to a varying IMF, the modest variation implied by assuming ? is a plausible solution

  7. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  8. Characterizing the UV-to-NIR shape of the dust attenuation curve of IR luminous galaxies up to z ˜ 2

    NASA Astrophysics Data System (ADS)

    Lo Faro, B.; Buat, V.; Roehlly, Y.; Alvarez-Marquez, J.; Burgarella, D.; Silva, L.; Efstathiou, A.

    2017-12-01

    In this work, we investigate the far-ultraviolet (UV) to near-infrared (NIR) shape of the dust attenuation curve of a sample of IR-selected dust obscured (ultra)luminous IR galaxies at z ∼ 2. The spectral energy distributions (SEDs) are fitted with Code Investigating GALaxy Emission, a physically motivated spectral-synthesis model based on energy balance. Its flexibility allows us to test a wide range of different analytical prescriptions for the dust attenuation curve, including the well-known Calzetti and Charlot & Fall curves, and modified versions of them. The attenuation curves computed under the assumption of our reference double power-law model are in very good agreement with those derived, in previous works, with radiative transfer (RT) SED fitting. We investigate the position of our galaxies in the IRX-β diagram and find this to be consistent with greyer slopes, on average, in the UV. We also find evidence for a flattening of the attenuation curve in the NIR with respect to more classical Calzetti-like recipes. This larger NIR attenuation yields larger derived stellar masses from SED fitting, by a median factor of ∼1.4 and up to a factor ∼10 for the most extreme cases. The star formation rate appears instead to be more dependent on the total amount of attenuation in the galaxy. Our analysis highlights the need for a flexible attenuation curve when reproducing the physical properties of a large variety of objects.

  9. Powerful Molecular Outflows in Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Meléndez, Marcio

    2014-07-01

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel-PACS† in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7-μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~ 145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only 4 objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~ -1000 km s-1 are measured in several objects, but median outflow velocities are typically ~ -200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large AGN fractions and luminosities [log (L AGN/L ⊙) >= 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. In contrast, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  10. Early Science with the Large Millimeter Telescope: observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    NASA Astrophysics Data System (ADS)

    Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.

    2015-09-01

    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.

  11. Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9

    NASA Astrophysics Data System (ADS)

    Chomiuk, L.; Chornock, R.; Soderberg, A. M.; Berger, E.; Chevalier, R. A.; Foley, R. J.; Huber, M. E.; Narayan, G.; Rest, A.; Gezari, S.; Kirshner, R. P.; Riess, A.; Rodney, S. A.; Smartt, S. J.; Stubbs, C. W.; Tonry, J. L.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K. C.; Czekala, I.; Flewelling, H.; Forster, K.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Martin, D. C.; Morgan, J. S.; Neill, J. D.; Price, P. A.; Roth, K. C.; Sanders, N. E.; Wainscoat, R. J.

    2011-12-01

    We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M bol ≈ -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 1051 erg. We find photospheric velocities of 12,000-19,000 km s-1 with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.

  12. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  13. Testing the Paradigm that Ultra-Luminous X-Ray Sources as a Class Represent Accreting Intermediate

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-01-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the fattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity > or equals 5x10(exp 39) ergs/s) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the "simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find (1) that cool disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) that cool disk components extend below the standard ULX luminosity cutoff of 10(exp 39) ergs/s, down to our sample limit of 10(exp 38:3) ergs/s. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which a strong statistical support was never made.

  14. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  15. Detailed modelling of a large sample of Herschel sources in the Lockman Hole: identification of cold dust and of lensing candidates through their anomalous SEDs★

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael; Wang, Lingyu; Wardlow, Julie; Farrah, Duncan; Oliver, Seb; Bock, Jamie; Clarke, Charlotte; Clements, David; Ibar, Edo; Gonzalez-Solares, Eduardo; Marchetti, Lucia; Scott, Douglas; Smith, Anthony; Vaccari, Mattia; Valtchanov, Ivan

    2014-12-01

    We have studied in detail a sample of 967 SPIRE sources with 5σ detections at 350 and 500 μm and associations with Spitzer-SWIRE 24 μm galaxies in the HerMES-Lockman survey area, fitting their mid- and far-infrared, and submillimetre, spectral energy distributions (SEDs) in an automatic search with a set of six infrared templates. For almost 300 galaxies, we have modelled their SEDs individually to ensure the physicality of the fits. We confirm the need for the new cool and cold cirrus templates, and also of the young starburst template, introduced in earlier work. We also identify 109 lensing candidates via their anomalous SEDs and provide a set of colour-redshift constraints which allow lensing candidates to be identified from combined Herschel and Spitzer data. The picture that emerges of the submillimetre galaxy population is complex, comprising ultraluminous and hyperluminous starbursts, lower luminosity galaxies dominated by interstellar dust emission, lensed galaxies and galaxies with surprisingly cold (10-13 K) dust. 11 per cent of 500 μm selected sources are lensing candidates. 70 per cent of the unlensed sources are ultraluminous infrared galaxies and 26 per cent are hyperluminous. 34 per cent are dominated by optically thin interstellar dust (`cirrus') emission, but most of these are due to cooler dust than is characteristic of our Galaxy. At the highest infrared luminosities we see SEDs dominated by M82, Arp 220 and young starburst types, in roughly equal proportions.

  16. WISE infrared properties of OH megamaser galaxies: Guide for future FAST OHM searching?

    NASA Astrophysics Data System (ADS)

    Zhang, JiangShui; Wang, JunZhi; Li, Di

    2015-08-01

    All 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH > 10 Lsun) published so far were compiled and were cross-identified with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4 band) were collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about 40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1-W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22 μm and the color [W1]-[W4] for the Arecibo OHM hosts. In summary, these clues should provide suitable constraints on the sample selection for future OH megamaser surveys through the Five hundred aperture spherical telescope (FAST). Further potentials on FAST OH megamasers research are investigated, including detectability, sky density of OH megamasers etc.

  17. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer: Evidence of High Unbeamed Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2008-01-01

    We present the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 micron emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation, usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the Holmberg II ULX. We find that the luminosity and the morphology of the line emission is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is radiation bounded both in the line of sight direction and to the west, and probably matter bounded to the east. Evidence for a massive black hole (BH) in this ULX is mounting. Detailed photoionization models favor an intermediate mass black hole of at least 85 Solar Mass as the ionization source for the [OIV] emission. We find that the spectral type of the companion star strongly affects the expected strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst galaxies containing black hole binaries.

  18. VizieR Online Data Catalog: Intermediate-luminosity X-ray objects catalog (Colbert+, 2002)

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Ptak, A. F.

    2002-11-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039erg/s) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000km/s from the Third Reference Catalog of Bright Galaxies. (2 data files).

  19. HerMES: The contribution to the cosmic infrared background from galaxies selected by mass and redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viero, M. P.; Moncelsi, L.; Bock, J.

    2013-12-10

    We quantify the fraction of the cosmic infrared background (CIB) that originates from galaxies identified in the UV/optical/near-infrared by stacking 81,250 (∼35.7 arcmin{sup –2}) K-selected sources (K {sub AB} < 24.0) split according to their rest-frame U – V versus V – J colors into 72,216 star-forming and 9034 quiescent galaxies, on maps from Spitzer/MIPS (24 μm), Herschel/PACS (100, 160 μm), Herschel/SPIRE (250, 350, 500 μm), and AzTEC (1100 μm). The fraction of the CIB resolved by our catalog is (69% ± 15%) at 24 μm, (78% ± 17%) at 70 μm, (58% ± 13%) at 100 μm, (78% ±more » 18%) at 160 μm, (80% ± 17%) at 250 μm, (69% ± 14%) at 350 μm, (65% ± 12%) at 500 μm, and (45% ± 8%) at 1100 μm. Of that total, about 95% originates from star-forming galaxies, while the remaining 5% is from apparently quiescent galaxies. The CIB at λ ≲ 200 μm appears to be sourced predominantly from galaxies at z ≲ 1, while at λ ≳ 200 μm the bulk originates from 1 ≲ z ≲ 2. Galaxies with stellar masses log(M/M {sub ☉}) = 9.5-11 are responsible for the majority of the CIB, with those in the log(M/M {sub ☉}) = 9.5-10 bin contributing mostly at λ < 250 μm, and those in the log(M/M {sub ☉}) = 10-11 bin dominating at λ > 350 μm. The contribution from galaxies in the log(M/M {sub ☉}) = 9.0-9.5 (lowest) and log(M/M {sub ☉}) = 11.0-12.0 (highest) stellar-mass bins contribute the least—both of order 5%—although the highest stellar-mass bin is a significant contributor to the luminosity density at z ≳ 2. The luminosities of the galaxies responsible for the CIB shifts from combinations of 'normal' and luminous infrared galaxies (LIRGs) at λ ≲ 160 μm, to LIRGs at 160 ≲ λ ≲ 500 μm, to finally LIRGs and ultra-luminous infrared galaxies at λ ≳ 500 μm. Stacking analyses were performed using SIMSTACK, a novel algorithm designed to account for possible biases in the stacked flux density due to clustering. It is made available to the

  20. HerMES: The Contribution to the Cosmic Infrared Background from Galaxies Selected by Mass and Redshift

    NASA Astrophysics Data System (ADS)

    Viero, M. P.; Moncelsi, L.; Quadri, R. F.; Arumugam, V.; Assef, R. J.; Béthermin, M.; Bock, J.; Bridge, C.; Casey, C. M.; Conley, A.; Cooray, A.; Farrah, D.; Glenn, J.; Heinis, S.; Ibar, E.; Ikarashi, S.; Ivison, R. J.; Kohno, K.; Marsden, G.; Oliver, S. J.; Roseboom, I. G.; Schulz, B.; Scott, D.; Serra, P.; Vaccari, M.; Vieira, J. D.; Wang, L.; Wardlow, J.; Wilson, G. W.; Yun, M. S.; Zemcov, M.

    2013-12-01

    We quantify the fraction of the cosmic infrared background (CIB) that originates from galaxies identified in the UV/optical/near-infrared by stacking 81,250 (~35.7 arcmin-2) K-selected sources (K AB < 24.0) split according to their rest-frame U - V versus V - J colors into 72,216 star-forming and 9034 quiescent galaxies, on maps from Spitzer/MIPS (24 μm), Herschel/PACS (100, 160 μm), Herschel/SPIRE (250, 350, 500 μm), and AzTEC (1100 μm). The fraction of the CIB resolved by our catalog is (69% ± 15%) at 24 μm, (78% ± 17%) at 70 μm, (58% ± 13%) at 100 μm, (78% ± 18%) at 160 μm, (80% ± 17%) at 250 μm, (69% ± 14%) at 350 μm, (65% ± 12%) at 500 μm, and (45% ± 8%) at 1100 μm. Of that total, about 95% originates from star-forming galaxies, while the remaining 5% is from apparently quiescent galaxies. The CIB at λ <~ 200 μm appears to be sourced predominantly from galaxies at z <~ 1, while at λ >~ 200 μm the bulk originates from 1 <~ z <~ 2. Galaxies with stellar masses log(M/M ⊙) = 9.5-11 are responsible for the majority of the CIB, with those in the log(M/M ⊙) = 9.5-10 bin contributing mostly at λ < 250 μm, and those in the log(M/M ⊙) = 10-11 bin dominating at λ > 350 μm. The contribution from galaxies in the log(M/M ⊙) = 9.0-9.5 (lowest) and log(M/M ⊙) = 11.0-12.0 (highest) stellar-mass bins contribute the least—both of order 5%—although the highest stellar-mass bin is a significant contributor to the luminosity density at z >~ 2. The luminosities of the galaxies responsible for the CIB shifts from combinations of "normal" and luminous infrared galaxies (LIRGs) at λ <~ 160 μm, to LIRGs at 160 <~ λ <~ 500 μm, to finally LIRGs and ultra-luminous infrared galaxies at λ >~ 500 μm. Stacking analyses were performed using SIMSTACK, a novel algorithm designed to account for possible biases in the stacked flux density due to clustering. It is made available to the public at www

  1. Spatially Resolved Analysis of the Interstellar Medium in the Cosmic Eye, a Lensed Lyman Break Galaxy at z=3.074

    NASA Astrophysics Data System (ADS)

    Ball, Catherine; Riechers, Dominik A.; Pavesi, Riccardo

    2018-01-01

    The [CII]/[NII] ratio combines the [CII] line, a tracer of photodissociation and HII regions emerging from the neutral and ionized phases of the interstellar medium (ISM), with [NII] emission, which only originates from the ionized ISM. In this, the [CII]/[NII] ratio can be used to separate the fractions of [CII] emission emerging from the different phases of the ISM. We present Atacama Large sub-Millimeter Array (ALMA) observations of the Cosmic Eye, a gravitationally lensed Lyman Break Galaxy (LBG). As an LBG, the Cosmic Eye represents a "normal" star forming galaxy in the z>2 universe. LBGs were host to the bulk of star formation during the peak epoch of star formation. Diagnosing star formation in these galaxies provides insight into the evolution of “normal” galaxies in a cosmic sense. The high magnification (30x) allows us to resolve the [CII] 158μm and the [NII] 205μm lines in detail, allowing for a position-resolved analysis of their ratio. We find variations of the line ratio across the galaxy, suggesting the galaxy’s internal structure affects this ratio. We consider the Cosmic Eye in the context of both higher redshift LBGs and local luminous and ultraluminous infrared galaxies, finding that the Cosmic Eye’s line ratio is similar to those of both higher- and lower- redshift galaxies. The Cosmic Eye’s global [CII]/[NII] ratio sits between two previous measurements of z>5 LBGs at low resolution, suggesting that the ratio may correlate more significantly with LFIR than with redshift in this epoch. Furthermore, the Cosmic Eye’s [CII]/[NII] ratio is similar to those of the nearby LIRG/ULIRGs, though we expect local [CII]/[NII] values to be lower due to their different metallicities and dust content. High-resolution studies like this one probe the evolution of [CII]/[NII] over cosmic time by examining the evolution of the ISM’s structure. With a better understanding of the [CII]/[NII] line ratio, we can more effectively use it as a probe of the

  2. Kinematics and Energetics in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    U, Vivian; Sanders, D. B.; GOALS Team

    2012-01-01

    In the present paradigm of the merger-driven galaxy evolution scenario, gas-rich spirals interact and merge, triggering intense star formation and nuclear activity that can deplete the gas in progenitors of giant ellipticals. Starburst and AGN activities in systems like these cause an infrared-luminous stage associated with enhanced star formation rate and black hole growth. Therefore, the local luminous and ultraluminous infrared galaxies ((U)LIRGs) provide the ideal nearby, extreme environments in which we study black hole accretion, AGN feeding and feedback, and the nature of star formation in starbursts, the connection among which remains poorly understood due to limitations of previous instrumentation. Our new high-resolution submillimeter and near-infrared integral-field data cube of the nuclei in (U)LIRGs taken with the Submillimeter Array (SMA) and the Keck Telescopes reveal circumnuclear gas kinematics at an unprecedented level of details. At the distances of these local mergers, our SMA long-baseline and Keck laser guide star adaptive optics observations probe the physical conditions of the centers of these systems at the scale of 50-200 pc. For instance, the molecular gas emission in between the two AGNs in NGC 6240 has been resolved into two peaks that may be consistent with a scenario where two pre-coalescence gas disks are interacting at an angle; near-infrared integral-field spectra of the two nuclei in Mrk 273 disclose the temperature and excitation mechanism around an AGN and the nuclear disk of a potential second AGN. These findings give a detailed description of the molecular gas kinematics as well as AGN/starburst activities in the central dusty region of these merging systems, and paint an overall picture of the evolution of the energetics in (U)LIRGs as the merger sequence progresses. VU would like to acknowledge partial funding support from the NASA Harriet G. Jenkins Predoctoral Fellowship Project.

  3. ALMA 26 arcmin2 Survey of GOODS-S at One-millimeter (ASAGAO): X-Ray AGN Properties of Millimeter-selected Galaxies

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Hatsukade, B.; Kohno, K.; Yamaguchi, Y.; Tamura, Y.; Umehata, H.; Akiyama, M.; Ao, Y.; Aretxaga, I.; Caputi, K.; Dunlop, J. S.; Espada, D.; Fujimoto, S.; Hayatsu, N. H.; Imanishi, M.; Inoue, A. K.; Ivison, R. J.; Kodama, T.; Lee, M. M.; Matsuoka, K.; Miyaji, T.; Morokuma-Matsui, K.; Nagao, T.; Nakanishi, K.; Nyland, K.; Ohta, K.; Ouchi, M.; Rujopakarn, W.; Saito, T.; Tadaki, K.; Tanaka, I.; Taniguchi, Y.; Wang, T.; Wang, W.-H.; Yoshimura, Y.; Yun, M. S.

    2018-01-01

    We investigate the X-ray active galactic nucleus (AGN) properties of millimeter galaxies in the Great Observatories Origins Deep Survey South (GOODS-S) field detected with the Atacama Large Millimeter/submillimeter Array (ALMA), by utilizing the Chandra 7-Ms data, the deepest X-ray survey to date. Our millimeter galaxy sample comes from the ASAGAO survey covering 26 arcmin2 (12 sources at a 1.2 mm flux-density limit of ≈ 0.6 mJy), supplemented by the deeper but narrower 1.3 mm survey of a part of the ASAGAO field by Dunlop et al. Ofthe 25 total millimeter galaxies, 14 have Chandra counterparts. The observed AGN fractions at z=1.5{--}3 are found to be {90}-19+8% and {57}-25+23% for the ultra-luminous and luminous infrared galaxies with log {L}{IR}/{L}ȯ = 12–12.8 and log {L}{IR}/{L}ȯ = 11.5–12, respectively. The majority (∼2/3) of the ALMA and/or Herschel detected X-ray AGNs at z = 1.5‑3 appear to be star-formation-dominant populations, having {L}{{X}}/ {L}{IR} ratios smaller than the “simultaneous evolution” value expected from the local black-hole-mass-to-stellar-mass ({M}{BH}–M *) relation. On the basis of the {L}{{X}} and stellar mass relation, we infer that a large fraction of star-forming galaxies at z=1.5{--}3 have black hole masses that are smaller than those expected from the local {M}{BH}–M * relation. This contrasts previous reports on luminous AGNs at the same redshifts detected in wider and shallower surveys, which are subject to selection biases against lower luminosity AGNs. Our results are consistent with an evolutionary scenario in which star formation occurs first, and an AGN-dominant phase follows later, in objects that finally evolve into galaxies with classical bulges.

  4. The middle infrared properties of OH megamaser host galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Wang, J. Z.; Di, G. X.; Zhu, Q. F.; Guo, Q.; Wang, J.

    2014-10-01

    We compiled all 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH> 10 L⊙) published so far and cross-identified these OH masers with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4) are collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about ~40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1 - W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). These may be good for sample selection when searching OH megamasers, such as excluding extreme luminous sources at short MIR wavelengths, choosing sources with cooler MIR colors. In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22μm and the color [W1]-[W4] for the Arecibo OHM hosts. These clues should provide suitable constraints on the sample selection for OH megamaser surveys by future advanced telescopes (e.g., FAST). In addition, the correlation of maser luminosity and the MIR luminosity of maser hosts tends to be non-significant, which may indirectly support

  5. HUBBLE SPACE TELESCOPE MORPHOLOGIES OF z {approx} 2 DUST-OBSCURED GALAXIES. II. BUMP SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Lotz, J.

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z {approx} 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 {mu}m associated with stellar emission. These sources, which we call 'bump DOGs', have star formation rates (SFRs) of 400-4000 M{sub sun} yr{sup -1} and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission-a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGsmore » (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 {+-} 2.7 kpc versus 5.5 {+-} 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M{sub 20} of -1.08 {+-} 0.05 versus -1.48 {+-} 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M{sub 20} = -1.0 to M{sub 20} = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.« less

  6. A 1.1mm AzTEC Survey Tracing Accelerated Galaxy Formation Towards a Protocluster at z 3.8

    NASA Astrophysics Data System (ADS)

    Hughes, David H.; Montana, A.; Aretxaga, I.; Plionis, M.; Porras, A.; Wagg, J.; Gaztanaga, E.; Huang, J.; Fazio, G.; Wilson, G.; Yun, M.; Lowenthal, J.; Perera, T.; Austermann, J.; Scott, K.; Dunlop, J.; Ivison, R.; Stevens, J.; Smail, I.; Appleton, P.

    2006-12-01

    Aztec has recently conducted a sensitive, wide-area (300 sq. Armin's) continuum survey at 1.1mm using the 15-m James Clerk Maxwell Telescope towards 4C41.17, a powerful high-redshift (z 3.8) radio galaxy. These Aztec data, which cover an area >40 times larger than our previous SCUBA survey, reveal a significant over-density of luminous, massive dust-enshrouded galaxies, compared to the results from lower-redshift blank-field sub-mm surveys. One natural interpretation of these new AzTEC data is that the over-density is tracing a large (5 x 5 Mpc) "proto-cluster" structure at z 3.8 associated with the environment of 4C41.17, within which the formation of ultra-luminous starburst galaxies (with rest-frame FIR luminosities >5 x 1012 Lsun or SFRs > 500 Msun/yr) is taking place at an accelerated rate. Proving the physical association of these massive optically-faint starbursts with the environment of this high-z AGN, and not with the blank-field sub-mm population, for which 50% of the population lies at 1.9 < z < 2.9, remains an outstanding problem. In this presentation we will describe the AzTEC survey, the empirical evidence for this protocluster structure in the early universe, and the planned multi-wavelength follow-up observations of the brightest AzTEC sources towards 4C41.17 that may demonstrate that we are witnessing accelerated galaxy formation, via an increased rate of merging gas-rich galaxies within a rapidly-developing gravitational potential. AzTEC is one of the suite of instruments destined for the 50-m Large Millimeter Telescope (LMT). We will conclude this presentation with a summary of future LMT observations that will trace the evolution of obscured starformation in the dynamic environments towards a significant sample of intermediate and high-z powerful AGN with greater sensitivity and spatial resolution.

  7. Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-11-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the Chandra bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity >=5 × 1039 erg s-1) and is in line with recent models arguing that ULXs are actually stellar mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs—i.e., the "simple IMBH model"—is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 1039 erg s-1, down to our sample limit of 1038.3 erg s-1. The fact that cool-disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.

  8. No Sign of Strong Molecular Gas Outflow in an Infrared-bright Dust-obscured Galaxy with Strong Ionized-gas Outflow

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Komugi, Shinya; Nagao, Tohru; Yamashita, Takuji; Wang, Wei-Hao; Imanishi, Masatoshi; Sun, Ai-Lei

    2017-12-01

    We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detailed analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([O III] λ5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at z spec = 0.493, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected 12CO(J = 2–1) and 12CO(J = 4–3) lines and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is log (L IR/L ⊙) = 12.40, which is classified as an ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite the fact that its optical spectrum shows a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy, at least for this DOG.

  9. Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z Almost-Equal-To 0.9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chomiuk, L.; Chornock, R.; Soderberg, A. M.

    We present the discovery of two ultraluminous supernovae (SNe) at z Almost-Equal-To 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M{sub bol} Almost-Equal-To -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time seriesmore » spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) Multiplication-Sign 10{sup 51} erg. We find photospheric velocities of 12,000-19,000 km s{sup -1} with no evidence for deceleration measured across {approx}3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.« less

  10. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    PubMed

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  11. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  12. PdBI cold dust imaging of two extremely red H – [4.5] > 4 galaxies discovered with SEDS and CANDELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputi, K. I.; Popping, G.; Spaans, M.

    2014-06-20

    We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging toward two extremely red H – [4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3σ significance, corresponding to S{sub ν}(1.1 mm)=0.78±0.18 mJy. By combining this detection with the Spitzer 8 and 24 μm photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galacticmore » nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR ≈ 200 ± 100 M {sub ☉} yr{sup –1}, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z ∼ 2-3. In the field of the other target, we find a tentative 3.1σ detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3σ detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.« less

  13. Star and Dust Formation Activities in AzTEC-3, a Starburst Galaxy at z = 5.3

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.; Capak, Peter L.; Kovacs, Attila; Benford, Dominic J.; Fixsen, Dale; Karim, Alexander; Leclercq, Samuel; Maher, Stephen F.; Moseley, Samuel H.; Schinnerer, Eva; Sharp, Elmer H.

    2011-09-01

    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PÉGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with an SFR of ~500 M sun yr-1. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  14. STAR AND DUST FORMATION ACTIVITIES IN AzTEC-3, A STARBURST GALAXY AT z = 5.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.

    2011-09-01

    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to producemore » the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PEGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of {approx}200 Myr, with an SFR of {approx}500 M{sub sun} yr{sup -1}. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.« less

  15. NuSTAR View of the Black Hole Wind in the Galaxy Merger IRAS F11119+3257

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Veilleux, S.; Meléndez, M.; Lohfink, A.; Reeves, J. N.; Piconcelli, E.; Fiore, F.; Feruglio, C.

    2017-12-01

    Galactic winds driven by active galactic nuclei (AGNs) have been invoked to play a fundamental role in the co-evolution between supermassive black holes and their host galaxies. Finding observational evidence of such feedback mechanisms is of crucial importance and it requires a multi-wavelength approach in order to compare winds at different scales and phases. In Tombesi et al., we reported the detection of a powerful ultra-fast outflow (UFO) in the Suzaku X-ray spectrum of the ultra-luminous infrared galaxy IRAS F11119+3257. The comparison with a galaxy-scale OH molecular outflow observed with Herschel in the same source supported the energy-conserving scenario for AGN feedback. The main objective of this work is to perform an independent check of the Suzaku results using the higher sensitivity and wider X-ray continuum coverage of NuSTAR. We clearly detect a highly ionized Fe K UFO in the 100 ks NuSTAR spectrum with parameters N H = (3.2 ± 1.5) × 1024 cm-2, log ξ = {4.0}-0.3+1.2 erg s-1 cm, and {v}{out}={0.253}-0.118+0.061c. The launching radius is likely at a distance of r ≥ 16r s from the black hole. The mass outflow rate is in the range of {\\dot{M}}{out} ≃ 0.5-2 M ⊙ yr-1. The UFO momentum rate and power are {\\dot{P}}{out} ≃ 0.5-2 L AGN/c and {\\dot{E}}{out} ≃ 7%-27% L AGN, respectively. The UFO parameters are consistent between the 2013 Suzaku and the 2015 NuSTAR observations. Only the column density is found to be variable, possibly suggesting a clumpy wind. The comparison with the energetics of molecular outflows estimated in infrared and millimeter wavelengths support a connection between the nuclear and galaxy-scale winds in luminous AGNs.

  16. The Explorer of Diffuse Galactic Emission (EDGE): Determining the Large-Scale Structure Evolution in the Universe

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Knox, L.; Timbie, P.; Wilson, G.

    2003-01-01

    Measurements of the large-scale anisotropy of the Cosmic Infared Background (CIB) can be used to determine the characteristics of the distribution of galaxies at the largest spatial scales. With this information important tests of galaxy evolution models and primordial structure growth are possible. In this paper, we describe the scientific goals, instrumentation, and operation of EDGE, a mission using an Antarctic Long Duration Balloon (LDB) platform. EDGE will osbserve the anisotropy in the CIB in 8 spectral bands from 270 GHz-1.5 THz with 6 arcminute angular resolution over a region -400 square degrees. EDGE uses a one-meter class off-axis telescope and an array of Frequency Selective Bololeters (FSB) to provide the compact and efficient multi-colar, high sensitivity radiometer required to achieve its scientific objectives.

  17. The Origin of the Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Grzegorz; Sobolewska, Małgorzata; Lasota, Jean-Pierre; Belczynski, Krzysztof

    2017-09-01

    Recently, several ultraluminous X-ray (ULX) sources were shown to host a neutron star (NS) accretor. We perform a suite of evolutionary calculations, which show that, in fact, NSs are the dominant type of ULX accretor. Although black holes (BH) dominate early epochs after the star-formation burst, NSs outweigh them after a few 100 Myr and may appear as late as a few gigayears after the end of the star-formation episode. If star formation is a prolonged and continuous event (I.e., not a relatively short burst), NS accretors dominate the ULX population at any time in the solar metallicity environment, whereas BH accretors dominate when the metallicity is sub-solar. Our results show a very clear (and testable) relation between the companion/donor evolutionary stage and the age of the system. A typical NSULX consists of a ˜ 1.3 {M}⊙ NS and ˜ 1.0 {M}⊙ Red Giant. A typical BH ULX consists of a ˜ 8 {M}⊙ BH and ˜ 6 {M}⊙ main-sequence star. Additionally, we find that the very luminous ULXs ({L}X≳ {10}41 erg s-1) are predominantly BH systems (˜ 9 {M}⊙ ) with Hertzsprung-gap donors (˜ 2 {M}⊙ ). Nevertheless, some NSULX systems may also reach extremely high X-ray luminosities (≳1041 erg s-1).

  18. The nature of the ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, G.; Sobolewska, M.; Lasota, J.; Belczynski, K.

    2017-10-01

    Recently, several ultraluminous X-ray (ULX) sources were shown to host a neutron star (NS) accretor. We perform a suite of evolutionary calculations which show that, in fact, NSs are the dominant type of ULX accretor. Although black holes (BH) dominate early epochs after the star-formation burst, NSs outweigh them after a few 100 Myr and may appear as late as a few Gyr after the end of the star formation episode. If star formation is a prolonged and continuous event (i.e., not a relatively short burst), NS accretors dominate ULX population at any time in solar metallicity environment, whereas BH accretors dominate when the metallicity is sub-solar. Our results show a very clear (and testable) relation between the companion/donor evolutionary stage and the age of the system. A typical NS ULX consists of a ˜1.3 M_⊙ NS and ˜1.0 M_⊙ Red Giant. A typical BH ULX consist of a ˜8 M_⊙ BH and ˜6 M_⊙ main-sequence star. Additionally, we find that the very luminous ULXs (L_X>˜10^{41} erg/s) are predominantly BH systems (˜9 M_⊙) with Hertzsprung gap donors (˜2 M_⊙). Nevertheless, some NS ULX systems may also reach extremely high X-ray luminosities (>˜10^{41} erg/s)

  19. Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.; Blain, Andrew W.; Assef, Roberto J.; Eisenhardt, Peter; Lonsdale, Carol; Condon, James; Farrah, Duncan; Tsai, Chao-Wei; Bridge, Carrie; Wu, Jingwen; Wright, Edward L.; Jarrett, Tom

    2017-08-01

    We investigate extremely luminous dusty galaxies in the environments around Wide-field Infrared Survey Explorer (WISE)-selected hot dust-obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ˜2-3 and ˜5-6, respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-infrared (mid-IR) colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find that the star formation rate densities are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5-arcmin scale maps.

  20. VizieR Online Data Catalog: GOALS sample PACS and SPIRE fluxes (Chu+, 2017)

    NASA Astrophysics Data System (ADS)

    Chu, J. K.; Sanders, D. B.; Larson, K. L.; Mazzarella, J. M.; Howell, J. H.; Diaz-Santos, T.; Xu, K. C.; Paladini, R.; Schulz, B.; Shupe, D.; Appleton, P.; Armus, L.; Billot, N.; Chan, B. H. P.; Evans, A. S.; Fadda, D.; Frayer, D. T.; Haan, S.; Ishida, C. M.; Iwasawa, K.; Kim, D.-C.; Lord, S.; Murphy, E.; Petric, A.; Privon, G. C.; Surace, J. A.; Treister, E.

    2017-06-01

    The IRAS RBGS contains 179 LIRGs (log(LIR/Lȯ)= 22 ultra-luminous infrared galaxies (ULIRGs: log(LIR/Lȯ)>=12.0); these 201 total objects comprise the GOALS sample (Armus et al. 2009), a statistically complete flux-limited sample of infrared-luminous galaxies in the local universe. This paper presents imaging and photometry for all 201 LIRGs and LIRG systems in the IRAS RBGS that were observed during our GOALS Herschel OT1 program. (4 data files).

  1. Discrete X-Ray Source Populations and Star-Formation History in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Zezas, Andreas

    2004-01-01

    This program aims in understanding the connection between the discrete X-ray source populations observed in nearby galaxies and the history of star-formation in these galaxies. The ultimate goal is to use this knowledge in order to constrain X-ray binary evolution channels. For this reason although the program is primarily observational it has a significant modeling component. During the first year of this study we focused on the definition of a pilot sample of galaxies with well know star-formation histories. A small part of this sample has already been observed and we performed initial analysis of the data. However, the majority of the objects in our sample either have not been observed at all, or the detection limit of the existing observations is not low enough to probe the bulk of their young X-ray binary populations. For this reason we successfully proposed for additional Chandra observations of three targets in Cycle-5. These observations are currently being performed. The analysis of the (limited) archival data for this sample indicated that the X-ray luminosity functions (XLF) of the discrete sources in these galaxies may not have the same shape as is widely suggested. However, any solid conclusions are hampered by the small number of detected sources. For this reason during the second year of this study, we will try to extend the sample in order to include more objects in each evolutionary stage. In addition we are completing the analysis of the Chandra monitoring observations of the Antennae galaxies. The results from this work, apart from important clues on the nature of the most luminous sources (Ultra-luminous X-ray sources; ULXs) provide evidence that source spectral and/or temporal variability does not significantly affect the shape of their X-ray luminosity functions. This is particularly important for comparisons between the XLFs of different galaxies and comparisons with predictions from theoretical models. Results from this work have been

  2. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Fischer, J.; González-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; de Jong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-10-01

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~-1000 km s-1 are measured in several objects, but median outflow velocities are typically ~-200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L AGN/L ⊙) >= 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  3. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; hide

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  4. The MALATANG Survey: The L GAS–L IR Correlation on Sub-kiloparsec Scale in Six Nearby Star-forming Galaxies as Traced by HCN J = 4 → 3 and HCO+ J = 4 → 3

    NASA Astrophysics Data System (ADS)

    Tan, Qing-Hua; Gao, Yu; Zhang, Zhi-Yu; Greve, Thomas R.; Jiang, Xue-Jian; Wilson, Christine D.; Yang, Chen-Tao; Bemis, Ashley; Chung, Aeree; Matsushita, Satoki; Shi, Yong; Ao, Yi-Ping; Brinks, Elias; Currie, Malcolm J.; Davis, Timothy A.; de Grijs, Richard; Ho, Luis C.; Imanishi, Masatoshi; Kohno, Kotaro; Lee, Bumhyun; Parsons, Harriet; Rawlings, Mark G.; Rigopoulou, Dimitra; Rosolowsky, Erik; Bulger, Joanna; Chen, Hao; Chapman, Scott C.; Eden, David; Gear, Walter K.; Gu, Qiu-Sheng; He, Jin-Hua; Jiao, Qian; Liu, Dai-Zhong; Liu, Li-Jie; Li, Xiao-Hu; Michałowski, Michał J.; Nguyen-Luong, Quang; Qiu, Jian-Jie; Smith, Matthew W. L.; Violino, Giulio; Wang, Jian-Fa; Wang, Jun-Feng; Wang, Jun-Zhi; Yeh, Sherry; Zhao, Ying-He; Zhu, Ming

    2018-06-01

    We present {HCN} J=4\\to 3 and {HCO}}+ J=4\\to 3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2‧ × 2‧ region at 14″ (FWHM) resolution (corresponding to linear scales of ∼0.2–1.0 kpc). The L IR–L‧dense relation, where the dense gas is traced by the {HCN} J=4\\to 3 and the {HCO}}+ J=4\\to 3 emission, measured in our sample of spatially resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, L IR/L‧dense, shows systematic variations with L IR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between L IR/L‧dense ratio and the warm-dust temperature gauged by the 70 μm/100 μm flux ratio. We find that the luminosity ratios of IR/HCN (4–3) and IR/HCO+ (4–3), which can be taken as a proxy for the star formation efficiency (SFE) in the dense molecular gas (SFEdense), appear to be nearly independent of the dense gas fraction (f dense) for our sample of galaxies. The SFE of the total molecular gas (SFEmol) is found to increase substantially with f dense when combining our data with those on local (ultra)luminous infrared galaxies and high-z quasars. The mean L{{\\prime} }HCN(4{--}3)}/L{{\\prime} }HCO}+(4{--}3)} line ratio measured for the six targeted galaxies is 0.9 ± 0.6. No significant correlation is found for the L{{\\prime} }HCN(4{--}3)}/L{{\\prime} }HCO}+(4{--}3)} ratio with the star formation rate as traced by L IR, nor with the warm-dust temperature, for the different populations of galaxies.

  5. Spitzer/IRS spectroscopy of the 12um Seyferts

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Charmandaris, V.; Huang, J.; Houck, J.

    2009-01-01

    The extended 12um galaxy sample is a flux-limited sample of 893 galaxies selected from the IRAS Faint Source Catalog 2. A total of 118 objects from this sample have been classified optically as Seyfert galaxies, providing one of the largest infrared selected unbiased sample of active galactic nuclei (AGN). We present our prelimary results from our analysis of mid-infrared Spitzer/IRS spectra of 102 12um Seyferts (that is 86 % of the 12um Seyfert sample) which have been observed by various Spitzer programs and are available in the Spitzer archive. A number of mid-infared diagnostics have been developed to study the nature of nuclear dust enshrouded emission from AGNs, in order to disentangle the starburst-AGN connection. Since PAH emission is a tracer of star formation activity we have measured the 11.3um PAH feature for our Seyfert sample. We find that as the strength of the radiation field in AGNs increases the PAH molecules are destroyed, while the PAH EWs increase with the IRAS f60/f25 ratios of the host galaxies. We further probe this warm/cold color diagnostic, by contrasting our findings with those of we starbust galaxies, ULIRGs, as well as blue compact dwarf galaxies.

  6. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  7. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; et al.

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (more » $$i_{AB} < 22.5$$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($$z\\sim0.3$$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $$b\\cdot r$$ to be $$0.87\\pm 0.11$$, $$1.12 \\pm 0.16$$ and $$1.24\\pm 0.23$$, respectively for the three redshift bins of width $$\\Delta z = 0.2$$ in the range $0.2« less

  8. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factormore » derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.« less

  9. Spitzer 24 Micron Observations of Optical/Near-Infrared-Selected Extremely Red Galaxies: Evidence for Assembly of Massive Galaxies at Z approximately equal to 1-2?

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Choi, Philip I.; Fadda, D.; Marleau, F. R.; Soifer, B. T.; Im, M.; Armus, L.; Frayer, D. T.; Storrie-Lombardi, L. J.; Thompson, D. J.; hide

    2004-01-01

    We carried out direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) >= 5.3 mag and Ks < 20:2 mag, using 24 micron data from the Spitzer Space Telescope. Combining deep 24 micron Ks- and R-band data over an area of 64 arcmin(sup 2) in ELAIS N1 of the Spitzer First Look Survey (FLS), we find that 50% +/- 6% of our extremely red object (ERO) sample have measurable 24 micron flux above the 3 (sigma) flux limit of 40 (micro)Jy. This flux limit corresponds to a star formation rate (SFR) of 12 solar masses per year 1, much more sensitive than any previous long-wavelength measurement. The 24 micron-detected EROs have 24 micron/2.2 micron and 24 micron/0.7 micron flux ratios consistent with infrared luminous, dusty sources at z >= 1, and are an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micron-detected EROs could be active galactic nuclei; however, the fraction among the whole ERO sample is probably small, 10%-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z 1. The mean 24 micron flux (167 (micro)Jy) of the 24 micron-detected ERO sample roughly corresponds to the rest-frame 12 micron luminosity, (nu)L(nu)(12 micron, of 3x10(exp 10)(deg) solar luminosities at z 1. Using the c IRAS (nu)L(nu)(12 (micron) and infrared luminosity LIR(8-1000 (micron), we infer that the (LIR) of the 24 micron- detected EROs is 3 x 10(exp 11) and 1 x 10(exp 12) solar luminosities at z = 1.0 and similar to that of local luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs). The corresponding SFR would be roughly 50-170 solar masses per year. If the timescale of this starbursting phase is on the order of 108 yr as inferred for the local LIRGs and ULIRGs, the

  10. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  11. Galaxy properties in clusters. II. Backsplash galaxies

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-04-01

    Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.

  12. Development of the 2nd generation z(Redshift) and early universe spectrometer & the study of far-IR fine structure emission in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    The 2nd generation z (Redshift) and Early Universe Spectrometer (ZEUS-2), is a long-slit echelle-grating spectrometer (R~1000) for observations at submillimeter wavelengths from 200 to 850 microm. Its design is optimized for the detection of redshifted far-infrared spectral lines from galaxies in the early universe. Combining exquisite sensitivity, broad wavelength coverage, and large (˜2.5%) instantaneous bandwidth, ZEUS-2 is uniquely suited for studying galaxies between z˜0.2 and 5---spanning the peaks in both the star formation rate and number of AGN in the universe. ZEUS-2 saw first light at the Caltech Submillimeter Observatory (CSO) in the Spring of 2012 and was commissioned on the Atacama Pathfinder Experiment (APEX) in November 2012. Here we detail the design and performance of ZEUS-2, first however we discuss important science results that are examples of the science enabled by ZEUS-2. Using the first generation z (Redshift) and Early Universe Spectrometer (ZEUS-1) we made the first high-z detections of the [NII] 122 microm and [OIII] 88 microm lines. We detect these lines from starburst galaxies between z ˜2.5 and 4 demonstrating the utility of these lines for characterizing the properties of early galaxies. Specifically we are able to determine the most massive star still on the main sequence, the number of those stars and a lower limit on the mass of ionized gas in the source. Next we present ZEUS-2's first science result. Using ZEUS-2 on APEX we have detected the [CII] 158 microm line from the z = 1.78 galaxy H-ATLAS J091043.1-000322 with a line flux of (6.44 +/- 0.42) ˜ 10-18 W m-2. Combined with its far-infrared luminosity and a new Herschel-PACS detection of the [OI] 63 microm line we are able to conclude that H-ATLAS J091043.1-000322 is a high redshift analogue of a local ultra-luminous infrared galaxy, i.e. it is likely the site of a compact starburst due to a major merger. This detection, combined with the ZEUS-1 observations of the [NII

  13. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  14. The Dynamics and Cold Gas Content of Luminous Infrared Galaxy Mergers in the Local Universe

    NASA Astrophysics Data System (ADS)

    Privon, G. C.

    2014-08-01

    Luminous Infrared Galaxies (LIRGs; 10^11 ≤ L_IR [8 - 1000 μm]/L_sun < 10^12) and Ultraluminous Infrared Galaxies (ULIRGS; L_IR [8 - 1000 μm]/L_sun ≥ 10^12) are the most extreme star forming systems in the local universe, both in terms of their absolute star formation rates—ten to several hundred times that of ``normal'' galaxies—and their star formation rate densities. Many U/LIRGs are interacting or merging disk galaxies undergoing enhanced star formation and/or nuclear activity, likely triggered as the objects transform into massive S0 and elliptical merger remnants. The LIRG population also contains a significant number of apparently isolated disk galaxies which are undergoing enhanced star formation, providing a window on secular galaxy evolution. This work examines nearby U/LIRGs chosen from the Great Observatories All-sky LIRG Survey (GOALS), an infrared flux and luminosity selected sample. The proximity of these systems enables high spatial resolution study of active galactic nuclei (AGN) and extreme star formation in these objects. New maps of the neutral hydrogen (HI) emission are presented for systems morphologically classified in the optical and mid-infrared as non-merging or pre-merger systems. The results of this study suggests that some infrared-selected galaxies may be minor mergers or interactions which are being viewed so soon after first pass that the stellar disk has not yet been significantly disturbed. Galaxy mergers appear to drive much of the enhanced activity observed in U/LIRGs; understanding the merger state of these systems provides a context for observations of star formation and AGN properties. In order to constrain the merger stage, dynamical models for a sample of nine systems were matched to the observed kinematics and morphology as obtained from optical imaging and interferometric HI maps. The resulting models are used not only to constrain the merger stage, but also the encounter geometry of the precursor. Based on these

  15. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  16. Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Nagao, Tohru; Strauss, Michael A.; Aoki, Kentaro; Goto, Tomotsugu; Imanishi, Masatoshi; Kawaguchi, Toshihiro; Terashima, Yuichi; Ueda, Yoshihiro; Bosch, James; Bundy, Kevin; Doi, Yoshiyuki; Inami, Hanae; Komiyama, Yutaka; Lupton, Robert H.; Matsuhara, Hideo; Matsuoka, Yoshiki; Miyazaki, Satoshi; Morokuma, Tomoki; Nakata, Fumiaki; Oi, Nagisa; Onoue, Masafusa; Oyabu, Shinki; Price, Paul; Tait, Philip J.; Takata, Tadafumi; Tanaka, Manobu M.; Terai, Tsuyoshi; Turner, Edwin L.; Uchida, Tomohisa; Usuda, Tomonori; Utsumi, Yousuke; Yamada, Yoshihiko; Wang, Shiang-Yu

    2015-10-01

    We present the photometric properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we discovered 48 DOGs with i - Ks > 1.2 and i - [22] > 7.0, where i, Ks, and [22] represent AB magnitude in the i-band, Ks-band, and 22 μm, respectively, in the GAMA 14 hr field (˜ 9 deg2). Among these objects, 31 (˜ 65%) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show an NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma z = 1.99 ± 0.45, we calculated their total IR luminosity using an empirical relation between 22 μm luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 ± 1.1) × 1013 L⊙, which classifies them as hyper-luminous infrared galaxies. We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 μm flux greater than 3.0 mJy and with i-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log φ = -6.59 ± 0.11 [Mpc-3]. The IR LF for DOGs including data obtained from the literature is fitted well by a double-power law. The derived lower limit for the IR LD for our sample is ρIR ˜ 3.8 × 107 [L⊙ Mpc-3] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies, and that of all DOGs are > 3%, > 9%, and > 15%, respectively.

  17. ALMA reveals starburst-like interstellar medium conditions in a compact star-forming galaxy at z 2 using [CI] and CO

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Decarli, Roberto; Man, Allison W. S.; Nelson, Erica J.; Béthermin, Matthieu; De Breuck, Carlos; Mainieri, Vincenzo; van Dokkum, Pieter G.; Gullberg, Bitten; van Kampen, Eelco; Spaans, Marco; Trager, Scott C.

    2017-06-01

    We present ALMA detections of the [CI] 1-0, CO J = 3-2, and CO J = 4-3 emission lines, as well as the ALMA band 4 continuum for a compact star-forming galaxy (cSFG) at z = 2.225, 3D-HST GS30274. As is typical for cSFGs, this galaxy has a stellar mass of 1.89 ± 0.47 × 1011M⊙, with a star formation rate (SFR) of 214 ± 44 M⊙ yr-1 putting it on the star-forming "main-sequence", but with an H-band effective radius of 2.5 kpc, making it much smaller than the bulk of "main-sequence" star-forming galaxies. The intensity ratio of the line detections yield an ISM density ( 6 × 104 cm-3) and a UV-radiation field ( 2 × 104G0), similar to the values in local starburst and ultra-luminous infrared galaxy environments. A starburst phase is consistent with the short depletion times (tH2,dep ≤ 140 Myr) we find in 3D-HST GS30274 using three different proxies for the H2 mass ([CI], CO, dust mass). This depletion time is significantly shorter than in more extended SFGs with similar stellar masses and SFRs. Moreover, the gas fraction of 3D-HST GS30274 is smaller than typically found in extended galaxies. We measure the CO and [CI] kinematics and find a FWHM line width of 750 ± 41 km s-1. The CO and [CI] FWHM are consistent with a previously measured Hα FWHM for this source. The line widths are consistent with gravitational motions, suggesting we are seeing a compact molecular gas reservoir. A previous merger event, as suggested by the asymmetric light profile, may be responsible for the compact distribution of gas and has triggered a central starburst event. This event gives rise to the starburst-like ISM properties and short depletion times in 3D-HST GS30274. The centrally located and efficient star formation is quickly building up a dense core of stars, responsible for the compact distribution of stellar light in 3D-HST GS30274.

  18. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    NASA Astrophysics Data System (ADS)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  19. A (Si VI) (1.92 micrometer) coronal line survey of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marconi, A.; Moorwood, A. F. M.; Salvati, M.; Oliva, E.

    1994-11-01

    We present the results of a (Si VI) lambda 1.962 emission line survey of active, starburst and IRAS luminous galaxies. The line was only detected in known Seyfert type 1 and 2 nuclei confirming previous suggestions that (Si VI) is related to Seyfert activity. By modeling the formation of (Si VI) and (Fe VIII) lambda 6087 we find further strong evidence that these lines arise in gas photoionized by the active nucleus although collisional ionization e.g. by shock fronts may be important in some galaxies exhibiting (Fe VII) much greater than (Si VI). Our failure to detect (Si VI) in the IRAS ultraluminous galaxies does not exclude the possible presence of obscured Active Galactic Nuclei (AGNs), particularly as some of the known Seyferts were also not detected. Molecular hydrogen lines (a by-product of our spectra) are common in all galaxy types including several IRAS ultraluminous galaxies whose H2 equivalent widths (Wlambda less that 20 A) are 'normal'and much lower than the extreme value (Wlambda approximately = 70 A) found in NGC 6240 and NGC 1275. 'Bare' Seyferts have Wlambda(H2) less than 1 A and a factor greater than or approximately 10 lower than starbursts, and we do not confirm previous claims of H2 line emission in the quasar 3C273. Although the ratio of H2 to (Si VI) emission varies over a wide range it does not appear to provide a useful indicator of activity type or to impose constraints on the He excitation mechanism.

  20. A Chandra observation of the interacting pair of galaxies NGC 4485/4490

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Warwick, R. S.; Ward, M. J.; Murray, S. S.

    2002-12-01

    We report the results of a 20-ks Chandra ACIS-S observation of the galaxy pair NGC 4485/4490. This is an interacting system containing a late-type spiral with an enhanced star formation rate (NGC 4490), and an irregular companion that possesses a disturbed morphology. A total of 29 discrete X-ray sources are found coincident with NGC 4490, but only one is found within NGC 4485. The sources range in observed X-ray luminosity from ~2 × 1037 to 4 × 1039 erg s-1. The more luminous sources appear, on average, to be spectrally harder than the fainter sources, an effect that is attributable to increased absorption in their spectra. Extensive diffuse X-ray emission is detected coincident with the disc of NGC 4490, and in the tidal tail of NGC 4485, which appears to be thermal in nature and hence the signature of a hot interstellar medium in both galaxies. However, the diffuse component accounts for only ~10 per cent of the total X-ray luminosity of the system (2 × 1040 erg s-1, 0.5-8 keV), which arises predominantly in a handful of the brightest discrete sources. This diffuse emission fraction is unusually low for a galaxy pair which has many characteristics that would lead it to be classified as a starburst system, possibly as a consequence of the small gravitational potential well of the system. The discrete source population, on the other hand, is similar to that observed in other starburst systems, possessing a flat luminosity function slope of ~-0.6 and a total of six ultraluminous X-ray sources (ULX). Five of the ULX are identified as probable black hole X-ray binary systems, and the sixth (which is coincident with a radio continuum source) is identified as an X-ray luminous supernova remnant. The ULX all lie in star formation regions, providing further evidence of the link between the ULX phenomenon and active star formation. Importantly, this shows that even in star-forming regions, the ULX population is dominated by accreting systems. We discuss the

  1. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroyuki R.; Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of themore » disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.« less

  2. The nature of donors in ultraluminous X-ray binaries powered by neutron stars

    NASA Astrophysics Data System (ADS)

    Karino, Shigeyuki

    2018-03-01

    This study examines the properties of the donor stars of three recently discovered ultraluminous X-ray sources (ULXs) powered by rotating neutron stars. In order to do this, a theoretical relationship was constructed between the X-ray luminosity (LX) and the orbital period (Porb) suitable for ULXs with neutron stars. Using this new LX-Porb relationship, we attempted to determine the currently unknown nature of donor stars in ULXs associated with neutron stars. In particular, from a comparison between the observed properties and the stellar evolution tracks, we suggest that the donor star in the NGC5907 ULX-1 system is a moderately massive star of 6-12 M⊙, just departing from the main sequence phase. The results of our models for the other two ULX systems (M82 X-2 and NGC7793 P-13) are consistent with those in previous studies. Although there are only a few samples, observed ULX systems with neutron stars seem to involve relatively massive donors.

  3. Spectral state transitions of the Ultraluminous X-ray Source IC 342 X-1

    NASA Astrophysics Data System (ADS)

    Marlowe, H.; Kaaret, P.; Lang, C.; Feng, H.; Grisé, F.; Miller, N.; Cseh, D.; Corbel, S.; Mushotzky, R. F.

    2014-10-01

    We observed the Ultraluminous X-ray Source (ULX) IC 342 X-1 simultaneously in X-ray and radio with Chandra and the JVLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra data reveal a spectrum that is much softer than observed previously and is well modelled by a thermal accretion disc spectrum. No significant radio emission above the rms noise level was observed within the region of the ULX, consistent with the interpretation as a thermal state though other states cannot be entirely ruled out with the current data. We estimate the mass of the black hole using the modelled inner disc temperature to be 30 M_{⊙} ≲ M√{cosi}≲ 200 M_{⊙} based on a Shakura-Sunyaev disc model. Through a study of the hardness and high-energy curvature of available X-ray observations, we find that the accretion state of X-1 is not determined by luminosity alone.

  4. High-Resolution Infrared Imaging of FSC 10214+4724: Evidence for Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Graham, James R.; Liu, Michael C.

    1995-08-01

    We present near-infrared observations of the ultraluminous high-redshift (z = 2.286) IRAS source FSC 10214+4724 obtained in 0."4 seeing at the W. M. Keck telescope. These observations show that FSC 10214+4724 consists of a highly symmetric circular arc centered on a second weaker source. The arc has an angular extent of about 140 deg and is probably unresolved in the transverse direction. This morphology constitutes compelling prima facie evidence for a gravitationally lensed system. Our images also contain evidence for the faint counterimage predicted by the lens hypothesis. The morphology of FSC 10214+4724 can be explained in terms of a gravitationally lensed background source if the object at the center of curvature of the arc is an L* galaxy at z ~ 0.7. If FSC 10214+4724 is lensed, then there is significant magnification and its luminosity has been overestimated by a large factor. Our results suggest that FSC 10214+4724 is not a uniquely luminous object but ranks among the most powerful quasars and ultraluminous IRAS galaxies.

  5. XMM-Newton Archival Study of the ULX Population in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard; Reynolds, Christopher S.

    2005-01-01

    We have conducted an archival XMM-Newton study of the bright X-ray point sources in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population. Indeed, 16 sources in our sample match the criteria we set for a low-state ULX, namely, L(sub X) greater than 10(exp 38 ergs per second) and a spectrum best fit with an absorbed power law. Further, we find evidence for 26 high-state ULXs which are best fit by a combined blackbody and a power law. As in Galactic black hole systems, the spectral indices, GAMMA, of the low-state objects, as well a s the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures is 0.1-1 keV with the most luminous systems tending toward the lowest temperatures. We also find a class of object whose properties (luminosity, blackbody temperature, and power law slopes) are very similar to those of galactic stellar mass black holes. In addition, we find a subset of these objects that can be best fit by a Comptonized spectrum similar to that used for Galactic black holes in the very high state, when they are radiating near the Eddington limit.

  6. An AzTEC 1.1mm Survey of a Highly-biased Extragalactic Field Tracing Accelerated Galaxy Formation at z 3.8 towards 4C41.17

    NASA Astrophysics Data System (ADS)

    Hughes, David; Ade, P. A.; Aretxaga, I.; Austermann, J.; Bock, J. J.; Dunlop, J.; Gaztanagal, E.; Ivison, R.; Kang, Y.; Kim, S.; Lowenthal, J.; Mauskopf, P.; Montana, A.; Plionis, M.; Scott, K.; Smail, I.; Stevens, J.; Wagg, J.; Wilson, G.; Yun, M.

    2006-12-01

    Aztec has recently conducted a sensitive, wide-area (300 sq. arcmin's) continuum survey at 1.1mm using the 15-m James Clerk Maxwell Telescope towards 4C41.17, a powerful high-redshift (z 3.8) radio galaxy. These Aztec data, which cover an area >40 times larger than our previous SCUBA survey, reveal a significant over-density of luminous, massive dust-enshrouded galaxies, compared to the results from lower-redshift blank-field sub-mm surveys. One natural interpretation of these new AzTEC data is that the over-density is tracing a large (5 x 5 Mpc) "proto-cluster" structure at z 3.8 associated with the environment of 4C41.17, within which the formation of ultra-luminous starburst galaxies (with rest-frame FIR luminosities >5 x 10^12 Lsun or SFRs > 500 Msun/yr) is taking place at an accelerated rate. Proving the physical association of these massive optically-faint starbursts with the environment of this high-z AGN, and not with the blank-field sub-mm population, for which 50% of the population lies at 1.9 < z < 2.9, remains an outstanding problem. In this presentation we will describe the AzTEC survey, the empirical evidence for this protocluster structure in the early universe, and the planned multi-wavelength follow-up observations of the brightest AzTEC sources towards 4C41.17 that may demonstrate that we are witnessing accelerated galaxy formation, via an increased rate of merging gas-rich galaxies within a rapidly-developing gravitational potential. AzTEC is one of the suite of instruments destined for the 50-m Large Millimeter Telescope (LMT). We will conclude this presentation with a summary of future LMT observations that will trace the evolution of obscured starformation in the dynamic environments towards a significant sample of intermediate and high-z powerful AGN with greater sensitivity and spatial resolution.

  7. Galaxy Morphology Revealed By SDSS: Blue Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    The Sloan Digital Sky Survey (SDSS) reveals many new features of galaxy morphologies. Among others, the discovery of blue elliptical galaxies provides some insights into the formation and evolution of galaxies. There seems to be two types of blue elliptical galaxies. One type shows globally blue colors suggesting star formations over the entire galaxy whereas the other type shows blue core that indicates enhanced star formation in the nuclear regions. The former seems to be currently forming galaxies, while the latter is thought to be in transition stage from the blue cloud to the red sequence due to AGN feedback.

  8. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  9. Selection and Physical Properties of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1galaxies at z˜2 in the AEGIS field, and (3) the mid-infrared spectroscopy and multi-wavelength study of ultraluminous infrared galaxies (ULIRGs) at z˜2 in the AEGIS field. Chapter 1 gives a brief review on the research progresses of EROs at z˜1, BzKs at z˜2, and ULIRGs at z˜2, respectively. In Chapter 2 we present a quantitative study of the classification of EROs in the UDF and COSMOS field. Our sample includes 5264 (COSMOS, K_{Vega} ≤19.2) and 24 EROs (UDF, K_{Vega}≤22.0) with (i-K)_{AB}≥2.45. Using the fitting method of spectral energy distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find

  10. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  11. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  12. Analysis of Quasi-periodic Oscillations and Time Lag in Ultraluminous X-Ray Sources with XMM-Newton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zi-Jian; Xiao, Guang-Cheng; Zhang, Shu

    We investigated the power density spectrum (PDS) and time lag of ultraluminous X-ray sources (ULXs) observed by XMM-Newton . We determined the PDSs for each ULX and found that five of them show intrinsic variability due to obvious quasi-periodic oscillations (QPOs) of mHz–1 Hz, consistent with previous reports. We further investigated these five ULXs to determine their possible time lag. The ULX QPOs exhibit a soft time lag that is linearly related to the QPO frequency. We discuss the likelihood of the ULX QPOs being type-C QPO analogs, and the time lag models. The ULXs might harbor intermediate-mass black holesmore » if their QPOs are type-C QPO analogs. We suggest that the soft lag and the linearity may be due to reverberation.« less

  13. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  14. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  15. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  16. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  17. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  18. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  19. Discovery of the Most Ultra-Luminous QSO Using GAIA, SkyMapper, and WISE

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Bian, Fuyan; Onken, Christopher A.; Schmidt, Brian P.; Tisserand, Patrick; Alonzi, Noura; Hon, Wei Jeat; Tonry, John L.

    2018-06-01

    We report the discovery of the ultra-luminous quasi-stellar object SMSS J215728.21-360215.1 with magnitude z = 16.9 and W4 = 7.42 at redshift 4.75. Given absolute magnitudes of M145, AB = -29.3, M300, AB = -30.12, and logLbol/Lbol, ⊙ = 14.84, it is the quasi-stellar object with the highest unlensed UV-optical luminosity currently known in the Universe. It was found by combining proper-motion data from Gaia DR2 with photometry from SkyMapper DR1 and the Wide-field Infrared Survey Explorer. In the GAIA database, it is an isolated single source and thus unlikely to be strongly gravitationally lensed. It is also unlikely to be a beamed source as it is not discovered in the radio domain by either NRAO-VLA Sky Survey or Sydney University Molonglo Southern Survey. It is classed as a weak-emission-line quasi-stellar object and possesses broad absorption line features. A lightcurve from ATLAS spanning the time from 2015 October to 2017 December shows little sign of variability.

  20. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  1. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  2. An Extremely Luminous and Variable Ultraluminous X-ray Source in the Outskirts of Circinus Observed with Nustar

    NASA Technical Reports Server (NTRS)

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; hide

    2013-01-01

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multiepoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E greater than 10 keV) X-rays. CircinusULX5is variable on long time scales by at least a factor of approx. 5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10(exp 40) erg s(exp-1)). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L alpha T (exp 1.70+/-0.17), flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of approx. 90M for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass

  3. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  4. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  5. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  6. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  7. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  8. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  9. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  10. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  11. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  12. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  13. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  14. The Exceptional Soft X-Ray Halo of the Galaxy Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Nardini, E.; Wang, Junfeng; Fabbiano, G.; Elvis, M.; Pellegrini, S.; Risaliti, G.; Karovska, M.; Zezas, A.

    2013-03-01

    We report on a recent ~150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ~110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ~7.5 million K, an estimated density of 2.5 × 10-3 cm-3, and a total mass of ~1010 M ⊙, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 1041 erg s-1. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (~200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ~ 0.1 solar) and temperature (kT ~ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  15. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  16. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  17. An Extremely Luminous and Variable Ultraluminous X-Ray Source in the Outskirts of Circinus Observed with NuSTAR

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Grefenstette, B. W.; Hailey, C. J.; Madsen, K. K.; Miller, J. M.; Ptak, A.; Rana, V.; Webb, N. A.; Zhang, W. W.

    2013-12-01

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ~5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 1040 erg s-1). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows LvpropT 1.70 ± 0.17, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ~90 M ⊙ for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is still uncertain. Finally, the

  18. Galaxies Detected by the Dwingeloo Obscured Galaxies Survey

    NASA Astrophysics Data System (ADS)

    Rivers, A. J.; Henning, P. A.; Kraan-Korteweg, R. C.

    1999-04-01

    The Dwingeloo Obscured Galaxies Survey (DOGS) is a 21-cm blind survey for galaxies hidden in the northern `Zone of Avoidance' (ZOA): the portion of the optical extragalactic sky which is obscured by dust in the Milky Way. Like the Parkes southern hemisphere ZOA survey, the DOGS project is designed to reveal hidden dynamically important nearby galaxies and to help `fill in the blanks' in the local large scale structure. To date, 36 galaxies have been detected by the Dwingeloo survey; 23 of these were previously unknown [no corresponding sources recorded in the NASA Extragalactic Database (NED)]. Among the interesting detections are three nearby galaxies in the vicinity of NGC 6946 and 11 detections in the Supergalactic plane crossing region. VLA follow-up observations have been conducted for several of the DOGS detections.

  19. The Overdense Environments of WISE-selected, ultra-luminous, high-redshift AGN in the submillimetre

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.

    2017-11-01

    The environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively, were found to have overdensities of companion submillimetre-selected sources. The overdensities were of ˜ 2 - 3 and ˜ 5 - 6 , respectively, compared with blank field submm surveys. The space densities in both samples were found to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs). All of the companion sources have consistent mid-IR colours and mid-IR to submm ratios to SMGs. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5 arcmin scale maps. WISE-selected AGNs appear to be good indicators of overdense areas of active galaxies at high redshift.

  20. A low-luminosity type-1 QSO sample . IV. Molecular gas contents and conditions of star formation in three nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Moser, Lydia; Krips, Melanie; Busch, Gerold; Scharwächter, Julia; König, Sabine; Eckart, Andreas; Smajić, Semir; García-Marin, Macarena; Valencia-S., Mónica; Fischer, Sebastian; Dierkes, Jens

    2016-03-01

    We present a pilot study of ~3'' resolution observations of low CO transitions with the Submillimeter Array in three nearby Seyfert galaxies, which are part of the low-luminosity quasi-stellar object (LLQSOs) sample consisting of 99 nearby (z = 0.06) type-1 active galactic nuclei (AGN) taken from the Hamburg/ESO quasi-stellar object (QSO) survey. Two sources were observed in 12CO(2-1) and 13CO(2-1) and the third in 12CO(3-2) and HCO+(4-3). None of the sources is detected in continuum emission. More than 80% of the 12CO detected molecular gas is concentrated within a diameter (FWHM) < 1.8 kpc. 13CO is tentatively detected, while HCO+ emission could not be detected. All three objects show indications of a kinematically decoupled central unresolved molecular gas component. The molecular gas masses of the three galaxies are in the range Mmol = (0.7-8.7) × 109M⊙. We give lower limits for the dynamical masses of Mdyn> 1.5 × 109M⊙ and for the dust masses of Mdust> 1.6 × 106M⊙. The R21 = 12CO/13CO(2-1) line luminosity ratios show Galactic values of R21 ~ 5-7 in the outskirts and R21 ≳ 20 in the central region, similar to starbursts and (ultra)luminous infrared galaxies ((U)LIRGs; I.e. LIRGs and ULIRGs), implying higher temperatures and stronger turbulence. All three sources show indications of 12CO(2-1)/12CO(1-0) ratios of ~0.5, suggesting a cold or diffuse gas phase. Strikingly, the 12CO(3-2)/(1-0) ratio of ~1 also indicates a higher excited phase. Since these galaxies have high infrared luminosities of LIR ≥ 1011L⊙ and seem to contain a circumnuclear starburst with minimum surface densities of gas and star formation rate (SFR) around Σmol = 50-550 M⊙pc-2 and ΣSFR = 1.1-3.1 M⊙ kpc-2 yr-1, we conclude that the interstellar medium in the centers of these LIRG Seyferts is strongly affected by violent star formation and better described by the ULIRG mass conversion factor.

  1. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  2. Discovery of Coherent Pulsations from the Ultraluminous X-Ray Source NGC 7793 P13

    NASA Technical Reports Server (NTRS)

    Furst, F.; Walton, D. J.; Harrison, F. A.; Stern, D.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B.; Madsen, K. K.; Middleton, M. J.; hide

    2016-01-01

    We report the detection of coherent pulsations from the ultraluminous X-ray source (ULX) NGC 7793P13. The approx. =0.42 s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (>>5(sigma)) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star, and given the observed peak luminosity of 10(exp 40) erg/ s (assuming isotropy), it is well above the Eddington limit for a 1.4 Stellar Mass accretor. This makes P13 the second ULX known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin-up over the 2013-2016 period. This spin-up indicates a magnetic field of B1.51012 G, typical of many Galactic accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming; however, this is difficult to reconcile with the sinusoidal pulse profile.

  3. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  4. Interstellar medium conditions in z 0.2 Lyman-break analogs

    NASA Astrophysics Data System (ADS)

    Contursi, A.; Baker, A. J.; Berta, S.; Magnelli, B.; Lutz, D.; Fischer, J.; Verma, A.; Nielbock, M.; Grácia Carpio, J.; Veilleux, S.; Sturm, E.; Davies, R.; Genzel, R.; Hailey-Dunsheath, S.; Herrera-Camus, R.; Janssen, A.; Poglitsch, A.; Sternberg, A.; Tacconi, L. J.

    2017-10-01

    We present an analysis of far-infrared (FIR) [CII] and [OI] fine structure line and continuum observations obtained with Herschel/PACS, and 12CO(1-0) observations obtained with the IRAM Plateau de Bure Interferometer, of Lyman-break analogs (LBAs) at z 0.2. The principal aim of this work is to determine the typical interstellar medium (ISM) properties of z 1-2 main sequence (MS) galaxies, with stellar masses between 109.5 and 1011M⊙, which are currently not easily detectable in all these lines even with ALMA and NOEMA. We perform PDR modeling and apply different infared diagnostics to derive the main physical parameters of the far-infrared (FIR)-emitting gas and dust and we compare the derived ISM properties to those of galaxies on and above the MS at different redshifts. We find that the ISM properties of LBAs are quite extreme (low gas temperature and high density and thermal pressure) with respect to those found in local normal spirals and more active local galaxies. LBAs have no [CII] deficit despite having the high specific star formation rates (sSFRs) typical of starbursts. Although LBAs lie above the local MS, we show that their ISM properties are more similar to those of high-redshift MS galaxies than of local galaxies above the main sequence. This data set represents an important reference for planning future ALMA [CII] observations of relatively low-mass MS galaxies at the epoch of the peak of the cosmic star formation.

  5. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  6. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  7. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H-beta in luminosity. We show how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of Ne v emission in particular will distinguish shrouded AGNs from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  8. Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Colless, M.; Christodoulou, L.; Drinkwater, M. J.; Grootes, M. W.; Hopkins, A. M.; Kelvin, L. S.; Norberg, P.; Loveday, J.; Phillipps, S.; Sharp, R.; Taylor, E. N.; Tuffs, R. J.

    2013-05-01

    In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction.

  9. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  10. Unravelling Galaxy Components

    NASA Astrophysics Data System (ADS)

    Kennedy, Rebecca

    2017-06-01

    This thesis aims to understand more about the developmental histories of galaxies and their internal components by studying the wavelength dependence of their spatial structure. I use a large sample of low-redshift galaxies with optical–near-IR imaging from the GAMA survey, which have been fitted with Sérsic and Sérsic + exponential functions in nine wavebands simultaneously, using software developed by the MegaMorph project. The first section of this thesis examines how the sizes and radial profiles of galaxies vary with wavelength. To quantify the wavelength dependence of effective radius I use the ratio, R, of measurements in two restframe bands. The dependence of Sérsic index on wavelength, N, is computed correspondingly. I show that accounting for different redshift and luminosity selections partly reconciles variations between several recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although our quantitative measurements allow me to study larger and fainter samples. I then demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R and N for late-type galaxies. However, dust does not appear to explain the highest values of R and N. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure. The second section of this thesis studies radial colour gradients across the galaxy population. I use the multi-wavelength information provided by MegaMorph analysis of galaxy light profiles to calculate intrinsic colour gradients, and divide into six subsamples split by overall Sérsic index (n) and galaxy colour. I find a bimodality in the colour gradients of high- and low-n galaxies in all wavebands which varies with overall galaxy luminosity. Global trends in colour gradients therefore result from combining the contrasting behaviour of a number of different galaxy populations. The ubiquity of strong

  11. wft4galaxy: a workflow testing tool for galaxy.

    PubMed

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  12. Submillimeter Galaxy Number Counts and Magnification by Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 μm-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 1013-1015 M sun. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 μm lie at redshifts greater than 2.

  13. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  14. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  15. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.

    2017-12-01

    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14< z< 1.0. Hosts of nine candidates have spectroscopic observations, of which six are classified as quasars, one as high- and two as low-excitation galaxies. Two candidate HyMoRS are giant (> 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  16. Galaxy and Mass Assembly (GAMA): small-scale anisotropic galaxy clustering and the pairwise velocity dispersion of galaxies

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.

    2018-03-01

    The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r < 19.8) and highly complete spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.

  17. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  18. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy

    2017-02-01

    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

  19. A radio monitoring survey of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  20. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  1. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  2. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien; García-Bellido, Juan

    2015-07-01

    In this paper we present a new scenario where massive primordial black holes (PBHs) are produced from the collapse of large curvature perturbations generated during a mild-waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetarylike masses at matter-radiation equality and producing abundances comparable to those of dark matter today, while the matter power spectrum on scales probed by cosmic microwave background (CMB) anisotropies agrees with Planck data. These PBHs could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and microlensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultraluminous x-ray sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-Planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a Swiss-cheese-like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.

  3. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in

  4. SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clustersmore » (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.« less

  5. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  6. Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    NASA Astrophysics Data System (ADS)

    Demetroullas, C.; Brown, M. L.

    2018-01-01

    We perform a galaxy-galaxy lensing study by correlating the shapes of ∼2.7 × 105 galaxies selected from the VLA FIRST (Faint Images of the Radio Sky at Twenty centimetres) radio survey with the positions of ∼38.5 million Sloan Digital Sky Survey (SDSS) galaxies, ∼132 000 Brightest Cluster Galaxies (BCGs) and ∼78 000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales θ ≲ 1200 arcsec. On scales θ ≲ 200 arcsec, we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations, we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample), we measure a tangential shear signal that is inconsistent with 0 at the 10.2σ, 3.8σ and 9σ levels, respectively. Fitting an NFW model to the detected signals, we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature, respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M_{200}^SDSS-DR10 = (1.2 ± 0.4) × 10^{12} M_{⊙}, M_{200}^BCG = (1.4 ± 1.3) × 10^{13} M_{⊙} and M_{200}^SDSS-FIRST =8.0 ± 4.2 × 10^{13} M_{⊙}, respectively. These results are in good agreement (within ∼2σ) with values in the literature. Our findings suggest that for galaxies to be bright both in the radio and in the optical, they must be embedded in very dense environment on scales R ≲ 1 Mpc.

  7. Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.

    2017-11-01

    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ˜500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ˜4 (from ˜×100-190 to ˜×25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ˜1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ˜2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.

  8. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  9. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  10. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  11. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  12. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  13. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  14. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  15. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  16. Galaxy NGC5962

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04635

  17. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    DOE PAGES

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r -.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less

  18. The metal enrichment of passive galaxies in cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.

    2017-02-01

    Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.

  19. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  20. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  1. Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; Robotham, A.; Owers, M. S.; Colless, M.; Brough, S.; Norberg, P.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-04-01

    The stellar mass and metallicity are among the fundamental parameters of galaxies. An understanding of the interplay between those properties as well as their environmental dependence will give us a general picture of the physics and feedback processes ongoing in groups of galaxies. We study the relationships and environmental dependencies between the stellar mass, and gas metallicity for more than 1900 galaxies in groups up to redshift 0.35 using the Galaxy And Mass Assembly (GAMA) survey. Using a control sample of more than 28 000 star-forming field galaxies, we find evidence for a decrement of the gas metallicity for galaxies in groups.

  2. Executing SADI services in Galaxy.

    PubMed

    Aranguren, Mikel Egaña; González, Alejandro Rodríguez; Wilkinson, Mark D

    2014-01-01

    In recent years Galaxy has become a popular workflow management system in bioinformatics, due to its ease of installation, use and extension. The availability of Semantic Web-oriented tools in Galaxy, however, is limited. This is also the case for Semantic Web Services such as those provided by the SADI project, i.e. services that consume and produce RDF. Here we present SADI-Galaxy, a tool generator that deploys selected SADI Services as typical Galaxy tools. SADI-Galaxy is a Galaxy tool generator: through SADI-Galaxy, any SADI-compliant service becomes a Galaxy tool that can participate in other out-standing features of Galaxy such as data storage, history, workflow creation, and publication. Galaxy can also be used to execute and combine SADI services as it does with other Galaxy tools. Finally, we have semi-automated the packing and unpacking of data into RDF such that other Galaxy tools can easily be combined with SADI services, plugging the rich SADI Semantic Web Service environment into the popular Galaxy ecosystem. SADI-Galaxy bridges the gap between Galaxy, an easy to use but "static" workflow system with a wide user-base, and SADI, a sophisticated, semantic, discovery-based framework for Web Services, thus benefiting both user communities.

  3. W.M. Keck Telescope High Resolution Near-Infrared Imaging of FSC 10214+4724: Evidence for Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Graham, James R.

    1995-05-01

    We present near--infrared observations of the ultraluminous high--redshift (z=2.286) IRAS source FSC 10214+4724 obtained in 0.''4 seeing at the W. M. Keck Telescope. These new observations show that FSC 10214+4724 consists of a highly symmetric circular arc centered on a second weaker source. The arc has an angular extent of about 140(deg) and is probably unresolved in the transverse direction. This morphology constitutes compelling prima facie evidence for a gravitationally lensed system. Our images also contain evidence for the faint counter image predicted by the lens hypothesis. The morphology of FSC 10214+4724 can be explained in terms of a gravitationally lensed background source if the object located close to the center of the arc is an L(*) galaxy located at z~ 0.4 . The origin of the luminosity of FSC 10214+4724 is unclear -- it may be a protogalaxy undergoing its initial burst of star formation or a highly obscured quasar. If FSC 10214+4724 is lensed then there is significant magnification and its luminosity has been overestimated by a large factor. Our results suggest FSC 10214+4724 is not a uniquely luminous object but ranks among the most powerful quasars and ultraluminous IRAS galaxies.

  4. Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Nakajima, R.; Seljak, U.; Hirata, C. M.

    2012-10-01

    In this paper, we measure the optical-to-virial velocity ratios Vopt/V200c of disc galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 109 < M* < 1011 M⊙. Vopt/V200c, the ratio of the circular velocity measured at the optical radius of the disc (˜10 kpc) to that at the virial radius of the dark matter halo (˜150 kpc), is a powerful observational constraint on disc galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disc galaxies over an order of magnitude in length scale. For this measurement, we combine Vopt derived from the Tully-Fisher relation (TFR) from Reyes et al. with V200c derived from halo masses measured with galaxy-galaxy lensing. In anticipation of this combination, we use similarly selected galaxy samples for both the TFR and lensing analysis. For three M* bins with lensing-weighted mean stellar masses of 0.6, 2.7 and 6.5 × 1010 M⊙, we find halo-to-stellar mass ratios M200c/M* = 41, 23 and 26, with 1σ statistical uncertainties of around 0.1 dex, and Vopt/V200c = 1.27 ± 0.08, 1.39 ± 0.06 and 1.27 ± 0.08 (1σ), respectively. Our results suggest that the dark matter and baryonic contributions to the mass within the optical radius are comparable, if the dark matter halo profile has not been significantly modified by baryons. The results obtained in this work will serve as inputs to and constraints on disc galaxy formation models, which will be explored in future work. Finally, we note that this paper presents a new and improved galaxy shape catalogue for weak lensing that covers the full SDSS Data Release 7 footprint.

  5. Galaxy Distribution in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yachi, S.; Habe, A.

    beta-discrepancy have been pointed out from comparison of optical and X-ray observations of clusters of galaxies. To examine physical reason of beta-discrepancy, we use N-body simulation which contains two components, dark particles and galaxies which are identified by using adaptive-linking friend of friend technique at a certain red-shift. The gas component is not included here, since the gas distribution follows the dark matter distribution in dark halos (Jubio F. Navarro, Carlos S. Frenk and Simon D. M. White 1995). We find that the galaxy distribution follows the dark matter distribution, therefore beta-discrepancy does not exist, and this result is consistent with the interpretation of the beta-discrepancy by Bahcall and Lubin (1994), which was based on recent observation.

  6. THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF z = 0.3–2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Allison; Pope, Alexandra; Sajina, Anna

    2015-11-20

    We characterize infrared spectral energy distributions of 343 (ultra)luminous infrared galaxies from z = 0.3–2.8. We diagnose the presence of an active galactic nucleus (AGN) by decomposing individual Spitzer mid-IR spectroscopy into emission from star formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGNs, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright S{sub 24}, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2–1000 μm). We fit the far-IR emission using amore » two-temperature modified blackbody to measure cold and warm dust temperatures (T{sub c} and T{sub w}). We find that T{sub c} does not depend on mid-IR classification, while T{sub w} shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to L{sub IR}. AGNs, composites, and SFGs separate in S{sub 8}/S{sub 3.6} and S{sub 250}/S{sub 24}, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR-selected samples host an AGN, even at faint selection thresholds (S{sub 24} > 100 μJy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.« less

  7. The QDOT all-sky IRAS galaxy redshift survey

    NASA Astrophysics Data System (ADS)

    Lawrence, A.; Rowan-Robinson, M.; Ellis, R. S.; Frenk, C. S.; Efstathiou, G.; Kaiser, N.; Saunders, W.; Parry, I. R.; Xiaoyang, Xia; Crawford, J.

    1999-10-01

    We describe the construction of the QDOT survey, which is publicly available from an anonymous FTP account. The catalogue consists of infrared properties and redshifts of an all-sky sample of 2387 IRAS galaxies brighter than the IRAS PSC 60-μm completeness limit (S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10 deg, after removing a small number of Galactic sources, the redshift completeness is better than 98per cent (2086/2127). New redshifts for 1401 IRAS sources were obtained to complete the catalogue; the measurement and reduction of these are described, and the new redshifts tabulated here. We also tabulate all sources at |b|>10 deg with no redshift so far, and sources with conflicting alternative redshifts either from our own work, or from published velocities. A list of 95 ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is also provided. Of these, ~20per cent are AGN of some kind; the broad-line objects typically show strong Feii emission. Since the publication of the first QDOT papers, there have been several hundred velocity changes: some velocities are new, some QDOT velocities have been replaced by more accurate values, and some errors have been corrected. We also present a new analysis of the accuracy and linearity of IRAS 60-μm fluxes. We find that the flux uncertainties are well described by a combination of 0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty. This is not enough to cause the large Malmquist-type errors in the rate of evolution postulated by Fisher et al. We do, however, find marginal evidence for non-linearity in the PSC 60-μm flux scale, in the sense that faint sources may have fluxes overestimated by about 5per cent compared with bright sources. We update some of the previous scientific analyses to assess the changes. The main new results are as follows. (1) The luminosity function is very well determined overall but is uncertain by a factor of several at the very highest luminosities (L

  8. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  9. Evolution of Lyman-α Emitters, Lyman-break Galaxies and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Mori, M.; Umemura, M.

    2008-10-01

    High redshift Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) possibly provide a significant key for the embryology of galaxies. LBGs have been argued as candidate progenitors of present-day elliptical galaxies in terms of their observed properties. But, what evolutionary stages LBGs correspond to and how they are related to LAEs are still under debate. Here, we present an ultra-high-resolution hydrodynamic simulation of galaxy formation. We show that, at the earliest stages of less than 3×10^8 years, continual supernova explosions produce multitudinous hot bubbles and cooled HI shells in between. The HI shells radiate intense Lyman-α emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyman-α surface brightness distribution of the extended LAEs. After 10^9 years, the galaxy emission is dominated by stellar continuum, exhibiting an LBG-like spectrum. Also, we find that, as a result of purely dynamical evolution over 13 billion years, the properties of this galaxy match those of present-day elliptical galaxies well. It is implied that the major episode of star formation and chemical enrichment in elliptical galaxies is almost completed in the evolutionary path from LAEs to LBGs.

  10. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE PAGES

    Park, Y.; Krause, E.; Dodelson, S.; ...

    2016-09-30

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  11. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.; Krause, E.; Dodelson, S.

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  12. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  13. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  14. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (rgalaxies at z>2, allowing for strong new constraints on their formation and evolutionary path

  15. Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.

    2015-02-01

    We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.

  16. GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Krishnan Santhanam, Gokula

    2017-02-01

    GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

  17. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  18. Galaxy UGC10445

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04623

  19. The galaxy builders

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  20. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  1. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Cornell, Mark E.; Drory, Niv

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R {identical_to} {lambda}/FWHM {approx_equal} 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 {+-} 1 km s{sup -1} in the nucleus of M 33 to 78 {+-} 2 km s{sup -1} in the pseudobulge of NGC 3338.more » We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M{sub .} {approx}< (2.6 {+-} 0.5) x 10{sup 6} M{sub sun} in M 101 and M{sub .} {approx}< (2.0 {+-} 0.6) x 10{sup 6} M{sub sun} in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up {approx}<3% of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with V{sub circ} > 150 km s{sup -1}, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute {approx}1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the

  2. Faint blue galaxies revisited

    NASA Astrophysics Data System (ADS)

    Ferguson, Henry C.

    If dwarf-elliptical galaxies formed their stars very rapdily (on timescales of less than 1 Gyr), they may in principle be detectable out to high redshift. Prior to the discovery of cosmic acceleration, it appeared that rapid and late formation dwarf elliptical galaxies might be required to explain the number counts of faint galaxies. A plausible hypothesis emerged: that photoionization by the UV background prevents gas cooling in low-mass halos until z ≲ 1.5. The discovery of cosmic acceleration eased the tension between predicted galaxy number counts and galaxy-evolution models. Nevertheless, there is some evidence for relatively late star formation in nearby dE's, and the photoionization delay mechanism still appears to have some merit. It is thus of interest to look back in time to see if we can find starbursting dwarf galaxies at moderate redshift. We review the connection between faint-blue galaxies and bursting-dwarf galaxies and discuss some attempts to identify progenitors to dE galaxies in the Hubble Ultra Deep Field (HUDF) observations. We find roughly 85 galaxies in the HUDF with redshifts 0.6 that appear to have formed most of their stars at z. Of these, 70% have half-light radii less than 1.5 kpc. These are thus "smoking gun" candidates for dwarf galaxies that are either collapsing for the first time at moderate redshifts or have otherwise been unable to form stars for more than 1/3 of a Hubble time.

  3. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    NASA Astrophysics Data System (ADS)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  4. Seeing Red and Shooting Blanks: A Study of Red Quasars And Blank Field X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Elvis, Martin

    2003-01-01

    The primary source catalog of 'blanks' (bright ROSAT sources with no optical counterparts) has been published in the Astrophysical Journal. The first follow-up paper has also been published. This paper used a combination of ROSAT, Chandra and ground based data to convincingly identify one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy. A paper detailing optical and near-IR imaging observations of the remaining sources is underway.

  5. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  6. Frankenstein Galaxy

    NASA Image and Video Library

    2016-07-11

    The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695

  7. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  8. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  9. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  10. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  11. Galaxy Messier 83

    NASA Image and Video Library

    2003-07-25

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. http://photojournal.jpl.nasa.gov/catalog/PIA04629

  12. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  13. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  14. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  15. The early phase of the SMBH-galaxy coevolution in low-z "young" galaxies

    NASA Astrophysics Data System (ADS)

    Nagao, Tohru

    2014-01-01

    It is now widely recognized that most galaxies have a supermassive black hole (SMBH) in their nucleus, and the evolution of SMBHs is closely related with that of their host galaxies (the SMBH-galaxy coevolution). This is suggested by the correlation in the mass of SMBHs and their host galaxies, that has been observed in low redshifts. However, the physics of the coevolution is totally unclear, that prevents us from complete understandings of the galaxy evolution. One possible strategy to tackle this issue is measuring the mass ratio between SMBHs and their host galaxies (M_BH/M_host) at high redshifs, since different scenarios predict different evolution of the ratio ofMBH/Mhost. However it is extremely challenging to measure the mass of the host of high-z quasars, given the faint surface brightness of the host at close to the glaring quasar nucleus. Here we propose a brand-new approach to assess the early phase of the SMBH-galaxy coevolution, by focusing on low-z AGN-hosting "young" galaxies. Specifically, we focus on some very metal-poor galaxies with broadline Balmer lines at z ~ 0.1 - 0.3. By examining the SMBH scaling relations in some low-z metal-poor AGNs through high-resolution IRCS imaging observations, we will discriminate various scenarios for the SMBH-galaxy coevolution.

  16. The dwarf galaxy UGC 5272 and its small companion galaxy

    NASA Technical Reports Server (NTRS)

    Hopp, U.; Schulte-Ladbeck, R. E.

    1991-01-01

    The present study of optical images and spectroscopy of the dwarf irregular galaxy UGC 5272 notes the presence, at 3.6 kpc, of a small neighboring galaxy which is also of irregular type and has a Holmberg diameter of 0.6 kpc. Attention is given to the possibility that the two galaxies, which are resolved into single stars, may form a physical pair. It is suggested that the blue-to-red supergiant ratio of UGC 5272 is high due to its low metallicity. While its extremely blue colors are suggestive of a recent starburst, the structural parameters of the galaxy are surprisingly normal. The gas contribution to total mass is high.

  17. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    NASA Astrophysics Data System (ADS)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  18. Galaxy Surface Photometry

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, Bo; Jørgensen, Inger

    We describe galaxy surface photometry based on fitting ellipses to the isophotes of the galaxies. Example galaxies with different isophotal shapes are used to illustrate the process, including how the deviations from elliptical isophotes are quantified using Fourier expansions. We show how the definitions of the Fourier coefficients employed by different authors are linked. As examples of applications of surface photometry we discuss the determination of the relative disk luminosities and the inclinations for E and S0 galaxies. We also describe the color-magnitude and color-color relations. When using both near-infrared and optical photometry, the age--metallicity degeneracy may be broken. Finally we discuss the Fundamental Plane where surface photometry is combined with spectroscopy. It is shown how the FP can be used as a sensitive tool to study galaxy evolution.

  19. A study of star formation by Hα emission of galaxies in the galaxy group NGC 4213

    NASA Astrophysics Data System (ADS)

    Maungkorn, Sakdawoot; Kriwattanawong, Wichean

    2017-09-01

    This research aims to study hydrogen alpha emission, corresponding to star formation of galaxies in the NGC 4213 group that has an average recession velocity of 6,821 km/s. The imaging observations with broad-band filters (B, V and RC) and narrow-band filters ([S II] and Red-continuum) were carried out from the 2.4-m reflecting telescope at Thai National Observatory (TNO). There are 11 sample galaxies in this study, consisting of 2 elliptical, 2 lenticular and 7 spiral galaxies. It was found that the late-type galaxies tend to be bluer than early-type galaxies, due to these galaxies consist of relatively high proportion of blue stars. Furthermore, the equivalent width of hydrogen alpha (EW(Hα)) tends to increase as a function of morphological type. This indicates that star formation in late-type galaxies taking place more than the early-type galaxies. Furthermore, a ratio of the star formation rate to galaxy mass also increases slightly with the galaxy type. This could be due to the interaction between galaxy-galaxy or tidal interaction occurring within the galaxy group.

  20. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  1. Dwarf elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  2. Galaxy NGC5398

    NASA Image and Video Library

    2003-07-25

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04633

  3. The evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Gunn, J. E.

    1982-01-01

    The recent observational evidence on the evolution of galaxies is reviewed and related to the framework of current ideas for galaxy formation from primordial density fluctuations. Recent strong evidence for the evolution of the stellar population in ellipticals is presented, as well as evidence that not all ellipticals behave as predicted by any simple theory. The status of counts of faint galaxies and the implications for the evolution of spirals is discussed, together with a discussion of recent work on the redshift distribution of galaxies at faint magnitudes and a spectroscopic investigation of the Butcher-Oemler blue cluster galaxies. Finally a new picture for the formation and evolution of disk galaxies which may explain most of the features of the Hubble sequence is outlined.

  4. Galaxy and Mass Assembly (GAMA): Impact of the Group Environment on Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Owers, M. S.; Brough, S.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Liske, J.; Loveday, J.; Pimbblet, K. A.; Robotham, A. S. G.; Taylor, E. N.

    2018-04-01

    We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly groups at 0.05 ≤ z ≤ 0.2 and analyze the projected phase space (PPS) diagram, i.e., the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime 1012 ≤ (M 200/M ⊙) < 1014. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies toward the group center by a factor ∼1.2 with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.

  5. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  6. Wing galaxies: A formation mechanism of the clumpy irregular galaxy Markarian 297

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Noguchi, Masafumi

    1990-01-01

    In order to contribute to an understanding of collision-induced starburst activities, the authors present a detailed case study on the starburst galaxy Markarian 297 (= NGC 6052 = Arp 209; hereafter Mrk 297). This galaxy is classified as a clumpy irregular galaxy (CIG) according to its morphological properties (cf. Heidmann, 1987). Two major clumps and many small clumps are observed in the entire region of Mrk 297 (Hecquet, Coupinot, and Maucherat 1987). The overall morphology of Mrk 297 is highly chaotic and thus it seems difficult to determine possible orbits of galaxy-galaxy collision. However, the authors have serendipitously found a possible orbit during a course of numerical simulations for a radial-penetration collision between galaxies. The radial-penetration collision means that an intruder penetrates a target galaxy radially passing by its nucleus. This kind of collision is known to explain a formation mechanism of ripples around disk galaxies (Wallin and Struck-Marcell 1988). Here, the authors show that the radial-penetration collision between galaxies successfully explains both overall morphological and kinematical properties of Mrk 297. The authors made two kinds of numerical simulations for Mrk 297. One is N-body (1x10(exp 4) particles) simulations in which effects of self gravity of the stellar disk are taken into account. These simulations are used to study detailed morphological feature of Mrk 297. The response of gas clouds are also investigated in order to estimate star formation rates in such collisions. The other is test-particle simulations, which are utilized to obtain a rough picture of Mrk 297 and to analyze the velocity field of Mrk 297. The techniques of the numerical simulations are the same as those in Noguchi (1988) and Noguchi and Ishibashi (1986). In the present model, an intruding galaxy with the same mass of a target galaxy moves on a rectilinear orbit which passes the center of the target.

  7. Giant Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  8. Galaxy Messier 51

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. http://photojournal.jpl.nasa.gov/catalog/PIA04628

  9. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  10. Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution

    NASA Image and Video Library

    2017-12-08

    By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers. Read more: go.nasa.gov/2sWwKkc caption: Acting as a “natural telescope” in space, the gravity of the extremely massive foreground galaxy cluster MACS J2129-0741 magnifies, brightens, and distorts the far-distant background galaxy MACS2129-1, shown in the top box. The middle box is a blown-up view of the gravitationally lensed galaxy. In the bottom box is a reconstructed image, based on modeling that shows what the galaxy would look like if the galaxy cluster were not present. The galaxy appears red because it is so distant that its light is shifted into the red part of the spectrum. Credits: NASA, ESA, M. Postman (STScI), and the CLASH team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  12. Featured Image: Identifying Weird Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Hoags Object, an example of a ring galaxy. [NASA/Hubble Heritage Team/Ray A. Lucas (STScI/AURA)]The above image (click for the full view) shows PanSTARRSobservationsof some of the 185 galaxies identified in a recent study as ring galaxies bizarre and rare irregular galaxies that exhibit stars and gas in a ring around a central nucleus. Ring galaxies could be formed in a number of ways; one theory is that some might form in a galaxy collision when a smaller galaxy punches through the center of a larger one, triggering star formation around the center. In a recent study, Ian Timmis and Lior Shamir of Lawrence Technological University in Michigan explore ways that we may be able to identify ring galaxies in the overwhelming number of images expected from large upcoming surveys. They develop a computer analysis method that automatically finds ring galaxy candidates based on their visual appearance, and they test their approach on the 3 million galaxy images from the first PanSTARRS data release. To see more of the remarkable galaxies the authors found and to learn more about their identification method, check out the paper below.CitationIan Timmis and Lior Shamir 2017 ApJS 231 2. doi:10.3847/1538-4365/aa78a3

  13. MEASURING STAR FORMATION RATES AND FAR-INFRARED COLORS OF HIGH-REDSHIFT GALAXIES USING THE CO(7–6) AND [N II] 205 μm LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanyao; Zhao, Yinghe; Xu, C. Kevin

    2015-03-20

    To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N ii] at 205 μm([N ii]{sub 205μm}). For local (U)LIRGs, the ratios ofmore » the CO(7–6) luminosity (L{sub CO(7–6)}) to the total infrared luminosity (L{sub IR}; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C(60/100). This makes L{sub CO(7–6)} a good SFR tracer, which is less contaminated by active galactic nuclei than L{sub IR} and may also be much less sensitive to metallicity than L{sub CO(1–0)}. Furthermore, the logarithmic [N ii]{sub 205μm}/CO(7–6) luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or ≲4 K in the dust temperature (T{sub dust}) in the case of a graybody emission with T{sub dust} ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ∼6.5.« less

  14. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  15. Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Galloway, Melanie A.; Bamford, Steven P.; Lintott, Chris J.; Masters, Karen L.; Scarlata, Claudia; Simmons, B. D.; Beck, Melanie; Cardamone, Carolin N.; Cheung, Edmond; Edmondson, Edward M.; Fortson, Lucy F.; Griffith, Roger L.; Häußler, Boris; Han, Anna; Hart, Ross; Melvin, Thomas; Parrish, Michael; Schawinski, Kevin; Smethurst, R. J.; Smith, Arfon M.

    2017-02-01

    We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour-composite images. Images in GZH were selected from various publicly released Hubble Space Telescope legacy programmes conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to z ˜ 1. The bulk of the sample is selected to have mI814W < 23.5, but goes as faint as mI814W < 26.8 for deep images combined over five epochs. The median redshift of the combined samples is = 0.9 ± 0.6, with a tail extending out to z ≃ 4. The GZH morphological data include measurements of both bulge- and disc-dominated galaxies, details on spiral disc structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119 849 galaxies, providing the largest data set to date suitable for large-scale studies of galaxy evolution out to z ˜ 1.

  16. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  17. Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  18. Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  19. The Effects of Physically Unrelated Near Neighbors on the Weak Galaxy-Galaxy Lensing Signal

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa

    2018-01-01

    The effects of physically unrelated near neighbors on the weak galaxy-galaxy lensing signal are explored. Physically unrelated near neighbors are galaxies that are close to a given lens galaxy in projection on the sky, but are located at substantially different redshifts. Typically, the effects of such physically unrelated near neighbors are assumed to cancel. If that were truly the case, these objects would not contribute to the mean tangential shear around the lenses and they can be ignored when using an observed weak lensing signal to infer the excess surface mass density surrounding a set of lens galaxies. Here, observed galaxies with known redshifts and luminosities are used as the basis of a suite of Monte Carlo simluations of weak galaxy-galaxy lensing. The simulations incorporate the intrinsic clustering of the lens galaxies, as well as the intrinsic distribution of the lens galaxy masses. Dark matter halos of appropriate sizes and masses are assigned to each of the lens galaxies, and the net effect of all lenses on a set of background source galaxies is determined. The net weak lensing signal (i.e., the mean tangential shear due to all lenses along the line of sight) is computed and then compared to the excess surface mass density surrounding the lenses. Due to the broad redshift and mass distributions of the lenses, the effects of physically unrelated near neighbors in the simulations do not cancel. On scales equal to or greater than the scale for which the two-halo term contributes substantially to the shear, this non-cancellation of the effects of physically unrelated near neighbors significantly affects the accuracy with which the excess surface mass density may be inferred from the mean tangential shear via the standard formula: < ΔΣ > = < Σc γt > . The effects of physically unrelated near neighbors are greatest for the least massive lens galaxies but can also be important for the most massive lens galaxies.

  20. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    PubMed

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  1. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  2. Smokin Hot Galaxy animation

    NASA Image and Video Library

    2006-03-16

    This infrared image from NASA Spitzer Space Telescope shows a galaxy that appears to be sizzling hot, with huge plumes of smoke swirling around it. The galaxy is known as Messier 82 or the Cigar galaxy.

  3. GREEN GALAXIES IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, basedmore » on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.« less

  4. An Exploration of Dusty Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    Submillimeter galaxies i.e., galaxies that we detect in the submillimeter wavelength range are mysterious creatures. Its only within the last couple decades that weve had telescope technology capable of observing them, and were only now getting to the point where angular resolution limits allow us to examine them closely. A new study has taken advantage of new capabilities to explore the properties of a sample of 52 of thesegalaxies.Dusty Star FormationSubmillimeter galaxies are generally observed in the early universe. Though theyre faint in other wavebands, theyre extremely luminous in infrared and submillimeter their infrared luminosities are typically trillions of times the Suns luminosity. This is thought to be because these galaxies are very actively forming stars at rates of hundreds of times that of the Milky Way!Example 10 10 true-color images of ten submillimeter galaxies in the authors ALMA-identified sample. [Simpson et al. 2017]Submillimeter galaxies are also extremely dusty, so we dont see their star formation directly in optical wavelengths. Instead, we see the stellar light after its been absorbed and reemitted by interstellar dust lanes were indirectly observing heavily obscured star formation.Why look for submillimeter galaxies? Studying them can help us to learn about galaxy and star formation early in our universes history, and help us to understand how the universe has evolved into what we see locally today.Submillimeter StrugglesDue to angular resolution limitations in the past, we often couldnt pin down the exact locations of submillimeter galaxies, preventing us from examining them properly. But now a team of scientists has used the Atacama Large Millimeter/submillimeter array (ALMA) to precisely locate 52 submillimeter galaxies identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey field.The precise locations made possible by ALMA allowed the team led by James Simpson (University of Edinburgh

  5. H1 in RSA galaxies

    NASA Technical Reports Server (NTRS)

    Richter, OTTO-G.

    1993-01-01

    The original Revised Shapley-Ames (RSA) galaxy sample of almost 1300 galaxies has been augmented with further bright galaxies from the RSA appendix as well as newer galaxy catalogs. A complete and homogeneous, strictly magnitude-limited all-sky sample of 2345 galaxies brighter than 13.4 in apparent blue magnitude was formed. New 21 cm H1 line observations for more than 600 RSA galaxies have been combined with all previously available H1 data from the literature. This new extentise data act allows detailed tests of widely accepted 'standard' reduction and analysis techniques.

  6. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  7. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  8. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  9. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  10. Quenching of satellite galaxies at the outskirts of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke

    2018-04-01

    We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.

  11. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  12. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-07-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudo-bulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudo-bulge hosting spirals. By studying the star formation properties of our galaxies in the NUV-r colour-mass diagram, we find that the pseudo-bulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  13. Environmental influences on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1993-01-01

    We investigate the role of mergers and interactions in the evolution of galaxies by studying galaxies in compact groups. Compact groups of galaxies have high spatial densities and low velocity dispersions making these regions ideal laboratories in which to study the effect of interactions and mergers. Based on a detailed spectroscopic and multi-color imaging study, we find that both the isophotal shapes and the stellar kinematics indicate that many of the elliptical galaxies in compact groups have been affected by tidal interactions. At the same time, however, we find that only a few elliptical galaxies in compact groups have evidence for the young stellar populations that would be expected if they are the result of recent merger of two spiral galaxies. Therefore, we conclude that tidal interactions affect galaxy properties at the current epoch, but the bulk of basic galaxy formation and transformation must have occurred at much higher redshift.

  14. A Super Special Galaxy

    NASA Image and Video Library

    2011-03-24

    There something special going on in the nearby Circinus galaxy, as revealed by this image from NASA WISE telescope. The Circinus galaxy is located in the constellation of Circinus and is obscured by the plane of our Milky Way galaxy.

  15. Blue compact dwarf galaxies. I - Neutral hydrogen observations of 115 galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Martin, G. E.

    1981-01-01

    HI observations are reported for a sample of 115 blue compact dwarf (M sub B greater than approximately -18) galaxies or 'extragalactic H II regions' chosen mostly from the objective prism surveys of Markarian (1967-1974) and Haro (1956), with a few objects from Zwicky (1971) and other investigators. Ninety-three galaxies are detected. H I profiles, neutral hydrogen masses, total masses, and all available optical data are given for the 115 galaxies in a consistent and homogeneous system and in a useful format for statistical studies. The data are used in a companion paper to study the stochastic mode of star formation in galaxies.

  16. Probing the Evolution of the Galaxy Interaction/Merger Rate Using Distant Collisional Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Lavery, Russell J.; Remijan, Anthony J.

    We present the initial results from our long-term program of identifying distant collisional ring galaxies (CRGS) in deep HST WFPC-2 images. The unique morphological characteristics of these galaxies make them easily identifiable out to a redshift of z = 1. To date, we have visually scanned 100 WFPC-2 fields and identified 14 excellent collisional ring galaxy (CRG) candidates. Based on estimated redshifts, these 14 galaxies are expected to lie in the redshift interval of 0.1 to 1. We have used this sample of CRGs to estimate the evolution of the galaxy interaction/merger rate with redshift. To account for the number of CRGs we have identified in these fields, the galaxy interaction/merger rate, parameterized as (1 + z)m, must increase steeply with redshift, with m = 5.7 +/- 1.5. We can rule out a non-evolving galaxy merger rate (m = 0) at greater than the 3σ level. We compare our results with other programs to determine the value of m using the evolution of galaxy pairs.

  17. Galaxy Zoo: secular evolution of barred galaxies from structural decomposition of multiband images

    NASA Astrophysics Data System (ADS)

    Kruk, Sandor J.; Lintott, Chris J.; Bamford, Steven P.; Masters, Karen L.; Simmons, Brooke D.; Häußler, Boris; Cardamone, Carolin N.; Hart, Ross E.; Kelvin, Lee; Schawinski, Kevin; Smethurst, Rebecca J.; Vika, Marina

    2018-02-01

    We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five Sloan Digital Sky Survey (SDSS) bands (ugriz). This sample of ∼3500 nearby (z < 0.06) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions that include a bar component. With detailed structural analysis, we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sérsic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sérsic indices consistent with being pseudo-bulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudo-bulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.

  18. Statistical properties of Faraday rotation measure in external galaxies - I. Intervening disc galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-06-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength of the galaxy population if the dispersion of B0 within the population is smaller than . Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current data base of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  19. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  20. Cosmic Collisions: Galaxy Mergers and Evolution

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Willett, Kyle; Masters, Karen; Lintott, Christopher; Whyte, Laura; Lynn, Stuart; Tremonti, Christina A.

    2014-08-01

    Over the years evidence has mounted for a significant mode of galaxy evolution via mergers. This process links gas-rich, spiral galaxies; starbursting galaxies; active galactic nuclei (AGN); post-starburst galaxies; and gas-poor, elliptical galaxies, as objects representing different phases of major galaxy mergers. The post-starburst phase is particularly interesting because nearly every galaxy that evolves from star-forming to quiescent must pass through it. In essence, this phase is a sort of galaxy evolution “bottleneck” that indicates that a galaxy is actively evolving through important physical transitions. In this talk I will present the results from the ‘Galaxy Zoo Quench’ project - using post-starburst galaxies to place observational constraints on the role of mergers and AGN activity in quenching star formation. `Quench’ is the first fully collaborative research project with Zooniverse citizen scientists online; engaging the public in all phases of research, from classification to data analysis and discussion to writing the article and submission to a refereed journal.

  1. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  2. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  3. On the occurrence of galaxy harassment

    NASA Astrophysics Data System (ADS)

    Bialas, D.; Lisker, T.; Olczak, C.; Spurzem, R.; Kotulla, R.

    2015-04-01

    Context. Tidal interactions of galaxies in galaxy clusters have been proposed as one potential explanation of the morphology-density relation at low masses. Earlier studies have shown that galaxy harassment is a suitable mechanism for inducing a morphological transformation from low-mass late-type disk galaxies to the abundant early-type galaxies. Aims: The efficiency of tidal transformation is expected to depend strongly on the orbit of a galaxy within the cluster halo. The orbit determines both the strength of the cluster's global tidal field and the probability of encounters with other cluster members. Here we aim to explore these dependencies. Methods: We use a combination of N-body simulation and Monte-Carlo method to study the efficiency of the transformation of late-type galaxies by tidal interactions on different orbits in a galaxy cluster. Additionally, we investigate the effect of an inclination between the disk of the infalling galaxy and its orbital plane. We compare our results to observational data to assess the possible relevance of such transformations for the existing cluster galaxy population. Results: We find that galaxies that entered a cluster from the outskirts are unlikely to be significantly transformed (stellar mass loss ≤6%). Closer to the cluster centre, tidal interactions are a more efficient mechanism (stellar mass loss up to 50%) for producing harassed galaxies. The inclination of the disk can reduce the mass loss significantly, yet it amplifies the thickening of the galaxy disk. Galaxies with smaller sizes on intermediate orbits are nearly unaffected by tidal interactions. The tidal influence on an infalling galaxy and the likelihood that it leads to galaxy harassment make a very stochastical process that depends on the galaxy's specific history. Conclusions: We conclude that harassment is a suitable mechanism that could explain the transformation of at least a fraction of galaxies inside galaxy clusters. However, the transformation

  4. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.

  5. Galaxy bias from galaxy–galaxy lensing in the DES science verification data

    DOE PAGES

    Prat, J.; Sánchez, C.; Miquel, R.; ...

    2017-09-25

    Here, we present a measurement of galaxy–galaxy lensing around a magnitude-limited (i AB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h –1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy–galaxy lensing with those obtained from galaxy clusteringmore » and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ~ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm bpz. Using a different code to split the lens sample, tpz, leads to changes in the measured biases at the 10–20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ~ 0.3), where we find r = 0.71 ± 0.11 when using tpz, and 0.83 ± 0.12 with bpz.« less

  6. Galaxy And Mass Assembly: resolving the role of environment in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Brough, S.; Croom, S.; Sharp, R.; Hopkins, A. M.; Taylor, E. N.; Baldry, I. K.; Gunawardhana, M. L. P.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bauer, A. E.; Bland-Hawthorn, J.; Colless, M.; Foster, C.; Kelvin, L. S.; Lara-Lopez, M. A.; López-Sánchez, Á. R.; Loveday, J.; Owers, M.; Pimbblet, K. A.; Prescott, M.

    2013-11-01

    We present observations of 18 galaxies from the Galaxy And Mass Assembly (GAMA) survey made with the SPIRAL optical integral field unit (IFU) on the Anglo-Australian Telescope. The galaxies are selected to have a narrow range in stellar mass (6 × 109 < M* < 2 × 1010 M⊙) in order to focus on the effects of environment. Local galaxy environments are measured quantitatively using fifth nearest neighbour surface densities. We find that the total star formation rates (SFR) measured from the IFU data are consistent with total SFRs measured from aperture correcting either GAMA or Sloan Digital Sky Survey single-fibre observations. The mean differences are SFRGAMA/SFRIFU = 1.26 ± 0.23, σ = 0.90 and for the Sloan Digital Sky Survey we similarly find SFRBrinchmann/SFRIFU = 1.34 ± 0.17, σ = 0.67. Examining the relationships with environment, we find that off-centre and clumpy Hα emission is not significantly dependent on environment, being present in 2/7 (29^{+20}_{-11} per cent) galaxies in high-density environments (>0.77 Mpc-2), and 5/11 (45^{+15}_{-13} per cent) galaxies in low-density environments (<0.77 Mpc-2). We find a weak but not significant relationship of the total SFRs of star-forming galaxies with environment. Due to the size of our sample and the scatter observed we do not draw a definitive conclusion about a possible SFR dependence on environment. Examining the spatial distribution of the Hα emission, we find no evidence for a change in shape or amplitude of the radial profile of star-forming galaxies with environment. If these observations are borne out in larger samples, this would infer that any environment-driven star formation suppression must either act very rapidly (the `infall-and-quench' model) or that galaxies must evolve in a density-dependent manner (an `in situ evolution' model).

  7. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies

  8. Galaxy bias from galaxy–galaxy lensing in the DES science verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; Sánchez, C.; Miquel, R.

    Here, we present a measurement of galaxy–galaxy lensing around a magnitude-limited (i AB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h –1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy–galaxy lensing with those obtained from galaxy clusteringmore » and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ~ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm bpz. Using a different code to split the lens sample, tpz, leads to changes in the measured biases at the 10–20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ~ 0.3), where we find r = 0.71 ± 0.11 when using tpz, and 0.83 ± 0.12 with bpz.« less

  9. New Methods for Tracking Galaxy and Black Hole Evolution Using Post-Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    French, Katheryn Decker

    2017-08-01

    Galaxies in transition from star-forming to quiescence are a natural laboratory for exploring the processes responsible for this evolution. Using a sample of post-starburst galaxies identified to have recently experienced a recent burst of star formation that has now ended, I explore both the fate of the molecular gas that drives star formation and the increased rate of stars disrupted by the central supermassive black hole. Chapter 1 provides an introduction to galaxy evolution through the post-starburst phase and to tidal disruption events, which surprisingly favor post-starburst galaxy hosts. In Chapter 2, I present a survey of the molecular gas properties of 32 post-starburst galaxies traced by CO (1-0) and CO (2-1). In order to accurately put galaxies on an evolutionary sequence, we must select likely progenitors and descendants. We do this by identifying galaxies with similar starburst properties, such as the amount of mass produced in the burst and the burst duration. In Chapter 3, I describe a method to determine the starburst properties and the time elapsed since the starburst ended, and discuss trends in the molecular gas properties of these galaxies with time. In Chapter 4, I present the results of followup observations with ALMA of HCN (1-0) and HCO+ (1-0) in two post-starburst galaxies. CO (1-0) is detected in over half (17/32) the post-starburst sample and the molecular gas mass traced by CO declines on ˜100 Myr timescales after the starburst has ended. HCN (1-0) is not detected in either galaxy targeted, indicating the post-starbursts are now quiescent because of a lack of the denser molecular gas traced by HCN. In Chapter 5 I quantify the increase in TDE rate in quiescent galaxies with strong Balmer absorption to be 30 - 200x higher than in normal galaxies. Using the stellar population fitting method from Chapter 3, I examine possible reasons for the increased TDE rate in post-starburst galaxies in Chapter 6. The TDE rate could be boosted due to a

  10. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  11. The IRAS galaxy 0421+040P06: An active spiral (?) galaxy with extended radio lobes

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Wynn-Williams, C. G.; Lonsdale, C. J.; Persson, S. E.; Heasley, J. N.; Miley, G. K.; Soifer, B. T.; Neugebauer, G.; Becklin, E. E.; Houck, J. R.

    1984-01-01

    The infrared bright galaxy 0421+040P06 detected by IRAS at 25 and 60 microns was studied at optical, infrared, and radio wavelength. It is a luminous galaxy with apparent spiral structure emitting 4 x 10 to the 37th power from far-infrared to optical wavelengths. Optical spectroscopy reveals a Seyfert 2 emission line spectrum, making 0421+040P06 the first active galaxy selected from an unbiased infrared survey of galaxies. The fact that this galaxy shows a flatter energy distribution with more 25 micron emission than other galaxies in the infrared sample may be related to the presence of an intense active nucleus. The radio observations reveal the presence of a non-thermal source that, at 6 cm, shows a prominent double lobed structure 20 to 30 kpc in size extending beyond the optical confines of the galaxy. The radio source is three to ten times larger than structures previously seen in spiral galaxies.

  12. The role of host galaxy for the environmental dependence of active nuclei in local galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-04-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  13. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  14. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  15. Galaxy and Mass Assembly (GAMA): probing the merger histories of massive galaxies via stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, I.; Hopkins, A. M.; Gunawardhana, M. L. P.; Sansom, A. E.; Owers, M. S.; Driver, S.; Davies, L.; Robotham, A.; Taylor, E. N.; Konstantopoulos, I.; Brough, S.; Norberg, P.; Croom, S.; Loveday, J.; Wang, L.; Bremer, M.

    2017-06-01

    The merging history of galaxies can be traced with studies of dynamically close pairs. These consist of a massive primary galaxy and a less massive secondary (or satellite) galaxy. The study of the stellar populations of secondary (lower mass) galaxies in close pairs provides a way to understand galaxy growth by mergers. Here we focus on systems involving at least one massive galaxy - with stellar mass above 1011M⊙ in the highly complete Galaxy and Mass Assembly (GAMA) survey. Our working sample comprises 2692 satellite galaxy spectra (0.1 ≤ z ≤ 0.3). These spectra are combined into high S/N stacks, and binned according to both an 'internal' parameter, the stellar mass of the satellite galaxy (I.e. the secondary), and an 'external' parameter, selecting either the mass of the primary in the pair, or the mass of the corresponding dark matter halo. We find significant variations in the age of the populations with respect to environment. At fixed mass, satellites around the most massive galaxies are older and possibly more metal-rich, with age differences ˜1-2 Gyr within the subset of lower mass satellites (˜1010 M⊙). These variations are similar when stacking with respect to the halo mass of the group where the pair is embedded. The population trends in the lower mass satellites are consistent with the old stellar ages found in the outer regions of massive galaxies.

  16. HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Zoldan, Anna

    2017-07-01

    This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236

  17. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the

  18. Diverse Formation Mechanisms for Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  19. Chemical Evidence for Evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Dutil, Yvan

    I have compiled the very best data published on abundance gradients. From this sample of 29 galaxies, some information can be gained on the mecanism of morphological evolution in disk galaxies. From this sample, I find that early-type galaxies show an identical trend in the behavior of extrapolated central abundance versus morphological type to that shown by late-type galaxies with strong bars, even in the absence of bar! On a a diagram showing extrapolated central abundance versus morphological type, two sequences appear: late-type barred galaxies and early-type galaxies (barred or not barred) fall on sequence 0.5 dex below that of normal late-type galaxies. This behavior is consistent with a scenario of morphological evolution of disk galaxies by formation and dissolution of a bar over a period of a few 10^^9 yr, where later type galaxies (Sd,Sc,Sbc, evolve into earlier-type disk galaxies trough transitory SBc and SBb phases.

  20. What made discy galaxies giant?

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.

    2018-01-01

    I studied giant discy galaxies with optical radii more than 30 kpc. The comparison of these systems with discy galaxies of moderate sizes revealed that they tend to have higher rotation velocities, B-band luminosities, H I masses and dark-to-luminous mass ratios. The giant discs follow the trend log (M_{H I})(R_{25}) found for normal sized galaxies. It indicates the absence of the peculiarities of evolution of star formation in these galaxies. The H I mass-to-luminosity ratio of giant galaxies appears not to differ from that of normal-sized galaxies, giving evidence in favour of similar star formation efficiency. I also found that the bars and rings occur more frequently among giant discs. I performed mass modelling of the subsample of 18 giant galaxies with available rotation curves and surface photometry data and constructed χ2 maps for the parameters of their dark matter haloes. These estimates indicate that giant discs tend to be formed in larger more massive and rarified dark haloes in comparison to moderate-sized galaxies. However, giant galaxies do not deviate significantly from the relations between the optical sizes and dark halo parameters for moderate-sized galaxies. These findings can rule out the catastrophic scenario of the formation of at least most of giant discs, since they follow the same relations as normal discy galaxies. The giant sizes of the discs can be due to the high radial scale of the dark matter haloes in which they were formed.

  1. Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick

    1998-08-01

    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.

  2. nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain

    2016-05-01

    We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.

  3. Accretion by the Galaxy

    NASA Astrophysics Data System (ADS)

    Binney, J.; Fraternali, F.

    2012-02-01

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model's parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies "red and dead."

  4. Galaxy M101

    NASA Image and Video Library

    2003-07-25

    This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04630

  5. Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.

    PubMed

    Milgrom, Mordehai

    2013-07-26

    The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0.

  6. Dwarf Galaxy Gives Giant Surprise

    NASA Astrophysics Data System (ADS)

    2005-01-01

    An astronomer studying small irregular galaxies discovered a remarkable feature in one galaxy that may provide key clues to understanding how galaxies form and the relationship between the gas and the stars within galaxies. Liese van Zee of Indiana University, using the National Science Foundation's Very Large Array (VLA) radio telescope, found that a small galaxy 16 million light-years from Earth is surrounded by a huge disk of hydrogen gas that has not been involved in the galaxy's star-formation processes and may be primordial material left over from the galaxy's formation. UGC 5288 Radio/Optical Image of UGC 5288 Bright white center object is visible-light image; Purple is giant hydrogen-gas disk seen with VLA CREDIT: Van Zee, NOAO, NRAO/AUI/NSF (Click on Image for Larger Version) "The lack of interaction between the large gas disk and the inner, star-forming region of this galaxy is a perplexing situation. When we figure out how this has happened, we'll undoubtedly learn more about how galaxies form," van Zee said. She presented her findings to the American Astronomical Society's meeting in San Diego, CA. The galaxy van Zee studied, called UGC 5288, had been regarded as just one ordinary example of a very numerous type of galaxy called dwarf irregular galaxies. As part of a study of such galaxies, she had earlier made a visible-light image of it at Kitt Peak National Observatory. When she observed it later using the VLA, she found that the small galaxy is embedded in a huge disk of atomic hydrogen gas. In visible light, the elongated galaxy is about 6000 by 4000 light-years, but the hydrogen-gas disk, seen with the VLA, is about 41,000 by 28,000 light-years. The hydrogen disk can be seen by radio telescopes because hydrogen atoms emit and absorb radio waves at a frequency of 1420 MHz, a wavelength of about 21 centimeters. A few other dwarf galaxies have large gas disks, but unlike these, UGC 5288's disk shows no signs that the gas was either blown out of the

  7. The Metallicity of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  8. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  9. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  10. Do Galaxies Follow Darwinian Evolution?

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  11. Photometry of compact galaxies.

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.; Usher, P. D.; Barrett, J. W.

    1972-01-01

    Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.

  12. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  13. Galaxy with a view

    NASA Image and Video Library

    2015-07-06

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disc-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud  — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. This instrument has delivered some of the sharpest views of the Universe so far achieved by mankind. This image covers only a tiny patch of sky — about the size of a one cent euro coin held 100 metres away! A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by flickr user c.claude.

  14. Mysterious Blob Galaxies Revealed

    NASA Image and Video Library

    2005-01-11

    This image composite shows a giant galactic blob (red) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together. Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile. http://photojournal.jpl.nasa.gov/catalog/PIA07220

  15. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  16. Hubble Spots a Secluded Starburst Galaxy

    NASA Image and Video Library

    2017-12-08

    This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and shows a starburst galaxy named MCG+07-33-027. This galaxy lies some 300 million light-years away from us, and is currently experiencing an extraordinarily high rate of star formation — a starburst. Normal galaxies produce only a couple of new stars per year, but starburst galaxies can produce a hundred times more than that. As MCG+07-33-027 is seen face-on, the galaxy’s spiral arms and the bright star-forming regions within them are clearly visible and easy for astronomers to study. In order to form newborn stars, the parent galaxy has to hold a large reservoir of gas, which is slowly depleted to spawn stars over time. For galaxies in a state of starburst, this intense period of star formation has to be triggered somehow — often this happens due to a collision with another galaxy. MCG+07-33-027, however, is special; while many galaxies are located within a large cluster of galaxies, MCG+07-33-027 is a field galaxy, which means it is rather isolated. Thus, the triggering of the starburst was most likely not due to a collision with a neighboring or passing galaxy and astronomers are still speculating about the cause. The bright object to the right of the galaxy is a foreground star in our own galaxy. Image credit: ESA/Hubble & NASA and N. Grogin (STScI)

  17. Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies

    NASA Astrophysics Data System (ADS)

    Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Kim, Han-Seek; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-09-01

    Using a series of high-resolution hydrodynamical simulations we show that during the rapid growth of high-redshift (z > 5) galaxies, reserves of molecular gas are consumed over a time-scale of 300 Myr, almost independent of feedback scheme. We find that there exists no such simple relation for the total gas fractions of these galaxies, with little correlation between gas fractions and specific star formation rates. The bottleneck or limiting factor in the growth of early galaxies is in converting infalling gas to cold star-forming gas. Thus, we find that the majority of high-redshift dwarf galaxies are effectively in recession, with demand (of star formation) never rising to meet supply (of gas), irrespective of the baryonic feedback physics modelled. We conclude that the basic assumption of self-regulation in galaxies - that they can adjust total gas consumption within a Hubble time - does not apply for the dwarf galaxies thought to be responsible for providing most UV photons to reionize the high-redshift Universe. We demonstrate how this rapid molecular time-scale improves agreement between semi-analytic model predictions of the early Universe and observed stellar mass functions.

  18. Spectroscopic decomposition of the galaxy and halo of the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Johnston, Evelyn J.; Merrifield, Michael; Aragón-Salamanca, Alfonso

    2018-05-01

    Information on the star-formation histories of cD galaxies and their extended stellar haloes lie in their spectra. Therefore, to determine whether these structures evolved together or through a two-phase formation, we need to spectroscopically separate the light from each component. We present a pilot study to use BUDDI to fit and extract the spectra of the cD galaxy NGC 3311 and its halo in an Integral Field Spectroscopy datacube, and carry out a simple stellar populations analysis to study their star-formation histories. Using MUSE data, we were able to isolate the light of the galaxy and its halo throughout the datacube, giving spectra representing purely the light from each of these structures. The stellar populations analysis of the two components indicates that, in this case, the bulk of the stars in both the halo and the central galaxy are very old, but the halo is more metal poor and less α-enriched than the galaxy. This result is consistent with the halo forming through the accretion of much smaller satellite galaxies with more extended star formation. It is noteworthy that the apparent gradients in age and metallicity indicators across the galaxy are entirely consistent with the radially-varying contributions of galaxy and halo components, which individually display no gradients. The success of this study is promising for its application to a larger sample of cD galaxies that are currently being observed by IFU surveys.

  19. Galaxy Portal: interacting with the galaxy platform through mobile devices.

    PubMed

    Børnich, Claus; Grytten, Ivar; Hovig, Eivind; Paulsen, Jonas; Čech, Martin; Sandve, Geir Kjetil

    2016-06-01

    : We present Galaxy Portal app, an open source interface to the Galaxy system through smart phones and tablets. The Galaxy Portal provides convenient and efficient monitoring of job completion, as well as opportunities for inspection of results and execution history. In addition to being useful to the Galaxy community, we believe that the app also exemplifies a useful way of exploiting mobile interfaces for research/high-performance computing resources in general. The source is freely available under a GPL license on GitHub, along with user documentation and pre-compiled binaries and instructions for several platforms: https://github.com/Tarostar/QMLGalaxyPortal It is available for iOS version 7 (and newer) through the Apple App Store, and for Android through Google Play for version 4.1 (API 16) or newer. geirksa@ifi.uio.no. © The Author 2016. Published by Oxford University Press.

  20. Masking Out Galaxies

    NASA Image and Video Library

    2014-11-06

    This graphic illustrates how the Cosmic Infrared Background Experiment, or CIBER, team measures a diffuse glow of infrared light filling the spaces between galaxies. The glow does not come from any known stars and galaxies.

  1. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE PAGES

    Clampitt, J.; S?nchez, C.; Kwan, J.; ...

    2016-11-22

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  2. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.

    2017-03-01

    We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  3. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clampitt, J.; S?nchez, C.; Kwan, J.

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  4. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  5. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  6. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  7. A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij

    2018-01-01

    The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  8. Isolated Galaxies and Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, C.; Choi, Y. Y.

    2010-10-01

    We search for isolated galaxies using a volume-limited sample of galaxies with 0.02 < z < 0.04742 from SDSS DR7 supplemented by bright galaxies. We devise a diagnostic tool to select isolated galaxies in different environments using the projected separation (rp) normalized by the virial radius of the nearest neighbor (rvir,nei) and the local background density. We find that the isolation condition of rp > rvir,nei and ρ < ρbar well segregates the CIG galaxies. We confirm the morphology conformity between the host and their satellites, which suggests the importance to galaxy evolution of hydrodynamic interactions among galaxies within their virial radii.

  9. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  10. IRAS observations of Shapley-Ames galaxies

    NASA Technical Reports Server (NTRS)

    De Jong, T.; Clegg, P. E.; Rowan-Robinson, M.; Soifer, B. T.; Habing, H. J.; Houck, J. R.; Aumann, H. H.; Raimond, E.

    1984-01-01

    A preliminary discussion of the infrared properties of a representative subsample of galaxies in the Revised Shapley-Ames Catalog (B less than about 13 mag) is presented. Of the 165 galaxies in the sample, 108 predominantly spiral galaxies, are detected in the infrared by IRAS. None of the elliptical galaxies and only about 25 percent of the lenticular galaxies scanned were detected. The range of infrared-to-blue luminosity ratios, a measure of the infrared excess of galaxies, is large, varying from roughly 0.1 to roughly 5. The data suggest that weakly infrared emitting galaxies are cool (100-60 micron color temperatures of about 25 K), while the more infrared luminous ones tend to be warmer (about 50 K). The rate of star formation in barred spiral galaxies is apparently higher than in normal spirals. About 1 solar mass/year of interstellar matter is converted into massive stars in the typical spiral galaxy.

  11. The Hidden Galaxy

    NASA Image and Video Library

    2011-01-18

    Maffei 2 is the poster child for an infrared galaxy that is almost invisible to optical telescopes. But this infrared image from NASA Spitzer Space Telescope penetrates the dust to reveal the galaxy in all its glory.

  12. Galaxy and Mass Assembly (GAMA): variation in galaxy structure across the green valley

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-07-01

    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 {<} log {M}_{\\star }/{M}_{⊙} {<} 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo-Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of {˜ }44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ˜20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  13. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  14. Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo

    2016-07-01

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  15. Killing Star Formation in Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a dwarf galaxy falls into the halo of a large galaxy like the Milky Way, how is star formation in the dwarf affected? A collaboration led by Andrew Wetzel (California Institute of Technology and Carnegie Observatories) recently set out to answer this question using observations of nearby galaxies and simulations of the infall process. Observed Quenching: Isolated dwarf galaxies tend to be gas-rich and very actively star-forming. In contrast, most dwarf galaxies within 300 kpc of us (the Milky Way's virial radius) contain little or no cold gas, and they're quiescent: there's not much star formation happening. And this isn't just true of the Milky Way; we observe the same difference in the satellite galaxies surrounding Andromeda galaxy. Once a dwarf galaxy has moved into the gravitational realm of a larger galaxy, the satellite's gas vanishes rapidly and its star formation is shut off — but how, and on what timescale? The known dwarf galaxies in the Local Group (out to 1.6 Mpc) are plotted by their distance from their host vs. their stellar mass. Blue stars indicate actively star-forming dwarfs and red circles indicate quiescent ones. Credit: Wetzel et al. 2015. Timescales for Quiescence: To answer these questions, the authors explored the process of galaxy infall using Exploring the Local Volume in Simulations (ELVIS), a suite of cosmological N-body simulations intended to explore the Local Group. They combined the infall times from the simulations with observational knowledge of the fraction of nearby galaxies that are currently quiescent, in order to determine what timescales are required for different processes to deplete the gas in the dwarf galaxies and quench star formation. Based on their results, two types of quenching culprits are at work: gas consumption (where a galaxy simply uses up its immediate gas supply and doesn't have access to more) and gas stripping (where external forces like ram pressure remove gas from the galaxy). These processes

  16. Old Galaxies in the Young Universe

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Very Large Telescope Unravels New Population of Very Old Massive Galaxies [1] Summary Current theories of the formation of galaxies are based on the hierarchical merging of smaller entities into larger and larger structures, starting from about the size of a stellar globular cluster and ending with clusters of galaxies. According to this scenario, it is assumed that no massive galaxies existed in the young universe. However, this view may now have to be revised. Using the multi-mode FORS2 instrument on the Very Large Telescope at Paranal, a team of Italian astronomers [2] have identified four remote galaxies, several times more massive than the Milky Way galaxy, or as massive as the heaviest galaxies in the present-day universe. Those galaxies must have formed when the Universe was only about 2,000 million years old, that is some 12,000 million years ago. The newly discovered objects may be members of a population of old massive galaxies undetected until now. The existence of such systems shows that the build-up of massive elliptical galaxies was much faster in the early Universe than expected from current theory. PR Photo 21a/04: Small Part of the K20 Field Showing the z=1.9 Elliptical Galaxy (ACS/HST). PR Photo 21b/04: Averaged Spectrum of Old Galaxies (FORS2/VLT). Hierarchical merging Galaxies are like islands in the Universe, made of stars as well as dust and gas clouds. They come in different sizes and shapes. Astronomers generally distinguish between spiral galaxies - like our own Milky Way, NGC 1232 or the famous Andromeda galaxy - and elliptical galaxies, the latter mostly containing old stars and having very little dust or gas. Some galaxies are intermediate between spirals and ellipticals and are referred to as lenticular or spheroidal galaxies. Galaxies are not only distinct in shape, they also vary in size: some may be as "light" as a stellar globular cluster in our Milky Way (i.e. they contain about the equivalent of a few million Suns) while others

  17. The Smallest Galaxies in the Universe: Investigating the Origins of Ultra-faint Galaxies

    NASA Astrophysics Data System (ADS)

    Qi, Yuewen; Graus, Andrew; Bullock, James

    2018-01-01

    One outstanding question in cosmology is, what are the smallest galaxies that can form? The answer to this question can tell us much about galaxy formation, and even of the properties of dark matter itself. A candidate for the smallest galaxies that can form are the ultrafaint galaxies. The star formation of ultrafaints appears to have been shut off during the epoch of reionization, when radiation from the first stars ionized all the free hydrogen in the universe. This would imply ultrafaints should exist everywhere in the universe. However, we can only observe ultrafaints as satellites of the Milky Way, due to their low brightness. This will change with the next generation of telescopes such as the Large Synoptic Survey Telescope (LSST). The focus of this work is to predict the number of ultrafaints that should be seen with future surveys. To that end, we use the ELVIS suite, which contains 14 dark matter only simulations of Local Group like systems containing a Milky Way and Andromeda-like galaxy and the substructure out to around 1 Mpc of the barycenter. We mock observe the simulations in order to mimic current surveys such as the Sloan Digital Sky Survey (SDSS), and the Dark Energy Survey (DES), and use the population of galaxies found by those surveys to project the population of dwarf galaxies out beyond the virial radius of either galaxy. This number will depend sensitively on the formation mechanism of ultrafaint dwarfs, and comparisons of future surveys to this work could help rule out certain formation scenarios.

  18. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  19. The Co-Evolution of Galaxies, their ISM, and the ICM: The Hydrodynamics of Galaxy Transformation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig L.; Ricker, Paul M.

    2017-01-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM.

  20. Matching Supernovae to Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  1. XMM-Newton Archival Study of the ULX Population in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Reynolds, christopher S.

    2006-01-01

    We present the results of an archival XMM-Newton study of the bright X-ray point sources (L(sub X) greater than 10(exp 38 erg per second)) in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population, searching for a soft-hard state dichotomy similar to that known for Galactic X-ray binaries and testing the specific predictions of the IMBH hypothesis. To this end, we searched for low-state objects, which we defined as objects within our sample which had a spectrum well fit by a simple absorbed power law, and high-state objects, which we defined as objects better fit by a combined blackbody and a power law. Assuming that low-state)) objects accrete at approximately 10% of the Eddington luminosity (Done & Gierlinski 2003) and that high-state objects accrete near the Eddington luminosity we further divided our sample of sources into low and high state ULX sources. We classify 16 sources as low-state ULXs and 26 objects as high-state ULXs. As in Galactic black hole systems, the spectral indices, GAMMA, of the lowstate objects, as well as the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures for the high state is 0.1-1 keV, with the most luminous systems tending toward the lowest temperatures. We therefore divide our high-state ULXs into candidate IMBHs (with blackbody temperatures of approximately 0.1 keV) and candidate stellar mass BHs (with blackbody temperatures of approximately 1.0 keV). A subset of the candidate stellar mass BHs have spectra that are well-fit by a Comptonization model, a property similar of Galactic BHs radiating in the very-high state near the Eddington limit.

  2. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    PubMed

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  3. COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Hochmuth, Nicholas Baeza; Geller, Margaret J.

    We search the Sloan Digital Sky Survey and the Baryon Oscillation Sky Survey to identify ∼5500 massive compact quiescent galaxy candidates at 0.2 < z < 0.8. We robustly classify a subsample of 438 E+A galaxies based on their spectral properties and make this catalog publicly available. We examine sizes, stellar population ages, and kinematics of galaxies in the sample and show that the physical properties of compact E+A galaxies suggest that they are a progenitor of massive compact quiescent galaxies. Thus, two classes of objects—compact E+A and compact quiescent galaxies—may be linked by a common formation scenario. The typicalmore » stellar population age of compact E+A galaxies is <1 Gyr. The existence of compact E+A galaxies with young stellar populations at 0.2 < z < 0.8 means that some compact quiescent galaxies first appear at intermediate redshifts. We derive a lower limit for the number density of compact E+A galaxies. Assuming passive evolution, we convert this number density into an appearance rate of new compact quiescent galaxies at 0.2 < z < 0.8. The lower limit number density of compact quiescent galaxies that may appear at z < 0.8 is comparable to the lower limit of the total number density of compact quiescent galaxies at these intermediate redshifts. Thus, a substantial fraction of the z < 0.8 massive compact quiescent galaxy population may descend from compact E+A galaxies at intermediate redshifts.« less

  4. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older

  5. The physical properties of Lyα emitting galaxies: not just primeval galaxies?

    NASA Astrophysics Data System (ADS)

    Pentericci, L.; Grazian, A.; Fontana, A.; Castellano, M.; Giallongo, E.; Salimbeni, S.; Santini, P.

    2009-02-01

    Aims: We have analyzed a sample of Lyman break galaxies from z ~ 3.5 to z ~ 6 selected from the GOODS-S field as B, V, and i-dropouts, and with spectroscopic observations showing that they have the Lyα line in emission. Our main aim is to investigate their physical properties and their dependence on the emission line characteristic and to shed light on the relation between galaxies with Lyα emission and the general LBG population. Methods: The objects were selected from their optical continuum colors and then spectroscopically confirmed by the GOODS collaboration and other campaigns. From the public spectra we derived the main properties of the Lyα emission such as total flux and rest frame EW. We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, and through standard spectro-photometric techniques we derived the physical properties of the galaxies, such as total stellar mass, stellar ages, star formation rates, and dust content. Finally we investigated the relation between emission line and physical properties. Results: Although most galaxies are fit by young stellar populations, a small but non negligible fraction has SEDs that cannot be represented well by young models and require considerably older stellar component, up to ~1 Gyr. There is no apparent relation between age and EW: some of the oldest galaxies have high line EW, and should be also selected in narrow-band surveys. Therefore not all Lyα emitting galaxies are primeval galaxies in the very early stages of formation, as is commonly assumed. We also find a range of stellar populations, with masses from 5 × 108 M_⊙ to 5 × 1010 M_⊙ and SFR from few to 60 M_⊙ yr-1. Although there is no net correlation between mass and EW, we find a significant lack of massive galaxies with high EW, which could be explained if the most massive galaxies were either dustier and/or if they contained more neutral gas than less massive objects. Finally we find that more than

  6. The Star Formation Reference Survey - II. Activity demographics and host-galaxy properties for infrared-selected galaxies

    NASA Astrophysics Data System (ADS)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2018-04-01

    We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and infrared (IR)-colour diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-IR-selected sample comprises 71 per cent H II galaxies, 13 per cent Seyferts, 3 per cent transition objects (TOs), and 13 per cent low-ionization nuclear emission-line regions (LINERs). For the SFRS H II galaxies, we derive nuclear star formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H II galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of 1010.5 M⊙), median L(60 μm) = 109 L⊙, median dust temperatures of F60/F100 = 0.36, and median LH α surface density of 1040.2 erg s-1kpc-2, indicating older stellar populations as their main ionizing source rather than active galactic nucleus activity.

  7. Bulgeless Galaxy Hides Black Hole

    NASA Image and Video Library

    2014-03-26

    The galaxy NGC 4395 is shown here in infrared light, captured by NASA Spitzer Space Telescope. This dwarf galaxy is relatively small in comparison with our Milky Way galaxy, which is nearly 1,000 times more massive.

  8. The Galaxy Evolution Probe

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  9. Hubble Views a Young Elliptical Galaxy

    NASA Image and Video Library

    2017-12-08

    At the center of this amazing Hubble image is the elliptical galaxy NGC 3610. Surrounding the galaxy are a wealth of other galaxies of all shapes. There are spiral galaxies, galaxies with a bar in their central regions, distorted galaxies and elliptical galaxies, all visible in the background. In fact, almost every bright dot in this image is a galaxy — the few foreground stars are clearly distinguishable due to the diffraction spikes (lines radiating from bright light sources in reflecting telescope images) that overlay their images. NGC 3610 is of course the most prominent object in this image — and a very interesting one at that! Discovered in 1793 by William Herschel, it was later found that this elliptical galaxy contains a disk. This is very unusual, as disks are one of the main distinguishing features of a spiral galaxy. And the disk in NGC 3610 is remarkably bright. The reason for the peculiar shape of NGC 3610 stems from its formation history. When galaxies form, they usually resemble our galaxy, the Milky Way, with flat disks and spiral arms where star formation rates are high and which are therefore very bright. An elliptical galaxy is a much more disordered object which results from the merging of two or more disk galaxies. During these violent mergers most of the internal structure of the original galaxies is destroyed. The fact that NGC 3610 still shows some structure in the form of a bright disk implies that it formed only a short time ago. The galaxy’s age has been put at around four billion years and it is an important object for studying the early stages of evolution in elliptical galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge

  10. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  11. WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.

    2010-08-01

    We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N{sub c}) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability ofmore » pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z {approx} 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 {+-} 0.3 dry mergers since this time, accounting for (38 {+-} 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our

  12. Galaxies Grow from Inside Out

    NASA Image and Video Library

    2013-10-31

    Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.

  13. Cartwheel Galaxy

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A peculiar galaxy in the constellation of Sculptor that derives its name from its wheel-like appearance. The Cartwheel has a ring-shaped `rim', 150 000 light-years in diameter, that contains billions of recently formed stars and which is dominated by massive clusters of bright blue stars and HII regions. The nucleus, or `hub' of the galaxy contains a predominantly older population of stars and is...

  14. Fantastic Four Galaxies with Planet (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept shows what the night sky might look like from a hypothetical planet around a star tossed out of an ongoing four-way collision between big galaxies (yellow blobs). NASA's Spitzer Space Telescope spotted this 'quadruple merger' of galaxies within a larger cluster of galaxies located nearly 5 billion light-years away.

    Though the galaxies appear intact, gravitational disturbances have caused them to stretch and twist, flinging billions of stars into space -- nearly three times as many stars as are in our Milky Way galaxy. The tossed stars are visible in the large plume emanating from the central, largest galaxy. If any of these stars have planets, their night skies would be filled with the monstrous merger, along with other galaxies in the cluster (smaller, bluish blobs).

    This cosmic smash-up is the largest known merger between galaxies of a similar size. While three of the galaxies are about the size of our Milky Way galaxy, the fourth (center of image) is three times as big. All four of the galaxies, as well as most other galaxies in the huge cluster, are blob-shaped ellipticals instead of spirals like the Milky Way.

    Ultimately, in about one hundred million years or so, the four galaxies E will unite into one. About half of the stars kicked out during the merger will fall back and join the new galaxy, making it one of the biggest galaxies in the universe.

  15. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  16. Galaxy NGC 4013

    NASA Image and Video Library

    1999-12-15

    An amazing edge-on view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image reveals in great detail huge clouds of dust and gas extending along and above the galaxy main disk.

  17. Galaxy Centaurus A

    NASA Image and Video Library

    2003-07-25

    This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet. http://photojournal.jpl.nasa.gov/catalog/PIA04624

  18. Baby Galaxies in the Adult Universe

    NASA Image and Video Library

    2004-12-21

    This artist's conception illustrates the decline in our universe's "birth-rate" over time. When the universe was young, massive galaxies were forming regularly, like baby bees in a bustling hive. In time, the universe bore fewer and fewer "offspring," and newborn galaxies (white circles) matured into older ones more like our own Milky Way (spirals). Previously, astronomers thought that the universe had ceased to give rise to massive, young galaxies, but findings from NASA's Galaxy Evolution Explorer suggest that may not be the case. Surveying thousands of nearby galaxies with its highly sensitive ultraviolet eyes, the telescope spotted three dozen that greatly resemble youthful galaxies from billions of years ago. In this illustration, those galaxies are represented as white circles on the right, or "today" side of the timeline. The discovery not only suggests that our universe may still be alive with youth, but also offers astronomers their first close-up look at what appear to be baby galaxies. Prior to the new result, astronomers had to peer about 11 billion light-years into the distant universe to see newborn galaxies. The newfound galaxies are only about 2 to 4 billion light-years away. http://photojournal.jpl.nasa.gov/catalog/PIA07142

  19. Baby Galaxies in the Adult Universe

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    This artist's conception illustrates the decline in our universe's 'birth-rate' over time. When the universe was young, massive galaxies were forming regularly, like baby bees in a bustling hive. In time, the universe bore fewer and fewer 'offspring,' and newborn galaxies (white circles) matured into older ones more like our own Milky Way (spirals).

    Previously, astronomers thought that the universe had ceased to give rise to massive, young galaxies, but findings from NASA's Galaxy Evolution Explorer suggest that may not be the case. Surveying thousands of nearby galaxies with its highly sensitive ultraviolet eyes, the telescope spotted three dozen that greatly resemble youthful galaxies from billions of years ago. In this illustration, those galaxies are represented as white circles on the right, or 'today' side of the timeline.

    The discovery not only suggests that our universe may still be alive with youth, but also offers astronomers their first close-up look at what appear to be baby galaxies. Prior to the new result, astronomers had to peer about 11 billion light-years into the distant universe to see newborn galaxies. The newfound galaxies are only about 2 to 4 billion light-years away.

  20. The dark side of galaxy colour

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Watson, Douglas F.

    2013-10-01

    We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin

  1. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2

    NASA Astrophysics Data System (ADS)

    Murata, Katsuhiro L.; Yamada, Rika; Oyabu, Shinki; Kaneda, Hidehiro; Ishihara, Daisuke; Yamagishi, Mitsuyoshi; Kokusho, Takuma; Takeuchi, Tsutomu T.

    2017-11-01

    Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass (MPAH), very small grain mass (MVSG), big grain mass (MBG) and stellar mass (Mstar) with galaxy merger for 55 star-forming galaxies at redshift z < 0.2. Using the SDSS image at z < 0.1 and the HST image at z > 0.1, we divided the galaxies into merger galaxies and non-merger galaxies with the morphological parameter asymmetry A, and quantified merging stages of galaxies based on the morphological indicators, the second-order momentum of the brightest 20 per cent region M20 and the Gini coefficient. We find that MPAH/MBG of merger galaxies tend to be lower than that of non-merger galaxies and there are no systematic differences of MVSG/MBG and MBG/Mstar between merger galaxies and non-merger galaxies. We find that galaxies with very low MPAH/MBG seem to be merger galaxies at late stages. These results suggest that PAHs are partly destroyed at late stages of merging processes. Furthermore, we investigated MPAH/MBG variations in radiation field intensity strength G0 and the emission line ratio of [O I] λ 6300/Hα that is a shock tracer for merger galaxies and find that MPAH/MBG decreases with increasing both G0 and [O I]/Hα. PAH destruction is likely to be caused by two processes: strong radiation fields and large-scale shocks during merging processes of galaxies.

  2. M 101: The Pinwheel Galaxy

    NASA Image and Video Library

    2011-07-21

    A large spiral galaxy dominates this view from NASA Wide-field Infrared Survey Explorer. The galaxy, often called the Pinwheel galaxy, was designated object 101 in astronomer Charles Messier catalog of fuzzy things in the sky that are not comets.

  3. Triple Scoop from Galaxy Hunter

    NASA Image and Video Library

    2006-07-28

    Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky as seen in this edge-on view from NASA Galaxy Evolution Explorer.

  4. Massive Galaxies Are Larger in Dense Environments: Environmental Dependence of Mass-Size Relation of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Yongmin; Im, Myungshin; Kim, Jae-Woo

    2017-01-01

    Under the Λ cold dark matter (ΛCDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at 0.1 ≤ z < 0.15, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than 1011.2 M⊙ show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20%-40% larger in the densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the ΛCDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.

  5. Morphology-based Query for Galaxy Image Databases

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2017-02-01

    Galaxies of rare morphology are of paramount scientific interest, as they carry important information about the past, present, and future Universe. Once a rare galaxy is identified, studying it more effectively requires a set of galaxies of similar morphology, allowing generalization and statistical analysis that cannot be done when N=1. Databases generated by digital sky surveys can contain a very large number of galaxy images, and therefore once a rare galaxy of interest is identified it is possible that more instances of the same morphology are also present in the database. However, when a researcher identifies a certain galaxy of rare morphology in the database, it is virtually impossible to mine the database manually in the search for galaxies of similar morphology. Here we propose a computer method that can automatically search databases of galaxy images and identify galaxies that are morphologically similar to a certain user-defined query galaxy. That is, the researcher provides an image of a galaxy of interest, and the pattern recognition system automatically returns a list of galaxies that are visually similar to the target galaxy. The algorithm uses a comprehensive set of descriptors, allowing it to support different types of galaxies, and it is not limited to a finite set of known morphologies. While the list of returned galaxies is neither clean nor complete, it contains a far higher frequency of galaxies of the morphology of interest, providing a substantial reduction of the data. Such algorithms can be integrated into data management systems of autonomous digital sky surveys such as the Large Synoptic Survey Telescope (LSST), where the number of galaxies in the database is extremely large. The source code of the method is available at http://vfacstaff.ltu.edu/lshamir/downloads/udat.

  6. Galaxy and Mass Assembly (GAMA): Variation in Galaxy Structure Across the Green Valley

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-04-01

    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25< log M_{\\star }/M_{⊙}<10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ˜44% which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ˜20 - 30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  7. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    NASA Astrophysics Data System (ADS)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M*/M⊙) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Sérsic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  8. Galaxy and Mass Assembly (GAMA): galaxies at the faint end of the Hα luminosity function

    NASA Astrophysics Data System (ADS)

    Brough, S.; Hopkins, A. M.; Sharp, R. G.; Gunawardhana, M.; Wijesinghe, D.; Robotham, A. S. G.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J. A.; Bland-Hawthorn, J.; Brown, M. J. I.; Cameron, E.; Croom, S. M.; Frenk, C. S.; Foster, C.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K.; Popescu, C. C.; Prescott, M.; Sutherland, W. J.; Taylor, E.; Thomas, D.; Tuffs, R. J.; van Kampen, E.

    2011-05-01

    We present an analysis of the properties of the lowest Hα-luminosity galaxies (LHα≤ 4 × 1032 W; SFR < 0.02 M⊙ yr-1, with SFR denoting the star formation rate) in the Galaxy And Mass Assembly survey. These galaxies make up the rise above a Schechter function in the number density of systems seen at the faint end of the Hα luminosity function. Above our flux limit, we find that these galaxies are principally composed of intrinsically low stellar mass systems (median stellar mass = 2.5 × 108 M⊙) with only 5/90 having stellar masses M > 1010 M⊙. The low-SFR systems are found to exist predominantly in the lowest-density environments (median density ˜0.02 galaxy Mpc-2) with none in environments more dense than ˜1.5 galaxy Mpc-2. Their current specific SFRs (SSFRs; -8.5 < log [SSFR (yr -1)] < -12) are consistent with their having had a variety of star formation histories. The low-density environments of these galaxies demonstrate that such low-mass, star-forming systems can only remain as low mass and form stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.

  9. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  10. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies'' in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Egami, Eiichi; Campusano, Luis

    2012-08-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~135 galaxies in ten nearby galaxy groups (60- 80 Mpc) from the Complete Local-Volume Groups Sample (CLoGS). In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital that we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occurring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear starbursts triggered by low-velocity encounters and mergers which should be most frequent in groups.

  11. Are We Really Missing Small Galaxies?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    One long-standing astrophysical puzzle is that of so-called missing dwarf galaxies: the number of small dwarf galaxies that we observe is far fewer than that predicted by theory. New simulations, however, suggest that perhaps theres no mystery after all.Missing DwarfsDark-matter cosmological simulations predict many small galaxy halos for every large halo that forms. [The Via Lactea project]Models of a lambda-cold-dark-matter (CDM) universe predict the distribution of galaxy halo sizes throughout the universe, suggesting there should be many more small galaxies than large ones. In what has become known as the missing dwarf problem, however, we find that while we observe the expected numbers of galaxies at the larger end of the scale, we dont see nearly enough small galaxies to match the predictions.Are these galaxies actually missing? Are our predictions wrong? Or are the galaxies there and were just not spotting them? A recent study led by Alyson Brooks (Rutgers University) uses new simulations to explore whatscausing the difference between theory and observation.The fraction of detectable halos as a function of velocity, according to the authors simulations. Below 35 km/s, the detectability of the galaxies drops precipitously. [Brooks et al. 2017]Simulating Galactic VelocitiesBecause we cant weigh a galaxy directly, one proxy used for galaxy mass is its circular velocity; the more massive a galaxy, the faster gas and stars rotate around its center. The discrepancy between models and observations lies in whats known as the galaxy velocity function, which describes the number density of galaxies for a given circular velocity. While theory and observations agree for galaxies with circular velocities above 100 km/s, theory predicts far more dwarfs below this velocity than we observe.To investigate this problem, Brooks and collaborators ran a series of cosmological simulations based on our understanding of a CDM universe. Instead of exploring the result using only

  12. The AMIGA sample of isolated galaxies. IV. A catalogue of neighbours around isolated galaxies

    NASA Astrophysics Data System (ADS)

    Verley, S.; Odewahn, S. C.; Verdes-Montenegro, L.; Leon, S.; Combes, F.; Sulentic, J.; Bergond, G.; Espada, D.; García, E.; Lisenfeld, U.; Sabater, J.

    2007-08-01

    Context: Studies of the effects of environment on galaxy properties and evolution require well defined control samples. Such isolated galaxy samples have up to now been small or poorly defined. The AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies) represents an attempt to define a statistically useful sample of the most isolated galaxies in the local (z ≤ 0.05) Universe. Aims: A suitable large sample for the AMIGA project already exists, the Catalogue of Isolated Galaxies (CIG, Karachentseva, 1973, Astrofizicheskie Issledovaniia Izvestiya Spetsial'noj Astrofizicheskoj Observatorii, 8, 3; 1050 galaxies), and we use this sample as a starting point to refine and perform a better quantification of its isolation properties. Methods: Digitised POSS-I E images were analysed out to a minimum projected radius R ≥ 0.5 Mpc around 950 CIG galaxies (those within Vr = 1500 km s-1 were excluded). We identified all galaxy candidates in each field brighter than B = 17.5 with a high degree of confidence using the LMORPHO software. We generated a catalogue of approximately 54 000 potential neighbours (redshifts exist for ≈30% of this sample). Results: Six hundred sixty-six galaxies pass and two hundred eighty-four fail the original CIG isolation criterion. The available redshift data confirm that our catalogue involves a largely background population rather than physically associated neighbours. We find that the exclusion of neighbours within a factor of four in size around each CIG galaxy, employed in the original isolation criterion, corresponds to Δ Vr ≈ 18 000 km s-1 indicating that it was a conservative limit. Conclusions: Galaxies in the CIG have been found to show different degrees of isolation. We conclude that a quantitative measure of this is mandatory. It will be the subject of future work based on the catalogue of neighbours obtained here. Full Table [see full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc

  13. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NASA Astrophysics Data System (ADS)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-07-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ~1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/Li ˜ 8 +/- 4 M⊙ L⊙ -1, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ~ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.

  14. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  15. Multi-wavelength observations of barred, flocculent galaxies

    NASA Astrophysics Data System (ADS)

    Ratay, Douglas Lee

    Although it is generally accepted that large galaxies form through the assemblage of smaller objects, an explanation for the morphology of galaxies is not available. Any complete theory of galaxy morphology must include production and dissolution mechanisms for galactic bars, rings, nuclear bars, spiral arms, and companions. This theory does not exist because of the lack of detailed data from many types of galaxies in different environments. We have defined a new sample of galaxies which are simultaneously flocculent, barred, and isolated. We have performed optical, near-infrared, and radio (HI) observations of the galaxies in this sample. We measured properties of our galaxies including bar length, bar axis ratio, HI diameter, HI mass, and dynamical mass. We found that our sample group is heterogeneous, and compares well to a standard samples of galaxies. We found two of our galaxies to possess companions, and two others to show evidence of current interactions. This is consistent with other observations indicating that local isolated galaxies do not possess a large number of small companions. We cannot rule out the possibility of very small companions. We find that as a group our sample is slightly less luminous than normal galaxies and may be more likely to be involved in interactions. We conclude that the bar and spiral arm features in our sample are due to processes internal to the galaxies, likely involving the interaction between the galactic disk and halo. We defined a control sample of barred, grand design galaxies to further determine the acceptability of barred, flocculent galaxies as a physically meaningful subset of galaxies.

  16. Galaxy Centaurus A

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  17. Infrared-Bright Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Rojas Ruiz, Sofia; Murphy, Eric Joseph; Armus, Lee; Smith, John-David; Bradford, Charles Matt; Stierwalt, Sabrina

    2018-01-01

    We present the mid-infrared spectral mapping of eight LIRG-class interacting galaxies: NGC 6670, NGC 7592, IIZw 96, IIIZw 35, Arp 302, Arp 236, Arp 238, Arp 299. The properties of galaxy mergers, which are bright and can be studied at high resolutions at low-z, provide local analogs for sources that may be important contributors to the Far Infrared Background (FIRB.) In order to study star formation and the physical conditions in the gas and dust in our sample galaxies, we used the Spitzer InfraRed Spectrograph (IRS) to map the galaxies over the 5-35 μm window to trace the PAH, molecular hydrogen, and atomic fine structure line emission on scales of 1.4 – 5.3 kpc. Here we present the reduction for low and high-resolution data, and preliminary results in the analysis of fine structure line ratios and dust features in the two nuclei and interacting regions from one of our sample galaxies, NGC 6670.

  18. The galaxy-dark matter halo connection: which galaxy properties are correlated with the host halo mass?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2015-09-01

    We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.

  19. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-10-01

    The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  20. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  1. Galaxy And Mass Assembly (GAMA): A “No Smoking” Zone for Giant Elliptical Galaxies?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosroshahi, Habib G.; Raouf, Mojtaba; Miraghaei, Halime

    We study the radio emission of the most massive galaxies in a sample of dynamically relaxed and unrelaxed galaxy groups from the Galaxy and Mass Assembly survey. The dynamical state of the group is defined by the stellar dominance of the brightest group galaxy (BGG), e.g., the luminosity gap between the two most luminous members, and the offset between the position of the BGG and the luminosity centroid of the group. We find that the radio luminosity of the largest galaxy in the group strongly depends on its environment, such that the BGGs in dynamically young (evolving) groups are anmore » order of magnitude more luminous in the radio than those with a similar stellar mass but residing in dynamically old (relaxed) groups. This observation has been successfully reproduced by a newly developed semi-analytic model that allows us to explore the various causes of these findings. We find that the fraction of radio-loud BGGs in the observed dynamically young groups is ∼2 times that of the dynamically old groups. We discuss the implications of this observational constraint on the central galaxy properties in the context of galaxy mergers and the super massive black hole accretion rate.« less

  2. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Gómez, Mario E.

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard

  3. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard

  4. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gómez, Mario E.; Prada, Francisco

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  5. Multiband counterparts of two eclipsing ultraluminous X-ray sources in M 51

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.; Johnston, H. M.; Pakull, M. W.; Motch, C.; Schwope, A.; Miller-Jones, J. C. A.; Anderson, G. E.

    2018-04-01

    We present the discovery and interpretation of ionized nebulae around two ultraluminous X-ray sources in M 51; both sources share the rare property of showing X-ray eclipses by their companion stars and are therefore prime targets for follow-up studies. Using archival Hubble Space Telescope images, we found an elongated, 100-pc-long emission-line structure associated with one X-ray source (CXOM51 J132940.0+471237; ULX-1 for simplicity), and a more circular, ionized nebula at the location of the second source (CXOM51 J132939.5+471244; ULX-2 for simplicity). We observed both nebulae with the Large Binocular Telescope's Multi-Object Double Spectrograph. From our analysis of the optical spectra, we argue that the gas in the ULX-1 bubble is shock-ionized, consistent with the effect of a jet with a kinetic power of ≈2 × 1039 erg s-1. Additional X-ray photoionization may also be present, to explain the strength of high-ionization lines such as He II λ4686 and [Ne V] λ3426. On the other hand, the emission lines from the ULX-2 bubble are typical for photoionization by normal O stars suggesting that the nebula is actually an H II region not physically related to the ULX but is simply a chance alignment. From archival Very Large Array data, we also detect spatially extended, steep-spectrum radio emission at the location of the ULX-1 bubble (consistent with its jet origin), but no radio counterpart for ULX-2 (consistent with the lack of shock-ionized gas around that source).

  6. Detailed Quantitative Classifications of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  7. GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxymore » number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological

  8. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1993-01-01

    Far-infrared spectroscopy of celestial objects will improve dramatically in the coming decade, allowing astronomers to use fine-structure line emission to probe photoionized regions obscured in the optical band by thick clouds of dust. The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H(beta) in luminosity. This paper shows how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of (Ne V) emission in particular will distinguish shrouded AGN's from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  9. Spiral Arm Morphology of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Lee, Hyun-Rok

    2013-06-01

    We analyze the spiral structure of 1725 nearby spiral galaxies with redshift less than 0.02. We use the color images provided by the Sloan Digital Sky Survey. We determine the arm classes (grand design, multiple-arm, flocculent) and the broad Hubble types (early, intermediate, late) as well as the bar types (SA, SAB, SB) by visual inspection. We find that flocculent galaxies are mostly of late Hubble type while multiple-arm galaxies are likely to be of early Hubble type. The fractional distribution of grand design galaxies is nearly constant along the Hubble type. The dependence of arm class on bar type is not as strong as that of the Hubble type. However, there is about a three times larger fraction of grand design spirals in SB galaxies than in SA galaxies, with nearly constant fractions of multiple-arm galaxies. However, if we consider the Hubble type and bar type together, grand design spirals are more frequent in early types than in late types for SA and SAB galaxies, while they are almost constant along the Hubble type for SB galaxies. There are clear correlations between spiral structures and the local background density: strongly barred, early-type, grand design spirals favor high-density regions, while non-barred, late-type, flocculent galaxies are likely to be found in low-density regions.

  10. Galaxy Evolution Across The Redshift Desert

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2010-01-01

    GALEV evolutionary synthesis models are an ideal tool to study the formation and evolution of galaxies. I present a large model grid that contains undisturbed E and Sa-Sd type galaxies as well as a wide range of models undergoing starbursts of various strengths and at different times and also includes the subsequent post-starburst phases for these galaxies. This model grid not only allows to describe and refine currently used color selection criteria for Lyman Break Galaxies, BzK galaxies, Extremely Red Objects (ERO) and both Distant and Luminous Red Galaxies (DRG, LRG). It also gives accurate stellar masses, gas fractions, star formation rates, metallicities and burst strengths for an unprecedentedly large sample of galaxies with multi-band photometry. We find, amongst other things, that LBGs are most likely progenitors of local early type spiral galaxies and low-mass ellipticals. We are for the first time able to reproduce E+A features in EROs by post-starbursts as an alternative to dusty starforming galaxies and predict how to discriminate between these scenarios. Our results from photometric analyses perfectly agree with all available spectroscopic information and open up a much wider perspective, including the bulk of the less luminous and more typical galaxy population, in the redshift desert and beyond. All model data are available online at http://www.galev.org.

  11. Galaxy And Mass Assembly (GAMA): testing galaxy formation models through the most massive galaxies in the Universe

    NASA Astrophysics Data System (ADS)

    Oliva-Altamirano, P.; Brough, S.; Lidman, C.; Couch, W. J.; Hopkins, A. M.; Colless, M.; Taylor, E.; Robotham, A. S. G.; Gunawardhana, M. L. P.; Ponman, T.; Baldry, I.; Bauer, A. E.; Bland-Hawthorn, J.; Cluver, M.; Cameron, E.; Conselice, C. J.; Driver, S.; Edge, A. C.; Graham, A. W.; van Kampen, E.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Loveday, J.; Mahajan, S.; Peacock, J.; Phillipps, S.; Pimbblet, K. A.; Sharp, R. G.

    2014-05-01

    We have analysed the growth of Brightest Group Galaxies and Brightest Cluster Galaxies (BGGs/BCGs) over the last 3 billion years using a large sample of 883 galaxies from the Galaxy And Mass Assembly survey. By comparing the stellar mass of BGGs and BCGs in groups and clusters of similar dynamical masses, we find no significant growth between redshift z = 0.27 and 0.09. We also examine the number of BGGs/BCGs that have line emission, finding that approximately 65 per cent of BGGs/BCGs show Hα in emission. From the galaxies where the necessary spectroscopic lines were accurately recovered (54 per cent of the sample), we find that half of this (i.e. 27 per cent of the sample) harbour ongoing star formation with rates up to 10 M⊙ yr-1, and the other half (i.e. 27 per cent of the sample) have an active nucleus (AGN) at the centre. BGGs are more likely to have ongoing star formation, while BCGs show a higher fraction of AGN activity. By examining the position of the BGGs/BCGs with respect to their host dark matter halo, we find that around 13 per cent of them do not lie at the centre of the dark matter halo. This could be an indicator of recent cluster-cluster mergers. We conclude that BGGs and BCGs acquired their stellar mass rapidly at higher redshifts as predicted by semi-analytic models, mildly slowing down at low redshifts.

  12. Galaxy And Mass Assembly (GAMA): The mechanisms for quiescent galaxy formation at z < 1

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Wild, V.; Bourne, N.; Bremer, M.; Brough, S.; Driver, S. P.; Hopkins, A. M.; Owers, M. S.; Phillipps, S.; Pimbblet, K.; Sansom, A. E.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Taylor, E. N.

    2018-01-01

    One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies. We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8 Gyr, the quiescent population has grown more slowly in number density at high masses ({M}_\\ast >10^{11}{M_{⊙}) than at intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times. At intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ∼ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z < 1. However, at high masses ({M}_\\ast >10^{11}{M_{⊙}), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation.

  13. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    NASA Astrophysics Data System (ADS)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  14. Census of the Local Universe (CLU) Hα Galaxy Survey: Characterization of Galaxy Catalogs from Preliminary Fields

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Kasliwal, Mansi; Van Sistine, Anglea; Kaplan, David; iPTF

    2018-01-01

    In this talk I introduce the Census of the Local Universe (CLU) galaxy survey. The survey uses 4 wavelength-adjacent, narrowband filters to search for emission-line (Hα) sources across ~3π (26,470 deg2) of the sky and out to distance of 200 Mpc. I will present an analysis of galaxy candidates in 14 preliminary fields (out of 3626) to assess the limits of the survey and the potential for finding new galaxies in the local Universe. We anticipate finding tens-of-thousands of new galaxies in the full ~3π survey. In addition, I present some interesting galaxies found in these fields, which include: newly discovered blue compact dwarfs (e.g., blueberries), 1 new green pea, 1 new QSO, and a known planetary nebula. The majority of the CLU galaxies show properties similar to normal star-forming galaxies; however, the newly discovered blueberries tend to have high star formation rates for their given stellar mass.

  15. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    NASA Astrophysics Data System (ADS)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  16. The missing mass in clusters of galaxies and elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F.

    1991-01-01

    We review the available data for the existence of dark matter in clusters of galaxies and elliptical galaxies. While the amount of dark matter in clusters is not well determined, both the X-ray and optical data show that more than 50 percent of the total mass must be dark. There is in general fair agreement in the binding mass estimates between the X-ray and optical techniques, but there is not detailed agreement on the form of the potential or the distribution of dark matter. The X-ray spectral and spatial observations of elliptical galaxies demonstrate that dark matter is also required in these objects and that it must be considerably more extended than the stellar distribution.

  17. Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Graves, Genevieve J.

    Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies

  18. LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2

    NASA Astrophysics Data System (ADS)

    Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.

    2018-01-01

    We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive ( = 1015 M⊙) clusters at 0.15 < z < 0.3. Highly complete spectroscopic coverage combined with 24 μm imaging from Spitzer allows us to make a consistent and robust selection of cluster and group members including star-forming galaxies down to a stellar mass limit of M⋆ = 2 × 1010 M⊙. The fraction fSF of star-forming galaxies in infalling groups is lower and with a flatter trend with respect to clustercentric radius when compared to the rest of the cluster galaxy population. At R ≈ 1.3 r200, the fraction of star-forming galaxies in infalling groups is half that in the cluster galaxy population. This is direct evidence that star-formation quenching is effective in galaxies already prior to them settling in the cluster potential, and that groups are favourable locations for this process.

  19. Galaxy evolution in protoclusters

    NASA Astrophysics Data System (ADS)

    Muldrew, Stuart I.; Hatch, Nina A.; Cooke, Elizabeth A.

    2018-01-01

    We investigate galaxy evolution in protoclusters using a semi-analytic model applied to the Millennium Simulation, scaled to a Planck cosmology. We show that the model reproduces the observed behaviour of the star formation history (SFH) both in protoclusters and the field. The rate of star formation peaks ∼0.7 Gyr earlier in protoclusters than in the field and declines more rapidly afterwards. This results in protocluster galaxies forming significantly earlier: 80 per cent of their stellar mass is already formed by z = 1.4, but only 45 per cent of the field stellar mass has formed by this time. The model predicts that field and protocluster galaxies have similar average specific star-formation rates (sSFR) at z > 3, and we find evidence of an enhancement of star formation in the dense protoclusters at early times. At z < 3, protoclusters have lower sSFRs, resulting in the disparity between the SFHs. We show that the stellar mass functions of protoclusters are top-heavy compared with the field due to the early formation of massive galaxies, and the disruption and merging of low-mass satellite galaxies in the main haloes. The fundamental cause of the different SFHs and mass functions is that dark matter haloes are biased tracers of the dark matter density field: the high density of haloes and the top-heavy halo mass function in protoclusters result in the early formation then rapid merging and quenching of galaxies. We compare our results with observations from the literature and highlight which observables provide the most informative tests of galaxy formation.

  20. Carbon monoxide emission from small galaxies

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Bally, John

    1987-01-01

    A search was conducted for J = 1 yields 0 CO emission from 22 galaxies, detecting half, as part of a survey to study star formation in small to medium size galaxies. Although substantial variation was found in the star formation efficiencies of the sample galaxies, there is no apparent systematic trend with galaxy size.

  1. Resolving Gas-Phase Metallicity In Galaxies

    NASA Astrophysics Data System (ADS)

    Carton, David

    2017-06-01

    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  2. Shocked POststarbust Galaxy Survey. I. Candidate Post-starbust Galaxies with Emission Line Ratios Consistent with Shocks

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Cales, Sabrina L.; Rich, Jeffrey A.; Appleton, Philip N.; Kewley, Lisa J.; Lacy, Mark; Lanz, Lauranne; Medling, Anne M.; Nyland, Kristina

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na I D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  3. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  4. Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based on Image Retrieval Approach.

    PubMed

    Abd El Aziz, Mohamed; Selim, I M; Xiong, Shengwu

    2017-06-30

    This paper presents a new approach for the automatic detection of galaxy morphology from datasets based on an image-retrieval approach. Currently, there are several classification methods proposed to detect galaxy types within an image. However, in some situations, the aim is not only to determine the type of galaxy within the queried image, but also to determine the most similar images for query image. Therefore, this paper proposes an image-retrieval method to detect the type of galaxies within an image and return with the most similar image. The proposed method consists of two stages, in the first stage, a set of features is extracted based on shape, color and texture descriptors, then a binary sine cosine algorithm selects the most relevant features. In the second stage, the similarity between the features of the queried galaxy image and the features of other galaxy images is computed. Our experiments were performed using the EFIGI catalogue, which contains about 5000 galaxies images with different types (edge-on spiral, spiral, elliptical and irregular). We demonstrate that our proposed approach has better performance compared with the particle swarm optimization (PSO) and genetic algorithm (GA) methods.

  5. NCBI BLAST+ integrated into Galaxy.

    PubMed

    Cock, Peter J A; Chilton, John M; Grüning, Björn; Johnson, James E; Soranzo, Nicola

    2015-01-01

    The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a natural step for sequence comparison workflows. The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate datatypes were defined as needed. The integration of the BLAST+ tool suite into Galaxy has the goal of making common BLAST tasks easy and advanced tasks possible. This project is an informal international collaborative effort, and is deployed and used on Galaxy servers worldwide. Several examples of applications are described here.

  6. A classification of the galaxy groups

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.

    1990-01-01

    A statistical criterion has been proposed to reveal the random and physical clusterings among stars, galaxies and other objects. This criterion has been applied to the galaxy triples of the list by Karachentseva, Karaschentsev and Scherbanovsky, and the double galaxies of the list by Dahari where the primary components are the Seyfert galaxies. The confident physical, probable physical, probable optical and confident optical groups have been identified. The limit difference of radial velocities of components for the confident physical multiple galaxies has also been estimated.

  7. The Least Luminous Galaxies in the Universe

    NASA Astrophysics Data System (ADS)

    Willman, Beth

    2011-05-01

    In the past six years, more than two dozen dwarf galaxies have been discovered around the Milky Way and M31. Many of these discoveries are 100 times less luminous than any galaxy previously known, and a million times less luminous than the Milky Way itself. These discoveries have made astronomers question the very meaning of the word "galaxy", and hint that such ultra-faint dwarf galaxies may be the most numerous type of galaxy in the universe. This talk will highlight i. how we can see galaxies that are effectively invisible in images of the sky, ii. the brewing controversy over the definition of the term "galaxy", and iii. what ultra-faint galaxies can reveal about the distribution of dark matter in our Universe.

  8. An Introduction to Galaxies and Cosmology

    NASA Astrophysics Data System (ADS)

    Jones, Mark H.; Lambourne, Robert J. A.; Serjeant, Stephen

    2015-01-01

    Introduction; 1. The Milky Way - our galaxy; 2. Normal galaxies; 3. Active galaxies; 4. The spatial distribution of galaxies; 5. Introducing cosmology - the science of the Universe; 6. Big bang cosmology - the evolving Universe; 7. Observational cosmology - measuring the Universe; 8. Questioning cosmology - outstanding problems about the Universe; Answers and comments; Appendix; Glossary; Further reading; Acknowledgements; Figure references; Index.

  9. Seeing Baby Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version

    The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way.

    The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light.

    The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light.

    Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve.

    The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The

  10. A MINUET OF GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  11. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  12. LEDA 074886: A Remarkable Rectangular-looking Galaxy

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Moore, Ben; Janz, Joachim

    2012-05-01

    We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of -17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e, disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot/σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this "emerald cut galaxy" having very boxy isophotes with a 4/a = -0.05 to -0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both "wet" and "dry" galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.

  13. Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning

    NASA Astrophysics Data System (ADS)

    Sreejith, Sreevarsha; Pereverzyev, Sergiy, Jr.; Kelvin, Lee S.; Marleau, Francine R.; Haltmeier, Markus; Ebner, Judith; Bland-Hawthorn, Joss; Driver, Simon P.; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Moffett, Amanda J.; Pimbblet, Kevin A.; Taylor, Edward N.; Wang, Lingyu; Wright, Angus H.

    2018-03-01

    We apply four statistical learning methods to a sample of 7941 galaxies (z < 0.06) from the Galaxy And Mass Assembly survey to test the feasibility of using automated algorithms to classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ˜ 9 per cent of ellipticals, ˜ 9 per cent of little blue spheroids, ˜ 14 per cent of early-type spirals, ˜ 21 per cent of intermediate-type spirals, and ˜ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are : E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.

  14. Cinematica del gas ionizado y perfiles de luminosidad de las Galaxias Porotos Verdes

    NASA Astrophysics Data System (ADS)

    Diaz, R. J.; Aguero, M.; Schirmer, M.; Holheim, K.; Levenson, N.; Winge, C.

    We present preliminary spectroscopic results of a sample of green bean galaxies (GBG); known to show ultra-luminous; galaxy-wide; narrow-line regions. We analyze Gemini GMOS-S;N spectra of a sample of 12 GBG in order to obtain emission line ratios; gas kinematics and luminosity profiles in some continuous bands. We report here new results that confirm that the 5008 emission extends from 5 to 17 kpc; in all cases scales similar or larger than the stellar continuums at the spectra. In the extreme case of J145533.6+044643 the emission reaches a diameter of 17.51.6kpc. We find that the continuum half light radii extend from 3 to 7 kpc; the largest scale radius at shortest wavelengths; which is consistent with the scale lengths of large spiral galaxies or merging systems. Another new result is that the spatial variation of the continuum color profiles indicate the presence of extinction and possibly star formation. FULL TEXT IN SPANISH

  15. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  16. A detection of wobbling brightest cluster galaxies within massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harvey, David; Courbin, F.; Kneib, J. P.; McCarthy, Ian G.

    2017-12-01

    A striking signal of dark matter beyond the standard model is the existence of cores in the centre of galaxy clusters. Recent simulations predict that a brightest cluster galaxy (BCG) inside a cored galaxy cluster will exhibit residual wobbling due to previous major mergers, long after the relaxation of the overall cluster. This phenomenon is absent with standard cold dark matter where a cuspy density profile keeps a BCG tightly bound at the centre. We test this hypothesis using cosmological simulations and deep observations of 10 galaxy clusters acting as strong gravitational lenses. Modelling the BCG wobble as a simple harmonic oscillator, we measure the wobble amplitude, Aw, in the BAHAMAS suite of cosmological hydrodynamical simulations, finding an upper limit for the cold dark matter paradigm of Aw < 2 kpc at the 95 per cent confidence limit. We carry out the same test on the data finding a non-zero amplitude of A_w=11.82^{+7.3}_{-3.0} kpc, with the observations dis-favouring Aw = 0 at the 3σ confidence level. This detection of BCG wobbling is evidence for a dark matter core at the heart of galaxy clusters. It also shows that strong lensing models of clusters cannot assume that the BCG is exactly coincident with the large-scale halo. While our small sample of galaxy clusters already indicates a non-zero Aw, with larger surveys, e.g. Euclid, we will be able to not only confirm the effect but also to use it to determine whether or not the wobbling finds its origin in new fundamental physics or astrophysical process.

  17. The Evolution of Galaxies Through the Spatial Distribution of Their Globular Clusters: the Brightest Galaxies in Fornax

    NASA Astrophysics Data System (ADS)

    Zegeye, David W.

    2018-01-01

    We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  18. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  19. New Members in the Galaxy Group Around Giant Radio Galaxy DA 240

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Rong; Peng, Bo; Strom, Richard

    2018-05-01

    With new spectroscopic observations of group candidates around the giant radio galaxy DA 240, we have identified five new group members, increasing the number to twenty-five. While all the new members are located some distance from the host galaxy, two of them lie in one of the radio lobes, and the rest are found at a distance from the radio components. The new group members reinforce our earlier conclusion that the distribution of the DA 240 group with respect to the radio lobes is unusual among giant radio galaxy host environments.

  20. Hubble Spotlight on Irregular Galaxy

    NASA Image and Video Library

    2017-12-08

    This delicate blue group of stars — actually an irregular galaxy named IC 3583 — sits some 30 million light-years away in the constellation of Virgo (The Virgin). It may seem to have no discernable structure, but IC 3583 has been found to have a bar of stars running through its center. These structures are common throughout the Universe, and are found within the majority of spiral, many irregular, and some lenticular galaxies. Two of our closest cosmic neighbors, the Large and Small Magellanic Clouds, are barred, indicating that they may have once been barred spiral galaxies that were disrupted or torn apart by the gravitational pull of the Milky Way. Researchers at the University of Leicester, England note there are two types of irregular galaxy. Type I's are usually single galaxies of peculiar appearance. They contain a large fraction of young stars, and show the luminous nebulae that are also visible in spiral galaxies. Type II irregulars include the group known as interacting or disrupting galaxies, in which the strange appearance is due to two or more galaxies colliding, merging or otherwise interacting gravitationally. Something similar might be happening with IC 3583. This small galaxy is thought to be gravitationally interacting with one of its neighbors, the spiral Messier 90. Together, the duo form a pairing known as Arp 76. It’s still unclear whether these flirtations are the cause of IC 3583’s irregular appearance — but whatever the cause, the galaxy makes for a strikingly delicate sight in this NASA/ESA Hubble Space Telescope image, glimmering in the blackness of space. Image Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on