Sample records for ultramafic-hosted logatchev hydrothermal

  1. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit

    NASA Astrophysics Data System (ADS)

    Fouquet, Yves; Cambon, Pierre; Etoubleau, Joël; Charlou, Jean Luc; Ondréas, Hélène; Barriga, Fernando J. A. S.; Cherkashov, Georgy; Semkova, Tatiana; Poroshina, Irina; Bohn, M.; Donval, Jean Pierre; Henry, Katell; Murphy, Pamela; Rouxel, Olivier

    Several hydrothermal deposits associated with ultramafic rocks have recently been found along slow spreading ridges with a low magmatic budget. Three preferential settings are identified: (1) rift valley walls near the amagmatic ends of ridge segments; (2) nontransform offsets; and (3) ultramafic domes at inside corners of ridge transform-fault intersections. The exposed mantle at these sites is often interpreted to be a detachment fault. Hydrothermal cells in ultramafic rocks may be driven by regional heat flow, cooling gabbroic intrusions, and exothermic heat produced during serpentinization. Along the Mid-Atlantic Ridge (MAR), hydrothermal deposits in ultramafic rocks include the following: (1) sulfide mounds related to high-temperature low-pH fluids (Logatchev, Rainbow, and Ashadze); (2) carbonate chimneys related to low-temperature, high-pH fluids (Lost City); (3) low-temperature diffuse venting and high-methane discharge associated with silica, minor sulfides, manganese oxides, and pervasive alteration (Saldanha); and (4) stockwork quartz veins with sulfides at the base of detachment faults (15°05'N). These settings are closely linked to preferential circulation of fluid along permeable detachment faults. Compared to mineralization in basaltic environments, sulfide deposits associated with ultramafic rocks are enriched in Cu, Zn, Co, Au, and Ni. Gold has a bimodal distribution in low-temperature Zn-rich and in high-temperature Cu-rich mineral assemblages. The Cu-Zn-Co-Au deposits along the MAR seem to be more abundant than in ophiolites on land. This may be because ultramafic-hosted volcanogenic massive sulfide deposits on slow spreading ridges are usually not accreted to continental margins during obduction and may constitute a specific marine type of mineralization.

  2. Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, 30°N, MAR)

    NASA Astrophysics Data System (ADS)

    Szitkar, Florent; Tivey, Maurice A.; Kelley, Deborah S.; Karson, Jeffrey A.; Früh-Green, Gretchen L.; Denny, Alden R.

    2017-03-01

    A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABE over the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25 yrs of magnetic exploration of a wide range of hydrothermal sites, from low- to high-temperature and from basalt- to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.

  3. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    PubMed

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  4. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  5. The magnetic signature of ultramafic-hosted hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    Szitkar, F.; Dyment, J.; Honsho, C.; Horen, H.; Fouquet, Y.

    2013-12-01

    While the magnetic response of basalt-hosted hydrothermal sites is well known, that of ultramafic-hosted hydrothermal sites (UMHS) remains poorly documented. Here we present the magnetic signature of three of the six UMHS investigated to date on the Mid-Atlantic Ridge, i.e. sites Rainbow, Ashadze (1 and 2), and Logachev. Two magnetic signatures are observed. Sites Rainbow and Ashadze 1 are both characterized by a positive reduced-to-the-pole magnetic anomaly, i.e. a positive magnetization contrast. Conversely, sites Ashadze 2 and Logachev do not exhibit any clear magnetic signature. Rock-magnetic measurements on samples from site Rainbow reveal a strong magnetization (~30 A/m adding induced and remanent contributions) borne by sulfide-impregnated serpentinites; the magnetic carrier being magnetite. This observation can be explained by three (non exclusive) processes: (1) higher temperature serpentinization at the site resulting in the formation of more abundant / more strongly magnetized magnetite; (2) the reducing hydrothermal fluid protecting magnetite at the site from the oxidation which otherwise affects magnetite in contact with seawater; and (3) the formation of primary (hydrothermal) magnetite. We apply a new inversion method developed by Honsho et al. (2012) to the high-resolution magnetic anomalies acquired 10 m above seafloor at sites Rainbow and Ashadze 1. This method uses the Akaike Bayesian Information Criterion (ABIC) and takes full advantage of the near-seafloor measurements, avoiding the upward-continuation (i.e. loss of resolution) of other inversion schemes. This inversion reveals a difference in the intensity of equivalent magnetization obtained assuming a 100 m thick magnetic layer, ~30 A/m at site Rainbow and only 8A/m at site Ashadze, suggesting a thinner or less magnetized source for the latter. Hydrothermal sites at Ashadze 2 and Logachev are much smaller (of the order of 10 m) than the previous ones (several 100 m). These sites, known as

  6. The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge

    PubMed Central

    Charlou, J.L.; Holm, N.G.; Mousis, O.

    2015-01-01

    Abstract Both hydrogen and methane are consistently discharged in large quantities in hydrothermal fluids issued from ultramafic-hosted hydrothermal fields discovered along the Mid-Atlantic Ridge. Considering the vast number of these fields discovered or inferred, hydrothermal fluxes represent a significant input of H2 and CH4 to the ocean. Although there are lines of evidence of their abiogenic formation from stable C and H isotope results, laboratory experiments, and thermodynamic data, neither their origin nor the reaction pathways generating these gases have been fully constrained yet. Organic compounds detected in the fluids may also be derived from abiotic reactions. Although thermodynamics are favorable and extensive experimental work has been done on Fischer-Tropsch-type reactions, for instance, nothing is clear yet about their origin and formation mechanism from actual data. Since chemolithotrophic microbial communities commonly colonize hydrothermal vents, biogenic and thermogenic processes are likely to contribute to the production of H2, CH4, and other organic compounds. There seems to be a consensus toward a mixed origin (both sources and processes) that is consistent with the ambiguous nature of the isotopic data. But the question that remains is, to what proportions? More systematic experiments as well as integrated geochemical approaches are needed to disentangle hydrothermal geochemistry. This understanding is of prime importance considering the implications of hydrothermal H2, CH4, and organic compounds for the ocean global budget, global cycles, and the origin of life. Key Words: Hydrogen—Methane—Organics—MAR—Abiotic synthesis—Serpentinization—Ultramafic-hosted hydrothermal vents. Astrobiology 15, 381–399. PMID:25984920

  7. Seismic Reflection Imaging of the Heat Source of an Ultramafic-Hosted Hydrothermal System (Rainbow, Mid-Atlantic Ridge 36° 10-17'N)

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Dunn, R. A.; Sohn, R. A.; Horning, G.; Arai, R.; Paulatto, M.

    2015-12-01

    Most of our understanding of hydrothermal systems and the nature of their heat sources comes from models and observations at fast and intermediate spreading ridges. In these settings, hydrothermal systems are mainly located within the axial zone of a spreading segment, hosted in basaltic rock, and primarily driven by heat extracted from crystallization of crustal melt sills. In contrast, hydrothermal systems at slow-spreading ridges like the Mid-Atlantic Ridge (MAR) show a great variety of venting styles and host-rock lithology, and are located in diverse tectonic settings like axial volcanic ridges, non-transform discontinuities (NTDs), the foot of ridge valley walls, and off-axis inside corner highs. Among MAR systems, the Rainbow hydrothermal field (RHF) stands out as an end-member of this diversity: an ultramafic-hosted system emitting H2 and CH4-rich fluids at high temperatures and high flow rates, which suggests a magmatic heat source despite the lack of evidence for recent volcanism and its location within an NTD with presumably low magma budget. We present 2D multichannel seismic reflection images across the Rainbow massif from the NSF-funded MARINER multidisciplinary geophysical study that reveal, for the first time, the magmatic system driving hydrothermal circulation in an ultramafic setting. Data were acquired in 2013 onboard the RV M. Langseth with an 8-km-long hydrophone streamer. The images have been obtained from pre-stack depth migrations using a regional 3D P-wave velocity model from a coincident controlled-source seismic tomography experiment using ocean bottom seismometers. Our images show a complex magmatic system centered beneath the RHF occupying an areal extent of ~3.7x6 km2, with partially molten sills ranging in depth between ~3.4 km and ~6.9 km below the seafloor. Our data also image high-amplitude dipping reflections within the massif coincident with strong lateral velocity gradients that may arise from detachment fault planes

  8. Ultramafic-Hosted Talc-Magnesite Deposits

    USGS Publications Warehouse

    Robinson, Gilpin R.; Van Gosen, Bradley S.; Foley, Nora K.

    2006-01-01

    This presentation on the geology of ultramafic-hosted talc-magnesite deposits was given at the 42nd Forum on the Geology of Industrial Minerals, May 7-13, 2006, in Asheville, North Carolina (USA). Talc is a soft inert industrial mineral commodity commonly used as a component or filler in ceramic, paint, paper, plastic, roofing, and electrical applications. Ultramafic-hosted talc-magnesite deposits are important sources of talc.

  9. Contrasted hydrothermal activity along the South-East Indian Ridge (130°E-140°E): From crustal to ultramafic circulation

    NASA Astrophysics Data System (ADS)

    Boulart, Cédric; Briais, Anne; Chavagnac, Valérie; Révillon, Sidonie; Ceuleneer, Georges; Donval, Jean-Pierre; Guyader, Vivien; Barrere, Fabienne; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès.; Merkuryev, Sergey; Park, Sung-Hyun; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok

    2017-07-01

    Using a combined approach of seafloor mapping, MAPR and CTD survey, we report evidence for active hydrothermal venting along the 130°-140°E section of the poorly-known South-East Indian Ridge (SEIR) from the Australia-Antarctic Discordance (AAD) to the George V Fracture Zone (FZ). Along the latter, we report Eh and CH4 anomalies in the water column above a serpentinite massif, which unambiguously testify for ultramafic-related fluid flow. This is the first time that such circulation is observed on an intermediate-spreading ridge. The ridge axis itself is characterized by numerous off-axis volcanoes, suggesting a high magma supply. The water column survey indicates the presence of at least ten distinct hydrothermal plumes along the axis. The CH4:Mn ratios of the plumes vary from 0.37 to 0.65 denoting different underlying processes, from typical basalt-hosted to ultramafic-hosted high-temperature hydrothermal circulation. Our data suggest that the change of mantle temperature along the SEIR not only regulates the magma supply, but also the hydrothermal activity. The distribution of hydrothermal plumes from a ridge segment to another implies secondary controls such as the presence of fractures and faults along the axis or in the axial discontinuities. We conclude from these results that hydrothermal activity along the SEIR is controlled by magmatic processes at the regional scale and by the tectonics at the segment scale, which influences the type of hydrothermal circulation and leads to various chemical compositions. Such variety may impact global biogeochemical cycles, especially in the Southern Ocean where hydrothermal venting might be the only source of nutrients.

  10. Atacamite and paratacamite from the ultramafic-hosted Logatchev seafloor vent field (14°45′N, Mid-Atlantic Ridge)

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Petersen, Sven; Billstrom, Kjell; Stummeyer, Jens; Kamenov, G.; Shanks, W.

    2011-01-01

    Atacamite and paratacamite are ubiquitous minerals associated with Cu-rich massive sulfides at the Logatchev hydrothermal field (Mid-Atlantic Ridge). In this work we provide new details on the mineralogy and geochemistry of these basic cupric chlorides. Our data support the notion that atacamite and paratacamite formation at submarine vent fields is an alteration process of hydrothermal Cu-sulfides. Secondary Cu-sulfides (bornite, covellite) are unstable at ambient seawater conditions and will dissolve. Dissolution is focused at the sulfide–seawater contact, leading to release of Fe2+ and Cu+ and formation of residual chalcocite through an intermediate Cu5S4 phase. Most of the released Fe2+ oxidizes immediately and precipitates as FeOOH directly on the chalcocite rims whereas Cu as chloride complexes (CuCl2−, CuCl32-) remains in solution at the same Eh. Cuprous–chloride complexes migrate from the reaction zone and upon increasing Eh precipitate as Cu2Cl(OH)3. As a consequence of this, the sulfide–seawater reaction interface is clearly marked by thin chalcocite–FeOOH bands and the entire assemblage is mantled by atacamite (or paratacamite). Our mineralogical, petrographic, geochemical and isotopic studies suggest that there are two types of atacamite (and/or paratacamite) depending on their mode of precipitation. Type 1 atacamite precipitated directly on the parent sulfides as evidenced by mantling of the sulfides, absence of detrital mineral grains, a preserved conspicuous positive Eu anomaly and a negligible negative Ce anomaly similar to those of the parent sulfide. In addition, Au concentrations are slightly lower than those of the parent sulfides, which suggest minimal transport of Au-ions after their release from the sulfides. Furthermore, the low content of the rare earth elements implies short contact time with the ambient seawater. The Sr–Nd–Pb-isotopic signatures of type 1 atacamite confirm the genetic association with the parent sulfides and

  11. Structure of hydrothermal plumes at the Logatchev vent field, 14°45‧N, Mid-Atlantic Ridge: evidence from geochemical and geophysical data

    NASA Astrophysics Data System (ADS)

    Sudarikov, S. M.; Roumiantsev, A. B.

    2000-09-01

    In the Seventh cruise of R/V ;Professor Logatchev; anomalies of natural electric field (EF), Eh and pS were discovered using a towed instrument package (RIFT) at 14°45‧N on the MAR (Logatchev hydrothermal field). The anomalous zone (AZ) is situated close (10-35 m) to two low-temperature venting areas of degrading sulphides and a black smoker (Irina-Microsmoke) forming a distinct buoyant plume. Over or close to the main area of high-temperature venting situated to the south-east from the AZ, no EF or Eh anomalies were observed. According to the results of Mir dives the highly mineralised solutions from smoking craters at the main mound mostly form non-buoyant plumes (reverse-plumes). The buoyant plume structure shows the differentiation of the electrical and Eh fields within the plume. Maxima of the EF, Eh and EH2S anomalies were revealed in the lower part (∼15 m) of the plume. The negative redox potential plume coupled with a sulphide anomaly is more localized in comparison with the EF. This observation indicates a distinct change in the composition of buoyant plume water, which may be due to the formation and fallout of early formed Fe sulphide particles soon after venting.

  12. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  13. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Wohlgemuth-Ueberwasser, Cora C.; Viljoen, Fanus; Petersen, Sven; Vorster, Clarisa

    2015-06-01

    The key for understanding the trace metal inventory of currently explored VHMS deposits lies in the understanding of trace element distribution during the formation of these deposits on the seafloor. Recrystallization processes already occurring at the seafloor might liberate trace elements to later hydrothermal alteration and removement. To investigate the distribution and redistribution of trace elements we analyzed sulfide minerals from 27 black smoker samples derived from three different seafloor hydrothermal fields: the ultramafic-hosted Logatchev hydrothermal field on the Mid-Atlantic Ridge, the basaltic-hosted Turtle Pits field on the mid-atlantic ridge, and the felsic-hosted PACMANUS field in the Manus basin (Papua New Guinea). The sulfide samples were analyzed by mineral liberation analyser for the modal abundances of sulfide minerals, by electron microprobe for major elements and by laser ablation-inductively coupled plasma-mass spectrometry for As, Sb, Se, Te, and Au. The samples consist predominantly of chalcopyrite, sphalerite, pyrite, galena and minor isocubanite as well as inclusions of tetrahedrite-tennantite. Laser ablation spectra were used to evaluate the solubility limits of trace elements in different sulfide minerals at different textures. The solubility of As, Sb, and Au in pyrite decreases with increasing degree of recrystallization. When solubility limits are reached these elements occur as inclusions in the different sulfide phases or they are expelled from the mineral phase. Most ancient VHMS deposits represent felsic or bimodal felsic compositions. Samples from the felsic-hosted PACMANUS hydrothermal field at the Pual ridge (Papua New Guinea) show high concentrations of Pb, As, Sb, Bi, Hg, and Te, which is likely the result of an additional trace element contribution derived from magmatic volatiles. Co-precipitating pyrite and chalcopyrite are characterized by equal contents of Te, while chalcopyrite that replaced pyrite (presumably

  14. Origin of Magnetic High at Basalt-Ultramafic Hosted Hydrothermal Vent Field in the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Sato, T.; Sato, H.; Nakamura, K.

    2014-12-01

    Hydrothermal alteration processes can change crustal magnetization by destruction and creation of magnetic minerals. In the Yokoniwa hydrothermal vent field (YHVF), located at the NTO-massif in the Central Indian Ridge, a high magnetization zone (with ~12 A/m in ~200 m-scale) was discovered by previous deepsea AUV survey. Basalts and ultramafic rocks were found around the YHVF, however the origin of magnetic high and its relationship with hydrothermal activity are remains to be investigated. Therefore, we conducted additional magnetic field measurement, rock sampling, and geological observation using submersible Shinkai 6500 during the YK09-13 and YK13-03 cruises. Vector geomagnetic field were obtained along the dive tracks at an altitude of ~ 10 m. The crustal absolute magnetization is estimated using the 2D and 3D forward modeling technique. The values of magnetization show ~10 A/m just around the YHVF. This value is consistent with that of equivalent magnetization deduced from AUV data. Rock magnetic characters were measured for 8 basalts, 4 dolerites, 5 sulfides, and 30 serpentinized peridotites (SPs). The measurements of NRM, magnetic susceptibility, magnetic hysteresis, low (6-300K) and high (50-700°C) temperature magnetization curves were performed. The estimated magnetization values are 0.1-6 A/m in basalts, 0.2-0.6 A/m in dolerites, and <0.1 A/m in sulfides. The SPs show strong magnetization of 0.4-11 A/m. The magnetic grain sizes ranges over single domain to pseudo-single domain. The temperature-magnetization curves clearly show the Verway transition and Currie temperature of 580 °C, therefore magnetic carrier of SPs is supposed as pure magnetite, which is created during serpentinization process. Serpentinization degree (Sd) was also estimated by grain density measurement based on empirical formula from Oufi et al., 2002. Amount of magnetite was also estimated from saturation magnetization. The results show that the values of Sd vary in a range from 17

  15. Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209

    NASA Astrophysics Data System (ADS)

    Harvey, Jason; Savov, Ivan P.; Agostini, Samuele; Cliff, Robert A.; Walshaw, Richard

    2014-02-01

    Ultramafic rocks recovered from Hole 1268a, Ocean Drilling Program Leg 209, to the south of the 15°20‧N Fracture Zone on the Mid-Atlantic ridge have experienced a complex history of melt depletion and subsequent interaction with a series of fluids under varying temperature and pH conditions. After intense melt depletion, varying degrees of serpentinization at 100-200 °C took place, initially under seawater-like pH conditions. Subsequently, interaction with a higher temperature (300-350 °C) fluid with low (4-5) pH and low MgO/SiO2 resulted in the heterogeneous alteration of these serpentinites to talc-bearing ultramafic lithologies. The proximity of the currently active, high temperature Logatchev hydrothermal field, located on the opposite flank of the Mid-Atlantic ridge, suggests that unlike more distal localities sampled during ODP Leg 209, Hole 1268a has experienced Si-metasomatism (i.e. talc-alteration) by a Logatchev-like hydrothermal fluid. Serpentinite strontium isotope ratios were not materially shifted by interaction with the subsequent high-T fluid, despite the likelihood that this fluid had locally interacted with mid-ocean ridge gabbro. 87Sr/86Sr in the ultramafic lithologies of Hole 1268a are close to that of seawater (c.0.709) and even acid leached serpentinites retain 87Sr/86Sr in excess of 0.707, indistinguishable from Logatchev hydrothermal fluid. On the other hand, boron isotope ratios appear to have been shifted from seawater-like values in the serpentinites (δ11B = c.+40‰) to much lighter values in talc-altered serpentinites (δ11B = +9 to +20‰). This is likely a consequence of the effects of changing ambient pH and temperature during the mineralogical transition from serpentine to talc. Heterogeneous boron isotope systematics have consequences for the composition of ultramafic portions of the lithosphere returned to the convecting mantle by subduction. Inhomogeneities in δ11B, [B] and mineralogy introduce significant uncertainties in

  16. Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Kring, David A.

    2013-09-01

    Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.

  17. Evolution of strength and physical properties of carbonate and ultramafic rocks under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Lisabeth, Harrison Paul

    Interaction of rocks with fluids can significantly change mineral assemblage and structure. This so-called hydrothermal alteration is ubiquitous in the Earth's crust. Though the behavior of hydrothermally altered rocks can have planet-scale consequences, such as facilitating oceanic spreading along slow ridge segments and recycling volatiles into the mantle at subduction zones, the mechanisms involved in the hydrothermal alteration are often microscopic. Fluid-rock interactions take place where the fluid and rock meet. Fluid distribution, flux rate and reactive surface area control the efficiency and extent of hydrothermal alteration. Fluid-rock interactions, such as dissolution, precipitation and fluid mediated fracture and frictional sliding lead to changes in porosity and pore structure that feed back into the hydraulic and mechanical behavior of the bulk rock. Examining the nature of this highly coupled system involves coordinating observations of the mineralogy and structure of naturally altered rocks and laboratory investigation of the fine scale mechanisms of transformation under controlled conditions. In this study, I focus on fluid-rock interactions involving two common lithologies, carbonates and ultramafics, in order to elucidate the coupling between mechanical, hydraulic and chemical processes in these rocks. I perform constant strain-rate triaxial deformation and constant-stress creep tests on several suites of samples while monitoring the evolution of sample strain, permeability and physical properties. Subsequent microstructures are analyzed using optical and scanning electron microscopy. This work yields laboratory-based constraints on the extent and mechanisms of water weakening in carbonates and carbonation reactions in ultramafic rocks. I find that inundation with pore fluid thereby reducing permeability. This effect is sensitive to pore fluid saturation with respect to calcium carbonate. Fluid inundation weakens dunites as well. The addition of

  18. Long-term tilt and acceleration data from the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter

    NASA Astrophysics Data System (ADS)

    Fabian, Marcus; Villinger, Heinrich

    2008-07-01

    Long-term seafloor deformations in the Logatchev Hydrothermal Vent Field (LHF) at the Mid-Atlantic Ridge are largely unexplored and unknown, even though the LHF has been the focus of international research for many years. As seafloor tilt and vertical acceleration provide key information about seafloor deformations, the Bremen Ocean Bottom Tiltmeter (OBT) was deployed in May 2005 at position 14°45'11.7″N, 44°58'47.0″W, 3035 m water depth in the LHF. The OBT recorded 384 days and was recovered in January 2007. Strong tilt steps and strong gradual tilt changes over less than a minute to days in the range of some 10 mrad and aligned mostly with the topography possibly indicate nearby mass movements like avalanches of bulk material due to local uplift or subsidence or may show tectonic activity. A vertically aligned high-resolution microelectromechanical systems (MEMS) accelerometer of type Servo K-Beam in the sensor package seems to be helpful to distinguish between tilt signals caused by a true rotation and fake tilt related to a transient translational motion of the OBT in a horizontal direction. Hodographs show elliptic motion patterns with about 1 mrad total tilt amplitude and distinct orientations of tilt toward hydrothermal vents. It is up to speculation whether the latter signals are related to hydrothermal fluid circulation. The amplitude spectra of these tilt signals and acceleration show discrete lines mostly between 0.1 and 50 mHz. The spectra show the periodic character of those signals and also proof that tides or bottom currents, which are known to show lower signal frequencies, or tremor, which generally has higher frequencies, are most likely not the reason. Compared with studies onshore and offshore, the LHF is most likely an area of strong and highly variable seafloor deformations.

  19. Longterm monitoring of pressure, tilt and temperature at Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Villinger, H. W.; Gennerich, H.-H.; Fabian, M.

    2009-04-01

    The geophysical parameters of pressure, tilt, acceleration and temperature at the Logatchev Hydrothermal Vent Field (LHF) which is located in 3050m water depth at about 15˚ N at the Mid-Atlantic Ridge, were monitored with high resolution for more than two and a half years, from May 2005 until December 2007. An autonomously operating Ocean Bottom Pressure Station (OBP; resolution of 80 Pa in the first year, improved to 8 Pa afterwards, sampling period of 2 minutes in the first year, increased to 2 seconds afterwards) and a programmable Ocean Bottom Tiltmeter (OBT; resolution 1 rad, sampling period 6 seconds) measured local ocean-floor point motions derived from tilt and absolute pressure. In addition, vertical acceleration was measured using a MEMS accelerometer (resolution 10-5 m/s2, sampling rate 1.33 Hz) within the housing of the OBT. Numerous autonomous temperature loggers (resolution 0.001˚ C, sampling period 15 minutes) were installed at prominent places like mussel fields or soil fissures within the LHF. Time series are analyzed using Fourier-Transformation techniques but also using the novel approach called Empirical Mode Decomposition (EMD). Pressure records show a modulated background noise level with increased amplitudes lasting for several days to weeks, and most likely show signals generated by local earthquakes. Bottom water temperature has transients with peak-to-peak-amplitudes of up to 0.1˚ C, which correlate for a number of events directly with earthquake signals. A comparison of pressure, tilt, acceleration and temperature data events shows that all four records are correlated. For a few of those events a direct causal link can be firmly established. The study is funded by the Deutsche Forschungsgemeinschaft (DFG) and part of Priority Program 1144 ("From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes").

  20. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Allen, Douglas E.; Seyfried, W. E.

    2005-02-01

    A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.

  1. Identification of Cr-magnetite in Neoproterozoic serpentinites resulting of Cr-Spinel alteration in a past hydrothermal system: Aït Ahmane ultramafic unit (Bou Azzer ophiolite, Anti Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Hodel, Florent; Macouin, Mélina; Carlut, Julie; Triantafyllou, Antoine; Berger, Julien; Trindade, Ricardo; Ennih, Nasser; Rousse, Sonia

    2017-04-01

    If magnetite is a common serpentinization product, centimetric, massive and almost pure magnetite veins are rarely observed in serpentinites. Unique examples of these, in the Aït Ahmane ultramafic unit (Bou Azzer Neoproterozoic ophiolite, Anti-Atlas, Morocco), offer the opportunity to assess the hydrothermal processes that prevailed at the end of the Precambrian. Pseudomorphic lizardite/chrysotile texture of unaltered serpentinites suggests an oceanic-like first serpentinization stage, under static and low temperature conditions (T <350 °C). Nevertheless, abundance of magnetite (up to 7.86 wt. %) and absence of brucite, attest that serpentinization probably took place over 200 °C. Magnetic measurements reveal a lower magnetite content in hydrothermalized serpentinites hosting the magnetite veins, with lowest values (down to 0.58 wt. %) for bleached serpentinites constituting the wall rock of veins. Fresh serpentinites are characterized by relatively small sized magnetite grains, mainly pseudo-single domain magnetites. Hysteresis parameters and first order reversal curves (FORC) diagram denote a magnetic grains size that increases with the alteration. This well-marked tendency is also reveals by a shift of the isothermal remanent magnetization (IRM) components toward lower coercivities for altered serpentinites. This grain size increase is associated with the emergence of a new magnetic phase with the hydrothermal alteration, the Cr-magnetite, evidenced by thermomagnetic measurements with Tc around 540 °C. This ultimate Cr-spinel alteration product is associated with another Cr-spinel alteration mineral, the ferritchromite, also identifiable on thermomagnetic curves by a rapid increase of the magnetite susceptibility at 130 °C due to its transformation during heating. Thermomagnetic curves allow us to propose a proxy, the CrM/M ratio providing a quantification of the Cr-magnetite contribution to the magnetic susceptibility, relatively to the pure magnetite one

  2. Organics in hydrothermal fluids from ultramafics on the Mid-Atlantic Ridge (MAR) - Abiogenic and/or biogenic origin?

    NASA Astrophysics Data System (ADS)

    Charlou, J.; Donval, J.; Fouquet, Y.; Jean-Baptiste, P.; Dehairs, F.; Holm, N.; Godfroy, A.

    2005-12-01

    Between 12°N and the Azores Triple Junction along the MAR, CH4 anomalies over axial ultramafic sites are common and point to the association of high or low temperature hydrothermal activity and mantle degassing indicative of ongoing serpentinization process. The general occurrence of isotopically-heavy methane shows the possible abiogenic synthesis of hydrocarbons in hydrothermal systems. The abiogenic formation of CH4 and more complex organic compounds is related to the process of serpentinization of mantellic rocks. Three sites (Logachev, 14°45'N; Rainbow, 36°14'N; Lost City Field, 30°N) are known on the MAR. New fresh fluids were recently sampled at Rainbow and Lost City by the French ROV-Victor during EXOMAR cruise (July 24 to August 28, 2005). The Rainbow and Lost City fluids issued from contrasted ultramafic environments are both enriched in H2, CH4 and hydrocarbons. Hydrogen gas represents more than 40 per cent total gas volume extracted from fluids. SPME (Solid Phase Micro-Extraction) and SBSE (Stir-Bar Sorptive Extraction) extraction techniques were used on board for organic recovery and the analysis was performed on shore by direct GC/MS or by Thermo-Desorption/GC/MS. The hydration of olivine and pyroxen minerals with conversion of Fe(II) to Fe(III) in magnetite during serpentinization leads to production of H2 and conversion of dissolved CO2 to reduced-C species including methane, ethane, propane. In addition heavier straight chain hydrocarbons as alcohols, aldehydes, ketones, aromatics, and cyclic compounds are identified at Rainbow. These compounds may be generated in ultramafic rocks through catalytic reactions (Fischer-Tropsch type reactions), but a biogenic contribution cannot be excluded. Abiogenic organic compounds may be produced from crystalline basement, from volcanic structures, from riftogenic zones and probably from sedimented margins.

  3. Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) Linkage is a key for Occurrence of Last Universal Common Ancestral (LUCA) Community: Where is it, Lost City or Kairei (Rainbow)?

    NASA Astrophysics Data System (ADS)

    Takai, K.; Inagaki, F.; Nakamura, K.; Suzuki, K.; Kumagai, H.

    2005-12-01

    hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) currently discovered beneath the Central Indian Ridge hydrothermal field. The environmental settings for the occurrence of HyperSLiME are now being characterized and an important linkage among the occurrence of HyperSLiME, extraordinary amount of hydrogen in the hydrothermal fluids and ultramfics-hosted hydrothermal systems is proposed. This ultramafics-hydrothermalism-hydrogen-HyperSLiME (UltraH3) linkage is very likely a key for the genesis of the LUCA community. We would like to discuss the possible UltraH3 linkage in the Archean earth. In addition, we would like to discuss which of modern deep-sea hydrothermal systems is the most plausible proxy for the Archean LUCA habitats.

  4. Si-Metasomatism During Serpentinization of Jurassic Ultramafic Sea-floor: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Vogel, M.; Frueh-Green, G. L.; Boschi, C.; Schwarzenbach, E. M.

    2014-12-01

    The Bracco-Levanto ophiolitic complex (northwestern Italy) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge (MAR), such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of serpentinization processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to published data from modern oceanic hydrothermal systems, such as the Lost City hydrothermal field hosted in serpentinites on the Atlantis Massif. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread Si-metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater in the shallow ultramafic-dominated portions of the Jurassic seafloor, resulting in the formation of ophicalcites. In detail, regional variations in Si, Mg and Al content are observed in zones of ophicalcite formation, indicating metasomatic reactions and Si-Al transport during long-lived fluid-rock interaction and channelling of hydrothermal fluids. Rare earth element and isotopic analysis indicate that the Si-rich fluids are derived from alteration of pyroxenes to talc and tremolite in ultramafic rocks at depth. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si-enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments

  5. Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field.

    PubMed

    Méhay, S; Früh-Green, G L; Lang, S Q; Bernasconi, S M; Brazelton, W J; Schrenk, M O; Schaeffer, P; Adam, P

    2013-11-01

    Samples of young, outer surfaces of brucite-carbonate deposits from the ultramafic-hosted Lost City hydrothermal field were analyzed for DNA and lipid biomarker distributions and for carbon and hydrogen stable isotope compositions of the lipids. Methane-cycling archaeal communities, notably the Lost City Methanosarcinales (LCMS) phylotype, are specifically addressed. Lost City is unlike all other hydrothermal systems known to date and is characterized by metal- and CO2 -poor, high pH fluids with high H2 and CH4 contents resulting from serpentinization processes at depth. The archaeal fraction of the microbial community varies widely within the Lost City chimneys, from 1-81% and covaries with concentrations of hydrogen within the fluids. Archaeal lipids include isoprenoid glycerol di- and tetraethers and C25 and C30 isoprenoid hydrocarbons (pentamethylicosane derivatives - PMIs - and squalenoids). In particular, unsaturated PMIs and squalenoids, attributed to the LCMS archaea, were identified for the first time in the carbonate deposits at Lost City and probably record processes exclusively occurring at the surface of the chimneys. The carbon isotope compositions of PMIs and squalenoids are remarkably heterogeneous across samples and show highly (13) C-enriched signatures reaching δ(13) C values of up to +24.6‰. Unlike other environments in which similar structural and isotopic lipid heterogeneity has been observed and attributed to diversity in the archaeal assemblage, the lipids here appear to be synthesized solely by the LCMS. Some of the variations in lipid isotope signatures may, in part, be due to unusual isotopic fractionation during biosynthesis under extreme conditions. However, we argue that the diversity in archaeal abundances, lipid structure and carbon isotope composition rather reflects the ability of the LCMS archaeal biofilms to adapt to chemical gradients in the hydrothermal chimneys and possibly to perform either methanotrophy or methanogenesis

  6. A fossil venting system in the Feragen Ultramafic Body, Norway?

    NASA Astrophysics Data System (ADS)

    Dunkel, Kristina G.; Jamtveit, Bjørn; Austrheim, Håkon

    2017-04-01

    Carbonation of ultramafic rocks in ophiolites and on the seafloor has recently been the focus of extensive research, as this alteration reaction not only influences the carbon flux between hydro- and lithosphere, but also provides natural analogues for industrial CO2 sequestration. It is a significant part of the hydrothermal circulation in the oceanic crust, as demonstrated by carbonate precipitation at hydrothermal vents. We provide microstructural and geochemical data from a previously little known ophicarbonate occurrence in the Feragen Ultramafic Body, Sør-Trøndelag, Norway. Along the northern edge of the Feragen Ultramafic Body, strongly serpentinised peridotites are carbonated. In places, the carbonation took place pervasively, leading to the formation of soapstones consisting mainly of talc and magnesite. More common is the carbonation of serpentinite breccias. Within the clasts, some of the serpentine mesh centres are replaced by magnesite, and, subordinately, dolomite or calcium carbonate. Four types of matrix have been identified in different localities: fine-grained magnesite, coarse-grained calcium carbonate, brucite occurring in large fans (up to 1 mm in diameter), and dolomite. Inclusion trails in the coarse-grained calcium carbonates record botryoidal growth, indicating crystallisation from a fluid in open space, and a hexagonal precursor phase, suggesting that aragonite was replaced by calcite. Brucite-cemented serpentinite breccias occur very locally in two outcrops with a size less than 10 m2. Many of the brucite fans have a similar arrangement of inclusions, with an area rich in dolomite inclusions in the centre of the brucite crystals, and magnetite inclusions concentrated in the tips. Dolomite as a matrix phase often grows inwards from hexagonal, rectangular, rhomboidal, or irregular pores. Many dolomite grains are probably cast pseudomorphs after (calcitised) aragonite. Some carbonate crystals are crosscut or replaced by serpentine. The

  7. Origin of ultramafic-hosted magnesite on Margarita Island, Venezuela

    NASA Astrophysics Data System (ADS)

    Abu-Jaber, N. S.; Kimberley, M. M.

    1992-06-01

    Ultramafic-hosted deposits of magnesite (MgCO3) have been studied on Margarita Island, Venezuela, to elucidate the source of carbon and conditions of formation for this type of ore. Petrographic, mineralogic, and δ18O data indicate that magnesite precipitated on Margarita in near-surface environments at low P and T. δ13C ranges from -9 to -16‰ PDB within the magnesite and -8 to -10‰ PDB within some calcite and dolomite elsewhere on the island. The isotopically light dolomite fills karst and the calcite occurs as stock-work veins which resemble the magnesite deposits. These carbon isotopic ratios are consistent with a deep-seated source rather than an overlying source from a zone of surficial weathering. However, there is not much enrichment of precious metals and no enrichment of heavy rare-earth elements, as would be expected if the carbon had migrated upward as aqueous carbonate ions. The carbon probably has risen as a gaseous mixture of CO2 and CH4 which partially dissolved in near-surface water before leaching cations and precipitating as magnesite and other carbonates. The process probably is ongoing, given regional exhalation of carbonaceous gases.

  8. Biogeographical distribution of Rimicaris exoculata resident gut epibiont communities along the Mid-Atlantic Ridge hydrothermal vent sites.

    PubMed

    Durand, Lucile; Roumagnac, Marie; Cueff-Gauchard, Valérie; Jan, Cyrielle; Guri, Mathieu; Tessier, Claire; Haond, Marine; Crassous, Philippe; Zbinden, Magali; Arnaud-Haond, Sophie; Cambon-Bonavita, Marie-Anne

    2015-10-01

    Rimicaris exoculata is a deep-sea hydrothermal vent shrimp whose enlarged gill chamber houses a complex trophic epibiotic community. Its gut harbours an autochthonous and distinct microbial community. This species dominates hydrothermal ecosystem megafauna along the Mid-Atlantic Ridge, regardless of contrasting geochemical conditions prevailing in them. Here, the resident gut epibiont community at four contrasted hydrothermal vent sites (Rainbow, TAG, Logatchev and Ashadze) was analysed and compiled with previous data to evaluate the possible influence of site location, using 16S rRNA surveys and microscopic observations (transmission electron microscopy, scanning electron microscopy and fluorescence in situ hybridization analyses). Filamentous epibionts inserted between the epithelial cell microvilli were observed on all examined samples. Results confirmed resident gut community affiliation to Deferribacteres, Mollicutes, Epsilonproteobacteria and to a lesser extent Gammaproteobacteria lineages. Still a single Deferribacteres phylotype was retrieved at all sites. Four Mollicutes-related operational taxonomic units were distinguished, one being only identified on Rainbow specimens. The topology of ribotype median-joining networks illustrated a community diversification possibly following demographic expansions, suggesting a more ancient evolutionary history and/or a larger effective population size at Rainbow. Finally, the gill chamber community distribution was also analysed through ribotype networks based on sequences from R. exoculata collected at the Rainbow, Snake Pit, TAG, Logatchev and Ashadze sites. Results allow the refining of hypotheses on the epibiont role and transmission pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Cathelineau, Michel; Myagkiy, Andrey; Quesnel, Benoit; Boiron, Marie-Christine; Gautier, Pierre; Boulvais, Philippe; Ulrich, Marc; Truche, Laurent; Golfier, Fabrice; Drouillet, Maxime

    2017-10-01

    Sets of fractures and breccia sealed by Ni-rich silicates and quartz occur within saprock of the New Caledonian regolith developed over ultramafic rocks. The crystallization sequence in fractures is as follows: (1) serpentine stage: lizardite > polygonal serpentine > white lizardite; (2) Ni stage: Ni-Mg kerolite followed by red-brown microcrystalline quartz; and (3) supergene stages. The red-brown microcrystalline quartz corresponds to the very last stage of the Ni sequence and is inferred to have precipitated within the 50-95 °C temperature range. It constitutes also the main cement of breccia that has all the typical features of hydraulic fracturing. The whole sequence is therefore interpreted as the result of hydrothermal fluid circulation under medium to low temperature and fluctuating fluid pressure. Although frequently described as the result of a single downward redistribution of Ni and Mg leached in the upper part of the regolith under ambient temperature, the Ni silicate veins thus appear as the result of recurrent crack and seal process, corresponding to upward medium temperature fluid convection, hydraulic fracturing and subsequent fluid mixing, and mineral deposition.

  10. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  11. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise.

    PubMed

    Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L; Sylva, Sean; Seewald, Jeffrey; German, Christopher R; Huber, Julie A

    2016-06-01

    Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate

  13. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    NASA Astrophysics Data System (ADS)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1-2 orders of magnitude during the 200-330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  14. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    USGS Publications Warehouse

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  15. Hydrothermal exploration and astrobiology: oases for life in distant oceans?

    NASA Astrophysics Data System (ADS)

    German, Christopher R.

    2004-04-01

    High-temperature submarine hydrothermal fields on Earth's mid-ocean ridges play host to exotic ecosystems with fauna previously unknown to science. Because these systems draw significant energy from chemosynthesis rather than photosynthesis, it has been postulated that the study of such systems could have relevance to the origins of life and, hence, astrobiology. A major flaw to that argument, however, is that modern basalt-hosted submarine vents are too oxidizing and lack the abundant free hydrogen required to drive abiotic organic synthesis and/or the energy yielding reactions that the most primitive anaerobic thermophiles isolated from submarine vent-sites apparently require. Here, however, the progress over the past decade in which systematic search strategies have been used to identify previously overlooked venting on the slow-spreading Mid-Atlantic Ridge and the ultra-slow spreading Arctic and SW Indian Ridges is described. Preliminary identification of fault-controlled venting in a number of these sites has led to the discovery of at least two high-temperature hydrothermal fields hosted in ultramafic rocks which emit complex organic molecules in their greater than 360 °C vent-fluids. Whether these concentrations represent de novo organic synthesis within the hydrothermal cell remains open to debate but it is probable that many more such sites exist throughout the Atlantic, Arctic and SW Indian Oceans. One particularly intriguing example is the Gakkel Ridge, which crosses the floor of the Arctic Ocean. On-going collaborations between oceanographers and astrobiologists are actively seeking to develop a new class of free-swimming autonomous underwater vehicle, equipped with appropriate chemical sensors, to conduct long-range missions that will seek out, locate and investigate new sites of hydrothermal venting at the bottom of this, and other, ice-covered oceans.

  16. Serpentinization and fluid-rock interaction in Jurassic mafic and ultramafic sea-floor: constraints from Ligurian ophiolite sequences

    NASA Astrophysics Data System (ADS)

    Vogel, Monica; Früh-Green, Gretchen L.; Boschi, Chiara; Schwarzenbach, Esther M.

    2014-05-01

    The Bracco-Levanto ophiolitic complex (Eastern Liguria) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge, such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of deformation processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to modern oceanic hydrothermal systems, such as the Lost City Hydrothermal Field hosted in ultramafic rocks on the Atlantis Massif. A focus is on investigating mass transfer and fluid flow paths during high and low temperature hydrothermal activity, and on processes leading to hydrothermal carbonate precipitation and the formation of ophicalcites, which are characteristic of the Bracco-Levanto sequences. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread SiO2 metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater and high fluid-rock ratios in the shallow ultramafic-dominated portions of the Jurassic seafloor. We observe regional variations in MgO, SiO2 and Al2O3, suggesting Si-flux towards stratigraphically higher units. In general, the ophicalcites have higher Si, Al and Fe concentrations and lower Mg than the serpentinite basement rocks or serpentinites with minimal carbonate veins. Bulk rock trace element data and Sr isotope ratios indicate seawater reacting with rocks of more mafic composition, then channeled towards stratigraphically higher

  17. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    PubMed

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  18. Hydrogen may be an energy source for endosymbiotic bacteria of the vent mussel Bathymodiolus puteoserpentis

    NASA Astrophysics Data System (ADS)

    Zielinski, F.; Pape, T.; Wenzhöfer, F.; Seifert, R.; Dubilier, N.

    2005-12-01

    The ultramafic hosted Logatchev hydrothermal vent field at the slow spreading Mid-Atlantic Ridge (MAR) exhibits unusually high hydrogen concentrations due to serpentinization of ultramafic rocks. Endmember H2-concentrations here have been calculated to be as high as 12 mM which is significantly higher than at most other vent sites along the MAR. Hydrogen is a potential energy source for bacteria providing an energy yield of roughly 240 kJ/mol if oxidized with oxygen. Hence, the energy yield is even higher than for conventional aerobic respiration which liberates 220 kJ/mol. The ability to use H2 as an energy source has been shown for a variety of free-living bacteria. However, to date no other energy sources besides methane and sulfide have been identified for vent (or seep) symbionts. Here we show that H2 is consumed by endosymbiotic bacteria of the Logatchev vent mussel Bathymodiolus puteoserpentis. B. puteoserpentis is known to live in dual symbiosis with methane- and sulfide-oxidizing bacteria that occur intracellularly in specialized gill cells called bacteriocytes. The methanotrophic symbionts use methane as both an energy and carbon source whereas the thiotrophic symbionts use H2S as an energy and dissolved CO2 as a carbon source. Hydrothermal fluids carrying methane and sulfide provide the energy for the bacteria and the bacteria in turn provide the mussel with carbon compounds. The mussel on the other hand supplies its symbionts with a constant fluid flow and, by hosting them offers an ideal ecological niche. Freshly dissected gill pieces of B. puteoserpentis incubated in chilled sea water containing hydrogen gas readily consumed H2. The consumption of H2 over time was significantly higher in gill tissues than in symbiont-free mussel tissue indicating that the symbiotic bacteria are responsible for the observed activity. H2-consumption rates were similar in mussels from two different sampling sites, Irina II: 37 nmol h-1 (ml gill)-1 and Quest: 31 nmol h-1

  19. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  20. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (<120 °C) that permitted microbial activity. The change in temperature regime is locally preserved in individual samples and correlates with the progressive uplift and exposure of mantle rock associated with detachment faulting along a mid-ocean ridge spreading center. The Santa Elena peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can

  1. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions

    PubMed Central

    He, Tianliang; Li, Hongyun

    2017-01-01

    ABSTRACT Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. PMID:28698277

  2. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem.

    PubMed

    Brazelton, William J; Schrenk, Matthew O; Kelley, Deborah S; Baross, John A

    2006-09-01

    Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments.

  3. Methane- and Hydrogen-Influenced Microbial Communities in Hydrothermal Plumes above the Atlantis Massif, Mid Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Stewart, C. L.; Schrenk, M.

    2017-12-01

    Ultramafic-hosted hydrothermal systems associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. Hydrothermal plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched hydrothermal plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from hydrothermal habitats near the Lost City Hydrothermal Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced hydrothermal systems that may aid in future exploration of these sites.

  4. The potential hydrothermal systems unexplored in the Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Suo, Yanhui; Li, Sanzhong; Li, Xiyao; Zhang, Zhen; Ding, Dong

    2017-06-01

    Deep-sea hydrothermal vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, hydrothermal vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°-16°E Section B and 16°-25°E Section C) and three at the eastern end (49°-52°E Section D, 52°-61°E Section E and 61°-70°E Section F). Hydrothermal vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and hydrothermal vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°-47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no hydrothermal vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of hydrothermal systems along these two sections. An off-axial hydrothermal system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.

  5. Hydrothermal Activity on the Mid-Cayman Rise: ROV Jason sampling and site characterization at the Von Damm and Piccard hydrothermal fields

    NASA Astrophysics Data System (ADS)

    German, C. R.

    2012-12-01

    In January 2012 our multi-national and multi-disciplinary team conducted a series of 10 ROV Jason dives to conduct first detailed and systematic sampling of the Mid Cayman Rise hydrothermal systems at the Von Damm and Piccard hydrothermal fields. At Von Damm, hydrothermal venting is focused at and around a large conical structure that is approximately 120 m in diameter and rises at least 80m from the surrounding, largely sedimented seafloor. Clear fluids emitted from multiple sites around the flanks of the mound fall in the temperature range 110-130°C and fall on a common mixing line with hotter (>200°C) clear fluids emitted from an 8m tall spire at the summit which show clear evidence of ultramafic influence. Outcrop close to the vent-site is rare and the cone itself appear to consist of clay minerals derived from highly altered host rock. The dominant fauna at the summit of Von Damm are a new species of chemosynthetic shrimp but elsewhere the site also hosts two distinct species of chemosynthetic tube worm as well as at least one species of gastropod. The adjacent Piccard site, at ~5000m depth comprises 7 distinct sulfide mounds, 3 of which are currently active: Beebe Vents, Beebe Woods and Beebe Sea. Beebe Vents consists of 5 vigorous black smoker chimneys with maximum temperatures in the range 400-403°C while at Beebe Woods a more highly colonized thicket of up to 8m tall chimneys includes predominantly beehive diffusers with rare black smokers emitting fluids up to 353°C. Beebe Sea a diffuse site emitting fluids at 38°C Tmax, is the largest of the currently active mounds and immediately abuts a tall (8m) rift that strikes NE-SW bisecting the host Axial Volcanic Ridge. The fauna at Piccard are less diverse than at Von Damm and, predominantly, comprise the same species of MCR shrimp, a distinct gastropod species and abundant anemones.

  6. An Experimental Study on Characterization of Physical Properties of Ultramafic Rocks and Controls on Evolution of Fracture Permeability During Serpentinization at Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Farough, Aida

    Serpentinization is a complex set of hydration reactions, where olivine and pyroxene are replaced by serpentine, magnetite, brucite, talc and carbonate minerals. Serpentinization reactions alter chemical, mechanical, magnetic, seismic, and hydraulic properties of the crust. To understand the complicated nature of serpentinization and the linkages between physical and chemical changes during the reactions, I performed flow-through laboratory experiments on cylindrically cored samples of ultramafic rocks. Each core had a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at an effective pressure of 30 MPa, and temperature of 260"aC, simulating a depth of 2 km under hydrostatic conditions. Fracture permeability decreased by one to two orders of magnitude during the 200 to 340 hour experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferromagnesian minerals. The rate of transformation of olivine to serpentine in a tensile fracture is calculated using the data on evolution of fracture permeability assuming the fracture permeability could be represented by parallel plates. Assuming the dissolution and precipitation reactions occur simultaneously; the rate of transformation at the beginning of the experiments was 10-8-10-9 (mol/m2s) and decreased monotonically by about an order of magnitude towards the end of the experiment. Results show that dissolution and precipitation is the main mechanism contributing to the reduction in fracture aperture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems may be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of

  7. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    PubMed

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found

  8. Anhydrite precipitation in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  9. Ca and Sr Isotope Sytematics in Mid-Ocean Ridge Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    We report a comprehensive suite of Ca isotopic data (δ44/40Ca) from mid-ocean ridge hydrothermal fluids, standardized relative to seawater. Samples were acquired from 7 different vent fields on the EPR, JdFR and MAR during expeditions between 1999 and 2014. All endmember hydrothermal fluids (within analytical uncertainty) reflect an entirely MORB-dominated signal (-1.0 to -1.2 ‰). This rather uniform signal, despite variable fluid chemistries and a mixture of mafic to ultramafic host lithologies, is somewhat surprising given the noteworthy Ca concentrations in both the hydrothermal fluids and precursor seawater. One explanation for this observation involves the change in anhydrite (CaSO4) saturation with increasing temperature, and the molal concentration ratio of [Mg]:[Ca]:[SO4] in modern seawater of 53:10:28. The near quantitative removal of seawater Mg to silicate alteration phases, favorable at all temperatures, is largely charge balanced by exchange for basaltic Ca, and this process alone can account for the majority of the rock dominated δ44/40Casw signal. That these values are equivalent to MORB, however, suggests a high proportion of this Mg-Ca exchange occurs after seawater Ca precipitates as anhydrite in lower temperature (recharge) regimes of the hydrothermal system, aided by the low [Ca]/[SO4]. 87/86Sr ratios of hydrothermal fluids exhibit a seawater signal of 20 to 30% and Sr is therefore not quantitatively removed during incipient anhydrite formation. Strontium mobility in hydrothermal systems is still poorly understood, but the offset between the Ca and Sr isotopic signatures is consistent with near-equilibrium partitioning of Sr into anhydrite observed in recent experiments. Such observations from modern MOR systems place important constraints on the role of hydrothermal fluxes in paleo-seawater evolution, such as feedbacks involving significant variability in [Mg]:[Ca]:[SO4] ratios of seawater suggested over much of the Phanerozoic.

  10. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.

    PubMed

    Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel

    2010-10-01

    Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that

  11. Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: reflection of different metal sources.

    PubMed

    Koschinsky, Andrea; Kausch, Matteo; Borowski, Christian

    2014-04-01

    Hydrothermal vent mussels of the genus Bathymodiolus are ideally positioned for the use of recording hydrothermal fluxes at the hydrothermal vent sites they inhabit. Barium, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Pb, Sr, and U concentrations in tissue sections of Bathymodiolus mussels from several hydrothermal fields between 15°N and 9°S at the Mid-Atlantic Ridge were determined and compared to the surrounding fluids and solid substrates in the habitats. Elements generally enriched in hydrothermal fluids, such as Fe, Cu, Zn, Pb and Cd, were significantly enriched in the gills and digestive glands of the hydrothermal mussels. The rather small variability of Zn (and Mn) and positive correlation with K and earth alkaline metals may indicate a biological regulation of accumulation. Enrichments of Mo and U in many tissue samples indicate that particulate matter such as hydrothermal mineral particles from the plumes can play a more important role as a metal source than dissolved metals. Highest enrichments of Cu in mussels from the Golden Valley site indicate a relation to the ≥400 °C hot heavy-metal rich fluids emanating in the vicinity. In contrast, mussels from the low-temperature Lilliput field are affected by the Fe oxyhydroxide sediment of their habitat. In a comparison of two different sites within the Logatchev field metal distributions in the tissues reflected small-scale local variations in the metal content of the fluids and the particulate material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Subseafloor microbial communities in hydrogen‐rich vent fluids from hydrothermal systems along the Mid‐Cayman Rise

    PubMed Central

    Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L.; Sylva, Sean; Seewald, Jeffrey; German, Christopher R.

    2016-01-01

    Summary Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid‐Cayman Rise each exhibits novel geologic settings and distinctively hydrogen‐rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic‐influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen‐utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. PMID:26663423

  13. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field.

    PubMed

    Lang, S Q; Früh-Green, G L; Bernasconi, S M; Butterfield, D A

    2013-03-01

    The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City. © 2013 Blackwell Publishing Ltd.

  14. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents.

    PubMed

    Ho, Phuong-Thao; Park, Eunji; Hong, Soon Gyu; Kim, Eun-Hye; Kim, Kangchon; Jang, Sook-Jin; Vrijenhoek, Robert C; Won, Yong-Jin

    2017-05-30

    Chemolithoautotrophic primary production sustains dense invertebrate communities at deep-sea hydrothermal vents and hydrocarbon seeps. Symbiotic bacteria that oxidize dissolved sulfur, methane, and hydrogen gases nourish bathymodiolin mussels that thrive in these environments worldwide. The mussel symbionts are newly acquired in each generation via infection by free-living forms. This study examined geographical subdivision of the thiotrophic endosymbionts hosted by Bathymodiolus mussels living along the eastern Pacific hydrothermal vents. High-throughput sequencing data of 16S ribosomal RNA encoding gene and fragments of six protein-coding genes of symbionts were examined in the samples collected from nine vent localities at the East Pacific Rise, Galápagos Rift, and Pacific-Antarctic Ridge. Both of the parapatric sister-species, B. thermophilus and B. antarcticus, hosted the same numerically dominant phylotype of thiotrophic Gammaproteobacteria. However, sequences from six protein-coding genes revealed highly divergent symbiont lineages living north and south of the Easter Microplate and hosted by these two Bathymodiolus mussel species. High heterogeneity of symbiont haplotypes among host individuals sampled from the same location suggested that stochasticity associated with initial infections was amplified as symbionts proliferated within the host individuals. The mussel species presently contact one another and hybridize along the Easter Microplate, but the northern and southern symbionts appear to be completely isolated. Vicariance associated with orogeny of the Easter Microplate region, 2.5-5.3 million years ago, may have initiated isolation of the symbiont and host populations. Estimates of synonymous substitution rates for the protein-coding bacterial genes examined in this study were 0.77-1.62%/nucleotide/million years. Our present study reports the most comprehensive population genetic analyses of the chemosynthetic endosymbiotic bacteria based on high

  15. Geothermobarometry for ultramafic assemblages from the Emeishan Large Igneous Province, Southwest China and the Nikos and Zulu Kimberlites, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2009-05-01

    To understand and contrast the origins of ultramafic assemblages from basaltic and kimberlitic rocks and their associated deposits, such as V-Ti magnetite and Ni-Cu-(PGE) sulfide deposits and diamond, applicable thermobarometers were evaluated and applied to the ultramafic assemblages from the Emeishan Large Igneous Province (ELIP), Southwest China and from the Nikos and Zulu Kimberlites of Nunavut, Canada. The ELIP is located in the Yangtze Block, Southwest China and composed of Permian Emeishan Flood basalt (EFB) and associated layered mafic-ultramafic intrusions. Some of these intrusions host V-Ti magnetite deposits; while others contain Ni-Cu-(PGE) sulfide deposits. It is not clear why some intrusions host magnetite deposits and others contain sulfide deposits. The P-T conditions for the ultramafic assemblages from the mafic-ultramafic intrusions in the ELIP were calculated in order to understand the origins and the associated mineral deposits. The ultramafic assemblages are peridotite, olivine pyroxenite, pyroxenite in the layered intrusions and the common minerals include spinel, olivine, clinopyroxene, orthopyroxene, and minor magnetite and ilmenite. Using a two pyroxene thermometer and a Ca-Mg exchange barometer between olivine and clinopyroxene, a spinel-olivine-clinopyroxene-orthopyroxene assemblage from the Xinjie intrusion yields a T-P of 905°C and 17 kbar; and a similar assemblage from the Jinbaoshan intrusion yields a T-P of 1124°C and 31 kbar. The Nikos kimberlite, near Elwin Bay on Somerset Island, is located at the northeast end of the northeast-southwest kimberlite zone; and the Zulu kimberlite is located on the neighboring Brodeur Peninsula of Baffin Island, Nunavut. The ultramafic assemblages from the Canadian Kimberlites include garnet lherzolite, garnet-spinel lherzolite, spinel lherzolite, dunite, garnet websterite, spinel websterite and garnet clinopyroxenite. The calculated P-T conditions are in the range of 760 to 1180°C and 25 to 60

  16. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  17. Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon

    USGS Publications Warehouse

    Zierenberg, R.A.; Shanks, Wayne C.; Seyfried, W.E.; Koski, R.A.; Strickler, M.D.

    1988-01-01

    The Turner-Albright sulfide deposit, part of the Josephine ophiolite, formed on and below the seafloor during Late Jurassic volcanism at a back arc spreading center. Ore fluids were probably localized by faults which were active on the seafloor at the time of sulfide deposition. The uppermost massive sulfide formed on the seafloor at hydrothermal vents. The bulk of the sulfide mineralization formed below the seafloor within olivine basalt hyaloclastite erupted near the time of mineralization. Infiltration of hydrothermal fluid into the hyaloclastite altered the rock. The fluid responsible for the hydrothermal alteration was evolved seawater with low pH and Mg and high Fe. The average value of sulfide and the difference between sulfide and contemporaneous seawater sulfate values are similar to ophiolite-hosted sulfide deposits in Cyprus. Mudstone and clinopyroxene basalt above the sulfide horizons were not altered by the ore-transporting hydrothermal fluid, but these rocks were hydrothermally metamorphosed by altered seawater heated by deep circulation into hot oceanic crust. This subseafloor metamorphism produced a mineral assemblage typical of prehnite-pumpellyite facies metamorphism. Exchange with altered seawater increased the whole-rock ??18O of the basalts to values of 9.4-11.2%. -from Authors

  18. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Kelley, Deborah S.; Karson, Jeffrey A.; Früh-Green, Gretchen L.; Yoerger, Dana R.; Shank, Timothy M.; Butterfield, David A.; Hayes, John M.; Schrenk, Matthew O.; Olson, Eric J.; Proskurowski, Giora; Jakuba, Mike; Bradley, Al; Larson, Ben; Ludwig, Kristin; Glickson, Deborah; Buckman, Kate; Bradley, Alexander S.; Brazelton, William J.; Roe, Kevin; Elend, Mitch J.; Delacour, Adélie; Bernasconi, Stefano M.; Lilley, Marvin D.; Baross, John A.; Summons, Roger E.; Sylva, Sean P.

    2005-03-01

    The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40° to 90°C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.

  19. The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia

    USGS Publications Warehouse

    Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten

    2013-01-01

    The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen

  20. Cobalt—Styles of deposits and the search for primary deposits

    USGS Publications Warehouse

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and

  1. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities

    PubMed Central

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.

    2012-01-01

    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  2. Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities.

    PubMed

    Brazelton, William J; Nelson, Bridget; Schrenk, Matthew O

    2012-01-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H(2)). In order to assess the potential for microbial H(2) utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H(2)-oxidizers. Both sites also yielded metagenomic evidence for microbial H(2) production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H(2)-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H(2)-powered primary production in serpentinite-hosted subsurface habitats.

  3. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  4. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  5. Ultramafic-derived arsenic in a fractured bedrock aquifer

    USGS Publications Warehouse

    Ryan, P.C.; Kim, J.; Wall, A.J.; Moen, J.C.; Corenthal, L.G.; Chow, D.R.; Sullivan, C.M.; Bright, K.S.

    2011-01-01

    In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from <1 to 327??g/L (<13-4360nm/L) and these elevated occurrences have a general spatial association with ultramafic rock bodies. The ultramafic rocks in this region are comprised mainly of serpentinites and talc-magnesite rocks with average As concentration of 93ppm and a range from 1 to 1105ppm. By comparison, the other main lithologies in the study area are depleted in As relative to the ultramafics: the average As concentration in metabasaltic rocks is 4.1ppm with a range of <1-69ppm, and mean As concentration in meta-sedimentary phyllites and schists is 22ppm with a range of <1-190ppm. In the ultramafic rocks, As is correlated with Sb and light rare earth elements, indicating that As was introduced to the ultramafic rocks during metasomatism by fluids derived from the subducting slab. Evidence from sequential chemical extraction, X-ray diffraction (XRD) and stoichiometric analysis indicates that the majority of the As is located in antigorite and magnesite (MgCO3) with lesser amounts in magnetite (Fe3O4). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9??g/L) and an Mg-HCO3 hydrochemical signature that reflects dissolution of antigorite and magnesite, confirming that As in groundwater can be derived from ultramafic rock dissolution. Arsenic mobility in groundwater affected by ultramafic rock dissolution may be enhanced by alkaline pH values and relatively high HCO3- concentrations. ?? 2011 Elsevier Ltd.

  6. Microbial carbon cycling in Lost City hydrothermal chimneys and other serpentinite-hosted ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Lang, S. Q.; Morrill, P. L.; Twing, K. I.; Crespo-Medina, M.; Morgan-Smith, D.; Früh-Green, G. L.; Schrenk, M. O.

    2013-12-01

    Ultramafic rocks formed in the Earth's mantle and uplifted into the crust represent an immense but poorly described reservoir of carbon. The biological availability of this rock-hosted carbon reservoir is unknown, but the set of geochemical reactions known as serpentinization can mobilize carbon from the subsurface and trigger the growth of dense microbial communities. Serpentinite-hosted ecosystems such as the chimney biofilms of the Lost City hydrothermal field can support dense populations of bacteria and archaea fueled by the copious quantities of H2 and methane (CH4) released by serpentinization (1-5). The metabolic pathways involved, however, remain unknown, and conventional interpretations of genomic and experimental data are complicated by the unusual carbon speciation in these environments. Carbon dioxide is scarce due to the highly reducing, high pH conditions. Instead, the predominant forms of carbon are CH4 and formate (5). Despite its natural abundance, however, direct evidence for CH4-derived biomass is lacking (1,4,5), and the role of formate is potentially significant but largely unexplored (1,5). To gain a more generalized perspective of carbon cycling in serpentinite-hosted ecosystems, we have recently investigated fluids and rocks collected from serpentinizing ophiolites in California, Canada, and Italy. Our results point to potentially H2-utilizing, autotrophic Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia inhabiting anoxic, subsurface zones (1,6). The carbon sources utilized by the Clostridia are unknown, but preliminary metagenomic evidence is consistent with a fermentation-style metabolic strategy that may be conducive to an oxidant-limited, subsurface environment. Curiously, despite the abundance of H2 and CH4 in these continental springs, none of the geochemical, genomic, or experimental results obtained thus far contain any evidence for biological methanogenesis (1,6). This is in stark

  7. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°-15°N: The role of magmatic injections and hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Picazo, Suzanne; Cannat, Mathilde; Delacour, AdéLie; EscartíN, Javier; RouméJon, StéPhane; Silantyev, Sergei

    2012-09-01

    Outcrops of deeply derived ultramafic rocks and gabbros are widespread along slow spreading ridges where they are exposed in the footwall of detachment faults. We report on the microstructural and petrological characteristics of a large number of samples from ultramafic exposures in the walls of the Mid-Atlantic Ridge (MAR) axial valley at three distinct locations at lat. 13°N and 14°45'N. One of these locations corresponds to the footwall beneath a corrugated paleo-fault surface. Bearing in mind that dredging and ROV sampling may not preserve the most fragile lithologies (fault gouges), this study allows us to document a sequence of deformation, and the magmatic and hydrothermal history recorded in the footwall within a few hundred meters of the axial detachment fault. At the three sampled locations, we find that tremolitic amphiboles have localized deformation in the ultramafic rocks prior to the onset of serpentinization. We interpret these tremolites as hydrothermal alteration products after evolved gabbroic rocks intruded into the peridotites. We also document two types of brittle deformation in the ultramafic rocks, which we infer could produce the sustained low magnitude seismicity recorded at ridge axis detachment faults. The first type of brittle deformation affects fresh peridotite and is associated with the injection of the evolved gabbroic melts, and the second type affects serpentinized peridotites and is associated with the injection of Si-rich hydrothermal fluids that promote talc crystallization, leading to strain localization in thin talc shear zones. We also observed chlorite + serpentine shear zones but did not identify samples with serpentine-only shear zones. Although the proportion of magmatic injections in the ultramafic rocks is variable, these characteristics are found at each investigated location and are therefore proposed as fundamental components of the deformation in the footwall of the detachment faults associated with denudation of

  8. A Hierarchical System for Evaluating the Biogenicity of Metavolcanic- and Ultramafic-Hosted Microalteration Textures in the Search for Extraterrestrial Life.

    PubMed

    McLoughlin, Nicola; Grosch, Eugene G

    2015-10-01

    The low-temperature alteration of submarine volcanic glasses has been argued to involve the activity of microorganisms, and analogous fluid-rock-microbial-mediated alteration has also been postulated on Mars. However, establishing the extent to which microbes are involved in volcanic glass alteration has proven to be difficult, and the reliability of resulting textural biosignatures is debated, particularly in the early rock record. We therefore propose a hierarchical scheme to evaluate the biogenicity of candidate textural biosignatures found in altered terrestrial and extraterrestrial basaltic glasses and serpentinized ultramafic rocks. The hierarchical scheme is formulated to give increasing confidence of a biogenic origin and involves (i) investigation of the textural context and syngenicity of the candidate biosignature; (ii) characterization of the morphology and size range of the microtextures; (iii) mapping of the geological and physicochemical variables controlling the occurrence and preservation of the microtextures; (iv) in situ investigation of chemical signatures that are syngenetic to the microtexture; and (v) identification of growth patterns suggestive of biological behavior and redox variations in the host minerals. The scheme results in five categories of candidate biosignature as follows: Category 1 indicates preservation of very weak evidence for biogenicity, Categories 2 through 4 indicate evidence for increasing confidence of a biogenic origin, and Category 5 indicates that biogenic origin is most likely. We apply this hierarchical approach to examine the evidence for a biogenic origin of several examples, including candidate bacterial encrustations in altered pillow lavas, granular and tubular microtextures in volcanic glass from the subseafloor and a Phanerozoic ophiolite, mineralized microtextures in Archean metavolcanic glass, and alteration textures in olivines of the martian meteorite Yamato 000593. The aim of this hierarchical approach

  9. Absolute Magnetization Distribution on Back-arc Spreading Axis Hosting Hydrothermal Vents; Insight from Shinkai 6500 Magnetic Survey

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.

    2013-12-01

    Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are

  10. Redistribution of Iron and Titanium in High-Pressure Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Crossley, Rosalind J.; Evans, Katy A.; Reddy, Steven M.; Lester, Gregory W.

    2017-11-01

    The redox state of iron in high-pressure serpentinites, which host a significant proportion of Fe3+ in subduction zones, can be used to provide an insight into iron cycling and constrain the composition of subduction zone fluids. In this study, we use oxide and silicate mineral textures, interpretation of mineral parageneses, mineral composition data, and whole rock geochemistry of high-pressure retrogressed ultramafic rocks from the Zermatt-Saas Zone to constrain the distribution of iron and titanium, and iron oxidation state. These data provide an insight on the oxidation state and composition of fluids at depth in subduction zones. Oxide minerals host the bulk of iron, particularly Fe3+. The increase in mode of magnetite and observation of magnetite within antigorite veins in the investigated ultramafic samples during initial retrogression is most consistent with oxidation of existing iron within the samples during the infiltration of an oxidizing fluid since it is difficult to reconcile addition of Fe3+ with the known limited solubility of this species. However, high Ti contents are not typical of serpentinites and also cannot be accounted for by simple mixing of a depleted mantle protolith with the nearby Allalin gabbro. Titanium-rich phases coincide with prograde metamorphism and initial exhumation, implying the early seafloor and/or prograde addition and late mobilization of Ti. If Ti addition has occurred, then the introduction of Fe3+, also generally considered to be immobile, cannot be disregarded. We explore possible transport vectors for Ti and Fe through mineral texture analysis.

  11. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    throughout Earth's history. 1 Tivey, M. K. Generation of Seafloor Hydrothermal Deposits. Oceanography 20, 50-66 (2007).2 Amini, M. et al. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45'N). Geochimica et Cosmochimica Acta 72, 4107-4122 (2008).

  12. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Yu, Zenghui; Li, Huaiming; Li, Mengxing; Zhai, Shikui

    2018-04-01

    30 sediments grabbed from 24 sites between the equator and 10°N along the Carlsberg Ridge (CR) in the northwest Indian Ocean has been analyzed for bulk chemical compositions. Hydrothermal components in the sediments are identified and characterized. They mainly occur at 6.3°N as sulfide debris and at 3.6°N as both sulfide and high temperature water-rock interaction products. The enrichment of chalcophile elements such as Zn, Cu, Pb and the depletion of alkalis metals such as K and Rb are the typical features of hydrothermal components. High U/Fe, low (Nd/Yb)N and negative Ce anomaly infer the uptake of seawater in the hydrothermal deposits by oxidizing after deposition. However, the general enrichment of Mn in hydrothermal plumed-derived materials is not found in the sediments, which may indicate the limited diffusion of fluids or plumes, at least in the direction along the Carlsberg spreading center. The hydrothermal components show their similarity to the hydrothermal deposits from the Indian Ocean Ridge. At 3.6°N ultramafic rocks or gabbroic intrusions, may be involved in the hydrothermal system.

  13. Reassessment of the volume of the Las Aguilas mafic-ultramafic intrusives, San Luis, Argentina, based on an alternative geophysical model

    NASA Astrophysics Data System (ADS)

    Claudia, Zaffarana; Silvana, Geuna; Stella, Poma; Alberto, Patiño Douce

    2011-10-01

    In the Sierra de San Luis, Central Argentina, a belt of small and discontinuous lenses of mafic-ultramafic rocks intrude a polydeformed basement and are thought to be the cause of a local increase of the metamorphic grade from amphibolite to granulite facies conditions. This assumption was especially based on forward modelling of a huge gravity anomaly centered over the Sierra de San Luis, which lead some workers to think that a vast volume of mafic-ultramafic rocks lay in shallow levels. Here, we propose an alternative model to explain this anomaly, in which the mafic-ultramafic intrusion is not the ultimate source. Therefore, there is no need to propose a bigger size than that observed in outcrops for the mafic-ultramafic bodies. The thermal effect of the emplacement of mafic-ultramafic sills and dikes on the host rocks was estimated applying a simple analytical solution (error function) for heating of a semi-infinite half space (the country rocks) in contact with a hotter sheet of finite thickness (the mafic-ultramafic intrusion). Results indicate that the effect of the intrusion of these hot mafic magmas is local, because beyond a few hundred meters from the contact zone temperatures never exceed 600 °C, and a few km from the intrusion they barely increase 50 °C relative to the initial temperature. These results, together with the preservation of primary igneous characteristics (such as rhythmic layering) being overprinted by metamorphic textural changes, indicate that the intrusion occurred before regional deformation. It is suggested that the thermal anomaly in the Pringles Metamorphic Complex could have been mainly caused by factors inherent to their geodynamic setting.

  14. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge.

    PubMed

    Schrenk, Matthew O; Kelley, Deborah S; Bolton, Sheryl A; Baross, John A

    2004-10-01

    The recently discovered Lost City Hydrothermal Field (LCHF) represents a new type of submarine hydrothermal system driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline hydrothermal environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we report the first analyses of microbial communities inhabiting carbonate chimneys awash in warm, high pH fluids at the LCHF and the predominance of a single group of methane-metabolizing Archaea. The predominant phylotype, related to the Methanosarcinales, formed tens of micrometre-thick biofilms in regions adjacent to hydrothermal flow. Exterior portions of active structures harboured a diverse microbial community composed primarily of filamentous Eubacteria that resembled sulphide-oxidizing species. Inactive samples, away from regions of hydrothermal flow, contained phylotypes related to pelagic microorganisms. The abundance of organisms linked to the volatile chemistry at the LCHF hints that similar metabolic processes may operate in the subseafloor. These results expand the range of known geological settings that support biological activity to include submarine hydrothermal systems that are not dependent upon magmatic heat sources.

  15. Controls of Plume Dispersal at the Slow Spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Walter, M.; Mertens, C.; Koehler, J.; Sueltenfuss, J.; Rhein, M.; Keir, R. S.; Schmale, O.; Schneider v. Deimling, J.; German, C. R.; Yoerger, D. R.; Baker, E. T.

    2011-12-01

    The slow-spreading Mid-Atlantic Ridges hosts a multitude of different types of hydrothermal systems. Here, we compare the fluxes and the plume dispersal at three high temperature sites located in very diverse settings at comparable depths (~3000m): The recently discovered sites Turtle Pits, and Nibelungen on the southern MAR, and the Logatchev field in the North Atlantic. Plume mapping for these sites on cruises between 2004 and 2009 consisted of CTD Towyo-, Yoyo,- and station work, including velocity profiling, as well as water sampling for analysis of trace gases (CH4, H2, 3He/4He) and metals; temperature measurements and fluid sampling at the vent sites were carried out with an ROV. The aim of this work is to gain a better understanding of how the setting of a vent site affects the dispersal of the particle plume, and what means can be used to infer possible locations of vent sites based on the hydrographic properties and plume observations, using high resolution bathymetric mapping and hydrographic information. The ultramafic-hosted Nibelungen site (8°18'S) consists of a single active smoking crater, along with several extinct smokers, which is located off-axis south of a non-transform offset. The setting is characterized by rugged topography, favorable for the generation of internal tides, internal wave breaking, and vertical mixing. Elevated mixing with turbulent diffusivities Kρ up to 0.1 m2 s-1, 3 to 4 orders of magnitude higher than open ocean values, was observed close to the vent site. The mixing as well as the flow field exhibited a strong tidal cycle; the plume dispersal is thus dominated by the fast and intermittent vertical exchange and characterized by small scale spatial and temporal variability. The Turtle Pits vent fields (4°48'S) are located on a sill in a north-south orientated rift valley. The site consists of three (known) high temperature fields: Turtle Pits, Comfortless Cove, and Red Lion. The particle plume is confined to the rift

  16. Microbial anaerobic methane cycling in the subseafloor at the Von Damm hydrothermal vent field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.

    2013-12-01

    The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other

  17. Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction - gas chomatography - mass spectrometry. Case study: the Rainbow field (36°N, Mid-Atlantic Ridge)

    PubMed Central

    2012-01-01

    The analysis of the dissolved organic fraction of hydrothermal fluids has been considered a real challenge due to sampling difficulties, complexity of the matrix, numerous interferences and the assumed ppb concentration levels. The present study shows, in a qualitative approach, that Stir Bar Sorptive Extraction (SBSE) followed by Thermal Desorption – Gas Chromatography – Mass Spectrometry (TD-GC-MS) is suitable for extraction of small sample volumes and detection of a wide range of volatile and semivolatile organic compounds dissolved in hydrothermal fluids. In a case study, the technique was successfully applied to fluids from the Rainbow ultramafic-hosted hydrothermal field located at 36°14’N on the Mid-Atlantic Ridge (MAR). We show that n-alkanes, mono- and poly- aromatic hydrocarbons as well as fatty acids can be easily identified and their retention times determined. Our results demonstrate the excellent repeatability of the method as well as the possibility of storing stir bars for at least three years without significant changes in the composition of the recovered organic matter. A preliminary comparative investigation of the organic composition of the Rainbow fluids showed the great potential of the method to be used for assessing intrafield variations and carrying out time series studies. All together our results demonstrate that SBSE-TD-GC-MS analyses of hydrothermal fluids will make important contributions to the understanding of geochemical processes, geomicrobiological interactions and formation of mineral deposits. PMID:23134621

  18. Effects of mother lode-type gold mineralization on 187Os/188Os and platinum group element concentrations in peridotite: Alleghany District, California

    USGS Publications Warehouse

    Walker, R.J.; Böhlke, J.K.; McDonough, W.F.; Li, Ji

    2007-01-01

    Osmium isotope compositions and concentrations of Re, platinum group elements (PGE), and Au were determined for host peridotites (serpentinites and barzburgites) and hydrothermally altered ultramafic wall rocks associated with Mother Lode-type hydrothermal gold-quartz vein mineralization in the Alleghany district, California. The host peridotites have Os isotope compositions and Re, PGE, and Au abundances typical of the upper mantle at their presumed formation age during the late Proterozoic or early Paleozoic. The hydrothermally altered rocks have highly variable initial Os isotope compositions with ??os, values (% deviation of 187OS/188OS from the chondritic average calculated for the approx. 120 Ma time of mineralization) ranging from -1.4 to -8.3. The lowest Os isotope compositions are consistent with Re depletion of a chondritic source (e.g., the upper mantle) at ca. 1.6 Ga. Most of the altered samples are enriched in Au and have depleted and fractionated abundances of Re and PGE relative to their precursor peridotites. Geoehemical characteristics of the altered samples suggest that Re and some PGE were variably removed from the ultramafic rocks during the mineralization event. In addition to Re, the Pt and Pd abundances of the most intensely altered rocks appear to have been most affected by mineralization. The 187Os-depleted isotopic compositions of some altered rocks are interpreted to be a result of preferential 187Os loss via destruction of Re-rich phases during the event. For these rocks, Os evidently is not a useful tracer of the mineralizing fluids. The results do, however, provide evidence for differential mobility of these elements, and mobility of 187Os relative to the initial bulk Os isotope composition during hydrothermal metasomatic alteration of ultramafic rocks. ?? 2007 Society of Economic Geologists, Inc.

  19. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise

    PubMed Central

    German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M. V.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J. M.; de Lépinay, B. Mercier; Nakamura, K.; Seewald, J. S.; Smith, J. L.; Sylva, S. P.; Van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.

    2010-01-01

    Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the ∼110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at ∼5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity—all in close proximity. PMID:20660317

  20. The Ultramafic Complex of Reinfjord: from the Magnetic Petrology to the Interpretation of the Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.

    2017-04-01

    A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local

  1. Inherited Fe and Ti electron transition spectroscopic features in altered ultramafic-carbonatite intrusives

    NASA Astrophysics Data System (ADS)

    Shavers, E. J.; Ghulam, A.; Encarnacion, J. P.

    2016-12-01

    Spectroscopic reflectance in the visible to short-wave infrared region is an important tool for remote geologic mapping and is applied at scales from satellite to field measurements. Remote geologic mapping is challenging in regions subject to significant surficial weathering. Here we identify absorption features found in altered volcanic pipes and dikes in the Avon Volcanic District, Missouri, that are inherited from the original ultramafic and carbonatite lithology. Alteration ranges from small degree hydrothermal alteration to extensive laterization. The absorption features are three broad minima centered near 690, 890, and 1100 nm. Features in this region are recognized to be caused by ferric and ferrous Fe minerals including olivine, carbonates, chlorite, and goethite all of which are found among the Avon pipes and dikes that are in various stages of alteration. Iron-related intervalence charge transfer and crystal field perturbations of ions are the principal causes of the spectroscopic features in the visible to near-infrared region yet spectra are also distorted by factors like texture and the presence of opaque minerals known to reduce overall reflectance. In the Avon samples, Fe oxide content can reach >15 wt% leading to prominent absorption features even in the less altered ultramafics with reflectance curve maxima as low as 5%. The exaggerated minima allow the altered intrusive rocks to stand out among other weathered lithologies that will often have clay features in the region yet have lower iron concentration. The absorption feature centered near 690 nm is particularly noteworthy. Broad mineral-related absorption features centered at this wavelength are rare but have been linked to Ti3+ in octahedral coordination. The reduced form of Ti is not common in surface lithologies. Titanium-rich andradite has Ti3+ in the octahedral position, is resistant to weathering, is found among the Avon lithologies including ultramafic, carbonatite, and carbonated

  2. Ponderosa pine progenies: differential response to ultramafic and granitic soils

    Treesearch

    James L. Jenkinson

    1974-01-01

    Progenies of nine ponderosa pines native to one granitic and several ultramafic soils in the northern Sierra Nevada were grown on both soil types in a greenhouse. The progenies differed markedly in first-year growth on infertile ultramafic soils, but not on a fertile granitic soil. Growth differences between progenies were primarily related to differences in calcium...

  3. Depth-Dependent Permeability and Heat Output at Basalt-Hosted Hydrothermal Systems Across Mid-Ocean Ridge Spreading Rates

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Olive, Jean-Arthur; Crone, Timothy J.; Sohn, Robert A.

    2018-04-01

    The permeability of the oceanic crust exerts a primary influence on the vigor of hydrothermal circulation at mid-ocean ridges, but it is a difficult to measure parameter that varies with time, space, and geological setting. Here we develop an analytical model for the poroelastic response of hydrothermal exit-fluid velocities and temperatures to ocean tidal loading in a two-layered medium to constrain the discharge zone permeability of each layer. The top layer, corresponding to extrusive lithologies (e.g., seismic layer 2A) overlies a lower permeability layer, corresponding to intrusive lithologies (e.g., layer 2B). We apply the model to three basalt-hosted hydrothermal fields (i.e., Lucky Strike, Main Endeavour and 9°46'N L-vent) for which the seismic stratigraphy is well-established, and for which robust exit-fluid temperature data are available. We find that the poroelastic response to tidal loading is primarily controlled by layer 2A permeability, which is about 3 orders of magnitude higher for the Lucky Strike site (˜10-10 m2) than the 9°46'N L-vent site (˜10-13 m2). By contrast, layer 2B permeability does not exert a strong control on the poroelastic response to tidal loading, yet strongly modulates the heat output of hydrothermal discharge zones. Taking these constraints into account, we estimate a plausible range of layer 2B permeability between ˜10-15 m2 and an upper-bound value of ˜10-14 (9°46'N L-vent) to ˜10-12 m2 (Lucky Strike). These permeability structures reconcile the short-term response and long-term thermal output of hydrothermal sites, and provide new insights into the links between permeability and tectono-magmatic processes along the global mid-ocean ridge.

  4. Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages

    USGS Publications Warehouse

    Ehlmann, Bethany L.; Mustard, John F; Clark, Roger N.; Swayze, Gregg A.; Murchie, Scott L.

    2011-01-01

    The enhanced spatial and spectral resolution provided by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) has led to the discovery of numerous hydrated silicate minerals on Mars, particularly in the ancient, cratered crust comprising the southern highlands. Phases recently identified using visible/near-infrared spectra include: smectite, chlorite, prehnite, high-charge phyllosilicates (illite or muscovite), the zeolite analcime, opaline silica, and serpentine. Some mineral assemblages represent the products of aqueous alteration at elevated temperatures. Geologic occurrences of these mineral assemblages are described using examples from west of the Isidis basin near the Nili Fossae and with reference to differences in implied temperature, fluid composition, and starting materials during alteration. The alteration minerals are not distributed homogeneously. Rather, certain craters host distinctive alteration assemblages: (1) prehnite-chlorite-silica, (2) analcime-silica-Fe,Mg-smectite-chlorite, (3) chlorite-illite (muscovite), and (4) serpentine, which furthermore has been found in bedrock units. These assemblages contrast with the prevalence of solely Fe,Mg-smectites in most phyllosilicate-bearing terrains on Mars, and they represent materials altered at depth then exposed by cratering. Of the minerals found to date, prehnite provides the clearest evidence for subsurface, hydrothermal/metamorphic alteration, as it forms only under highly restricted conditions (T = 200–400ºC). Multiple mechanisms exist for forming the other individual minerals; however, the most likely formation mechanisms for the characteristic mineralogic assemblages observed are, for (1) and (2), low-grade metamorphism or hydrothermal (<400ºC) circulation of fluids in basalt; for (3), transformation of trioctahedral smectites to chlorite and dioctahedral smectites to illite during diagenesis; and for (4), low-grade metamorphism or

  5. Geophysical delineation of Mg-rich ultramafic rocks for mineral carbon sequestration

    USGS Publications Warehouse

    McCafferty, Anne E.; Van Gosen, Bradley S.; Krevor, Sam C.; Graves, Chris R.

    2009-01-01

    This presentation covers three general topics: (1) description of a new geologic compilation of the United States that shows the location of magnesium-rich ultramafic rocks in the conterminous United States; (2) conceptual illustration of the potential ways that ultramafic rocks could be used to sequester carbon dioxide; and (3) description of ways to use geophysical data to refine and extend the geologic mapping of ultramafic rocks and to better characterize their mineralogy.The geophysical focus of this research is twofold. First, we illustrate how airborne magnetic data can be used to map the shallow subsurface geometry of ultramafic rocks for the purpose of estimating the volume of rock material available for mineral CO2 sequestration. Secondly, we explore, on a regional to outcrop scale, how magnetic mineralogy, as expressed in magnetic anomalies, may vary with magnesium minerals, which are the primary minerals of interest for CO2 sequestration. 

  6. Experimental Constraints on the Origin of Lunar High-Ti Ultramafic Glasses

    NASA Technical Reports Server (NTRS)

    Wagner, T. P.; Grove, T. L.

    1996-01-01

    Phase equilibria and dissolution rate experiments are used to develop a petrogenetic model for the high-Ti lunar ultramafic glasses. Near-liquidus phase relations of the Apollo 14 black glass, the most Ti-rich lunar ultramafic glass, are determined to 2.2-GPa. The liquidus is saturated with Cr-spinel at 1-atm, olivine between approximately 0.5- and 1.5-GPa, and low-Ca pyroxene + Cr-spinel above 1.5-GPa. Ilmenite does not crystallize near the liquidus and implies that high-Ti ultramafic glasses are not produced by melting of an ilmenite-saturated source. We infer that high-Ti ultramafic magmas are derived from low-Ti ultramafic parent magmas by assimilation of ilmenite +/- clinopyroxene +/- urKREEP +/- pigeonite in the shallow lunar interior. Heat is provided by adiabatic ascent of the low-Ti ultramafic primary magmas from the deeper lunar interior and crystallization of olivine during assimilation. The assimilation reaction is modeled by mass balance and requires that ilmenite and high-Ca pyroxene are assimilated in a approximately 3:1 ratio, a much higher ratio than the proportion in which these minerals are thought to exist in the lunar interior. In an effort to understand the kinetic controls on this reaction, the dissolution of ilmenite is examined experimentally in both low- and high-Ti lunar magmas. We find that ilmenite dissolves incongruently to Cr-spinel and a high-Ti melt. The dissolution reaction proceeds by a diffusion-controlled mechanism. An assimilation model for the origin of high-Ti melts is developed that leaves the magma ocean cumulates in their initial stratigraphic positions and obviates source hybridization models that require lunar overturn.

  7. Mathematical Models of Seafloor Hydrothermal Systems Driven by Serpentinization of Peridotite

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Rona, P. A.; Germanovich, L. N.

    2001-12-01

    Most seafloor hydrothermal systems are driven by heat transfer from subsurface magma bodies. At slow spreading ridges of the Atlantic and Indian oceans, however, magma supply is low; and tectonic activity brings mantle rocks to shallow depths in the crust. Then, the heat of formation released upon serpentinization of peridotite provides the energy source for hydrothermal circulation. This latter class of system has been relatively unstudied, but recent discoveries of peridotite-hosted hydrothermal systems along the Mid-Atlantic Ridge suggest that such systems may play an important role in geochemical cycling and biogeochemical processes. The likelihood that peridotite-hosted hydrothermal systems was more prevalent during the Archean further suggests that such systems may have played a role in the origin of life. We present the first mathematical models of seafloor hydrothermal systems driven by heat released upon serpentinization of peridotite. We assume seawater circulates through a major crack network in the host-peridotite and that cooling of the host-rock leads to the formation of microcracks through which the fluid infiltrates. Reaction of the fluid in microcracks with the host rock results in serpentinization and the heat released upon serpentinization is transported to the seafloor by the fluid circulating in the main crack network. The temperature and heat output of the resulting hydrothermal system is a function of the main network permeability and the rate at which the serpentinization reaction proceeds via diffusion and propagation of the microcracks. Although the temperature of such a system can be quite variable, vent temperatures between 10° C and 100° C are likely for typical crustal parameters.

  8. Magmatic structure and geochemistry of the Luanga Mafic-Ultramafic Complex: Further constraints for the PGE-mineralized magmatism in Carajás, Brazil

    NASA Astrophysics Data System (ADS)

    Mansur, Eduardo Teixeira; Ferreira Filho, Cesar Fonseca

    2016-12-01

    The Luanga Complex is part of the Serra Leste Magmatic Suite, a cluster of PGE-mineralized mafic-ultramafic intrusions located in the northeastern portion of the Carajás Mineral Province. The Luanga Complex is a medium-sized layered intrusion consisting of three main zones: i. the lower Ultramafic Zone comprising ultramafic adcumulates (peridotite), ii. the Transition Zone comprising interlayered ultramafic and mafic cumulates (harzburgite, orthopyroxenite and norite) and iii. the upper Mafic Zone comprising a monotonous sequence of mafic cumulates (norite) with minor orthopyroxenite layers. Several PGE-mineralized zones occur in the Transition Zone but the bulk of the PGE resources are hosted within a 10-50 meter thick interval of disseminated sulfides at the contact of the Ultramafic and Transition Zones. The compositional range of cumulus olivine (Fo78.9-86.4) is comparable to those reported for layered intrusions originated from moderate primitive parental magmas. Mantle normalized alteration-resistant trace element patterns of noritic rocks are fractionated, as indicated by relative enrichment in LREE and Th, with negative Nb and Ta anomalies, suggesting assimilation of older continental crust. Ni contents in olivine in the Luanga Complex (up to 7500 ppm) stand among the highest values reported in layered intrusions globally. The highest Ni contents in olivine in the Luanga Complex occur in distinctively PGE enriched (Pt + Pd > 1 ppm) intervals of the Transition Zone, in both sulfide-poor and sulfide bearing (1-3 vol.%) rocks. The origin of the PGE- and Ni-rich parental magma of the Luanga Complex is discussed considering the upgrading of magmas through dissolution of previously formed Ni-rich sulfide melts. Our results suggest that high Ni contents in olivine and/or orthopyroxene provide an additional exploration tool for Ni-PGE deposits, particularly useful for target selection in large magmatic provinces.

  9. Mineralogy, geochemistry, and Sr-Pb isotopic geochemistry of hydrothermal massive sulfides from the 15.2°S hydrothermal field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Li, Xiaohu; Chu, Fengyou; Li, Zhenggang; Wang, Jianqiang; Yu, Xing; Bi, Dongwei

    2018-04-01

    The 15.2°S hydrothermal field is located at 15.2°S, 13.4°W within the Mid-Atlantic Ridge (MAR) and was initially discovered during Cruise DY125-22 by the Chinese expedition during R/V Dayangyihao in 2011. Here, we provide detailed mineralogical, bulk geochemical, and Sr-Pb isotopic data for massive sulfides and basalts from the 15.2°S hydrothermal field to improve our understanding of the mineral compositions, geochemical characteristics, type of hydrothermal field, and the source of metals present at this vent site. The samples include 14 massive sulfides and a single basalt. The massive sulfides are dominated by pyrite with minor amounts of sphalerite and chalcopyrite, although a few samples also contain minor amounts of gordaite, a sulfate mineral. The sulfides have bulk compositions that contain low concentrations of Cu + Zn (mean 7.84 wt%), Co (mean 183 ppm), Ni (mean 3 ppm), and Ba (mean 16 ppm), similar to the Normal Mid-Ocean Ridge Basalt (N-MORB) type deposits along the MAR but different to the compositions of the Enriched-MORB (E-MORB) and ultramafic type deposits along this spreading ridge. Sulfides from the study area have Pb isotopic compositions (206Pb/204Pb = 18.4502-18.4538, 207Pb/204Pb = 15.4903-15.4936, 208Pb/204Pb = 37.8936-37.9176) that are similar to those of the basalt sample (206Pb/204Pb = 18.3381, 207Pb/204Pb = 15.5041, 208Pb/204Pb = 37.9411), indicating that the metals within the sulfides were derived from leaching of the surrounding basaltic rocks. The sulfides also have 87Sr/86Sr ratios (0.708200-0.709049) that are much higher than typical MAR hydrothermal fluids (0.7028-0.7046), suggesting that the hydrothermal fluids mixed with a significant amount of seawater during massive sulfide precipitation.

  10. Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.

    2017-12-01

    The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity

  11. Metasomatized and hybrid rocks associated with a Palaeoarchaean layered ultramafic intrusion on the Johannesburg Dome, South Africa

    NASA Astrophysics Data System (ADS)

    Anhaeusser, Carl R.

    2015-02-01

    The Johannesburg Dome occurs as an inlier of Palaeoarchaean-Mesoarchaean granitic rocks, gneisses and greenstones in the central part of the Kaapvaal Craton, South Africa. In the west-central part of the dome a large greenstone remnant is surrounded and intruded by ca. 3114 Ma porphyritic granodiorites. Referred to locally as the Zandspruit greenstone remnant, it consists of a shallow-dipping ultramafic complex comprised of a number of alternating layers of harzburgite and pyroxenite. The ultramafic rocks are metamorphosed to greenschist grade and have largely been altered to serpentinite and amphibolite (tremolite-actinolite). In the granite-greenstone contact areas the porphyritic granodiorite has partially assimilated the greenstones producing a variety of hybrid rocks of dioritic composition. The hybrid rocks contain enclaves or xenoliths of greenstone and, in places, orbicular granite structures. Particularly noteworthy is an unusual zone of potash-metasomatized rock, occurring adjacent to the porphyritic granodiorite, consisting dominantly of biotite and lesser amounts of carbonate, quartz and sericite. Large potash-feldspar megacrysts and blotchy aggregated feldspar clusters give the rocks a unique texture. An interpretation placed on these rocks is that they represent metasomatized metapyroxenites of the layered ultramafic complex. Field relationships and geochemical data suggest that the rocks were influenced by hydrothermal fluids emanating from the intrusive porphyritic granodiorite. The adjacent greenstones were most likely transformed largely by the process of infiltration metasomatism, rather than simple diffusion, as CO2, H2O as well as dissolved components were added to the greenstones. Element mobility appears to have been complex as those generally regarded as being immobile, such as Ti, Y, Zr, Hf, Ta, Nb, Th, Sc, Ni, Cr, V, and Co, have undergone addition or depletion from the greenstones. Relative to all the rocks analyzed from the greenstones

  12. Earthquakes in the Mantle? Insights from Ultramafic Pseudotachylytes

    NASA Astrophysics Data System (ADS)

    Meado, A.; Ferre, E. C.; Ueda, T.; Ashwal, L. D.; Deseta, N.

    2015-12-01

    Deep earthquakes in subduction/collision zones may originate from mechanical failure of ultramafic rocks at mantle depths. Fault pseudotachylytes in peridotites have been attributed to seismic slip at depths >30 km. However, the possibility of frictional melting at shallower depths still exist. While pristine mantle rocks typically lack magnetite, postseismic serpentinization would likely involve formation of abundant multi-domain (MD) magnetite. Single-domain (SD) to pseudo-single domain (PSD) magnetite may also form in pseudotachylytes through breakdown of mafic silicates. Magnetite has a large magnetic susceptibility (Km). MD magnetite shows low magnetic remanence / magnetic saturation ratios (Mr/Ms) compared to SD-PSD magnetite. The formation of coseismic magnetite however would depend on fO2. Hence, in unserpentinized ultramafic pseudotachylytes, magnetite would form preferentially under shallow, high fO2 conditions. Coseismically deformed magnetite would result in a high anisotropy of magnetic susceptibility (AMS). Here, we present a predictive model of the magnetic properties and magnetic fabrics of ultramafic pseudotachylytes formed under four conditions: i) deep seismic slip and no syn- or postseismic serpentinization: low Km (<600 . 10^-6 [SI]), low Mr/Ms (<0.1), and low AMS (<1.1) ii) deep seismic slip followed by static serpentinization: high Km (>3,000 . 10^-6 [SI]), low Mr/Ms (<0.1), low AMS (<1.1) iii) deep or shallow seismic slip in previously serpentinized peridotites: high Km (>3,000 . 10^-6 [SI]), moderate Mr/Ms (0.1-0.5), high AMS (>1.5) iv) shallow seismic slip with no serpentinization: moderate Km (600-3,000 . 10^-6 [SI]), high Mr/Ms (>0.5), moderate AMS (1.1-1.5) We test these models using samples from the Balmuccia Massif (Italy) and the Schistes Lustrés (Corsica). These models may provide new constrains for ultramafic pseudotachylytes regarding their depth of formation and the timing of serpentinization.

  13. Ultramafic rocks of the western Idaho suture zone: Asbestos Peak and Misery Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godchaux, M.M.; Bonnichsen, B.

    1993-04-01

    The Western Idaho Ultramafic Belt extends northward from the town of Weiser to the northern end of Dworshak Reservoir; in its northern portion most of the ultramafic bodies are localized along the suture zone where the Mesozoic oceanic accreted terranes meet the continental craton. Of the twenty bodies investigated, all are small, all are in fault contact with their metavolcanic and metasedimentary host rocks, all have been metamorphosed, and all display deformational fabrics in at least some portion of the outcrop area, suggesting that deformation continued after peak metamorphism. The degree of metamorphism ranges from incipient serpentinization to attainment ofmore » equilibrium in the upper amphibolite facies. Some bodies have been intruded by granitic dikes or pegmatite veins after emplacement, and have locally undergone contact metasomatism. Two particularly complex bodies, Asbestos Peak and Misery Ridge, were chosen for detailed petrographic and chemical study. Asbestos Peak is composed mostly of decussate anthophyllite-talc rock containing isolated patches of harzburgite protolith, and has blackwall border zones. Misery Ridge is composed mostly of coarse-grained sheared tremolite-talc schist without remnant protolith, and lacks true blackwall zones. Both bodies exhibit an unusual and enigmatic hornblende-poikiloblastic garnet-green spinel-skeletal ilmenite assemblage, present in some places as well-defined border zones and in other places as cross-cutting bodies.« less

  14. Three-Dimensional Seismic Structure of the Mid-Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal Processes in the Rainbow Area

    NASA Astrophysics Data System (ADS)

    Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.

    2017-12-01

    To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.

  15. Sulfur Metabolizing Microbes Dominate Microbial Communities in Andesite-Hosted Shallow-Sea Hydrothermal Systems

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan’s coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH4) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260

  16. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    PubMed

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  17. The chemistry of hydrothermal magnetite: a review

    USGS Publications Warehouse

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  18. Potential Hydrogen Yields from Ultramafic Rocks of the Coast Range Ophiolite and Zambales Ophiolite: Inferences from Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stander, A.; Nelms, M.; Wilkinson, K.; Dyar, M. D.; Cardace, D.

    2013-12-01

    The reduced status of mantle rocks is a possible controller and indicator of deep life habitat, due to interactions between water and ultramafic (Fe, Mg-rich) minerals, which, under reducing conditions, can yield copious free hydrogen, which is an energy source for rock-hosted chemosynthetic life. In this work, Mössbauer spectroscopy was used to parameterize the redox status of Fe in altering peridotites of the Coast Range Ophiolite (CRO) in California, USA and Zambales Ophiolite (ZO) in the Philippines. Fe-bearing minerals were identified and data were collected for the percentages of Fe(III)and Fe(II)and bulk Fe concentration. Thin section analysis shows that relict primary olivines and spinels generally constitute a small percentage of the ZO and CRO rock, and given satisfactory estimates of the volume of the ultramafic units of the ZO and CRO, a stoichiometric H2 production can be estimated. In addition, ZO serpentinites are ~63,000 ppm Fe in bulk samples; they contain ~41-58% Fe(III)and ~23-34% Fe(II) in serpentine and relict minerals along with ~8-30% of the total Fe as magnetite. CRO serpentinites are ~42,000 ppm Fe in bulk samples; they contain ~15-50% Fe(III), ~22-88% Fe(II) in serpentine and relict minerals, and ~0-52% of total Fe is in magnetite (Fe(II)Fe(III)2O4). Assuming stoichiometric production of H2, and given the following representation of serpentinization 2(FeO)rock + H2O → (Fe2O3)rock +H2, we calculated the maximum quantity of hydrogen released and yet to be released through the oxidation of Fe(II). Given that relatively high Fe(III)/Fetotal values can imply higher water:rock ratios during rock alteration (Andreani et al., 2013), we can deduce that ZO ultramafics in this study have experienced a net higher water:rock ratio than CRO ultramafics. We compare possible H2 yields and contrast the tectonic and alteration histories of the selected ultramafic units. (M. Andreani, M. Muñoz, C. Marcaillou, A. Delacour, 2013, μXANES study of iron

  19. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  20. Hydrothermal Upflow, Serpentinization and Talc Alteration Associated with a High Angle Normal Fault Cutting an Oceanic Detachment, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.

    2017-12-01

    Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment

  1. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth

  2. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    DOE PAGES

    Garcia del Real, Pablo; Maher, Kate; Kluge, Tobias; ...

    2016-08-19

    Here, magnesium carbonate minerals produced by reaction of H 2O–CO 2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including deposition of ore-grade, massive-vein cryptocrystalline magnesite; formation of hydrous magnesium carbonates in weathering environments; and metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO 2 into magnesium carbonates in these settings is difficult because the fluids are usually notmore » preserved.« less

  3. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia del Real, Pablo; Maher, Kate; Kluge, Tobias

    Here, magnesium carbonate minerals produced by reaction of H 2O–CO 2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including deposition of ore-grade, massive-vein cryptocrystalline magnesite; formation of hydrous magnesium carbonates in weathering environments; and metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO 2 into magnesium carbonates in these settings is difficult because the fluids are usually notmore » preserved.« less

  4. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation

    USGS Publications Warehouse

    Palandri, J.L.; Reed, M.H.

    2004-01-01

    In a series of water-rock reaction simulations, we assess the processes of serpentinization of harzburgite and related calcium metasomatism resulting in rodingite-type alteration, and seafloor carbonate chimney precipitation. At temperatures from 25 to 300??C (P = 10 to 100 bar), using either fresh water or seawater, serpentinization simulations produce an assemblage commonly observed in natural systems, dominated by serpentine, magnetite, and brucite. The reacted waters in the simulations show similar trends in composition with decreasing water-rock ratios, becoming hyper-alkaline and strongly reducing, with increased dissolved calcium. At 25??C and w/r less than ???32, conditions are sufficiently reducing to yield H2 gas, nickel-iron alloy and native copper. Hyperalkalinity results from OH- production by olivine and pyroxene dissolution in the absence of counterbalancing OH- consumption by alteration mineral precipitation except at very high pH; at moderate pH there are no stable calcium minerals and only a small amount of chlorite forms, limited by aluminum, thus allowing Mg2+ and Ca2+ to accumulate in the aqueous phase in exchange for H+. The reducing conditions result from oxidation of ferrous iron in olivine and pyroxene to ferric iron in magnetite. Trace metals are computed to be nearly insoluble below 300??C, except for mercury, for which high pH stabilizes aqueous and gaseous Hg??. In serpentinization by seawater at 300??C, Ag, Au, Pd, and Pt may approach ore-forming concentrations in sulfide complexes. Simulated mixing of the fluid derived from serpentinization with cold seawater produces a mineral assemblage dominated by calcite, similar to recently discovered submarine, ultramafic rock-hosted, carbonate mineral deposits precipitating at hydrothermal vents. Simulated reaction of gabbroic or basaltic rocks with the hyperalkaline calcium- and aluminum-rich fluid produced during serpentinization at 300??C yields rodingite-type mineral assemblages, including

  5. Diverse styles of submarine venting on the ultra-slow spreading Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J.; Mercier de Lepinay, B. F.; Nakamura, K.; Seewald, J.; Smith, J.; Sylva, S.; van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.

    2010-12-01

    Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global Mid Ocean Ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultra-slow spreading ridges which were the last to be demonstrated to host high-temperature venting, but may host systems particularly relevant to pre-biotic chemistry and the origins of life. Here we report first evidence for diverse and very deep hydrothermal vents along the ~110 km long, ultra-slow spreading Mid-Cayman Rise collected using a combination of CTD-rosette operations and dives of the Hybrid Remotely Operated Vehicle (HROV) Nereus in 2009 followed by shore based work-up of samples for geochemical and microbiological analyses. Our data indicate that the Mid-Cayman Rise hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultra-mafic systems and, at ~5000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent-types identified here and their relative geographic isolation make the Mid-Cayman Rise unique in the oceans. These new sites offer prospects for: an expanded range of vent-fluid compositions; varieties of abiotic organic chemical synthesis and extremophile microorganisms; and unparalleled faunal biodiversity - all in close proximity.

  6. Linking magnetic fabric and cumulate texture in layered mafic-ultramafic intrusions (Invited)

    NASA Astrophysics Data System (ADS)

    O Driscoll, B.; Stevenson, C.; Magee, C.

    2013-12-01

    Research on the magnetic fabrics of igneous rocks, pioneered by Balsley and Buddington[1] and Khan[2], has greatly contributed to our understanding of magma dynamics in lava flows, sheet intrusions and plutons over the past five decades. However, considerably few magnetic fabric studies have focused on layered mafic-ultramafic intrusions, particularly ';lopolithic' intrusions, despite the fact that such rocks may preserve a large range of small-scale kinematic structures potentially related to important magma chamber processes. This may be partly due to the fact that mafic-ultramafic cumulates commonly exhibit visible planar fabrics (mineral lamination), as well as compositional layering, in contrast to the frequent absence of such features in granite bodies or fine-grained mafic lava flows. Indeed, debates in the 1970s and 1980s on the development of layering and mineral fabrics in mafic-ultramafic intrusions, focused around the crystal settling versus in situ crystallisation paradigms, are classic in the subject of igneous petrology. Central to these debates is the notion that a wide range of magma chamber processes occur in layered mafic-ultramafic intrusions that are not frequently considered to occur in their relatively viscous granitic counterparts; in essence, the latter have historically been viewed as much more likely to ';freeze-in' a primary magma flow fabric whilst mafic-ultramafic intrusions are subjected to a more protracted solidification history. This wide array of potential initial sources for layering and mineral fabrics in layered mafic-ultramafic intrusions, together with the possible modification of textures at the postcumulus stage, demands a cautious application of any fabric analysis and presents a problem well-suited to interrogation by the AMS technique. The purpose of this contribution is to provide specific context on the application of AMS to elucidating the formation of cumulates in layered mafic-ultramafic intrusions. Examples of AMS

  7. Local Seismicity of the Rainbow Massif on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Horning, G.; Sohn, R. A.; Canales, J. P.; Dunn, R. A.

    2018-02-01

    The Rainbow massif, an oceanic core complex located in a nontransform discontinuity on the Mid-Atlantic Ridge (36°N), is notable for hosting high-temperature hydrothermal discharge through ultramafic rocks. Here we report results from a 9 month microearthquake survey conducted with a network of 13 ocean bottom seismometers deployed on and around the Rainbow massif as part of the MARINER experiment in 2013-2014. High rates ( 300 per day) of low-magnitude (average ML 0.5) microearthquakes were detected beneath the massif. The hypocenters do not cluster along deeply penetrating fault surfaces and do not exhibit mainshock/aftershock sequences, supporting the hypothesis that the faulting associated with the exhumation of the massif is currently inactive. Instead, the hypocenters demarcate a diffuse zone of continuous, low-magnitude deformation at relatively shallow (< 3 km) depths beneath the massif, sandwiched in between the seafloor and seismic reflectors interpreted to be magmatic sills driving hydrothermal convection. Most of the seismicity is located in regions where seismic refraction data indicate serpentinized ultramafic host rock, and although the seismic network we deployed was not capable of constraining the focal mechanism of most events, our analysis suggests that serpentinization may play an important role in microearthquake generation at the Rainbow massif.

  8. Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.

    2012-12-01

    On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.

  9. Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.

    2012-12-01

    In hard rock seafloor environments, fluids emanating from hydrothermal vents are one of the best windows into the subseafloor and its resident microbial community. The functional consequences of an extensive population of microbes living in the subseafloor remains unknown, as does our understanding of how these organisms interact with one another and influence the biogeochemistry of the oceans. Here we report the abundance, activity, and diversity of microbes in venting fluids collected from two newly discovered deep-sea hydrothermal vents along the ultra-slow spreading Mid-Cayman Rise (MCR). Fluids for geochemical and microbial analysis were collected from the Von Damm and Piccard vent fields, which are located within 20 km of one another, yet have extremely different thermal, geological, and depth regimes. Geochemical data indicates that both fields are highly enriched in volatiles, in particular hydrogen and methane, important energy sources for and by-products of microbial metabolism. At both sites, total microbial cell counts in the fluids ranged in concentration from 5 x 10 4 to 3 x 10 5 cells ml-1 , with background seawater concentrations of 1-2 x 10 4 cells ml-1 . In addition, distinct cell morphologies and clusters of cells not visible in background seawater were seen, including large filaments and mineral particles colonized by microbial cells. These results indicate local enrichments of microbial communities in the venting fluids, distinct from background populations, and are consistent with previous enumerations of microbial cells in venting fluids. Stable isotope tracing experiments were used to detect utilization of acetate, formate, and dissolve inorganic carbon and generation of methane at 70 °C under anaerobic conditions. At Von Damm, a putatively ultra-mafic hosted site located at ~2200 m with a maximum temperature of 226 °C, stable isotope tracing experiments indicate methanogenesis is occurring in most fluid samples. No activity was detected

  10. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  11. Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Jenner, George A.; Foley, Stephen F.; Heaman, Larry; Besserer, Dean; Kjarsgaard, Bruce A.; Ryan, Bruce

    2004-09-01

    Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum. The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10-25 wt.%), CaO (5-20 wt.%), TiO2 (3-10 wt.%) and K2O (1-4 wt.%), but low SiO2 (22-37 wt.%) and Al2O3 (2-6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation. The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and

  12. Petrogenesis of Late Triassic ultramafic rocks from the Andong Ultramafic Complex, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Nak Kyu; Choi, Sung Hi

    2016-11-01

    To constrain the source and tectonomagmatic processes that gave rise to the Andong Ultramafic Complex (AUC) in South Korea, we determined the clinopyroxene Sr-Nd-Hf-Pb isotope and trace element compositions as well as the whole-rock and mineral compositions for the Late Triassic (ca. 222 Ma) ultramafic rocks from the complex. They are composed of dunites, wehrlites, pyroxene/hornblende peridotites, and pyroxenites. The constituent minerals are olivines, diopsides/augites, bronzites, calcic-amphiboles, and spinels. Clinopyroxenes exhibit a convex-upward rare earth element (REE) pattern, with an apex at Sm. The whole-rock compositions plot away from the residual mantle peridotite trends, with variable but lower Al2O3 and SiO2 contents, and higher CaO, FeO*, and TiO2 contents at a given value of MgO. Estimated equilibrium temperatures for the AUC rocks range from 420 to 780 °C. These observations, together with the absence of reaction or melt impregnation textures, indicate that the AUC ultramafic rocks are magmatic cumulates emplaced within the crust rather than residual mantle or mantle-melt reaction products. The AUC clinopyroxenes have compositions intermediate between the oceanic island basalt- and arc basalt-related cumulate clinopyroxenes. The AUC spinels have lower Cr#s than the arc-related magmatic cumulate spinels. They plot within the field for spinels from mid-ocean ridge basalts (MORB) on a TiO2 vs. Cr# diagram. However, the AUC clinopyroxenes have much more radiogenic Sr ([87Sr/86Sr]i = 0.70554 to 0.70596), unradiogenic Nd ([εNd]i = - 1.0 to - 0.3), and Hf ([εHf]i = + 4.4 to + 6.6) isotopic compositions than those of the MORB or fore-arc basalts (FAB). In the Sr-Nd isotopic correlation diagram, the AUC clinopyroxenes plot in the enriched extension of the "mantle array". They also have more elevated 207Pb/204Pb ratios at a given 206Pb/204Pb than those of the MORB or FAB. In the Nd-Hf isotope space, the AUC clinopyroxenes have somewhat elevated 176Hf

  13. Diversity of Rare and Abundant Prokaryotic Phylotypes in the Prony Hydrothermal Field and Comparison with Other Serpentinite-Hosted Ecosystems.

    PubMed

    Frouin, Eléonore; Bes, Méline; Ollivier, Bernard; Quéméneur, Marianne; Postec, Anne; Debroas, Didier; Armougom, Fabrice; Erauso, Gaël

    2018-01-01

    The Bay of Prony, South of New Caledonia, represents a unique serpentinite-hosted hydrothermal field due to its coastal situation. It harbors both submarine and intertidal active sites, discharging hydrogen- and methane-rich alkaline fluids of low salinity and mild temperature through porous carbonate edifices. In this study, we have extensively investigated the bacterial and archaeal communities inhabiting the hydrothermal chimneys from one intertidal and three submarine sites by 16S rRNA gene amplicon sequencing. We show that the bacterial community of the intertidal site is clearly distinct from that of the submarine sites with species distribution patterns driven by only a few abundant populations, affiliated to the Chloroflexi and Proteobacteria phyla. In contrast, the distribution of archaeal taxa seems less site-dependent, as exemplified by the co-occurrence, in both submarine and intertidal sites, of two dominant phylotypes of Methanosarcinales previously thought to be restricted to serpentinizing systems, either marine (Lost City Hydrothermal Field) or terrestrial (The Cedars ultrabasic springs). Over 70% of the phylotypes were rare and included, among others, all those affiliated to candidate divisions. We finally compared the distribution of bacterial and archaeal phylotypes of Prony Hydrothermal Field with those of five previously studied serpentinizing systems of geographically distant sites. Although sensu stricto no core microbial community was identified, a few uncultivated lineages, notably within the archaeal order Methanosarcinales and the bacterial class Dehalococcoidia (the candidate division MSBL5) were exclusively found in a few serpentinizing systems while other operational taxonomic units belonging to the orders Clostridiales, Thermoanaerobacterales , or the genus Hydrogenophaga , were abundantly distributed in several sites. These lineages may represent taxonomic signatures of serpentinizing ecosystems. These findings extend our current

  14. Metamorphosed ultramafic rocks in east Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.; Dorais, M. J.

    1986-01-01

    The compositional and mineralogical characteristics of Archean ultramafic rocks in Kangerdlugssuaq Fjord are summarized: the first provides information important to understanding the primary character of the rock suite, whereas the latter provides data necessary to determine the conditions of their equilibrium during the latest metamorphism. This information will be of value in determining the affinity of the suite to similar Archean rocks in other areas of the North Atlantic craton.

  15. Biomarker insights into microbial activity in the serpentinite-hosted ecosystem of the Semail Ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Newman, S. A.; Lincoln, S. A.; Shock, E.; Kelemen, P. B.; Summons, R. E.

    2012-12-01

    Serpentinization is a process in which ultramafic and mafic rocks undergo exothermic reactions when exposed to water. The products of these reactions, including methane, hydrogen, and hydrogen sulfide, can sustain microbially dominated ecosystems [1,2,3]. Here, we report the lipid biomarker record of microbial activity in carbonate veins of the Semail Ophiolite, a site currently undergoing serpentinization [4]. The ophiolite, located in the Oman Mountains in the Sultanate of Oman, was obducted onto the Arabian continental margin during the closure of the southern Tethys Ocean (~70 Ma) [5]. We detected bacterial and archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids in Semail carbonates. In addition to archaeal isoprenoidal GDGTs with 0-3 cyclopentane moieties, we detected crenarchaeol, an iGDGT containing 4 cyclopentane and 1 cyclohexane moiety. Crenarchaeol biosynthesis is currently understood to be limited to thaumarchaea, representatives of which have been found to fix inorganic carbon in culture. We also analyzed isoprenoidal diether lipids, potentially derived from methanogenic euryarchaea, as well as non-isoprenoidal diether and monoether lipids that may be indicative of methane cycling bacteria. The stable carbon isotopic composition of these compounds is potentially useful in determining both their origin and the origin of methane detected in ophiolite fluids. We compare our results to those found at the Lost City Hydrothermal Field, a similar microbially-dominated ecosystem fueled by serpentinization processes [3]. Modern serpentinite-hosted ecosystems such as this can serve as analogs for environments in which ultramafic and mafic rocks were prevalent (e.g. early Earth and other early terrestrial planets). Additionally, an analysis of modern serpentinite systems can help assess conditions promoting active carbon sequestration in ultramafic rocks [6]. References [1] Russell et al. (2010). Geobiology 8: 355-371. [2] Kelley et al. (2005). Science

  16. Mafic/Ultramafic xenoliths from Saurashtra peninsula of Gujarat; northwestern Deccan Trap, India

    NASA Astrophysics Data System (ADS)

    Naushad, M.; Behera, J. R.; Chakra, M.; Murthy, P. V.

    2017-12-01

    The crustal growth forming processes at the crust-mantle interface or within the crust due to magma underplating is important for the formation and emplacement of continental flood basalt and large igneous provinces. Mafic/ultramafic xenoliths from lower crust or upper mantle provide clue to characterize the underplated material and magmatic processes. Earlier study of ultramafic xenoliths suggested magma underplating and crustal growth in Kuchchh, Gujarat, northwestern Deccan Trap (NWDT). Absence of such xenoliths in Saurashtra peninsula (SP) of NWDT however could not supplement this. Here, we report the mafic/ultramafic xenoliths entrained in high MgO basaltic lava flows of NWDT of SP in Rajkot district of Gujarat, India. The xenoliths are medium to coarse grained, meso - to melanocratic, elongated to angular pyroxenite (Type-I), two pyroxenes gabbro (Type-II) and anorthosite (Type-III) showing sharp contact with host basalt flows. Type-I xenoliths dominated by clinopyroxene (cpx) (Wo49-45 En49-38) with olivine (ol) (Fo84-78), exhibit cumulate texture, Type-II composed of cpx (core-Wo49-48 En42-41), orthopyroxene (opx) (core- En77-76 Fs23-22) and plagioclase (plag) (Ab35-28 An71-64) and Type-III, composed dominantly of plag (Ab67-29 An68-28) with minor opx (En78-76 Fs20-18) and a grain of hercynite (Al2O3=59%) in close association with plag. The basaltic lavas are porphyritic containing ol (Fo88-75), cpx (Wo50-48 En39-37), plag (Ab43-26 An74-54) and opaques. Whole rock geochemical data of xenolith entrained lava flows indicates high MgO (10-11 wt%) with high Ni (421-430 ppm) and Cr (795-1076 ppm). The equilibration temperature calculated from cpx - opx (adjacent grain of cpx and opx, pair-A; inclusion of cpx within opx, pair-B) for Type-II xenolith indicates 778°C and 789°C (pair-A) and 821°C and 832°C (pair-B) at 5 kbar and 10 kbar pressure respectively. Present study suggests that the possibility of magma underplating at crust-mantle interface or presence

  17. Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Habtoor, Abdelmonem; Ahmed, Ahmed Hassan; Harbi, Hesham

    2016-10-01

    The Makkah quadrangle is a part of the Jeddah terrane in the Precambrian basement, Western Arabian Shield of Saudi Arabia. Gabal Taftafan mafic-ultramafic complex lies within the central part of the Makkah quadrangle. The Taftafan mafic-ultramafic complex is a well-differentiated rock association which comprises of dunite core, hornblende- and plagioclase-bearing peridotites, troctolite, clinopyroxenite and marginal gabbro, in a distinctive zonal structure. The bulk-rock geochemistry of the Taftafan mafic-ultramafic rocks is characterized by a tholeiitic/sub-alkaline affinity with high Mg in the ultramafic core (0.84) and is systematically decreased towards the marginal gabbro (0.60). The patterns of trace elements show enrichment in the fluid-mobile elements (Sr, Ba) and a pronounced negative Nb anomaly which reflect a hydrous parental magma generated in a subduction tectonic setting. The mafic-ultramafic rocks of the Taftafan complex have low total rare earth elements (REE) displaying sub-parallel patterns leading to the assumption that these rocks are comagmatic and are formed by fractional crystallization from a common magma type. The platinum-group elements (PGE) content of all rock types in the Taftafan complex is very low, with ∑ PPGE > ∑ IPGE; displaying slightly positive slopes of the PGE distribution patterns. The chemistry of ferromagnesian minerals is characterized by a high forsterite (Fo) olivine with wide range (Fo91-67), from ultramafic core to the marginal gabbro, Ca-rich diopsidic clinopyroxene, and calcic hornblende. Orthopyroxene is almost absent from all rock types, or very rare when present. Hornblende and Ca-plagioclase possess the longest crystallization history since they are present in almost all rock types of the complex. Spinels in the dunite and hornblende-bearing peridotite core show homogeneous composition with intermediate Cr# (0.53-0.67). Plagioclase-bearing peridotite and troctolite have two exsolved types of spinel; Al

  18. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  19. Ectomycorrhizal fungal diversity associated with endemic Tristaniopsis spp. (Myrtaceae) in ultramafic and volcano-sedimentary soils in New Caledonia.

    PubMed

    Waseem, Muhammad; Ducousso, Marc; Prin, Yves; Domergue, Odile; Hannibal, Laure; Majorel, Clarisse; Jourand, Philippe; Galiana, Antoine

    2017-05-01

    New Caledonian serpentine (ultramafic) soils contain high levels of toxic heavy metals, in particular nickel, (up to 20 g kg -1 ) and are deficient in essential elements like carbon, nitrogen and phosphorus while having a high magnesium/calcium ratio. Although previous studies showed that ectomycorrhizal symbioses could play an important role in the adaptation of the endemic plants to ultramafic soils (FEMS Microbiol Ecol 72:238-49, 2010), none of them have compared the diversity of microbial communities from ultramafic vs non-ultramafic soils in New Caledonia. We explored the impact of edaphic characteristics on the diversity of ectomycorrhizal (ECM) fungi associated with different endemic species of Tristaniopsis (Myrtaceae) growing under contrasting soil conditions in the natural ecosystems of New Caledonia. ECM root tips were thus sampled from two different ultramafic sites (Koniambo massif and Desmazures forest) vs two volcano-sedimentary ones (Arama and Mont Ninndo). The molecular characterization of the ECM fungi through partial sequencing of the ITS rRNA gene revealed the presence of different dominant fungal genera including, both soil types combined, Cortinarius (36.1%), Pisolithus (18.5%), Russula (13.4%), Heliotales (8.2%) and Boletellus (7.2%). A high diversity of ECM taxa associated with Tristaniopsis species was found in both ultramafic and volcano-sedimentary soils but no significant differences in ECM genera distribution were observed between both soil types. No link could be established between the phylogenetic clustering of ECM taxa and their soil type origin, thus suggesting a possible functional-rather than taxonomical-adaptation of ECM fungal communities to ultramafic soils.

  20. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  1. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including

  2. Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Layton-Matthews, Daniel; Leybourne, Matthew I.; Peter, Jan M.; Scott, Steven D.; Cousens, Brian; Eglington, Bruce M.

    2013-09-01

    Volcanic-hosted massive sulfide (VHMS) and volcanic-sediment-hosted massive sulfide (VSHMS; i.e., hosted by both volcanic and sedimentary rocks) deposits in the Finlayson Lake District, Yukon, Canada, provide a unique opportunity to study the influence of seafloor and sub-seafloor hydrothermal processes on the formation of Se-poor (GP4F VHMS deposit; 7 ppm Se average), intermediate (Kudz Ze Kayah—KZK VHMS deposit; 200 ppm Se average), and Se-enriched (Wolverine VSHMS deposit; 1100 ppm Se average) mineralization. All three deposits are hosted by mid-Paleozoic (˜360-346 Ma) felsic volcanic rocks, but only the Wolverine deposit has voluminous coeval carbonaceous argillites (black shales) in the host rock package. Here we report the first application of Se isotope analyses to ancient seafloor mineralization and use these data, in conjunction with Pb and S isotope analyses, to better understand the source(s) and depositional process(es) of Se within VHMS and VSHMS systems. The wide range of δ82Se (-10.2‰ to 1.3‰, relative to NIST 3149), δ34S (+2.0‰ to +12.8‰ CDT), and elevated Se contents (up to 5865 ppm) within the Wolverine deposit contrast with the narrower range of δ82Se (-3.8‰ to -0.5‰), δ34S (9.8‰ to 13.0‰), and lower Se contents (200 ppm average) of the KZK deposit. The Wolverine and KZK deposits have similar sulfide depositional histories (i.e., deposition at the seafloor, with concomitant zone refining). The Se in the KZK deposit is magmatic (leaching or degassing) in origin, whereas the Wolverine deposit requires an additional large isotopically negative Se source (i.e. ˜-15‰ δ82Se). The negative δ82Se values for the Wolverine deposit are at the extreme light end for measured terrestrial samples, and the lightest observed for hypogene sulfide minerals, but are within calculated equilibrium values of δ82Se relative to NIST 3149 (˜30‰ at 25 °C between SeO4 and Se2-). We propose that the most negative Se isotope values at the

  3. Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar

    2016-05-01

    Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is

  4. The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada)

    NASA Astrophysics Data System (ADS)

    Magnall, J. M.; Gleeson, S. A.; Blamey, N. J. F.; Paradis, S.; Luo, Y.

    2016-11-01

    At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (<1 km; 250 bars) to hydrostatic (<400 m; 40 bars) conditions. There is evidence of mixing between diagenetic and hydrothermal fluids recorded in chondrite-normalised rare earth element (REE) profiles of ankerite and siderite. Middle REE enrichments and superchondritic Y/Ho ratios (>28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE

  5. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland

    NASA Astrophysics Data System (ADS)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.

    2018-03-01

    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (<10 °C) groundwaters (δ98/95MoGROUNDWATER = -0.15‰ to +0.47‰; n = 13) show little, if any, fractionation from the host basalt (δ 98 / 95MoBASALT = +0.16‰ to -0.12‰) and are, on average, lighter than both global and Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  6. Spatial greenstone-gneiss relationships: Evidence from mafic-ultramafic xenolith distribution patterns

    NASA Technical Reports Server (NTRS)

    Glikson, A. Y.

    1986-01-01

    The distribution patterns of mafic-ultramafic xenoliths within Archaean orthogneiss terrain furnish an essential key for the elucidation of granite-greenstone relations. Most greenstone belts constitute mega-xenoliths rather than primary basin structures. Transition along strike and across strike between stratigraphically low greenstone sequences and xenolith chains demonstrate their contemporaneity. These terrains represent least deformed cratonic islands within an otherwise penetratively foliated deformed gneiss-greenstone crust. Whereas early greenstone sequences are invariably intruded by tonalitic/trondhjemitic/granodioritic gneisses, stratigraphically higher successions may locally overlap older gneiss terrains and their entrained xenoliths unconformably. The contiguity of xenolith patterns suggests their derivation as relics of regional mafic-ultramafic volcanic crustal units and places limits on horizontal movements between individual crustal blocks.

  7. Evolutionary Strategies of Viruses, Bacteria and Archaea in Hydrothermal Vent Ecosystems Revealed through Metagenomics

    PubMed Central

    Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A.

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities. PMID:25279954

  8. Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales island: an early Paleozoic Alaskan-type ultramafic body

    USGS Publications Warehouse

    Loney, R.A.; Himmelberg, G.R.

    1992-01-01

    The early Paleozoic Salt Chuck intrusion has petrographic and chemical characteristics that are similar to those of Cretaceous Alaskan-type ultramafic-mafic bodies. The intrusion is markedly discordant to the structure of the early Paleozoic Descon Formation, in which it has produced a rather indistinct contact aureole a few meters wide. Mineral assemblages, sequence of crystallization, and mineral chemistry suggest that the intrusion crystallized under low pressures (~2 kbar) with oxidation conditions near those of the NNO buffer, from a hydrous, silica-saturated, orthopyroxene-normative parental magma. The Salt Chuck deposit was probably formed by a two-stage process: 1) a stage of magmatic crystallization in which the sulfides and PGE accumulated in a disseminated manner in cumulus deposits, possibly largely in the gabbro, and 2) a later magmatic-hydrothermal stage during which the sulfides and PGE were remobilized and concentrated in veins and fracture-fillings. In this model, the source of the sulfides and PGE was the magma that produced the Salt Chuck intrusion. -from Authors

  9. Geochemistry, Metamorphic Assemblages, and Microstructures in Small Ultramafic Bodies from the Northern Nason Terrane, Washington

    NASA Astrophysics Data System (ADS)

    Magloughlin, J. F.

    2014-12-01

    Ultramafic bodies ranging from <1 to 2500 m in length occur in multiple settings across the northern part of the Nason Terrane in the North Cascade Mountains of Washington State. Within the Wenatchee Ridge Orthogneiss (WRO) the bodies are approximately equidimensional, ranging from dm-scale metasomatized lenses up to an exposed diameter of (typically) approximately 40 m. Some bodies are completely serpentinized, but others include dunite, harzburgite, and rare seams of pyroxenite. Many are rimmed by blackwall (talc, phlogopite, tremolite, chlorite, serpentine) coinciding with the Late Cretaceous metamorphism. The Napeequa Ultramafic Body (NUB), cut through and well exposed by the Napeequa River west of Lake Wenatchee, is within the White River Shear Zone (WRSZ, Magloughlin & McEwan, 1988). Though highly variable, it consists of dunite and peridotite and is variably serpentinized with common Mg-amphibole. Assemblages include serp+carb+chl+talc+opq and suggest upper greenschist to low amphibolite facies overprinting. Rare high-strain zones resemble relict pseudotachylyte veins. More common are ultramylonitic zones with olivine grain sizes of <5 microns, suggesting terrane-boundary paleostresses of >250 MPa. The Nine Mile Creek Ultramafic Body (NMCUB) and Grave Ultramafic Body (GUB) are the largest bodies outside of the White River Shear Zone, and are approximately 300 m and 800 long, respectively. Both are characterized by ol+talc+amph along with chlorite pseudomorphs, commonly cut by <40 micron thick ribbons of calcite, and rarely containing Si defined by chromite. These tectonites contain fine-grained olivine, but post-deformational, metamorphic cummingtonite and tremolite. In both bodies, a moderate to strong foliation is developed. It is suggested both bodies are retrogressed garnet peridotites. An interesting problem is why the possible retrogressed garnet peridotite bodies are present south of the WRSZ and surrounded by the metatonalites of the WRO, but none

  10. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts

    USGS Publications Warehouse

    Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher

    2010-01-01

    Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.

  11. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  12. Behavior of major and trace elements upon weathering of peridotites in New Caledonia : A possible site on ultramafic rocks for the Critical Zone Exploration Network (CZEN) ?

    NASA Astrophysics Data System (ADS)

    Juillot, Farid; Fandeur, D.; Fritsch, E.; Morin, G.; Ambrosi, J. P.; Olivi, L.; Cognigni, A.; Hazemann, J. L.; Proux, O.; Webb, S.; Brown, G. E., Jr.

    2010-05-01

    ). However, these high concentration of potentially toxic elements can represent a serious hazard for the environmental quality of the Caledonian ecosystem which is a '' biodiversity hotspot' (Myers, 2000), which emphasize the strong need for characterizing the natural cycling of these elements upon weathering of ultramafic rocks. To reach this goal, we have studied the mineralogical distribution, crystal-chemistry and mass balance modelling of major (Si, Mg, Al, Fe, Mn) and trace elements (Ni, Cr and Co) in the freely-drained weathering profile developed in the serpentinized harzburgites of Mt Koniambo (West Coast of New Caledonia). Results show that both hydrothermal and meteoric processes contributed to the vertical differentiation of this freely drained weathering profiles in serpentinized ultramafic rocks. Finally, they also emphasize the importance of both redox reactions and interactions with Mn- and Fe-oxyhydroxydes (Fandeur et al., 2009a; 2009b) to explain the opposite behavior observed between very mobile Ni and almost immobile Cr (Fandeur et al., 2010). These results bring new insights on the geochemical behavior of trace elements upon weathering of ultramafic rocks under tropical conditions leading to the formation of supergene ore deposits. They also emphasize the interest of such a weathering site on ultramafic rocks under tropical climate to complemente the reference sites of the Critical Zone Exploration Network (CZEN). References Cluzel D., Aitchinson J.C. and Picard C. (2001) Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New-Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics, 340, 23-59. Coleman, R.G. (1977) Ophiolites: Ancient oceanic lithosphere?: Berlin, Germany, Springer-Verlag, 229p. Fandeur D., Juillot F., Morin G., Olivi L., Cognigni A., Fialin M., Coufignal F., Ambrosi J.P., Guyot F. and Fritsch E. (2009a). Synchrotron-based speciation of chromium in an Oxisol from New

  13. A serpentinite-hosted ecosystem in the Southern Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Ohara, Yasuhiko; Reagan, Mark K.; Fujikura, Katsunori; Watanabe, Hiromi; Michibayashi, Katsuyoshi; Ishii, Teruaki; Stern, Robert J.; Pujana, Ignacio; Martinez, Fernando; Girard, Guillaume; Ribeiro, Julia; Brounce, Maryjo; Komori, Naoaki; Kino, Masashi

    2012-02-01

    Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H2- and CH4-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the "Shinkai Seep Field (SSF)." The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life.

  14. A serpentinite-hosted ecosystem in the Southern Mariana Forearc

    PubMed Central

    Ohara, Yasuhiko; Reagan, Mark K.; Fujikura, Katsunori; Watanabe, Hiromi; Michibayashi, Katsuyoshi; Ishii, Teruaki; Stern, Robert J.; Pujana, Ignacio; Martinez, Fernando; Girard, Guillaume; Ribeiro, Julia; Brounce, Maryjo; Komori, Naoaki; Kino, Masashi

    2012-01-01

    Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H2- and CH4-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the “Shinkai Seep Field (SSF).” The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life. PMID:22323611

  15. A serpentinite-hosted ecosystem in the Southern Mariana Forearc.

    PubMed

    Ohara, Yasuhiko; Reagan, Mark K; Fujikura, Katsunori; Watanabe, Hiromi; Michibayashi, Katsuyoshi; Ishii, Teruaki; Stern, Robert J; Pujana, Ignacio; Martinez, Fernando; Girard, Guillaume; Ribeiro, Julia; Brounce, Maryjo; Komori, Naoaki; Kino, Masashi

    2012-02-21

    Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H(2)- and CH(4)-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the "Shinkai Seep Field (SSF)." The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life.

  16. Pyroclastic rocks: another manifestation of ultramafic volcanism on Gorgona Island, Colombia

    NASA Astrophysics Data System (ADS)

    Echeverría, Lina M.; Aitken, Bruce G.

    1986-04-01

    Tertiary ultramafic volcanism on Gorgona Island, Colombia, is manifested not only by komatiite flows, but also by a more voluminous sequence of tuff breccias, which is cut by comagmatic picrite dikes. The ultramafic pyroclastic rocks are chaotic to stratified mixtures of angular to subrounded glassy picritic blocks and a fine grained volcaniclastic matrix that consists primarily of plastically-deformed, glassy globules. The entire deposit is interpreted to have formed by an explosive submarine eruption of phenocryst-laden picritic magma. MgO contents of tuff breccias and picrite dikes range from 21 to 27 wt%. Relative to nearby komatiite flows, these rocks are MgO-rich, and FeO-, TiO2- and Ni-poor. HREE concentrations are very low (ultramafic rock types crystallized from magmas which most likely were extracted from distinct mantle source regions.

  17. Hydrothermal systems as environments for the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  18. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  19. Vapor-Liquid Partitioning of Iron and Manganese in Hydrothermal Fluids: An Experimental Investigation with Application to the Integrated Study of Basalt-hosted Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Seyfried, W. E.

    2010-12-01

    The chemistry of deep-sea hydrothermal vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives hydrothermal circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted hydrothermal systems appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of

  20. An experimental study of the effect of temperature, fluid chemistry and reaction rate on Sr-Ca partitioning in anhydrite: Implications for subseafloor hydrothermal alteration processes

    NASA Astrophysics Data System (ADS)

    Syverson, D.; Seyfried, W. E.

    2010-12-01

    Anhydrite (CaSO4) is an important mineral in subseafloor hydrothermal systems. Its solubility likely plays a role in controlling mass transfer reactions in the relatively low temperature and ultramafic-hosted Lost City Hydrothermal Field (LCHF), while also precipitating from seawater during recharge of more widespread high-temperature hydrothermal systems at mid-ocean ridges. Strontium partitions into anhydrite, although the magnitude and mechanism by which this occurs, is still unclear, as is the effect of precipitation rate. In the absence of these data it is not possible to predict accurately the geochemical implications of Sr/Ca ratios of vent fluids. Accordingly, the potential usefulness of these data to constrain temperature, and as a means to understand the flux of seawater derived Sr into deeper portions of subseafloor hydrothermal systems, is limited. Here we report results of experiments designed to assess Ca-Sr exchange during anhydrite-fluid reaction as a function of temperature, fluid chemistry and distance from equilibrium. Anhydrite used for the experiments was synthesized to avoid compositional impurities and annealed to achieve grain sizes (10-100 micron) and uniform crystalline properties. NaCl fluids (0.55 m) with known Sr/Ca ratios were used for the experiments. Experiments were performed at 200° and 250°C, 500 bars, while time series changes in fluid chemistry were monitored by fluid sampling at experimental conditions. Isobaric temperature change as well as chemical perturbation by addition of fluids with anomalous Sr/Ca ratio permitted phase equilibria to be unambiguously assed. Moreover, the chemical perturbation experiments provided information on the effect of rate of reaction on Sr-Ca exchange. Isobaric temperature jumps demonstrate that initially anhydrite precipitation incorporates Sr preferentially. With further reaction progress and approach to equilibrium Sr uptake by anhydrite recrystallization becomes less effective. Long

  1. Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of Lanzarote (Canary Islands): Implications for magma sources

    NASA Astrophysics Data System (ADS)

    Aparicio, Alfredo; Tassinari, Colombo C. G.; García, Roberto; Araña, Vicente

    2010-01-01

    The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/ 86Sr (around 0.703) and 143Nd/ 144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/ 144Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ( 87Sr/ 86Sr and 143Nd/ 144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.

  2. Some Speculations Concerning The Abitibi Greenstone Belt As A Possible Analog To The Early Martian Crust

    NASA Astrophysics Data System (ADS)

    Russell, M.; Allwood, A.; Anderson, R. B.; Atkinson, B.; Beaty, D.; Bristow, T. F.; Ehlmann, B. L.; Grotzinger, J. P.; Hand, K. P.; Halevy, I.; Hurowitz, J. A.; Knoll, A.; McCleese, D. J.; Milliken, R.; Stolper, D. A.; Stolper, E. M.; Tosca, N. J.; Agouron Mars Simulation Field Team

    2011-12-01

    The Noachian crust of Mars comprises basaltic and, potentially, komatiitic lavas derived from a hot mantle slightly more reducing and sulfur-rich than that of the Earth. Ultramafic volcanic sequences of the ~2.7Ga Tisdale Group of the Abitibi Greenstone Belt, Ontario, provide a potential analog to these early martian lavas. The Abitibi rocks are a possible source of quartz veins carrying, in places, pyrite, carbonate and gold. These were hydrothermally introduced into volcanic and sedimentary rocks during greenschist metamorphism. Kilometer-scale talc-magnesite zones, resulting from the carbonation of serpentinized ultramafics, may have been the source and seawater, with some magmatic addition, was probably responsible for the pervasive alteration, although the chemical nature of hydrothermal fluids circulating in such piles depends upon the temperature of wall-rock interactions and is largely independent of fluid origin. Any sulfides and gold in unaltered ultramafic putative source rocks may have been lost to the invasive convective fluids. Given high heat flow and the presence of a hydrosphere, hydrothermal convection cells were probably the main mechanism of heat transfer through the crust on both planets. Exploration of the Abitibi belt provides a template for possible martian exploration strategies. Orbital remote sensing indicates that some ultramafic rocks on Mars have also been serpentinized and isolated areas of magnesite have been recently discovered, overlying altered mafic crust, with characteristic ridges at scales of a few hundred meters. While cogent arguments have been made favoring sedimentary exhalative accumulations of hydrothermal silica of the kind that are known to harbor bacteria on our own planet, no in situ siliceous sinters or even quartz veins have been identified with certainty on Mars. Here, we report on the mineralogic and visible to infrared spectral characteristics of mafic and ultramafic lithologies at Abitibi for comparison to

  3. Microevolutionary dynamics in Methanothermococcus populations from deep-sea hydrothermal vents in the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hoffert, M.; Anderson, R. E.; Stepanauskas, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vents sustain diverse communities of microorganisms. The effects of geochemical and biological interactions on the process of evolution in these ecosystems remains poorly understood because the majority of subsurface microorganisms remain uncultivated. By examining metagenomic samples from hydrothermal fluids and mapping the samples to closely-related genomes found in vent sites, we can better understand how the process of evolution is affected by the geochemical and environmental context in deep-sea vents. The Mid-Cayman Rise is a spreading ridge that hosts both mafic-influenced and ultramafic-influenced vent fields. Previous research on metagenomic samples from sites in the Mid-Cayman Rise has shown that these vents contain metabolically and taxonomically diverse microbial communities. Here, we investigate five single cell amplified Methanothermococcus genomes (SAGs) to investigate patterns in pangenomic variation and molecular evolution in these methanogens. Mappings of metagenomic reads from 15 sample sites to the SAGs reveal substantial variation in Methanothermococcus population abundance, nucleotide variability and selection pressure among the 15 geochemically distinct sample sites. Within each sample site, we observed distinct patterns of single nucleotide variant (SNV) accumulation and selection pressure within the SAG populations. Closely related genomes showed similar patterns of SNV accumulation. Analysis of open reading frames (ORFs) from the SAGs indicated that homologous genes accumulated variation at the same rate. For example, a genomic island for Nif genes was identified in three of the five genomes with significantly elevated SNV counts. dN/dS analyses revealed evidence for frequency-dependent selection, in which genes unique to individual SAGs displayed elevated diversifying selection relative to other genes. These results indicate that different strains of Methanothermococcus outcompete others in specific environmental

  4. The Cedars ultramafic mass, Sonoma County, California

    USGS Publications Warehouse

    Blake, M. Clark; Bailey, Edgar H.; Wentworth, Carl M.

    2012-01-01

    The Cedars ultramafic mass is a mantle fragment that consists of partially serpentinized spinel harzburgite and dunite. Compositional layering and a chromite lineation define a penetrative metamorphic foliation that almost certainly formed in the upper mantle. Although detailed petrofabric and mineral chemistry are presently lacking, it seems reasonable that the Cedars peridotite represents a slice of mantle tectonite that once formed the base of the Coast Range ophiolite, and not an abyssal peridotite tectonically emplaced within the Franciscan accretionary prism.

  5. Nanodiamond finding in the hyblean shallow mantle xenoliths.

    PubMed

    Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T

    2015-06-01

    Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter.

  6. Rock- and Paleomagnetic Properties and Modeling of a Deep Crustal Volcanic System, the Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    NASA Astrophysics Data System (ADS)

    ter Maat, G. W.; Pastore, Z.; Michels, A.; Church, N. S.; McEnroe, S. A.; Larsen, R. B.

    2017-12-01

    The Reinfjord Ultramafic Complex is part of the 5000 km2 Seiland Igneous Province (SIP) in Northern Norway. The SIP is argued to be the deep-seated conduit system of a Large Igneous Province and was emplaced at 25-35 km depth in less than 10 Ma (570-560 Ma). The Reinfjord Ultramafic Complex was emplaced during three major successive events at 22-28km depth at pressures of 6-8kb, with associated temperatures 1450-1500°C (Roberts, 2006). The rocks are divided into three formations: the central series (CS) consisting of mainly dunites, upper layered series (ULS) consisting of dunites and wehrlites, a lower layered series (LLS) containing most pyroxene-rich rocks and a marginal zone (MZ) which formed where the ultramafic melts intruded the gabbro-norite and metasedimentary gneisses. Deep exposures such as the Reinfjord Ultramafic Complex are rare, therefore this study gives a unique insight in the rock magnetic properties of a deep ultramafic system. Localised serpentinised zones provide an opportunity to observe the effect of this alteration process on the magnetic properties of deep-seated rocks. Here, we present the results from the rock magnetic properties, a paleomagnetic study and combined potential-fields modeling. The study of the rock magnetic properties provides insight in primary processes associated with the intrusion, and later serpentinization. The paleomagnetic data yields two distinct directions. One direction corresponds to a Laurentia pole at ≈ 532 Ma while the other, though younger, is not yet fully understood. Rock magnetic properties were measured on > 700 specimens and used to constrain the modelling of gravity, high-resolution helicopter, and ground magnetic data. The intrusion is modelled as a cylindrically shaped complex with a dunite core surrounded by wehrlite and gabbro. The ultramafic part of the complex dips to the NE and its maximum vertical extent is modelled to 1400m. Furthermore, modelling allows estimation of relative volumes of

  7. Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.

    2014-12-01

    Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.

  8. Mineralogical assemblages forming at hyperalkaline warm springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophiolites

    NASA Astrophysics Data System (ADS)

    Chavagnac, Valérie; Ceuleneer, Georges; Monnin, Christophe; Lansac, Benjamin; Hoareau, Guilhem; Boulart, Cédric

    2013-07-01

    We report on the mineralogical assemblages found in the hyperalkaline springs hosted on Liguria and Oman ophiolites based on exhaustive X-ray diffraction and scanning electron microprobe analyses. In Liguria, hyperalkaline springs produce a thin brownish calcite precipitate that covers the bedrock due to the concomitant atmospheric CO2 uptake and neutralization of the hyperalkaline waters. No brucite and portlandite minerals are observed. The discharge of alkaline waters in Oman ophiolite forms white-orange precipitates. Calcium carbonate minerals (calcite and/or aragonite) are the most abundant and ubiquitous precipitates and are produced by the same mechanism as in Liguria. This process is observed as a thin surface crust made of rhombohedral calcite. Morphological features of aragonite vary from needle-, bouquet-, dumbbell-, spheroidal-like habitus according to the origin of carbon, temperature, and ionic composition of the hyperalkaline springs, and the biochemical and organic compounds. Brucite is observed both at hyperalkaline springs located at the thrust plane and at the paleo-Moho. The varying mixing proportions between the surface runoff waters and the hyperalkaline ones control brucite precipitation. The layered double hydroxide minerals occur solely in the vicinity of hyperalkaline springs emerging within the bedded gabbros. Finally, the dominant mineralogical associations we found in Oman (Ca-bearing carbonates and brucite) in a serpentinizing environment driven by the meteoric waters are surprisingly the same as those observed at the Lost City hydrothermal site in a totally marine environment.

  9. Experimental pressure enhancement of the rate of homogenous methanogenesis: implications for abiotic methane yields in terrestrial and planetary environments

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Cody, G. D.

    2011-12-01

    Abiotic methane may play a role in the development of a biosphere on an otherwise lifeless planet. Methane concentrations in fluids emanating from serpentinite-hosted submarine springs such as Rainbow and Logatchev are below that required for equilibrium with coexisting CO2 and H2, indicating that the compositions of such fluids may be kinetically-controlled. The presence of transition metal-bearing accessory minerals in serpentinites has led to the hypothesis that heterogeneous catalysis may influence the rate of methanogenesis. We present new experiments that show pressure can also significantly accelerate homogenous methanogenesis, i.e., methane production in the absence of mineral catalysts. A series of cold-seal experiments were performed from 1-3.5 kbar at 300C for two weeks, using dilute isotopically labeled formic acid as a carbon and hydrogen source (70mmol solution). The experiments showed a significant increase in 13CH4 yield with pressure: e.g., the yield at 3.5 kbar was ~20X the yield at 1 kbar. This pressure enhancement is consistent with our previous results on homogeneous and heterogeneous methanogenesis and suggests that mineral catalysts are not necessary for CH4 equilibration in high pressure environments such as Precambrian crystalline basements or regional blueschist-grade metamorphic systems. Furthermore, in hydrothermal systems wherein fluid residence times are too short to permit equilibration, the reaction progress of methanogenesis is expected to increase with pressure. Recently discovered methane plumes above the mid-Cayman trough have been attributed to methanogenesis in deep serpentinites-hosted springs. The current experimental results lead to the prediction that the mid-Cayman springs (>1 kbar) contain higher methane concentrations than their lower pressure analogues at Rainbow and Logatchev (<0.5kbar). Fluids escaping forearc serpentinization in cold, steeply-dipping subduction zones may yield more methane than in warm shallow

  10. The Pioneer Ultramafic Complex of the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Cooper, M. R.; Byerly, G. R.; Lowe, D. R.; Thompson, M. E.

    2005-12-01

    The 3.55-3.22 Ga Barberton Greenstone Belt is an approximately 100km x 30km northeast trending, isoclinally folded, volcanic and sedimentary succession surrounded by intrusive granitic rocks. It is perhaps Earth's best preserved mid-Archean supracrustal sequence and also among the most magnesian, making it an ideal location for studying compositionally distinct rocks of the Archean, such as komatiites. The Pioneer Ultramafic Complex has been interpreted as a komatiitic intrusion but we argue that it is a sequence of layered komatiitic flows and interbedded tuffs correlative with other komatiitic extrusive units of the 3.29 Ga Weltevreden Formation, the uppermost formation of the Onverwacht Group. The Pioneer Ultramafic Complex contains at least 900m of section in the study area, including at least 5 flow sets, with individual flows up to 100 m thick, sections of tuff up to 100m thick and additional thinner tuff units. The base of the sequence is in fault contact with the Sawmill Ultramafic Complex, which is similar to and perhaps correlative with the Pioneer. The top of the sequence is bounded by the Moodies Fault and slightly younger sedimentary rocks of the Fig Tree and Moodies Groups. Typical flows of the Pioneer have highly serpentinized olivine-rich cumulate bases, fresh olivine bearing peridotitic lithologies in central portions, and increasing pyroxene content, pyroxene size, and elongation of grains toward the flow tops. Three of the five flows are capped with random and/or oriented spinifex layers. The tuffs within this and other layered ultramafic complexes of the Barberton Greenstone Belt are mostly fine grained, slaty serpentinites that were previously interpreted as bedding horizontal zones of shearing. However, rare preservation of angular and vesicular lapilli, and more commonly cross-stratification in finer grained layers, provide strong evidence that these layers represent tuffs. High chromium and other trace element contents suggest they are

  11. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose.

  12. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water.

    PubMed

    McCollom, Thomas M; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose

  13. Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hodgkinson, M.; Murton, B. J.; Roberts, S.

    2013-12-01

    Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica

  14. Oxygen regime of Siberian alkaline-ultramafic magmas

    NASA Astrophysics Data System (ADS)

    Ryabchikov, Igor; Kogarko, Liya

    2017-04-01

    Regimes of S2 and O2 are decisive factors controlling behavior of chalcophile and siderophile elements in magmatic processes. These parameters play important role during magmagenesis and in the course of crystallization and fluid mass transfer in magma chamber. Alkaline-ultramafic magmatism in Maymecha-Kotuy Province (Polar Siberia) is represented by giant intrusive complexes as well as by volcanics and dyke rocks, which include a well-known variety - meimechites. The latter are considered primary magmas of alkaline-ultramafic plutons in the region like for instance Guli intrusive complex. Sulfur content in primitive magmas estimated from the analyses of melt inclusions in olivine megacrysts from meimechites is close to 0.1 %. fO2 values calculated using olivine+clinopyroxene+spinel and spinel+melt oxygen barometers (1, 2) are 2-3 log units above QFM buffer. The relatively high oxygen potential at the early magmatic stage of alkaline-ultramafic Guli pluton provide predominance of sulfates among other forms of sulfur in the melt. This leads to the almost complete absence of sulfides in highly magnesian rocks. The oxidizing conditions exert important effect on behavior of many ore metals. At the stage of magma generation absence of sulfides in mantle materialresults in the presence of siderophile elements in metallic form and saturation of primary magmas in respect of metallic phases at an early stage of injection of the melt into the magma chamber. Later, under favorable circumstances during magma crystallization nuggets of precious metals may be formed. During further evolution of magmatic system fO2 and activity of oxidized sulfur decrease due to intensive crystallization of magnetite during the formation of koswites, then oxygen fugacity becomes even lower as a result serpentinization at a postmagmatic stage. These serpentization processes are caused by the displacement of reactions in the aqueous phase due to cooling towards the formation of methane and other

  15. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri V.; Ritsk, Eugeni Yu.; Neymark, Leonid A.

    1997-04-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/ 144Nd- 143Nd/ 144Nd and 238U/ 204Pb- 206Pb/ 204Pb mineral isochrons, corresponding to ages of 640 ± 58 Ma (95% confidence level) and 620 ± 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ± 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites withɛ Nd = +6.6 to +7.1 andɛ Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit:ɛ Nd = +4.6 to +6.1 andɛ Sr = -8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/ 204Pb= 16.994 ± 0.023 and 207Pb/ 204Pb= 15.363 ± 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with

  16. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    USGS Publications Warehouse

    Amelin, Y.V.; Ritsk, E. Yu; Neymark, L.A.

    1997-01-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/144Nd- 143Nd/144Nd and 238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ?? 58 Ma (95% confidence level) and 620 ?? 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ?? 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites with ??Nd = +6.6 to +7.1 and ??Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit: ??Nd = + 4.6 to + 6.1 and ??Sr = - 8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/204Pb = 16.994 ?? 0.023 and 207Pb/204Pb = 15.363 ?? 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic

  17. Source characteristics and tectonic setting of mafic-ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic-ultramafic intrusion

    NASA Astrophysics Data System (ADS)

    Chen, Bao-Yun; Yu, Jin-Jie; Liu, Shuai-Jie

    2018-05-01

    The newly discovered Lubei sulfide-bearing mafic-ultramafic intrusion forms the western extension of the Huangshan-Jin'erquan mafic-ultramafic intrusion belt in East Tianshan, NW China. The Lubei intrusion comprises hornblende peridotite, lherzolite, and harzburgite in its southern portion, gabbro in its middle portion, and hornblende gabbro in its northern portion. Intrusive relationships indicate that three magma pulses were involved in the formation of the intrusion, and that they were likely evolved from a common primitive magma. Estimated compositions of the Lubei primitive magma are similar to those of island arc calc-alkaline basalt except for the low Na2O and CaO contents of the Lubei primitive magma. This paper reports on the mineral compositions, whole-rock major and trace element contents, and Rb-Sr and Sm-Nd isotopic compositions of the Lubei intrusion, and a zircon LA-MC-ICP-MS U-Pb age for hornblende gabbro. The Lubei intrusion is characterized by enrichment in large-ion lithophile elements, depletion in high-field-strength elements, and marked negative Nb and Ta anomalies, with enrichment in chondrite-normalized light rare earth elements. It exhibits low (87Sr/86Sr)i ratios of 0.70333-0.70636 and low (143Nd/144Nd)i ratios of 0.51214-0.51260, with positive εNd values of +4.01 to +6.33. LA-ICP-MS U-Pb zircon ages yielded a weighted-mean age of 287.9 ± 1.6 Ma for the Lubei intrusion. Contemporaneous mafic-ultramafic intrusions in different tectonic domains in North Xinjiang show similar geological and geochemical signatures to the Lubei intrusion, suggesting a source region of metasomatized mantle previously modified by hydrous fluids from the slab subducted beneath the North Xinjiang region in the early Permian. Metasomatism of the mantle was dominated by hydrous fluids and was related to subduction of the Paleo-Asian oceanic lithosphere during the Paleozoic. Sr-Nd-Pb isotopic compositions suggest that the mantle source was a mixture of depleted mid

  18. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages.

    PubMed

    Lartaud, Franck; Little, Crispin T S; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine

    2011-05-10

    Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.

  19. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  20. Genetic Connectivity between North and South Mid-Atlantic Ridge Chemosynthetic Bivalves and Their Symbionts

    PubMed Central

    van der Heijden, Karina; Petersen, Jillian M.; Dubilier, Nicole; Borowski, Christian

    2012-01-01

    Transform faults are geological structures that interrupt the continuity of mid-ocean ridges and can act as dispersal barriers for hydrothermal vent organisms. In the equatorial Atlantic Ocean, it has been hypothesized that long transform faults impede gene flow between the northern and the southern Mid-Atlantic Ridge (MAR) and disconnect a northern from a southern biogeographic province. To test if there is a barrier effect in the equatorial Atlantic, we examined phylogenetic relationships of chemosynthetic bivalves and their bacterial symbionts from the recently discovered southern MAR hydrothermal vents at 5°S and 9°S. We examined Bathymodiolus spp. mussels and Abyssogena southwardae clams using the mitochondrial cytochrome c oxidase subunit I (COI) gene as a phylogenetic marker for the hosts and the bacterial 16S rRNA gene as a marker for the symbionts. Bathymodiolus spp. from the two southern sites were genetically divergent from the northern MAR species B. azoricus and B. puteoserpentis but all four host lineages form a monophyletic group indicating that they radiated after divergence from their northern Atlantic sister group, the B. boomerang species complex. This suggests dispersal of Bathymodiolus species from north to south across the equatorial belt. 16S rRNA genealogies of chemoautotrophic and methanotrophic symbionts of Bathymodiolus spp. were inconsistent and did not match the host COI genealogy indicating disconnected biogeography patterns. The vesicomyid clam Abyssogena southwardae from 5°S shared an identical COI haplotype with A. southwardae from the Logatchev vent field on the northern MAR and their symbionts shared identical 16S phylotypes, suggesting gene flow across the Equator. Our results indicate genetic connectivity between the northern and southern MAR and suggest that a strict dispersal barrier does not exist. PMID:22792208

  1. Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia.

    PubMed

    Quéméneur, Marianne; Bes, Méline; Postec, Anne; Mei, Nan; Hamelin, Jérôme; Monnin, Christophe; Chavagnac, Valérie; Payri, Claude; Pelletier, Bernard; Guentas-Dombrowsky, Linda; Gérard, Martine; Pisapia, Céline; Gérard, Emmanuelle; Ménez, Bénédicte; Ollivier, Bernard; Erauso, Gaël

    2014-12-01

    The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system.

  2. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc

    NASA Astrophysics Data System (ADS)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang

    2018-05-01

    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  3. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  4. Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Pasini, Valerio; Brunelli, Daniele; Dumas, Paul; Sandt, Christophe; Frederick, Joni; Benzerara, Karim; Bernard, Sylvain; Ménez, Bénédicte

    2013-09-01

    The origin of light hydrocarbons discovered at serpentinite-hosted mid-ocean hydrothermal fields is generally attributed to the abiogenic reduction of carbon (di)oxide by molecular hydrogen released during the progressive hydration of mantle-derived peridotites. These serpentinization by-products represent a valuable source of carbon and energy and are known to support deep microbial ecosystems unrelated to photosynthesis. In addition, the pool of subsurface organic compounds could also include materials derived from the thermal degradation of biological material. We re-investigate the recently described relics of deep microbial ecosystems hosted in serpentinites of the Mid-Atlantic Ridge (4-6°N) in order to study the ageing and (hydro)thermal degradation of the preserved biomass. An integrated set of high resolution micro-imaging techniques (Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy, Raman and Fourier Transform Infra-Red microspectroscopy, Confocal Laser Scanning Microscopy, and Scanning Transmission X-ray Microscopy at the carbon K-edge) has been applied to map the distribution of the different organic components at the micrometer scale and to characterize their speciation and structure. We show that biologically-derived material, containing aliphatic groups, along with carbonyl and amide functional groups, has experienced hydrothermal degradation and slight aromatization. In addition, aliphatic compounds up to C6-C10 with associated carboxylic functional groups wet the host bastite and the late serpentine veins crosscutting the rock. These compounds represent a light soluble organic fraction expelled after biomass degradation through oxidation and thermal cracking. The detected complex organic matter distribution recalls a typical petroleum system, where fossil organic matter of biological origin maturates, expelling the soluble fraction which then migrates from the source to the reservoir. Ecosystem-hosting serpentinites

  5. Hydrothermal activities around Dragon Horn Area (49.7°E) on ultra-slow spreading Southwest Indian Ridge (SWIR)

    NASA Astrophysics Data System (ADS)

    Tao, C.; Liang, J.; Zhang, H.; Li, H.; Egorov, I. V.; Liao, S.

    2016-12-01

    The Dragon Horn Area (49.7°E), is located at the west end of the EW trending Segment 28 of Southwest Indian Ridge between Indomed and Gallieni FZ. The segment is characterized by highly asymmetric topography. The northern flank is deeper and develops typical parallel linear fault escarpments. Meanwhile, the southern flank, where the Dragon Horn lies, is shallower and bears corrugations. The indicative corrugated surface which extends some 5×5 km was interpreted to be of Dragon Flag OCC origin (Zhao et al., 2013). Neo-volcanic ridge extends along the middle of the rifted valley and is bounded by two non-transform offsets to the east and west. Our investigations revealed 6 hydrothermal fields/anomalies in this area, including 2 confirmed sulfide fields, 1 carbonate field, and 3 inferred hydrothermal anomalies based on methane and turbidity data from 2016 AUV survey. Longqi-1(Dragon Flag) vent system lies to the northwest edge of Dragon Flag OCC. It is one of the largest hydrothermal venting systems along Mid-Ocean Ridges, with maximum temperature at vent site DFF6 of 'M zone' up to 379.3 °C (Tao et al, 2016). Massive sulfides (49.73 °E, 37.78 °S) were sampled 10 km east to Longqi-1, representing independent hydrothermal activities controlled by respective local structures. According to geological mapping and interpretation, both sulfide fields are located on the hanging wall of the Dragon Flag OCC detachment. Combined with the inferred hydrothermal anomaly to the east of the massive sulfide site, we suppose that they are controlled by different fault phases during the detachment of oceanic core complex. Moreover, consolidated carbonate sediments were widely observed and sampled on the corrugated surface and its west side, they are proposed to be precipitated during the serpentinization of ultramafic rocks, representing low-temperature hydrothermal process. These hydrothermal activities, distributed within 20km, may be controlled by the same Dragon Flag OCC

  6. Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.

    2017-12-01

    Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.

  7. Genesis of the Permian Kemozibayi sulfide-bearing mafic-ultramafic intrusion in Altay, NW China: Evidence from zircon geochronology, Hf and O isotopes and mineral chemistry

    NASA Astrophysics Data System (ADS)

    Tang, Dongmei; Qin, Kezhang; Xue, Shengchao; Mao, Yajing; Evans, Noreen J.; Niu, Yanjie; Chen, Junlu

    2017-11-01

    The recently discovered Kemozibayi mafic-ultramafic intrusion and its associated magmatic Cu-Ni sulfide deposits are located at the southern margin of the Chinese Altai Mountain, Central Asian Orogenic Belt in north Xinjiang, NW China. The intrusion is composed of olivine websterite, norite, gabbro and diorite. Disseminated and net-textured Ni-Cu sulfide ores are hosted in the center of the gabbro. In this work, new zircon U-Pb ages, Hf-O isotopic and sulfide S isotopic data, and whole rock and mineral chemical analyses are combined in order to elucidate the characteristics of the mantle source, nature of subduction processes, degree of crustal contamination, geodynamic setting of bimodal magmatism in the region, and the metallogenic potential of economic Cu-Ni sulfide deposit at depth. SIMS zircon U-Pb dating of the gabbro yields Permian ages (278.3 ± 1.9 Ma), coeval with the Kalatongke Cu-Ni deposit and with Cu-Ni deposits in the Eastern Tianshan and Beishan areas. Several lines of evidence (positive εHf(t) from + 7.1 to + 13.3, Al2O3, TiO2 and SiO2 contents in clinopyroxene from olivine websterite, high whole rock TiO2 contents) suggest that the primary magma of the Kemozibayi intrusion was a calc-alkaline basaltic magma derived from depleted mantle, and that the degree of partial melting in the magma source was high. The evolution of the Kemozibayi mafic-ultramafic complex was strongly controlled by fractional crystallization and the crystallization sequence was olivine websterite, norite, and then gabbro. This is evidenced by whole rock Fe2O3 contents that are positively correlated with MgO and negatively correlated with Al2O3, CaO and Na2O, similar LREE enrichment and negative Nb, Ta, Hf anomalies in chondrite and primitive mantle-normalized patterns, and a decrease in total REE and trace elements contents and magnetite content from gabbro through to norite and olivine websterite. Varied and low εHf(t) (+ 7.1 to + 13.3) and high δ18O values (+ 6.4‰ to

  8. Mid Ocean Ridge Processes at Very Low Melt Supply : Submersible Exploration of Smooth Ultramafic Seafloor at the Southwest Indian Ridge, 64 degree E

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Agrinier, P.; Bickert, M.; Brunelli, D.; Hamelin, C.; Lecoeuvre, A.; Lie Onstad, S.; Maia, M.; Prampolini, M.; Rouméjon, S.; Vitale Brovarone, A.; Besançon, S.; Assaoui, E. M.

    2017-12-01

    Mid-ocean ridges are the Earth's most extensive and active volcanic chains. They are also, particularly at slow spreading rates, rift zones, where plate divergence is in part accommodated by faults. Large offset normal faults, also called detachments, are characteristic of slow-spreading ridges, where they account for the widespread emplacement of mantle-derived rocks at the seafloor. In most cases, these detachments occur together with ridge magmatism, with melt injection and faulting interacting to shape the newly formed oceanic lithosphere. Here, we seek to better understand these interactions and their effects on oceanic accretion by studying the end-member case of a ridge where magmatism is locally almost absent. The portion of the Southwest Indian ridge we are studying has an overal low melt supply, focused to discrete axial volcanoes, leaving almost zero melt to intervening sections of the axial valley. One of these nearly amagmatic section of the ridge, located at 64°E, has been the focus of several past cruises (sampling, mapping and seismic experiments). Here we report on the most recent cruise to the area (RV Pourquoi Pas? with ROV Victor; dec-jan 2017), during which we performed high resolution mapping, submersible exploration and sampling of the ultramafic seafloor and of sparse volcanic formations. Our findings are consistent with the flip-flop detachment hypothesis proposed for this area by Sauter et al. (Nature Geosciences, 2013; ultramafic seafloor forming in the footwall of successive detachment faults, each cutting into the footwall of the previous fault, with an opposite polarity). Our observations also document the extent and geometry of deformation in the footwall of a young axial detachment, the role of mass-wasting for the evolution of this detachment, and provide spectacular evidence for serpentinization-related hydrothermal circulation and for spatial links between faults and volcanic eruptions.

  9. Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata

    PubMed Central

    Ponsard, Julie; Cambon-Bonavita, Marie-Anne; Zbinden, Magali; Lepoint, Gilles; Joassin, André; Corbari, Laure; Shillito, Bruce; Durand, Lucile; Cueff-Gauchard, Valérie; Compère, Philippe

    2013-01-01

    The shrimp Rimicaris exoculata dominates several hydrothermal vent ecosystems of the Mid-Atlantic Ridge and is thought to be a primary consumer harbouring a chemoautotrophic bacterial community in its gill chamber. The aim of the present study was to test current hypotheses concerning the epibiont's chemoautotrophy, and the mutualistic character of this association. In-vivo experiments were carried out in a pressurised aquarium with isotope-labelled inorganic carbon (NaH13CO3 and NaH14CO3) in the presence of two different electron donors (Na2S2O3 and Fe2+) and with radiolabelled organic compounds (14C-acetate and 3H-lysine) chosen as potential bacterial substrates and/or metabolic by-products in experiments mimicking transfer of small biomolecules from epibionts to host. The bacterial epibionts were found to assimilate inorganic carbon by chemoautotrophy, but many of them (thick filaments of epsilonproteobacteria) appeared versatile and able to switch between electron donors, including organic compounds (heterotrophic acetate and lysine uptake). At least some of them (thin filamentous gammaproteobacteria) also seem capable of internal energy storage that could supply chemosynthetic metabolism for hours under conditions of electron donor deprivation. As direct nutritional transfer from bacteria to host was detected, the association appears as true mutualism. Import of soluble bacterial products occurs by permeation across the gill chamber integument, rather than via the digestive tract. This first demonstration of such capabilities in a decapod crustacean supports the previously discarded hypothesis of transtegumental absorption of dissolved organic matter or carbon as a common nutritional pathway. PMID:22914596

  10. Explosive Deep Sea Volcanism Produces Composite Volcanoes (Stratocones) with Predominantly Diffuse Flow Hydrothermal Ecosystems

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Chadwick, W. C.; Embley, R. W.; Butterfield, D. A.

    2018-05-01

    Newly-discovered extensive explosive deep sea volcanism produces distinct stratovolcano structures and physical rock characteristics, and host primarily diffuse flow hydrothermal activity, unlike focused flow systems at effusive submarine volcanoes.

  11. In-Situ pH Measurements in Mid-Ocean Ridge Hydrothermal Vent Fluids: Constraints on Subseafloor Alteration Processes at Crustal Depths

    NASA Astrophysics Data System (ADS)

    Schaen, A. T.; Ding, K.; Seyfried, W. E.

    2013-12-01

    Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with

  12. Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacén Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process

    NASA Astrophysics Data System (ADS)

    Puga, E.; Nieto, J. M.; Díaz de Federico, A.; Bodinier, J. L.; Morten, L.

    1999-10-01

    The Betic Ophiolitic Association, cropping out within the Mulhacén Complex (Betic Cordilleras), is made up of numerous metre- to kilometre-sized lenses of mafic and/or ultramafic and meta-sedimentary rocks. Pre-Alpine oceanic metasomatism and metamorphism caused the first stage of serpentinization in the ultramafic sequence of this association, which is characterized by local clinopyroxene (Cpx) breakdown and Ca-depletion, and complementary rodingitization of the basic dykes intruded in them. Subsequent eo-Alpine orogenic metamorphism developed eclogite facies assemblages in ultramafic and basic lithotypes, which were partly retrograded in Ab-Ep-amphibolite facies conditions during a meso-Alpine event. The heterogeneous development of the oceanic metasomatism in the ultramafic rock-types led to the patchy development of highly serpentinized Ca-depleted domains, without gradual transition to the host, and less serpentinized, Cpx-bearing ultramafites, mainly lherzolitic in composition. The high-pressure eo-Alpine recrystallization of these ultramafites in subduction conditions originated secondary harzburgites in the Ca-depleted domains, consisting of a spinifex-like textured olivine+orthopyroxene paragenesis, and a diopside+Ti-clinohumite paragenesis in the enclosing lherzolitic rocks. During the meso-Alpine event, secondary harzburgites were partly transformed into talc+antigorite serpentinites, whereas the diopside and clinohumite-bearing residual meta-lherzolites were mainly transformed into Cpx-bearing serpentinites. Relics of mantle-derived colourless olivine may be present in the more or less serpentinized secondary harzburgites. These relics are overgrown by the eo-Alpine brown pseudo-spinifex olivine, which contains submicroscopic inclusions of chromite, ilmenite and occasional halite and sylvite, inherited from its parental oceanic serpentine. The same type of mantle-derived olivine relics is also preserved within the Cpx-bearing serpentinites, although it

  13. Making a black shale shine: the interaction of hydrothermal fluids and diagenetic processes

    NASA Astrophysics Data System (ADS)

    Gleeson, Sarah; Magnall, Joe; Reynolds, Merilie

    2016-04-01

    Hydrothermal fluids are important agents of mass and thermal transfer in the upper crust. This is exemplified by shale-hosted massive sulphide deposits (SHMS), which are anomalous accumulations of Zn and Pb sulphides (± barite) in sedimentary basins created by hydrothermal fluids. These deposits occur in passive margin settings and, typically, there is no direct evidence of magmatic input. Recent studies of Paleozoic deposits in the North American Cordillera (MacMillan Pass and Red Dog Districts) have shown that the deposits are formed in a sub-seafloor setting, where the potential for thermal and chemical gradients is high. Mineralization is characterized by the replacement and displacement of unconsolidated, partially lithified and lithified biosiliceous mudstones (± carbonates), and commonly the sulphide mineralization post-dates, and replaces, bedded barite units in the sediments. The Red Dog District (Alaska, USA) contain some of the largest Zn-Pb deposits ever discovered. The host-rocks are dominantly carbonaceous mudstones, with carbonate units and some radiolarites. The ore forms massive sulphide bodies that replace pyritized mudstones, barite and carbonate units. Lithological and textural relationships provide evidence that much of the ore formed in bioturbated, biosiliceous zones that may have had high primary porosity and/or permeability. Sediment permeability may have been further modified by aging of the silica rich sediments and the dissolution/replacement of carbonate and barite beds. At the Tom and Jason deposits (MacMillan Pass, Yukon) the fault-controlled hydrothermal upflow zone is uniquely preserved as an unequivocal vent complex. Here, the metal bearing fluids are hot (300°C), low salinity (6 wt% NaCl equiv.) and acidic (pH < 4.5). These fluids were initially in thermal and chemical disequilibrium with a partially lithified organic rich host-rock but cooled rapidly during fluid rock interaction and the input of diagenetic pore fluids

  14. Three-dimensional model of an ultramafic feeder system to the Nikolai Greenstone mafic large igneous province, central Alaska Range

    USGS Publications Warehouse

    Glen, J.M.G.; Schmidt, J.M.; Connard, G.G.

    2011-01-01

    The Amphitheater Mountains and southern central Alaska Range expose a thick sequence of Triassic Nikolai basalts that is underlain by several mafic-ultramafic complexes, the largest and best exposed being the Fish Lake and Tangle (FL-T) mafic-ultramafic sills that flank the Amphitheater Mountains synform. Three-dimensional (3-D) modeling of gravity and magnetic data reveals details of the structure of the Amphitheater Mountains, such as the orientation and thickness of Nikolai basalts, and the geometry of the FL-T intrusions. The 3-D model (50 ?? 70 km) includes the full geographic extent of the FL-T complexes and consists of 11 layers. Layer surfaces and properties (density and magnetic susceptibility) were modified by forward and inverse methods to reduce differences between the observed and calculated gravity and magnetic grids. The model suggests that the outcropping FL-T sills are apparently connected and traceable at depth and reveals variations in thickness, shape, and orientation of the ultramafic bodies that may identify paths of magma flow. The model shows that a significant volume (2000 km3) of ultramafic material occurs in the subsurface, gradually thickening and plunging westward to depths exceeding 4 km. This deep ultramafic material is interpreted as the top of a keel or root system that supplied magma to the Nikolai lavas and controlled emplacement of related magmatic intrusions. The presence of this deep, keel-like structure, and asymmetry of the synform, supports a sag basin model for development of the Amphitheater Mountains structure and reveals that the feeders to the Nikolai are much more extensive than previously known. Copyright 2011 by the American Geophysical Union.

  15. Deportment of PGE and semimetals in the Volspruit deposit: the most ultramafic PGE horizon of the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Tanner, D.; McDonald, I.; Harmer, R. E. J.; Hughes, H. S. R.; Muir, D. D.

    2017-12-01

    The Volspruit deposit is a zone of disseminated magmatic sulphides carrying Ni-PGE (platinum-group element) mineralization in the Northern Limb of the Bushveld Complex, South Africa. It is one of the few known PGE prospects hosted by the lower ultramafic portion of a layered intrusion and the only known example in the Bushveld Complex. Volspruit therefore provides a unique insight into the processes governing mineralisation early in the Bushveld magmatic system. This study presents a detailed analysis from the northern portion of the Volspruit orebody combining mineralogical and textural observations with sulphide mineral trace element compositions. Electron microscopy reveals a diverse assemblage of Pt-, Pd- and Rh- dominant platinum-group minerals (PGM), electrum, Ag tellurides, Pb-chlorides, Pb-sulphides, U-oxide and monazite. Laser ablation ICP-MS has demonstrated that the Volspruit base metal sulphides have elevated PGE tenors but a range of S/Se values 1414-19319 - greater than other magmatic sulphide deposits in the northern Bushveld. The S/Se values are typical of crustal S and in agreement with previous S isotope data. These data imply a magma with initially high tenor sulphide liquid experienced local contamination from sedimentary S, leading to reduced tenors and elevated S/Se in sulphides coupled with a propensity of Pb- and Zn-bearing minerals (e.g., Pb-sulphide, Pb-chloride and sphalerite) in association with archetypal orthomagmatic sulphide assemblages. Our data demonstrate that assimilation of sedimentary rocks can modify sulphide melt evolution through the addition of metals such as Pb and Zn, not just contamination by sulphur. The Volspruit deposit illustrates the complexity of multi-stage processes governing mineralisation in the ultramafic portions of layered mafic intrusions.

  16. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

    USGS Publications Warehouse

    Rowan, L.C.; Mars, J.C.; Simpson, C.J.

    2005-01-01

    Spectral measurements made in the Mordor Pound, NT, Australia study area using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), in the laboratory and in situ show dominantly Al-OH and ferric-iron VNIR-SWIR absorption features in felsic rock spectra and ferrous-iron and Fe,Mg-OH features in the mafic-ultramafic rock spectra. ASTER ratio images, matched-filter, and spectral-angle mapper processing (SAM) were evaluated for mapping the lithologies. Matched-filter processing in which VNIR + SWIR image spectra were used for reference resulted in 4 felsic classes and 4 mafic-ultramafic classes based on Al-OH or Fe,Mg-OH absorption features and, in some, subtle reflectance differences related to differential weathering and vegetation. These results were similar to those obtained by match-filter analysis of HyMap data from a previous study, but the units were more clearly demarcated in the HyMap image. ASTER TIR spectral emittance data and laboratory emissivity measurements document a wide wavelength range of Si-O spectral features, which reflect the lithological diversity of the Mordor ultramafic complex and adjacent rocks. SAM processing of the spectral emittance data distinguished 2 classes representing the mafic-ultramafic rocks and 4 classes comprising the quartzose to intermediate composition rocks. Utilization of the complementary attributes of the spectral reflectance and spectral emittance data resulted in discrimination of 4 mafic-ultramafic categories; 3 categories of alluvial-colluvial deposits; and a significantly more completely mapped quartzite unit than could be accomplished by using either data set alone. ?? 2005 Elsevier Inc. All rights reserved.

  17. Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco

    2017-04-01

    The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its southern border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal zone, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the

  18. Submarine hydrothermal processes, mirroring the geotectonic evolution of the NE Hungarian Jurassic Szarvaskő Unit

    NASA Astrophysics Data System (ADS)

    Kiss, Gabriella B.; Zagyva, Tamás; Pásztor, Domokos; Zaccarini, Federica

    2018-05-01

    The Jurassic pillow basalt of the NE Hungarian Szarvaskő Unit is part of an incomplete ophiolitic sequence, formed in a back-arc- or marginal basin of Neotethyan origin. Different, often superimposing hydrothermal processes were studied aiming to characterise them and to discover their relationship with the geotectonic evolution of the region. Closely packed pillow, pillow-fragmented hyaloclastite breccia and transition to peperitic facies of a submarine lava flow were observed. The rocks underwent primary and cooling-related local submarine hydrothermal processes immediately after eruption at ridge setting. Physico-chemical data of this process and volcanic facies analyses revealed distal formation in the submarine lava flow. A superimposing, more extensive fluid circulation system resulted in intense alteration of basalt and in the formation of mostly sulphide-filled cavities. This lower temperature, but larger-scale process was similar to VMS systems and was related to ridge setting. As a peculiarity of the Szarvaskő Unit, locally basalt may be completely altered to a grossular-bearing mineral assemblage formed by rodingitisation s.l. This unique process observed in basalt happened in ridge setting/during spreading, in the absence of known large ultramafic blocks. Epigenetic veins formed also during Alpine regional metamorphism, related to subduction/obduction. The observed hydrothermal minerals represent different steps of the geotectonic evolution of the Szarvaskő Unit, from the ridge setting and spreading till the subduction/obduction. Hence, studying the superimposing alteration mineral assemblages can be a useful tool for reconstructing the tectonic history of an ophiolitic complex. Though the found mineral parageneses are often similar, careful study can help in distinguishing the processes and characterising their P, T, and X conditions.

  19. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  20. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.

    2017-04-01

    The Longqi hydrothermal field at 49.6°E on the Southwest Indian Ridge was the first active hydrothermal field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the hydrothermal fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi Hydrothermal field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor hydrothermal fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls hydrothermal fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.

  1. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  2. Geologic evolution of the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  3. Mineral potential for nickel, copper, platinum group elements(PGE), and chromium deposits hosted in ultramafic rocks in the Islamic Republic of Mauritania (phase V, deliverable 67): Chapter G in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Marsh, Erin; Anderson, Eric D.

    2015-01-01

    PRISM-I summary documents mention the presence of mafic-ultramafic igneous intrusive rocks in several areas of Mauritania and a number of chromium (Cr) and copper-nickel (Cu-Ni (±Co, Au)) occurrences associated with them. Permissive geologic settings generally include greenstone belts of any age, layered mafic-ultramafic and unlayered gabbro-anorthosite intrusive complexes in cratonic settings, ophiolite complexes, flood basalt provinces, and fluid-rich shear zones cutting accumulations of mafic-ultramafic rocks. Regions of Mauritania having these characteristics that are discussed in PRISM-I texts include the Mesoarchean greenstone belts of the TasiastTijirit terrane in the southwestern Rgueïbat Shield, two separate layered ultramafic complexes in the Amsaga Complex west of Atar, serpentinized metadunites in Mesoarchean rocks of the Rgueïbat Shield in the Zednes map sheet, several lateritized annular mafic-ultramafic complexes in the Paleoproterozoic northwestern portion of the Rgueïbat Shield, and the serpentinized ophiolitic segments of the Gorgol Noir Complex in the axial portion of the southern Mauritanides. Bureau de Recherches Géologiques et Minières (BRGM) work in the “Extreme Sud” zone also suggests that small copper occurrences associated with the extensive Jurassic microgabbroic intrusive rocks in the Taoudeni Basin of southeastern Mauritania could have potential for magmatic Cu-Ni (PGE, Co, Au) sulfide mineralization. Similarly, Jurassic mafic intrusive rocks in the northeastern Taoudeni Basin may be permissive. Known magmatic Cu-Ni deposits of these types in Mauritania are few in number and some uncertainty exists as to the nature of several of the more important ones.

  4. Mixing from below in hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Gomez-Rivas, Enrique; Markl, Gregor; Walter, Bejamin

    2014-05-01

    Unconformity-related hydrothermal ore deposits typically show indications of mixing of two end-member fluids: (a) hot, deep, rock-buffered basement brines and (b) colder fluids derived from the surface or overlying sediments. The hydromechanics of bringing these fluids together from above and below remain unclear. Classical percolative Darcy-flow models are inconsistent with (1) fluid overpressure indicated by fracturing and brecciation, (2) fast fluid flow indicated by thermal disequilibrium, and (3) strong fluid composition variations on the mm-scale, indicated by fluid inclusion analyses (Bons et al. 2012; Fusswinkel et al. 2013). We propose that fluids first descend, sucked down by desiccation reactions in exhumed basement. Oldest fluids reach greatest depths, where long residence times and elevated temperatures allow them the extensively equilibrate with their host rock, reach high salinity and scavenge metals, if present. Youngest fluids can only penetrate to shallower depths and can (partially) retain signatures from their origin, for example high Cl/Br ratios from the dissolution of evaporitic halite horizons. When fluids are released from all levels of the crustal column, these fluids mix during rapid ascent to form hydrothermal ore deposits. Mixing from below provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in hydrothermal ore deposits. Bons, P.D., Elburg, M.A., Gomez-Rivas, E. 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. doi:10.1016/j.jsg.2012.07.005 Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., Markl, M. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology. doi:10.1130/G34092.1

  5. Characterization of the Sukinda and Nausahi ultramafic complexes, Orissa, India by platinum-group element geochemistry

    USGS Publications Warehouse

    Page, N.J.; Banerji, P.K.; Haffty, J.

    1985-01-01

    Samples of 20 chromitite, 14 ultramafic and mafic rock, and 9 laterite and soil samples from the Precambrian Sukinda and Nausahi ultramafic complexes, Orissa, India were analyzed for platinum-group elements (PGE). The maximum concentrations are: palladium, 13 parts per billion (ppb); platinum, 120 ppb; rhodium, 21 ppb; iridium, 210 ppb; and ruthenium, 630 ppb. Comparison of chondrite-normalized ratios of PGE for the chromitite samples of lower Proterozoic to Archean age with similar data from Paleozoic and Mesozoic ophiolite complexes strongly implies that these complexes represent Precambrian analogs of ophiolite complexes. This finding is consistent with the geology and petrology of the Indian complexes and suggests that plate-tectonic and ocean basin developement models probably apply to some parts of Precambrian shield areas. ?? 1985.

  6. Hydrothermal flake graphite mineralisation in Paleoproterozoic rocks of south-east Greenland

    NASA Astrophysics Data System (ADS)

    Rosing-Schow, Nanna; Bagas, Leon; Kolb, Jochen; Balić-Žunić, Tonči; Korte, Christoph; Fiorentini, Marco L.

    2017-06-01

    Flake graphite mineralisation is hosted in the Kuummiut Terrane of the Paleoproterozoic Nagssugtoqidian Orogen, south-east Greenland. Eclogite-facies peak-metamorphic assemblages record temperatures of 640-830 °C and pressures of 22-25 kbar, and are retrogressed in the high-pressure amphibolite-facies during ca. 1870-1820 Ma. Graphite occurs as lenses along cleavage planes in breccia and as garnet-quartz-graphite veins in various metamorphic host rocks in the Tasiilaq area at Auppaluttoq, Kangikajik, and Nuuk-Ilinnera. Graphite contents reach >30 vol% in 0.2-4 × 20 m wide semi-massive mineralisation (Auppaluttoq, Kangikajik). Supergene alteration formed 1- to 2-m-thick and up to a 2.5 × 2.5 km wide loose limonitic gravel containing graphite flakes in places. The flake size ranges from 1 to 6 mm in diameter with an average of 3 mm. Liberation efficiency is at minimum 60%. Hydrothermal fluids at 600 °C, transporting carbon as CO2 and CH4, formed the mineralisation commonly hosted by shear zones, which acted as pathways for the mineralising fluids. The hydrothermal alteration assemblage is quartz-biotite-grunerite-edenite-pargasite-K-feldspar-titanite. The δ13C values of graphite, varying from -30 to -18‰ PDB, indicate that the carbon was derived from organic matter most likely from metasedimentary sources. Devolatilisation of marble may have contributed a minor amount of carbon by fluid mixing. Precipitation of graphite involved retrograde hydration reactions, depleting the fluid in H2O and causing graphite saturation. Although the high-grade mineralisation is small, it represents an excellent example of hydrothermal mineralisation in an eclogite-facies terrane during retrograde exhumation.

  7. Mineralization of atmospheric CO2 via fluid reaction with mafic/ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Westfield, I. T.; Kendall, T. A.; Ries, J. B.

    2011-12-01

    Atmospheric CO2 has increased nearly 50% since the Industrial Revolution, due primarily to increased fossil fuel combustion, cement production, and deforestation. Although subterranean reservoirs are presently considered the most viable sink for anthropogenically liberated CO2, concerns exist over the stability of these systems and their impacts on regional tectonics, aquifers, and subterranean microbial ecosystems. Direct mineralization of CO2 at the Earth's surface provides an alternative capable of generating useful carbon-negative mineral byproducts that may be used to supplement or replace conventional carbon-positive building materials, like cement. However, mineralization of anthropogenic CO2 requires large sources of alkalinity to convert CO2 to CO32-, and divalent cations (e.g., Mg2+, Ca2+, Fe2+, etc.) to bond with the aqueous CO32-. Ultramafic and mafic rocks, such as peridotites, serpentinites, and basalts, are globally abundant, naturally occurring sources of the divalent cations, and alkalinity required for CO2 mineralization. Here, we present the results of accelerated reactions between ultramafic/mafic rocks, water, and CO2/N2 gases, aimed at quantifying the carbonation potential of mafic/ultramafic rocks. Rock-fluid-gas batch reactions were carried out in vented 4 L borosilicate glass flasks filled with 3 L DI water and 200 g acetone-washed, 49-180μm-diameter grains of four ultramafic/mafic rock types: peridotite, dunite, websterite and basalt. Each of the four rock-water mixtures was reacted under pure CO2 and pure N2 and at 25 and 200 °C, for a total of 16 reactions. Mixtures were continuously heated and stirred for 14 days. Samples (330 mL) were obtained at 0, 1, 6, 24, 48, 96, 168, and 336 hrs and filtered at 0.4 μm. The pH of filtered samples was measured with a single-junction Ag/AgCl glass electrode, salinity was determined with a conductivity probe, total alkalinity (TA) was determined by closed-cell potentiometric Gran titration, and DIC

  8. Novel insights into methane cycling, lateral gene transfer, and the rare biosphere within carbonate chimneys of the Lost City Hydrothermal Field (Invited)

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Ludwig, K. A.; Schrenk, M. O.; Kelley, D. S.; Sogin, M. L.; Baross, J. A.

    2010-12-01

    The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of ~90°C, pH 9-11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids through the carbonate chimneys supports dense microbial biofilm communities. This presentation will describe recent studies using new techniques that have provided greater insight into the microbial ecology and biogeochemistry of Lost City chimneys. We have investigated the archaeal and bacterial communities of Lost City carbonate chimneys that vary in age between ~30 and ~1200 years, as determined by U-Th isotope systematics. Using next-generation pyrosequencing technology, we collected >200,000 sequences of the V6 region of 16S rRNA genes. This extremely deep sequencing effort enabled detection of very rare organisms as well as abundant organisms detected by previous studies. The taxonomic composition of the archaeal and bacterial communities clearly differed in chimneys of different ages, and many of the rare sequences in young chimneys were more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is pre-adapted to a particular set of re-occurring environmental conditions. In this model, the rare biosphere can be considered a repository for genes that are not currently advantageous but have been in the past and may be again in the future. Interestingly, metagenomic sequencing at Lost City has indicated the potential for frequent lateral gene transfer among organisms inhabiting the chimney biofilms. Specifically, the Lost City metagenomic dataset

  9. Microbial Fe biomineralization in mafic and ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Templeton, A. S.; Mayhew, L.; McCollom, T.; Trainor, T.

    2011-12-01

    Fluid-filled microfractures within mafic and ultramafic rocks, such as basalt and peridotite, may be one of the most ubiquitous microbial habitats on the modern and ancient earth. In seafloor and subseafloor systems, one of the dominant energy sources is the oxidation of Fe by numerous potential oxidants under aerobic to anaerobic conditions. In particular, the oxidation of Fe may be directly catalyzed by microbial organisms, or result in the production of molecular hydrogen which can then fuel diverse lithotrophic metabolisms. However, it remains challenging to identify the dominant metabolic activities and unravel the microscale biogeochemical processes occuring within such rock-hosted systems. We are investigating the mechanisms of solid-state Fe-oxidation and biomineralization in basalt, olivine, pyroxenes and basalts, in the presence and absence of microbial organisms that can thrive across the full stability range of water. In this talk we will present synchrotron-based x-ray scattering and spectroscopic analyses of Fe speciation within secondary minerals formed during microbially-mediated vs. abiotic water-rock interactions. Determining the valence state and mineralogy of Fe-bearing phases is critical for determining the water-rock reaction pathways and identifying potential biominerals that may form; therefore, we will highlight new approaches for identifying key Fe transformations within complex geological media. In addition, many of our experimental studies involve the growth of lithotrophic biofilms on well-characterized mineral surfaces in order to determine the chemistry of the microbe-mineral interface during progressive electron-transfer reactions. By coupling x-ray spectroscopy, x-ray diffraction, and electron-microscopy measurements, we will also contrast the evolution of mineral surfaces that undergo microbially-mediated oxidative alteration against minerals surfaces that produce H2 to sustain anaerobic microbial communities.

  10. Evaluation of ultramafic deposits in the Eastern United States and Puerto Rico as sources of magnesium for carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser Goff; George Guthrie; Bruce Lipin

    2000-04-01

    In this report, the authors evaluate the resource potential of extractable magnesium from ultramafic bodies located in Vermont, the Pennsylvania-Maryland-District-of-Columbia (PA-MD-DC) region, western North Carolina, and southwestern Puerto Rico. The first three regions occur in the Appalachian Mountains and contain the most attractive deposits in the eastern United States. They were formed during prograde metamorphism of serpentinized peridotite fragments originating from an ophiolite protolith. The ultramafic rocks consist of variably serpentinized dunite, harzburgite, and minor iherzolite generally containing antigorite and/or lizardite as the major serpentine minor phases. Chrysotile contents vary from minor to major, depending on occurrence. Most bodies containmore » an outer sheath of chlorite-talc-tremolite rock. Larger deposits in Vermont and most deposits in North Carolina contain a core of dunite. Magnesite and other carbonates are common accessories. In these deposits, MgO ranges from 36 to 48 wt % with relatively pure dunite having the highest MgO and lowest H{sub 2}O contents. Ultramafic deposits in southwestern Puerto Rico consist of serpentinized dunite and harzburgite thought to be emplaced as large diapirs or as fragments in tectonic melanges. They consist of nearly pure, low-grade serpentinite in which lizardite and chrysotile are the primary serpentine minerals. Chlorite is ubiquitous in trace amounts. Magnesite is a common accessory. Contents of MgO and H{sub 2}O are rather uniform at roughly 36 and 13 wt %. Dissolution experiments show that all serpentinites and dunite-rich rocks are soluble in 1:1 mixtures of 35% HCl and water by volume. The experiments suggest that low-grade serpentinites from Puerto Rico are slightly more reactive than the higher grade, antigorite-bearing serpentinites of the Appalachian Mountains. The experiments also show that the low-grade serpentinites and relatively pure dunites contain the least amounts of

  11. Komatiites and nickel sulphide orebodies of the Black Swan area, Yilgarn Craton, Western Australia. 1. Petrology and volcanology of host rocks

    NASA Astrophysics Data System (ADS)

    Hill, R. E. T.; Barnes, S. J.; Dowling, S. E.; Thordarson, T.

    2004-11-01

    The Black Swan Succession is a bimodal association of dacitic and komatiitic volcanic rocks located about 50 km NNE of Kalgoorlie, within the 2.7-Ga Eastern Goldfields greenstone province of the Yilgarn Craton. The komatiite stratigraphy comprises a steep dipping, east facing package about 700 m in maximum thickness and about 2.5 km in strike length (Fig. 1), which hosts a number of economically exploitable Ni sulphide orebodies including the Silver Swan massive ore shoot (approximately half a million tonnes at about 10.5% Ni). The sequence can be subdivided into a Lower Felsic Unit, comprising coherent and autobrecciated facies of multiple dacite lava flows; an upper Eastern and lower Western Ultramafic Unit, each showing marked lateral facies variation, and an Upper Felsic Unit coeval with the Eastern Ultramafic Unit. The komatiite sequence has been metamorphosed at sub-greenschist facies in the presence of high proportions of CO2-rich fluid, giving rise to pervasive talc carbonate and talc carbonate quartz assemblages, with extensive preservation of pseudomorphed igneous textures. Cores of lizardite serpentinite are present in the thickest parts of the ultramafic succession. The degree of penetrative deformation is generally very low, and original stratigraphic relationships are largely intact in much of the sequence. The Eastern Ultramafic Unit and Western Ultramafic Unit are interpreted as components of a single large komatiite flow field, representing overlapping stages in the emplacement of a series of distributory lava pathways and flanking sheet flows. The Western Ultramafic Unit which hosts the bulk of the high-grade massive and disseminated ores is a sequence dominated by coarse-grained olivine cumulates, 2 km wide and up to 500 m thick, with major magma pathways represented by thick, homogenous olivine mesocumulate piles at its northern and southern ends: respectively 400 and 200 m thick. The sequence between the two major pathways consists of olivine

  12. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages

    PubMed Central

    Lartaud, Franck; Little, Crispin T. S.; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine

    2011-01-01

    Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed. PMID:21518892

  13. High-resolution seismic imaging of the Kevitsa mafic-ultramafic Cu-Ni-PGE hosted intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Malehmir, Alireza; Koivisto, Emilia; Wjins, Chris; Tryggvason, Ari; Juhlin, Christopher

    2014-05-01

    Kevitsa, in northern Finland, is a large nickel/copper ore body hosted by a massive mafic-ultramafic intrusion with measured and indicated resources of 240 million tons (cutoff 0.1%) grading 0.30% Ni and 0.41% Cu. Mining started in 2012 with an open pit that will extend down to about 550-600 m depth. The expected mine life is more than 20 years. Numerous boreholes are available in the area, but the majority of them are shallow and do not provide a comprehensive understanding of the dimensions of the intrusion. However, a number of boreholes do penetrate the basal contact of the intrusion. Most of these are also shallow and concentrated at the edge of the intrusion. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area, but also a better understanding of the geology. Exact mapping of the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu than the disseminated mineralization away from the contact. With the objective of better characterizing the intrusion, a series of 2D profiles were acquired followed by a 3D reflection survey that covered an area of about 3 km by 3 km. Even though the geology is complex and the seismic P-wave velocity ranges between 5 to 8 km/s, conventional processing results show gently- to steeply-dipping reflections from depths of approximately 2 km to as shallow as 100 m. Many of these reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Correlations between the 3D surface seismic data and VSP data, based upon time shifts or phase changes along the reflections, support the interpretation that numerous faults are imaged in the volume. Some of these faults cross the planned open-pit mine at depths of about 300-500 m, and it is, therefore, critical to map them for mine planning. The seismic 3D

  14. Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordor, NT, Australia

    USGS Publications Warehouse

    Rowan, L.C.; Simpson, C.J.; Mars, J.C.

    2004-01-01

    The Mordor Complex consists of a series of potassic ultramafic rocks which were intruded into Proterozoic felsic gneisses and amphibolite and are overlain by quartzite and unconsolidated deposits. In situ and laboratory 0.4 to 2.5 ??m reflectance spectra show Al-OH absorption features caused by absorption in muscovite, kaolinite, and illite/smectite in syenite, granitic gneiss, quartzite and unconsolidated sedimentary deposits, and Fe,Mg-OH features due to phlogopite, biotite, epidote, and hornblende in the mafic and ultramafic rocks. Ferrous-iron absorption positioned near 1.05 ??m is most intense in peridotite reflectance spectra. Ferric-iron absorption is intense in most of the felsic lithologies. HyMap data were recorded in 126 narrow bands from 0.43 to 2.5 ??m along a 7-km-wide swath with approximately 6-m spatial resolution. Correction of the data to spectral reflectance was accomplished by reference to in situ measurements of an extensive, alluvial plain. Spectral classes for matched filter processing were selected by using the pixel purity index procedure and analysis of in situ and laboratory spectra. Considering the spatial distribution of the resulting 14 classes, some classes were combined, which produced eight classes characterized by Al-OH absorption features, and three Fe,Mg-OH absorption-feature classes. Comparison of the distribution of these 11 spectral classes to a generalized lithologic map of the study area shows that the spectral distinction among the eight Al-OH classes is related to variations in primary lithology, weathering products, and vegetation density. Quartzite is represented in three classes, syenite corresponds to a single scattered class, quartz-muscovite-biotite schist defines a single very coherent class, and unconsolidated sediments are portrayed in four classes. The three mafic-ultramafic classes are distinguished on the basis of generally intense Fe,Mg-OH and ferrous-iron absorption features. A single class represents the

  15. Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan)

    NASA Astrophysics Data System (ADS)

    Jagoutz, O.; Müntener, O.; Burg, J.-P.; Ulmer, P.; Jagoutz, E.

    2006-02-01

    Whole-rock and Sm-Nd isotopic data of the main units of the Chilas zoned ultramafic bodies (Kohistan paleo-island arc, NW Pakistan) indicate that ultramafic rocks and gabbronorite sequences stem from a common magma. However, field observations rule out formation of both ultramafic and mafic sequences in terms of gravitational crystal settling in a large magma chamber. Contacts between ultramafic and gabbronorite sequences show emplacement of the dunitic bodies into a semi-consolidated gabbronoritic crystal-mush, which in turn has intruded and reacted with the ultramafic rocks to produce concentric zoning. Field and petrological observations indicate a replacive origin of the dunite. Bulk Mg#'s of dunitic rocks range from 0.87-0.81 indicating that the dunite-forming melt underwent substantial fractionation-differentiation and that percolative fractional crystallization probably generated the dunitic core. The REE chemistry of clinopyroxene in primitive dunite samples and the Nd isotopic composition of ultramafic rocks are in equilibrium with the surrounding gabbronorite. Accordingly, liquids that formed the dunitic rocks and later the mafic sequence derived from a similar depleted source ( ɛNd˜4.8). We propose a mechanism for the comagmatic emplacement, where km-scale ultramafic bodies represent continuous channels reaching down into the upper mantle. The melt-filled porosity in these melt channels diminishes the mean-depth-integrated density difference to the surrounding rocks. Due to buoyancy forces, melt channels raise into the overlying crustal sequence. In the light of such processes, the ultramafic bodies are interpreted as melt channels through which the Chilas gabbronorite sequence was fed. The estimated basaltic-andesitic, low Mg# (˜0.53) bulk composition of the Chilas gabbronorite sequence closely matches estimates of lower crustal compositions. Since the mafic sequence originated from a primary, high Mg# (> 0.7) basaltic arc magma, differentiation of

  16. Characterizing the metatranscriptomic profile of archaeal metabolic genes at deep-sea hydrothermal vents in the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Galambos, D.; Reveillaud, J. C.; Anderson, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vent systems host a wide diversity of bacteria, archaea and viruses. Although the geochemical conditions at these vents are well-documented, the relative metabolic activity of microbial lineages, especially among archaea, remains poorly characterized. The deep, slow-spreading Mid-Cayman Rise, which hosts the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields, allows for the comparison of vent sites with different geochemical characteristics. Previous metagenomic work indicated that despite the distinct geochemistry at Von Damm and Piccard, the functional profile of microbial communities between the two sites was similar. We examined relative metabolic gene activity using a metatranscriptomic analysis and observed functional similarity between Von Damm and Piccard, which is consistent with previous results. Notably, the relative expression of the methyl-coenzyme M reductase (mcr) gene was elevated in both vent fields. Additionally, we analyzed the ratio of RNA expression to DNA abundance of fifteen archaeal metagenome-assembled genomes (MAGs) across the two fields. Previous work showed higher archaeal diversity at Von Damm; our results indicate relatively even expression among archaeal lineages at Von Damm. In contrast, we observed lower archaeal diversity at Piccard, but individual archaeal lineages were very highly expressed; Thermoprotei showed elevated transcriptional activity, which is consistent with higher temperatures and sulfur levels at Piccard. At both Von Damm and Piccard, specific Methanococcus lineages were more highly expressed than others. Future analyses will more closely examine metabolic genes in these Methanococcus MAGs to determine why some lineages are more active at a vent field than others. We will conduct further statistical analyses to determine whether significant differences exist between Von Damm and Piccard and whether there are correlations between geochemical metadata and metabolic gene or

  17. Controls on Martian Hydrothermal Systems: Application to Valley Network and Magnetic Anomaly Formation

    NASA Technical Reports Server (NTRS)

    Harrison, Keith P.; Grimm, Robert E.

    2002-01-01

    Models of hydrothermal groundwater circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during hydrothermal alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.

  18. The fossil hydrothermal rootzone from the Northern Apennine ophiolites (Italy)

    NASA Astrophysics Data System (ADS)

    Tribuzio, R.; Zanetti, A.; Dallai, L.

    2003-04-01

    The Northern Apennine ophiolites are lithosphere remnants of the Late Jurassic -- Early Cretaceous Ligurian Tethys, which is considered to have developed in conjunction with the opening of the Central Atlantic Ocean. In the Bonassola area, a km-scale gabbroic body permits the study of the magmatic-hydrothermal transition. The body mostly consists of coarse-grained gabbros of cumulus origin that exhibit granulite-facies recrystallization along ductile shear zones, which most likely occurred in the absence of seawater-derived fluids. These shear zones are crosscut at high angle by parallel swarms of hornblende (± plagioclase) veins. The development of these veins is correlated with coronal hornblende growth at the expenses of igneous clinopyroxene in the host gabbro. Scattered, elongated bodies of hornblende-bearing albitites also crop out. In particular, two different generations of albitite bodies have been recognized. The albitite (1) bodies show irregular contacts against the host gabbro, which are characterized by hornblende-rich reaction zones. These albitites are inferred to have developed when the gabbro was not completely solidified. The albitite (2) bodies has sharp contacts, post-date the granulite-facies foliation in the host gabbros, and show the same elongation direction of hornblende veins. The albitite (2) bodies are therefore related to the same brittle deformation event that gave rise to the hornblende veins. Major, trace, halogen and oxygen isotope analyses of hornblende from both veins and albitite bodies have been carried out. The geochemical signature of hornblende from albitite (1) bodies and related contact reaction zones is similar to that of accessory titanian pargasite of igneous origin in the host gabbro, thus indicating that these albitites were derived by extreme differentiation of basaltic liquid. Two different chemical fingerprints have been recognized for the vein hornblendes. The first type indicates a formation by local reaction

  19. Geochemical and Visual Indicators of Hydrothermal Fluid Flow through a Sediment-Hosted Volcanic Ridge in the Central Bransfield Basin (Antarctica)

    PubMed Central

    Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.

    2013-01-01

    In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr  = 0.708776 at core base) compared with modern seawater (87Sr/86Sr ≈0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806

  20. Continuous country rock contamination and hydrothermal alteration of the Ni-Cu-PGE sulphide-bearing (ultra-)basic Uitkomst Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Gauert, Christoph; Globig, Jan

    2014-05-01

    This mineralized ultrabasic to basic igneous complex of Bushveld Complex age (De Waal et al., 2001) and with affinity to a Bushveld complex primary magma composition Gauert, 1998) deserves further investigation, since new drill core material became available. An intersection of the downdip extension of the complex of constant thickness reveals upper gabbronoritic units which are geochemically evolved and strongly contaminated with quartz by assimilation of country rocks. Hydrothermal, partly deuteric alteration is widespread over the complex, but pronounced in its lower and upper zones. Selective, connate to meteoric fluid ingress, controlled by contact metamorphism (Sarkar et al., 2008) and structure (Joubert, 2013), led to significant deuteric alteration. Highly talc-carbonate altered chromitiferous peridotite sections show formation of cube-shaped spinels, probably indicating auto-metamorphic conditions. Autometamorphism of the ultrabasic rocks produced a wide range of non-sulfide assemblages, despite the relatively restricted compositional range within each rock type; a crucial variable is the XCO2 of the metamorphic fluid. The sulphide mineralogy of the ultramafic-hosted deposit is influenced by the temperature and composition of the hydrothermal fluid. Reduction reactions associated with the serpentinization fronts in the dunitic adcumulates gave rise to Ni-Fe alloy and native Cu bearing assemblages. Greenschist facies hydration gave rise to serpentinites, hosting assemblages rich in pentlandite and in some cases violarite and marcasite, mackinawite, millerite, and valleriite. Oxidized fluids associated with low temperature talc-carbonate alteration in the chromitiferous peridotite formed Ni-sulphide minerals coexisting with pyrite and hematite. Both the sulfide and nickel components in the ore may contain substantial proportions of the total nickel budget. Low temperature alteration effectively redistributed the sulfide elements in serpentinites, leading to

  1. Structural correction of paleomagnetic vectors dispersed about two fold axes and application to the Duke Island (Alaska) ultramafic complex

    NASA Astrophysics Data System (ADS)

    Bogue, Scott W.; Grommé, C. Sherman

    2004-11-01

    A new analysis of paleomagnetic data from the mid-Cretaceous (˜110 Ma) ultramafic complex at Duke Island (southeast Alaska) supports large poleward transport of the Insular superterrane relative to North America consistent with the Baja British Columbia hypothesis. Previous paleomagnetic work has shown that the characteristic remanence of the ultramafic complex predates kilometer-scale deformation of the very well developed cumulate layering but that the layering was not horizontal everywhere before the folding. It is possible, however, to estimate paleohorizontal for the Duke Island ultramafic complex because the postremanence deformation of the intrusion occurred about two well-defined and spatially separate fold axes. In such a case the tectonically rotated paleomagnetic directions should be distributed along small circles centered on each of the two fold axes. The ancient field direction will lie on both small circles and therefore will be identifiable as one of their two intersection points. Interpreted this way, the tectonically rotated remanence of the Duke Island ultramafic complex defines a mid-Cretaceous (i.e., ancient) field direction that is within 2° of the paleomagnetic direction found by assuming the cumulate layering was initially horizontal (despite the paleomagnetic evidence to the contrary) and performing the standard structure correction. The inferred mid-Cretaceous paleolatitude of Duke Island is 21.2° (2350 km) anomalous with respect to cratonic North America. This result is concordant with southerly paleolatitudes determined by many other workers from bedded rocks of terranes farther inboard in the Insular and Intermontane superterranes.

  2. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.

    2009-01-01

    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining

  3. U-Th isotopic systematics and ages of carbonate chimneys at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Shen, C.; Kelley, D. S.; Cheng, H.; Edwards, R.

    2009-12-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th isotopic systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples with <15 mmol/kg Mg, 232Th concentration is 0.11 to 0.13 pg/g and surrounding seawater concentration average is 0.133 ± 0.016 pg/g. The 230Th/232Th atomic ratios of the vent fluids range from 1 ± 10 to 26 ± 4 ×10-6 and are less than those of seawater. Chimney U is seawater-derived and 238U concentrations range from 1-10 μg/g and the mean chimney corrected initial δ234U is 146.9 ± 0.5, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate thorium concentrations range broadly from 0.035-125 ng/g and 230Th/232Th atomic ratios vary from near seawater values of 43 ± 8 × 10-6 up to 530 ± 25 × 10-3. Chimney ages range from 18 ± 6 yrs to 122 ± 12 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic activity and active faulting within the Atlantis Massif and the Atlantis Fracture Zone, coupled with volumetric expansion of the underlying serpentinized host rocks play major roles in sustaining

  4. Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophicalcites, Western Alps, France): Processes of carbonate cementation

    NASA Astrophysics Data System (ADS)

    Lafay, Romain; Baumgartner, Lukas P.; Stephane, Schwartz; Suzanne, Picazo; German, Montes-Hernandez; Torsten, Vennemann

    2017-12-01

    The Late Jurassic Chenaillet ophiolitic complex (Western Alps) represents parts of an oceanic core-complex of the Liguria-Piemonte domain. A model for the origin and evolution of the Chenaillet ophicalcites based on textural and isotopic characterization is presented. The Chenaillet ophicalcites correspond to brecciated serpentinized peridotites that record seafloor shallow serpentinization at a minimum temperatures of 150 °C followed by authigenic carbonation. Carbonation starts with a network of micrometric to millimetric pre- or syn-clast formation calcite veins accompanied by a pervasive carbonation of residual olivine and serpentine inside the serpentinite mesh core. A matrix of small calcite (< 50 μm, 12 μm in average) cemented clasts after their individualization. Texture of the breccia, grain size distribution within the matrix, and chrysotile clusters support rapid cementation from a strongly oversaturated fluid due most likely to hydrothermal fluid cooling and decompression. Later fluids infiltrated by multiple crack formation and some dolomite locally formed along serpentinite-calcite interfaces. Carbonates have δ13C (VPDB) values that range between - 5‰ and + 0.4‰. The lower values were obtained for calcite within the serpentinite clasts. The δ18O (VSMOW) values have a range between + 11‰ and + 16‰ in carbonated clasts. The δ18O values in the matrix are fairly homogeneous with an average at + 12‰ and the late calcite veins have values between + 12.5 and + 15.5‰. These values suggest a relatively high temperature of formation for all the carbonates. Carbonates within clast are mainly characterized by a formation temperature in the range of 110 °C to 180 °C assuming a δ18O value of seawater of 0‰, the matrix forms at a temperature of ca. 165 °C. Late veins are characterized by a formation temperature ranging between 120and 155 °C. We propose a model where serpentinization is followed by discrete carbonation then brecciation and

  5. Geochemistry of fluids from Earth's deepest ridge-crest hot-springs: Piccard hydrothermal field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    McDermott, Jill M.; Sylva, Sean P.; Ono, Shuhei; German, Christopher R.; Seewald, Jeffrey S.

    2018-05-01

    Hosted in basaltic substrate on the ultra-slow spreading Mid-Cayman Rise, the Piccard hydrothermal field is the deepest currently known seafloor hot-spring (4957-4987 m). Due to its great depth, the Piccard site is an excellent natural system for investigating the influence of extreme pressure on the formation of submarine vent fluids. To investigate the role of rock composition and deep circulation conditions on fluid chemistry, the abundance and isotopic composition of organic, inorganic, and dissolved volatile species in high temperature vent fluids at Piccard were examined in samples collected in 2012 and 2013. Fluids from the Beebe Vents and Beebe Woods black smokers vent at a maximum temperature of 398 °C at the seafloor, however several lines of evidence derived from inorganic chemistry (Cl, SiO2, Ca, Br, Fe, Cu, Mn) support fluid formation at much higher temperatures in the subsurface. These high temperatures, potentially in excess of 500 °C, are attainable due to the great depth of the system. Our data indicate that a single deep-rooted source fluid feeds high temperature vents across the entire Piccard field. High temperature Piccard fluid H2 abundances (19.9 mM) are even higher than those observed in many ultramafic-influenced systems, such as the Rainbow (16 mM) and the Von Damm hydrothermal fields (18.2 mM). In the case of Piccard, however, these extremely high H2 abundances can be generated from fluid-basalt reaction occurring at very high temperatures. Magmatic and thermogenic sources of carbon in the high temperature black smoker vents are described. Dissolved ΣCO2 is likely of magmatic origin, CH4 may originate from a combination of thermogenic sources and leaching of abiotic CH4 from mineral-hosted fluid inclusions, and CO abundances are at equilibrium with the water-gas shift reaction. Longer-chained n-alkanes (C2H6, C3H8, n-C4H10, i-C4H10) may derive from thermal alteration of dissolved and particulate organic carbon sourced from the original

  6. Microscale mapping of alteration conditions and potential biosignatures in basaltic-ultramafic rocks on early Earth and beyond.

    PubMed

    Grosch, Eugene G; McLoughlin, Nicola; Lanari, Pierre; Erambert, Muriel; Vidal, Olivier

    2014-03-01

    Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future

  7. Bacterial Community Associated with Organs of Shallow Hydrothermal Vent Crab Xenograpsus testudinatus near Kuishan Island, Taiwan.

    PubMed

    Yang, Shan-Hua; Chiang, Pei-Wen; Hsu, Tin-Chang; Kao, Shuh-Ji; Tang, Sen-Lin

    2016-01-01

    Shallow-water hydrothermal vents off Kueishan Island (northeastern Taiwan) provide a unique, sulfur-rich, highly acidic (pH 1.75-4.6) and variable-temperature environment. In this species-poor habitat, the crab Xenograpsus testudinatus is dominant, as it mainly feeds on zooplankton killed by sulfurous plumes. In this study, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate diversity and composition of bacteria residing in digestive gland, gill, stomach, heart, and mid-gut of X. testudinatus, as well as in surrounding seawater. Dominant bacteria were Gamma- and Epsilonproteobacteria that might be capable of autotrophic growth by oxidizing reduced sulfur compounds and are usually resident in deep-sea hydrothermal systems. Dominant bacterial OTUs in X. testudinatus had both host and potential organ specificities, consistent with a potential trophic symbiotic relationship (nutrient transfer between host and bacteria). We inferred that versatile ways to obtain nutrients may provide an adaptive advantage for X. testudinatus in this demanding environment. To our knowledge, this is the first study of bacterial communities in various organs/tissues of a crustacean in a shallow-water hydrothermal system, and as such, may be a convenient animal model for studying these systems.

  8. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  9. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  10. Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily

    NASA Astrophysics Data System (ADS)

    Scirè, Salvatore; Ciliberto, Enrico; Crisafulli, Carmelo; Scribano, Vittorio; Bellatreccia, Fabio; Ventura, Giancarlo Della

    2011-08-01

    Microscopic blebs of sulfur-bearing organic matter (OM) commonly occur between the secondary calcite grains and fibrous phyllosilicates in extensively serpentinized and carbonated mantle-derived ultramafic xenoliths from Hyblean nephelinite diatremes, Sicily, Italy. Rarely, coarse bituminous patches give the rock a blackish color. Micro Fourier transform infrared spectra (μ-FTIR) point to asphaltene-like structures in the OM, due to partially condensed aromatic rings with aliphatic tails consisting of a few C atoms. X-ray photoelectron spectroscopy (XPS) analysis indicates the occurrence of minor S═O (either sulphonyl or sulphoxide) functional groups in the OM. Solubility tests in toluene, thermo-gravimetric (TGA) and differential thermal (DTA) analyses confirm the presence of asphaltene structures. It is proposed that asphaltenes derive from the in situ aromatization (with decrease in H/C ratio) of previous light aliphatic hydrocarbons. Field evidence excludes that hydrocarbon from an external source percolated through the xenolith bearing tuff-breccia. The discriminating presence of hydrocarbon in a particular type of xenolith only and the lack of hydrocarbon in the host breccia matrix, are also inconsistent with an interaction between the ascending eruptive system and a supposed deep-seated oil reservoir. Assuming that the Hyblean unexposed basement consists of mantle ultramafics and mafic intrusive rocks having hosted an early abyssal-type hydrothermal system, one can put forward the hypothesis that the hydrocarbon production was related to hydrothermal activity in a serpentinite system. Although a bacteriogenesis or thermogenesis cannot be ruled out, the coexisting serpentine, Ni-Fe ores and hydrocarbon strongly suggest a Fischer-Tropsch-type (FTT) synthesis. Subsequent variations in the chemical and physical conditions of the system, for example an increase in the water/rock ratio, gave rise to partial oxidation and late carbonation of the serpentinite

  11. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  12. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field.

    PubMed

    Lang, Susan Q; Früh-Green, Gretchen L; Bernasconi, Stefano M; Brazelton, William J; Schrenk, Matthew O; McGonigle, Julia M

    2018-01-15

    Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14 C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14 C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO 2 . Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.

  13. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  14. Structural, mineralogical and geochemical constraints on the atypical komatiite-hosted Turret deposit in the Agnew-Mt. White district, Western Australia

    NASA Astrophysics Data System (ADS)

    Voute, F.; Thébaud, N.

    2015-08-01

    In the Norseman-Wiluna belt, Yilgarn Craton, the Agnew-Mt. White district is the host of many gold deposits. Located in the hinge of the regional Lawlers anticline, the Turret gold deposit is structurally controlled by the Table Hill shear zone that transects the Agnew Ultramafic unit. Geochemistry, coupled with petrographic data, allowed the delineation of the paragenetic sequence associated with gold mineralisation and include (1) a pervasive talc-carbonate alteration assemblage, (2) a pre-mineralisation stage associated with pervasive arsenopyrite + chalcopyrite + pyrrhotite + pyrite alteration, followed by (3) a late deformation event along a dilatational segment of the main Table Hill shear zone, leading to the formation of a breccia hosting a Cu-Bi-Mo-Au (± Ag ± Zn ± Te ± W) metal assemblage. The presence of Au-Ag-Cu alloys, native bismuth, chalcopyrite and other Bi-Te-S phases in the mineralisation stage suggest that gold may have been scavenged from the hydrothermal fluids by composite Bi-Te-Cu-Au-Ag-S liquids or melts. Using this mineral paragenetic sequence, together with mineralogical re-equilibration textures observed, we show that the gold deposition at Turret occurred over a temperature range approximately between c. 350 and 270 °C. This temperature range, together with the structural control and typical mesothermal alteration pattern including carbonate-chlorite alteration, shows that the Turret deposit shares common characteristics with the orogenic gold deposit class. However, the metal association of Cu, Au, Bi, and Mo, the quartz-poor, and high copper-sulphide content (up to 15 %) are characteristics that depart from the typical orogenic gold deposit mineralogy. Through comparison with similar deposits in the Yilgarn Craton and worldwide, we propose that the Turret deposit represents an example of a porphyry-derived Au-Cu-Bi-Mo deposit.

  15. Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.

    2006-12-01

    The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly

  16. Meso to Neoproterozoic layered mafic-ultramafic rocks from the Virorco back-arc intrusion, Argentina

    NASA Astrophysics Data System (ADS)

    Ferracutti, Gabriela; Bjerg, Ernesto; Hauzenberger, Christoph; Mogessie, Aberra; Cacace, Francisco; Asiain, Lucía

    2017-11-01

    The Virorco layered mafic-ultramafic intrusion is part of a belt that extends over 100 km from NE to SW in the Eastern Sierras Pampeanas of San Luis, Argentina. The rocks of this belt carry a Fe-Cu-Ni sulphide mineralization in veins and as disseminated and massive ore. Platinum group minerals are associated with the sulphides. The Virorco intrusion exhibits modal, textural and cryptic layering. New results allow the characterization of six layered units (Modal Layered Unit, Pyroxenitic Macro-Layered Unit, Gabbroic Unit, Banded Unit, Hornblende Norite Unit and Gabbronorite Unit) present in three sectors of the intrusion (Eastern, Central and Western). The units from the Western Sector (Banded Unit, Hornblende Norite Unit and Gabbronorite Unit) and the Modal Layered Unit from the Eastern Sector belong to the Marginal Border Series of the intrusion. Meanwhile, the Central sector units (Pyroxenitic Macro-Layered Unit and Gabbroic Unit) are from the Layered Series. The presence of crescumulate texture (Modal Layered Unit) and colloform banding (Banded Unit) are evidences of "in situ" crystallization due to supercooling of a MgO-rich hydrated mafic magma, where cooling proceeded from the walls towards the interior of the magma chamber. In previous studies the mafic-ultramafic rocks have been considered to be Cambrian to Ordovician. Here we present a Sm-Nd whole rock isochron which shows that the formation age of these intrusions is 1002 ± 150 Ma and that the protolith age of the Pringles Metamorphic Complex metasedimentary rocks is 1289 ± 97 Ma. Our study also indicates that the San Luis mafic-ultramafic layered intrusives most probably formed in a back-arc tectonic setting, from an enriched sub-continental mantle, influenced by a subducting slab and/or crust injection into the Pampia Terrane prior to its collision with the Rio de la Plata Craton.

  17. On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in situ filtration

    NASA Astrophysics Data System (ADS)

    Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Chavagnac, V.; Cathalot, C.; Leleu, T.; Laës-Huon, A.; Perhirin, A.; Riso, R. D.; Sarradin, P.-M.

    2017-05-01

    Deep-sea hydrothermal venting is now recognized as a major source of iron (Fe), an essential trace element that controls marine productivity. However, the reactions occurring during dispersal from buoyant plumes to neutrally buoyant hydrothermal plumes are still poorly constrained. Here we report for the first time on the dissolved-particulate partition of Fe after in situ filtration at the early stage of mixing at different hydrothermal discharges, i.e., Lucky Strike (37°N), TAG (26°N), and Snakepit (23°N) on the Mid-Atlantic Ridge. We found that hydrothermal iron is almost completely preserved (>90%) in the dissolved fraction, arguing for low iron-bearing sulfide precipitation of iron in basalt-hosted systems with low Fe:H2S ratios. This result can only be explained by a kinetically limited formation of pyrite. The small part of Fe being precipitated as sulfides in the mixing gradient (<10%) is restricted to the inclusion of Fe in minerals of high Cu and Zn content. We also show that secondary venting is a source of Fe-depleted hydrothermal solutions. These results provide new constrains on Fe fluxes from hydrothermal venting.

  18. Cobalt and scandium partitioning versus iron content for crystalline phases in ultramafic nodules

    USGS Publications Warehouse

    Glassley, W.E.; Piper, D.Z.

    1978-01-01

    Fractionation of Co and Sc between garnets, olivines, and clino- and orthopyroxenes, separated from a suite of Salt Lake Crater ultramafic nodules that equilibrated at the same T and P, is strongly dependent on Fe contents. This observation suggests that petrogenetic equilibrium models of partial melting and crystal fractionation must take into account effects of magma composition, if they are to describe quantitatively geochemical evolutionary trends. ?? 1978.

  19. Petrology of the Northern Anabar alkaline-ultramafic rocks (the Siberian Craton, Russia) and the role of metasomatized lithospheric mantle in their genesis

    NASA Astrophysics Data System (ADS)

    Kargin, Alexey; Golubeva, Yulia; Demonterova, Elena

    2017-04-01

    The southeastern margin of the Anabar shield (the Siberian Craton) in Mesozoic was characterized by intense alkaline-ultramafic (include diamondiferous kimberlite) magmatism. This zone is located within the Archean-Proterozoic Hapchan terrane and includes several fields of alkaline-ultramafic rocks that formed during three main episodes (Zaytsev and Smelov, 2010; Sun et al., 2014): Late Triassic (235-205 Ma), Middle-Late Jurassic (171-149 Ma), Cretaceous (105 Ma). Following the revised classification scheme of Tappe et al. (2005), the alkaline-ultramafic rocks of the Anabar region were identified, correspondingly, as 1) Late Triassic aillikites, damtjernites, and orangeites; 2) Middle-Late Jurassic silicocarbonatites and 3) Cretaceous carbonatites. According to mineralogical, geochemical and isotopic (Sm-Nd, Rb-Sr) data on the alkaline-ultramafic rocks of the Anabar region, the following scheme of the mantle source evolution is suggested: 1). Ascent of the asthenospheric (or plume) material to the base of the lithospheric mantle containing numerous carbonate- and phlogopite-rich veins in Late Triassic led to the generation of orangeite and aillikite magmas; 2). Evolution of aillikite magmas during their ascent and interaction with the surrounding lithospheric mantle (e.g. mantle-rock assimilation and/or melt differentiation) resulted in the accumulation of Mg-Si components in alkaline-ultramafic magmas and was accompanied by a change in liquidus minerals (from apatite-carbonate to olivine and Ca-silicate). Exsolution of carbonate-rich fluid at this stage was responsible for the formation of damtjernite magmas. 3). The tectonothermal activation within the Anabar region in Jurassic was marked by the generation of silicocarbonatitic magmas. Their geochemical composition suggests decreasing abundance of phlogopite-rich veins in the lithospheric mantle source. 4). In Cretaceous, the alkaline-ultramafic magmatism shifted into the central part of the Hapchan terrane where

  20. Magnetic and gravity anomalies in the Sierra del Padre and Sierra del Tala, San Luis Province, Argentina: evidence of buried mafic ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Kostadinoff, José; Alfredo Bjerg, Ernesto; Gregori, Daniel; Delpino, Sergio; Dimieri, Luis; Raniolo, Ariel; Mogessie, Aberra; Hoinkes, Georg; Hauzenberger, Christoph; Felfernig, Anja

    2001-07-01

    This paper presents the results of a geophysical study of the southern portion of the Sierra Grande de San Luis, San Luis Province, Argentina. A 26 mGal amplitude Bouguer anomaly (Charlone anomaly), measuring 40 km long by 7 km wide, between Sierra de los Padres and Zanjitas reflects the presence of high-density rocks located at approximately 2000 m depth. Geophysical models based on more than 300 gravimetric, magnetometric, and geological field measurements and observations suggest that the mafic-ultramafic belt of Sierra Grande de San Luis continues south of San Luis. The low magnitude of the terrestrial magnetic field anomalies indicates that these mafic-ultramafic rocks do not carry a base metal sulfides (BMS) mineralization. The Charlone gravimetric anomaly is generated by a belt of mafic- ultramafic rocks whose amplitude is comparable with that responsible for the Virorco-Las Aguilas gravimetric anomaly.

  1. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    NASA Astrophysics Data System (ADS)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  2. Metasomatic processes in the orthogneiss-hosted Archaean peridotites of the Fiskefjord region, SW Greenland

    NASA Astrophysics Data System (ADS)

    Szilas, K.; Cruz, M. F.; Grove, M.; Morishita, T.; Pearson, D. G.

    2016-12-01

    Field observations and preliminary geochemical data are presented for large (>500x1000m) peridotite enclaves from the Fiskefjord region of SW Greenland. These ultramafic complexes are dominated by dunite, amphibole-harzburgite, lesser amounts of norite and horizons of stratiform chromitite and are therefore interpreted as cumulate rocks[1]. The ultramafic enclaves are hosted by intrusive tonalitic orthogneiss, which provide U-Pb zircon minimum age constraints of ca. 2980 Ma, whereas preliminary Re-Os isotope data on the dunite and chromitite yield TRD ages of ca. 3300 Ma[2]. Dunite has highly forsteritic olivine compositions with Mg# mostly around 92 to 93, which is uncorrelated with the bulk-rock mg# or modal chromite contents. This indicates that the primary olivine records equilibration with a highly magnesian parental magma, which may have been responsible for the strong depletion of the SCLM in this region. Amphibole and phlogopite is mostly associated with granitoid sheets or infiltrating veins in the dunite and appear to replace chromite. Argon dating (40Ar/39Ar) of the phlogopite yields ages ranging from ca. 3400 Ma to ca. 1750 Ma, with most ages clustering around 3000 Ma. This is consistent with formation of the phlogopite and amphibole by metasomatic processes involving reaction between granitoid-derived siliceous fluids and the ultramafic rocks. The older 40Ar/39Ar age plateaus most plausibly represent excess Ar, potentially inherited from the nearby Itsaq Gneiss Complex (3900 to 3600 Ga) based on its proximity. The youngest 40Ar/39Ar age plateaus on the other hand may potentially signify the closure-age for this system, which could have important implications for determining the exhumation history of the North Atlantic craton. References [1] Szilas, K., Kelemen, P. B., & Bernstein, S. (2015). Peridotite enclaves hosted by Mesoarchaean TTG-suite orthogneisses in the Fiskefjord region of southern West Greenland. GeoResJ, 7, 22-34. [2] Szilas, K., van

  3. Nanogeochemistry of hydrothermal magnetite

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin

    2018-06-01

    Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.

  4. Petrogenetic implications from ultramafic rocks and pyroxenites in ophiolitic occurrences of East Othris, Greece

    NASA Astrophysics Data System (ADS)

    Koutsovitis, P.; Magganas, A.

    2012-04-01

    Ultramafic rocks and pyroxenites in east Othris are included within ophiolitic units near the villages of Vrinena, Karavomilos, Pelasgia, Eretria, Agios Georgios, Aerino and Velestino. The first five ophiolitic occurrences are estimated to have been emplaced between the Oxfordian and Tithonian-Berriasian[1,2,3], while the latter two have been emplaced during the Eocene[4]. Ultramafic rocks include variably serpentinized harzburgites and lherzolites. Pyroxenites are usually found in the form of crosscutting veins within the harzburgites. Ultramafic rocks include depleted lherzolites, with Al2O3 ranging from 1.12 to 1.80 wt% and Cr from 3250 to 3290 ppm, as well as moderate to highly depleted serpentinized harzburgites, with Al2O3 ranging from 0.69 to 1.98 wt% and Cr from 2663 to 5582 ppm. Pyroxenites have generally higher Al2O3 ranging from 1.91 to 3.08 wt% and variable Cr ranging from 1798 to 3611 ppm. Lherzolites mostly include olivines (Fo=87.07-89.23) and clinopyroxenes (Mg#=85.71-90.12). Spinels from Eretria lherzolite (TiO2=0.02-0.08 wt%, Al2O3=36.06-42.45 wt%, Cr#=31.67-36.33) are compositionally similar with those of MORB peridotites[5], while those from Vrinena lherzolite (TiO2=0.16-0.43 wt%, Al2O3=6.90-22.12 wt%, Cr#=57.69-76.88) are similar to SSZ peridotites[5]. Serpentinized harzburgites include few olivines (Fo=90.51-91.15), enstatite porphyroclasts (Mg#=87.42-88.91), as well as fine grained enstatites of similar composition. Harzburgites from Pelasgia, Eretria and Agios Georgios include spinels (TiO2=0.03-0.08 wt%, Al2O3=23.21-31.58 wt%, Cr#=45.21-56.85) which do not clearly show if they are related with MORB or SSZ peridotites[5]. Spinels from Karavomilos harzburgite (TiO2=0.02-0.05 wt%, Al2O3=45.71-50.85 wt%, Cr#=16.84-22.32) are compositionally similar with MORB peridotites[5], whereas spinels from Vrinena harzburgite (TiO2=0.15-0.19 wt%, Al2O3=1.42-1.86 wt% Cr#=91.64-93.47) with SSZ peridotites[5]. Pyroxenites include clinopyroxenes (Mg#=84

  5. 600 kyr of Hydrothermal Activity on the Cleft Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.

    2017-12-01

    Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and hydrothermal output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate system. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting hydrothermal plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of hydrothermal systems. We will present new sedimentary records of hydrothermal variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and hydrothermal activity over multiple glacial cycles. Hydrothermal input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in hydrothermal iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in hydrothermal deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in hydrothermal deposition. This work encourages the continued exploration of the relationship between

  6. Petrological significance of high-pressure ultramafic xenoliths from ultrapotassic rocks of Central Italy

    NASA Astrophysics Data System (ADS)

    Conticelli, Sandro; Peccerillo, Angelo

    1989-08-01

    cumulitic origin from previous potassic magmatic events cannot be excluded. The host lavas have compositions intermediate between high-silica lamproite and Roman-type ultrapotassic rock. They have high abundances of incompatible elements and radiogenic Sr, coupled with high Mg content, {MgO}/{CaO}, Ni and Cr. These features support a genesis in a residual upper mantle which has suffered partial melting with the extraction of basaltic liquids, followed by metasomatic events which caused an enrichment in incompatible elements and radiogenic Sr. The presence of mantle-derived ultramafic xenoliths in the torre Alfina lavas testifies for a rapid uprise of the magma which reached the surface without suffering fractional crystallization and significant interaction with the upper crust. Accordingly, the Torre Alfina lavas represent an unique example of primitive potassic liquid in Central Italy.

  7. Petrological significance of high-pressure ultramafic xenoliths from ultrapotassic rocks of Central Italy

    NASA Astrophysics Data System (ADS)

    Conticelli, Sandro; Peccerillo, Angelo

    1990-08-01

    cumulitic origin from previous potassic magmatic events cannot be excluded. The host lavas have compositions intermediate between high-silica lamproite and Roman-type ultrapotassic rock. They have high abundances of incompatible elements and radiogenic Sr, coupled with high Mg content, {MgO}/{CaO}, Ni and Cr. These features support a genesis in a residual upper mantle which has suffered partial melting with the extraction of basaltic liquids, followed by metasomatic events which caused an enrichment in incompatible elements and radiogenic Sr. The presence of mantle-derived ultramafic xenoliths in the torre Alfina lavas testifies for a rapid uprise of the magma which reached the surface without suffering fractional crystallization and significant interaction with the upper crust. Accordingly, the Torre Alfina lavas represent an unique example of primitive potassic liquid in Central Italy.

  8. Placer and lode platinum-group minerals in south Kalimantan, Indonesia: evidence for derivation from Alaskan-type ultramafic intrusions

    USGS Publications Warehouse

    Zientek, M.L.

    1992-01-01

    Platinum-group minerals occur in significant proportions in placer deposits in several localities in South Kalimantan. They consist of Pt-Fe alloy that may be intergrown with or contain inclusions of Ir-Os-Ru alloy, laurite and chromite. Alluvial PGM found along Sungai Tambanio are in part derived from chromatite schlieren in dunitic bodies intruded into clinopyroxene cumulates that may be part of an Alaskan-type ultramafic complex. A chromitite schlieren in serpentinite from one of these dunitic bodies is anomalous in PGE. The chondrite-normalized PGE pattern for this rock, pan concentrates from this area, and PGM concentrates from diamond-Au-PGM placer deposits have an "M'-shaped pattern enriched in Ir and Pt that is typical of PGE-mineralization associated with Alaskan-type ultramafic complexes. -Authors

  9. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data

    NASA Astrophysics Data System (ADS)

    Yousefi, Seyyed Jabber; Ranjbar, Hojjatollah; Alirezaei, Saeed; Dargahi, Sara; Lentz, David R.

    2018-06-01

    The southern section of the Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran, known as Kerman Magmatic Arc (KMA) or Kerman copper belt, is a major host to porphyry Cu ± Mo ± Au deposits, collectively known as PCDs. In this study, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and spectral angle mapper (SAM) method, combined with field data, mineralogical studies, and spectral analysis are used to determine hydrothermal alteration patterns related to PCDs in the KMA. Gossans developed over some of these porphyry type deposits were mapped using Landsat 8 data. In the NKMA gossans are more developed than in the SKMA due to comparatively lower rate of erosion. The hydrothermal alteration pattern mapped by ASTER data were evaluated using mineralogical and spectral data. ASTER data proved to be useful for mapping the hydrothermal alteration in this semi-arid type of climate. Also Landsat 8 was useful for mapping the iron oxide minerals in the gossans that are associated with the porphyry copper deposits. Our multidisciplinary approach indicates that unlike the PCDs in the northern KMA that are associated with distinct and widespread propylitic alteration, those in the granitoid country rocks lack propylitic alteration or the alteration is only weakly and irregularly developed. The porphyry systems in southern KMA are further distinguished by development of quartz-rich phyllic alteration zones in the outer parts of the PCDs that could be mapped using remote sensing data. Consideration of variations in alteration patterns and specific alteration assemblages are critical in regional exploration for PCDs.

  10. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    USGS Publications Warehouse

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-01-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus

  11. Assessment of heavy metal contamination in sediment at Sukinda ultramafic complex using HAADF-STEM analysis.

    PubMed

    Equeenuddin, Sk Md; Pattnaik, Binaya Kumar

    2017-10-01

    The Sukinda ultramafic complex in Odisha has the largest chromite reserve in India. Sediment derived from ultramafic rocks has been enriched with various metals. Further, mining activities enhance the influx of metals into sediment by dumping mine overburden and tailings in the open area. Metal concentration in sediment is found in order of Cr Total (Cr) > Mn > Ni > Co > Zn > Cu with average concentration 26,778 mg/kg, 3098 mg/kg, 1813 mg/kg, 184 mg/kg, 116 mg/kg and 44 mg/kg respectively. Concentration of Cr(VI) varies from 5.25 to 26.47 mg/L with an average of 12.27 mg/L. Based on various pollution indices, it is confirmed that the area is severely contaminated. Nano-scale goethite, kaolinite, clinochlore and chromite have been identified and have high concentration of Cr, Co and Ni. Goethite has shown maximum metal retention potential as deciphered by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The HAADF-STEM mapping and principal component analysis indicate that Cr and Co mostly derived from chromite whereas Ni and Zn are derived from serpentine. Later, these metals co-precipitate and/or adsorbed onto the goethite and clay minerals. Fractionation study of metals confirms that Cu is the most mobile element followed by Zn. However, at low pH condition Ni is mobilized and likely to be bioavailable. Though Cr mostly occurs in residual fraction but as its concentration is very high, a small proportion of exchangeable fraction contributes significantly in terms of its bioavailability. Thus bioavailable Cr can pose severe threat to the environment in the Sukinda ultramafic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mantle processes

    NASA Astrophysics Data System (ADS)

    Kurat, G.; Palme, H.; Spettel, B.; Baddenhausen, Hildegard; Hofmeister, H.; Palme, Christl; Wänke, H.

    1980-01-01

    Major, minor, and trace element contents have been determined in seven ultramafic xenoliths, the host basanite, and some mineral separates from xenoliths from Kapfenstein, Austria. Most of the xenoliths represent residues after extraction of different amounts of basaltic liquid. Within the sequence Iherzolite to harzburgite contents of Al, Ca, Ti, Na, Sc, V, Cr and the HREE decrease systematically with increasing Mg/Fe and decreasing Yb/Sc. Although all samples are depleted in highly incompatible elements, the less depleted end of our suite very closely approaches the chondritic Yb/Sc ratio and consequently the primitive upper mantle composition. Chromium behaved as a non-refractory element. Consequently it should have higher abundances in basalts than observed, suggesting that most basalts experienced Cr fractionation by chromite separation during ascent. Several processes have been active in addition to partial melting within the upper mantle beneath Kapfenstein: (1) a hornblendite has been identified as wet alkali-basaltic mobilisate; (2) an amphibole Iherzolite is the product of alkali-basalt metasomatism of a common depleted Iherzolite; (3) two amphibole Iherzolites contain evidence for rather pure water metasomatism of normal depleted Iherzolites; (4) a garnet-spinel websterite was a tholeiitic liquid trapped within the upper mantle and which suffered a subsequent partial melting event (partial remobilization of a mobilisate). (5) Abundances of highly incompatible elements are generally very irregular, indicating contamination of upper mantle rocks by percolating liquids (in the mantle). Weathering is an important source of contamination: e.g. U mobilization by percolating groundwater. Contamination of the xenoliths by the host basanite liquid can only amount to approximately 5.5 × 10 -4 parts. Distributions of minor and trace elements between different minerals apparently reflect equilibrium and vary with equilibration temperature.

  13. Vesta Evolution from Surface Mineralogy: Mafic and Ultramafic Mineral Distribution

    NASA Technical Reports Server (NTRS)

    DeSanctis, M. C.; Ammannito, E.; Palomba, E.; Longobardo, A.; Mittlefehldt, D. W.; McSween, H. Y; Marchi, S.; Capria, M. T.; Capaccioni, F.; Frigeri, A.; hide

    2014-01-01

    Vesta is the only intact, differentiated, rocky protoplanet and it is the parent body of HED meterorites. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, a mineral that is a major component of the mantles of differentiated bodies, including Vesta. The HED parent body experienced complex igneous processes that are not yet fully understood and olivine and diogenite distribution is a key measurement to understand Vesta evolution. Here we report on the distribution of olivine and its constraints on vestan evolution models.

  14. U-Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, Kristin A.; Shen, Chuan-Chou; Kelley, Deborah S.; Cheng, Hai; Edwards, R. Lawrence

    2011-04-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples containing only 2-21% ambient seawater (1.1-11 mmol/kg Mg), Th concentration is 0.11-0.13 pg/g and surrounding seawater concentrations average 0.133 ± 0.016 pg/g. The 230Th/ 232Th atomic ratios of the vent fluids range from 1 (±10) × 10 -6 to 11 (±5) × 10 -6, are less than those of seawater, and indicate that the vent fluids may contribute a minor amount of non-radiogenic 230Th to the LCHF carbonate chimney deposits. Chimney 238U concentrations range from 1 to 10 μg/g and the average chimney corrected initial δ 234U is 147.2 ± 0.8, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate 232Th concentrations range broadly from 0.0038 ± 0.0003 to 125 ± 16 ng/g and 230Th/ 232Th atomic ratios vary from near seawater values of 43 (±8) × 10 -6 up to 530 (±25) × 10 -3. Chimney ages, corrected for initial 230Th, range from 17 ± 6 yrs to 120 ± 13 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic

  15. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, Riacho do Pontal Orogen: Onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Salgado, Silas Santos; Ferreira Filho, Cesar Fonseca; Caxito, Fabrício de Andrade; Uhlein, Alexandre; Dantas, Elton Luiz; Stevenson, Ross

    2016-10-01

    The Brejo Seco mafic-ultramafic Complex (BSC) occurs at the extreme northwest of the Riacho do Pontal Orogen Internal Zone, in the northern margin of the São Francisco Craton in Northeast Brazil. The stratigraphy of this medium size (3.5 km wide and 9 km long) layered intrusion consists of four main zones, from bottom to top: Lower Mafic Zone (LMZ; mainly troctolite), Ultramafic Zone (UZ; mainly dunite and minor troctolite); Transitional Mafic Zone (TMZ; mainly troctolite) and an Upper Mafic Zone (UMZ; gabbro and minor anorthosite, troctolite, and ilmenite magnetitite). Ni-Cu-PGE mineralization occurs at the contact of the UZ with the TMZ, consisting of an up to 50 m thick stratabound zone of disseminated magmatic sulfides. An Mg-tholeiitic affinity to the parental magma is indicated by the geochemical fractionation pattern, by the magmatic crystallization sequence and by the elevated Fo content in olivine. A Smsbnd Nd isochron yielded an age of 903 ± 20 Ma, interpreted as the age of crystallization, with initial εNd = 0.8. Evidence of interaction of the BSC parental magma with sialic crust is given by the Rare Earth and trace element patterns, and by slightly negative and overall low values of εNd(900 Ma) in between -0.2 and +3.3. Contrary to early interpretations that it might constitute an ophiolite complex, based mainly on the geochemistry of the host rocks (Morro Branco metavolcanosedimentary complex), here we interpret the BSC as a typical layered mafic-ultramafic intrusion in continental crust, related to an extensional regime. The BSC is chrono-correlated to mafic dyke swarms, anorogenic granites and thick bimodal volcanics of similar age and tectonic setting in the São Francisco Craton and surrounding areas. Intrusion of the BSC was followed by continued lithospheric thinning, which led to the development of the Paulistana Complex continental rift volcanics around 888 Ma and ultimately to plate separation and the generation of new oceanic crust (Monte

  16. Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway)

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Amundsen, Hans E. F.; Blake, David F.; Bunch, Ted

    2002-01-01

    Carbonate minerals in the ancient Martian meteorite ALH84001 are the only known solid phases that bear witness to the processing of volatile and biologically critical compounds (CO2, H2O) on early Mars. Similar carbonates have been found in xenoliths and their host basalts from Quaternary volcanic centers in northern Spitsbergen (Norway). These carbonates were deposited by hot (i.e., hydrothermal) waters associated with the volcanic activity. By analogy with the Spitsbergen carbonates, the ALH84001 carbonates were probably also deposited by hot water. Hydrothermal activity was probably common and widespread on Early Mars, which featured abundant basaltic rocks, water as ice or liquid, and heat from volcanos and asteroid impacts. On Earth, descendants of the earliest life forms still prefer hydrothermal environments, which are now shown to have been present on early Mars.

  17. Zircon and baddeleyite from the economic ultramafic-mafic Noril'sk-1 intrusion (Russia): Hf-isotope constraints on source composition

    NASA Astrophysics Data System (ADS)

    Malitch, K. N.; Belousova, E. A.; Badanina, I. Yu.; Griffin, W. L.

    2012-04-01

    The ultramafic-mafic Noril'sk-1 intrusion in the northwestern part of the Siberian Craton (Russia) represents one of three known Noril'sk-type, ore-bearing intrusions, which host one of the world's major economic sulphide platinum-group-element (PGE)-Cu-Ni deposits. Zircon and baddeleyite dated previously both by SHRIMP (i.e. 248.0 ± 3.7 Ma, Campbell et al. 1992) and ID-TIMS (251.1 ± 3.6 Ma, Kamo et al. 1996) have been restricted to one lithology (e.g. leucogabbro) of the Noril'sk-1 intrusion. To better constrain the age of igneous event and sources involved in its generation our multi-technique study utilized ten rock samples characteristic of unmineralized and mineralized lithologies. The rocks investigated comprise (from top to bottom) gabbro-diorite (sample N1-1), leucogabbro (N1-3), olivine-free gabbro (N1-2 and N1-4), olivine-bearing gabbro (N1-5), olivine gabbro (N1-6), plagiowehrlite and plagiodunite (N1-7), taxitic-textured rocks comprising melanotroctolite, olivine gabbro with relics of ultramafic rocks (N1-8, N1-9) and contact fine-grained gabbro (N1-10). Sulphide PGE-Cu-Ni ores occur in ultramafic (N1-7) and taxitic-textured rocks (N1-8 and N1-9), which have thickness of about 17 m, whereas the low-sulphide horizon of about 1 m thick occurs in the upper part of intrusion (N1-3). In situ U-Pb analyses of zircon from these rocks, combined with detailed study of crystal morphology and internal structure, identify four zircon populations (Malitch et al. 2012). The U-Pb ages of baddeleyite and the defined zircon populations cover a significant time span, from Late Paleozoic to Early Mesozoic (e.g., 290 ± 2.8; 261.3 ± 1.6; 245.7 ± 1.1; 236.5 ± 1.8 and 226.7 ± 0.9 Ma). The established distribution of U-Pb ages implies that crystallization of baddeleyite and zircon corresponds to several stages of protracted evolution of ultramafic-mafic magmas at deep-seated staging chambers and/or probably characterizes interaction of distinct magmas during formation

  18. Effect of the Hydrothermal Fluid Composition on the Serpentinization of Olivine and Pyroxene

    NASA Astrophysics Data System (ADS)

    Daniel, I.; Andreani, M.

    2016-12-01

    The hydrothermal alteration of ultramafic rocks leads to the serpentinization reaction that mainly forms serpentine and variable amounts of talc, brucite and magnetite, as well as hydrogen and magnesite when carbonate is present in the fluid. The serpentinization kinetics of pyroxene under hydrothermal conditions has been very little studied in comparison with olivine, and both have been evaluated experimentally only in simple aqueous fluids. Here, we have evaluated the effect of the fluid chemistry - aluminum, carbonate and pH on the serpentinization rate of olivine and orthopyroxene at 200 °C, 340 °C and 200 MPa to simulate natural hydrothermal conditions. We used low-pressure diamond-anvil cells (lp-DAC) and time-resolved X-ray diffraction to monitor in situ the progress of serpentinization in twelve experiments. We also performed several complementary long-lasting experiments of several days in particular with orthopyroxene, for which in situ monitoring was not possible. At 340 °C in presence of Al and/or carbonate and at high pH, olivine conversion into lizardite is extremely fast with a half-time reaction t1/2 = 2 hrs only, while orthopyroxene did not react much even after 6 days (11%). In contrast to olivine, orthopyroxene conversion to serpentine was faster without Al (48 % in 6 days). Magnetite was also observed to form in the runs with olivine at 340 °C and moderate pH. In experiments run with orthopyroxene only, we observed the exclusive formation of proto-serpentine instead of lizardite. We propose that the contrasted effect of Al on the serpentinization rate of olivine and orthopyroxene results from the complexation of Al in the solution that reacts differently with the mineral surfaces during their dissolution. The positively charged olivine surface allows the adsorption of the dominant negatively charged Al(OH)4- complex, while the neutral surface of orthopyroxene does not. This adsorption process could facilitate both the dissolution of olivine

  19. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  20. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    NASA Astrophysics Data System (ADS)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found

  1. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Junwen, Wang; Conrad, J.E.; McKee, E.H.; Zonglin, Hou; Qingrun, Meng; Shengguang, Huang

    1997-01-01

    Detailed, integrative field and laboratory studies of the textures, structures, chemical characteristics, and isotopically determined ages and signatures of mineralization of the Bayan Obo deposit provided evidence for the origin and characteristics favorable for its formation and parameters necessary for defining giant polymetallic deposits of hydrothermal origin. Bayan Obo is an epigenetic, metasomatic, hydrothermal rare earth element (REE)-Fe-Nb ore deposit that is hosted in the metasedimentary H8 dolostone marble of the Middle Proterozoic Bayan Obo Group. The metasedimentary sequence was deposited on the northern continental slope of the North China craton. The mine area is about 100 km south of the suture marking Caledonian subduction of the Mongolian oceanic plate from the north beneath the North China craton. The mineralogy of the deposit is very complex, consisting of more than 120 different minerals, some of which are epigenetic minerals introduced by hydrothermal solutions, and some of which are primary and secondary metamorphic minerals. The major REE minerals are monazite and bastnaesite, whereas magnetite and hematite are the dominant Fe-ore minerals, and columbite is the most abundant Nb mineral. Dolomite, alkali amphibole, fluorite, barite, aegirine augite, apatite, phlogopite, albite, and microcline are the most widespread gangue minerals. Three general types of ores occur at Bayan Obo: disseminated, banded, and massive ores. Broad zoning of these ore types occurs in the Main and East Orebodies. Disseminated ores are in the outermost zone, banded ores are in the intermediate zone, and massive ores are in the cores of the orebodies. On the basis of field relations, host rocks, textures, structures, and mineral assemblages, many varieties of these three types of ores have been recognized and mapped. Isotopic dating of monazite, bastnaesite, aeschynite, and metamorphic and metasomatic alkali amphiboles associated with the deposit provides constraints

  2. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  3. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge.

    PubMed

    Wang, Liping; Li, Aimin; Chang, Yuzhi

    2017-04-01

    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Bach, Wolfgang

    2009-02-01

    In recent years, serpentinized ultramafic rocks have received considerable attention as a source of H 2 for hydrogen-based microbial communities and as a potential environment for the abiotic synthesis of methane and other hydrocarbons within the Earth's crust. Both of these processes rely on the development of strongly reducing conditions and the generation of H 2 during serpentinization, which principally results from reaction of water with ferrous iron-rich minerals contained in ultramafic rocks. In this report, numerical models are used to investigate the potential influence of chemical thermodynamics on H 2 production during serpentinization. The results suggest that thermodynamic constraints on mineral stability and on the distribution of Fe among mineral alteration products as a function of temperature are likely to be major factors controlling the extent of H 2 production. At high temperatures (>˜315 °C), rates of serpentinization reactions are fast, but H 2 concentrations may be limited by the attainment of stable thermodynamic equilibrium between olivine and the aqueous fluid. Conversely, at temperatures below ˜150 °C, H 2 generation is severely limited both by slow reaction kinetics and partitioning of Fe(II) into brucite. At 35 MPa, peak temperatures for H 2 production occur at 200-315 °C, indicating that the most strongly reducing conditions will be attained during alteration within this temperature range. Fluids interacting with peridotite in this temperature range are likely to be the most productive sources of H 2 for biology, and should also produce the most favorable environments for abiotic organic synthesis. The results also suggest that thermodynamic constraints on Fe distribution among mineral alteration products have significant implications for the timing of magnetization of the ocean crust, and for the occurrence of native metal alloys and other trace minerals during serpentinization.

  5. Hydrothermal time models for conidial germination and mycelial growth of the seed pathogen Pyrenophora semeniperda

    Treesearch

    Connor W. Barth; Susan E. Meyer; Julie Beckstead; Phil S. Allen

    2015-01-01

    Population-based threshold models using hydrothermal time (HTT) have been widely used to model seed germination. We used HTT to model conidial germination and mycelial growth for the seed pathogen Pyrenophora semeniperda in a novel approach to understanding its interactions with host seeds. Germination time courses and mycelial growth rates for P.semeniperda were...

  6. Biogeography of serpentinite-hosted microbial ecosystems

    NASA Astrophysics Data System (ADS)

    Brazelton, W.; Cardace, D.; Fruh-Green, G.; Lang, S. Q.; Lilley, M. D.; Morrill, P. L.; Szponar, N.; Twing, K. I.; Schrenk, M. O.

    2012-12-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). To date, however, the "serpentinite microbiome" is poorly constrained- almost nothing is known about the microbial diversity endemic to rocks actively undergoing serpentinization. Through the Census of Deep Life, we have obtained 16S rRNA gene pyrotag sequences from fluids and rocks from serpentinizing ophiolites in California, Canada, and Italy. The samples include high pH serpentinite springs, presumably representative of deeper environments within the ophiolite complex, wells which directly access subsurface aquifers, and rocks obtained from drill cores into serpentinites. These data represent a unique opportunity to examine biogeographic patterns among a restricted set of microbial taxa that are adapted to similar environmental conditions and are inhabiting sites with related geological histories. In general, our results point to potentially H2-utilizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These general taxonomic and biogeochemical trends were also observed in seafloor Lost City hydrothermal chimneys, indicating that we are beginning to identify a core serpentinite microbial community that spans marine and continental settings.

  7. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  8. Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia

    NASA Astrophysics Data System (ADS)

    Joseph, E. P.; Barrett, T. J.

    2017-12-01

    Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and

  9. An isotopic study of the Ni-Cu-PGE-rich Wellgreen intrusion of the Wrangellia Terrane: Evidence for hydrothermal mobilization of rhenium and osmium

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Reisberg, Laurie; Zindler, Alan; Wyman, Derek; Hulbert, Larry

    1994-01-01

    Re-Os, Sm-Nd, Rb-Sr, and oxygen isotope systematics of the Wellgreen intrusion in the Wrangellia terrane were investigated in an effort to deduce the origin of this mafic-ultramafic sill and its attendant Ni-Cu-PGE deposit. Radiogenic initial Os ratios (1.06-1.82) and Sr ratios (0.7044-0.7062), and heavy δ18O (7.3-7.9%.) suggest alteration of the intrusion by hydrothermal fluids that carried radiogenic 187Os and 87Sr from the surrounding country rocks. The great majority (>99%) of the Os, however, and by inference the other PGEs, derived from a mantle-derived magma that suffered little or no interaction with the crust prior to crystallization. Initial Nd isotope ratios are not as variable ( ɛNd( t) ranges from 2.02-4.49) and suggest that the rocks were derived from a light-rare-earth-element depleted mantle source. The Nd results, together with Os data from relatively undisturbed wehrlites, are compatible with either a plume ( RICHARDS et al., 1991) or island arc ( SAMSON et al., 1990) model for Wrangellia. This study contributes to a growing body of evidence that documents the ready mobilization of Os in hydrothermal fluids. The potential effects of this mobility must be carefully evaluated prior to invoking crustal assimilation to explain variable and radiogenic Os initial ratios in layered intrusions.

  10. Geology and economic potential for chromite in the Zhob Valley ultramafic rock complex, Hindubagh, Quetta division, West Pakistan

    USGS Publications Warehouse

    Rossman, D.L.; Ahmad, Zaki; Rahman, Hamidur

    1971-01-01

    The ultramafic rocks making up the Zhob Valley igneous complex have yielded small amounts of metallurgical-grade chromite since the early part of the century. From 1968-1970 a cooperative study undertaken by the Geological Survey of Pakistan and the U. S. Geological Survey, under the auspices of the Government of Pakistan and the Agency for International Development, evaluated the chromite potential of the Zhob Valley area and provided data for effective exploration. The Jung Tor Ghar ultramafic rock mass, covering an area of about 45 square miles, is a thrust-fault block completely surrounded and underlain (?) by sedimentary rocks as young as Late Cretaceous in age. The igneous rocks were thrust from the northwest along an east-trending, north-dipping fault in Late Cretaceous or Paleocene time and were peneplaned, dissected, and deeply laterized by mid-Eocene time. The ultramafic rocks consist of interlayered harzburgite and dunite and a cross-cutting dunite here called transgressive dunite. Layered structure passes without discernible deviation from the interlayered harzburgite-dunite through the transgressive dunite. The lowest rocks in the mass, composed mainly of transgressive dunite, grade upward into the interlayered rock about 3,000 feet above the fault block base. The upper transgressive dunites tend to form interconnecting linear networks and probably a few pipe-like structures. The transgressive dunite is thought to have formed by action of water derived from the underlying sedimentary rocks; the water heated by the hot ultramafic rock (at the time of emplacement) altered the pyroxene to olivine and talc, and, with lowering temperature, to serpentine. Other interpretations are possible. Virtually all the chromite in the Jung Tor Ghar lies in or immediately above the masses of transgressive dunite. This fact provides a key to chromite exploration: The most favorable zone for prospecting lies in the vicinity of the upper contacts of the transgressive

  11. Stable Isotope Geochemistry of Extremely Well-Preserved 2.45-Billion-Year-Old Hydrothermal Systems in the Vetreny Belt, Baltic Shield: Insights into Paleohydrosphere

    NASA Astrophysics Data System (ADS)

    Zakharov, D. O.; Bindeman, I. N.

    2015-12-01

    The early Paleoproterozoic was an eventful period in the Earth's history. The first portions of free oxygen emerged in the atmosphere, Snowball Earth glaciations happened several times and the first supercontinent broke up due to extensive rifting. These events should have affected the stable isotopic composition of the hydrosphere. In this study, we use rocks that were altered in underwater hydrothermal systems to investigate the stable isotopic composition of the hydrosphere 2.39-2.45 billion years ago (hereinafter, Ga). Extremely low-δ18O (down to -27.5‰ SMOW) rocks from 2.39 Ga metamorphosed subglacial hydrothermal systems of the Belomorian belt, Baltic Shield formed at near-equatorial latitudes suggesting a Snowball (or Slushball) Earth glaciation. These results motivated us to look at temporally and geographically close hydrothermal systems from the unmetamorhposed 2.45 Ga Vetreny Belt rift. The length of the rift is 250 km and it is composed of high-Mg basalts, mafic-ultramafic intrusions and sedimentary successions. We examined several localities of high-Mg basalt flows that include astonishingly fresh pillow lavas, often with preserved volcanic glass, eruptive breccias, and hydrothermal alteration zones. Collected samples serve a great textural evidence of water-rock interaction that occurred in situ while basalts were cooling. The preliminary results from coexisting quartz and epidote (T, D18O=311°C), and from coexisting calcite and quartz (T, D18O=190°C) yield values of δ18O of involved water between -1.6 and -0.9 ‰. The values of δ13C in calcites vary between -4.0 and -2.3 ‰. It is likely that hydrothermal fluids operated in the Vetreny Belt rift were derived from seawater that is no different from modern oceanic water in terms of δ18O. Apparently, the rift was a Paleoproterozoic analog of the modern Red Sea, filled with oceanic water. The result is important because the Vetreny Belt rift predates the onset of Snowball Earth glaciation at 2

  12. Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater.

    PubMed

    Hodel, F; Macouin, M; Trindade, R I F; Triantafyllou, A; Ganne, J; Chavagnac, V; Berger, J; Rospabé, M; Destrigneville, C; Carlut, J; Ennih, N; Agrinier, P

    2018-04-13

    The evolution of the seawater oxygen isotopic composition (δ 18 O) through geological time remains controversial. Yet, the past δ 18 O seawater is key to assess past seawater temperatures, providing insights into past climate change and life evolution. Here we provide a new and unprecedentedly precise δ 18 O value of -1.33 ± 0.98‰ for the Neoproterozoic bottom seawater supporting a constant oxygen isotope composition through time. We demonstrate that the Aït Ahmane ultramafic unit of the ca. 760 Ma Bou Azzer ophiolite (Morocco) host a fossil black smoker-type hydrothermal system. In this system we analyzed an untapped archive for the ocean oxygen isotopic composition consisting in pure magnetite veins directly precipitated from a Neoproterozoic seawater-derived fluid. Our results suggest that, while δ 18 O seawater and submarine hydrothermal processes were likely similar to present day, Neoproterozoic oceans were 15-30 °C warmer on the eve of the Sturtian glaciation and the major life diversification that followed.

  13. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex.

    PubMed

    Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B

    2013-07-01

    Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by

  14. Geology and lithogeochemistry of hydrothermal mudstones from the upper block near the Duck Pond volcanogenic massive sulfide (VMS) deposit, Newfoundland, Canada: evidence for low-temperature venting into oxygenated mid-Cambrian seawater

    NASA Astrophysics Data System (ADS)

    Piercey, Stephen J.; Squires, Gerry; Brace, Terry

    2018-02-01

    Pyrite- and pyrrhotite-rich mudstones are spatially associated with Cambrian ( 512-509 Ma) volcanogenic massive sulfide (VMS) deposits throughout the Tally Pond group, central Newfoundland, Canada. At the Duck Pond mine, sulfide-rich mudstones are hosted within a weakly mineralized upper block that structurally overlies the deposit but is older ( 513 versus 509 Ma). The mudstones are laminated, 10-30-cm thick, and pyrite- and pyrrhotite-rich and occur along pillow lava selvages, or in between pillow lavas, rhyolite flows, and volcaniclastic rocks. The mudstones are laterally extensive and proximal to the mudstone host rocks are hydrothermally altered to epidote-quartz-chlorite (basalt host) and sericite-quartz (rhyolite host). Lithogeochemical data for the sulfide-rich mudstones reflect the varying contributions of elements from sedimentary detritus, hydrothermal discharge, and hydrogenous scavenging from middle Cambrian seawater. The mudstones have minor detrital element abundances and significant hydrothermal element enrichments (i.e., elevated Fe2O3, S, Pb, Zn, Cu, and Ba concentrations, high Fe/Al ratios). The hydrothermal mudstones are also enriched in oxyanions (i.e., P2O5, U, V, Cr, Ni, Co, and Hg), interpreted to have been enriched via oxidative scavenging from seawater by Fe-oxide/oxyhydroxide particles. The mudstones also have REE-Y signatures similar to modern oxygenated seawater with high Y/Ho and negative Ce anomalies (Ce/Ce* = 0.40-0.86; average = 0.58), which correlate with adsorbed oxyanion concentrations. The low Eu/Eu* (1.02-1.86; average = 1.22) in the mudstones suggest that they were deposited from low-temperature (< 250 °C), Fe-rich hydrothermal fluids that likely formed a buoyant plume into an oxygenated water column. The REE-Y-oxyanion signatures suggest that the particles within the hydrothermal plume had sufficient residence time to scavenge oxyanions from seawater and inherit a middle Cambrian seawater signature. The predominant seawater

  15. A Hydrothermal-Sedimentary Context for the Origin of Life

    PubMed Central

    Hickman-Lewis, K.; Hinman, N.; Gautret, P.; Campbell, K.A.; Bréhéret, J.G.; Foucher, F.; Hubert, A.; Sorieul, S.; Dass, A.V.; Kee, T.P.; Georgelin, T.; Brack, A.

    2018-01-01

    Abstract Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5–4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5–3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life—Hadean environment—Mineral surface reactions—Hydrothermal fluids—Archean volcanic sediments. Astrobiology 18, 259–293. PMID:29489386

  16. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  17. Geology and geochemistry of three sedimentary-rock-hosted disseminated gold deposits in Guizhou Province, People's Republic of China

    USGS Publications Warehouse

    Ashley, R.P.; Cunningham, C.G.; Bostick, N.H.; Dean, W.E.; Chou, I.-Ming

    1991-01-01

    Five sedimentary-rock-hosted disseminated gold deposits have been discovered since 1980 in southwestern Guizhou Province (PRC). Submicron-sized gold is disseminated in silty carbonate and carbonaceous shale host rocks of Permian and Triassic age. Arsenic, antimony, mercury, and thallium accompany the gold. Associated hydrothermal alteration resulted in decarbonatization of limestone, silicification, and argillization, and depletion of base metals, barium, and many other elements. Organic material occurs in most host rocks and ores. It was apparently devolatilized during a regional heating event that preceded hydrothermal activity, and thus was not mobilized during mineralization, and did not affect gold deposition. The geologic setting of the Guizhou deposits includes many features that are similar to those of sedimentary-rock-hosted deposits of the Great Basin, western United States. The heavy-element suite that accompanies gold is the same, but base metals are even scarcer in the Guizhou deposits than they are in U.S. deposits. The Guizhou deposits discovered to date are smaller than most U.S. deposits and have no known spatially associated igneous rocks. ?? 1991.

  18. Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.

    2004-01-01

    Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.

  19. Hydrothermal karst and associated breccias in Neoproterozoic limestone from the Barker-Villa Cacique area (Tandilia belt), Argentina

    NASA Astrophysics Data System (ADS)

    Dristas, Jorge A.; Martínez, Juan C.; van den Kerkhof, Alfons M.; Massonne, Hans-Joachim; Theye, Thomas; Frisicale, María C.; Gregori, Daniel A.

    2017-07-01

    In the Barker-Villa Cacique area (Tandilia belt), remarkable megabreccias, limestone breccias and phosphate-bearing breccias hosted in black limestone and along the contact with the upper section of the sedimentary succession are exposed. These rocks are the result of extensive hydrothermal alteration of the original micritic limestone and other fine-grained clastic sediments. Typical alteration minerals are sericite, chlorite, interstratified chlorite/K-white mica, kaolinite, dickite, pyrite, chalcopyrite, goethite, quartz, calcite, Fe-calcite, dolomite, ankerite, fluor-apatite, barite and aluminium-phosphate-sulfate (APS) minerals. Quartz and calcite cements from hydraulic breccias in the limestone contain low-salinity aqueous fluid inclusions. Corresponding homogenization temperatures display 200-220 °C and 110-140 °C in hydrothermal quartz, and 130-150 °C in late calcite cement. Carbon and oxygen stable isotope analyses of carbonates from the Loma Negra quarry (LNQ) support the major role of hydrothermal activity. A significant difference was found between δ18Ocar values from unaltered micritic limestone (ca. 23.8‰ SMOW) and secondary calcite (ca. 18.5‰ SMOW). The lower δ18Ocar values are interpreted as a result of calcite precipitation from hot hydrothermal fluids. At a late stage, the hydrothermal fluid containing H2S mixed with descending and oxidizing meteoric waters. Circulation of the ensuing acid fluids resulted in the partly dissolution and collapse brecciation of the Loma Negra Formation. The hydrothermal stage can be tentatively dated ca. 590-620 Ma corresponding to the Brasiliano orogeny.

  20. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  1. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    NASA Astrophysics Data System (ADS)

    Feng, Jianyun; Xiao, Wenjiao; Windley, Brian; Han, Chunming; Wan, Bo; Zhang, Ji'en; Ao, Songjian; Zhang, Zhiyong; Lin, Lina

    2013-12-01

    The time of termination of orogenesis for the southern Altaids has been controversial. Systematic investigations of field geology, geochronology and geochemistry on newly discriminated mafic-ultramafic rocks from northern Alxa in the southern Altaids were conducted to address the termination problem. The mafic-ultramafic rocks are located in the Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km. All rocks occur high-grade gneisses as tectonic lenses that are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have undergone pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by uniform compositional trends, i.e., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O + K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enrichments in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have been strongly altered and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%) values, they may have been subjected to considerable alteration by either seawater or metamorphic fluids. The REE and trace element patterns show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc origin. The ultramafic rocks are relics derived from the magma after a large degree of partial melting of oceanic lithospheric mantle with superposed island arc processes under the influence of mid-ocean-ridge magmatism. LA-ICP MS U-Pb zircon ages of gabbros from three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering other previously published data, we suggest that the mafic-ultramafic rocks were products of

  2. Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction

    PubMed Central

    Kidd, Petra; Kuffner, Melanie; Prieto-Fernández, Ángeles; Hann, Stephan; Monterroso, Carmela; Sessitsch, Angela; Wenzel, Walter; Puschenreiter, Markus

    2013-01-01

    The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants. PMID:23793627

  3. Origin of ultramafic xenoliths containing exsolved pyroxenes from Hualalai Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Bohrson, Wendy A.; Clague, David A.

    1988-10-01

    Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155° 230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10-3 1.91×10-3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.

  4. Origin of ultramafic xenoliths containing exsolved pyroxenes from Hualalai Volcano, Hawaii

    USGS Publications Warehouse

    Bohrson, W.A.; Clague, D.A.

    1988-01-01

    Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225?? to 1350?? C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045?? and 1090?? C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155??-230?? C of cooling which took place over about 120 ka - the age of the youngest Hualalai tholeiitic basalt - yield maximum cooling rates of 1.3??10-3-1.91??10-3 ??C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel

  5. Gamma spectrometric and magnetic interpretation of Cabaçal copper deposit in Mato Grosso (Brazil): Implications for hydrothermal fluids remobilization

    NASA Astrophysics Data System (ADS)

    Ribeiro, Vanessa Biondo; Mantovani, Marta Silvia Maria

    2016-12-01

    The Cabaçal Au-Zn-Cu Deposit, Mato Grosso, Brazil, was explored between 1987 and 1991, when 869,279 tons of ore rich in Au and Cu have been extracted. The hydrothermal alteration in the Cabaçal mine suggests a volcanogenic genetic model in which hydrothermal centers generated sericitization, chloritization and silicification alterations at different stages. The hydrothermal alteration affects the radioelements in different ways, generating a characteristic gamma spectrometric signature for the affected area. The eTh/K ratio map evidenced that the hydrothermalized area extends beyond south limits of the Cabaçal gabbro dykes formation, which host Cabaçal and Santa Helena mines. Magnetic data over the region show the same behavior for this formation, indicating that the magnetic source extends in subsurface. This behavior was recovered by the 3D model inverted for the region, which recovered a positive apparent magnetic contrast associated with this body, with an increasing deepness to south. It is possible that the south subsurface portion of the magnetic source may contain economic concentrations of Au remobilized by hydrothermal fluids. However, to confirm this hypothesis it is necessary to develop geochemical and borehole analysis of the area.

  6. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.

    2011-12-01

    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and

  7. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  8. Early onset of magma ocean crystallization revealed by coupled 146,147Sm-142,143Nd systematics of Nulliak ultramafics (3.78 Ga, Labrador)

    NASA Astrophysics Data System (ADS)

    Morino, P.; Caro, G.; Reisberg, L. C.

    2015-12-01

    Early onset of magma ocean crystallization revealed by coupled 146,147Sm-142,143Nd systematics of Nulliak ultramafics (3.78 Ga, Labrador) Precillia Morino1, Guillaume Caro1, Laurie Reisberg 1 1CRPG-CNRS, Université de Lorraine, Nancy, France Coupled 146,147Sm-142,143Nd systematics provides constraints on the timing of magma ocean crystallization on Mars, the Moon and Vesta. Estimates for the Earth's mantle, however, are less accurate owing to the sparsity of Eoarchean mantle-derived rocks with undisturbed 147Sm-143Nd systematics. This study attempts to establish a coherent 142,143Nd dataset for the Eoarchean mantle using well-preserved ultramafic rocks from the Nulliak assemblage (Labrador). Samples include meta-dunites, -pyroxenites and -peridotites exhibiting only minor serpentinization and limited element mobility. The presence of "Barberton type" komatiitic compositions (low Al/Ti, HREE depletion) is suggestive of a deep mantle source. 146,147Sm-142,143Nd and 187Re-187Os analyses yield a crystallization age of 3.78±0.09 Ga with ɛ143Ndi=1.5±0.2 and ɛ142Nd=8.6±2 ppm. This 142,143Nd signature yields a model age of mantle differentiation of 4.43±0.05 Ga (assuming a BSE with chondritic Sm/Nd and ɛ142Nd=0). Superchondritic Sm/Nd compositions for the BSE would translate into older model ages. Irrespective of the choice of primitive mantle composition, Nulliak ultramafics provide differentiation ages 100 Ma older than those estimated from Akilia tonalites but remarkably similar to that estimated from the 2.7 Ga Theo's flow (Abitibi). If Nulliak ultramafics originated from deep melting of a hot plume, their model age could reflect the early onset of magma ocean crystallization in the lowermost mantle.

  9. Microbiology of ancient and modern hydrothermal systems.

    PubMed

    Reysenbach, A L; Cady, S L

    2001-02-01

    Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.

  10. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  11. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    NASA Astrophysics Data System (ADS)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to

  12. Seismological evidence for an along-axis hydrothermal flow at the Lucky Strike hydrothermal vents site

    NASA Astrophysics Data System (ADS)

    Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2010-12-01

    Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do

  13. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    NASA Astrophysics Data System (ADS)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  14. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific

    NASA Astrophysics Data System (ADS)

    Araoka, Daisuke; Nishio, Yoshiro; Gamo, Toshitaka; Yamaoka, Kyoko; Kawahata, Hodaka

    2016-10-01

    The Li concentration and isotopic composition (δ7Li) in submarine vent fluids are important for oceanic Li budget and potentially useful for investigating hydrothermal systems deep under the seafloor because hydrothermal vent fluids are highly enriched in Li relative to seawater. Although Li isotopic geochemistry has been studied at mid-ocean-ridge (MOR) hydrothermal sites, in arc and back-arc settings Li isotopic composition has not been systematically investigated. Here we determined the δ7Li and 87Sr/86Sr values of 11 end-member fluids from 5 arc and back-arc hydrothermal systems in the western Pacific and examined Li behavior during high-temperature water-rock interactions in different geological settings. In sediment-starved hydrothermal systems (Manus Basin, Izu-Bonin Arc, Mariana Trough, and North Fiji Basin), the Li concentrations (0.23-1.30 mmol/kg) and δ7Li values (+4.3‰ to +7.2‰) of the end-member fluids are explained mainly by dissolution-precipitation model during high-temperature seawater-rock interactions at steady state. Low Li concentrations are attributable to temperature-related apportioning of Li in rock into the fluid phase and phase separation process. Small variation in Li among MOR sites is probably caused by low-temperature alteration process by diffusive hydrothermal fluids under the seafloor. In contrast, the highest Li concentrations (3.40-5.98 mmol/kg) and lowest δ7Li values (+1.6‰ to +2.4‰) of end-member fluids from the Okinawa Trough demonstrate that the Li is predominantly derived from marine sediments. The variation of Li in sediment-hosted sites can be explained by the differences in degree of hydrothermal fluid-sediment interactions associated with the thickness of the marine sediment overlying these hydrothermal sites.

  15. Faulting and off-axis submarine massive sulfide accumulation at slow spreading mid-ocean ridges: A numerical modeling perspective

    NASA Astrophysics Data System (ADS)

    Andersen, C.; Theissen-Krah, S.; Hannington, M.; Rüpke, L.; Petersen, S.

    2017-06-01

    The potential of mining seafloor massive sulfide deposits for metals such as Cu, Zn, and Au is currently debated. One key challenge is to predict where the largest deposits worth mining might form, which in turn requires understanding the pattern of subseafloor hydrothermal mass and energy transport. Numerical models of heat and fluid flow are applied to illustrate the important role of fault zone properties (permeability and width) in controlling mass accumulation at hydrothermal vents at slow spreading ridges. We combine modeled mass-flow rates, vent temperatures, and vent field dimensions with the known fluid chemistry at the fault-controlled Logatchev 1 hydrothermal field of the Mid-Atlantic Ridge. We predict that the 135 kilotons of SMS at this site (estimated by other studies) can have accumulated with a minimum depositional efficiency of 5% in the known duration of hydrothermal venting (58,200 year age of the deposit). In general, the most productive faults must provide an efficient fluid pathway while at the same time limit cooling due to mixing with entrained cold seawater. This balance is best met by faults that are just wide and permeable enough to control a hydrothermal plume rising through the oceanic crust. Model runs with increased basal heat input, mimicking a heat flow contribution from along-axis, lead to higher mass fluxes and vent temperatures, capable of significantly higher SMS accumulation rates. Nonsteady state conditions, such as the influence of a cooling magmatic intrusion beneath the fault zone, also can temporarily increase the mass flux while sustaining high vent temperatures.

  16. Igneous and Ore-Forming Processes at the Roots of Giant - Ultra-Mafic Pluming System: the Seiland Igneous Comples, Norway

    NASA Astrophysics Data System (ADS)

    Larsen, R. B.; Iljina, M.; Schanke, M.

    2012-12-01

    SIP covers an area of 5500 km2 in N. Norway. 50 % of the volume comprises mafic layered or homogenous plg+px+Fe-Ti±ol gabbros. 25 % of the area comprises ultramafic intrusions, mostly peridotite and subsidiary pyroxenite and hornblendite. 25 % comprises calc-alkaline and alkaline plutons, respectively. Ultramafic plutons intersect gabbros and calc-alkaline plutons. Recent zircon U/Pb geochronology imply that SIP formed at 560-570 Ma, with mafic- and ultramafic rocks being emplaced in <4 Ma (Roberts et al., Geol. Mag, 2007). Geothermobarometry of contact metamorphic mineral assemblages, implies minimum depth of 20-30 kilometres. Accordingly, the Seiland province arguably provides a unique cross section through the deep-seated parts of a huge magmatic plumbing system. Sulphide Cu-Ni-(PGE) deposits are intimately associated with the ultramafic rock suite. One deposit from Stjernøy comprises sulphide dissiminations at the floor of a peridotitic pluton, another deposit occur at the floor of the Reinfjord ultramafic layered complex in the far West of SIP and the third deposit comprises vertical sulphide dykes in the interior of a hornblendite on the Øksfjord peninsula. Currently, only the Reinfjord deposit is studied in detail. The Reinfjord intrusions is layered and develops from olivine clinopyroxenites in the Lower Zone to wherlite in the Middle Zone to wehrlites and dunite in the Upper Zone. Earlier studies suggest parental melts with pyroxenitic compositions whereas the dunites and wherlites formed by fractional crystallization (Bennet et al., Bull. NGU, 405, 1-41). During our fieldwork we observed spectacular examples of cumulus structures, not previously reported, and including modally layered and modally graded dunite/wherlite, cross-bedding, slumping and mush-diapirs. Finally we saw an example of magma-replenishment where an olivine pyroxenitic magma was emplaced in to and mixed with the contemporary olivine/wherlite mushes!. The country rock gabbros were

  17. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge

    USGS Publications Warehouse

    Houghton, J.L.; Shanks, Wayne C.; Seyfried, W.E.

    2004-01-01

    The Bent Hill massive sulfide deposit and ODP Mound deposit in Middle Valley at the northernmost end of the Juan de Fuca Ridge are two of the largest modern seafloor hydrothermal deposits yet explored. Trace metal concentrations of sulfide minerals, determined by laser-ablation ICP-MS, were used in conjunction with mineral paragenetic studies and thermodynamic calculations to deduce the history of fluid-mineral reactions during sulfide deposition. Detailed analyses of the distribution of metals in sulfides indicate significant shifts in the physical and chemical conditions responsible for the trace element variability observed in these sulfide deposits. Trace elements (Mn, Co, Ni, As, Se, Ag, Cd, Sb, Pb, and Bi) analyzed in a representative suite of 10 thin sections from these deposits suggest differences in conditions and processes of hydrothermal alteration resulting in mass transfer of metals from the center of the deposits to the margins. Enrichments of some trace metals (Pb, Sb, Cd, Ag) in sphalerite at the margins of the deposits are best explained by dissolution/reprecipitation processes consistent with secondary remineralization. Results of reaction-path models clarify mechanisms of mass transfer during remineralization of sulfide deposits due to mixing of hydrothermal fluids with seawater. Model results are consistent with patterns of observed mineral paragenesis and help to identify conditions (pH, redox, temperature) that may be responsible for variations in trace metal concentrations in primary and secondary minerals. Differences in trace metal distributions throughout a single deposit and between nearby deposits at Middle Valley can be linked to the history of metal mobilization within this active hydrothermal system that may have broad implications for sulfide ore formation in other sedimented and unsedimented ridge systems. ?? 2004 Elsevier Ltd.

  18. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  19. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2017-06-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  20. Phreatic activity and hydrothermal alteration in the Valley of Desolation, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Yilmaz, Tim I.; Montanaro, Cristian; Albert Gilg, H.; Rott, Stefanie; Joseph, Erouscilla P.; Dingwell, Donald B.

    2017-12-01

    Phreatic eruptions are possibly the most dramatic surface expressions of hydrothermal activity, and they remain poorly understood. The near absence of precursory signals makes phreatic eruptions unpredictable with respect to both time and magnitude. The Valley of Desolation (VoD), Dominica, located close to the Boiling Lake, the second largest high-temperature volcanic crater lake in the world, hosts vigorous hydrothermal activity with hot springs, mud pools, fumaroles, and steaming ground. A phreatic or phreatomagmatic eruption from this site is considered to be the most likely scenario for future volcanic activity on Dominica. Yet there is little information regarding the trigger mechanisms and eruption processes of explosive events at this active hydrothermal center, and only a very small number of studies have investigated hydrothermal activity in the VoD. We therefore conducted two field campaigns in the VoD to map hydrothermal activity and its surficial phenomena. We also investigated alteration processes and their effects on degassing and phreatic eruption processes. We collected in situ petrophysical properties of clay-rich unconsolidated samples, and together with consolidated rock samples, we investigated the range of supergene and hydrothermal alteration in the laboratory. In addition, we performed rapid decompression experiments on unconsolidated soil samples. Our results show that alteration leads to an increasing abundance of clay minerals and a decrease in both strength and permeability of the rocks. In the immediate vicinity of degassing acid-sulfate fluids, advanced argillic alteration yields a mineral zoning which is influenced by meteoric water. The water-saturated basal zone is dominated by kaolinite run 0whereas alunite formation is favored at and above the groundwater table where atmospheric oxidation of H2S to H2SO4 occurs (e.g., steam-heated alteration). Alteration effects may in turn inhibit degassing at the surface, increasing the

  1. Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China)

    NASA Astrophysics Data System (ADS)

    Liu, Huichuan; Wang, Yuejun; Zi, Jian-Wei

    2017-06-01

    Layered ultramafic-mafic intrusions are usually formed in an arc/back-arc or intra-plate tectonic environment, or genetically related to a mantle plume. In this paper, we report on an ultramafic-mafic intrusion, the Dalongkai intrusion in the Ailaoshan tectonic zone (SW China), whose occurrence is closely associated with arc/back-arc magmatic rocks. The Dalongkai intrusion is composed of plagioclase-lherzolite, hornblende-peridotite, lherzolite and wehrlite at the bottom, cumulate plagioclase-pyroxenite at the middle part, changing to fine-grained gabbro towards the upper part of the intrusion, forming layering structure. Zircons from the plagioclase-pyroxenites and gabbros yielded U-Pb ages of 272.1 ± 1.7 Ma and 266.4 ± 5.8 Ma, respectively. The plagioclase-pyroxenites show cumulate textures, and are characterized by high MgO (25.0-28.0 wt.%; mg# = 80.6-82.3), Cr (1606-2089 ppm) and Ni (893-1203 ppm) contents, interpreted as early cumulate phases. By contrast, the gabbros have relatively lower mg# values (56.3-62.7), and Cr (157-218 ppm) and Ni (73-114 ppm) concentrations, and may represent frozen liquids. The plagioclase-pyroxenites and gabbros share similar chondrite-normalized REE patterns and primitive mantle-normalized trace element profiles which are analogous to those of typical back-arc basin basalts. The εNd(t) values for both rock types range from +2.20 to +4.22. These geochemical and isotopic signatures suggest that the Dalongkai ultramafic-mafic rocks originated from a MORB-like mantle source metasomatized by subduction-related, sediment-derived fluids. Our data, together with other geological evidence, indicate that the emplacement of the Dalongkai ultramafic-mafic intrusion most likely occurred in a back-arc extensional setting associated with subduction of the Ailaoshan Paleotethyan branch ocean during the Middle Permian, thus ruling out the previously speculated linkage to the Emeishan mantle plume, or to an intra-continental rift.

  2. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  3. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    NASA Astrophysics Data System (ADS)

    Jianyun, Feng; Wenjiao, Xiao

    2013-04-01

    The termination of orogenesis for the southern Altaids has been controversial. Systematical investigations of field geology, geochronology and geochemistry on mafic-ultramafic rocks from the northern Alxa of the southern Altaids were conducted to address the termination controversy. The newly discriminated mafic-ultramafic rocks belt is located at Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km in length. All of the three rock associations contact tectonically with the adjacent metamorphic and deformed Precambrian rocks as tectonic blocks or lenses, and are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have subjected to pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by a uniform trend of compositional distribution, e.g., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O+K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enriched in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have had strong alteration and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%), the rocks may be subjected to considerable alteration by either sea-water or metamorphic fluid. The REE and trace element patterns for the rocks show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc subsequently. The ultramafic rocks are relics derived from the magma after large degree of partial melting of the oceanic lithospheric mantle with overprinted by island-arc processes under the influence of mid-ocean-ridge magmatism. LA - ICP MS U - Pb zircon ages of gabbros from the three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of

  4. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  5. Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ghent, Edward D.; Coleman, Robert Griffin; Hadley, Donald G.

    1979-01-01

    A variety of mafic and ultramafic inclusions occur within the pyroclastic components of the Al Birk basalt, erupted on the southern Red Sea coastal plain of Saudi Arabia from Pleistocene time to the present. Depleted harzburgites are the only inclusions contained within the basalts that were erupted through Miocene oceanic crust (15 km thick) in the vicinity of Jizan, whereas to the north in the vicinity of Al Birk, alkali basalts that were erupted through a thicker Precambrian crust (48 km thick) contain mixtures of harzburgites, cumulate gabbro, and websterite inclusions accompanied by large (> 2 cm) megacrysts of glassy alumina-rich clinopyroxene, plagioclase, and spinel. Microprobe analyses of individual minerals from the harzburgites, websterites, and cumulate gabbros reveal variations in composition that can be related to a complex mantle history during the evolution of the alkali basalts. Clinopyroxene and plagioclase megacrysts may represent early phases that crystallized from the alkali olivine basalt magma at depths less than 35 km. Layered websterites and gabbros with cumulate plagioclase and clinopyroxene may represent continuing crystallization of the alkali olivine basalt magma in the lower crust when basaltic magma was not rapidly ascending. It is significant that the megacrysts and cumulate inclusions apparently form only where the magmas have traversed the Precambrian crust, whereas the harzburgite-bearing basalts that penetrated a much thinner Miocene oceanic crust reveal no evidence of mantle fractionation. These alkali olivine basalts and their contained inclusions are related in time to present-day rifting in the Red Sea axial trough. The onshore, deep-seated, undersaturated magmas are separated from the shallow Red Sea rift subalkaline basalts by only 170 km. The contemporaneity of alkaline olivine and subalkaline basalts requires that they must relate directly to the separation of the Arabian plate from the African plate.

  6. Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population

    PubMed Central

    Klose, Julia; Polz, Martin F.; Wagner, Michael; Schimak, Mario P.; Gollner, Sabine; Bright, Monika

    2015-01-01

    Theory predicts that horizontal acquisition of symbionts by plants and animals must be coupled to release and limited dispersal of symbionts for intergenerational persistence of mutualisms. For deep-sea hydrothermal vent tubeworms (Vestimentifera, Siboglinidae), it has been demonstrated that a few symbiotic bacteria infect aposymbiotic host larvae and grow in a newly formed organ, the trophosome. However, whether viable symbionts can be released to augment environmental populations has been doubtful, because (i) the adult worms lack obvious openings and (ii) the vast majority of symbionts has been regarded as terminally differentiated. Here we show experimentally that symbionts rapidly escape their hosts upon death and recruit to surfaces where they proliferate. Estimating symbiont release from our experiments taken together with well-known tubeworm density ranges, we suggest a few million to 1.5 billion symbionts seeding the environment upon death of a tubeworm clump. In situ observations show that such clumps have rapid turnover, suggesting that release of large numbers of symbionts may ensure effective dispersal to new sites followed by active larval colonization. Moreover, release of symbionts might enable adaptations that evolve within host individuals to spread within host populations and possibly to new environments. PMID:26283348

  7. Methanethiol abundance in high-temperature hydrothermal fluids from the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Reeves, E.; Seewald, J. S.; Saccocia, P.; van der Meer, M.

    2008-12-01

    metabolism in highly-reducing alkaline hydrothermal environments invoke CH3SH as a key reactant leading to Acetyl CoA-based (Wood-Ljungdahl) carbon fixation pathways. Results of this study challenge the notion that high-pH, reducing fluids emanating from serpentinite-hosted hydrothermal systems like Lost City were favorable for the production of CH3SH, the establishment of a primitive metabolic cycle and the emergence of microbial life on Earth.

  8. The geology of asbestos in the United States and its practical applications

    USGS Publications Warehouse

    Van Gosen, B. S.

    2007-01-01

    Recently, naturally occurring asbestos (NOA) has drawn the attention of numerous health and regulatory agencies and citizen groups. NOA can be released airborne by (1) the disturbance of asbestos-bearing bedrocks through human activities or natural weathering, and (2) the mining and milling of some mineral deposits in which asbestos occurs as an accessory mineral(s). Because asbestos forms in specific rock types and geologic conditions, this information can be used to focus on areas with the potential to contain asbestos, rather than devoting effort to areas with minimal NOA potential. All asbestos minerals contain magnesium, silica, and water as essential constituents, and some also contain major iron and/or calcium. Predictably, the geologic environments that host asbestos are enriched in these components. Most asbestos deposits form by metasomatic replacement of magnesium-rich rocks. Asbestos-forming environments typically display shear or evidence for a significant influx of silica-rich hydrothermal fluids. Asbestos-forming processes can be driven by regional metamorphism, contact metamorphism, or magmatic hydrothermal systems. Thus, asbestos deposits of all sizes and styles are typically hosted by magnesium-rich rocks (often also iron-rich) that were altered by a metamorphic or magmatic process. Rock types known to host asbestos include serpentinites, altered ultramafic and some mafic rocks, dolomitic marbles and metamorphosed dolostones, metamorphosed iron formations, and alkalic intrusions and carbonatites. Other rock types appear unlikely to contain asbestos. These geologic insights can be used by the mining industry, regulators, land managers, and others to focus attention on the critical locales most likely to contain asbestos.

  9. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  10. Ultramafic Terranes and Associated Springs as Analogs for Mars and Early Earth

    NASA Technical Reports Server (NTRS)

    Blake, David; Schulte, Mitch; Cullings, Ken; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Putative extinct or extant Martian organisms, like their terrestrial counterparts, must adopt metabolic strategies based on the environments in which they live. In order for organisms to derive metabolic energy from the natural environment (Martian or terrestrial), a state of thermodynamic disequilibrium must exist. The most widespread environment of chemical disequilibrium on present-day Earth results from the interaction of mafic rocks of the ocean crust with liquid water. Such environments were even more pervasive and important on the Archean Earth due to increased geothermal heat flow and the absence of widespread continental crust formation. The composition of the lower crust and upper mantle of the Earth is essentially the-same as that of Mars, and the early histories of these two planets are similar. It follows that a knowledge of the mineralogy, water-rock chemistry and microbial ecology of Earth's oceanic crust could be of great value in devising a search strategy for evidence of past or present life on Mars. In some tectonic regimes, cross-sections of lower oceanic crust and upper mantle are exposed on land as so-called "ophiolite suites." Such is the case in the state of California (USA) as a result of its location adjacent to active plate margins. These mafic and ultramafic rocks contain numerous springs that offer an easily accessible field laboratory for studying water/rock interactions and the microbial communities that are supported by the resulting geochemical energy. A preliminary screen of Archaean biodiversity was conducted in a cold spring located in a presently serpentinizing ultramafic terrane. PCR and phylogenetic analysis of partial 16s rRNA, sequences were performed on water and sediment samples. Archaea of recent phylogenetic origin were detected with sequences nearly identical to those of organisms living in ultra-high pH lakes of Africa.

  11. Experimental evidence for chemo-mechanical coupling during carbon mineralization in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zhu, W.; Kelemen, P. B.; Ilgen, A.

    2017-09-01

    Storing carbon dioxide in the subsurface as carbonate minerals has the benefit of long-term stability and immobility. Ultramafic rock formations have been suggested as a potential reservoir for this type of storage due to the availability of cations to react with dissolved carbon dioxide and the fast reaction rates associated with minerals common in ultramafic formations; however, the rapid reactions have the potential to couple with the mechanical and hydraulic behavior of the rocks and little is known about the extent and mechanisms of this coupling. In this study, we argue that the dissolution of primary minerals and the precipitation of secondary minerals along pre-existing fractures in samples lead to reductions in both the apparent Young's modulus and shear strength of aggregates, accompanied by reduction in permeability. Hydrostatic and triaxial deformation experiments were run on dunite samples saturated with de-ionized water and carbon dioxide-rich solutions while stress, strain, permeability and pore fluid chemistry were monitored. Sample microstructures were examined after reaction and deformation using scanning electron microscopy (SEM). The results show that channelized dissolution and carbonate mineral precipitation in the samples saturated with carbon dioxide-rich solutions modify the structure of grain boundaries, leading to the observed reductions in stiffness, strength and permeability. A geochemical model was run to help interpret fluid chemical data, and we find that the apparent reaction rates in our experiments are faster than rates calculated from powder reactors, suggesting mechanically enhanced reaction rates. In conclusion, we find that chemo-mechanical coupling during carbon mineralization in dunites leads to substantial modification of mechanical and hydraulic behavior that needs to be accounted for in future modeling efforts of in situ carbon mineralization projects.

  12. The origin of life in alkaline hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  13. High-pressure hydrogen respiration in hydrothermal vent samples from the deep biosphere

    NASA Astrophysics Data System (ADS)

    Morgan-Smith, D.; Schrenk, M. O.

    2013-12-01

    . Limnology and Oceanography Methods 9:499-506 Kelley, D.S., Karson, J.A., Früh-Green, G.L., Yoerger, D.R., Shank, T.M., et al. 2005. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 307:1428-1434

  14. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  15. Petrogenesis of ultramafic rocks and olivine-rich troctolites from the East Taiwan Ophiolite in the Lichi mélange

    NASA Astrophysics Data System (ADS)

    Morishita, Tomoaki; Ghosh, Biswajit; Soda, Yusuke; Mizukami, Tomoyuki; Tani, Ken-ichiro; Ishizuka, Osamu; Tamura, Akihiro; Komaru, Chihiro; Aari, Shoji; Yang, Hsiao-Chin; Chen, Wen-Shan

    2017-12-01

    We examine ultramafic and olivine-rich troctolite blocks of the East Taiwan Ophiolite (ETO) in the Lichi Mélange. Although ultramafic rocks are extensively serpentinized, the primary minerals, such as olivine, orthopyroxene, clinopyroxene, spinel and plagioclase can be identified. The ultramafic rocks are classified into harzburgite (± clinopyroxene), dunite, and olivine websterite. Major and trace element compositions of the primary minerals in harzburgites, such as the Cr# [= Cr/(Cr + Al) atomic ratio] of chromian spinel (0.3-0.58) and incompatible elements-depleted trace element patterns of clinopyroxenes, indicate their residue origin after partial melting with less flux components. These compositions are similar to those from mid-ocean ridge peridotites as well as back-arc peridotites from the Philippine Sea Plate. The olivine websterite contains discrete as well as occasional locally concentrated plagioclase grains. Petrological characteristics coupled with similarity in trace element patterns of clinopyroxenes in the harzburgite and olivine websterite samples indicate that the olivine websterite is likely formed by clinopyroxene addition to a lherzolitic/harzburgitic peridotite from a pyroxene-saturated mafic melt. Dunite with medium Cr# spinels indicates cumulus or replacement by melt-peridotite reaction origins. Mineral composition of olivine-rich troctolite cannot be explained by simple crystallization from basaltic magmas, but shows a chemical trend expected for products after melt-peridotite interactions. Mineral compositions of the dunite and olivine-rich troctolite are also within chemical ranges of mid-ocean ridge samples, and are slightly different from back-arc samples from the Philippine Sea Plate. We conclude that peridotites in the ETO are not derived from the northern extension of the Luzon volcanic arc mantle. Further geochronological study is, however, required to constrain the origin of the ETO ophiolite, because peridotites are probably

  16. The characteristics of hydrothermal plumes observed in the Precious Stone Mountain hydrothermal field, the Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.

    2014-12-01

    The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly

  17. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    USGS Publications Warehouse

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  18. Petrology of ultramafic xenoliths from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Clague, D.A.

    1988-01-01

    Ultramafic xenoliths were recovered in four alkalic lava flows from Loihi Seamount at depths between 2200 and 1400 m. No xenolith bearing flows were sampled near the summit despite a concentrated dredge program. The flows, three of alkalic basalt and one of basanite, contain common olivine megacrysts and small xenoliths of dunite, rarer harzburgite, and a single wehrlite. Olivine megacrysts as large as 8 mm are Fo84-88.6 and contain magnesiochromite inclusions with 1.1-3.5 wt.% TiO2. Dunite contains Fo83.5-88.5 olivine, meganesiochromite with 1.5-6.9 wt.% TiO2 (avg. 3.2 wt.), and extremely rare chrome-rich diopside. The wehrlite contains euhedral Fo85.9 olivine and magnesiochromite with 1.9-4.7 wt.% TiO2, poikilitically enclosed in chrome-rich diposide (Wo45.4En48.0s6.6). Most of the olivine megacrysts, dunite, and the wehrlite are cumulates of Loihi alkalic lavas that accumulated in a magma storage zone located at least 16 km below sea level. The rarity of dunite related to tholeiitic magmas supports the interpretation that the alkalic lavas at Loihi generally predate the tholeiitic lavas. -from Author

  19. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  20. Metagenomic and PCR-Based Diversity Surveys of [FeFe]-Hydrogenases Combined with Isolation of Alkaliphilic Hydrogen-Producing Bacteria from the Serpentinite-Hosted Prony Hydrothermal Field, New Caledonia.

    PubMed

    Mei, Nan; Postec, Anne; Monnin, Christophe; Pelletier, Bernard; Payri, Claude E; Ménez, Bénédicte; Frouin, Eléonore; Ollivier, Bernard; Erauso, Gaël; Quéméneur, Marianne

    2016-01-01

    High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ.

  1. The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography

    PubMed Central

    Rogers, Alex D.; Tyler, Paul A.; Connelly, Douglas P.; Copley, Jon T.; James, Rachael; Larter, Robert D.; Linse, Katrin; Mills, Rachel A.; Garabato, Alfredo Naveira; Pancost, Richard D.; Pearce, David A.; Polunin, Nicholas V. C.; German, Christopher R.; Shank, Timothy; Boersch-Supan, Philipp H.; Alker, Belinda J.; Aquilina, Alfred; Bennett, Sarah A.; Clarke, Andrew; Dinley, Robert J. J.; Graham, Alastair G. C.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura; Hilario, Ana; Huvenne, Veerle A. I.; Marsh, Leigh; Ramirez-Llodra, Eva; Reid, William D. K.; Roterman, Christopher N.; Sweeting, Christopher J.; Thatje, Sven; Zwirglmaier, Katrin

    2012-01-01

    Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than

  2. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  3. Isotope and fluid inclusion studies of geological and hydrothermal processes, northern Peru

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, A.W.; Prol-Ledesma, R.M.; Conrad, M.E.

    1994-07-01

    Mineralization in the Hualgayoc district of northern Peru occurs in altered Miocene felsic intrusions and in mid-Cretaceous platform sedimentary rocks of the Goyllarisquizga, Inca, and Chulec formations. The ores occur both as stratiform and stratabound pyritiferous base-metal deposits (mantos), and as steeply dipping, sedimentary and intrusive rock-hosted base-metal veins. Igneous rocks in the district are affected by propylytic, sericitic-argillic, sericitic, potassic, and acid-sulfate alteration. K-Ar and Rb-Sr dating and geological evidence indicate multiple stages of intrusive activity and hydrothermal alteration, including close spatial emplacement of two or more separate Miocene magmatic-hydrothermal systems. K-Ar dates on sericite, hydrothermal biotite, and alunitemore » indicate that the most important hydrothermal episodes in the district took place {approx}13.24 and 12.4 Ma. Other K-Ar dates on altered rocks in the district may reflect various amounts of resetting by the emplacement of the 9.05 {+-} 0.2 Ma Hualgayoc rhyodacite. A five-point Rb-Sr isochron for the San Miguel intrusion at Cerro Coymolache yields an age of 45 {+-} 3.4 Ma, which indicates much earlier magmatic activity in this area than recognized previously. Fluid inclusion and paragenetic studies reveal a clear temporal evolution of fluid temperature and chemistry in the San Agustin area at Hualgayoc. Gradually, ore formation shifted to precipitation of vein minerals in the brittle fractures as the mantos became less permeable and were sealed off. Vein formation continued from progressively cooler and more diluted fluids (down to {approx}150{degrees}C and 4.3 wt% NaCl equivalent) as the system waned. No evidence for phase separation is observed in the fluids until the very last paragenetic stage, which contributed no economic mineralization. 53 refs., 15 figs., 7 tabs.« less

  4. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  5. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    NASA Astrophysics Data System (ADS)

    Jing, Zhenzi; Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian; Jin, Fangming

    2017-05-01

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6-5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite.

  6. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  7. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    PubMed

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of

  8. Whakaari (White Island volcano, New Zealand): Magma-hydrothermal laboratory

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Heap, Michael J.; Reuschle, Thierry; Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Kennedy, Ben M.; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    Whakaari, active andesitic stratovolcano of the Taupo Volcanic Zone (New Zealand), hosts an open, highly reactive hydrothermal system in the amphitheatre of an earlier sector collapse. Its recent volcanic activity is primarily characterized by sequences of steam-driven (phreatic) and phreatomagmatic explosive eruptions, although a lava dome briefly extruded in 2012. The volcano provides a natural laboratory for the study of aggressive fluids on the permeability of the hydrothermal system, on phreatomagmatic volcanism as well as on the volcano edifice structural stability. Here, we present a holistic experimental dataset on the reservoir rocks properties (mineralogy, permeability, seismic velocity) and their response to changes in stress (strength, deformation mechanisms, fragmentation) and temperature (mineralogical breakdown). We show that the advance degree of alteration in the system, nearly replaced all the original rock-forming minerals. This alteration has produced generally weak rocks, which, when subjected to a differential stress, can undergo transition from a dilatant response (brittle) to a compactant response with a mere confining pressure of about 15-20 MPa (corresponding to depth of about 1 km). Thermal stressing experiments reveal that the alteration phases breakdown at 500 °C (alunite) and 700 °C (dehydrated alum and sulphur), generating much weakened skeletal rocks, deteriorated by a mass loss of 20 wt.%, resulting in an increase in porosity and permeability of about 15 vol.% and an order of magnitude, respectively. Novel thermal stressing tests at high-heating rates (<1000 K/min) suggest that the onset of this mineralogical debilitation is pushed to higher temperatures with heating rates, carrying implication for the stability of the reservoir rocks and explosions during magma movement at variable rates in the upper edifice. Rock strength imposes an important control on the stability of volcanic edifices and of the hydrothermal reservoir rocks

  9. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    NASA Astrophysics Data System (ADS)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  10. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  11. Leadville, Colorado district: oxygen isotopic evidence for a magmatic-hydrothermal origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaty, D.W.; Thompson, T.B.; Solomon, G.C.

    1985-01-01

    A magmatic-hydrothermal origin for much of the manto and vein complex at Leadville, Colorado, is indicated by 60 /sup 18/O//sup 16/O and D/H analyses of rocks and minerals. The ore-related samples around Breece Hill all interacted with a high-/sup 18/O and high-D fluid. Phyllically altered Tertiary porphyries equilibrated with fluids of delta/sup 18/O = +4.5 to +7.5 and deltaD = -53 to -70 permil (SMOW). Metal-rich quartz veins above, and vug quartz within manto ore, were deposited by fluids with delta/sup 18/O = +3.4 to +11.3. The host Leadville Dolomite shows high-/sup 18/O alteration adjacent to ore. Finally, silica-dolomite tubesmore » surrounding mantos, possible conduits for spent ore fluids, transmitted fluids of delta/sup 18/O = +6.4 to +8.7. By contrast, early jasperoid and late golden barite formed from meteoric waters. Early white barite formed from a fluid of indeterminate origin. These data clearly show that a local meteoric-hydrothermal system was interrupted by a massive flux of high-/sup 18/O high-D fluid with the isotopic character of magmatic water.« less

  12. Investigating Alpine fissure rutilated quartz to constrain timing and conditions of post-metamorphic hydrothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Schmitt, A. K.; Zack, T.; Bindeman, I. N.

    2013-12-01

    Rutilated quartz, aka Venus' hair, is finely-acicular rutile intergrown with host quartz generated by fluid-mediated co-crystallization. It is commonly found in hydrothermal veins, including the renown cleft mineral locations of the Swiss Alps. Previous studies of Alpine cleft mineralizations used rare hydrothermal monazite [1] and titanite [2] to constrain vein formation to ~13.5-15.2 Ma, postdating peak metamorphism by ~2-4 Ma. Temperature (T) estimates of 150-450°C are based on fluid inclusions and bulk quartz-mineral oxygen isotope exchange equilibria, and formation pressures (P) are 0.5-2.5 kbar (for a geothermal gradient of 30°C/km) [2]. The potential of rutilated quartz as a thermochronometer, however, has not been harnessed previously. Here, we present the first results of age and P-T determinations for rutilated quartz from six locations in the Swiss Alps (San Gottardo; Feldbach, Binntal; Pi Aul, Vals; Faido, Leventina; Elm, Steinbach; Binntal). Samples were cut and mounted in epoxy discs to expose rutile (0.03 to 1 mm in diameter) and its host quartz which was also imaged in cathodoluminescence (CL). CL images for half of the samples' host quartz exhibited strong sector zoning, while others reveal only weak CL zonation. Isotopic and trace element analyses were carried out by SIMS using a CAMECA ims1270 for U-Pb, O-isotopes, and Ti-in-quartz, and a LA-ICP-MS system (213 nm New Wave laser coupled to an Agilent 7500a) for Zr-in-rutile. U-Pb rutile ages average 15.5×2.0 Ma (2σ). T estimates are 352-575°C (rutile-quartz oxygen isotopes in touching domains), 470-530°C (Zr-in-rutile assuming P = 0.5 and equilibrium with host-rock zircon), and 251-391°C (Ti-in-quartz at assumed P = 0.5 kbar and aTiO2 = 1). CL zones are isotopically unzoned. Rutile-quartz oxygen isotopes are pressure insensitive, whereas Zr-in-rutile and Ti-in-quartz are minimum temperatures. These results demonstrate that rutilated quartz can constrain timing and conditions of post

  13. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source

    NASA Astrophysics Data System (ADS)

    Veter, Marina; Foley, Stephen F.; Mertz-Kraus, Regina; Groschopf, Nora

    2017-11-01

    Carbonate-rich ultramafic lamprophyres (aillikites) and associated rocks characteristically occur during the early stages of thinning and rifting of cratonic mantle lithosphere, prior to the eruption of melilitites, nephelinites and alkali basalts. It is accepted that they require volatile-rich melting conditions, and the presence of phlogopite and carbonate in the source, but the exact source rock assemblages are debated. Melts similar to carbonate-rich ultramafic lamprophyres (aillikites) have been produced by melting of peridotites in the presence of CO2 and H2O, whereas isotopes and trace elements appear to favor distinct phlogopite-bearing rocks. Olivine macrocrysts in aillikites are usually rounded and abraded, so that it is debated whether they are phenocrysts or mantle xenocrysts. We have analyzed minor and trace element composition in olivines from the type aillikites from Aillik Bay in Labrador, Canada. We characterize five groups of olivines: [1] mantle xenocrysts, [2] the main phenocryst population, and [3] reversely zoned crystals interpreted as phenocrysts from earlier, more fractionated, magma batches, [4] rims on the phenocrysts, which delineate aillikite melt fractionation trends, and [5] rims around the reversely zoned olivines. The main phenocryst population is characterized by mantle-like Ni (averaging 3400 μg g- 1) and Ni/Mg at Mg# of 88-90, overlapping with phenocrysts in ocean island basalts and Mediterranean lamproites. However, they also have low 100 Mn/Fe of 0.9-1.3 and no correlation between Ni and other trace elements (Sc, Co, Li) that would indicate recycled oceanic or continental crust in their sources. The low Mn/Fe without high Ni/Mg, and the high V/Sc (2-5) are inherited from phlogopite in the source that originated by solidification of lamproitic melts at the base of the cratonic lithosphere in a previous stage of igneous activity. The olivine phenocryst compositions are interpreted to result from phlogopite and not high modal

  14. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Chunxia; Yin, Runsheng; Peng, Jiantang; Hurley, James P.; Lepak, Ryan F.; Gao, Jianfeng; Feng, Xinbin; Hu, Ruizhong; Bi, Xianwu

    2018-03-01

    The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of Δ199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.

  15. Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality.

    PubMed

    Tashakor, Mahsa; Modabberi, Soroush; van der Ent, Antony; Echevarria, Guillaume

    2018-05-08

    This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al 2 O 3 and Fe 2 O 3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na 2 O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.

  16. Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition.

    PubMed

    Gonin, Mathieu; Gensous, Simon; Lagrange, Alexandre; Ducousso, Marc; Amir, Hamid; Jourand, Philippe

    2013-03-01

    Rhizosphere bacteria were isolated from Costularia spp., pioneer sedges from ultramafic soils in New Caledonia, which is a hotspot of biodiversity in the South Pacific. Genus identification, ability to tolerate edaphic constraints, and plant-growth-promoting (PGP) properties were analysed. We found that 10(5) colony-forming units per gram of root were dominated by Proteobacteria (69%) and comprised 21 genera, including Burkholderia (28%), Curtobacterium (15%), Bradyrhizobium (9%), Sphingomonas (8%), Rhizobium (7%), and Bacillus (5%). High proportions of bacteria tolerated many elements of the extreme edaphic conditions: 82% tolerated 100 μmol·L(-1) chromium, 70% 1 mmol·L(-1) nickel, 63% 10 mmol·L(-1) manganese, 24% 1 mmol·L(-1) cobalt, and 42% an unbalanced calcium/magnesium ratio (1/16). These strains also exhibited multiple PGP properties, including the ability to produce ammonia (65%), indole-3-acetic acid (60%), siderophores (52%), and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (39%); as well as the capacity to solubilize phosphates (19%). The best-performing strains were inoculated with Sorghum sp. grown on ultramafic substrate. Three strains significantly enhanced the shoot biomass by up to 33%. The most successful strains influenced plant nutrition through the mobilization of metals in roots and a reduction of metal transfer to shoots. These results suggest a key role of these bacteria in plant growth, nutrition, and adaptation to the ultramafic constraints.

  17. Discovery of New Hydrothermal Activity and Chemosynthetic Fauna on the Central Indian Ridge at 18°–20°S

    PubMed Central

    Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku

    2012-01-01

    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called ‘scaly-foot’ gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of ‘scaly-foot’ gastropod has been found at the Solitaire field. The newly discovered ‘scaly-foot’ gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of ‘scaly-foot’ gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to ‘scaly-foot’ gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean. PMID:22431990

  18. Sill induced hydrothermal venting: A summary of our current understanding

    NASA Astrophysics Data System (ADS)

    Jerram, Dougal; Svenesn, Henrik; Planke, Sverre; Millett, John; Reynolds, Pete

    2017-04-01

    Hydrothermal vent structures which are predominantly related with the emplacement of large (>1000 km3) intrusions into the sub-volcanic basins represent a specific style of piercement structure, where climate-forcing gases can be transferred into the atmosphere and hydrosphere. In this case, the types and volumes of gas produced by intrusions is heavily dependent on the host-rock sediment properties that they intrude through. The distribution of vent structures can be shown to be widespread in Large Igneous Provinces for example on both the Norwegian and the Greenland margins of the North Atlantic Igneous Province (NAIP). In this overview we assess the distribution, types and occurrence of hydrothermal vent structures associated with LIPs. There is particular focus on those within the NAIP using mapped examples from offshore seismic data as well as outcrop analogues, highlighting the variability of these structures and their deposits. As the availability of 3D data from offshore and onshore increases, the full nature of the volcanic stratigraphy from the subvolcanic intrusive complexes, through the main eruption cycles into the piercing vent structures, can be realised along the entirety of volcanic rifted margins and LIPs. This will help greatly in our understanding of the evolving palaeo-environments, and climate contributions during the evolution of these short lived massive volcanic events.

  19. Geochemical behavior of ultramafic waste rocks with carbon sequestration potential: a case study of the Dumont Nickel Project, Amos, Québec.

    PubMed

    Kandji, El Hadji Babacar; Plante, Benoit; Bussière, Bruno; Beaudoin, Georges; Dupont, Pierre-Philippe

    2017-04-01

    The geochemical behavior of ultramafic waste rocks and the effect of carbon sequestration by these waste rocks on the water drainage quality were investigated using laboratory-scale kinetic column tests on samples from the Dumont Nickel Project (RNC Minerals, QC, Canada). The test results demonstrated that atmospheric CO 2 dissolution induced the weathering of serpentine and brucite within the ultramafic rocks, generating high concentrations of Mg and HCO 3 - with pH values ranging between 9 and 10 in the leachates that promote the precipitation of secondary Mg carbonates. These alkaline pH values appear to have prevented the mobilization of many metals; Fe, Ni, Cu, and Zn were found at negligible concentrations in the leachates. Posttesting characterization using chemical analyses, diffuse reflectance infrared Fourier transform (DRIFT), and scanning electron microscope (SEM) observations confirmed the precipitation of secondary hydrated Mg carbonates as predicted by thermodynamic calculations. The formation of secondary Mg carbonates induced cementation of the waste particles, resulting in the development of a hardpan.

  20. Platinum-group element geochemistry of zoned ultramafic intrusive suites, Klamath Mountains, California and Oregon.

    USGS Publications Warehouse

    Gray, F.; Page, N.J.; Carlson, C.A.; Wilson, S.A.; Carlson, R.R.

    1986-01-01

    Analyses for platinum-group elements of the varied rock suites of three Alaskan-type ultramafic to mafic multi-intrusive bodies are reported. Ir and Ru are less than analytical sensitivities of 100 and 20 ppb; Rh is less than or near 1 ppb. Average Pd assays vary among the rocks within intrusive complexes and between the three complexes (6.3, 13.7, 36.4 ppb); average Pt assays vary little among the same samples (27.9, 60.9, 34.0 ppb). Statistically adjusted Pt/(Pt + Pd) ratios increase in each suite from gabbro through clinopyroxenite to olivine-rich rocks, possibly owing to Pd fractionation.-G.J.N.

  1. Geologic map of Harrat Hutaymah, with petrologic classification and distribution of ultramafic inclusions, Saudi Arabia

    USGS Publications Warehouse

    Thornber, Carl R.

    1990-01-01

    This map shows detailed geology of the Quaternary and Tertiary volcanic deposits that comprise Harrat Hutaymah and an updated and generalized compilation of the underlying Proterozoic and Paleozoic basement rocks. Quaternary alluvial cover and details of basement geology (that is, faults, dikes, and other features) are not shown. Volcanic unit descriptions and contact relations are based upon field investigation by the author and on compilation and revision of mapping Kellogg (1984; northern half of area) and Pallister (1984; southern half of area). A single K-Ar date of 1.80 ± 0.05 Ma for an alkali olivine basalt flow transected by the Al Hutaymah tuff ring (Pallister, 1984) provides the basis for an estimated late Tertiary to Quaternary age range for all harrat volcanic units other than unit Qtr (tuff reworked during Quaternary age time). Contact relations and unit descriptions for the basement rocks were compiled from Pallister (1984), Kellogg (1984 and 1985), DuBray (1984), Johnson and Williams (1984), Vaslet and others (1987), Cole and Hedge (1986), and Richter and others (1984). All rock unit names in this report are informal and capitalization follows Saudi Arabian stratigraphic nomenclature (Fitch, 1980). Geographic information was compiled from Pallister (1984), Kellogg (1984), and Fuller (in Johnson and Williams, 1984) and from field investigation by the author in 1986. The pie diagrams on the map show the distribution and petrology of ultramafic xenoliths of Harrat Hutaymah. The pie diagrams are explained by a detailed classification of ultramafic xenoliths that is introduced in this report.

  2. Role of mafic and ultramafic rocks in drinking water quality and its potential health risk assessment, Northern Pakistan.

    PubMed

    Begum, Shaheen; Shah, Mohammad Tahir; Muhammad, Said; Khan, Sardar

    2015-12-01

    This study investigates the drinking water (groundwater and surface water) quality and potential risk assessment along mafic and ultramafic rocks in the Swat district of Khyber Pakhtunkhwa Provence, Pakistan. For this purpose, 82 groundwater and 33 surface water samples were collected and analyzed for physico-chemical parameters. Results showed that the majority of the physico-chemical parameters were found to be within the drinking water guidelines set by the World Health Organization. However, major cationic metals such as magnesium (Mg), and trace metals (TM) including iron (Fe), manganese (Mn), nickel (Ni), chromium (Cr) and cobalt (Co) showed exceeded concentrations in 13%, 4%, 2%, 20%, 20% and 55% of water samples, respectively. Health risk assessment revealed that the non-carcinogenic effects or hazard quotient values through the oral ingestion pathway of water consumption for the TM (viz., Fe, Cr and Mn) were found to be greater than 1, could result in chronic risk to the exposed population. Results of statistical analyses revealed that mafic and ultramafic rocks are the main sources of metal contamination in drinking water, especially Ni and Cr. Both Ni and Cr have toxic health effects and therefore this study suggests that contaminated sites should be avoided or treated for drinking and domestic purposes.

  3. A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.

    2014-12-01

    A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.

  4. Imaging hydrothermal roots along the Endeavour segment of the Juan de Fuca ridge using elastic full waveform inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2016-12-01

    The Endeavour segment is a 90 km-long, medium-spreading-rate, oceanic spreading center located on the northern Juan de Fuca ridge (JDFR). The central part of this segment forms a 25-km-long volcanic high that hosts five of the most hydrothermally active vent fields on the MOR system, namely (from north to south): Sasquatch, Salty Dawg, High Rise, Main Endeavour and Mothra. Mass, heat and chemical fluxes associated to vigorous hydrothermal venting are large, however the geometry of the fluid circulation system through the oceanic crust remains almost completely undefined. To produce high-resolution velocity/reflectivity structures along the axis of the Endeavour segment, here, we combined a synthetic ocean bottom experiment (SOBE), 2-D traveltime tomography, 2D elastic full waveform and reverse time migration (RTM). We present velocity and reflectivity sections along Endeavour segment at unprecedented spatial resolutions. We clearly image a set of independent, geometrically complex, elongated low-velocity regions linking the top of the magma chamber at depth to the hydrothermal vent fields on the seafloor. We interpret these narrow pipe-like units as focused regions of hydrothermal fluid up-flow, where acidic and corrosive fluids form pipe-like alteration zones as previously observed in Cyprus ophiolites. Furthermore, the amplitude of these low-velocity channels is shown to be highly variable, with the strongest velocity drops observed at Main Endeavour, Mothra and Salty Dawg hydrothermal vent fields, possibly suggesting more mature hydrothermal cells. Interestingly, the near-seafloor structure beneath those three sites is very similar and highlights a sharp lateral transition in velocity (north to south). On the other hand, the High-Rise hydrothermal vent field is characterized by several lower amplitudes up-flow zones and relatively slow near-surface velocities. Last, Sasquatch vent field is located in an area of high near-surface velocities and is not

  5. Biogeochemistry of hydrothermally and adjacent non-altered soils

    USDA-ARS?s Scientific Manuscript database

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  6. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  7. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields

    NASA Astrophysics Data System (ADS)

    Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2017-04-01

    Diffuse low-temperature hydrothermal vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by hydrothermal fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern hydrothermal systems are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified hydrothermal Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the hydrothermal environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature hydrothermal fluids were performed to characterize the hydrothermal system in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low hydrothermal fluid discharge conditions. The elevated concentrations

  8. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  9. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Knight, Robert D.; Roberts, Stephen; Webber, Alexander P.

    2018-01-01

    Seafloor massive sulphide (SMS) deposits are variably enriched in precious metals including gold. However, the processes invoked to explain the formation of auriferous deposits do not typically apply to mid-ocean ridge settings. Here, we show a statistically significant, negative correlation between the average gold concentration of SMS deposits with spreading rate, at non-sedimented mid-ocean ridges. Deposits located at slow spreading ridges (20-40 mm/a) have average gold concentrations of between 850 and 1600 ppb; however, with increasing spreading rate (up to 140 mm/a), gold concentrations gradually decrease to between 50 and 150 ppb. This correlation of gold content with spreading rate may be controlled by the degree and duration of fluid-rock interaction, which is a function of the heat flux, crustal structure (faulting) and the permeability of the source rocks. Deposits at ultraslow ridges, including ultramafic-hosted deposits, are particularly enriched in gold. This is attributed to the higher permeability of the ultramafic source rocks achieved by serpentinisation and the inherent porosity of serpentine minerals, combined with relatively high gold concentrations in peridotite compared with mid-ocean ridge basalt. Variations in fluid chemistry, such as reducing conditions and the potential for increased sulphur availability at ultramafic-hosted sites, may also contribute to the high concentrations observed. Beehive chimneys, which offer more favourable conditions for gold precipitation, may be more prevalent at ultramafic-hosted sites due to diffuse low-velocity venting compared with more focussed venting at basalt-hosted sites.

  10. Formation of an ultramafic seafloor at the Southwest Indian Ridge 62°-65°E : internal structure of detachment faults and sparse volcanism documented by sidescan sonar and dredges

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Sauter, D.; Rouméjon, S.

    2012-12-01

    In october 2010, the Smoothseafloor cruise (RV Marion Dufresne ) documented the continuous exposure, for the past 10 myrs, of mantle-derived ultramafic rocks in the seafloor of the ultra-slow Southwest Indian Ridge in two 50 to 100 km-wide magma-poor corridors centered respectively at 62°30'E and 64°35'E. The proposed interpretation (Sauter et al., AGU abstract 2011) involves successive large offset normal faults (or detachments) that expose ultramafic rocks alternatively in the southern (Antarctic), then in the northern (African) plates. In this presentation we focus on the most recent, near axis regions in these two ultramafic seafloor corridors. We show details of the sidescan sonar images with smooth, non-corrugated exposed detachment surfaces, and an intriguing pattern of pluridecameter-thick and locally anastomozing reflective and less reflective layers in the detachments footwall. Based on preliminary microstructural observations made on samples dredged in the same region, we tentatively interpret these layers as due to contrasted patterns of deformation in the ultramafics next to the fault. Testing this interpretation would be an attractive goal for future submersible and drilling cruises. Deformation types documented in the dredge samples range from heterogeneous plastic to semi-brittle deformation of the primary peridotite mineralogy, to brittle deformation of serpentinized ultramafic rocks. Magmatic rocks make less than 5% of the overal volume of our near axis dredges. These include variably sheared metagabbros, and unmetamorphosed balsalts. Sidescan sonar images show that these basalts form a thin (<200 m) highly discontinuous carapace over the exposed detachments. We show that these basalts are preferentially located along moderate offset normal faults that cut the detachments, or next to inferred breakaways. This observation leads us to propose a link between axial faulting and volcanism in these magma-poor sections of the ultra-slow spreading

  11. The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai-Tibet Plateau—crustal relics of the Paleo-Tethys ocean

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Meng, Fancong; Feng, Huibin

    2018-06-01

    The Wenquan ultramafic rocks, located in the East Kunlun Orogenic belt in the northeastern part of the Qinghai-Tibet Plateau, consist of dunite, wehrlite, olivine-clinopyroxenite and clinopyroxenite, and exhibit cumulate textures. Olivine from dunite has high Fo (forsterite, 90.0-91.8 wt%) and NiO content (0.15-0.42 wt%). Cr-spinels from all of the rocks in this suite are characterized by high Cr# (100×[Cr/(Cr + Al)], 67-91), low Mg# (100×[Mg/(Mg + Fe2+)], 17-35) and low TiO2 contents (mostly < 0.5 wt%). Clinopyroxene displays high Mg# (92-98) and low TiO2 content (0.002-0.099 wt%), similar to those in ophiolitic cumulates. Geochemically, the Wenquan ultramafic rocks show enrichment of LILE, Sr, and Ba, and depletion of Nb and Th. High-Mg# (mostly > 80) and low-CaO (< 0.08 wt%) olivine, high-Cr# (up to 91) spinel, and low Ti contents of clinopyroxene and Cr-spinel indicate that the Wenquan cumulates were generated by high-degree partial melting of a depleted oceanic lithosphere mantle. The ultramafic intrusion most likely evolved from high-Mg basaltic magmas (Mg# = 77.5) that underwent fractional crystallization and crustal contamination. Zircon grains from clinopyroxenites yield a U-Pb weighted mean age of 331 ± 2 Ma, which is nearly coeval with the formation age of the A'nyemaqen ophiolites. The Wenquan Carboniferous ophiolites are confirmed to exist in the Central East Kunlun Fault zone, whereas previous studies have considered them to be the Proterozoic ophiolites. The Wenquan ophiolite might be a relict of the Paleotethyan ocean, indicating that there were two cycles of oceanic-continental evolution along the Central East Kunlun Fault zone.

  12. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal

  13. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work

  14. Hydrothermal barite mineralization at Chenarvardeh deposit, Markazi Province, Iran: Evidences from REE geochemistry and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ehya, Farhad; Mazraei, Shaghayegh Moalaye

    2017-10-01

    Barite mineralization occurs at Chenarvardeh deposit as layers and lenses in Upper Eocene volcanic and pyroclastic rocks. The host rocks are intensely saussuritized in most places. Barite is accompanied by calcite, Mn-oxides, galena and malachite as subordinate minerals. The amount of Sr in barites is low and varies between 0.11 and 0.30 wt%. The concentration of Rb, Zr, Y, Ta and Hf is also low (<5 ppm) in barite samples. The amount of total REEs (∑REE) is low in barites, ranging from 7.51 to 30.50 ppm. Chondrite-normalized REE patterns reveal LREE enrichment with respect to HREE, and positive Ce anomalies. Fluid inclusions are common in barite samples, being dominantly from liquid-rich two phase (L + V) type. Salinity values in fluid inclusions range from 9.41 to 18.69 wt% NaCl equivalent with most frequent salinities falling in the range of 10-15 wt% NaCl equivalent. Homogenization temperatures (Th) range between 160 and 220 °C, being the 180-200 °C range as the most common Th interval. A combination of factors, including geologic setting, host rock, mineral assemblages, REE geochemistry and fluid inclusion data are consistent with a submarine volcanic hydrothermal model for barite formation at the Chenarvardeh deposit. Mineral-forming fluids originated from solutions related to submarine hydrothermal activities deposited barite on seafloor as they encountered sulfate-bearing seawater.

  15. Clumped isotopologue constraints on the origin of methane at seafloor hot springs

    NASA Astrophysics Data System (ADS)

    Wang, David T.; Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.; Ono, Shuhei

    2018-02-01

    Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a "clumped" isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310-42+53 °C, with no apparent relation to the wide range of fluid temperatures (96-370 °C) and chemical compositions (pH, [H2], [∑CO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270-360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water

  16. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    NASA Astrophysics Data System (ADS)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  17. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  18. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  19. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  20. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately

  1. Hydrothermal pretreatment of palm oil empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  2. Asteroidal Differentiation Processes Deduced from Ultramafic Achondrite Ureilite Meteorites

    NASA Technical Reports Server (NTRS)

    Downes, Hilary; Mittlefehldt, David W.; Hudson, Pierre; Romanek, Christopher S.; Franchi, Ian

    2006-01-01

    Ureilites are the second largest achondrite group. They are ultramafic achondrites that have experienced igneous processing whilst retaining some degree of nebula-derived chemical heterogeneity. They differ from other achondrites in that they contain abundant carbon and their oxygen isotope compositions are very heterogeneous and similar to those of the carbonaceous chondrite anhydrous mineral line. Their carbonaceous nature and some compositional characteristics indicative of nebular origin suggest that they are primitive materials that form a link between nebular processes and early periods of planetesimal accretion. However, despite numerous studies, the exact origin of ureilites remains unclear. Current opinion is that they represent the residual mantle of an asteroid that underwent silicate and Fe-Ni-S partial melting and melt removal. Recent studies of short-lived chronometers indicate that the parent asteroid of the ureilites differentiated very early in the history of the Solar System. Therefore, they contain important information about processes that formed small rocky planetesimals in the early Solar System. In effect, they form a bridge between nebula processes and differentiation in small planetesimals prior to accretion into larger planets and so a correct interpretation of ureilite petrogenesis is essential for understanding this critical step.

  3. Accessory and rock forming minerals monitoring the evolution of zoned mafic ultramafic complexes in the Central Ural Mountains

    NASA Astrophysics Data System (ADS)

    Krause, J.; Brügmann, G. E.; Pushkarev, E. V.

    2007-04-01

    This study describes major and trace element compositions of accessory and rock forming minerals from three Uralian-Alaskan-type complexes in the Ural Mountains (Kytlym, Svetley Bor, Nizhnii Tagil) for the purpose of constraining the origin, evolution and composition of their parental melts. The mafic-ultramafic complexes in the Urals are aligned along a narrow, 900 km long belt. They consist of a central dunite body grading outward into clinopyroxenite and gabbro lithologies. Several of these dunite bodies have chromitites with platinum group element mineralization. High Fo contents in olivine (Fo 92-93) and high Cr/(Cr + Al) in spinel (0.67-0.84) suggest a MgO-rich (> 15 wt.%) and Al 2O 3-poor ultramafic parental magma. During its early stages the magma crystallized dominantly olivine, spinel and clinopyroxene forming cumulates of dunite, wehrlite and clinopyroxenite. This stage is monitored by a common decrease in the MgO content in olivine (Fo 93-86) and the Cr/(Cr + Al) value of coexisting accessory chromite (0.81-0.70). Subsequently, at subsolidus conditions, the chromite equilibrated with the surrounding silicates producing Fe-rich spinel while Al-rich spinel exsolved chromian picotite and chromian titanomagnetite. This generated the wide compositional ranges typical for spinel from Uralian-Alaskan-type complexes world wide. Laser ablation analyses (LA-ICPMS) reveal that clinopyroxene from dunites and clinopyroxenite from all three complexes have similar REE patterns with an enrichment of LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). This large concentration range implies the extensive crystallization of olivine and clinopyroxene together with spinel from a continuously replenished, tapped and crystallizing magma chamber. Final crystallization of the melt in the pore spaces of the cooling cumulate pile explains the large variation in REE concentrations on the scale of a thin

  4. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying

    2018-03-01

    The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.

  5. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model

    NASA Astrophysics Data System (ADS)

    Gysi, Alexander P.; Williams-Jones, Anthony E.

    2013-12-01

    Petrological and geochemical observations of pegmatites in the Strange Lake pluton, Canada, have been combined with numerical simulations to improve our understanding of fluid-rock interaction in peralkaline granitic systems. In particular, they have made it possible to evaluate reaction paths responsible for hydrothermal mobilization and mineralization of rare earth elements (REE) and Zr. The focus of the study was the B-Zone in the northwest of the pluton, which contains a pegmatite swarm and is the target of exploration for an economically exploitable REE deposit. Many of the pegmatites are mineralogically zoned into a border consisting of variably altered primary K-feldspar, arfvedsonite, quartz, and zirconosilicates, and a core rich in quartz, fluorite and exotic REE minerals. Textural relationships indicate that the primary silicate minerals in the pegmatites were leached and/or replaced during acidic alteration by K-, Fe- and Al-phyllosilicates, aegirine, hematite, fluorite and/or quartz, and that primary zirconosilicates (e.g., elpidite) were replaced by gittinsite and/or zircon. Reaction textures recording coupled dissolution of silicate minerals and crystallization of secondary REE-silicates indicate hydrothermal mobilization of the REE. The mobility of the light (L)REE was limited by the stability of REE-F-(CO2)-minerals (basnäsite-(Ce) and fluocerite-(Ce)), whereas zirconosilicates and secondary gadolinite-group minerals controlled the mobility of Zr and the heavy (H)REE. Hydrothermal fluorite and fluorite-fluocerite-(Ce) solid solutions are interpreted to indicate the former presence of F-bearing saline fluids in the pegmatites. Numerical simulations show that the mobilization of REE and Zr in saline HCl-HF-bearing fluids is controlled by pH, ligand activity and temperature. Mobilization of Zr is significant in both saline HF- and HCl-HF-bearing fluids at low temperature (250 °C). In contrast, the REE are mobilized by saline HCl-bearing fluids

  6. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    PubMed

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The main factors controlling petrophysical alteration in hydrothermal systems of the Kuril-Kamchatka island arch

    NASA Astrophysics Data System (ADS)

    Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.

    2009-04-01

    This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal

  8. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  9. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  10. Reconstructing Magmatic-Hydrothermal Systems via Geologic Mapping of the Tilted, Cross-sectional Exposures of the Yerington District, Nevada

    NASA Astrophysics Data System (ADS)

    Dilles, J. H.; Proffett, J. M.

    2011-12-01

    The Jurassic Yerington batholith was cut by Miocene to recent normal faults and tilted ~90° west (Proffett, 1977). Exposures range from the volcanic environment to ~6 km depth in the batholith. Magmatic-hydrothermal fluids derived from the Luhr Hill granite and associated porphyry dikes produced characteristic porphyry copper mineralization and rock alteration (K-silicate, sericitic, and advanced argillic) in near-vertical columnar zones above cupolas on the deep granite. In addition, saline brines derived from the early Mesozoic volcanic and sedimentary section intruded by the batholith were heated and circulated through the batholith producing voluminous sodic-calcic and propylitic alteration. The magnetite-copper ore body at Pumpkin Hollow is hosted in early Mesozoic sedimentary rocks in the contact aureole of the batholith, and appears to be an IOCG type deposit produced where the sedimentary brines exited the batholith. Although many advances in understanding of Yerington have been made by lab-based geochronology and geochemistry studies, the first order igneous and hydrothermal features were recognized first in the 1960s and 1970s and are best documented by geological mapping at a variety of scales ranging from 1:500 to 1:24,000. The Anaconda technique of mapping mine benches, trenches, and drill cores was perfected here (Einaudi, 1997), and other techniques were used for surface exposures. The geologic and hydrothermal alteration maps establish that hydrothermal alteration accompanied each of several porphyry dike intrusions, and affected more than 100 km3 of rock. Both zonation in alteration mineralogy and vein orientations allow reconstruction of source areas and >5 km-long flow-paths of hydrothermal fluids through the batholith and contact aureole.

  11. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  12. Detailed magnetic and gravity surveys around the hydrothermal area off Kumejima Island in the Mid-Okinawa Trough, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kitada, K.; Kasaya, T.; Iwamoto, H.; Nogi, Y.

    2017-12-01

    The Okinawa Trough is an active back-arc basin formed by the rifting associated with extension of the continental margin behind the Ryukyu trench. New hydrothermal sites were recently discovered off Kumejima Island in the Mid-Okinawa Trough and the hydrothermal mineral deposits were identified by seafloor surveys and rock samplings by ROV (e.g., JOGMEC, 2015). In order to characterize the sub-seafloor structures and the spatial distribution of the magmatic activity around the sites, we conducted the dense magnetic, gravity and bathymetric surveys with a line spacing of 0.5 nmi aboard the R/Vs Yokosuka and Kairei, operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2016. The geophysical data collected during the previous cruises in the area by JAMSTEC were additionally used for this study. Magnetic anomaly was calculated by subtracting the IGRF model and the magnetization intensity was estimated by the method of Parker and Huestis (1974). Free-air gravity anomaly was calculated with subtracting the normal gravity field and with corrections of the drift and of the Eötvös effect. Bouguer gravity anomaly was calculated based on the method of Parker (1972). The magnetization intensity and the Bouguer gravity anomaly reveal three characteristics of the hydrothermal area off Kumejima Island: 1) The distribution of magnetization around the hydrothermal sites shows two different types of sub-seafloor magnetic features. One is corresponded to the submarine knolls with a relatively high magnetization of 4 A/M. The other is an ENE-WSW trending magnetization distribution with relatively high and low intensities, which is consistent with the trend of the bathymetric lineament. These features are considered to be formed by magmatism associated with submarine volcanoes and back-arc rifting. 2) The reduced magnetization zone corresponding to the hydrothermal area probably attributes to hydrothermal alteration of the host rock. 3) The hydrothermal

  13. Hydrothermal Signatures at Gale Crater, Mars, and Possible In-Situ Formation of Tridymite

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Morris, R. V.; Gellert, R.; Berger, J. A.; Sutter, B.; Downs, R. T.; Bristow, T.; Treiman, A. H.; Ming, D. W.; Achilles, C.; Blake, D. F.; Chipera, S.; Clark, B. C.; Craig, P.; Morrison, S. M.; Rampe, E. B.; Schmidt, M. E.; Schwenzer, S. P.; Thompson, L. M.; Vaniman, D.

    2017-12-01

    The occurrence of tridymite, a high temperature SiO2 polymorph definitively identified by the Curiosity rover in the Buckskin mudstone sample at Gale crater, Mars, has been attributed to detrital accumulation of rhyolitic material. This interpretation of a detrital origin is revisited in light of the observation that the tridymite-hosting sediments appear to have interacted with the same fluids that produced alteration halos in the overlying sandstone. The alteration halos in the Stimson sandstone are light-toned, elevated silica zones within 50 cm of a central fracture. They have likely experienced chemical leaching under acidic conditions resulting in depletion of metals (including Al), retention of Ti, formation of amorphous iron sulfates, 50% reduction of the pyroxene:plagioclase ratio, a factor of two increase in the Fe/Mn ratio, and passive enrichment of Si. This alteration is not constrained (nor precluded) to have occurred at elevated temperatures, but there are abundant indicators of hydrothermal activity within Gale crater. High concentrations of Ge, Zn, Ni, Pb, Cu, Se and Ga in a variety of samples analyzed by the Alpha Particle X-ray Spectrometer are indicative of mobility in hydrothermal solutions. Mineralogy of Gale crater samples determined by the CheMin X-ray diffraction instrument includes phases which may be associated with hydrothermal activity (smectites, anhydrite, hematite), but definitive detections of mineral assemblages that are necessarily hydrothermal in origin remain absent. The nearly identical patterns of enriched and depleted elements of the Stimson alteration halos (relative to parent rocks) and the tridymite-bearing unit (relative to typical mudstone samples) require the consideration of co-genetic origins. Cristobalite, a SiO2 polymorph stable above 1470°C found in the Buckskin sample, is known to form in hydrothermal solutions at temperatures well below its stability field (Henderson et al., 1971). Formation of well

  14. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  15. The characteristics of hydrothermal plumes observed at the Zouyu-1 and Zouyu-2 hydrothermal fields in the Southern Mid-Atlantic Ridges

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Baker, E. T.; Li, H.

    2016-12-01

    The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) hydrothermal fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two hydrothermal fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 hydrothermal fields. And the highest turbidity anomalies were concentrated around Zouyu-2 hydrothermal field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of hydrothermal plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were hydrothermally induced. Keywords: hydrothermal plume, Zouyu-1 hydrothermal field, Zouyu-2 hydrothermal field

  16. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.

  17. Characteristics of hydrothermal alteration mineralogy and geochemistry of igneous rocks from the epithermal Co-O mine and district, Eastern Mindanao (Philippines)

    NASA Astrophysics Data System (ADS)

    Sonntag, Iris; Hagemann, Steffen

    2010-05-01

    Detailed petrographic as well as hyperspectral analyses using PIMA (Portable Infrared Mineral Analyser) and geochemical (major, trace and rare earth elements) studies were conducted on samples of the epithermal, low sulfidation Co-O mine (47,869 ounces gold produced in 2009 with an average grade of 13.3 g/t gold) and district in Eastern Mindanao (Philippines). The aims of the study were to unravel the petrogenetic origin of the various volcanic (host rocks) and intrusive rocks (potential fluid driver) as well as their relationship and influence on the hydrothermal alteration zoning and fluid chemistry. The auriferous veins at the Co-O mine were formed during two hydrothermal stages associated with the district wide D1 and D2 deformation events. Gold in stage 1 quartz veins is in equilibrium with galena and sphalerite, whereas in stage 2 it is associated with pyrite. Auriferous quartz veins of stage 1 reflect temperatures below 250° C or strong variations in pH and fO2 at higher temperatures, due to potential involvement of acidic gas or meteoric water. Cathodoluminescense studies revealed strong zonation of quartz associated with Au, presumably related to changes in the Al content, which is influenced by the pH. Plumose textures indicate times of rapid deposition, whereas saccharoidal quartz grains are related to potential calcite replacement. The geology of the Co-O mine and district is dominated by Miocene volcanic rocks (basic to intermediate flows and pyroclastics units), which are partly covered by Pliocene volcanic rocks and late Oligocene to Miocene limestones. The Miocene units are intruded by diorite (presumably Miocene in age). The epithermal mineralization event may be related to diorite intrusions. The geochemistry of all igneous rocks in the district is defined by a sub-alkaline affinity and is low to medium K in composition. Most units are related to a Miocene subduction zone with westward subduction, whereas the younger Pliocene rocks are related to

  18. Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1980-01-01

    Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.

  19. Occurrence model for magmatic sulfide-rich nickel-copper-(platinum-group element) deposits related to mafic and ultramafic dike-sill complexes: Chapter I in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Schulz, Klaus J.; Woodruff, Laurel G.; Nicholson, Suzanne W.; Seal, Robert R.; Piatak, Nadine M.; Chandler, Val W.; Mars, John L.

    2014-01-01

    The sulfides in magmatic Ni-Cu deposits generally constitute a small volume of the host rock(s) and tend to be concentrated in the lower parts of the mafic and/or ultramafic bodies, often in physical depressions or areas marking changes in the geometry of the footwall topography. In most deposits, the sulfide mineralization can be divided into disseminated, matrix or net, and massive sulfide, depending on a combination of the sulfide content of the rock and the silicate texture. The major Ni-Cu sulfide mineralogy typically consists of an intergrowth of pyrrhotite (Fe7S8), pentlandite ([Fe, Ni]9S8), and chalcopyrite (FeCuS2). Cobalt, PGE, and gold (Au) are extracted from most magmatic Ni-Cu ores as byproducts, although such elements can have a significant impact on the economics in some deposits, such as the Noril’sk-Talnakh deposits, which produce much of the world’s palladium. In addition, deposits may contain between 1 and 15 percent magnetite associated with the sulfides.

  20. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  1. Investigation of Mineral Alteration in Andesite and Dacite from Three Different Volcano Hydrothermal Systems on Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Smith, C. I. V.; Frey, H. M.; Joseph, E. P.; Manon, M. R. F.

    2017-12-01

    The thermal discharges of Dominica are classified as steam-heated acidic-sulphate waters, produced by the mixing of shallow ground waters heated by sulphur bearing gases coming from magmatic sources. This study investigates the mineral alteration associated with three hydrothermal areas in Dominica that exhibit different temperature, pH, water composition and surface water abundance. Hydrothermal features (fumaroles, pools, springs) from Sulphur Springs ranged in temperature from 41 - 97 °C and pH from 1-3 in a predominantly gaseous environment, whereas the Valley of Desolation (69-98 °C and pH 1- 4) and the Cold Soufriere (18-32 °C and pH 1-4) have significant inputs of surface water. At each location, the host andesite-dacite rock was enveloped by a thin rind (up 2 cm) of precipitates, but the degree of alteration and rind thickness/composition varied with location. Cobbles from Sulphur Springs (SS) are grayish white in color with a thin outer rind (3-13 mm), and seemingly unaltered cores. Valley of Desolation (VoD) samples have a variety of patterns of alteration, with some clasts a uniform white-orange color, whereas others have variable thicknesses of an altered rind (1-20 mm), with relatively unaltered cores. Multiple hydrothermal minerals precipitated in the outer rinds display distinctive colors, suggestive of sulphides (dark gray), sulphates (orange and yellow), and iron oxides(?) (pink and purple). Cold Soufriere (CS) samples appear to be the most altered, often crumbling at touch. Others had rinds (2-10 mm) and pinkish gray cores that suggest more alteration compared to VoD and SS samples. Preliminary mineral identification of rind compositions was determined by XRD. Scans indicate the presence of silica polymorphs cristobalite and tridymite, as well as pyrite and sulphur. Elemental maps created using a SEM to identify any gradation caused by the elemental leaching and/or precipitation show that the boundaries between the weathering rind and the host

  2. New data on carbonatites of the Il'mensky-Vishnevogorsky alkaline complex, the southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.

    2007-04-01

    Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575-300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300-200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044-0.7045 and ɛNd ranging from 0.65 to -3.3 testify to their derivation from a deep mantle source of EM1 type.

  3. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  5. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  6. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C.

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Yinchen, R.

    1992-01-01

    Bayan Obo, a complex rare earth element (REE)FeNb ore deposit, located in Inner Mongolia, P.R.C. is the world's largest known REE deposit. The deposit is chiefly in a marble unit (H8), but extends into an overlying unit of black shale, slate and schist unit (H9), both of which are in the upper part of the Middle Proterozoic Bayan Obo Group. Based on sedimentary structures, the presence of detrital quartz and algal fossil remains, and the 16-km long geographic extent, the H8 marble is a sedimentary deposit, and not a carbonatite of magmatic origin, as proposed by some previous investigators. The unit was weakly regionally metamorphosed (most probably the lower part of the green schist facies) into marble and quartzite prior to mineralization. Tectonically, the deposit is located on the northern flank of the Sino-Korean craton. Many hypotheses have been proposed for the origin of the Bayan Obo deposit; the studies reported here support an epigenetic, hydrothermal, metasomatic origin. Such an origin is supported by field and laboratory textural evidence; 232Th/208Pb internal isochron mineral ages of selected monazite and bastnaesite samples; 40Ar/39Ar incremental heating minimum mineral ages of selected alkali amphiboles; chemical compositions of different generations of both REE ore minerals and alkali amphiboles; and evidence of host-rock influence on the various types of Bayan Obo ores. The internal isochron ages of the REE minerals indicate Caledonian ages for various episodes of REE and Fe mineralization. No evidence was found to indicate a genetic relation between the extensive biotite granitic rocks of Hercynian age in the mine region and the Bayan Obo are deposit, as suggested by previous workers. ?? 1992.

  7. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    DOEpatents

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  8. Polyphase serpentinization history of Mariana forearc mantle: observations on the microfabric of ultramafic clasts from ODP Leg 195, Site 1200

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder

    2013-04-01

    In the forearc of the Mariana subduction zone system, a number of seamounts form from extrusion of blueschist and serpentine mud. Ocean Drilling Program Leg 195 drilled the South Chamorro seamount, where ultramafic clasts occur within the mud matrix. These clasts show a complex serpentinization history, which bears the potential for tracking the alteration history during uplift and cooling of mantle wedge rocks to the seafloor. Moreover, the microfabrics of the highly serpentinized harzburgite and dunite clasts exhibit evidence for multiple fracturing events in the forearc mantle. These, in turn, lead to fluid influx and varied styles of serpentinization of harzburgite and dunite. The serpentinized ultramafic clasts exhibit a variety of microfabrics that range from virtually undeformed to strongly deformed samples. Pervasively serpentinized harzburgites feature either an equigranular fabric of serpentinized olivine and orthopyroxene crystals, or different vein generations related to multiple stages of serpentinization. Several types of fluid pathways in harzburgites are present: (i) veins containing brucite and iron oxides, developed linearly without marked conformance with the rock fabric. In places, these veins developed mm-cm wide halos with finger-shaped serpentinization fronts. Veins of type (i) are either developed as syntaxial veins from a single crack-seal event with large magnetite crystals growing from one wall to the other (as confirmed with high-resolution X-ray microtomography), or formed by multiple fluid events. (ii) serpentine veins that encompass regions of marginally serpentinized, microgranular olivine and large orthopyroxene crystals. (iii) extensional serpentine veins (known as "Frankenstein" type). In the clasts studied, their occurrence is restricted to the halo region of type (i) veins. (iv) as a late-stage feature, extensional veins documenting multiple crack-seal events can be present in the serpentinites (either in undeformed regions with

  9. Concerns of Hydrothermal Degradation in CAD/CAM Zirconia

    PubMed Central

    Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039

  10. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe-oxide (Fe-P-REE) systems

    NASA Astrophysics Data System (ADS)

    Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  11. Hydrothermal systems and volcano geochemistry

    USGS Publications Warehouse

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  12. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics.

    PubMed

    Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise

    2014-09-01

    Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. First hydrothermal discoveries on the Australian-Antarctic Ridge: Discharge sites, plume chemistry, and vent organisms

    NASA Astrophysics Data System (ADS)

    Hahm, Doshik; Baker, Edward T.; Siek Rhee, Tae; Won, Yong-Jin; Resing, Joseph A.; Lupton, John E.; Lee, Won-Kyung; Kim, Minjeong; Park, Sung-Hyun

    2015-09-01

    The Australian-Antarctic Ridge (AAR) is one of the largest unexplored regions of the global mid-ocean ridge system. Here, we report a multiyear effort to locate and characterize hydrothermal activity on two first-order segments of the AAR: KR1 and KR2. To locate vent sites on each segment, we used profiles collected by Miniature Autonomous Plume Recorders on rock corers during R/V Araon cruises in March and December of 2011. Optical and oxidation-reduction-potential anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ˜25 km. Forty profiles on KR1 identified 17 sites, some within a few kilometer of each other. The spatial density of hydrothermal activity along KR1 and KR2 (plume incidence of 0.34) is consistent with the global trend for a spreading rate of ˜70 mm/yr. The densest area of hydrothermal activity, named "Mujin," occurred along the 20 km-long inflated section near the segment center of KR1. Continuous plume surveys conducted in January-February of 2013 on R/V Araon found CH4/3He (1 - 15 × 106) and CH4/Mn (0.01-0.5) ratios in the plume samples, consistent with a basaltic-hosted system and typical of ridges with intermediate spreading rates. Additionally, some of the plume samples exhibited slightly higher ratios of H2/3He and Fe/Mn than others, suggesting that those plumes are supported by a younger hydrothermal system that may have experienced a recent eruption. The Mujin-field was populated by Kiwa crabs and seven-armed Paulasterias starfish previously recorded on the East Scotia Ridge, raising the possibility of circum-Antarctic biogeographic connections of vent fauna.

  14. Serpentinization and carbonation of pristine continental ultramafic rocks and applications to the oceanic crust; H2O-CO2 alteration of dunites and re-distribution of Ni-Cu-PGE in sulphide deposits

    NASA Astrophysics Data System (ADS)

    Grant, Thomas; McEnroe, Suzanne; Eske Sørensen, Bjørn; Larsen, Rune; Pastore, Zeudia; Rune Grannes, Kim; Nikolaisen, Even

    2017-04-01

    Here, we document carbonation and serpentinization within a suite of ultramafic rocks from a continental setting. These ultramafic rocks vary from pristine dunites to varying degrees of serpentinization which locally penetrates the ultramafic complex. Hence, it allows us to observe a number of delicate serpentinization and carbonation reactions, otherwise lost during more extensive alteration or tectonic events. We use a multi-disciplinary approach using petrographic, EPMA, thermodynamic modelling and geophysical data to reveal how the initial stages of serpentization and carbonation in dunites affects the distribution of economic to sub-economic deposits of Ni-Cu and PGE. The data can then be applied to oceanic crust. The samples are dunites and poikilitic wehrlites from the Reinfjord Ultramafic complex, Seiland Igneous Province Northern Norway. The complex formed through crystallization of picritic melts in the lower continental crust. The dunites contain small amounts of interstitial clinopyroxene, sulphides and spinel, with local enrichments in Ni, Cu and PGE. Late magmatic CO2-H2O-S fluids reacted with the dunite forming clots of amphibole + dolomite + sulphides + enstatite, reaction rims of enstatite + dolomite, and inclusions trails of dolomite + enstatite + magnetite + CO2 fluid. Thermodynamic modelling reveals that these textures formed at pressures of >12 kbar and temperatures 850-950 °C, which would be consistent with the late magmatic history of the Reinfjord complex. The clots and reactions have local association with enrichments in gold-rich PGMs. A second stage of alteration involved H2O-dominated fluids. These formed predominantly lizardite serpentinization, as is often concentrated within highly localized fracture zones. Thermodynamic modelling shows that these formed <400°C, after the complex had been exhumed towards the surface of the crust. Local and more pervasive serpentinization interacted with the earlier formed carbonate bearing

  15. The Genesis of tectonically and hydrothermally controlled industry mineral deposits: A geochemical and structural study

    NASA Astrophysics Data System (ADS)

    Wölfler, Anke; Prochaska, Walter; Henjes-Kunst, Friedhelm; Fritz, Harald

    2010-05-01

    The study aims to investigate the role of hydrothermal fluids in the formation of talc and magnesite deposits. These deposits occur in manifold geological and tectonical settings such as stockworks and veins within ultramafite hostrocks and monomineralic lenses within marine platform sediments. Along shear zones talc mineralizations may occur as a result of tectonical and hydrothermal activity. To understand the role of the fluids for the genesis of the mineralization, deposits in different geological and tectonical settings are investigated: Talc mineralization within in magnesite in low-grade palaeozoic nappe complexes (Gemerska Poloma, Slovakia): The magnesite body lies within the Gemer unit of the Inner Carpathians consisting of Middle Triassic metacarbonates and Upper Triassic pelagic limestones and radiolarites. The talc mineralization is bound to crosscutting veins. Two metamorphic events can be distinguished, one during Variscan orogeny and one related to the Alpine orogeny leading to the formation of talc along faults in an Mg carbonate body (Radvanec et al, 2004).The origin of the fluids as well as the tectonic events leading to the mineralization is still widely unknown. Talc mineralization in shearzones within Palaeozoic meta sedimentary rocks (Sa Matta, Sardinia): Variscan granitoids intruded Palaeozoic meta sedimentary rocks and were overprinted be NE striking tectonic structures that host talc mineralizations. The origin of Mg and fluids leading to the mineralization is still not answered satisfactorily (Grillo and Prochaska, 2007) and thus a tectonic model for the genesis of the talc deposit is missing. Talc mineralization within UHP pre-Alpine continental crust (Val Chisone, Italy): The talc deposit forms part of the Dora-Maira Massif. Geologicaly the massif derived from a Variscan basement that includes post-Variscan intrusions. The talc mineralization occurs as a sheetlike, conformable body. A possible tectonic emplacement of talc along shear

  16. Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.

    2000-01-01

    A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.

  17. Microbial processing of carbon in hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J. P.

    2013-12-01

    Microorganisms are known to be active in hydrothermal systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in hydrothermal environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that hydrothermal conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow hydrothermal fluids, hydrothermally influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca hydrothermal system.

  18. Investigating the potential for subsurface primary production fueled by serpentinization

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Nelson, B. Y.; Schrenk, M. O.

    2011-12-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Tectonic uplift of these materials into the crust can result in serpentinization, a highly exothermic geochemical reaction that releases hydrogen gas (H2) and promotes the abiogenic synthesis of organic molecules. The extent and activity of microbial communities in serpentinite-hosted subsurface habitats is almost entirely unknown, but they clearly have great potential to host extensive sunlight-independent primary production fueled by H2 and abiotic carbon compounds. We have been testing this hypothesis at several sites of serpentinization around the globe utilizing a suite of techniques including metagenomics, 16S rRNA pyrotag sequencing, and stable isotope tracing experiments. All four of our study sites, which include deep-sea hydrothermal vents, terrestrial alkaline springs, and continental drill holes, are characteristically low in archaeal and bacterial genetic diversity. In carbonate chimneys of the Lost City hydrothermal field (Mid-Atlantic Ridge), for example, a single archaeal phylotype dominates the biofilm community. Stable isotope tracing experiments indicated that these archaeal biofilms are capable of both production and anaerobic oxidation of methane at 80C and pH 10. Both production and oxidation were stimulated by H2, suggesting a possible syntrophic relationship among cells within the biofilm. Preliminary results from similar stable isotope tracing experiments at terrestrial alkaline seeps at the Tablelands Ophiolite (Newfoundland), Ligurian springs (Italy), and McLaughlin Reserve (California) have indicated the potential for microbial activity fueled by H2 and acetate. Furthermore, recent metagenomic sequencing of fluids from the Tablelands and Ligurian springs have revealed genomic potential for chemolithotrophy powered by iron reduction with H2. In summary, these data support the potential for extensive microbial activity fueled by

  19. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  20. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  1. Metamorphic reactions in ruby corundum amphibolite from the Chunky Gal Mountain mafic-ultramafic complex, Clay County, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranson, W.A.; Garihan, J.M.; Ulmer, K.E.

    1992-01-01

    Amphibolite outcrops of unusual mineralogy within the Chunky Gal Mountain mafic-ultramafic complex display cm-scale rhythmic layers with moderate-steep dips. Layers are troctolitic, gabbroic, and anorthositic in composition, locally in contact with dunite of the Buck Creek ultramafic body. Meta-gabbroic layers contain striking bladed, emerald green amphibole as the chief mafic phase and relict bronzite with reacted margins. An additional major phase is plagioclase, [approximately]An 95 based on microprobe analysis. Ruby corundum is a minor (> 5%) constituent, which in some of the gabbroic rocks is mantled by a reaction rim of fibrolite. The clinoamphibole has optical properties resembling magnesio-cummingtonite: colorlessmore » to pale green in plane light with (+) sign and 2V = 60--70[degree]. However, microprobe analysis of the clinoamphibole indicates alumino-magnesio-hornblende. Although the texture of the bronzite shows that it is breaking down, it is clear that the clinoamphibole and corundum could not be the reaction products without the addition of Al, Ca, and Si in an aqueous fluid. Associated meta-troctolitic layers contain plagioclase and coarse, anhedral olivines displaying an inner corona of bladed orthopyroxene, rimmed by symplectite. The granulite facies reactions is: plagioclase + olivine = clinopyroxene + garnet. The mesoscopic-scale proximity of troctolitic and gabbroic rhythmic layers indicates both underwent granulite facies metamorphism. Retrogression to amphibolite grade is apparent only in the gabbroic layers, resulting in assemblages distinguished locally by abundant emerald green clinoamphibole and corundum porphyroblasts rimmed by fibrolite.« less

  2. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  3. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  4. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  5. Evidence for a nonmagmatic component in potassic hydrothermal fluids of porphyry cu-Au-Mo systems, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Selby, David; Nesbitt, Bruce E.; Creaser, Robert A.; Reynolds, Peter H.; Muehlenbachs, Karlis

    2001-02-01

    40Ar or disturbance. The 40Ar/ 36Ar values (285-292) of the K-feldspar samples are similar to the atmospheric compositions (295 ± 5) during Late Cretaceous time. The H, Sr, Pb, and Ar isotopic compositions of hydrothermal K-feldspar and quartz vein fluid inclusion waters that characterize the potassic hydrothermal fluids show evidence for an exotic component in addition to magmatic water (fluid). This component has a low δD, radiogenic Sr and Pb, and an atmospheric Ar composition. The inheritance of pre-existing isotope compositions from the host rocks, postpotassic alteration isotope exchange, or the replenishment of the magma chamber with magma of different isotopic composition cannot explain the isotope data. We suggest that to generate the observed H, Sr, Pb, and Ar isotope compositions, crustal fluids must be a component (15-94%) of potassic hydrothermal fluids in porphyry mineralization in the deposits studied.

  6. Molecular ecology of hydrothermal vent microbial communities.

    PubMed

    Jeanthon, C

    2000-02-01

    The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea hydrothermal ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea hydrothermal vent microbiology.

  7. Characterization of carbon in sediment-hosted disseminated gold deposits, north central Nevada

    USGS Publications Warehouse

    Leventhal, Joel; Hofstra, Albert; ,

    1990-01-01

    The gray, dark gray and black colors of the sediments and the presence of pyrite in the Carlin, Jerritt Canyon, Horse Canyon, Betze, and Gold Acres sediment-hosted disseminated gold (SHDG) deposits indicate that these rocks are not oxidized with respect to carbon and iron sulfide. The organic matter in the host rocks of SHDG deposits in north-central Nevada is cryptocrystalline graphite with dimensions of 30 to 70 A (0.003 to 0.007 ??) that was formed at temperatures of 250 to 300??C. These results indicate that north-central Nevada was subjected to pumpellyite-actinolite to lowermost greenschist facies conditions prior to mineralization. The hydrothermal fluids that produced the gold deposits had little, if any, effect on the thermal maturity and crystallinity of the cryptocrystalline graphite produced by the earlier thermal event.

  8. Electron-microprobe study of chromitites associated with alpine ultramafic complexes and some genetic implications

    USGS Publications Warehouse

    Bird, M.L.

    1978-01-01

    Electron-microprobe and petrographic studies of alpine chromite deposits from around the world demonstrate that they are bimodal with respect to the chromic oxide content of their chromite. The two modes occur at 54 ? 4 and 37 ? 3 weight per cent chromic oxide corresponding to chromite designated as high-chromium and high-aluminum chromite respectively. The high-chromium chromite occurs exclusively with highly magnesian olivine (Fo92-97) and some interstitial diopside. The high-aluminum chromite is associated with more ferrous olivine (Fo88-92), diopside, enstatite, and feldspar. The plot of the mole ratios Cr/(Cr+Al+Fe3+) vs. Mg/(Mg+Fe2+) usually presented for alpine chromite is shown to have a high-chromium, high-iron to low-chromium, low-iron trend contrary to that shown by stratiform chromite. This trend is characteristic of alpine type chromite and is termed the alpine trend. However, a trend similar to that for startiform chromite is discernable on the graph for the high-chromium chromite data. This latter trend is well-developed at Red Mountain, Seldovia, Alaska. Analysis of the iron-magnesium distribution coefficient, Kd=(Fe/Mg)ol/(Fe/Mg)ch, between olivine and chromite shows that Kd for the high-chromium chromite from all ultramafic complexes has essentially the same constant value of .05 while the distribution coefficient for the high-aluminum chromite varies with composition of the chromite. These distribution coefficients are also characteristic of alpine-type chromites. The constant value for Kd for the high-chromium chromite and associated high-magnesium olivine in all alpine complexes suggests that they all crystallized under similar physico-chemical conditions. The two types of massive chromite and their associations of silicate minerals suggest the possibility of two populations with different origins. Recrystallization textures associated with the high-aluminum chromite together with field relationships between the gabbro and the chromite pods

  9. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  10. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics.

    PubMed

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-26

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  11. Impact of hydrothermalism on the ocean iron cycle

    PubMed Central

    Resing, Joseph

    2016-01-01

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256

  12. Impact of hydrothermalism on the ocean iron cycle.

    PubMed

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  13. Discovery of Fracture Networks in the Basal Part of Modern Hydrothermal System in Okinawa Tough, SW Japan

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yamada, Y.; Sanada, Y.; Kido, Y. N.; Hamada, Y.; Shiraishi, K.; Hsiung, K. H.; Tsuji, T.; Eng, C.; Maeda, L.; Kumagai, H.; Nozaki, T.; Ishibashi, J. I.

    2017-12-01

    A scientific drilling expedition, CK16-01 was conducted by D/V Chikyu in an active hydrothermal field on the Iheya-North Knoll in Okinawa Trough in February-March, 2016 as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program (SIP). During the expedition logging while drilling (LWD) was deployed to uncover the architecture of modern hydrothermal deposits near the seafloor. A downhole sequence of fracture network (stock-work) was discovered by high resolution resistivity images at Site C9023 in the southern part of the knoll. More than 500 structural features were extracted from the borehole images down to 188 meter below the seafloor. Quantitative image analyses were performed and three types of conductive fractures were identified and classified as Generation 1 (G1), Generation 2 (G2), and Generation 3 (G3) based on the crossing or cutting relationship. The average thickness of fractures decrease with generation from G1 (78 mm), G2 (57 mm), to G3 (45 mm). G1 is developed in the entire interval, whereas G2 and G3 are commonly observed in the intervals of lower gamma ray and high resistivity ( 10 ohm-m) at 77-125 m and 167-186 m where sulfide minerals hosted in silicified rocks were observed in recovered core samples. Low angle fractures (<30°) are typically developed in the interval at 120 -125 m, suggesting possible lateral hydrothermal conduits. The quantitative analysis of fracture network based on borehole images shows the detailed formation process of stock-work in the basal part of modern hydrothermal system.

  14. Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands

    NASA Astrophysics Data System (ADS)

    Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.

    2014-12-01

    Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.

  15. Geochemical Analysis for Sedimentary Emerald Mineralization in Western Emerald belt, Colombia

    NASA Astrophysics Data System (ADS)

    Nino Vasquez, Gabriel Felipe; Song, Sheng-Rong

    2017-04-01

    1Gabriel Felipe Nino Vasquez and 1Sheng-Rong Song 1Department of Geosciences, National Taiwan University Colombia hosts a large quantity of mineral resources due to its complex tectonic arrangement, and emerald deposits are one of the most representatives for the country. Emeralds in Colombia occur mainly in black shale, and are located in eastern Andes Cordillera with two parallel belts separated by approximately 130 Km: the Western belt (WB) and the Eastern belt (EB). The geological, mineralogical and tectonic features from these belts are quite similar (Buenaventura 2002). Previous researchers concluded that emeralds in Colombia came from hydrothermal sedimentary processes without any magmatic influence, and suggested that the source of Cr, V and Be (which are important components of the beryl) was the host rock. According to their results, the process which allowed the shale to release these cations was the metasomatism (albitization and carbonization), which was resulted from the interaction between the rocks and the alkaline brines. Fractures and fault planes originated by these tectonic movements were fulfilled by enriched fluids, which they allowed emeralds and the other minerals precipitation with decreasing alkalinity and pressure (Giuliani et al. 1994). However, there were several pitfalls of conclusions drawn from previous researches. Firstly, Cr and V were widely distributed and come from mafic and ultramafic rocks, and Be was mostly found in pegmatites, finding these elements in sedimentary rocks suggest that probably the ultramafic rocks occurred not far from the deposits. Secondly, there was an inconsistency in the estimated temperatures of emeralds formation, i.e. temperature of hydrothermal sedimentary deposits was only 200° C, while laboratory analysis showed that the formation of emeralds was higher than 300° C. Therefore, there might still be an allocthonus influence on emerald formation that significantly increases the temperature. This

  16. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two

  17. Post-impact hydrothermal system geochemistry and mineralogy: Rochechouart impact structure, France.

    NASA Astrophysics Data System (ADS)

    Simpson, Sarah

    2014-05-01

    Hypervelocity impacts generate extreme temperatures and pressures in target rocks and may permanently alter them. The process of cratering is at the forefront of research involving the study of the evolution and origin of life, both on Mars and Earth, as conditions may be favourable for hydrothermal systems to form. Of the 170 known impact structures on Earth, over one-third are known to contain fossil hydrothermal systems [1]. The introduction of water to a system, when coupled with even small amounts of heat, has the potential to completely alter the target or host rock geochemistry. Often, the mineral assemblages produced in these environments are unique, and are useful indicators of post-impact conditions. The Rochechouart impact structure in South-Central France is dated to 201 ± 2 Ma into a primarily granitic target [2]. Much of the original morphological features have been eroded and very little of the allochthonous impactites remain. This has, however, allowed researchers to study the shock effects on the lower and central areas of the structure, as well as any subsequent hydrothermal activity. Previous work has focused on detailed classification of the target and autochthonous and allochthonous impactites [3, 4], identification of the projectile [5], and dating the structure using Ar-isotope techniques [2]. Authors have also noted geochemical evidence of K-metasomatism, which is pronounced throughout all lithologies as enrichment in K2O and depletion in CaO and Na2O [3, 4, 5]. This indicates a pervasive hydrothermal system, whose effects throughout the structure have yet to be studied in detail, particularly in those parts at and below the transient floor. The purpose of this study is to classify the mineralogical and geochemical effects of the hydrothermal system. Samples were collected via permission from the Réserve Naturelle de l'Astroblème de Rochechouart-Chassenon [6]. Sample selection was based on the presence of secondary mineralization in hand

  18. Estimating the Total Heat Flux from the ASHES Hydrothermal Vent Field Using the Sentry Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.

    2017-12-01

    Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.

  19. Reactions between komatiite and CO2-rich seawater at 250 and 350 °C, 500 bars: implications for hydrogen generation in the Hadean seafloor hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ueda, Hisahiro; Shibuya, Takazo; Sawaki, Yusuke; Saitoh, Masafumi; Takai, Ken; Maruyama, Shigenori

    2016-12-01

    To understand the chemical nature of hydrothermal fluids in the komatiite-hosted seafloor hydrothermal system in the Hadean, we conducted two hydrothermal serpentinization experiments involving synthetic komatiite and a CO2-rich acidic NaCl fluid at 250 and 350 °C, 500 bars. During the experiments, the komatiites were strongly carbonated to yield iron-rich dolomite (3-9 wt.% FeO) at 250 °C and calcite (<0.8 wt.% FeO) at 350 °C, respectively. The carbonation of komatiites suppressed H2 generation in the fluids. The steady-state H2 concentrations in the fluid were approximately 0.024 and 2.9 mmol/kg at 250 and 350 °C, respectively. This correlation between the Fe content in carbonate mineral and the H2 concentration in the fluid suggests that the incorporation of ferrous iron into the carbonate mineral probably limited magnetite formation and consequent generation of hydrogen during the serpentinization of komatiites. The H2 concentration of the fluid at 350 °C corresponds to that of modern H2-rich seafloor hydrothermal systems, such as the Kairei hydrothermal field, where hydrogenotrophic methanogens dominate in the prosperous microbial ecosystem. Accordingly, the high-temperature serpentinization of komatiite would provide the H2-rich hydrothermal environments that were necessary for the emergence and early evolution of life in the Hadean ocean. In contrast, H2-rich fluids may not have been generated by serpentinization at temperatures below 250 °C because carbonate minerals become more stable with decreasing temperature in the komatiite-H2O-CO2 system.

  20. Can ectomycorrhizal symbiosis and belowground plant traits be used as ecological tools to mitigate erosion on degraded slopes in the ultramafic soils of New Caledonia?

    NASA Astrophysics Data System (ADS)

    Demenois, Julien; Carriconde, Fabian; Rey, Freddy; Stokes, Alexia

    2015-04-01

    New Caledonia is an archipelago in the South West Pacific located just above the Tropic of Capricorn. The main island is bisected by a continuous mountain chain whose highest peaks reach more than 1 600 m. With mean annual rainfall above 2 000 mm in the South of the main island, frequent downpours and steep slopes, its soils are prone to water erosion. Deforestation, fires and mining activity are the main drivers of water erosion. Stakes are high to mitigate the phenomenon: extraction of nickel from ultramafic substrates (one third of the whole territory) is the main economic activity; New Caledonia is considered as a biodiversity hotspot. Restoration ecology is seen as a key approach for tackling such environmental challenges. Soil microorganisms could play significant roles in biological processes such as plant nutrition and plant resistance to abiotic and biotic stresses. Microorganisms could increase soil aggregate stability and thus mitigate soil erodibility. Plant roots increase soil cohesion through exudation and decomposition processes. To date, few studies have collected data on the soil aggregate stability of steep slopes affected by erosion and, to our knowledge, interactions between ectomycorrhizas (ECM), roots and erodibility of ultramafic soils have never been considered. The objective of our study is to assess the influence of ECM symbiosis and plant root traits on the erodibility of ultramafic soils of New Caledonia and answer the following questions: 1/ What is the influence of plant root traits of vegetal communities and ECM fungal diversity on soil erodibility? 2/ What are the belowground plant traits of some mycorrhized endemic species used in ecological restoration? 3/ What is the influence of plant root traits and ECM fungal inoculation on soil erodibility? At the scale of plant communities, five types of vegetation have been chosen in the South of the main island: degraded ligno-herbaceous shrubland, ligno-herbaceous shrubland, degraded humid

  1. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, J.D.; Marikos, M.A.; Barton, M.D.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of themore » same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.« less

  2. The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS

    NASA Astrophysics Data System (ADS)

    Binns, R.; Barriga, F.; Miller, D.

    2001-12-01

    This first sub-seafloor examination of an active hydrothermal system hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and hydrothermal phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the system. Technological breakthroughs included deployment of a new hard-rock re-entry system, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS hydrothermal site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive hydrothermal alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major hydrothermal event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated hydrothermal pressures, whereas evidence from fluid inclusions and hydrothermal brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days

  3. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  4. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    PubMed

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hydrothermal synthesis of nanostructured Y2O3 and (Y0.75Gd0.25)2O3 based phosphors

    NASA Astrophysics Data System (ADS)

    Mančić, Lidija; Lojpur, Vesna; Marinković, Bojan A.; Dramićanin, Miroslav D.; Milošević, Olivera

    2013-08-01

    Examples of (Y2O3-Gd2O3):Eu3+ and Y2O3:(Yb3+/Er3+) rare earth oxide-based phosphors are presented to highlight the controlled synthesis of 1D and 2D nanostructures through simple hydrothermal method. Conversion of the starting nitrates mixture into carbonate hydrate phase is performed with the help of ammonium hydrogen carbonate solution during hydrothermal treatment at 200 °C/3 h. Morphological architectures of rare earth oxides obtained after subsequent powders thermal treatment at 600 and 1100 °C for 3 and 12 h and their correlation with the optical characteristics are discussed based on X-ray powder diffractometry, field emission scanning electron microscopy, infrared spectroscopy and photoluminescence measurements. Strong red and green emission followed by the superior decay times are attributed to the high powders purity and homogeneous dopants distribution over the host lattice matrix.

  6. Mineralogical, IR-spectral and geochemical monitoring of hydrothermal alteration in a deformed and metamorphosed Jurassic VMS deposit at Arroyo Rojo, Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Biel, C.; Subías, I.; Acevedo, R. D.; Yusta, I.; Velasco, F.

    2012-04-01

    The Arroyo Rojo Zn-Pb-Cu volcanogenic massive sulfide deposit is the main deposit of the Fin del Mundo District in the Fuegian Andes, Argentina. This deposit is hosted by a Middle Jurassic volcanic and volcanoclastic sequence forming the Lemaire Formation. The latter consists, from the base up, of the following: rhyolitic and dacitic porphyritic rocks, ignimbrite, tuff, and flow. It is underlain by a pre-Jurassic basement and overlain by the hyaloclastic andesites of the Yahgán Formation. The Arroyo Rojo consists of stacked lenticular lenses that are associated with disseminated mineralization in both the footwall and the hanging wall. The internal structure of the ore lenses is marked by the occurrence of massive, semi-massive and banded facies, along with stringer and brecciated zones and minor ore disseminations. The mineral assemblage comprises mainly pyrite and sphalerite, with minor amounts of galena and chalcopyrite and rare pyrrhotite, arsenopyrite, tetrahedrite and bournonite. The ores and the volcanic host rocks have metamorphosed to greenschist facies and were overprinted by a penetrative tectonic foliation, which led to the development of mylonitic, and cataclastic textures, recrystallization and remobilization. Primary depositional characteristics and regional and hydrothermal alteration patterns were preserved despite deformation and metamorphism. Therefore, primary banding was preserved between facies boundaries. In addition, some remnants of magmatic origin are recognizable in preserved phenocrysts and volcaniclastic phenoclasts. Most of the volcanic and volcaniclastic rocks of the host sequence show a rhyolitic to rhyo-dacitic composition. Regional seafloor alteration, characterized by the presence of clinozoisite, Fe-chlorite and titanite, along with quartz and albite, is partially obliterated by hydrothermal alteration. The hydrothermal alteration is stratabound with the following assemblages, which developed from the base to top: (1) Quartz

  7. Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder; Alt, Jeffrey C.

    2015-06-01

    Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpentinization events represented by different vein generations with distinct trace element contents can be recognized. Measured in situ Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a decreasing influence of fluid discharge from the subducting slab on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry a pronounced sedimentary signature, either because FMEs were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are

  8. Fluid Flow and Sound Generation at Hydrothermal Vent Fields

    DTIC Science & Technology

    1988-04-01

    Pacific Rise The first evidence of vent sound generation came from data collected near hydrothermal vents at 21 N on the EPR where an array of ocean...associated with hydrothermal centers, one at 21 N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on the Juan de Fuca Ridge (Bibee and Jacobson... East Pacific Rise at 210 N : the volcanic, tectonic and hydrothermal processes at

  9. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure.

    PubMed

    Barros, Inês; Divya, Baby; Martins, Inês; Vandeperre, Frederic; Santos, Ricardo Serrão; Bettencourt, Raul

    2015-01-01

    Deep-sea hydrothermal vents are extreme habitats that are distributed worldwide in association with volcanic and tectonic events, resulting thus in the establishment of particular environmental conditions, in which high pressure, steep temperature gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel Bathymodiolus azoricus is the most abundant species inhabiting the vent ecosystems from the Mid-Atlantic Ridge (MAR). In the present study, the effect of long term acclimatization at atmospheric pressure on host-symbiotic associations were studied in light of the ensuing physiological adaptations from which the immune and endosymbiont gene expressions were concomitantly quantified by means of real-time PCR. The expression of immune genes at 0 h, 12 h, 24 h, 36 h, 48 h, 72 h, 1 week and 3 weeks post-capture acclimatization was investigated and their profiles compared across the samples tested. The gene signal distribution for host immune and bacterial genes followed phasic changes in gene expression at 24 h, 1 week and 3 weeks acclimatization when compared to other time points tested during this temporal expression study. Analyses of the bacterial gene expression also suggested that both bacterial density and activity could contribute to shaping the intricate association between endosymbionts and host immune genes whose expression patterns seem to be concomitant at 1 week acclimatization. Fluorescence in situ hybridization was used to assess the distribution and prevalence of endosymbiont bacteria within gill tissues confirming the gradual loss of sulfur-oxidizing (SOX) and methane-oxidizing (MOX) bacteria during acclimatization. The present study addresses the deep-sea vent mussel B. azoricus as a model organism to study how acclimatization in aquaria and the

  10. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results

  11. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.

    PubMed

    Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D

    2015-09-29

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.

  12. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin

    PubMed Central

    Klein, Frieder; Humphris, Susan E.; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M.; Orsi, William D.

    2015-01-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite−calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in 13C (δ13CTOC = −19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments. PMID:26324888

  13. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  14. Useful Ingredients Recovery from Sewage Sludge by using Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Moriyama, Mika; Yamasaki, Yuki; Takahashi, Yui; Inoue, Chihiro

    2006-05-01

    Hydrothermal treatment of sludge from a sewage treatment plant was conducted to obtain useful ingredients for culture of specific microbes which can reduce polysulfide ion into sulfide ion and/or hydrogen sulfide. Several additives such as acid, base, and oxidizer were added to the hydrothermal reaction of excess sludge to promote the production of useful materials. After hydrothermal treatment, reaction solution and precipitation were qualitatively and quantitatively analyzed and estimated the availability as nutrition in cultural medium. From the results of product analysis, most of organic solid in sewage was basically decomposed by hydrothermal hydrolysis and transformed into oily or water-soluble compounds. Bacterial culture of sulfate-reducing bacteria (SRB) showed the good results in multiplication with medium which was obtained from hydrothermal treatment of sewage sludge with magnesium or calcium hydroxide and hydrogen peroxide.

  15. Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Foley, Stephen F.; Kjarsgaard, Bruce A.; Romer, Rolf L.; Heaman, Larry M.; Stracke, Andreas; Jenner, George A.

    2008-07-01

    induced volatile-fluxed fusion of the MARID-type veins and the cold peridotite substrate. Isotopic modelling suggests that only 5-12% trace element contribution from such geochemically extreme MARID-type material is required to produce the observed compositional shift from the isotopically most depleted aillikites/carbonatites towards enriched mela-aillikites. We conclude that cold cratonic mantle lithosphere can host several generations of contrasting vein assemblages, and that each may have formed during past tectonic and magmatic events under distinctively different physicochemical conditions. Although cratonic MARID-type and carbonate-bearing veins in peridotite can be the respective sources for lamproite and carbonatite magmas when present as the sole metasome, their concomitant fusion in a complex source region may give rise to a whole new variety of deep volatile-rich magmas and we suggest that orangeites (formerly Group 2 kimberlites), kamafugites, and certain types of ultramafic lamprophyre are formed in this manner.

  16. Rare Earth Element Concentrations in Submarine Hydrothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in submarine hydrothermal fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine hydrothermal fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.

  17. Specific mineral associations of hydrothermal shale (South Kamchatka)

    NASA Astrophysics Data System (ADS)

    Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.

    2017-11-01

    The sequence of hydrothermal shale from the East Pauzhet thermal field within the Pauzhet hydrothermal system (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in hydrothermal shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the hydrothermal system.

  18. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Blundy, Jonathan D.; Wood, Bernard J.

    1991-01-01

    hydrothermal solution. The interaction parameters are consistent with simple models in which the larger Ba or Sr cations are accommodated by lattice strain in the host plagioclase lattice, which is assumed to be perfectly elastic and isotropic. Thus D i∗ is a function of the Young's modulus of the host crystal and the size mismatch between trace and host cations. The greater elasticity of albite relative to anorthite accounts for the observed preference of Sr and Ba for sodic plagioclases over calcic plagioclases. For geochemical purposes the weight fraction partition coefficient Di is of more value than its molar counterpart. Regression of the Di data versus XAn yields the semi-empirical relationships RTIn DSr = 26,800 - 26,700 · XAnRTIn DBa = 10,200 - 38,200 · XAn. Thus measurement of the An and trace element (Ba, Sr) contents of a magmatic plagioclase enables calculation of the Ba and Sr contents of the coexisting liquid, which can be extremely important in the deciphering of igneous processes. By reference to plagioclase fractionation in the simple An-Ab binary we show that failure to take into account the compositional dependence of DSr can result in erroneous interpretations of geochemical trends. We also consider applications to three natural igneous suites: the Aden Volcanics; the layered Kiglapait Intrusion, Labrador; and the southern Actamello Massif, Italy.

  19. Lithologically controlled invisible gold, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    MacKenzie, Doug; Craw, Dave; Finnigan, Craig

    2015-02-01

    The newly discovered Cretaceous Coffee orogenic gold deposit (>4 Moz resource) consists of an extensive oxidised zone developed on primary sulphidic rock. The primary mineralised rock is characterised by invisible gold in arsenian pyrite that has replaced biotite in selected host rocks. The deposit has a cryptic surface expression and is an example of an extremely subtle exploration target. Hydrothermal emplacement was controlled by extensional fractures, with breccias, but most mineralisation was focused on biotite-bearing granitic gneiss, metasedimentary gneisses, and younger biotite granite. Fine-grained (<0.1 mm) arsenian pyrite replaced biotite along mineral cleavage planes and followed biotite-rich metamorphic and post-metamorphic structural fabrics. Arsenian pyrite also formed overgrowths on earlier coarse-grained (up to 2 mm) barren hydrothermal pyrite. Arsenian pyrite is concentrically zoned on the 1-10-μm scale with respect to As, Sb, and Au contents and typically contains ˜5 wt% As, ˜500 mg/kg Sb, and ˜500 mg/kg Au, in solid solution. Biotite replacement was accompanied by sericitisation, silicification, and ankerite impregnation. Hydrothermal alteration involved dilution and localised depletion of K, Na, and Al in silicified host rocks, but most Ca, Mg, and Fe concentrations remained broadly constant. Magnesium-rich ultramafic host rocks were only weakly mineralised with auriferous arsenian pyrite and have fuchsite and magnesite alteration. Near-surface oxidation has liberated nanoparticulate and microparticulate supergene gold, which remains essentially invisible. Varying degrees of oxidation extend as deep as 250 m below the present subdued topographic surface, well beyond the present vadose zone, and this deep oxidation may have occurred during post-mineralisation uplift and erosion in the Cretaceous. Oxidation has leached some As from the surficial mineralised rocks, decreasing the geochemical signal, which is also obscured by the localised

  20. On the fate of arsenic in the Menez Gwen hydrothermal system, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Breuer, C.; Ruiz Chancho, M.; Pichler, T.

    2011-12-01

    Samples of hydrothermal fluids and on-site associated mussels (Bathymodiolus azoricus) were collected during the M 82/3 cruise of RV Meteor at the Menez Gwen hydrothermal field (37° 50' N, MAR) and analyzed for total and arsenic species (arsenite, arsenate and organorarsenicals) with ICP-(HR)MS and HPLC-ICP-(HR)MS respectively. Fluids emitting with temperatures of up to 280 °C and at 840 - 865 m depth contained total endmember As concentrations between 9.5 and 19.23 μg L-1 while local seawater concentrations varied around 1.5 μg L-1. The most important factors controlling the amount of As in these fluids are the E-MORB host rock composition and temperature of the fluids leading to phase separation or not. Regarding arsenic speciation in the fluids, there is discrepancy about the best method of preservation for water samples when speciation analysis of arsenic species must be carried out and a lack of information is especially relevant when marine hydrothermal vent samples have to be preserved. For this, one of the objectives of the present study was the comparison of different preservation methods of fluid samples collected at the Menez Gwen hydrothermal field. The methods used in the present study were: freezing at -20 °C, acidification with HCl and addition of EDTA. Most of these have been used by different authors for the preservation of inorganic arsenic species but organic arsenic species have not been taken into account and particularly hydrothermal fluids were not investigated. The results show very different proportions of arsenite and arsenate depending on the preservation procedure but the presence of methylated arsenic species or arsenosugars was not detected. The highest proportions of arsenite were found in the samples preserved with HCl. The presence of thio-arsenic species was tested with the addition of hydrogen peroxide. Moreover, mass balance calculations showed the presence of one or more species, which could not be detected with the

  1. Whole-rock and mineral compositional constraints on the magmatic evolution of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Luolavirta, Kirsi; Hanski, Eero; Maier, Wolfgang; Santaguida, Frank

    2018-01-01

    The 2.06 Ga mafic-ultramafic Kevitsa intrusion is located in the Central Lapland greenstone belt. The lower ultramafic part of the intrusion hosts a large disseminated Ni-Cu-(PGE) sulfide deposit with Ni tenors ranging widely from < 4 wt% (uneconomic false ore and contact mineralization) to 4-7 wt% (regular ore) and up to 40 wt% (Ni-PGE ore). The stratigraphy of the ultramafic cumulates is divided into the basal pyroxenite-gabbro (Basal series), olivine pyroxenite (OLPX), pyroxenite, and plagioclase-bearing (ol) websterite (pOLWB), of which the latter occurs together with minor microgabbros in the ore-bearing domain of the intrusion. Around the ore domain, the ultramafic cumulate succession records a simple lithological stratigraphy and modest and predictable variations in whole-rock and mineral compositions. The ore-bearing domain, in contrast, is characterized by a complex internal architecture, variations in whole-rock and mineral compositions, and the presence of numerous inclusions and xenoliths. The OLPXs are mainly composed of cumulus olivine (Fo77-89) and clinopyroxene (Mg#81-92) with variable amounts of oikocrystic orthopyroxene (Mg#79-84). They comprise the bulk of the ultramafic cumulates and are the dominant host rocks to the sulfide ore. The host rocks to the regular and false ore type are mineralogically and compositionally similar (Fo 80-83, mostly) and show mildly LREE-enriched REE patterns (CeN/YbN 2), characteristic for the bulk of the Kevitsa ultramafic cumulates. The abundance of orthopyroxene and magnetite is lowest in the host rocks to the Ni-PGE ore type, being in line with the mineral compositions of the silicates, which are the most primitive in the intrusion. However, it contrasts with the LREE-enriched nature of the ore type (CeN/YbN 7), indicating significant involvement of crustal material in the magma. The contrasting intrusive stratigraphy in the different parts of the intrusion likely reflects different emplacement histories. It is

  2. Lithium deposits hosted in intracontinental rhyolite calderas

    NASA Astrophysics Data System (ADS)

    Benson, T. R.; Coble, M. A.; Mahood, G. A.

    2017-12-01

    Lithium (Li) is classified as a technology-critical element due to the increasing demand for Li-ion batteries, which have a high power density and a relatively low cost that make them optimal for energy storage in mobile electronics, the electrical power grid, and hybrid and electric vehicles. Given that many projections for Li demand exceed current economic reserves and the market is dominated by Australia and Chile, discovery of new domestic Li resources will help diversify the supply chain and keep future technology costs down. Here we show that lake sediments preserved within intracontinental rhyolite calderas have the potential to host Li deposits on par with some of the largest Li brine deposits in the world. We compare Li concentrations of rhyolite magmas formed in a variety of tectonic settings using in situ SHRIMP-RG measurements of homogenized quartz-hosted melt inclusions. Rhyolite magmas that formed within thick, felsic continental crust (e.g., Yellowstone and Hideaway Park, United States) display moderate to extreme Li enrichment (1,500 - 9,000 ppm), whereas magmas formed in thin crust or crust comprised of accreted arc terranes (e.g., Pantelleria, Italy and High Rock, Nevada) contain Li concentrations less than 500 ppm. When the Li-enriched magmas erupt to form calderas, the cauldron depression serves as an ideal catchment within which meteoric water that leached Li from intracaldera ignimbrite, nearby outflow ignimbrite, and caldera-related lavas can accumulate. Additional Li is concentrated in the system through near-neutral, low-temperature hydrothermal fluids circulated along ring fractures as remnant magma solidifies and degasses. Li-bearing hectorite and illite clays form in this alteration zone, and when preserved in the geological record, can lead to a large Li deposit like the 2 Mt Kings Valley Li deposit in the McDermitt Caldera, Nevada. Because more than 100 large Cenozoic calderas occur in the western United States that formed on eruption

  3. Experimental constraints on hydrothermal activities in Enceladus

    NASA Astrophysics Data System (ADS)

    Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

    2012-12-01

    One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400

  4. Origin of spinel lamella and/or inclusions in olivine of harzburgite form the Pauza ultramafic rocks from the Kurdistan region, northeastern Iraq

    NASA Astrophysics Data System (ADS)

    Mohammad, Y.; Maekawa, H.; Karim, K.

    2009-04-01

    Exsolution lamellae and octahedral inclusions of chromian spinel occur in olivine of harzburgite of the Pauza ultramafic rocks, Kurdistan region, northeastern Iraq. The lamella is up to 80μm long and up to 50 μm wide. The lamellae and octahedral inclusions of chromian spinel are distributed heterogeneously in the host olivine crystal. They are depleted in Al2O3 relative to the subhedral spinel grains in the matrix and spinel lamella in orthopyroxene. Olivine (Fo92 - 93) with spinel lamellae occurs as fine-grained crystals around orthopyroxene, whereas olivine (Fo90-91) free from spinel is found in matrix. Based on back-scattered images analyses, enrichments of both Cr # and Fe+3 in the chromian spinel lamella in olivine (replacive olivine) relative to that in adjacent orthopyroxene. As well as the compositions of chromian spinel lamellae host olivine are more Mg-rich than the matrix olivine. Furthermore the restriction of olivine with spinel lamellae and octahedral inclusions on around orthopyroxene, and the similarity of spinel lamella orientations in both olivine and adjacent orthopyroxene. This study concludes that the spinel inclusions in olivine are remnant (inherited from former orthopyroxene) spinel exsolution lamella in orthopyroxene, that has been formed in upper mantle conditions ( T = 1200 °C, P = 2.5 GPa ). Replacive olivine are formed by reaction of ascending silica poor melt and orthopyroxene in harzburgite as pressure decrease the solubility of silica-rich phase (orthopyroxene) in the system increase, therefore ascending melt dissolve pyroxene with spinel exsolution lamella and precipitate replacive olivine with spinel inclusions. We can conclude that the olivines with spinel lamella are not necessary to be original and presenting ultrahigh-pressure and/or ultra deep-mantle conditions as previously concluded. It has been formed by melting of orthopyroxene (orthopyroxene with spinel exsolution lamella = olivine with spinel lamellae and octahedral

  5. Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano

    2015-10-01

    The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.

  6. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  7. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.

    2016-10-01

    . Further, we tested dry samples at the same pressure and temperature conditions. Results showed that host rock lithology and state of the interstitial fluid was a major influence on the fragmentation and ejection processes, as well as the energy partitioning. Clasts were ejected with velocities of up to 160 m/s as recorded by high-speed camera. In addition to rare large clasts (analogous to ballistics), a large amount of fine and very fine (<63 μm) ash was produced in all experiments. The efficiency of transformation of the total explosive energy into fragmentation energy was estimated between 10 to 15%, depending on the host rock lithology, while less than 0.1% of this was converted into kinetic energy. Our results suggest that liquid-to-vapor (flashing) expansion provides an order of magnitude higher energy release than steam expansion, which best explains the dynamics of the westward (and most energetic) directed blast at Te Maari. Considering the steam flashing as the primary energy source, the experiments suggested that a minimum explosive energy of 7 ×1010 to 2 ×1012 J was involved in the Te Maari blast. Experimental studies under controlled conditions, compared closely to a field example are thus highly useful in providing new insights into the energy release and hazards associated with eruptions in hydrothermal areas.

  8. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic-hydrothermal

  9. Ultramafic lavas and pyroxene-spinifex high-Mg basaltic dykes from the Othris ophiolite complex, Greece

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Economou-Eliopoulos, Maria; Asimow, Paul

    2017-04-01

    This study aims to constrain the physico-chemical conditions and processes associated with the origin of ultramafic lavas of the Agrilia formation and high-Mg basaltic dykes in the Pournari area within the Othris ophiolite complex, a supra-subduction zone ophiolite of Mesozoic age (Paraskevopoulos & Economou, 1986; Barth et al., 2008). Hand-sample-scale spinifex texture is lacking from the ultramafic lavas and, despite whole-rock MgO contents greater than 31 wt.%, we infer an upper bound of 17 wt.% MgO for the erupted liquid, and thus identify these lavas as picrites containing accumulated olivine. We use textural and compositional criteria to divide the crystals within the Agrilia lavas between pre-eruptive and post-eruptive growth phases. The high-Mg basaltic dyke margins display a distinctive thin-section-scale micro-spinifex texture of skeletal and plumose Al- and Fe-rich clinopyroxene surrounded by large crystals of orthopyroxene. Normally zoned clinopyroxene in the Agrilia lavas and clinopyroxene of various textures (skeletal, needle- and dendritic-like) and sizes in the Pournari dykes display anomalous enrichment in Al2O3 and FeO* with decreasing MgO that require rapid, disequilibrium growth. Quantitative characteristics of the micro-spinifex pyroxene textures (<10 μm in width and 50-100 μm in length) imply a cooling rate for the marginal parts of the Pournari dykes of at least 25 °K/hr and more likely 45-55 °K/hr (Faure et al., 2004) and rapid growth of clinopyroxene crystals at a linear rate of about 10-6 m/s (Welsch et al., 2016). MELTS models of the crystallization sequence of the Pournari dykes indicate that progressive low-pressure (500 bar) fractional crystallization of the ultramafic dyke liquid occurred under oxidized (QFM+2.0) and hydrous (at least 0.5 wt.% H2O) conditions. A hydrous magmatic parent for the Othris ophiolite as a whole is further supported by preliminary investigation of melt inclusions (5-20 μm in diameter) in fresh chromite

  10. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    PubMed Central

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-01-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494

  11. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    NASA Astrophysics Data System (ADS)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  12. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.

    PubMed

    Deamer, David; Damer, Bruce

    2017-09-01

    Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth-hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface-and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus-Hydrothermal vents-Hydrothermal fields-Origin of life. Astrobiology 17, 834-839.

  13. Major off-axis hydrothermal activity on the northern Gorda Ridge

    USGS Publications Warehouse

    Rona, Peter A.; Denlinger, Roger P.; Fisk, M. R.; Howard, K. J.; Taghon, G. L.; Klitgord, Kim D.; McClain, James S.; McMurray, G. R.; Wiltshire, J. C.

    1990-01-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on the east wall. Preliminary mapping and sampling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of elastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinites. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  14. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry

    PubMed Central

    Damer, Bruce

    2017-01-01

    Abstract Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth—hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface—and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus—Hydrothermal vents—Hydrothermal fields—Origin of life. Astrobiology 17, 834–839. PMID:28682665

  15. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California

    USGS Publications Warehouse

    Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.

    2013-01-01

    Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.

  16. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  17. Petrology and geochemistry of meta-ultramafic rocks in the Paleozoic Granjeno Schist, northeastern Mexico: Remnants of Pangaea ocean floor

    NASA Astrophysics Data System (ADS)

    Torres-Sánchez, Sonia Alejandra; Augustsson, Carita; Jenchen, Uwe; Rafael Barboza-Gudiño, J.; Alemán Gallardo, Eduardo; Ramírez Fernández, Juan Alonso; Torres-Sánchez, Darío; Abratis, Michael

    2017-08-01

    The Granjeno Schist is a meta-volcanosedimentary upper Paleozoic complex in northeastern Mexico. We suggest different tectonic settings for metamorphism of its serpentinite and talc-bearing rocks based on petrographic and geochemical compositions. According to the REE ratios (LaN/YbN = 0.51 -20.0 and LaN/SmN = 0.72-9.1) and the enrichment in the highly incompatible elements Cs (0.1 ppm), U (2.8 ppm), and Zr (60 ppm) as well as depletion in Ba (1 - 15 ppm), Sr (1 -184 ppm), Pb (0.1 -14 ppm), and Ce (0.1 -1.9 ppm) the rocks have mid-ocean ridge and subduction zones characteristics. The serpentinite contains Al-chromite, ferrian chromite and magnetite. The Al-chromite is characterized by Cr# of 0.48 to 0.55 suggesting a MORB origin, and Cr# of 0.93 to 1.00 for the ferrian chromite indicates a prograde metamorphism. We propose at least two serpentinization stages of lithospheric mantle for the ultramafic rock of the Granjeno Schist, (1) a first in an ocean-floor environment at sub-greenschist to greenschist facies conditions and (2) later a serpentinization phase related to the progressive replacement of spinel by ferrian chromite and magnetite at greenschist to low amphibolite facies conditions during regional metamorphism. The second serpentinization phase took place in an active continental margin during the Pennsylvanian. We propose that the origin of the ultramafic rocks is related to an obduction and accretional event at the western margin of Pangea.

  18. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials

    NASA Astrophysics Data System (ADS)

    Fourny, Anaïs.; Weis, Dominique; Scoates, James S.

    2016-03-01

    Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4-12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.

  19. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China

    NASA Astrophysics Data System (ADS)

    Pi, Qiaohui; Hu, Ruizhong; Xiong, Bin; Li, Qiuli; Zhong, Richen

    2017-12-01

    The contiguous region between Guangxi, Guizhou, and Yunnan, commonly referred to as the Golden Triangle region in SW China, hosts many Carlin-type gold deposits. Previously, the ages of the gold mineralization in this region have not been well constrained due to the lack of suitable minerals for radiometric dating. This paper reports the first SIMS U-Pb age of hydrothermal rutile crystals for the Zhesang Carlin-type gold deposit in the region. The hydrothermal U-bearing rutile associated with gold-bearing sulfides in the deposit yields an U-Pb age of 213.6 ± 5.4 Ma, which is within the range of the previously reported arsenopyrite Re-Os isochron ages (204 ± 19 to 235 ± 33 Ma) for three other Carlin-type gold deposits in the region. Our new and more precise rutile U-Pb age confirms that the gold mineralization was contemporaneous with the Triassic W-Sn mineralization and associated granitic magmatism in the surrounding regions. Based on the temporal correlation, we postulate that coeval granitic plutons may be present at greater depths in the Golden Triangle region and that the formation of the Carlin-type gold deposits is probably linked to the coeval granitic magmatism in the region. This study clearly demonstrates that in situ rutile U-Pb dating is a robust tool for the geochronogical study of hydrothermal deposits that contain hydrothermal rutile.

  20. Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.

    1981-01-01

    Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe

  1. Effects of iron-containing minerals on hydrothermal reactions of ketones

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  2. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    PubMed Central

    Livage, Jacques

    2010-01-01

    A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325

  3. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

    NASA Astrophysics Data System (ADS)

    Molnár, Ferenc; Oduro, Harry; Cook, Nick D. J.; Pohjolainen, Esa; Takács, Ágnes; O'Brien, Hugh; Pakkanen, Lassi; Johanson, Bo; Wirth, Richard

    2016-06-01

    The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9-1.8 Ga) followed by intrusions of late-orogenic (1.84-1.80 Ga) and post-orogenic granitoids (1.79-1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95-1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th < 100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9-1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well

  4. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  5. Microbial Community in the Hydrothermal System at Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Kato, S.; Itahashi, S.; Kakegawa, T.; Utsumi, M.; Maruyama, A.; Ishibashi, J.; Marumo, K.; Urabe, T.; Yamagishi, A.

    2004-12-01

    There is unique ecosystem around deep-sea hydrothermal area. Living organisms are supported by chemical free energy provided by the hydrothermal water. The ecosystem is expected to be similar to those in early stage of life history on the earth, when photosynthetic organisms have not emerged. In this study, we have analyzed the microbial diversity in the hydrothermal area at southern Mariana trough. In the "Archaean Park Project" supported by special Coordination Fund, four holes were bored and cased by titanium pipes near hydrothermal vents in the southern Mariana trough in 2004. Hydrothermal fluids were collected from these cased holes and natural vents in this area. Microbial cells were collected by filtering the hydrothermal fluid in situ or in the mother sip. Filters were stored at -80C and used for DNA extraction. Chimneys at this area was also collected and stored at -80C. The filters and chimney samples were crushed and DNA was extracted. DNA samples were used for amplification of 16S rDNA fragments by PCR using archaea specific primers and universal primers. The PCR fragments were cloned and sequenced. These PCR clones of different samples will be compared. We will extend our knowledge about microbiological diversity at Southern Mariana trough to compare the results obtained at other area.

  6. Volcano-Hydrothermal Systems of the Kuril Island Arc (Russia): Geochemistry of the Thermal Waters and Gases.

    NASA Astrophysics Data System (ADS)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.

    2017-12-01

    More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by hydrothermal activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with hydrothermal aquifers inside volcano edifices. The most powerful of them is the ultra-acid hydrothermal system of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of hydrothermal activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-hydrothermal system in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature hydrothermal system with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous

  7. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  8. Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy

    USGS Publications Warehouse

    Altaner, S.P.; Ylagan, R.F.; Savin, S.M.; Aronson, J.L.; Belkin, H.E.; Pozzuoli, A.

    2003-01-01

    A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ???90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ???66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ?? 0.08 Ma. Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has ??18 O values of 21.7 to 22.0??? and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3???, 12.5 to 14.0???, and 8.6 to 11.9???, respectively. ??18 O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9???. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65 ??C for the argillic zone, 85 to 125 ??C for the propylitic zone, 110 to 210 ??C for the silicic zone, and 145 to 225 ??C for the sericitic zone. Fluid inclusion data and calculated ??18 O water values indicate that hydrothermal fluids were seawater dominated. Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone

  9. Influence of hydrothermal processing on functional properties and grain morphology of finger millet.

    PubMed

    Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G

    2015-03-01

    Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.

  10. Exploring the Hydrothermal System in the Chicxulub Crater and Implications for the Early Evolution of Life on Earth

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Schmieder, M.; Tikoo, S.; Riller, U. P.; Simpson, S. L.; Osinski, G.; Cockell, C. S.; Coolen, M.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    Impact cratering, particularly large basin-size craters with diameters >100 km, have the potential to generate vast subsurface hydrothermal systems. There were dozens of such impacts during the Hadean and early Archean, some of which vaporized seas for brief periods of time, during which the safest niches for early life may have been in those subsurface hydrothermal systems. The Chicxulub crater can serve as a proxy for those events. New IODP-ICDP core recovered by Expedition 364 reveals a high-temperature (>300 degree C) system that may have persisted for more than 100,000 years. Of order 105 to 106 km3 of crust was structurally deformed, melted, and vaporized within about 10 minutes of the impact. The crust had to endure immense strain rates of 104/s to 106/s, up to 12 orders of magnitude greater than those associated with igneous and metamorphic processes. The outcome is a porous, permeable region that is a perfect host for hydrothermal circulation across the entire diameter of the crater to depths up to 5 or 6 km. The target rocks at Chicxulub are composed of an 3 km-thick carbonate platform sequence over a crystalline basement composed of igneous granite, granodiorite, and a few other intrusive components, such as dolerite, and metamorphic assemblages composed, in part, of gneiss and mica schist. Post-impact hydrothermal alteration includes Ca-Na- and K-metasomatism, pervasive hydration to produce layered silicates, and lower-temperature vug-filling zeolites as the system cycled from high temperatures to low temperatures. While the extent of granitic crust on early Earth is still debated and, thus, the direct application of those mineral reactions to the Hadean and early Archean can be debated, the thermal evolution of the system should be applicable to diverse crustal compositions. It is important to point out that pre-impact thermal conditions of Hadean and early Archean crust can affect the size of an impact basin and, in turn, the proportion of that basin

  11. Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, northern California

    USGS Publications Warehouse

    McCafferty, A.E.; Van Gosen, B. S.

    2009-01-01

    magnetic susceptibilities and concentration of Cr and Ni. Although the study focused on characterizing the geophysical properties of ultramafic rocks and associated soils, it has also yielded information on other rock types in addition to ultramafic rocks, which can also locally host naturally-occurring asbestos; specifically, gabbro and metavolcanic rocks.

  12. Genesis of sediment-hosted stratiform copper cobalt deposits, central African Copperbelt

    NASA Astrophysics Data System (ADS)

    Cailteux, J. L. H.; Kampunzu, A. B.; Lerouge, C.; Kaputo, A. K.; Milesi, J. P.

    2005-07-01

    The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu-Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (⩾10 Mt copper). The origin of Cu-Co mineralisation in this province remains speculative, with the debate centred around syngenetic-diagenetic and hydrothermal-diagenetic hypotheses. The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15. The main Cu-Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal-supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment. The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic

  13. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  14. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.; Mccollom, Thomas; Schulte, Mithell D.

    1995-01-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of reduced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  15. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    NASA Astrophysics Data System (ADS)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  16. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates

    PubMed Central

    Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée

    2017-01-01

    Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618

  17. Thermodynamics of Strecker synthesis in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Shock, Everett

    1995-01-01

    Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

  18. "Sour gas" hydrothermal jarosite: Ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift

    USGS Publications Warehouse

    Lueth, V.W.; Rye, R.O.; Peters, L.

    2005-01-01

    As many as 29 mining districts along the Rio Grande Rift in southern New Mexico contain Rio Grande Rift-type (RGR) deposits consisting of fluorite-barite??sulfide-jarosite, and additional RGR deposits occur to the south in the Basin and Range province near Chihuahua, Mexico. Jarosite occurs in many of these deposits as a late-stage hydrothermal mineral coprecipitated with fluorite, or in veinlets that crosscut barite. In these deposits, many of which are limestone-hosted, jarosite is followed by natrojarosite and is nested within silicified or argillized wallrock and a sequence of fluorite-barite??sulfide and late hematite-gypsum. These deposits range in age from ???10 to 0.4 Ma on the basis of 40Ar/39Ar dating of jarosite. There is a crude north-south distribution of ages, with older deposits concentrated toward the south. Recent deposits also occur in the south, but are confined to the central axis of the rift and are associated with modern geothermal systems. The duration of hydrothermal jarosite mineralization in one of the deposits was approximately 1.0 my. Most ??18OSO4-OH values indicate that jarosite precipitated between 80 and 240 ??C, which is consistent with the range of filling temperatures of fluid inclusions in late fluorite throughout the rift, and in jarosite (180 ??C) from Pen??a Blanca, Chihuahua, Mexico. These temperatures, along with mineral occurrence, require that the jarosite have had a hydrothermal origin in a shallow steam-heated environment wherein the low pH necessary for the precipitation of jarosite was achieved by the oxidation of H2S derived from deeper hydrothermal fluids. The jarosite also has high trace-element contents (notably As and F), and the jarosite parental fluids have calculated isotopic signatures similar to those of modern geothermal waters along the southern rift; isotopic values range from those typical of meteoric water to those of deep brine that has been shown to form from the dissolution of Permian evaporite by

  19. Versatile hydrothermal synthesis of one-dimensional composite structures

    NASA Astrophysics Data System (ADS)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  20. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the

  1. Improved ferroelectric and photoluminescence properties in Pr3+ substituted Na0.5Bi0.5TiO3 synthesized using hydrothermal route

    NASA Astrophysics Data System (ADS)

    Goutham, Cilaveni; Kandula, Kumara Raja; Raavi, Sai Santhosh Kumar; Asthana, Saket

    2018-04-01

    Nanocrystalline Pr3+ substituted NBT was synthesized using hydrothermal technique. Pr3+ modifies the ferroelectric NBT optically active and enhances the electrical properties with small structural changes. Aiming to the development of the bottom up optoelectronic devices this optimized nanoscale Na0.5Bi0.5-xPrxTiO3(x = 0.005) compound is synthesized hydrothermally. X-ray diffraction pattern shows that the system is stabilized in the Rhombohedral (space groupR3c) phase indicating the local strain inhomogeneity. PE loop shows that there is a decrement in the Ec value compared with compounds synthesized using conventional methods. The strong red emission assigned to prominent transition of the Pr3+ ions at 610nm was observed along with weak blue-green emission, indicating the potential use of the system. Energy transfer from host system to Pr3+ ions is responsible for red emission while blue green emission is due to quenching of 3P0 induced by intervalence charge transfer state.

  2. Enhancement of valve metal osteoconductivity by one-step hydrothermal treatment.

    PubMed

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2014-09-01

    In this study, we produced super-hydrophilic surfaces of valve metals (Ti, Nb, Ta and Zr) by one-step hydrothermal treatment. Their surface characteristics and osteoconductivity using an in vivo test were then assessed. These data were compared with that of as-polished, as-anodized and both anodized+hydrothermally treated samples. Changes in surface chemistry, surface morphology and structure were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffractometry. The results revealed that the water contact angles of valve metals were decreased by hydrothermal treatment and continued to reduce dramatically until lower than 10° after being immersed in phosphate buffered solution. By producing super-hydrophilic surfaces, the osteoconductivity of these hydrothermally treated valve metals was enhanced by up to 55%. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Thiols in Hydrothermal Solution: Standard Partial Molal Properties and Their Role in the Organic Geochemistry of Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell D.; Rogers, Karyn L.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Modern seafloor hydrothermal systems are locations where great varieties of geochemistry occur due to the enormous disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Despite the incomplete understanding of the carbon budget in hydrothermal systems, the organic geochemistry of these sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols, thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in hydrothermal environments, as well as in a variety of biological processes and other abiotic reactions. The reduction of CO2 to thesis, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power. We have used recent advances in theoretical geochemistry to estimate the standard partial moral thermodynamic properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for aqueous straight-chain alkyl thesis. With these data and parameters we have evaluated the role that organic sulfur compounds may play as reaction intermediates during organic compound synthesis. We conclude that organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life in hydrothermal settings. These results may also explain the presence of sulfur in a number of biomolecules present in ancient thermophilic microorganisms.

  4. In situ study of the factors controlling Fe, Cu and Zn scavenging during the early mixing between hydrothermal fluids and seawater

    NASA Astrophysics Data System (ADS)

    Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.

    2016-12-01

    Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly

  5. Multiple magmatism in an evolving suprasubduction zone mantle wedge: The case of the composite mafic-ultramafic complex of Gaositai, North China Craton

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Santosh, M.; Tsunogae, T.; Tang, Li; Teng, Xueming

    2017-07-01

    The suprasubduction zone mantle wedge of active convergent margins is impregnated by melts and fluids leading to the formation of a variety of magmatic and metasomatic rock suites. Here we investigate a composite mafic-ultramafic intrusion at Gaositai, in the northern margin of the North China Craton (NCC). The hornblende gabbro-serpentinite-dunite-pyroxenite-gabbro-diorite suite surrounded by hornblendites of this complex has long been considered to represent an "Alaskan-type" zoned pluton. We present petrologic, mineral chemical, geochemical and zircon U-Pb and Lu-Hf data from the various rock types from Gaositai including hornblende gabbro, serpentinite, dunite, pyroxenite, diorite and the basement hornblendite which reveal the case of multiple melt generation and melt-peridotite interaction. Our new mineral chemical data from the mafic-ultramafic suite exclude an "Alaskan-type" affinity, and the bulk geochemical features are consistent with subduction-related magmatism with enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. Zircon U-Pb geochronology reveals that the hornblendites surrounding the Gaositai complex are nearly 2 billion years older than the intrusive complex and yield early Paleoproterozoic emplacement ages (2433-2460 Ma), followed by late Paleoproterozoic metamorphism (1897 Ma). The serpentinites trace the history of a long-lived and replenished ancient sub-continental lithospheric mantle with the oldest zircon population dated as 2479 Ma and 1896 Ma, closely corresponding with the ages obtained from the basement rock, followed by Neoproterozoic and Phanerozoic zircon growth. The oldest member in the Gaositai composite intrusion is the dunite that yields emplacement age of 755 Ma, followed by pyroxenite formed through the interaction of slab melt and wedge mantle peridotite at 401 Ma. All the rock suites also carry multiple population of younger zircons ranging in age from Paleozoic to

  6. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)

    USGS Publications Warehouse

    Dekov, V.M.; Kamenov, George D.; Stummeyer, Jens; Thiry, M.; Savelli, C.; Shanks, Wayne C.; Fortin, D.; Kuzmann, E.; Vertes, A.

    2007-01-01

    A sediment core containing a yellowish-green clay bed was recovered from an area of extensive hydrothermal deposition at the SE slope of the Eolo Seamount, Tyrrhenian Sea. The clay bed is composed of pure nontronite (described for the first time in the Tyrrhenian Sea), which appears to be the most aluminous nontronite ever found among the seafloor hydrothermal deposits. The high Al content suggests precipitation from Al-containing hydrothermal solutions. The REE distribution of the Eolo nontronite has a V-shape pattern. The heavy REE enrichment is in part due to their preferential partitioning in the nontronite structure. This enrichment was possibly further enhanced by the HREE preferential sorption on bacterial cell walls. The light REE enrichment is the result of scavenging uptake by one of the nontronite precursors, i.e., poorly-ordered Fe-oxyhydroxides, from the hydrothermal fluids. Oxygen isotopic composition of the nontronite yields a formation temperature of 30????C, consistent with a low-temperature hydrothermal origin. The relatively radiogenic Nd isotopic signature of the nontronite compared to the present-day Mediterranean seawater indicates that approximately half of Nd, and presumably the rest of the LREE, are derived from local volcanic sources. On the other hand, 87Sr/86Sr is dominated by present-day seawater Sr. Scanning electron microscopy investigation revealed that the nontronite is composed of aggregates of lepispheres and tube-like filaments, which are indicative of bacteria assisted precipitation. Bacteria inhabiting this hydrothermal site likely acted as reactive geochemical surfaces on which poorly-ordered hydrothermal Fe-oxyhydroxides and silica precipitated. Upon aging, the interactions of these primary hydrothermal precipitates coating bacterial filaments and cell walls likely led to the formation of nontronite. Finally, the well-balanced interlayer and layer charges of the crystal lattice of seafloor hydrothermal nontronite decrease its

  7. Quintinite-1 M from the Mariinsky Deposit, Ural Emerald Mines, Central Urals, Russia

    NASA Astrophysics Data System (ADS)

    Zhitova, E. S.; Popov, M. P.; Krivovichev, S. V.; Zaitsev, A. N.; Vlasenko, N. S.

    2017-12-01

    The paper describes the first finding of quintinite [Mg4Al2(OH)12][(CO3)(H2O)3] at the Mariinsky deposit in the Central Urals, Russia. The mineral occurs as white tabular crystals in cavities within altered gabbro in association with prehnite, calcite, and a chlorite-group mineral. Quintinite is the probable result of late hydrothermal alteration of primary mafic and ultramafic rocks hosting emerald-bearing glimmerite. According to electron microprobe data, the Mg: Al ratio is 2: 1. IR spectroscopy has revealed hydroxyl and carbonate groups and H2O molecules in the mineral. According to single crystal XRD data, quintinite is monoclinic, space group C2/ m, a =5.233(1), b = 9.051(2), c = 7.711(2) Å, β = 103.09(3)°, V = 355.7(2) Å3. Based on structure refinement, the polytype of quintinite should be denoted as 1M. This is the third approved occurrence of quintinite-1M in the world after the Kovdor complex and Bazhenovsky chrysotile-asbestos deposit.

  8. [Study on hydrothermal stability of the collagen].

    PubMed

    Wang, Yajuan; Chen, Hui; Shan, Zhihua

    2009-02-01

    The low hydrothermal stability of the raw collagen restricts its usage. To improve the hydrothermal stability of collagen, two kinds of materials with weak astringency were used by experts. The research proved that the synergistic effect was formed during the process. In this study, by using UV, FT-IR, 13CNMR spectra and elemental analysis on the salicylic acid and metal-salicylic complexes, we could get the structural formula of every compound. And then, the hide powder was treated with the compounds. At last, the treated hide powder was tested by DSC. It could be presumed that the Rigid Matrix formed between the collagen doses can increase the hydrothermal stability of raw collagen, The result indicated that salicylic-chrome with large stable constant was better than others in improving the heat resistance of raw collagen, and the denaturalization temperature of hide powder treated with salicylic-chrome was 146.7 degrees C. Salicylic-aluminum was in the second place, the relevant temperature being 145.7 degrees C.

  9. Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems

    NASA Astrophysics Data System (ADS)

    Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.

    2017-12-01

    Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions

  10. Hydrothermal systems on Mars: an assessment of present evidence

    NASA Technical Reports Server (NTRS)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  11. Hydrothermal systems on Mars: an assessment of present evidence.

    PubMed

    Farmer, J D

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  12. Evolution of the Bucium Rodu and Frasin magmatic-hydrothermal system, Metaliferi Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, Elena Luisa; Berbeleac, Ion; Visan, Madalina; Minut, Adrian; Nadasan, Laurentiu

    2013-04-01

    The Miocene Bucium Rodu and Frasin maar-diatreme structures and related Au-Ag epithermal low sulfidation with passing to mesothermal mineralizations are located in the Bucium-Rosia Montana-Baia de Aries metallogenetic district, within so called the "Golden Quatrilaterum", in the northeastern part of the Metaliferi Mountains. These structures are situated at about 5 km southeast from Rosia Montana, the largest European Au-Ag deposit. The total reserves for Bucium Rodu-Frasin are estimated at 43.3 Mt with average contents of 1.3 g/t Au and 3 g/t Ag. The Miocene geological evolution of Bucium Rodu and Frasin magmatic-hydrothermal system took place in closely relationships with tectonic, magmatic and metallogenetic activity from Bucium-Rosia Montana-Baia de Aries district in general, and adjacent areas, in special. The hydrothermal alteration is pervasive; adularia followed by phyllic, carbonatization and silicification alterations, usually show a close relationship with the mineralizations. Propylitic alteration occurs dominantly towards the depth; argillic alteration shows a local character. The mineralization occurs in veins, breccias, stockworks and disseminations and is hosted within two volcanic structures emplaced into a sequence of Cretaceous sediments in closely genetically relations with the Miocene phreatomagmatic fracturing and brecciation events. Within Rodu maar-diatreme structure the mineralizations follow especially the contact between the diatreme and Cretaceous flysch. The vein sets with low, moderately and near vertical dippings, cover 400x400m with N-S trend. The most important mineralization style is represented by veins, accompanied by hydrothermal breccias and disseminations. The veins spatial distribution relives as "en echelon" tension veins. They carry gold, minor base metal sulphides (pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, arsenopyrite). Gangue is represented by carbonates (calcite, dolomite, ankerite, siderite, rhodochrosite

  13. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    NASA Astrophysics Data System (ADS)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2018-04-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  14. An Overview of Thermal Measurements (IR) at the Summit of Piton de la Fournaise Active Volcano and Inferences on the Structure and Dynamics of its Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Fontaine, F.; Peltier, A.; Kowalski, P.; Di Muro, A.; Villeneuve, N.; Ferrazzini, V.; Staudacher, T.

    2017-12-01

    Piton de la Fournaise, located on La Réunion Island in the South East Indian Ocean, is one of the most active basaltic volcanoes (hotspot) of the world with a mean eruption frequency <6 months over the last 20 years. The central dome of the shield is thought to host an active hydrothermal system evidenced by self-potential techniques early in the 90's and mining heat from a magmatic source located about 2-2.5 km below the summit. Surface manifestations of this activity such as fumeroles or hot grounds have however never been observed before 2007 when deep magma withdrawal from the magmatic horizon during the "eruption of the century" (>100×106 m3) on the island, led to the formation of a 400-m-deep, 1000-m-large, funnel-shaped summit caldera. Since then, the floor and inner flanks of this summit depression hosting hot grounds and active fumaroles, are monitored using an infra-red camera device permanently installed on the caldera rim.This thermal dataset constitutes the first opportunity to understand the structure and dynamics of the hydrothermal system and its ability to relay deep-seated heat and mass perturbations. We present in this communication an overview of this thermal datasets focusing on ground/fumaroles temperature evolution during volcanic crisis and rest periods and analyzing correlations with the other permanently acquired data such as the temporal evolution of gas geochemistry (CO2, SO2, H2S), ground deformation and micro-seismic activity. We finally propose a conceptual model of fluid flow architecture within the edifice which paves the way for future quantitative models of hydrothermal heat and mass transfers.

  15. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling

    DTIC Science & Technology

    2008-09-01

    ER D C/ CE R L TR -0 8 -1 3 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique hydrothermal system. The process was successfully demonstrated at Forts Benning and

  16. The hydrothermal exploration system on the 'Qianlong2' AUV

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.

    2016-12-01

    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  17. Numerical simulation of magmatic hydrothermal systems

    USGS Publications Warehouse

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  18. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where

  19. Archaeal Diversity and Distribution along Thermal and Geochemical Gradients in Hydrothermal Sediments at the Yonaguni Knoll IV Hydrothermal Field in the Southern Okinawa Trough▿ †

    PubMed Central

    Nunoura, Takuro; Oida, Hanako; Nakaseama, Miwako; Kosaka, Ayako; Ohkubo, Satoru B.; Kikuchi, Toru; Kazama, Hiromi; Hosoi-Tanabe, Shoko; Nakamura, Ko-ichi; Kinoshita, Masataka; Hirayama, Hisako; Inagaki, Fumio; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Takai, Ken

    2010-01-01

    A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts. PMID:20023079

  20. A hydrological and geochemical analysis of chromium mobilization from serpentinized ultramafic rocks and serpentine soils at the McLaughlin Natural Reserve, Lake County, California

    NASA Astrophysics Data System (ADS)

    McClain, C.; Maher, K.; Fendorf, S.

    2011-12-01

    California recently adopted the nation's first Public Health Goal (PHG) for hexavalent chromium (Cr(VI)) in drinking water (0.02 μg/L) because recent studies show that Cr(VI) may be carcinogenic through ingestion. Approximately one third of drinking water sources in California tested for Cr(VI) have levels above 1 μg/L and thus may pose a risk to human health. Cr(VI) can enter drinking water directly from anthropogenic sources or from the release of Cr(III) in natural geogenic sources such as rocks, sediments and soils, and subsequent oxidation to Cr(VI) by manganese oxides. Ultramafic rocks and related soils and sediments have elevated Cr and Mn concentrations compared to other rock types. To study the release of Cr(VI) to water from geogenic sources we examined the local hydrology, groundwater, surface water, soils and sediment compositions within a serpentinized ultramafic terrain along Hunting Creek, a tributary to Putah Creek, at the McLaughlin Natural Reserve in the California Coast Ranges. The hydrology of the site is dominated by fracture flow: groundwater wells were screened in fractured serpentinite, and springs emanating from fractured serpentinite bedrock contribute to the baseflow of Hunting Creek. Soil profiles and bedrock were analyzed for major and trace elements by XRF to assess the fate of Cr during weathering and the distribution of manganese oxides. These factors, along with mineral surface areas, microbial activity, water content, and flow dynamics, collectively control the oxidation of Cr(III). The prevalence of Mg-HCO3 waters at this site indicates that waters are primarily interacting with serpentinites. Pyroxenes are slightly to highly undersaturated and amorphous silica is saturated. Smectite clays, chlorite, and hydromagnesite are supersaturated, indicating formation of secondary mineral phases is favorable and could lead to the inclusion of Cr(III). Total Cr concentrations in surface and groundwater vary from 0.1-26 μg/L and Cr

  1. Geology, mineralization, and hydrothermal alteration and relationships to acidic and metal-bearing surface waters in the Palmetto Gulch area, southwestern Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Kurtz, Jeffrey P.; Wright, Winfield G.

    2002-01-01

    The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate these anthropogenic and potential natural sources of acidity and metals, we mapped the geology, veins, and hydrothermally altered areas; conducted mine dump leachate studies; and collected reconnaissance water quality data. Several small abandoned mines are present in the Palmetto Gulch area that produced small amounts of relatively high-grade silver ore from fault-controlled polymetallic vein deposits. These veins are hosted in lavas, breccias, and related volcaniclastic sediments that ponded within the 28 Ma San Juan-Uncompahgre caldera complex. These rock units generally have conformable contacts and have shallow dips to the northwest. Lava flows of pyroxene andesite, which host the Roy-Pray mine, are massive near their base and typically grade upward into tightly jointed rock with 2-15 cm joint spacing. In general, most hydrothermally altered rock within the Palmetto Gulch area is restricted to envelopes surrounding the mineralized veins and faults. Composite zones of vein-related alteration vary from about 50 to 80 m wide along the high ridgelines and narrow to less than 10 to 15 m beneath an elevation of about 5,462 m. Where unaffected by surficial oxidation, these altered zones contain as much as 7 to 10 volume percent finely-disseminated pyrite. The majority of rocks in the area were affected by regional and vein-related propylitic alteration. These greenish-colored rocks have alteration products consisting of chlorite, illite, and calcite; and feldspars are typically weakly altered. Most of these rocks have detectable amounts of calcite, while as much as 11 percent by weight was detected in samples collected during this study. The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate

  2. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand)

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.

    2017-02-01

    Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic

  3. The deep structure of a sea-floor hydrothermal deposit

    USGS Publications Warehouse

    Zierenberg, R.A.; Fouquet, Y.; Miller, D.J.; Bahr, J.M.; Baker, P.A.; Bjerkgard, T.; Brunner, C.A.; Duckworth, R.C.; Gable, R.; Gieskes, J.; Goodfellow, W.D.; Groschel-Becker, H. M.; Guerin, G.; Ishibashi, J.; Iturrino, G.; James, R.H.; Lackschewitz, K.S.; Marquez, L.L.; Nehlig, P.; Peter, J.M.; Rigsby, C.A.; Schultheiss, P.; Shanks, Wayne C.; Simoneit, B.R.T.; Summit, M.; Teagle, D.A.H.; Urbat, M.; Zuffa, G.G.

    1998-01-01

    Hydrothermal circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth. A consequence of this hydrothermal circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc). Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the hydrothermal feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the hydrothermal fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration.

  4. Hydrothermal systems are a sink for dissolved black carbon in the deep ocean

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.

    2016-02-01

    Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during hydrothermal circulation. Here, we hypothesize that hydrothermal circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in hydrothermal fluids than in surrounding deep ocean seawater, confirming that hydrothermal circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during hydrothermal circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in hydrothermally altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after hydrothermal circulation. Our study identified hydrothermal circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, hydrothermal processing increases the B6CA/B5CA ratio, introducing a characteristic hydrothermal DBC signature.

  5. Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2015-06-01

    The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from

  6. Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone

    NASA Astrophysics Data System (ADS)

    Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong

    2015-04-01

    In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.

  7. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China

    NASA Astrophysics Data System (ADS)

    Song, Xie-Yan; Xie, Wei; Deng, Yu-Feng; Crawford, Anthony J.; Zheng, Wen-Qin; Zhou, Guo-Fu; Deng, Gang; Cheng, Song-Lin; Li, Jun

    2011-11-01

    The Baishiquan and Pobei Early Permian mafic-ultramafic intrusions were emplaced into Proterozoic metamorphic rocks in the Central Tianshan and the Beishan Fold Belt, northern Xinjiang, NW China. The Baishiquan intrusion comprises mainly gabbro, and mela-gabbro sills occurring within and along the margins of the gabbro body. In the Pobei intrusion, two distinct gabbroic packages, a lower gabbro and the main gabbro, are intruded and overlain by small cumulate wehrlite bodies. Both intrusions are characterized by enrichments of large ion lithophile elements and Th and U relative to the high field strength elements, and show strong negative Nb and Ta anomalies and positive K and Pb anomalies, leading to higher Th/Yb and Nb/Yb than in mid-ocean ridge basalt and ocean island basalt. These features are comparable with subduction-related mafic rocks and post-collisional magmas. Geological and geochemical considerations indicate that the parental magmas of the two intrusions were derived from decompression melting of ascending asthenosphere and reacted with overlying subduction-modified lithospheric mantle. We believe that these parental magmas were generated by post-collisional extension along the Chinese Tianshan, perhaps triggered by slab break-off or delamination of thickened lithosphere. Relatively lower (143Nd/144Nd)i and higher (87Sr/86Sr)i than other Permian mafic-ultramafic intrusions in the eastern Chinese Tianshan indicate that the parental magmas of these two intrusions experienced significant contamination by old crustal rocks.

  8. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.

    1996-01-01

    The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.

  9. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    PubMed

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-03-10

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  10. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouquet, Y.; Charlou, J.L.; Donval, J.P.

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all formore » areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).« less

  11. Typology of mafic-ultramafic complexes in Hoggar, Algeria: Implications for PGE, chromite and base-metal sulphide mineralisation

    NASA Astrophysics Data System (ADS)

    Augé, Thierry; Joubert, Marc; Bailly, Laurent

    2012-02-01

    With the aims to bring new information about the typology and mineral potential of mafic-ultramafic complexes of the Hoggar, detailed petrological and chemical characterisation were performed on serpentinite bands and layered intrusions. The serpentinite bands locally contain pods, layers and disseminations of chromite showing all the characteristics (mode of occurrence, composition, nature and composition of silicate inclusions, etc.) of an "ophiolite" chromite. Some chromite concentrations in the serpentinite bands also contain inclusions of platinum-group minerals (described for the first time in the Hoggar) such as ruarsite (RuAsS), an Os, Ru, Ir alloy, and complex Os, Ir, Ru sulfarsenides and arsenides. The serpentinite probably corresponds to remnants of oceanic lithosphere—more specifically from the upper part of the mantle sequence, generally where chromitite pods are most abundant, and the basal part of the cumulate series with stratiform chromite concentrations—and marks suture zones; the rest of the oceanic crust has not been preserved. Considering the typology of the serpentinites bands, their potential for precious- and base-metals is suspected to be low. Of the two layered mafic-ultramafic intrusions that were studied, the In Tedeini intrusion has a wehrlite core intruded by olivine gabbronorite and surrounded by an olivine gabbro aureole; three orthocumulate units, containing disseminated magmatic base-metal sulphides and with a plagioclase composition varying around An 58.1 and An 63.3, that could have been derived from a single magma. The East Laouni intrusion has a basal unit of olivine gabbronorite with specific silicate oxide intergrowths, and an upper unit of more differentiated gabbro, both units containing disseminated magmatic Ni-Cu sulphides indicative of early sulphide immiscibility; the mineral composition of these two cumulate units indicates that they also could have been derived from a single magmatic episode. The characteristic of

  12. Geological characteristics of the Shinkai Seep Field, a serpentinite-hosted ecosystem in the Southern Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Stern, R. J.; Martinez, F.; Michibayashi, K.; Reagan, M. K.; Fujikura, K.; Watanabe, H.; Ishii, T.; Kelley, K. A.

    2012-12-01

    Most hydrothermal vents along mid-ocean spreading ridges are high-temperature, sulfide-rich, and low pH (acidic environments). For this reason, the discovery of the Lost City hydrothermal field on the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H2- and CH4-rich fluids and associated carbonate chimneys, as well as in the biological communities adapted to highly reduced, alkaline environments. A new serpentinite-hosted ecosystem, the Shinkai Seep Field (SSF), was discovered by a Shinkai 6500 dive in the inner trench slope of the southern Mariana Trench, near the Challenger Deep, during YK10-12 cruise of R/V Yokosuka in September 2010. Abundant chemosynthetic biological communities, principally consisting of vesicomyid clams are associated with serpentinized peridotite in the SSF. Serpentinization beneath several hydrothermal sites on the Mid-Atlantic Ridge is controlled by interacting seawater and peridotite, variably influenced by magmatic heat. In contrast, the SSF is located in a deep inner trench slope where magmatic heat contribution is unlikely. Instead, serpentinization reactions feeding the SSF may be controlled by persistent fluid flow from the subducting slab. Slab-derived fluid flow is probably controlled by flow through fractures because no serpentinite mud volcano can be discerned along the southern Mariana forearc. Deep-towed IMI-30 sonar backscatter imaging during TN273 cruise of R/V Thomas G. Thompson in January 2012 indicates that the SSF is associated with a small, low backscatter feature that may be a small mound. There are 20 or more of these features in the imaged area, the size of which is ~200 m width and ~200 m to ~700 m long. Since the southern Mariana forearc is heavily faulted, with a deep geology that is dominated by peridotite, more SSF-type seeps are likely to exist along the forearc above the Challenger Deep. The discovery of the SSF suggests that serpentinite-hosted vents may

  13. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

    PubMed Central

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-01-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  14. Beyond the vent: New perspectives on hydrothermal plumes and pelagic biology

    NASA Astrophysics Data System (ADS)

    Phillips, Brennan T.

    2017-03-01

    Submarine hydrothermal vent fields introduce buoyant plumes of chemically altered seawater to the deep-sea water column. Chemoautotrophic microbes exploit this energy source, facilitating seafloor-based primary production that evidence suggests may transfer to pelagic consumers. While most hydrothermal plumes have relatively small volumes, there are recent examples of large-scale plume events associated with periods of eruptive activity, which have had a pronounced effect on water-column biology. This correlation suggests that hydrothermal plumes may have influenced basin-scale ocean chemistry during periods of increased submarine volcanism during the Phanerozoic eon. This paper synthesizes a growing body of scientific evidence supporting the hypothesis that hydrothermal plumes are the energetic basis of unique deep-sea pelagic food webs. While many important questions remain concerning the biology of hydrothermal plumes, this discussion is not present in ongoing management efforts related to seafloor massive sulfide (SMS) mining. Increased research efforts, focused on high-resolution surveys of midwater biology relative to plume structures, are recommended to establish baseline conditions and monitor the impact of future mining-based disturbances to the pelagic biosphere.

  15. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn-Cu-Ag-Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Yasser; Surour, Adel A.; El-Manawi, Abdel Hamid W.; El-Dougdoug, Abdel-Monem A.; Omar, Sayed

    2015-04-01

    The Wadi Hamama area is a volcanogenic Zn-Cu-Au-Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite-trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn-Cu-Ag-Au prospect.

  16. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili

    2011-11-15

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also bettermore » than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.« less

  17. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.

    PubMed

    Resing, Joseph A; Sedwick, Peter N; German, Christopher R; Jenkins, William J; Moffett, James W; Sohst, Bettina M; Tagliabue, Alessandro

    2015-07-09

    Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.

  18. Optimization of Large-Scale Daily Hydrothermal System Operations With Multiple Objectives

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cheng, Chuntian; Shen, Jianjian; Cao, Rui; Yeh, William W.-G.

    2018-04-01

    This paper proposes a practical procedure for optimizing the daily operation of a large-scale hydrothermal system. The overall procedure optimizes a monthly model over a period of 1 year and a daily model over a period of up to 1 month. The outputs from the monthly model are used as inputs and boundary conditions for the daily model. The models iterate and update when new information becomes available. The monthly hydrothermal model uses nonlinear programing (NLP) to minimize fuel costs, while maximizing hydropower production. The daily model consists of a hydro model, a thermal model, and a combined hydrothermal model. The hydro model and thermal model generate the initial feasible solutions for the hydrothermal model. The two competing objectives considered in the daily hydrothermal model are minimizing fuel costs and minimizing thermal emissions. We use the constraint method to develop the trade-off curve (Pareto front) between these two objectives. We apply the proposed methodology on the Yunnan hydrothermal system in China. The system consists of 163 individual hydropower plants with an installed capacity of 48,477 MW and 11 individual thermal plants with an installed capacity of 12,400 MW. We use historical operational records to verify the correctness of the model and to test the robustness of the methodology. The results demonstrate the practicability and validity of the proposed procedure.

  19. YELLOWSTONE MAGMATIC-HYDROTHERMAL SYSTEM, U. S. A.

    USGS Publications Warehouse

    Fournier, R.O.; Pitt, A.M.; ,

    1985-01-01

    At Yellowstone National Park, the deep permeability and fluid circulation are probably controlled and maintained by repeated brittle fracture of rocks in response to local and regional stress. Focal depths of earthquakes beneath the Yellowstone caldera suggest that the transition from brittle fracture to quasi-plastic flow takes place at about 3 to 4 km. The maximum temperature likely to be attained by the hydrothermal system is 350 to 450 degree C, the convective thermal output is about 5. 5 multiplied by 10**9 watts, and the minimum average thermal flux is about 1800 mW/m**2 throughout 2,500 km**2. The average thermal gradient between the heat source and the convecting hydrothermal system must be at least 700 to 1000 degree C/km. Crystallization and partial cooling of about 0. 082 km**3 of basalt or 0. 10 km**3 of rhyolite annually could furnish the heat discharged in the hot-spring system. The Yellowstone magmatic-hydrothermal system as a whole appears to be cooling down, in spite of a relatively large rate of inflation of the Yellowstone caldera.

  20. Hyperspectral mapping of alteration assemblages within a hydrothermal vug at the Haughton impact structure, Canada

    NASA Astrophysics Data System (ADS)

    Greenberger, Rebecca N.; Mustard, John F.; Osinski, Gordon R.; Tornabene, Livio L.; Pontefract, Alexandra J.; Marion, Cassandra L.; Flemming, Roberta L.; Wilson, Janette H.; Cloutis, Edward A.

    2016-12-01

    Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite-marcasite-bearing vug at the 23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65-1.1 μm) and samples in the laboratory (0.4-2.5 μm), point spectroscopy (0.35-2.5 μm), major element chemistry, and X-ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat-lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite-rich host rock formed gypsum-bearing red coatings. These results have implications for understanding water-rock interactions and habitabilities at this site and on Mars.