Sample records for ultraprecision motion control

  1. Practical controller design for ultra-precision positioning of stages with a pneumatic artificial muscle actuator

    NASA Astrophysics Data System (ADS)

    Tang, T. F.; Chong, S. H.

    2017-06-01

    This paper presents a practical controller design method for ultra-precision positioning of pneumatic artificial muscle actuator stages. Pneumatic artificial muscle (PAM) actuators are safe to use and have numerous advantages which have brought these actuators to wide applications. However, PAM exhibits strong non-linear characteristics, and these limitations lead to low controllability and limit its application. In practice, the non-linear characteristics of PAM mechanism are difficult to be precisely modeled, and time consuming to model them accurately. The purpose of the present study is to clarify a practical controller design method that emphasizes a simple design procedure that does not acquire plants parameters modeling, and yet is able to demonstrate ultra-precision positioning performance for a PAM driven stage. The practical control approach adopts continuous motion nominal characteristic trajectory following (CM NCTF) control as the feedback controller. The constructed PAM driven stage is in low damping characteristic and causes severe residual vibration that deteriorates motion accuracy of the system. Therefore, the idea to increase the damping characteristic by having an acceleration feedback compensation to the plant has been proposed. The effectiveness of the proposed controller was verified experimentally and compared with a classical PI controller in point-to-point motion. The experiment results proved that the CM NCTF controller demonstrates better positioning performance in smaller motion error than the PI controller. Overall, the CM NCTF controller has successfully to reduce motion error to 3µm, which is 88.7% smaller than the PI controller.

  2. Review on the progress of ultra-precision machining technologies

    NASA Astrophysics Data System (ADS)

    Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa

    2017-06-01

    Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

  3. Mechanism and experimental research on ultra-precision grinding of ferrite

    NASA Astrophysics Data System (ADS)

    Ban, Xinxing; Zhao, Huiying; Dong, Longchao; Zhu, Xueliang; Zhang, Chupeng; Gu, Yawen

    2017-02-01

    Ultra-precision grinding of ferrite is conducted to investigate the removal mechanism. Effect of the accuracy of machine tool key components on grinding surface quality is analyzed. The surface generation model of ferrite ultra-precision grinding machining is established. In order to reveal the surface formation mechanism of ferrite in the process of ultraprecision grinding, furthermore, the scientific and accurate of the calculation model are taken into account to verify the grinding surface roughness, which is proposed. Orthogonal experiment is designed using the high precision aerostatic turntable and aerostatic spindle for ferrite which is a typical hard brittle materials. Based on the experimental results, the influence factors and laws of ultra-precision grinding surface of ferrite are discussed through the analysis of the surface roughness. The results show that the quality of ferrite grinding surface is the optimal parameters, when the wheel speed of 20000r/mm, feed rate of 10mm/min, grinding depth of 0.005mm, and turntable rotary speed of 5r/min, the surface roughness Ra can up to 75nm.

  4. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  5. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.

    PubMed

    Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao

    2012-08-01

    In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.

  6. The research and realization of digital management platform for ultra-precision optical elements within life-cycle

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun

    2014-08-01

    In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.

  7. Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals

    NASA Astrophysics Data System (ADS)

    Zhang, F. H.; Wang, S. F.; An, C. H.; Wang, J.; Xu, Q.

    2017-06-01

    Large-aperture potassium dihydrogen phosphate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ultra-precision fly cutting. When processing KDP crystals by ultra-precision fly cutting, the dynamic characteristics of the fly cutting machine and fluctuations in the fly cutting environment are translated into surface errors at different spatial frequency bands. These machining errors should be suppressed effectively to guarantee that KDP crystals meet the full-band machining accuracy specified in the evaluation index. In this study, the anisotropic machinability of KDP crystals and the causes of typical surface errors in ultra-precision fly cutting of the material are investigated. The structures of the fly cutting machine and existing processing parameters are optimized to improve the machined surface quality. The findings are theoretically and practically important in the development of high-energy laser systems in China.

  8. NIMBUS: A Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.; Mandell, Avi; Woodgate, Bruce E.; Spiegel, David S.; Madhusudhan, Nikku; Amatucci, Edward; Blake, Cullen; Budinoff, Jason; Burgasser, Adam; Burrows, Adam; hide

    2012-01-01

    We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This instrument will enable many exciting observations in the new age of precision astronomy. This optical design splits the beam into 8 separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise photometry for a wide variety of astrophysical sources

  9. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion.

    PubMed

    Lee, Dong-Jin; Lee, Sun-Kyu

    2015-01-01

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.

  10. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    PubMed Central

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  11. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr

    2015-01-15

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less

  12. Design and analysis of a 3D Elliptical Micro-Displacement Motion Stage

    NASA Astrophysics Data System (ADS)

    Lin, Jieqiong; Zhao, Dongpo; Lu, Mingming; Zhou, Jiakang

    2017-12-01

    Micro-displacement motion stage driven by piezoelectric actuator has a significant demand in the field of ultra-precision machining in recent years, while the design of micro-displacement motion stage plays an important role to realize a large displacement output and high precision control. Thus, a 3D elliptical micro-displacement motion stage driven by three PZT actuators has been developed. Firstly, the 3D elliptical trajectory of this motion stage could be adjusted through the form of the PZT actuators input signal. Then, the desired trajectory was obtained by adjusting the micro displacement of the motion stage in 3D elliptical space. Finally, the trajectory simulation and the finite element simulation were applied in this motion stage. The experimental results shown that, the output displacement of the three directions under the input force of the 1600N were 14μm, 16μm and 74μm, respectively. And the first three modes were 1471.6Hz, 2698.4Hz and 2803.4Hz, respectively. Analysis and experiments were carried out to verify the performance, result proved that a large output displacement and high precision control could be obtained.

  13. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  14. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  15. Ultra-precision process of CaF2 single crystal

    NASA Astrophysics Data System (ADS)

    Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin

    2014-08-01

    This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.

  16. Ultraprecise thermal expansion measurements of seven low expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  17. Ultraprecise thermal expansion measurements of seven low expansion materials.

    PubMed

    Berthold Iii, J W; Jacobs, S F

    1976-10-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 degrees C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  18. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoguang; Li, Qiang; Liu, Tao; Kang, Renke; Jin, Zhuji; Guo, Dongming

    2017-03-01

    Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.

  19. Fabrication of micro-lens array on convex surface by meaning of micro-milling

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin

    2014-08-01

    In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.

  20. Guidance and control 1989; Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 4-8, 1989

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Lewis, Robert A.

    1989-05-01

    Papers are presented on advances in guidance, navigation, and control; guidance and control storyboard displays; attitude referenced pointing systems; guidance, navigation, and control for specialized missions; and recent experiences. Other topics of importance to support the application of guidance and control to the space community include concept design and performance test of a magnetically suspended single-gimbal control moment gyro; design, fabrication and test of a prototype double gimbal control moment gyroscope for the NASA Space Station; the Circumstellar Imaging Telescope Image Motion Compensation System providing ultra-precise control on the Space Station platform; pinpointing landing concepts for the Mars Rover Sample Return mission; and space missile guidance and control simulation and flight testing.

  1. Mesoplasticity approach to studies of the cutting mechanism in ultra-precision machining

    NASA Astrophysics Data System (ADS)

    Lee, Rongbin W. B.; Wang, Hao; To, Suet; Cheung, Chi Fai; Chan, Chang Yuen

    2014-03-01

    There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.

  2. Open architecture CMM motion controller

    NASA Astrophysics Data System (ADS)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John

    2001-12-01

    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  3. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    NASA Astrophysics Data System (ADS)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  4. Ultra-precision positioning assembly

    DOEpatents

    Montesanti, Richard C.; Locke, Stanley F.; Thompson, Samuel L.

    2002-01-01

    An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.

  5. Research on subsurface deformed layer in ultra-precision cutting of single crystal copper by focused ion beam etching method

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Huang, X. J.; Kong, J. X.

    2018-03-01

    In this paper, the focused ion beam was used to study the subsurface deformed layer of single crystal copper caused by the nanoscale single-point diamond fly cutting, and the possibility of using nanometer ultra-precision cutting to remove the larger deformation layer caused by traditional rough cutting process was explored. The maximum cutting thickness of single-point diamond cutting was about 146 nm, and the surface of the single-crystal copper after cutting was etched and observed by using the focused ion beam method. It was found that the morphology of the near-surface layer and the intermediate layer of the copper material were larger differences: the near-surface of the material was smaller and more compact, and the intermediate material layer of the material was more coarse sparse. The results showed that the traditional precision cutting would residual significant subsurface deformed layer and the thickness was on micron level. Even more, the subsurface deformed layer was obviously removed from about 12μm to 5μm after single-point diamond fly cutting in this paper. This paper proved that the large-scale subsurface deformed layer caused by traditional cutting process could be removed by nanometer ultra-precision cutting. It was of great significance to further establish the method that control of the deformation of weak rigid components by reducing the depth of the subsurface deformed layers.

  6. Test and study on mirror quality of ultra-precision diamond turning

    NASA Astrophysics Data System (ADS)

    Chang, Yanyan; Sun, Tao; Li, Zengqiang; Wu, Baosen

    2014-09-01

    Using the diamond turning lathe and mono crystalline diamond tool, the aluminum alloy of 2A12 was cut under different cutting parameters including cutting speed, feed rate and depth of cut and the mirror surfaces were made. The surface roughness, micro hardness and residual stress of the mirror surface were tested by the surface profiler, the universal hardness tester and X-stress Robot. The influences of the cutting parameters on the mirror quality were studied. The research results have theoretical and practical significance to the selection of the optimal cutting parameters in ultraprecision diamond turning.

  7. Diamond tool wear detection method using cutting force and its power spectrum analysis in ultra-precision fly cutting

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; To, S.

    2014-08-01

    Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.

  8. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  9. Error mechanism analyses of an ultra-precision stage for high speed scan motion over a large stroke

    NASA Astrophysics Data System (ADS)

    Wang, Shaokai; Tan, Jiubin; Cui, Jiwen

    2015-02-01

    Reticle Stage (RS) is designed to complete scan motion with high speed in nanometer-scale over a large stroke. Comparing with the allowable scan accuracy of a few nanometers, errors caused by any internal or external disturbances are critical and must not be ignored. In this paper, RS is firstly introduced in aspects of mechanical structure, forms of motion, and controlling method. Based on that, mechanisms of disturbances transferred to final servo-related error in scan direction are analyzed, including feedforward error, coupling between the large stroke stage (LS) and the short stroke stage (SS), and movement of measurement reference. Especially, different forms of coupling between SS and LS are discussed in detail. After theoretical analysis above, the contributions of these disturbances to final error are simulated numerically. The residual positioning error caused by feedforward error in acceleration process is about 2 nm after settling time, the coupling between SS and LS about 2.19 nm, and the movements of MF about 0.6 nm.

  10. Validation results of specifications for motion control interoperability

    NASA Astrophysics Data System (ADS)

    Szabo, Sandor; Proctor, Frederick M.

    1997-01-01

    The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.

  11. Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment

    PubMed Central

    Kim, Ikhwan; Kim, Taehyoun

    2015-01-01

    Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives. PMID:26076407

  12. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  13. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    PubMed

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  14. Motion and force control of multiple robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  15. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  16. Animation control of surface motion capture.

    PubMed

    Tejera, Margara; Casas, Dan; Hilton, Adrian

    2013-12-01

    Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.

  17. Contrast gain control in first- and second-order motion perception.

    PubMed

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  18. Motion control of 7-DOF arms - The configuration control approach

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.

    1993-01-01

    Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.

  19. Method and system for ultra-precision positioning

    DOEpatents

    Montesanti, Richard C.; Locke, Stanley F.; Thompson, Samuel L.

    2005-01-11

    An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.

  20. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  1. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  2. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  3. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  4. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  5. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  6. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  7. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  8. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  9. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  10. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  11. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  12. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  13. The influence of ship motion of manual control skills

    NASA Technical Reports Server (NTRS)

    Mcleod, P.; Poulton, C.; Duross, H.; Lewis, W.

    1981-01-01

    The effects of ship motion on a range of typical manual control skills were examined on the Warren Spring ship motion simulator driven in heave, pitch, and roll by signals taken from the frigate HMS Avenger at 13 m/s (25 knots) into a force 4 wind. The motion produced a vertical r.m.s. acceleration of 0.024g, mostly between 0.1 and 0.3 Hz, with comparatively little pitch or roll. A task involving unsupported arm movements was seriously affected by the motion; a pursuit tracking task showed a reliable decrement although it was still performed reasonably well (pressure and free moving tracking controls were affected equally by the motion); a digit keying task requiring ballistic hand movements was unaffected. There was no evidence that these effects were caused by sea sickness. The differing response to motion of the different tasks, from virtual destruction to no effect, suggests that a major benefit could come from an attempt to design the man/control interface onboard ship around motion resistant tasks.

  14. Motion and force control for multiple cooperative manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  15. Characterization and control of self-motions in redundant manipulators

    NASA Technical Reports Server (NTRS)

    Burdick, J.; Seraji, Homayoun

    1989-01-01

    The presence of redundant degrees of freedom in a manipulator structure leads to a physical phenomenon known as a self-motion, which is a continuous motion of the manipulator joints that leaves the end-effector motionless. In the first part of the paper, a global manifold mapping reformulation of manipulator kinematics is reviewed, and the inverse kinematic solution for redundant manipulators is developed in terms of self-motion manifolds. Global characterizations of the self-motion manifolds in terms of their number, geometry, homotopy class, and null space are reviewed using examples. Much previous work in redundant manipulator control has been concerned with the redundancy resolution problem, in which methods are developed to determine, or resolve, the motion of the joints in order to achieve end-effector trajectory control while optimizing additional objective functions. Redundancy resolution problems can be equivalently posed as the control of self-motions. Alternatives for redundancy resolution are briefly discussed.

  16. A Unified Approach to Motion Control of Motion Robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1994-01-01

    This paper presents a simple on-line approach for motion control of mobile robots made up of a manipulator arm mounted on a mobile base. The proposed approach is equally applicable to nonholonomic mobile robots, such as rover-mounted manipulators and to holonomic mobile robots such as tracked robots or compound manipulators. The computational efficiency of the proposed control scheme makes it particularly suitable for real-time implementation.

  17. Theoretical and experimental research on machine tool servo system for ultra-precision position compensation on CNC lathe

    NASA Astrophysics Data System (ADS)

    Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang

    2010-08-01

    The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.

  18. Ultraprecision finishing of micro-aspherical surface by ultrasonic assisted polishing; Technical Digest

    NASA Astrophysics Data System (ADS)

    Suzuki, Hirofumi; Kawamori, Ryota; Yamamoto, Yuji; Miyabara, Mitsuru; Okino, Tadashi; Hijikata, Yoshio; Moriwaki, Toshimichi

    2005-05-01

    Micro aspherical glass lenses are required for electronic devices, optical devices and advanced optical fiber transmission equipments. The glass lenses are manufactured by glass molding method by using micro ceramics dies such as tungsten carbide or silicon carbide (1). Therefore molding dies are most important and they were ground by ultra-precision grinding method with diamond wheel. Recently, the wavelength of used laser is becoming shorter and then the accuracies of the micro molding die are required to be much more precise (2). In this paper, ultrasonic assisted polishing methods/systems were developed in order to finish micro aspherical dies that were ground with micro diamond wheel. In the polishing experiments, the molding die of tungsten carbide was polished with diamond abrasives to test the basic polishing characteristics and the aspheric die was polished with proposed ultrasonic assisted polishing method.

  19. Knowledge-Based Motion Control of AN Intelligent Mobile Autonomous System

    NASA Astrophysics Data System (ADS)

    Isik, Can

    An Intelligent Mobile Autonomous System (IMAS), which is equipped with vision and low level sensors to cope with unknown obstacles, is modeled as a hierarchy of path planning and motion control. This dissertation concentrates on the lower level of this hierarchy (Pilot) with a knowledge-based controller. The basis of a theory of knowledge-based controllers is established, using the example of the Pilot level motion control of IMAS. In this context, the knowledge-based controller with a linguistic world concept is shown to be adequate for the minimum time control of an autonomous mobile robot motion. The Pilot level motion control of IMAS is approached in the framework of production systems. The three major components of the knowledge-based control that are included here are the hierarchies of the database, the rule base and the rule evaluator. The database, which is the representation of the state of the world, is organized as a semantic network, using a concept of minimal admissible vocabulary. The hierarchy of rule base is derived from the analytical formulation of minimum-time control of IMAS motion. The procedure introduced for rule derivation, which is called analytical model verbalization, utilizes the concept of causalities to describe the system behavior. A realistic analytical system model is developed and the minimum-time motion control in an obstacle strewn environment is decomposed to a hierarchy of motion planning and control. The conditions for the validity of the hierarchical problem decomposition are established, and the consistency of operation is maintained by detecting the long term conflicting decisions of the levels of the hierarchy. The imprecision in the world description is modeled using the theory of fuzzy sets. The method developed for the choice of the rule that prescribes the minimum-time motion control among the redundant set of applicable rules is explained and the usage of fuzzy set operators is justified. Also included in the

  20. Dual-Arm Generalized Compliant Motion With Shared Control

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1994-01-01

    Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).

  1. A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lindqwister, U. J.; Freedman, A. P.; Blewitt, G.

    1992-01-01

    Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years.

  2. Minimum-variance Brownian motion control of an optically trapped probe.

    PubMed

    Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang

    2009-10-20

    This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.

  3. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  4. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...

  5. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...

  6. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.

    1982-01-01

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  7. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  8. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  9. Piezo-based motion stages for heavy duty operation in clean environments

    NASA Astrophysics Data System (ADS)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Gissin, Michael; Feinstein, Alan

    2018-02-01

    A range of heavy duty, ultra-precise motion stages had been developed for precise positioning in semiconductor manufacturing and metrology, for use in a clean room and high vacuum (HV and UHV) environments, to meet the precision requirements for 7, 5 nm nodes and beyond. These stages are powered by L1B2 direct drive ultrasonic motors, which allows combining long motion range, sub-nanometer positioning accuracy, high stiffness (in the direction of motion), low power consumption and active compensation of thermal and structural drift while holding position. The mechanical design, material selection for clean room and high vacuum preparation techniques are reviewed. Test results in a clean room are reported for a two-axis (X-Y) stage, having a load capacity of 30 kg, a motion range of 450 mm, a positioning accuracy of < 1 nm, a maximum motion speed of > 200 mm/s and a < 2 nm position stability (3 sigma). Long term drift compensation to sub-nm level, against thermal drift, has been validated for more than 10 hours. Heavy duty operation in a high vacuum is exemplified via a single axis stage operating at 5E-7 Torr, having a moving mass of 0.96 kg, oriented against gravity. The stage is operated periodically (up and down) over a travel length of 45 mm. The motion profile has a trapezoidal shape with an acceleration of 1m/s2 and a constant velocity of 100 mm/s. The operational parameters (average absolute position error during constant velocity, motor force, dead zone level) remain stable over more than 370000 passes (experiment duration).

  10. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  11. Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions

    DTIC Science & Technology

    2014-10-09

    problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic

  12. Redundancy, Self-Motion, and Motor Control

    PubMed Central

    Martin, V.; Scholz, J. P.; Schöner, G.

    2011-01-01

    Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths. PMID:19718817

  13. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  14. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Yuecai; Hu Yaozhong; Song Jian, E-mail: jsong2@math.rutgers.edu

    2013-04-15

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need tomore » develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.« less

  15. Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes

    NASA Astrophysics Data System (ADS)

    Rao, Prahalad Krishna

    This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions: 1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses. 2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%). 3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant

  16. Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Mobertz, Xander R. I.

    2017-01-01

    The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.

  17. Ultra-precision turning of complex spiral optical delay line

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  18. Periodic motion planning and control for underactuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Wang, Zeguo; Freidovich, Leonid B.; Zhang, Honghua

    2018-06-01

    We consider the problem of periodic motion planning and of designing stabilising feedback control laws for such motions in underactuated mechanical systems. A novel periodic motion planning method is proposed. Each state is parametrised by a truncated Fourier series. Then we use numerical optimisation to search for the parameters of the trigonometric polynomial exploiting the measure of discrepancy in satisfying the passive dynamics equations as a performance index. Thus an almost feasible periodic motion is found. Then a linear controller is designed and stability analysis is given to verify that solutions of the closed-loop system stay inside a tube around the planned approximately feasible periodic trajectory. Experimental results for a double rotary pendulum are shown, while numerical simulations are given for models of a spacecraft with liquid sloshing and of a chain of mass spring system.

  19. Adaptive Quantum Control of Charge Motion in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Reitze, David

    1998-05-01

    Quantum control of electronic wavepacket motion and interactions using ultrafast lasers has moved from the conceptual stage to reality, in large part driven by advances in quantum control theory (R. J. Gordon and S. A. Rice, Ann. Rev. Phys. Chem. (1997), in press.) (M. Shapiro and P. Brumer, J. Chem. Soc. Faraday Trans. V93, 1263 (1997).) (D. Neuhauser and H. Rabitz, Acc. Chem. Res. V26, 496 (1993).) and experimental pulse shaping methods (A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science V247, 412 (1990).) (A. Efimov, C. Schaffer, and D. H. Reitze, J. Opt. Soc. Am VB12, 1968 (1995).). Here, we apply these methods to controlling charge motion in semiconductor heterostructures. Control of coherent charge dynamics in heterostructures enjoys an advantage in that spatial potential profiles can be adjusted almost arbitrarily. Thus, control of charge motion can be exerted by tailoring both the temporal and spatial interactions of the charges with the controlling optical and static fields. In this talk, we demonstrate an experimental feedback loop which adaptively shapes fs pulses in a quantum contol pump-probe experiment, apply it to the control of coherent wavepacket motion in DC-biased asymmetric double quantum well(ADQW) structures, and compare to theoretical predictions of quantum control in ADQWs (N. M. Beach, D. H. Reitze, and J. L. Krause, submitted to Opt. Exp.) (J. L. Krause, D. H. Reitze, G. D. Sanders, A. Kuznetsov, and C. J. Stanton, to appear in Phys. Rev. B).

  20. Singular Optimal Controls of Rocket Motion (Survey)

    NASA Astrophysics Data System (ADS)

    Kiforenko, B. N.

    2017-05-01

    Survey of modern state and discussion of problems of the perfection of methods of investigation of variational problems with a focus on mechanics of space flight are presented. The main attention is paid to the enhancement of the methods of solving of variational problems of rocket motion in the gravitational fields, including rocket motion in the atmosphere. These problems are directly connected with the permanently actual problem of the practical astronautics to increase the payload that is orbited by the carrier rockets in the circumplanetary orbits. An analysis of modern approaches to solving the problems of control of rockets and spacecraft motion on the trajectories with singular arcs that are optimal for the motion of the variable mass body in the medium with resistance is given. The presented results for some maneuvers can serve as an information source for decision making on designing promising rocket and space technology

  1. Optimization of motion control laws for tether crawler or elevator systems

    NASA Technical Reports Server (NTRS)

    Swenson, Frank R.; Von Tiesenhausen, Georg

    1988-01-01

    Based on the proposal of a motion control law by Lorenzini (1987), a method is developed for optimizing motion control laws for tether crawler or elevator systems in terms of the performance measures of travel time, the smoothness of acceleration and deceleration, and the maximum values of velocity and acceleration. The Lorenzini motion control law, based on powers of the hyperbolic tangent function, is modified by the addition of a constant-velocity section, and this modified function is then optimized by parameter selections to minimize the peak acceleration value for a selected travel time or to minimize travel time for the selected peak values of velocity and acceleration. It is shown that the addition of a constant-velocity segment permits further optimization of the motion control law performance.

  2. Do motion controllers make action video games less sedentary? A randomized experiment.

    PubMed

    Lyons, Elizabeth J; Tate, Deborah F; Ward, Dianne S; Ribisl, Kurt M; Bowling, J Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg(-1) · hr(-1)) produced 0.10 kcal · kg(-1) · hr(-1) (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg(-1) · hr(-1), P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  3. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    PubMed Central

    Lyons, Elizabeth J.; Tate, Deborah F.; Ward, Dianne S.; Ribisl, Kurt M.; Bowling, J. Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg−1 · hr−1) produced 0.10 kcal · kg−1 · hr−1 (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg−1 · hr−1, P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior. PMID:22028959

  4. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  5. Sensing human hand motions for controlling dexterous robots

    NASA Technical Reports Server (NTRS)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  6. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal.

    PubMed

    Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui

    2017-03-09

    A novel functional KH₂PO₄ (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH₂PO₄ aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations ( c KDP ) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the c KDP . As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion ( c KDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR.

  7. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    PubMed

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.

  8. Validation of the Leap Motion Controller using markered motion capture technology.

    PubMed

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Motion control of the rabbit ankle joint with a flat interface nerve electrode.

    PubMed

    Park, Hyun-Joo; Durand, Dominique M

    2015-12-01

    A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.

  10. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  11. Real-time simulation of hand motion for prosthesis control

    PubMed Central

    Blana, Dimitra; Chadwick, Edward K.; van den Bogert, Antonie J.; Murray, Wendy M.

    2016-01-01

    Individuals with hand amputation suffer substantial loss of independence. Performance of sophisticated prostheses is limited by the ability to control them. To achieve natural and simultaneous control of all wrist and hand motions, we propose to use real-time biomechanical simulation to map between residual EMG and motions of the intact hand. Here we describe a musculoskeletal model of the hand using only extrinsic muscles to determine whether real-time performance is possible. Simulation is 1.3 times faster than real time, but the model is locally unstable. Methods are discussed to increase stability and make this approach suitable for prosthesis control. PMID:27868425

  12. Hummingbirds control hovering flight by stabilizing visual motion.

    PubMed

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.

  13. Control strategies for planetary rover motion and manipulator control

    NASA Technical Reports Server (NTRS)

    Trautwein, W.

    1973-01-01

    An unusual insect-like vehicle designed for planetary surface exploration is made the occasion for a discussion of control concepts in path selection, hazard detection, obstacle negotiation, and soil sampling. A control scheme which actively articulates the pitching motion between a single-loop front module and a dual loop rear module leads to near optimal behavior in soft soil; at the same time the vehicle's front module acts as a reliable tactile forward probe with a detection range much longer than the stopping distance. Some optimal control strategies are discussed, and the photos of a working scale model are displayed.

  14. Visual Features Involving Motion Seen from Airport Control Towers

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Liston, Dorion

    2010-01-01

    Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.

  15. Development of excavator training simulator using leap motion controller

    NASA Astrophysics Data System (ADS)

    Fahmi, F.; Nainggolan, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Excavator is a heavy machinery that is used for many industries purposes. Controlling the excavator is not easy. Its operator has to be trained well in many skills to make sure it is safe, effective, and efficient while using the excavator. In this research, we proposed a virtual reality excavator simulator supported by a device called Leap Motion Controller that supports finger and hand motions as an input. This prototype will be developed than in the virtual reality environment to give a more real sensing to the user.

  16. Decentralized digital adaptive control of robot motion

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.

  17. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    PubMed

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  18. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    PubMed

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  19. Five degree-of-freedom control of an ultra-precision magnetically-suspended linear bearing. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.; Slocum, A. H.

    1991-01-01

    The authors constructed a high precision linear bearing. A 10.7 kg platen measuring 125 mm by 125 mm by 350 mm is suspended and controlled in five degrees of freedom by seven electromagnets. The position of the platen is measured by five capacitive probes which have nanometer resolution. The suspension acts as a linear bearing, allowing linear travel of 50 mm in the sixth degree of freedom. In the laboratory, this bearing system has demonstrated position stability of 5 nm peak-to-peak. This is believed to be the highest position stability yet demonstrated in a magnetic suspension system. Performance at this level confirms that magnetic suspensions can address motion control requirements at the nanometer level. The experimental effort associated with this linear bearing system is described. Major topics are the development of models for the suspension, implementation of control algorithms, and measurement of the actual bearing performance. Suggestions for the future improvement of the bearing system are given.

  20. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  1. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal

    PubMed Central

    Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui

    2017-01-01

    A novel functional KH2PO4 (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH2PO4 aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations (cKDP) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the cKDP. As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion (cKDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR. PMID:28772632

  2. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  3. Resolved motion rate and resolved acceleration servo-control of wheeled mobile robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, P.F.; Neuman, C.P.; Carnegie-Mellon Univ., Pittsburgh, PA

    1989-01-01

    Accurate motion control of wheeled mobile robots (WMRs) is required for their application to autonomous, semi-autonomous and teleoperated tasks. The similarities between WMRs and stationary manipulators suggest that current, successful, model-based manipulator control algorithms may be applied to WMRs. Special characteristics of WMRs including higher-pairs, closed-chains, friction and unactuated and unsensed joints require innovative modeling methodologies. The WMR modeling challenge has been recently overcome, thus enabling the application of manipulator control algorithms to WMRs. This realization lays the foundation for significant technology transfer from manipulator control to WMR control. We apply two Cartesian-space manipulator control algorithms: resolved motion rate (kinematics-based)more » and resolved acceleration (dynamics-based) control to WMR servo-control. We evaluate simulation studies of two exemplary WMRs: Uranus (a three degree-of-freedom WMR constructed at Carnegie Mellon University), and Bicsun-Bicas (a two degree-of-freedom WMR being constructed at Sandia National Laboratories) under the control of these algorithms. Although resolved motion rate servo-control is adequate for the control of Uranus, resolved acceleration servo-control is required for the control of the mechanically simpler Bicsun-Bicas because it exhibits more dynamic coupling and nonlinearities. Successful accurate motion control of these WMRs in simulation is driving current experimental research studies. 18 refs., 7 figs., 5 tabs.« less

  4. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    PubMed

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p <.01) for controlling breathing (10.7 +/- 5.6 min) and longer (p <.01) for music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  5. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    PubMed

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  6. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  7. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Yuan, Z. H.; Wu, J.

    2006-10-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  8. Analysis of the accuracy and robustness of the leap motion controller.

    PubMed

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  9. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  10. An Ultra-Precise Method for the Nano Thin-Film Removal

    NASA Astrophysics Data System (ADS)

    Pa, P. S.

    In this research an electrode-set is used to investigate via an ultra-precise method for the removal of Indium Tin Oxide (ITO) thin-film microstructure from defective display panels to conquer the low yield rate in display panel production as to from imperfect Indium Tin Oxide layer deposition is well known. This process, which involves the removal of ITO layer substructure by means of an electrochemical removal (ECMR), is of major interest to the optoelectronics semiconductor industry. In this electro machining process a high current flow and high feed rate of the display (color filter) achieves complete and efficient removal of the ITO layer. The ITO thin-film can be removed completely by a proper combination of feed rate and electric power. A small gap between the diameter cathode virtual rotation circle and the diameter virtual rotation circle also corresponds to a higher removal rate. A small anode edge radius with a small cathode edge radius effectively improves dregs discharge and is an advantage when associated with a high workpiece feed rate. This precision method for the recycling of defective display screen color filters is presented as an effective tool for use in the screen manufacturing process. The defective Indium Tin Oxide thin-film can be removed easily and cleanly in a short time. The complete removal of the ITO layer makes it possible to put these panels back into the production line for reuse with a considerable reduction of both waste and production cost.

  11. Analysis of achievable disturbance attenuation in a precision magnetically-suspended motion control system

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.

    1994-01-01

    The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.

  12. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.

    PubMed

    Ko, Sunho; Nakazawa, Atsushi; Kurose, Yusuke; Harada, Kanako; Mitsuishi, Mamoru; Sora, Shigeo; Shono, Naoyuki; Nakatomi, Hirofumi; Saito, Nobuhito; Morita, Akio

    2017-05-01

    OBJECTIVE Advanced and intelligent robotic control is necessary for neurosurgical robots, which require great accuracy and precision. In this article, the authors propose methods for dynamically and automatically controlling the motion-scaling ratio of a master-slave neurosurgical robotic system to reduce the task completion time. METHODS Three dynamic motion-scaling modes were proposed and compared with the conventional fixed motion-scaling mode. These 3 modes were defined as follows: 1) the distance between a target point and the tip of the slave manipulator, 2) the distance between the tips of the slave manipulators, and 3) the velocity of the master manipulator. Five test subjects, 2 of whom were neurosurgeons, sutured 0.3-mm artificial blood vessels using the MM-3 neurosurgical robot in each mode. RESULTS The task time, total path length, and helpfulness score were evaluated. Although no statistically significant differences were observed, the mode using the distance between the tips of the slave manipulators improves the suturing performance. CONCLUSIONS Dynamic motion scaling has great potential for the intelligent and accurate control of neurosurgical robots.

  13. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  14. Ontological modelling of knowledge management for human-machine integrated design of ultra-precision grinding machine

    NASA Astrophysics Data System (ADS)

    Hong, Haibo; Yin, Yuehong; Chen, Xing

    2016-11-01

    Despite the rapid development of computer science and information technology, an efficient human-machine integrated enterprise information system for designing complex mechatronic products is still not fully accomplished, partly because of the inharmonious communication among collaborators. Therefore, one challenge in human-machine integration is how to establish an appropriate knowledge management (KM) model to support integration and sharing of heterogeneous product knowledge. Aiming at the diversity of design knowledge, this article proposes an ontology-based model to reach an unambiguous and normative representation of knowledge. First, an ontology-based human-machine integrated design framework is described, then corresponding ontologies and sub-ontologies are established according to different purposes and scopes. Second, a similarity calculation-based ontology integration method composed of ontology mapping and ontology merging is introduced. The ontology searching-based knowledge sharing method is then developed. Finally, a case of human-machine integrated design of a large ultra-precision grinding machine is used to demonstrate the effectiveness of the method.

  15. What Is Being Done to Control Motion Sickness?

    NASA Technical Reports Server (NTRS)

    Hall, Y. D.

    1985-01-01

    AFT (Autogenic Feedback Training) involves practicing a series of mental exercises to speed up or slow down the control of autonomic activity. This produces a reduced tendency for autonomic activity levels to diverge from baseline (at rest) under stressful motion-sickness-inducing conditions. Subjects conditions. Subjects engaged in applying AFT exercises are required to closely monitor their own bodily sensations during motion-sickness-eliciting tests. These tests include the Coriolis Sickness Susceptibility Index (CSSI), which consists of sitting a subject into a rotating chair that moves at various speeds while a visual background turns at differing speeds and directions, and the Vertical Acceleration Rotation Device (VARD) test, which involves the placing of a subject in a drum that moves in an upward and downward motion until he or she is sick, while simultaneously monitoring the subject's vital signs. These tests provide investigators with evidence of slight changes in autonomic activities such as increases in heart rate, skin temperature, and sweat. All of these symptoms occur in subjects that experience bodily weakness or discomfort with the onset of motion sickness.

  16. Design and Simulation of a PID Controller for Motion Control Systems

    NASA Astrophysics Data System (ADS)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  17. Reduction of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  18. Ontology-based coupled optimisation design method using state-space analysis for the spindle box system of large ultra-precision optical grinding machine

    NASA Astrophysics Data System (ADS)

    Wang, Qianren; Chen, Xing; Yin, Yuehong; Lu, Jian

    2017-08-01

    With the increasing complexity of mechatronic products, traditional empirical or step-by-step design methods are facing great challenges with various factors and different stages having become inevitably coupled during the design process. Management of massive information or big data, as well as the efficient operation of information flow, is deeply involved in the process of coupled design. Designers have to address increased sophisticated situations when coupled optimisation is also engaged. Aiming at overcoming these difficulties involved in conducting the design of the spindle box system of ultra-precision optical grinding machine, this paper proposed a coupled optimisation design method based on state-space analysis, with the design knowledge represented by ontologies and their semantic networks. An electromechanical coupled model integrating mechanical structure, control system and driving system of the motor is established, mainly concerning the stiffness matrix of hydrostatic bearings, ball screw nut and rolling guide sliders. The effectiveness and precision of the method are validated by the simulation results of the natural frequency and deformation of the spindle box when applying an impact force to the grinding wheel.

  19. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada

  20. Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.

    PubMed

    Yip, W S; To, S

    2018-03-02

    Titanium alloys are extensively applied in biomedical industries due to their excellent material properties. However, they are recognized as difficult to cut materials due to their low thermal conductivity, which induces a complexity to their deformation mechanisms and restricts precise productions. This paper presents a new observation about the removal regime of titanium alloys. The experimental results, including the chip formation, thrust force signal and surface profile, showed that there was a critical cutting distance to achieve better surface integrity of machined surface. The machined areas with better surface roughness were located before the clear transition point, defining as the ductile to brittle transition. The machined area at the brittle region displayed the fracture deformation which showed cracks on the surface edge. The relationship between depth of cut and the ductile to brittle transaction behavior of titanium alloys in ultra-precision machining(UPM) was also revealed in this study, it showed that the ductile to brittle transaction behavior of titanium alloys occurred mainly at relatively small depth of cut. The study firstly defines the ductile to brittle transition behavior of titanium alloys in UPM, contributing the information of ductile machining as an optimal machining condition for precise productions of titanium alloys.

  1. Method for neural network control of motion using real-time environmental feedback

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1997-01-01

    A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.

  2. Motion control system of MAX IV Laboratory soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less

  3. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    PubMed

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  4. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  5. An intelligent control scheme for precise tip-motion control in atomic force microscopy.

    PubMed

    Wang, Yanyan; Hu, Xiaodong; Xu, Linyan

    2016-01-01

    The paper proposes a new intelligent control method to precisely control the tip motion of the atomic force microscopy (AFM). The tip moves up and down at a high rate along the z direction during scanning, requiring the utilization of a rapid feedback controller. The standard proportional-integral (PI) feedback controller is commonly used in commercial AFMs to enable topography measurements. The controller's response performance is determined by the set of the proportional (P) parameter and the integral (I) parameter. However, the two parameters cannot be automatically altered simultaneously according to the scanning speed and the surface topography during continuors scanning, leading to an inaccurate measurement. Thus a new intelligent controller combining the fuzzy controller and the PI controller is put forward in the paper. The new controller automatically selects the most appropriate PI parameters to achieve a fast response rate on basis of the tracking errors. In the experimental setup, the new controller is realized with a digital signal process (DSP) system, implemented in a conventional AFM system. Experiments are carried out by comparing the new method with the standard PI controller. The results demonstrate that the new method is more robust and effective for the precise tip motion control, corresponding to the achievement of a highly qualified image by shortening the response time of the controller. © Wiley Periodicals, Inc.

  6. Coordinating robot motion, sensing, and control in plans. LDRD project final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, P.G.; Brown, R.G.; Watterberg, P.A.

    1997-08-01

    The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The projectmore » considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.« less

  7. Motion Controlled Gait Enhancing Mobile Shoe for Rehabilitation

    PubMed Central

    Handzic, Ismet; Vasudevan, Erin V.; Reed, Kyle B.

    2011-01-01

    Walking on a split-belt treadmill, which has two belts that can be run at different speeds, has been shown to improve walking patterns post-stroke. However, these improvements are only temporarily retained once individuals transition to walking over ground. We hypothesize that longer-lasting effects would be observed if the training occurred during natural walking over ground, as opposed to on a treadmill. In order to study such long-term effects, we have developed a mobile and portable device which can simulate the same gait altering movements experienced on a split-belt treadmill. The new motion controlled gait enhancing mobile shoe improves upon the previous version’s drawbacks. This version of the GEMS has motion that is continuous, smooth, and regulated with on-board electronics. A vital component of this new design is the Archimedean spiral wheel shape that redirects the wearer’s downward force into a horizontal backward motion. The design is passive and does not utilize any motors. Its motion is regulated only by a small magnetic particle brake. Further experimentation is needed to evaluate the long-term after-effects. PMID:22275620

  8. Controlling the motion of multiple objects on a Chladni plate

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-09-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.

  9. Energy efficient motion control of the electric bus on route

    NASA Astrophysics Data System (ADS)

    Kotiev, G. O.; Butarovich, D. O.; Kositsyn, B. B.

    2018-02-01

    At present, the urgent problem is the reduction of energy costs of urban motor transport. The article proposes a method of solving this problem by developing an energy-efficient law governing the movement of an electric bus along a city route. To solve this problem, an algorithm is developed based on the dynamic programming method. The proposed method allows you to take into account the constraints imposed on the phase coordinates, control action, as well as on the time of the route. In the course of solving the problem, the model of rectilinear motion of an electric bus on a horizontal reference surface is considered, taking into account the assumptions that allow it to be adapted for the implementation of the method. For the formation of a control action in the equations of motion dynamics, an algorithm for changing the traction / braking torque on the wheels of an electric bus is considered, depending on the magnitude of the control parameter and the speed of motion. An optimal phase trajectory was obtained on a selected section of the road for the prototype of an electric bus. The article presents the comparison of simulation results obtained with the optimal energy efficient control law with the results obtained by a test driver. The comparison proved feasibility of the energy efficient control law for the automobile city electric transport.

  10. On Motion Planning and Control of Multi-Link Lightweight Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri

    1987-01-01

    A general gross and fine motion planning and control strategy is needed for lightweight robotic manipulator applications such as painting, welding, material handling, surface finishing, and spacecraft servicing. The control problem of lightweight manipulators is to perform fast, accurate, and robust motions despite the payload variations, structural flexibility, and other environmental disturbances. Performance of the rigid manipulator model based computed torque and decoupled joint control methods are determined and simulated for the counterpart flexible manipulators. A counterpart flexible manipulator is defined as a manipulator which has structural flexibility, in addition to having the same inertial, geometric, and actuation properties of a given rigid manipulator. An adaptive model following control (AMFC) algorithm is developed to improve the performance in speed, accuracy, and robustness. It is found that the AMFC improves the speed performance by a factor of two over the conventional non-adaptive control methods for given accuracy requirements while proving to be more robust with respect to payload variations. Yet there are clear limitations on the performance of AMFC alone as well, which are imposed by the arm flexibility. In the search to further improve speed performance while providing a desired accuracy and robustness, a combined control strategy is developed. Furthermore, the problem of switching from one control structure to another during the motion and implementation aspects of combined control are discussed.

  11. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  12. Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry.

    PubMed

    Schmidt, Robert-H Munnig

    2012-08-28

    The developments in lithographic tools for the production of an integrated circuit (IC) are ruled by 'Moore's Law': the density of components on an IC doubles in about every two years. The corresponding size reduction of the smallest detail in an IC entails several technological breakthroughs. The wafer scanner, the exposure system that defines those details, is the determining factor in these developments. This review deals with those aspects of the positioning systems inside these wafer scanners that enable the extension of Moore's Law into the future. The design of these systems is increasingly difficult because of the accuracy levels in the sub-nanometre range coupled with motion velocities of several metres per second. In addition to the use of feedback control for the reduction of errors, high-precision model-based feed-forward control is required with an almost ideally reproducible motion-system behaviour and a strict limitation of random disturbing events. The full mastering of this behaviour even includes material drift on an atomic scale and is decisive for the future success of these machines.

  13. On the Motions of an Oscillating System Under the Influence of Flip-Flop Controls

    NASA Technical Reports Server (NTRS)

    Fluegge-Lotz, I.; Klotter, K.

    1949-01-01

    So-called flip-flop controls (also called "on-off-course controls") are frequently preferred to continuous controls because of their simple construction. Thus they are used also for the steering control of airplanes. Such a body possesses-even if one thinks, for instance, only of the symmetric longitudinal motion - three degrees of freedom so that a study of its motions under the influence of an intermittent control is at least lengthy. Thus, it is suggested that an investigation of the basic effect of such a control first be made on a system with one degree of freedom. Furthermore, we limit ourselves in the resent report to the investigation of an "ideal" control where the control surface immediately obeys the command given by the "steering control function". Thus the oscillation properties of the control surface and the defects in linkage, sensing element, and mixing device are, at first, neglected. As long as the deviations from the "ideal" control may be neglected in practice, also the motion of the control surface takes place at the heat of the motion of the principal system. The aim of our investigation is to obtain a survey of the influence of the system and control coefficients on the damping behavior which is to be attained.

  14. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    PubMed

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Research and development of a control system for multi axis cooperative motion based on PMAC

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  16. Synthesis of a controller for stabilizing the motion of a rigid body about a fixed point

    NASA Astrophysics Data System (ADS)

    Zabolotnov, Yu. M.; Lobanov, A. A.

    2017-05-01

    A method for the approximate design of an optimal controller for stabilizing the motion of a rigid body about a fixed point is considered. It is assumed that rigid body motion is nearly the motion in the classical Lagrange case. The method is based on the common use of the Bellman dynamic programming principle and the averagingmethod. The latter is used to solve theHamilton-Jacobi-Bellman equation approximately, which permits synthesizing the controller. The proposed method for controller design can be used in many problems close to the problem of motion of the Lagrange top (the motion of a rigid body in the atmosphere, the motion of a rigid body fastened to a cable in deployment of the orbital cable system, etc.).

  17. Motion sickness: Can it be controlled

    NASA Technical Reports Server (NTRS)

    Carnes, David

    1988-01-01

    NASA is one of the few research centers concerned with motion sickness. Since the physiology of man has been developed in the one-gravity field Earth, the changes experienced by man in space are unique, and often result in symptoms that resemble motion sickness on Earth. NASA is concerned with motion sickness because it is very uncomfortable for the astronauts. Another concern of NASA is the possibility of a motion sickness astronaut regurgitating while he or she is sealed in an airtight space suit. This could be fatal. Motivated by these reasons, NASA spent thousands of dollars in research and development for a drug or technique for combating motion sickness. Several different treatments were developed for this disorder. Three of the most effective ways of combatting motion sickness are discussed.

  18. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  19. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms.

    PubMed

    Cowings, P S; Toscano, W B

    2000-10-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  20. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    PubMed

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  1. Structure and magnetic properties of mono- and bi-layer graphene films on ultraprecision figured 4H-SiC(0001) surfaces.

    PubMed

    Hattori, Azusa N; Okamoto, Takeshi; Sadakuni, Shun; Murata, Junji; Oi, Hideo; Arima, Kenta; Sano, Yasuhisa; Hattori, Ken; Daimon, Hiroshi; Endo, Katsuyoshi; Yamauchi, Kazuto

    2011-04-01

    Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.

  2. Complex motion of a vehicle through a series of signals controlled by power-law phase

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  3. Autogenic-Feedback Training for the Control of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human physiological responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and "test-only" controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  4. Evaluation of the leap motion controller as a new contact-free pointing device.

    PubMed

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  5. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    PubMed

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the

  6. An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control

    ERIC Educational Resources Information Center

    Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.

    2012-01-01

    Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…

  7. Autogenic Feedback Training Exercise: Controlling Physiological Responses to Mitigate Motion Sickness

    NASA Technical Reports Server (NTRS)

    Walton, Nia; Spencer, Telissa; Cowings, Patricia; Toscano, William B.

    2018-01-01

    During space travel approximately 50 of the crew experience symptoms of motion sickness that can range from mild forms of nausea or dizziness to severe malaise and vomiting1. Developing an effective treatment for these symptoms has become a priority of the National Aeronautics and Space Administration (NASA). Autogenic-Feedback Training Exercise (AFTE) is a nonpharmacological countermeasure for mitigating motion sickness. It involves training subjects to control physiological responses in high stress environments2. The primary goal of this experiment is to evaluate the effectiveness of AFTE for increasing tolerance to motion sickness in high stress environments.

  8. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  9. Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture: study protocol for a randomized controlled trial.

    PubMed

    Barfod, Kristoffer Weisskirchner; Hansen, Maria Swennergren; Holmich, Per; Troelsen, Anders; Kristensen, Morten Tange

    2016-11-29

    Early controlled ankle motion is widely used in the non-operative treatment of acute Achilles tendon rupture, though its safety and efficacy have never been investigated in a randomized setup. The objectives of this study are to investigate if early controlled motion of the ankle affects functional and patient-reported outcomes. The study is performed as a blinded, randomized, controlled trial with patients allocated in a 1:1 ratio to one of two parallel groups. Patients aged from 18 to 70 years are eligible for inclusion. The intervention group performs early controlled motion of the ankle in weeks 3-8 after rupture. The control group is immobilized. In total, 130 patients will be included from one big orthopedic center over a period of 2½ years. The primary outcome is the patient-reported Achilles tendon Total Rupture Score evaluated at 12 months post-injury. Secondary outcome measures are the heel-rise work test, Achilles tendon elongation, and the rate of re-rupture. The primary analysis will be conducted as intention-to-treat analyses. This trial is the first to investigate the safety and efficacy of early controlled motion in the treatment of acute Achilles tendon rupture in a randomized setup. The study uses the patient-reported outcome measure, the Achilles tendon Total Rupture Score, as the primary endpoint, as it is believed to be the best surrogate measure for the tendon's actual capability to function in everyday life. ClinicalTrials.gov: NCT02015364 . Registered on 13 December 2013.

  10. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding

    PubMed Central

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-01-01

    Background/aim This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Methods Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. Results The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). Conclusions The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. PMID:26746907

  11. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft.

    PubMed

    Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-10-25

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  12. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    PubMed Central

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  13. Pharmacology in space. Part 2. Controlling motion sickness

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.; Bungo, M. W.

    1989-01-01

    In this second article in the two-part series on pharmacology in space, Claire Lathers and colleagues discuss the pharmacology of drugs used to control motion sickness in space and note that the pharmacology of the 'ideal' agent has yet to be worked out. That motion sickness may impair the pharmacological action of a drug by interfering with its absorption and distribution because of alteration of physiology is a problem unique to pharmacology in space. The authors comment on the problem of designing suitable ground-based studies to evaluate the pharmacological effect of drugs to be used in space and discuss the use of salivary samples collected during space flight to allow pharmacokinetic evaluations necessary for non-invasive clinical drug monitoring.

  14. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    PubMed Central

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2015-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC. PMID:25609043

  15. Development of ultra-precision micro-cavity measurement technique in HIT-UOI

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Lei; Tan, Jiubin

    2010-08-01

    Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.

  16. Shoulder Dynamic Control Ratio and Rotation Range of Motion in Female Junior Elite Handball Players and Controls.

    PubMed

    van Cingel, Robert; Habets, Bas; Willemsen, Linn; Staal, Bart

    2018-03-01

    To compare glenohumeral range of motion and shoulder rotator muscle strength in healthy female junior elite handball players and controls. Cross-sectional case-control study. Sports medical center. Forty elite female handball players and 30 controls active in nonoverhead sports participated in this study. Passive external rotator (ER), internal rotator (IR), and total range of motion (TROM) of the dominant and nondominant arm were examined with a goniometer. An isokinetic dynamometer was used to evaluate concentric and eccentric rotator muscle strength at 60 and 120 degrees/s with dynamic control ratio (DCR = ERecc:IRcon) as the main outcome parameter. Except for the ER range of motion in the nondominant arm, no significant differences were found between groups for IR, ER of the dominant arm, and the TROM. Within the handball group, the side-to-side difference for IR of the dominant arm was -1.4 degrees. The ER and the TROM of the dominant arm were significantly larger, 6.3 and 4.9 degrees, respectively. For both groups, the DCR values were above 1 and no significant differences were found between the dominant and nondominant arm. The DCR values in the handball group were significantly lower than in the control group. Based on the adopted definitions for muscle imbalance, glenohumeral internal range of motion deficit and TROM deficit our elite female handball players seem not at risk for shoulder injuries. Prospective studies are needed to support the belief that a DCR below 1 places the shoulder at risk for injury.

  17. Sensor-Based Inspection of the Formation Accuracy in Ultra-Precision Grinding (UPG) of Aspheric Surface Considering the Chatter Vibration

    NASA Astrophysics Data System (ADS)

    Lei, Yao; Bai, Yue; Xu, Zhijun

    2018-06-01

    This paper proposes an experimental approach for monitoring and inspection of the formation accuracy in ultra-precision grinding (UPG) with respect to the chatter vibration. Two factors related to the grinding progress, the grinding speed of grinding wheel and spindle, and the oil pressure of the hydrostatic bearing are taken into account to determining the accuracy. In the meantime, a mathematical model of the radius deviation caused by the micro vibration is also established and applied in the experiments. The results show that the accuracy is sensitive to the vibration and the forming accuracy is much improved with proper processing parameters. It is found that the accuracy of aspheric surface can be less than 4 μm when the grinding speed is 1400 r/min and the wheel speed is 100 r/min with the oil pressure being 1.1 MPa.

  18. Three axis electronic flight motion simulator real time control system design and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  19. Three axis electronic flight motion simulator real time control system design and implementation.

    PubMed

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  20. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  1. Coherent random lasing controlled by Brownian motion of the active scatterer

    NASA Astrophysics Data System (ADS)

    Liang, Shuofeng; Yin, Leicheng; Zhang, ZhenZhen; Xia, Jiangying; Xie, Kang; Zou, Gang; Hu, Zhijia; Zhang, Qijin

    2018-05-01

    The stability of the scattering loop is fundamental for coherent random lasing in a dynamic scattering system. In this work, fluorescence of DPP (N, N-di [3-(isobutyl polyhedral oligomeric silsesquioxanes) propyl] perylene diimide) is scattered to produce RL and we realize the transition from incoherent RL to coherent RL by controlling the Brownian motion of the scatterers (dimer aggregates of DPP) and the stability of scattering loop. To produce coherent random lasers, the loop needs to maintain a stable state within the loop-stable time, which can be determined through controlled Brownian motion of scatterers in the scattering system. The result shows that the loop-stable time is within 5.83 × 10‑5 s to 1.61 × 10‑4 s based on the transition from coherent to incoherent random lasing. The time range could be tuned by finely controlling the viscosity of the solution. This work not only develops a method to predict the loop-stable time, but also develops the study between Brownian motion and random lasers, which opens the road to a variety of novel interdisciplinary investigations involving modern statistical mechanics and disordered photonics.

  2. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding.

    PubMed

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-04-01

    This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Design and development of a motion compensator for the RSRA main rotor control

    NASA Technical Reports Server (NTRS)

    Jeffrey, P.; Huber, R.

    1979-01-01

    The RSRA, an experimental helicopter, is equipped with an active isolation system that allows the transmission to move relative to the fuselage. The purpose of the motion compensator is to prevent these motions from introducing unwanted signals to the main rotor control. A motion compensator concept was developed that has six-degree-of-freedom capability. The mechanism was implemented on RSRA and its performance verified by ground and flight tests.

  4. Machining approach of freeform optics on infrared materials via ultra-precision turning.

    PubMed

    Li, Zexiao; Fang, Fengzhou; Chen, Jinjin; Zhang, Xiaodong

    2017-02-06

    Optical freeform surfaces are of great advantage in excellent optical performance and integrated alignment features. It has wide applications in illumination, imaging and non-imaging, etc. Machining freeform surfaces on infrared (IR) materials with ultra-precision finish is difficult due to its brittle nature. Fast tool servo (FTS) assisted diamond turning is a powerful technique for the realization of freeform optics on brittle materials due to its features of high spindle speed and high cutting speed. However it has difficulties with large slope angles and large rise-and-falls in the sagittal direction. In order to overcome this defect, the balance of the machining quality on the freeform surface and the brittle nature in IR materials should be realized. This paper presents the design of a near-rotational freeform surface (NRFS) with a low non-rotational degree (NRD) to constraint the variation of traditional freeform optics to solve this issue. In NRFS, the separation of the surface results in a rotational part and a residual part denoted as a non-rotational surface (NRS). Machining NRFS on germanium is operated by FTS diamond turning. Characteristics of the surface indicate that the optical finish of the freeform surface has been achieved. The modulation transfer function (MTF) of the freeform optics shows a good agreement to the design expectation. Images of the final optical system confirm that the fabricating strategy is of high efficiency and high quality. Challenges and prospects are discussed to provide guidance of future work.

  5. The Development of a Computer Controlled Super 8 Motion Picture Projector.

    ERIC Educational Resources Information Center

    Reynolds, Eldon J.

    Instructors in Child Development at the University of Texas at Austin selected sound motion pictures as the most effective medium to simulate the observation of children in nursery laboratories. A computer controlled projector was designed for this purpose. An interface and control unit controls the Super 8 projector from a time-sharing computer…

  6. Quality control procedures for dynamic treatment delivery techniques involving couch motion.

    PubMed

    Yu, Victoria Y; Fahimian, Benjamin P; Xing, Lei; Hristov, Dimitre H

    2014-08-01

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  7. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  8. Control of humanoid robot via motion-onset visual evoked potentials

    PubMed Central

    Li, Wei; Li, Mengfan; Zhao, Jing

    2015-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918

  9. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  10. Motion direction discrimination training reduces perceived motion repulsion.

    PubMed

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  11. Fabrication of a wide-field NIR integral field unit for SWIMS using ultra-precision cutting

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yutaro; Yamagata, Yutaka; Morita, Shin-ya; Motohara, Kentaro; Ozaki, Shinobu; Takahashi, Hidenori; Konishi, Masahiro; Kato, Natsuko M.; Kobayakawa, Yutaka; Terao, Yasunori; Ohashi, Hirofumi

    2016-07-01

    We describe overview of fabrication methods and measurement results of test fabrications of optical surfaces for an integral field unit (IFU) for Simultaneous color Wide-field Infrared Multi-object Spectrograph, SWIMS, which is a first-generation instrument for the University of Tokyo Atacama Observatory 6.5-m telescope. SWIMS-IFU provides entire near-infrared spectrum from 0.9 to 2.5 μm simultaneously covering wider field of view of 17" × 13" compared with current near-infrared IFUs. We investigate an ultra-precision cutting technique to monolithically fabricate optical surfaces of IFU optics such as an image slicer. Using 4- or 5-axis ultra precision machine we compare the milling process and shaper cutting process to find the best way of fabrication of image slicers. The measurement results show that the surface roughness almost satisfies our requirement in both of two methods. Moreover, we also obtain ideal surface form in the shaper cutting process. This method will be adopted to other mirror arrays (i.e. pupil mirror and slit mirror, and such monolithic fabrications will also help us to considerably reduce alignment procedure of each optical elements.

  12. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control

    PubMed Central

    Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-01-01

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. PMID:27733607

  13. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control.

    PubMed

    Leib, Raz; Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-10-12

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. Copyright © 2016 Leib et al.

  14. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  15. Modeling of the motion of automobile elastic wheel in real-time for creation of wheeled vehicles motion control electronic systems

    NASA Astrophysics Data System (ADS)

    Balakina, E. V.; Zotov, N. M.; Fedin, A. P.

    2018-02-01

    Modeling of the motion of the elastic wheel of the vehicle in real-time is used in the tasks of constructing different models in the creation of wheeled vehicles motion control electronic systems, in the creation of automobile stand-simulators etc. The accuracy and the reliability of simulation of the parameters of the wheel motion in real-time when rolling with a slip within the given road conditions are determined not only by the choice of the model, but also by the inaccuracy and instability of the numerical calculation. It is established that the inaccuracy and instability of the calculation depend on the size of the step of integration and the numerical method being used. The analysis of these inaccuracy and instability when wheel rolling with a slip was made and recommendations for reducing them were developed. It is established that the total allowable range of steps of integration is 0.001.0.005 s; the strongest instability is manifested in the calculation of the angular and linear accelerations of the wheel; the weakest instability is manifested in the calculation of the translational velocity of the wheel and moving of the center of the wheel; the instability is less at large values of slip angle and on more slippery surfaces. A new method of the average acceleration is suggested, which allows to significantly reduce (up to 100%) the manifesting of instability of the solution in the calculation of all parameters of motion of the elastic wheel for different braking conditions and for the entire range of steps of integration. The results of research can be applied to the selection of control algorithms in vehicles motion control electronic systems and in the testing stand-simulators

  16. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  17. The influence of motion control shoes on the running gait of mature and young females.

    PubMed

    Lilley, Kim; Stiles, Vicky; Dixon, Sharon

    2013-03-01

    This study compared the running gait of mature and young females, and investigated the effect of a motion control shoe. First, it was hypothesised that in a neutral shoe, mature females would display significantly greater rearfoot eversion, knee internal rotation and external adductor moments when compared to a younger group. Secondly, the motion control shoe would reduce rearfoot eversion and knee internal rotation in both groups. Thirdly it was hypothesised that the motion control shoe would increase knee external adductor moment, through an increase in knee varus and moment arm. 15 mature (40-60 years) and 15 young (18-25 years) females performed 10 running trials at 3.5ms(-1)±5% over a force platform. Two shoes were tested, the Adidas Supernova Glide (neutral), and the Adidas Supernova Sequence (motion control). Ankle and knee joint dynamics were analysed for the right leg, and the mean of ten trials was calculated. Joint moments were calculated using inverse dynamics. In the neutral condition, mature females presented greater peak rearfoot eversion, knee internal rotation, and external adductor moments than young females (p<0.05). A motion control shoe significantly reduced peak rearfoot eversion and knee internal rotation among both groups (p<0.05). No between shoe differences in knee external adductor moment were observed. A motion control shoe is recommended to reduce risk of injury associated with rearfoot eversion and knee internal rotation in mature females. However since the knee external adductor moment is a variable commonly associated with medial knee loading it is suggested that alternative design features are required to influence this moment. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  19. Motion control of rigid bodies in SE(3)

    NASA Astrophysics Data System (ADS)

    Roza, Ashton

    This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.

  20. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a

  1. An improved adaptive control for repetitive motion of robots

    NASA Technical Reports Server (NTRS)

    Pourboghrat, F.

    1989-01-01

    An adaptive control algorithm is proposed for a class of nonlinear systems, such as robotic manipulators, which is capable of improving its performance in repetitive motions. When the task is repeated, the error between the desired trajectory and that of the system is guaranteed to decrease. The design is based on the combination of a direct adaptive control and a learning process. This method does not require any knowledge of the dynamic parameters of the system.

  2. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  3. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  4. Redox control of molecular motion in switchable artificial nanoscale devices.

    PubMed

    Credi, Alberto; Semeraro, Monica; Silvi, Serena; Venturi, Margherita

    2011-03-15

    The design, synthesis, and operation of molecular-scale systems that exhibit controllable motions of their component parts is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The development of this kind of species constitutes the premise to the construction of molecular machines and motors, which in a not-too-distant future could find applications in fields such as materials science, information technology, energy conversion, diagnostics, and medicine. In the past 25 years the development of supramolecular chemistry has enabled the construction of an interesting variety of artificial molecular machines. These devices operate via electronic and molecular rearrangements and, like the macroscopic counterparts, they need energy to work as well as signals to communicate with the operator. Here we outline the design principles at the basis of redox switching of molecular motion in artificial nanodevices. Redox processes, chemically, electrically, or photochemically induced, can indeed supply the energy to bring about molecular motions. Moreover, in the case of electrically and photochemically induced processes, electrochemical and photochemical techniques can be used to read the state of the system, and thus to control and monitor the operation of the device. Some selected examples are also reported to describe the most representative achievements in this research area.

  5. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  6. Motion control of musculoskeletal systems with redundancy.

    PubMed

    Park, Hyunjoo; Durand, Dominique M

    2008-12-01

    Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle-subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.

  7. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the

  8. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training.

    PubMed

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  9. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  10. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  11. Optimal control of the ballistic motion of Airy beams.

    PubMed

    Hu, Yi; Zhang, Peng; Lou, Cibo; Huang, Simon; Xu, Jingjun; Chen, Zhigang

    2010-07-01

    We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with controllable range and height. We show that the peak beam intensity can be delivered to any desired location along the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or turbulent media.

  12. Response analysis of curved bridge with unseating failure control system under near-fault ground motions

    NASA Astrophysics Data System (ADS)

    Zuo, Ye; Sun, Guangjun; Li, Hongjing

    2018-01-01

    Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.

  13. Content and structure of knowledge base used for virtual control of android arm motion in specified environment

    NASA Astrophysics Data System (ADS)

    Pritykin, F. N.; Nebritov, V. I.

    2018-01-01

    The paper presents the configuration of knowledge base necessary for intelligent control of android arm mechanism motion with different positions of certain forbidden regions taken into account. The present structure of the knowledge base characterizes the past experience of arm motion synthesis in the vector of velocities with due regard for the known obstacles. This structure also specifies its intrinsic properties. Knowledge base generation is based on the study of the arm mechanism instantaneous states implementations. Computational experiments connected with the virtual control of android arm motion with known forbidden regions using the developed knowledge base are introduced. Using the developed knowledge base to control virtually the arm motion reduces the time of test assignments calculation. The results of the research can be used in developing control systems of autonomous android robots in the known in advance environment.

  14. Hand interception of occluded motion in humans: a test of model-based vs. on-line control

    PubMed Central

    Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. PMID:26133803

  15. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  16. Application of a Leap Motion Sensor for Improved Drone Control

    DTIC Science & Technology

    2017-12-01

    command ( )u t needed to control the distance error ( )e t was obtained using         0 1 t p d i de t u t K e t e d T T dt...SENSOR FOR IMPROVED DRONE CONTROL by Alfredo Belaunde Sara-Lafosse December 2017 Thesis Advisor: Xiaoping Yun Second Reader: James Calusdian THIS...thesis 4. TITLE AND SUBTITLE APPLICATION OF A LEAP MOTION SENSOR FOR IMPROVED DRONE CONTROL 5. FUNDING NUMBERS 6. AUTHOR(S) Alfredo Belaunde Sara

  17. PSD Camera Based Position and Posture Control of Redundant Robot Considering Contact Motion

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kotani, Kentaro

    The paper describes a position and posture controller design based on the absolute position by external PSD vision sensor for redundant robot manipulator. The redundancy enables a potential capability to avoid obstacle while continuing given end-effector jobs under contact with middle link of manipulator. Under contact motion, the deformation due to joint torsion obtained by comparing internal and external position sensor, is actively suppressed by internal/external position hybrid controller. The selection matrix of hybrid loop is given by the function of the deformation. And the detected deformation is also utilized in the compliant motion controller for passive obstacle avoidance. The validity of the proposed method is verified by several experimental results of 3link planar redundant manipulator.

  18. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    PubMed

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  19. Nonlinear dynamics and chaotic motions in feedback-controlled two- and three-degree-of-freedom robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravishankar, A.S. Ghosal, A.

    1999-01-01

    The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper, the authors analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. The authors first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zeromore » or positive, then the robot equations cannot exhibit chaos. The authors show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, they analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator, respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, the authors resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and the authors show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.« less

  20. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  1. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  2. Relative dynamics and motion control of nanosatellite formation flying

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Hiraki, Koju

    2016-04-01

    Orbit selection is a necessary factor in nanosatellite formation mission design/meanwhile, to keep the formation, it is necessary to consume fuel. Therefore, the best orbit design for nanosatellite formation flying should be one that requires the minimum fuel consumption. The purpose of this paper is to analyse orbit selection with respect to the minimum fuel consumption, to provide a convenient way to estimate the fuel consumption for keeping nanosatellite formation flying and to present a simplified method of formation control. The formation structure is disturbed by J2 gravitational perturbation and other perturbing accelerations such as atmospheric drag. First, Gauss' Variation Equations (GVE) are used to estimate the essential ΔV due to the J2 perturbation and atmospheric drag. The essential ΔV presents information on which orbit is good with respect to the minimum fuel consumption. Then, the linear equations which account for J2 gravitational perturbation of Schweighart-Sedwick are presented and used to estimate the fuel consumption to maintain the formation structure. Finally, the relative dynamics motion is presented as well as a simplified motion control of formation structure by using GVE.

  3. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    PubMed

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. Copyright © 2015 the American Physiological Society.

  4. Optical motion control of maglev graphite.

    PubMed

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  5. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  6. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.

    PubMed

    Lahanas, Vasileios; Loukas, Constantinos; Georgiou, Konstantinos; Lababidi, Hani; Al-Jaroudi, Dania

    2017-12-01

    The majority of the current surgical simulators employ specialized sensory equipment for instrument tracking. The Leap Motion controller is a new device able to track linear objects with sub-millimeter accuracy. The aim of this study was to investigate the potential of a virtual reality (VR) simulator for assessment of basic laparoscopic skills, based on the low-cost Leap Motion controller. A simple interface was constructed to simulate the insertion point of the instruments into the abdominal cavity. The controller provided information about the position and orientation of the instruments. Custom tools were constructed to simulate the laparoscopic setup. Three basic VR tasks were developed: camera navigation (CN), instrument navigation (IN), and bimanual operation (BO). The experiments were carried out in two simulation centers: MPLSC (Athens, Greece) and CRESENT (Riyadh, Kingdom of Saudi Arabia). Two groups of surgeons (28 experts and 21 novices) participated in the study by performing the VR tasks. Skills assessment metrics included time, pathlength, and two task-specific errors. The face validity of the training scenarios was also investigated via a questionnaire completed by the participants. Expert surgeons significantly outperformed novices in all assessment metrics for IN and BO (p < 0.05). For CN, a significant difference was found in one error metric (p < 0.05). The greatest difference between the performances of the two groups occurred for BO. Qualitative analysis of the instrument trajectory revealed that experts performed more delicate movements compared to novices. Subjects' ratings on the feedback questionnaire highlighted the training value of the system. This study provides evidence regarding the potential use of the Leap Motion controller for assessment of basic laparoscopic skills. The proposed system allowed the evaluation of dexterity of the hand movements. Future work will involve comparison studies with validated simulators and

  7. Ultra-precise micro-motion stage for optical scanning test

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Jianhuan; Jiang, Nan

    2009-05-01

    This study aims at the application of optical sensing technology in a 2D flexible hinge test stage. Optical fiber sensor which is manufactured taking advantage of the various unique properties of optical fiber, such as good electric insulation properties, resistance of electromagnetic disturbance, sparkless property and availability in flammable and explosive environment, has lots of good properties, such as high accuracy and wide dynamic range, repeatable, etc. and is applied in 2D flexible hinge stage driven by PZT. Several micro-bending structures are designed utilizing the characteristics of the flexible hinge stage. And through experiments, the optimal micro-bending tooth structure and the scope of displacement sensor trip under this optimal micro-bending tooth structure are derived. These experiments demonstrate that the application of optical fiber displacement sensor in 2D flexible hinge stage driven by PZT substantially broadens the dynamic testing range and improves the sensitivity of this apparatus. Driving accuracy and positioning stability are enhanced as well. [1,2

  8. The motion and control of a complex three-body space tethered system

    NASA Astrophysics Data System (ADS)

    Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei

    2017-11-01

    This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.

  9. Analysis of Timing Control Mechanism of Utterance and Body Motion Using Dialogue between Human and Communication Robot

    NASA Astrophysics Data System (ADS)

    Takasugi, Shoji; Yamamoto, Tomohito; Muto, Yumiko; Abe, Hiroyuki; Miyake, Yoshihiro

    The purpose of this study is to clarify the effects of timing control of utterance and body motion in human-robot interaction. Our previous study has already revealed the correlation of timing of utterance and body motion in human-human communication. Here we proposed a timing control model based on our previous research and estimated its influence to realize human-like communication using a questionnaire method. The results showed that the difference of effectiveness between the communication with the timing control model and that without it was observed. In addition, elderly people evaluated the communication with timing control much higher than younger people. These results show not only the importance of timing control of utterance and body motion in human communication but also its effectiveness for realizing human-like human-robot interaction.

  10. Neck motion, motor control, pain and disability: A longitudinal study of associations in neck pain patients in physiotherapy treatment.

    PubMed

    Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar

    2016-04-01

    Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  12. Motion control of a gantry crane with a container

    NASA Astrophysics Data System (ADS)

    Shugailo, T. S.; Yushkov, M. P.

    2018-05-01

    The transportation of a container by a gantry crane in a given time from one point of space to another is considered. The system is at rest at the end of the motion. A maximum admissible speed is taken into account. The control force is found using either the Pontryagin maximum principle or the generalized Gauss principle. The advantages of the second method over the first one is demonstrated.

  13. Decentralized reinforcement-learning control and emergence of motion patterns

    NASA Astrophysics Data System (ADS)

    Svinin, Mikhail; Yamada, Kazuyaki; Okhura, Kazuhiro; Ueda, Kanji

    1998-10-01

    In this paper we propose a system for studying emergence of motion patterns in autonomous mobile robotic systems. The system implements an instance-based reinforcement learning control. Three spaces are of importance in formulation of the control scheme. They are the work space, the sensor space, and the action space. Important feature of our system is that all these spaces are assumed to be continuous. The core part of the system is a classifier system. Based on the sensory state space analysis, the control is decentralized and is specified at the lowest level of the control system. However, the local controllers are implicitly connected through the perceived environment information. Therefore, they constitute a dynamic environment with respect to each other. The proposed control scheme is tested under simulation for a mobile robot in a navigation task. It is shown that some patterns of global behavior--such as collision avoidance, wall-following, light-seeking--can emerge from the local controllers.

  14. Object motion perception is shaped by the motor control mechanism of ocular pursuit.

    PubMed

    Schweigart, G; Mergner, T; Barnes, G R

    2003-02-01

    It is still a matter of debate whether the control of smooth pursuit eye movements involves an internal drive signal from object motion perception. We measured human target velocity and target position perceptions and compared them with the presumed pursuit control mechanism (model simulations). We presented normal subjects (Ns) and vestibular loss patients (Ps) with visual target motion in space. Concurrently, a visual background was presented, which was kept stationary or was moved with or against the target (five combinations). The motion stimuli consisted of smoothed ramp displacements with different dominant frequencies and peak velocities (0.05, 0.2, 0.8 Hz; 0.2-25.6 degrees /s). Subjects always pursued the target with their eyes. In a first experiment they gave verbal magnitude estimates of perceived target velocity in space and of self-motion in space. The target velocity estimates of both Ns and Ps tended to saturate at 0.8 Hz and with peak velocities >3 degrees /s. Below these ranges the velocity estimates showed a pronounced modulation in relation to the relative target-to-background motion ('background effect'; for example, 'background with'-motion decreased and 'against'-motion increased perceived target velocity). Pronounced only in Ps and not in Ns, there was an additional modulation in relation to the relative head-to-background motion, which co-varied with an illusion of self-motion in space (circular vection, CV) in Ps. In a second experiment, subjects performed retrospective reproduction of perceived target start and end positions with the same stimuli. Perceived end position was essentially veridical in both Ns and Ps (apart from a small constant offset). Reproduced start position showed an almost negligible background effect in Ns. In contrast, it showed a pronounced modulation in Ps, which again was related to CV. The results were compared with simulations of a model that we have recently presented for velocity control of eye pursuit. We found

  15. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    NASA Astrophysics Data System (ADS)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  16. A Generalized-Compliant-Motion Primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1993-01-01

    Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.

  17. Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2015-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility. PMID:19362901

  18. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.

    PubMed

    Huo, Xueliang; Ghovanloo, Maysam

    2009-06-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.

  19. Control-structure interaction/mirror motion compensation

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark; Chu, Peter; Price, Xen

    1992-01-01

    Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.

  20. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  1. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  2. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  3. Manual control of yaw motion with combined visual and vestibular cues

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.; Young, L. R.

    1977-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  4. Adaptive neural network motion control for aircraft under uncertainty conditions

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  5. Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1992-01-01

    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area.

  6. Design and motion control of bioinspired humanoid robot head from servo motors toward artificial muscles

    NASA Astrophysics Data System (ADS)

    Almubarak, Yara; Tadesse, Yonas

    2017-04-01

    The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.

  7. Pitching motion control of a butterfly-like 3D flapping wing-body model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  8. Virtual remote center of motion control for needle placement robots.

    PubMed

    Boctor, Emad M; Webster, Robert J; Mathieu, Herve; Okamura, Allison M; Fichtinger, Gabor

    2004-01-01

    We present an algorithm that enables percutaneous needle-placement procedures to be performed with unencoded, unregistered, minimally calibrated robots while removing the constraint of placing the needle tip on a mechanically enforced Remote Center of Motion (RCM). The algorithm requires only online tracking of the surgical tool and a five-degree-of-freedom (5-DOF) robot comprising three prismatic DOF and two rotational DOF. An incremental adaptive motion control cycle guides the needle to the insertion point and also orients it to align with the target-entry-point line. The robot executes RCM motion without having a physically constrained fulcrum point. The proof-of-concept prototype system achieved 0.78 mm translation accuracy and 1.4 degrees rotational accuracy (this is within the tracker accuracy) within 17 iterative steps (0.5-1 s). This research enables robotic assistant systems for image-guided percutaneous procedures to be prototyped/constructed more quickly and less expensively than has been previously possible. Since the clinical utility of such systems is clear and has been demonstrated in the literature, our work may help promote widespread clinical adoption of this technology by lowering system cost and complexity.

  9. Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.

    PubMed

    McLelland, Douglas; Baker, Pamela M; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth

    2015-07-15

    A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate

  10. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  11. Analytic Theory and Control of the Motion of Spinning Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Tsiotras, Panagiotis

    1993-01-01

    Numerical simulations are often resorted to, in order to understand the attitude response and control characteristics of a rigid body. However, this approach in performing sensitivity and/or error analyses may be prohibitively expensive and time consuming, especially when a large number of problem parameters are involved. Thus, there is an important role for analytical models in obtaining an understanding of the complex dynamical behavior. In this dissertation, new analytic solutions are derived for the complete attitude motion of spinning rigid bodies, under minimal assumptions. Hence, we obtain the most general solutions reported in the literature so far. Specifically, large external torques and large asymmetries are included in the problem statement. Moreover, problems involving large angular excursions are treated in detail. A new tractable formulation of the kinematics is introduced which proves to be extremely helpful in the search for analytic solutions of the attitude history of such kinds of problems. The main utility of the new formulation becomes apparent however, when searching for feedback control laws for stabilization and/or reorientation of spinning spacecraft. This is an inherently nonlinear problem, where standard linear control techniques fail. We derive a class of control laws for spin axis stabilization of symmetric spacecraft using only two pairs of gas jet actuators. Practically, this could correspond to a spacecraft operating in failure mode, for example. Theoretically, it is also an important control problem which, because of its difficulty, has received little, if any, attention in the literature. The proposed control laws are especially simple and elegant. A feedback control law that achieves arbitrary reorientation of the spacecraft is also derived, using ideas from invariant manifold theory. The significance of this research is twofold. First, it provides a deeper understanding of the fundamental behavior of rigid bodies subject to body

  12. Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

    NASA Astrophysics Data System (ADS)

    Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.

    2016-05-01

    This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.

  13. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    PubMed

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  14. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  15. New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.

    2008-01-01

    The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.

  16. Bounded parametric control of plane motions of space tethered system

    NASA Astrophysics Data System (ADS)

    Bezglasnyi, S. P.; Mukhametzyanova, A. A.

    2018-05-01

    This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.

  17. Integration Method of Emphatic Motions and Adverbial Expressions with Scalar Parameters for Robotic Motion Coaching System

    NASA Astrophysics Data System (ADS)

    Okuno, Keisuke; Inamura, Tetsunari

    A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.

  18. Design and Evaluation of an Integrated Online Motion Control Training Package

    ERIC Educational Resources Information Center

    Buiu, C.

    2009-01-01

    The aim of this paper is to present an integrated Internet-based package for teaching the fundamentals of motion control by using a wide range of resources: theory, videos, simulators, games, quizzes, and a remote lab. The package is aimed at automation technicians, pupils at vocational schools and students taking an introductory course in…

  19. Vestibular Stimulation for ADHD: Randomized Controlled Trial of Comprehensive Motion Apparatus

    ERIC Educational Resources Information Center

    Clark, David L.; Arnold, L. Eugene; Crowl, Lindsay; Bozzolo, Hernan; Peruggia, Mario; Ramadan, Yaser; Bornstein, Robert; Hollway, Jill A.; Thompson, Susan; Malone, Krista; Hall, Kristy L.; Shelton, Sara B.; Bozzolo, Dawn R.; Cook, Amy

    2008-01-01

    Objective: This research evaluates effects of vestibular stimulation by Comprehensive Motion Apparatus (CMA) in ADHD. Method: Children ages 6 to 12 (48 boys, 5 girls) with ADHD were randomized to thrice-weekly 30-min treatments for 12 weeks with CMA, stimulating otoliths and semicircular canals, or a single-blind control of equal duration and…

  20. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.

    PubMed

    Miura, Shingo; Banno, Taisuke; Tonooka, Taishi; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2014-07-15

    Self-propelled motion of micrometer-sized substances has drawn much attention as an autonomous transportation system. One candidate vehicle is a chemically driven micrometer-sized oil droplet. However, to the best of our knowledge, there has been no report of a chemical reaction system controlling the three-dimensional motion of oil droplets underwater. In this study, we developed a molecular system that controlled the self-propelled motion of 4-heptyloxybenzaldehyde oil droplets by using novel gemini cationic surfactants containing carbonate linkages (2G12C). We found that, in emulsions containing sodium hydroxide, the motion time of the self-propelled oil droplets was longer in the presence of 2G12C than in the presence of gemini cationic surfactants without carbonate linkages. Moreover, in 2G12C solution, oil droplets at rest underwent unidirectional, self-propelled motion in a gradient field toward a higher concentration of sodium hydroxide. Even though they stopped within several seconds, they restarted in the same direction. 2G12C was gradually hydrolyzed under basic conditions to produce a pair of the corresponding monomeric surfactants, which exhibit different interfacial properties from 2G12C. The prolonged and restart motion of the oil droplets were explained by the increase in the heterogeneity of the interfacial tension of the oil droplets.

  1. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  2. Control of Respiratory Motion by Hypnosis Intervention during Radiotherapy of Lung Cancer I

    PubMed Central

    Deng, Jie; Xie, Yaoqin

    2013-01-01

    The uncertain position of lung tumor during radiotherapy compromises the treatment effect. To effectively control respiratory motion during radiotherapy of lung cancer without any side effects, a novel control scheme, hypnosis, has been introduced in lung cancer treatment. In order to verify the suggested method, six volunteers were selected with a wide range of distribution of age, weight, and chest circumference. A set of experiments have been conducted for each volunteer, under the guidance of the professional hypnotist. All the experiments were repeated in the same environmental condition. The amplitude of respiration has been recorded under the normal state and hypnosis, respectively. Experimental results show that the respiration motion of volunteers in hypnosis has smaller and more stable amplitudes than in normal state. That implies that the hypnosis intervention can be an alternative way for respiratory control, which can effectively reduce the respiratory amplitude and increase the stability of respiratory cycle. The proposed method will find useful application in image-guided radiotherapy. PMID:24093100

  3. Altered sensory-motor control of the head as an etiological factor in space-motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1989-01-01

    Mechanical unloading during head movements in weightlessness may be an etiological factor in space-motion sickness. We simulated altered head loading on Earth without affecting vestibular stimulation by having subjects wear a weighted helmet. Eight subjects were exposed to constant velocity rotation about a vertical axis with direction reversals every 60 sec. for eight reversals with the head loaded and eight with the head unloaded. The severity of motion sickness elicited was significantly higher when the head was loaded. This suggests that altered sensory-motor control of the head is also an etiological factor in space-motion sickness.

  4. Determination of the implementation of the 3-axis attitude motion simulator digital position controller

    NASA Technical Reports Server (NTRS)

    Magana, Mario E.

    1989-01-01

    The digital position controller implemented in the control computer of the 3-axis attitude motion simulator is mathematically reconstructed and documented, since the information supplied with the executable code of this controller was insufficient to make substantial modifications to it. Also developed were methodologies to introduce changes in the controller which do not require rewriting the software. Finally, recommendations are made on possible improvement to the control system performance.

  5. Controlling Motion Sickness and Spatial Disorientation and Enhancing Vestibular Rehabilitation with a User-Worn See-Through Display

    PubMed Central

    Krueger, Wesley W.O.

    2010-01-01

    Objectives/Hypotheses An eyewear mounted visual display (“User-worn see-through display”) projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Study Design Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-post test design for patients in vestibular rehabilitation. Methods Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales while 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. Results All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to post-therapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. Conclusions A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon

  6. Controlling motion sickness and spatial disorientation and enhancing vestibular rehabilitation with a user-worn see-through display.

    PubMed

    Krueger, Wesley W O

    2011-01-01

    An eyewear mounted visual display ("User-worn see-through display") projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-posttest design for patients in vestibular rehabilitation. Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales, whereas 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to posttherapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial

  7. Real-time motion-based H.263+ frame rate control

    NASA Astrophysics Data System (ADS)

    Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay

    1998-12-01

    Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.

  8. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  9. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    NASA Astrophysics Data System (ADS)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  10. An Improved Framework for Confound Regression and Filtering for Control of Motion Artifact in the Preprocessing of Resting-State Functional Connectivity Data

    PubMed Central

    Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.

    2013-01-01

    Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292

  11. Kinematic control of redundant robots and the motion optimizability measure.

    PubMed

    Li, L; Gruver, W A; Zhang, Q; Yang, Z

    2001-01-01

    This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.

  12. SDRE controller for motion design of cable-suspended robot with uncertainties and moving obstacles

    NASA Astrophysics Data System (ADS)

    Behboodi, Ahad; Salehi, Seyedmohammad

    2017-10-01

    In this paper an optimal control approach for nonlinear dynamical systems was proposed based on State Dependent Riccati Equation (SDRE) and its robustness against uncertainties is shown by simulation results. The proposed method was applied on a spatial six-cable suspended robot, which was designed to carry loads or perform different tasks in huge workspaces. Motion planning for cable-suspended robots in such a big workspace is subjected to uncertainties and obstacles. First, we emphasized the ability of SDRE to construct a systematic basis and efficient design of controller for wide variety of nonlinear dynamical systems. Then we showed how this systematic design improved the robustness of the system and facilitated the integration of motion planning techniques with the controller. In particular, obstacle avoidance technique based on artificial potential field (APF) can be easily combined with SDRE controller with efficient performance. Due to difficulties of exact solution for SDRE, an approximation method was used based on power series expansion. The efficiency and robustness of the SDRE controller was illustrated on a six-cable suspended robot with proper simulations.

  13. Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children.

    PubMed

    Crisco, Joseph J; Schwartz, Joel B; Wilcox, Bethany; Brideau, Holly; Basseches, Benjamin; Kerman, Karen

    2015-08-20

    Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Motion Control of Drives for Prosthetic Hand Using Continuous Myoelectric Signals

    NASA Astrophysics Data System (ADS)

    Purushothaman, Geethanjali; Ray, Kalyan Kumar

    2016-03-01

    In this paper the authors present motion control of a prosthetic hand, through continuous myoelectric signal acquisition, classification and actuation of the prosthetic drive. A four channel continuous electromyogram (EMG) signal also known as myoelectric signals (MES) are acquired from the abled-body to classify the six unique movements of hand and wrist, viz, hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD) and radial deviation (RD). The classification technique involves in extracting the features/pattern through statistical time domain (TD) parameter/autoregressive coefficients (AR), which are reduced using principal component analysis (PCA). The reduced statistical TD features and or AR coefficients are used to classify the signal patterns through k nearest neighbour (kNN) as well as neural network (NN) classifier and the performance of the classifiers are compared. Performance comparison of the above two classifiers clearly shows that kNN classifier in identifying the hidden intended motion in the myoelectric signals is better than that of NN classifier. Once the classifier identifies the intended motion, the signal is amplified to actuate the three low power DC motor to perform the above mentioned movements.

  15. Oblique-wing research airplane motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  16. Head motion parameters in fMRI differ between patients with mild cognitive impairment and Alzheimer disease versus elderly control subjects.

    PubMed

    Haller, Sven; Monsch, Andreas U; Richiardi, Jonas; Barkhof, Frederik; Kressig, Reto W; Radue, Ernst W

    2014-11-01

    Motion artifacts are a well-known and frequent limitation during neuroimaging workup of cognitive decline. While head motion typically deteriorates image quality, we test the hypothesis that head motion differs systematically between healthy controls (HC), amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD) and consequently might contain diagnostic information. This prospective study was approved by the local ethics committee and includes 28 HC (age 71.0 ± 6.9 years, 18 females), 15 aMCI (age 67.7 ± 10.9 years, 9 females) and 20 AD (age 73.4 ± 6.8 years, 10 females). Functional magnetic resonance imaging (fMRI) at 3T included a 9 min echo-planar imaging sequence with 180 repetitions. Cumulative average head rotation and translation was estimated based on standard fMRI preprocessing and compared between groups using receiver operating characteristic statistics. Global cumulative head rotation discriminated aMCI from controls [p < 0.01, area under curve (AUC) 0.74] and AD from controls (p < 0.01, AUC 0.73). The ratio of rotation z versus y discriminated AD from controls (p < 0.05, AUC 0.71) and AD from aMCI (p < 0.05, AUC of 0.75). Head motion systematically differs between aMCI/AD and controls. Since motion is not random but convoluted with diagnosis, the higher amount of motion in aMCI and AD as compared to controls might be a potential confounding factor for fMRI group comparisons. Additionally, head motion not only deteriorates image quality, yet also contains useful discriminatory information and is available for free as a "side product" of fMRI data preprocessing.

  17. Vehicle lateral motion regulation under unreliable communication links based on robust H∞ output-feedback control schema

    NASA Astrophysics Data System (ADS)

    Li, Cong; Jing, Hui; Wang, Rongrong; Chen, Nan

    2018-05-01

    This paper presents a robust control schema for vehicle lateral motion regulation under unreliable communication links via controller area network (CAN). The communication links between the system plant and the controller are assumed to be imperfect and therefore the data packet dropouts occur frequently. The paper takes the form of parallel distributed compensation and treats the dropouts as random binary numbers that form Bernoulli distribution. Both of the tire cornering stiffness uncertainty and external disturbances are considered to enhance the robustness of the controller. In addition, a robust H∞ static output-feedback control approach is proposed to realize the lateral motion control with relative low cost sensors. The stochastic stability of the closed-loop system and conservation of the guaranteed H∞ performance are investigated. Simulation results based on CarSim platform using a high-fidelity and full-car model verify the effectiveness of the proposed control approach.

  18. Controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion.

    PubMed

    Sathiyaraj, T; Balasubramaniam, P

    2017-11-30

    This paper presents a new set of sufficient conditions for controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion (fBm) in finite dimensional space using fractional calculus, fixed point technique and stochastic analysis approach. In particular, we discuss the complete controllability for nonlinear fractional stochastic integrodifferential systems under the proved result of the corresponding linear fractional system is controllable. Finally, an example is presented to illustrate the efficiency of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  20. Touch-free, gesture-based control of medical devices and software based on the leap motion controller.

    PubMed

    Mauser, Stanislas; Burgert, Oliver

    2014-01-01

    There are several intra-operative use cases which require the surgeon to interact with medical devices. We used the Leap Motion Controller as input device and implemented two use-cases: 2D-Interaction (e.g. advancing EPR data) and selection of a value (e.g. room illumination brightness). The gesture detection was successful and we mapped its output to several devices and systems.

  1. Motion-Capture-Enabled Software for Gestural Control of 3D Models

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony

    2012-01-01

    Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.

  2. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  3. Disturbing effects of attitude control maneuvers on the orbital motion of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    The position of the spin axis of the Helios A spacecraft has been maintained and updated by a series of attitude control maneuvers, by means of a sequence of unbalanced jet forces which produce an additional disturbed motion of the spacecraft's center of mass. The character of this motion, its magnitude and direction was studied. For practical purposes of the orbit determination of the spacecraft, a computer program is given which shows how the components of the disturbing acceleration in the spacecraft-fixed reference frame can be easily computed.

  4. Controlled surface-induced flows from the motion of self-assembled colloidal walkers.

    PubMed

    Sing, Charles E; Schmid, Lothar; Schneider, Matthias F; Franke, Thomas; Alexander-Katz, Alfredo

    2010-01-12

    Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that "walk" along surfaces in the presence of a rotating magnetic field. These rotors are held together solely by magnetic forces that allow for reversible assembly and disassembly of the chains. Furthermore, rotation of the magnetic field allows for straightforward manipulation of the shape and motion of these chains. This system offers a simple and versatile approach for designing microfluidic devices as well as for studying fundamental questions in cooperative-driven motion and transport at the microscopic level.

  5. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  6. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T.; Swanson, D. A.; Lev, E.

    2016-12-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering - a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  7. Visual motion integration for perception and pursuit

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Beutter, B. R.; Lorenceau, J.

    2000-01-01

    To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

  8. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands.

    PubMed

    Barboiu, Mihail; Stadler, Adrian-Mihail; Lehn, Jean-Marie

    2016-03-18

    General design principles have been developed for the control of the structural features of polyheterocyclic strands and their effector-modulated shape changes. Induced defined molecular motions permit designed enforcement of helical as well as linear molecular shapes. The ability of such molecular strands to bind metal cations allows the generation of coiling/uncoiling processes between helically folded and extended linear states. Large molecular motions are produced on coordination of metal ions, which may be made reversible by competition with an ancillary complexing agent and fueled by sequential acid/base neutralization energy. The introduction of hydrazone units into the strands confers upon them constitutional dynamics, whereby interconversion between different strand compositions is achieved through component exchange. These features have relevance for nanomechanical devices. We present a morphological and functional analysis of such systems developed in our laboratories. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of lateral controls in producing motion of an airplane as computed from wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Weick, F. E.; Jones, R. T.

    1976-01-01

    An analytical study of the lateral controllability of an airplane has been made in which both the static rolling and yawing moments supplied by the controls and the reactions due to the inherent stability of the airplane have been taken into account. A hypothetical average airplane, embodying the essential characteristics of both the wind tunnel models and the full size test airplanes, was assumed for the study. Computations made of forced rolling and yawing motions of an F-22 airplane caused by a sudden deflection of the ailerons were found to agree well with actual measurements of these motions. The conditions following instantaneous full deflections of the lateral control have been studied, and some attention has been devoted to the controlling of complete turn maneuvers.

  10. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation-Vision-Based Control for Precise Reaching Motion of Upper Limb.

    PubMed

    Oguntosin, Victoria W; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.

  11. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb

    PubMed Central

    Oguntosin, Victoria W.; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J.; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments. PMID:28736514

  12. Control of self-motion in dynamic fluids: fish do it differently from bees.

    PubMed

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-05-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  14. Neuroanatomical correlates of biological motion detection.

    PubMed

    Gilaie-Dotan, Sharon; Kanai, Ryota; Bahrami, Bahador; Rees, Geraint; Saygin, Ayse P

    2013-02-01

    Biological motion detection is both commonplace and important, but there is great inter-individual variability in this ability, the neural basis of which is currently unknown. Here we examined whether the behavioral variability in biological motion detection is reflected in brain anatomy. Perceptual thresholds for detection of biological motion and control conditions (non-biological object motion detection and motion coherence) were determined in a group of healthy human adults (n=31) together with structural magnetic resonance images of the brain. Voxel based morphometry analyzes revealed that gray matter volumes of left posterior superior temporal sulcus (pSTS) and left ventral premotor cortex (vPMC) significantly predicted individual differences in biological motion detection, but showed no significant relationship with performance on the control tasks. Our study reveals a neural basis associated with the inter-individual variability in biological motion detection, reliably linking the neuroanatomical structure of left pSTS and vPMC with biological motion detection performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Motion and Control of a Chaplygin Sleigh with Internal Shape in an Ideal Fluid

    NASA Astrophysics Data System (ADS)

    Barot, Christopher

    In this dissertation we will examine a nonholonomic system with Lie group symmetry: the Chaplygin sleigh coupled to an oscillator moving through a potential fluid in two dimensions. This example is chosen to illustrate several general features. The sleigh system in the plane has SE(2) symmetry. This group symmetry will be used to separate the dynamics of the system into those along the group directions and those not. The oscillator motion is not along the group and so acts as an additional configuration space coordinate that plays the role of internal "shape". The potential fluid serves as an interactive environment for the sleigh. The interaction between the fluid and sleigh depends not only on the sleigh body shape and size but also on its motion. The motion of the sleigh causes motion in the surrounding fluid and vice-versa. Since the sleigh body is coupled to the oscillator, the oscillator will have indirect interaction with the fluid. This oscillator serves as internal shape and interacts with the external environment of the sleigh through its coupling to the sleigh body and the nonholonomic constraint; it will be shown that this interaction can produce a variety of types of motion depending on the sleigh geometry. In particular, when the internal shape of the system is actively controlled, it will be proven that the sleigh can be steered through the plane towards any desired position. In this way the sleigh-fluid-oscillator system will demonstrate how a rigid body can be steered through an interactive environment by controlling things wholly within the body itself and without use of external thrust.

  16. Stirling engine power control and motion conversion mechanism

    DOEpatents

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  17. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    NASA Technical Reports Server (NTRS)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  18. Leap Motion Gesture Control With Carestream Software in the Operating Room to Control Imaging: Installation Guide and Discussion.

    PubMed

    Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien

    2015-12-01

    Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article. © The Author(s) 2015.

  19. Computer Controlled Optical Surfacing With Orbital Tool Motion

    NASA Astrophysics Data System (ADS)

    Jones, Robert A.

    1985-10-01

    Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by grinding and polishing, using small laps with orbital tool motion. However, hand correction is a time consuming process unsuitable for large optical elements. Itek has developed Computer Controlled Optical Surfacing (CCOS) for fabricating such aspheric optics. Automated equipment moves a nonrotating orbiting tool slowly over the workpiece surface. The process corrects low frequency surface errors by figuring. The velocity of the tool assembly over the workpiece surface is purposely varied. Since the amount of material removal is proportional to the polishing or grinding time, accurate control over material removal is achieved. The removal of middle and high frequency surface errors is accomplished by pad smoothing. For a soft pad material, the pad will compress to fit the workpiece surface producing greater pressure and more removal at the surface high areas. A harder pad will ride on only the high regions resulting in removal only for those locations.

  20. A head motion estimation algorithm for motion artifact correction in dental CT imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol

    2018-03-01

    A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.

  1. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  2. Controlled motion of domain walls in submicron amorphous wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the firstmore » time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.« less

  3. Design considerations for ultra-precision magnetic bearing supported slides

    NASA Technical Reports Server (NTRS)

    Slocum, Alexander H.; Eisenhaure, David B.

    1993-01-01

    Development plans for a prototype servocontrolled machine with 1 angstrom resolution of linear motion and 50 mm range of travel are described. Two such devices could then be combined to produce a two dimensional machine for probing large planar objects with atomic resolution, the Angstrom Resolution Measuring Machine (ARMM).

  4. Assessment of Relationships Between Joint Motion Quality and Postural Control in Patients With Chronic Ankle Joint Instability.

    PubMed

    Bączkowicz, Dawid; Falkowski, Krzysztof; Majorczyk, Edyta

    2017-08-01

    Study Design Controlled laboratory study, cross-sectional. Background Lateral ankle sprains are among the most common injuries encountered during athletic participation. Following the initial injury, there is an alarmingly high risk of reinjury and development of chronic ankle instability (CAI), which is dependent on a combination of factors, including sensorimotor deficits and changes in the biomechanical environment of the ankle joint. Objective To evaluate CAI-related disturbances in arthrokinematic motion quality and postural control and the relationships between them. Methods Sixty-three male subjects (31 with CAI and 32 healthy controls) were enrolled in the study. For arthrokinematic motion quality analysis, the vibroarthrographic signals were collected during ankle flexion/extension motion using an acceleration sensor and described by variability (variance of mean squares [VMS]), amplitude (mean of 4 maximal and 4 minimal values [R4]), and frequency (vibroarthrographic signal bands of 50 to 250 Hz [P1] and 250 to 450 Hz [P2]) parameters. Using the Biodex Balance System, single-leg dynamic balance was measured by overall, anteroposterior, and mediolateral stability indices. Results Values of vibroarthrographic parameters (VMS, R4, P1 and P2) were significantly higher in the CAI group than those in the control group (P<.01). Similar results were obtained for all postural control parameters (overall, anteroposterior, and mediolateral stability indices; P<.05). Moreover, correlations between the overall stability index and VMS, and P1 and P2, as well as between the anteroposterior stability index and P1 and P2, were observed in the CAI patient group, but not in controls. Conclusion In patients with CAI, deficits in both quality of ankle arthrokinematic motion and postural control were present. Therefore, physical therapy interventions focused on improving ankle neuromuscular control and arthrokinematic function are necessary in CAI patient care. J Orthop Sports

  5. Rapid fabrication of miniature lens arrays by four-axis single point diamond machining

    PubMed Central

    McCall, Brian; Tkaczyk, Tomasz S.

    2013-01-01

    A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion – X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond ball endmill is mounted to the work spindle of a 4-axis ultra-precision computer numerical control (CNC) machine. Unlike 3-axis micro-milling, the C-axis is used to hold the cutting edge of the tool in contact with the lens surface for the entire cut. This allows the feed rates to be doubled compared to the current state of the art of micro-milling while producing an optically smooth surface with very low surface form error and exceptionally low radius error. PMID:23481813

  6. MOCAD: A Tool for Graphical and Interactive Calculation and Optimization of Cam Mechanisms and Motion Control Systems

    NASA Astrophysics Data System (ADS)

    Heine, A.; Berger, M.

    The classical meaning of motion design is the usage of laws of motion with convenient characteristic values. Whereas the software MOCAD supports a graphical and interactive mode of operation, among others by using an automatic polynomial interpolation. Besides a direct coupling for motion control systems, different file formats for data export are offered. The calculation of plane and spatial cam mechanisms is also based on the data, generated in the motion design module. Drawing on an example of an intermittent cam mechanism with an inside cam profile used as a new drive concept for indexing tables, the influence of motion design on the transmission properties is shown. Another example gives an insight into the calculation and export of envelope curves for cylindrical cam mechanisms. The gained geometry data can be used for generating realistic 3D-models in the CAD-system Pro/ENGINEER, using a special data exchange format.

  7. A Learning Support System Regarding Motion Trigger for Repetitive Motion Having an Operating Instrument

    ERIC Educational Resources Information Center

    Toyooka, Hiroshi; Matsuura, Kenji; Gotoda, Naka

    2016-01-01

    In the learning support for repetitive motions having an operating instrument, it is necessary for learners to control not only their own body motions but also an instrument corresponding to the body. This study focuses on the repetitive motion learning using single operation instrument without the movement in space; i.e. jump-rope and hula-hoop.…

  8. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study

    PubMed Central

    Foiret, Josquin; Ferrara, Katherine W.

    2015-01-01

    Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value. PMID:26244783

  9. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation.

    PubMed

    Bower, Kelly J; Louie, Julie; Landesrocha, Yoseph; Seedy, Paul; Gorelik, Alexandra; Bernhardt, Julie

    2015-08-02

    Active gaming technologies, including the Nintendo Wii and Xbox Kinect, have become increasingly popular for use in stroke rehabilitation. However, these systems are not specifically designed for this purpose and have limitations. The aim of this study was to investigate the feasibility of using a suite of motion-controlled games in individuals with stroke undergoing rehabilitation. Four games, which utilised a depth-sensing camera (PrimeSense), were developed and tested. The games could be played in a seated or standing position. Three games were controlled by movement of the torso and one by upper limb movement. Phase 1 involved consecutive recruitment of 40 individuals with stroke who were able to sit unsupported. Participants were randomly assigned to trial one game during a single session. Sixteen individuals from Phase 1 were recruited to Phase 2. These participants were randomly assigned to an intervention or control group. Intervention participants performed an additional eight sessions over four weeks using all four game activities. Feasibility was assessed by examining recruitment, adherence, acceptability and safety in both phases of the study. Forty individuals (mean age 63 years) completed Phase 1, with an average session time of 34 min. The majority of Phase 1 participants reported the session to be enjoyable (93 %), helpful (80 %) and something they would like to include in their therapy (88 %). Sixteen individuals (mean age 61 years) took part in Phase 2, with an average of seven 26-min sessions over four weeks. Reported acceptability was high for the intervention group and improvements over time were seen in several functional outcome measures. There were no serious adverse safety events reported in either phase of the study; however, a number of participants reported minor increases in pain. A post-stroke intervention using interactive motion-controlled games shows promise as a feasible and potentially effective treatment approach. This paper

  10. Influence of coolant on ductile mode processing of binderless nanocrystalline tungsten carbide through ultraprecision diamond turning

    NASA Astrophysics Data System (ADS)

    Doetz, Marius; Dambon, Olaf; Klocke, Fritz; Fähnle, Oliver

    2015-08-01

    Molds made of tungsten carbide are typically used for the replicative mass production of glass lenses by precision glass molding. Consequently an ultra-precision grinding process with a subsequent fresh-feed polishing operation is conventionally applied. These processes are time consuming and have a relatively low reproducibility. An alternative manufacturing technology, with a high predictability and efficiency, which additionally allows a higher geometrical flexibility, is the single point diamond turning technique (SPDT). However, the extreme hardness and the chemical properties of tungsten carbide lead to significant tool wear and therefore the impossibility of machining the work pieces in an economical way. One approach to enlarge the tool life is to affect the contact zone between tool and work piece by the use of special cutting fluids. This publication emphasizes on the most recent investigations and results in direct machining of nano-grained tungsten carbide with mono crystal diamonds under the influence of various kinds of cutting fluids. Therefore basic ruling experiments on binderless nano grained tungsten carbide were performed, where the tool performed a linear movement with a steadily increasing depth of cut. As the ductile cutting mechanism is a prerequisite for the optical manufacturing of tungsten carbide these experiments serve the purpose for establish the influence of different cutting fluid characteristics on the cutting performance of mono crystal diamonds. Eventually it is shown that by adjusting the coolant fluid it is possible to significantly shift the transition point from ductile to brittle removal to larger depths of cut eventually enabling a SPDT of binderless tungsten carbide molds.

  11. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  12. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  13. Intelligent complementary sliding-mode control for LUSMS-based X-Y-theta motion control stage.

    PubMed

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai; Liu, Yen-Hung

    2010-07-01

    An intelligent complementary sliding-mode control (ICSMC) system using a recurrent wavelet-based Elman neural network (RWENN) estimator is proposed in this study to control the mover position of a linear ultrasonic motors (LUSMs)-based X-Y-theta motion control stage for the tracking of various contours. By the addition of a complementary generalized error transformation, the complementary sliding-mode control (CSMC) can efficiently reduce the guaranteed ultimate bound of the tracking error by half compared with the slidingmode control (SMC) while using the saturation function. To estimate a lumped uncertainty on-line and replace the hitting control of the CSMC directly, the RWENN estimator is adopted in the proposed ICSMC system. In the RWENN, each hidden neuron employs a different wavelet function as an activation function to improve both the convergent precision and the convergent time compared with the conventional Elman neural network (ENN). The estimation laws of the RWENN are derived using the Lyapunov stability theorem to train the network parameters on-line. A robust compensator is also proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher-order terms in Taylor series. Finally, some experimental results of various contours tracking show that the tracking performance of the ICSMC system is significantly improved compared with the SMC and CSMC systems.

  14. On the correlation between motion data captured from low-cost gaming controllers and high precision encoders.

    PubMed

    Purkayastha, Sagar N; Byrne, Michael D; O'Malley, Marcia K

    2012-01-01

    Gaming controllers are attractive devices for research due to their onboard sensing capabilities and low-cost. However, a proper quantitative analysis regarding their suitability for use in motion capture, rehabilitation and as input devices for teleoperation and gesture recognition has yet to be conducted. In this paper, a detailed analysis of the sensors of two of these controllers, the Nintendo Wiimote and the Sony Playstation 3 Sixaxis, is presented. The acceleration and angular velocity data from the sensors of these controllers were compared and correlated with computed acceleration and angular velocity data derived from a high resolution encoder. The results show high correlation between the sensor data from the controllers and the computed data derived from the position data of the encoder. From these results, it can be inferred that the Wiimote is more consistent and better suited for motion capture applications and as an input device than the Sixaxis. The applications of the findings are discussed with respect to potential research ventures.

  15. High-precision register error control using active-motion-based roller in roll-to-roll gravure printing

    NASA Astrophysics Data System (ADS)

    Jung, Hoeryong; Nguyen, Ho Anh Duc; Choi, Jaeho; Yim, Hongsik; Shin, Kee-Hyun

    2018-05-01

    The roll-to-roll (R2R) gravure printing method is increasingly being utilized to fabricate electronic devices such as organic thin-film transistor (OTFT), radio-frequency identification (RFID) tags, and flexible PCB owing to its characteristics of high throughput and large area. High precision registration is crucial to satisfy the demand for device miniaturization, the improvement of resolution and accuracy. This paper presents a novel register control method that uses an active motion-based roller (AMBR) to reduce register error in R2R gravure printing. Instead of shifting the phase of the downstream printing roller, which leads to undesired tension disturbance, the 1 degree-of-freedom (1-DOF) mechanical device AMBR is used to compensate for web elongation by controlling its motion according to the register error. The performance of the proposed control method is verified through simulations and experiments, and the results show that the proposed register control method using the AMBR could maintain a register error under ±15 µm.

  16. Attitude motion of a non-attitude-controlled cylindrical satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. K.

    1988-01-01

    In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.

  17. Trunk motion visual feedback during walking improves dynamic balance in older adults: Assessor blinded randomized controlled trial.

    PubMed

    Anson, Eric; Ma, Lei; Meetam, Tippawan; Thompson, Elizabeth; Rathore, Roshita; Dean, Victoria; Jeka, John

    2018-05-01

    Virtual reality and augmented feedback have become more prevalent as training methods to improve balance. Few reports exist on the benefits of providing trunk motion visual feedback (VFB) during treadmill walking, and most of those reports only describe within session changes. To determine whether trunk motion VFB treadmill walking would improve over-ground balance for older adults with self-reported balance problems. 40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of falling were randomized to a control or experimental group. Everyone walked on a treadmill at a comfortable speed 3×/week for 4 weeks in 2 min bouts separated by a seated rest. The control group was instructed to look at a stationary bulls-eye target while the experimental group also saw a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six Minute Walk. There were no significant differences between groups before the intervention. The experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 0.019). The control group did not improve significantly on any measure. Individuals with more profound sensory impairments had a larger improvement on dynamic balance subtests of the BESTest. Older adults with self-reported balance problems improve their dynamic balance after training using trunk motion VFB treadmill walking. Individuals with worse sensory function may benefit more from trunk motion VFB during walking than individuals with intact sensory function. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-02-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.

  19. Development of an assist controller with robot suit HAL for hemiplegic patients using motion data on the unaffected side.

    PubMed

    Kawamoto, Hiroaki; Kandone, Hideki; Sakurai, Takeru; Ariyasu, Ryohei; Ueno, Yukiko; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2014-01-01

    Among several characteristics seen in gait of hemiplegic patients after stroke, symmetry is known to be an indicator of the degree of impairment of walking ability. This paper proposes a control method for a wearable type lower limb motion assist robot to realize spontaneous symmetric gait for these individuals. This control method stores the motion of the unaffected limb during swing and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. This method is implemented on the robot suit HAL (Hybrid Assistive Limbs). Clinical tests were conducted in order to assess the feasibility of the control method. Our case study involved participation of one chronic stroke patient who was not able to flex his right knee. As a result, the walking support for hemiplegic leg provided by the HAL improved the subject's gait symmetry. The feasibility study showed promising basis for the future clinical study.

  20. Relative roughness controls on incipient sediment motion in steep channels

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Fuller, B. M.

    2012-12-01

    For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These

  1. Control of motion stability of the line tracer robot using fuzzy logic and kalman filter

    NASA Astrophysics Data System (ADS)

    Novelan, M. S.; Tulus; Zamzami, E. M.

    2018-03-01

    Setting of motion and balance line tracer robot two wheels is actually a combination of a two-wheeled robot balance concept and the concept of line follower robot. The main objective of this research is to maintain the robot in an upright and can move to follow the line of the Wizard while maintaining balance. In this study the motion balance system on line tracer robot by considering the presence of a noise, so that it takes the estimator is used to mengestimasi the line tracer robot motion. The estimation is done by the method of Kalman Filter and the combination of Fuzzy logic-Fuzzy Kalman Filter called Kalman Filter, as well as optimal smooting. Based on the results of the study, the value of the output of the fuzzy results obtained from the sensor input value has been filtered before entering the calculation of the fuzzy. The results of the output of the fuzzy logic hasn’t been able to control dc motors are well balanced at the moment to be able to run. The results of the fuzzy logic by using membership function of triangular membership function or yet can control with good dc motor movement in order to be balanced

  2. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasersmore » during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  3. A recursive approach to the equations of motion for the maneuvering and control of flexible multi-body systems

    NASA Technical Reports Server (NTRS)

    Kwak, Moon K.; Meirovitch, Leonard

    1991-01-01

    Interest lies in a mathematical formulation capable of accommodating the problem of maneuvering a space structure consisting of a chain of articulated flexible substructures. Simultaneously, any perturbations from the 'rigid body' maneuvering and any elastic vibration must be suppressed. The equations of motion for flexible bodies undergoing rigid body motions and elastic vibrations can be obtained conveniently by means of Lagrange's equations in terms of quasi-coordinates. The advantage of this approach is that it yields equations in terms of body axes, which are the same axes that are used to express the control forces and torques. The equations of motion are nonlinear hybrid differential quations. The partial differential equations can be discretized (in space) by means of the finite element method or the classical Rayleigh-Ritz method. The result is a set of nonlinear ordinary differential equations of high order. The nonlinearity can be traced to the rigid body motions and the high order to the elastic vibration. Elastic motions tend to be small when compared with rigid body motions.

  4. Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach

    PubMed Central

    Kumar De, Arijit; Goswami, Debabrata

    2013-01-01

    This account reviews some recent studies pursued in our group on several control experiments with important applications in (one-photon) confocal and two-photon fluorescence laser-scanning microscopy and optical trapping with laser tweezers. We explore the simultaneous control of internal and external (i.e. centre-of-mass motion) degrees of freedom, which require the coupling of various control parameters to result in the spatiotemporal control. Of particular interest to us is the implementation of such control schemes in living systems. A live cell is a system of a large number of different molecules which combine and interact to generate complex structures and functions. These combinations and interactions of molecules need to be choreographed perfectly in time and space to achieve intended intra-cellular functions. Spatiotemporal control promises to be a versatile tool for dynamical control of spatially manipulated bio-molecules. PMID:23814326

  5. Impaired visual recognition of biological motion in schizophrenia.

    PubMed

    Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee

    2005-09-15

    Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.

  6. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    PubMed

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  7. Possible influences on color constancy by motion of color targets and by attention-controlled gaze.

    PubMed

    Wan, Lifang; Shinomori, Keizo

    2018-04-01

    We investigated the influence of motion on color constancy using a chromatic stimulus presented in various conditions (static, motion, and rotation). Attention to the stimulus and background was also controlled in different gaze modes, constant fixation of the stimulus, and random viewing of the stimulus. Color constancy was examined in six young observers using a haploscopic view of a computer monitor. The target and background were illuminated in simulation by red, green, blue, and yellow, shifted from daylight (D65) by specific color differences along L - M or S - (L + M) axes on the equiluminance plane. The standard pattern (under D65) and test pattern (under the color illuminant) of a 5-deg square were presented side by side, consisting of 1.2-deg square targets with one of 12 colors at each center, surrounded by 230 background ellipses consisting of eight other colors. The central color targets in both patterns flipped between top and bottom locations at the rate of 3 deg/s in the motion condition. The results indicated an average reduction of color constancy over the 12 test colors by motion. The random viewing parameter indicated better color constancy by more attention to the background, although the difference was not significant. Color constancy of the four color illuminations was better to worse in green, red, yellow, and blue, respectively. The reduction of color constancy by motion could be explained by less contribution of the illumination estimation effect on color constancy. In the motion with constant fixation condition, the retina strongly adapted to the mean chromaticity of the background. However, motion resulted in less attention to the color of the background, causing a weaker effect of the illumination estimation. Conversely, in the static state with a random viewing condition, more attention to the background colors caused a stronger illumination estimation effect, and color constancy was improved overall.

  8. Wireless control system for two-axis linear oscillating motion applying CBR technology

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-03-01

    The paper presents the aspects of elaborating a movement control system. The system is to implement determination of movement characteristics of the object controlled, which performs an oscillating linear motion in a two-axis direction. The system has an electronic-optical principle of action: light receivers are attached to a controlled object, and a laser light emitter is attached to a static construction. While the object performs movement along the construction, the light emitter signal is registered by light receivers, based on which determination of the object position and characteristic of its movement are performed. An algorithm of system implementation is elaborated. Signal processing is performed on the basis of the case-based reasoning method. The system is to be used in machine-building industry in controlling relative displacement of the dynamic object or its assembly.

  9. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP) Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    PubMed Central

    Gao, Hang; Wang, Xu; Guo, Dongming; Liu, Ziyuan

    2018-01-01

    Laser induced damage threshold (LIDT) is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP) crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT), followed by water dissolution ultra-precision polishing (WDUP) and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD) analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal. PMID:29534032

  10. Dynamical simulation priors for human motion tracking.

    PubMed

    Vondrak, Marek; Sigal, Leonid; Jenkins, Odest Chadwicke

    2013-01-01

    We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical ground-person interactions. Most tracking approaches to date have focused on efficient inference algorithms and/or learning of prior kinematic motion models; however, few can explicitly account for the physical plausibility of recovered motion. Here, we aim to recover physically plausible motion of a single articulated human subject. Toward this end, we propose a full-body 3D physical simulation-based prior that explicitly incorporates a model of human dynamics into the Bayesian filtering framework. We consider the motion of the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics of the human and the environment through the application and integration of interaction forces, motor forces, and gravity. Interaction forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts), and are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are physically feasible, and are generated using a motion controller. For efficient inference in the resulting high-dimensional state space, we utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover physically plausible motion of human subjects from monocular and multiview video. We show, both quantitatively and qualitatively, that our approach performs favorably with respect to Bayesian filtering methods with standard motion priors.

  11. Motion correction options in PET/MRI.

    PubMed

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    ERIC Educational Resources Information Center

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  13. Evaluation of a portable markerless finger position capture device: accuracy of the Leap Motion controller in healthy adults.

    PubMed

    Tung, James Y; Lulic, Tea; Gonzalez, Dave A; Tran, Johnathan; Dickerson, Clark R; Roy, Eric A

    2015-05-01

    Although motion analysis is frequently employed in upper limb motor assessment (e.g. visually-guided reaching), they are resource-intensive and limited to laboratory settings. This study evaluated the reliability and accuracy of a new markerless motion capture device, the Leap Motion controller, to measure finger position. Testing conditions that influence reliability and agreement between the Leap and a research-grade motion capture system were examined. Nine healthy young adults pointed to 15 targets on a computer screen under two conditions: (1) touching the target (touch) and (2) 4 cm away from the target (no-touch). Leap data was compared to an Optotrak marker attached to the index finger. Across all trials, root mean square (RMS) error of the Leap system was 17.30  ±  9.56 mm (mean ± SD), sampled at 65.47  ±  21.53 Hz. The % viable trials and mean sampling rate were significantly lower in the touch condition (44% versus 64%, p < 0.001; 52.02  ±  2.93 versus 73.98  ±  4.48 Hz, p = 0.003). While linear correlations were high (horizontal: r(2) = 0.995, vertical r(2) = 0.945), the limits of agreement were large (horizontal: -22.02 to +26.80 mm, vertical: -29.41 to +30.14 mm). While not as precise as more sophisticated optical motion capture systems, the Leap Motion controller is sufficiently reliable for measuring motor performance in pointing tasks that do not require high positional accuracy (e.g. reaction time, Fitt's, trails, bimanual coordination).

  14. Passive motion paradigm: an alternative to optimal control.

    PubMed

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    IN THE LAST YEARS, OPTIMAL CONTROL THEORY (OCT) HAS EMERGED AS THE LEADING APPROACH FOR INVESTIGATING NEURAL CONTROL OF MOVEMENT AND MOTOR COGNITION FOR TWO COMPLEMENTARY RESEARCH LINES: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the "degrees of freedom (DoFs) problem," the common core of production, observation, reasoning, and learning of "actions." OCT, directly derived from engineering design techniques of control systems quantifies task goals as "cost functions" and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative "softer" approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that "animates" the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints "at runtime," hence solving the "DoFs problem" without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of "potential actions." In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing

  15. Vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  16. Impaired Perception of Biological Motion in Parkinson’s Disease

    PubMed Central

    Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice

    2016-01-01

    Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (p<.001, Cohen’s d=1.22), regardless of stimulus gait type or speed, with a less substantial deficit in object motion perception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927

  17. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V.

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed bymore » lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ≤5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ≤5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ≤10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ≥60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.« less

  18. Autocorrelated process control: Geometric Brownian Motion approach versus Box-Jenkins approach

    NASA Astrophysics Data System (ADS)

    Salleh, R. M.; Zawawi, N. I.; Gan, Z. F.; Nor, M. E.

    2018-04-01

    Existing of autocorrelation will bring a significant effect on the performance and accuracy of process control if the problem does not handle carefully. When dealing with autocorrelated process, Box-Jenkins method will be preferred because of the popularity. However, the computation of Box-Jenkins method is too complicated and challenging which cause of time-consuming. Therefore, an alternative method which known as Geometric Brownian Motion (GBM) is introduced to monitor the autocorrelated process. One real case of furnace temperature data is conducted to compare the performance of Box-Jenkins and GBM methods in monitoring autocorrelation process. Both methods give the same results in terms of model accuracy and monitoring process control. Yet, GBM is superior compared to Box-Jenkins method due to its simplicity and practically with shorter computational time.

  19. Motion of the two-control airplane in rectilinear flight after initial disturbances with introduction of controls following an exponential law

    NASA Technical Reports Server (NTRS)

    Klemin, Alexander

    1937-01-01

    An airplane in steady rectilinear flight was assumed to experience an initial disturbance in rolling or yawing velocity. The equations of motion were solved to see if it was possible to hasten recovery of a stable airplane or to secure recovery of an unstable airplane by the application of a single lateral control following an exponential law. The sample computations indicate that, for initial disturbances complex in character, it would be difficult to secure correlation with any type of exponential control. The possibility is visualized that the two-control operation may seriously impair the ability to hasten recovery or counteract instability.

  20. Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.

    PubMed

    Huo, Xueliang; Wang, Jia; Ghovanloo, Maysam

    2008-01-01

    Tongue Drive system (TDS) is a tongue-operated unobtrusive wireless assistive technology, which can potentially provide people with severe disabilities with effective computer access and environment control. It translates users' intentions into control commands by detecting and classifying their voluntary tongue motion utilizing a small permanent magnet, secured on the tongue, and an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. We have developed customized interface circuitry and implemented four control strategies to drive a powered wheelchair (PWC) using an external TDS prototype. The system has been evaluated by five able-bodied human subjects. The results showed that all subjects could easily operate the PWC using their tongue movements, and different control strategies worked better depending on the users' familiarity with the TDS.

  1. Precision control of multiple quantum cascade lasers for calibration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  2. Motion planning in velocity affine mechanical systems

    NASA Astrophysics Data System (ADS)

    Jakubiak, Janusz; Tchoń, Krzysztof; Magiera, Władysław

    2010-09-01

    We address the motion planning problem in specific mechanical systems whose linear and angular velocities depend affinely on control. The configuration space of these systems encompasses the rotation group, and the motion planning involves the system orientation. Derivation of the motion planning algorithm for velocity affine systems has been inspired by the continuation method. Performance of this algorithm is illustrated with examples of the kinematics of a serial nonholonomic manipulator, the plate-ball kinematics and the attitude control of a rigid body.

  3. Projection of controlled repeatable real-time moving targets to test and evaluate motion imagery quality

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen D.; Mendez, Michael; Trent, Randall

    2015-05-01

    The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.

  4. Chaos control of Hastings-Powell model by combining chaotic motions

    NASA Astrophysics Data System (ADS)

    Danca, Marius-F.; Chattopadhyay, Joydev

    2016-04-01

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.

  5. Motion versus fixed distraction of the joint in the treatment of ankle osteoarthritis: a prospective randomized controlled trial.

    PubMed

    Saltzman, Charles L; Hillis, Stephen L; Stolley, Mary P; Anderson, Donald D; Amendola, Annunziato

    2012-06-06

    Initial reports have shown the efficacy of fixed distraction for the treatment of ankle osteoarthritis. We hypothesized that allowing ankle motion during distraction would result in significant improvements in outcomes compared with distraction without ankle motion. We conducted a prospective randomized controlled trial comparing the outcomes for patients with advanced ankle osteoarthritis who were managed with anterior osteophyte removal and either (1) fixed ankle distraction or (2) ankle distraction permitting joint motion. Thirty-six patients were randomized to treatment with either fixed distraction or distraction with motion. The patients were followed for twenty-four months after frame removal. The Ankle Osteoarthritis Scale (AOS) was the main outcome variable. Two years after frame removal, subjects in both groups showed significant improvement compared with the status before treatment (p < 0.02 for both groups). The motion-distraction group had significantly better AOS scores than the fixed-distraction group at twenty-six, fifty-two, and 104 weeks after frame removal (p < 0.01 at each time point). At 104 weeks, the motion-distraction group had an overall mean improvement of 56.6% in the AOS score, whereas the fixed-distraction group had a mean improvement of 22.9% (p < 0.01). Distraction improved the patient-reported outcomes of treatment of ankle osteoarthritis. Adding ankle motion to distraction showed an early and sustained beneficial effect on outcome.

  6. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  7. Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

    ERIC Educational Resources Information Center

    Milne, Elizabeth; White, Sarah; Campbell, Ruth; Swettenham, John; Hansen, Peter; Ramus, Franck

    2006-01-01

    Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control,…

  8. The effect of autogenic training and biofeedback on motion sickness tolerance.

    PubMed

    Jozsvai, E E; Pigeau, R A

    1996-10-01

    Motion sickness is characterized by symptoms of vomiting, drowsiness, fatigue and idiosyncratic changes in autonomic nervous system (ANS) responses such as heart rate (HR) and skin temperature (ST). Previous studies found that symptoms of motion sickness are controllable through self-regulation of ANS responses and the best method to teach such control is autogenic-feedback (biofeedback) training. Recent experiments indicated that biofeedback training is ineffective in reducing symptoms of motion sickness or in increasing tolerance to motion. If biofeedback facilitates learning of ANS self-regulation then autogenic training with true feedback (TFB) should lead to better control over ANS responses and better motion tolerance than autogenic training with false feedback (FFB). If there is a relationship between ANS self-regulation and coping with motion stress, a significant correlation should be found between amounts of control over ANS responses and measures of motion tolerance and/or symptoms of motion sickness. There were 3 groups of 6 subjects exposed for 6 weeks to weekly sessions of Coriolis stimulation to induce motion sickness. Between the first and second Coriolis sessions, subjects in the experimental groups received five episodes of autogenic training with either true (group TFB) or false (group FFB) feedback on their HR and ST. The control group (CTL) received no treatment. Subjects learned to control their HR and ST independent of whether they received true or false feedback. Learned control of ST and HR was not related to severity of motion sickness or subject's ability to withstand Coriolis stimulation following treatment. A lack of significant correlation between these variables suggested that subjects were not able to apply their skills of ANS self-regulation in the motion environment, and/ or such skills had little value in reducing symptoms of motion sickness or enhancing their ability to withstand rotations.

  9. Ab initio design of laser pulses to control molecular motion

    NASA Astrophysics Data System (ADS)

    Balint-Kurti, Gabriel; Ren, Qinghua; Manby, Frederick; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel; Zou, Shiyang; Singh, Harjinder

    2007-03-01

    Our recent attempts to design laser pulses entirely theoretically, in a quantitative and accurate manner, so as to fully understand the underlying mechanisms active in the control process will be outlined. We have developed a new Born-Oppenheimer like separation called the electric-nuclear Born-Oppenheimer (ENBO) approximation. In this approximation variations of both the nuclear geometry and of the external electric field are assumed to be slow compared with the speed at which the electronic degrees of freedom respond to these changes. This assumption permits the generation of a potential energy surface that depends not only on the relative geometry of the nuclei, but also on the electric field strength and on the orientation of the molecule with respect to the electric field. The range of validity of the ENBO approximation is discussed. Optimal control theory is used along with the ENBO approximation to design laser pulses for exciting vibrational and rotational motion in H2 and CO molecules. Progress on other applications, including controlling photodissociation processes, isotope separation, stabilization of molecular Bose-Einstein condensates as well as applications to biological molecules also be presented. *Support acknowledged from EPSRC.

  10. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  11. High speed precision motion strategies for lightweight structures

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1987-01-01

    Work during the recording period proceeded along the lines of the proposal, i.e., three aspects of high speed motion planning and control of flexible structures were explored: fine motion control, gross motion planning and control, and automation using light weight arms. In addition, modeling the large manipulator arm to be used in experiments and theory has lead to some contributions in that area. These aspects are reported below. Conference, workshop and journal submissions, and presentations related to this work were seven in number, and are listed. Copies of written papers and abstracts are included.

  12. The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    1982-01-01

    Twenty-four men were randomly assigned to four equal groups matched in terms of their Coriolis Sickness Susceptibility Index (CSSI). Two groups of subjects were highly susceptible to motion sickness, and two groups were moderately susceptible. All subjects were given six C551 tests at 5-d intervals. Treatment Groups I (highly susceptible) and II (moderately susceptible) were taught to control their autonomic responses, using a training method called autogenic-feedback training (AFT) before the third, fourth, and fifth CSSI tests. Control groups III (highly susceptible) and IV (moderately susceptible) received no treatment. Results showed that both treatment groups significantly improved performance on CSSI tests after training; neither of the control groups changed significantly. Highly and moderately susceptible subjects in the two treatment groups improved at comparable rates. Highly susceptible control group subjects did not habituate across tests as readily as the moderately susceptible controls.

  13. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

    PubMed

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly

    2017-01-01

    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Motion-based prediction explains the role of tracking in motion extrapolation.

    PubMed

    Khoei, Mina A; Masson, Guillaume S; Perrinet, Laurent U

    2013-11-01

    During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated

  15. Determination of torque-limits for human and cat lumbar spine specimens during displacement-controlled physiological motions.

    PubMed

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2009-01-01

    Quadruped animal models have been validated and used as biomechanical models for the lumbar spine. The biomechanics of the cat lumbar spine has not been well characterized, even though it is a common model used in neuromechanical studies. Compare the physiological ranges of motion and determine torque-limits for cat and human lumbar spine specimens during physiological motions. Biomechanics study. Cat and human lumbar spine specimens. Intervertebral angle (IVA), joint moment, yield point, torque-limit, and correlation coefficients. Cat (L2-sacrum) and human (T12-sacrum) lumbar spine specimens were mechanically tested to failure during displacement-controlled extension (E), lateral bending (LB), and axial rotation (AR). Single trials consisted of 10 cycles (10mm/s or 5 degrees /s) to a target displacement where the magnitude of the target displacement was increased for subsequent trials until failure occurred. Whole-lumbar stiffness, torque at yield point, and joint stiffness were determined. Scaling relationships were established using equations analogous to those that describe the load response of elliptically shaped beams. IVA magnitudes for cat and human lumbar spines were similar during physiological motions. Human whole-lumbar and joint stiffness magnitudes were significantly greater than those for cat spine specimens (p<.05). Torque-limits were also greater for humans compared with cats. Scaling relationships with high correlation (R(2) greater than 0.77) were established during later LB and AR. The current study defined "physiological ranges of movement" for human and cat lumbar spine specimens during displacement-controlled testing, and should be observed in future biomechanical studies conducted under displacement control.

  16. Periodic motions of generalized conservative mechanical systems whose equations of motion contain a large parameter

    NASA Astrophysics Data System (ADS)

    Sazonov, V. V.

    An analysis is made of a generalized conservative mechanical system whose equations of motion contain a large parameter characterizing local forces acting along certain generalized coordinates. It is shown that the equations have periodic solutions which are close to periodic solutions to the corresponding degenerate equations. As an example, the periodic motions of a satellite with respect to its center of mass due to gravitational and restoring aerodynamic moments are examined for the case where the aerodynamic moment is much larger than the gravitational moment. Such motions can be treated as nominal unperturbed motions of a satellite under conditions of single-axis aerodynamic attitude control.

  17. Illusory visual motion stimulus elicits postural sway in migraine patients

    PubMed Central

    Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi

    2015-01-01

    Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832

  18. Unidirectional rotary motion in a molecular system

    NASA Astrophysics Data System (ADS)

    Kelly, T. Ross; de Silva, Harshani; Silva, Richard A.

    1999-09-01

    The conversion of energy into controlled motion plays an important role in both man-made devices and biological systems. The principles of operation of conventional motors are well established, but the molecular processes used by `biological motors' such as muscle fibres, flagella and cilia to convert chemical energy into co-ordinated movement remain poorly understood. Although `brownian ratchets' are known to permit thermally activated motion in one direction only, the concept of channelling random thermal energy into controlled motion has not yet been extended to the molecular level. Here we describe a molecule that uses chemical energy to activate and bias a thermally induced isomerization reaction, and thereby achieve unidirectional intramolecular rotary motion. The motion consists of a 120° rotation around a single bond connecting a three-bladed subunit to the bulky remainder of the molecule, and unidirectional motion is achieved by reversibly introducing a tether between the two units to energetically favour one of the two possible rotation directions. Although our system does not achieve continuous and fast rotation, the design principles that we have used may prove relevant for a better understanding of biological and synthetic molecular motors producing unidirectional rotary motion.

  19. Passive Motion Paradigm: An Alternative to Optimal Control

    PubMed Central

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of

  20. Binocular eye movement control and motion perception: what is being tracked?

    PubMed

    van der Steen, Johannes; Dits, Joyce

    2012-10-19

    We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking.

  1. Binocular Eye Movement Control and Motion Perception: What Is Being Tracked?

    PubMed Central

    van der Steen, Johannes; Dits, Joyce

    2012-01-01

    Purpose. We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. Methods. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Results. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. Conclusions. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking. PMID:22997286

  2. Motion planning and synchronized control of the dental arch generator of the tooth-arrangement robot.

    PubMed

    Jiang, Jin-Gang; Zhang, Yong-De

    2013-03-01

    The traditional, manual method of reproducing the dental arch form is prone to numerous random errors caused by human factors. The purpose of this study was to investigate the automatic acquisition of the dental arch and implement the motion planning and synchronized control of the dental arch generator of the multi-manipulator tooth-arrangement robot for use in full denture manufacture. First, the mathematical model of the dental arch generator was derived. Then the kinematics and control point position of the dental arch generator of the tooth arrangement robot were calculated and motion planning of each control point was analysed. A hardware control scheme is presented, based on the industrial personal computer and control card PC6401. In order to gain single-axis, precise control of the dental arch generator, we studied the control pulse realization of high-resolution timing. Real-time, closed-loop, synchronous control was applied to the dental arch generator. Experimental control of the dental arch generator and preliminary tooth arrangement were gained by using the multi-manipulator tooth-arrangement robotic system. The dental arch generator can automatically generate a dental arch to fit a patient according to the patient's arch parameters. Repeated positioning accuracy is 0.12 mm for the slipways that drive the dental arch generator. The maximum value of single-point error is 1.83 mm, while the arc-width direction (x axis) is -33.29 mm. A novel system that generates the dental arch has been developed. The traditional method of manually determining the dental arch may soon be replaced by a robot to assist in generating a more individual dental arch. The system can be used to fabricate full dentures and bend orthodontic wires. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Sampled-data-based consensus and containment control of multiple harmonic oscillators: A motion-planning approach

    NASA Astrophysics Data System (ADS)

    Liu, Yongfang; Zhao, Yu; Chen, Guanrong

    2016-11-01

    This paper studies the distributed consensus and containment problems for a group of harmonic oscillators with a directed communication topology. First, for consensus without a leader, a class of distributed consensus protocols is designed by using motion planning and Pontryagin's principle. The proposed protocol only requires relative information measurements at the sampling instants, without requiring information exchange over the sampled interval. By using stability theory and the properties of stochastic matrices, it is proved that the distributed consensus problem can be solved in the motion planning framework. Second, for the case with multiple leaders, a class of distributed containment protocols is developed for followers such that their positions and velocities can ultimately converge to the convex hull formed by those of the leaders. Compared with the existing consensus algorithms, a remarkable advantage of the proposed sampled-data-based protocols is that the sampling periods, communication topologies and control gains are all decoupled and can be separately designed, which relaxes many restrictions in controllers design. Finally, some numerical examples are given to illustrate the effectiveness of the analytical results.

  4. Chaos control of Hastings-Powell model by combining chaotic motions.

    PubMed

    Danca, Marius-F; Chattopadhyay, Joydev

    2016-04-01

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.

  5. Imaging and controlling proton motion in molecules

    NASA Astrophysics Data System (ADS)

    Ibrahim, H.; Beaulieu, S.; Wanie, V.; Endo, T.; Wales, B.; Tong, X.-M.; Schuurman, M. S.; Sanderson, J.; Légaré, F.

    2017-11-01

    How do atoms move within a molecule? What are the paths they take? Coulomb Explosion Imaging combined with a multi-color pump probe scheme allows us to address these questions with a table top setup. Since the momentum information of molecular fragments is preserved at the moment of explosion, we can deduce the fragment's momentary position, representing the structure of the molecule. We have studied isomerization and dissociation events through the movement of protons, deuterons and electrons, taking advantage of the rich statistics this technique provides. In the case of proton migration in the acetylene cation, we were able to identify an isotope dependent to- and fro isomerization behavior [1]. Presently, we are expanding our studies on more complex processes. Aside from passively studying dynamics, we have also actively controlled the electron localization in small molecules [2] using two-color mid-infrared asymmetric laser fields. The manipulation of protons, the lightest atomic fragments in molecules, is of great interest due to the tremendous diversity of molecules containing them, in combination with the generality of how protons behave within molecules. Their detection involves certain challenges since they move extremely fast compared to heavier atoms. Here, we focus on two different proton motions which are triggered by excitation with ultrashort laser pulses and imaged with the Coulomb explosion imaging (CEI) technique. First, we will discuss proton migration dynamics in the acetylene cation launched due to strong field multiphoton ionization with UV pulses in a rather simple table top approach. Second, we will concentrate on controlling electron localization - and thus proton localization - in the cation of the hydrogen molecule by using an asymmetric two color field in the mid-infrared (MIR).

  6. Space motion sickness: The sensory motor controls and cardiovascular correlation

    NASA Astrophysics Data System (ADS)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  7. Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control.

    PubMed

    Ueki, Satoshi; Nishimoto, Yutaka; Abe, Motoyuki; Kawasaki, Haruhisa; Ito, Satoshi; Ishigure, Yasuhiko; Mizumoto, Jun; Ojika, Takeo

    2008-01-01

    This paper presents a virtual reality-enhanced hand rehabilitation support system with a symmetric master-slave motion assistant for independent rehabilitation therapies. Our aim is to provide fine motion exercise for a hand and fingers, which allows the impaired hand of a patient to be driven by his or her healthy hand on the opposite side. Since most disabilities caused by cerebral vascular accidents or bone fractures are hemiplegic, we adopted a symmetric master-slave motion assistant system in which the impaired hand is driven by the healthy hand on the opposite side. A VR environment displaying an effective exercise was created in consideration of system's characteristic. To verify the effectiveness of this system, a clinical test was executed by applying to six patients.

  8. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  9. Motion Recognition and Modifying Motion Generation for Imitation Robot Based on Motion Knowledge Formation

    NASA Astrophysics Data System (ADS)

    Okuzawa, Yuki; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori

    A knowledge-based approach to imitation learning of motion generation for humanoid robots and an imitative motion generation system based on motion knowledge learning and modification are described. The system has three parts: recognizing, learning, and modifying parts. The first part recognizes an instructed motion distinguishing it from the motion knowledge database by the continuous hidden markov model. When the motion is recognized as being unfamiliar, the second part learns it using locally weighted regression and acquires a knowledge of the motion. When a robot recognizes the instructed motion as familiar or judges that its acquired knowledge is applicable to the motion generation, the third part imitates the instructed motion by modifying a learned motion. This paper reports some performance results: the motion imitation of several radio gymnastics motions.

  10. The motion control of a statically stable biped robot on an uneven floor.

    PubMed

    Shih, C L; Chiou, C J

    1998-01-01

    This work studies the motion control of a statically stable biped robot having seven degrees of freedom. Statically stable walking of the biped robot is realized by maintaining the center-of-gravity inside the convex region of the supporting foot and/or feet during both single-support and double-support phases. The main points of this work are framing the stability in an easy and correct way, the design of a bipedal statically stable walker, and walking on sloping surfaces and stairs.

  11. Enhancing the stabilization of aircraft pitch motion control via intelligent and classical method

    NASA Astrophysics Data System (ADS)

    Lukman, H.; Munawwarah, S.; Azizan, A.; Yakub, F.; Zaki, S. A.; Rasid, Z. A.

    2017-12-01

    The pitching movement of an aircraft is very important to ensure passengers are intrinsically safe and the aircraft achieve its maximum stability. The equations governing the motion of an aircraft are a complex set of six nonlinear coupled differential equations. Under certain assumptions, it can be decoupled and linearized into longitudinal and lateral equations. Pitch control is a longitudinal problem and thus, only the longitudinal dynamics equations are involved in this system. It is a third order nonlinear system, which is linearized about the operating point. The system is also inherently unstable due to the presence of a free integrator. Because of this, a feedback controller is added in order to solve this problem and enhance the system performance. This study uses two approaches in designing controller: a conventional controller and an intelligent controller. The pitch control scheme consists of proportional, integral and derivatives (PID) for conventional controller and fuzzy logic control (FLC) for intelligent controller. Throughout the paper, the performance of the presented controllers are investigated and compared based on the common criteria of step response. Simulation results have been obtained and analysed by using Matlab and Simulink software. The study shows that FLC controller has higher ability to control and stabilize the aircraft's pitch angle as compared to PID controller.

  12. Real-time observation of valence electron motion.

    PubMed

    Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc

    2010-08-05

    The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

  13. A new method to prepare colloids of size-controlled clusters from a matrix assembly cluster source

    NASA Astrophysics Data System (ADS)

    Cai, Rongsheng; Jian, Nan; Murphy, Shane; Bauer, Karl; Palmer, Richard E.

    2017-05-01

    A new method for the production of colloidal suspensions of physically deposited clusters is demonstrated. A cluster source has been used to deposit size-controlled clusters onto water-soluble polymer films, which are then dissolved to produce colloidal suspensions of clusters encapsulated with polymer molecules. This process has been demonstrated using different cluster materials (Au and Ag) and polymers (polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene glycol). Scanning transmission electron microscopy of the clusters before and after colloidal dispersion confirms that the polymers act as stabilizing agents. We propose that this method is suitable for the production of biocompatible colloids of ultraprecise clusters.

  14. The neurophysiology of biological motion perception in schizophrenia

    PubMed Central

    Jahshan, Carol; Wynn, Jonathan K; Mathis, Kristopher I; Green, Michael F

    2015-01-01

    Introduction The ability to recognize human biological motion is a fundamental aspect of social cognition that is impaired in people with schizophrenia. However, little is known about the neural substrates of impaired biological motion perception in schizophrenia. In the current study, we assessed event-related potentials (ERPs) to human and nonhuman movement in schizophrenia. Methods Twenty-four subjects with schizophrenia and 18 healthy controls completed a biological motion task while their electroencephalography (EEG) was simultaneously recorded. Subjects watched clips of point-light animations containing 100%, 85%, or 70% biological motion, and were asked to decide whether the clip resembled human or nonhuman movement. Three ERPs were examined: P1, N1, and the late positive potential (LPP). Results Behaviorally, schizophrenia subjects identified significantly fewer stimuli as human movement compared to healthy controls in the 100% and 85% conditions. At the neural level, P1 was reduced in the schizophrenia group but did not differ among conditions in either group. There were no group differences in N1 but both groups had the largest N1 in the 70% condition. There was a condition × group interaction for the LPP: Healthy controls had a larger LPP to 100% versus 85% and 70% biological motion; there was no difference among conditions in schizophrenia subjects. Conclusions Consistent with previous findings, schizophrenia subjects were impaired in their ability to recognize biological motion. The EEG results showed that biological motion did not influence the earliest stage of visual processing (P1). Although schizophrenia subjects showed the same pattern of N1 results relative to healthy controls, they were impaired at a later stage (LPP), reflecting a dysfunction in the identification of human form in biological versus nonbiological motion stimuli. PMID:25722951

  15. Motion Controllers for Learners to Manipulate and Interact with 3D Objects for Mental Rotation Training

    ERIC Educational Resources Information Center

    Yeh, Shih-Ching; Wang, Jin-Liang; Wang, Chin-Yeh; Lin, Po-Han; Chen, Gwo-Dong; Rizzo, Albert

    2014-01-01

    Mental rotation is an important spatial processing ability and an important element in intelligence tests. However, the majority of past attempts at training mental rotation have used paper-and-pencil tests or digital images. This study proposes an innovative mental rotation training approach using magnetic motion controllers to allow learners to…

  16. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1992-01-01

    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness

  17. Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation.

    PubMed

    Deng, Wenxiang; Yao, Jianyong; Ma, Dawei

    2017-09-01

    This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    NASA Astrophysics Data System (ADS)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  19. Local Nanomechanical Motion In Single Cells.

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew; Gimzewski, James

    2004-03-01

    We present new evidence that the nanoscale motion of the cell wall of Saccharomyces cerevisiae exhibits local bionanomechanical motion at characteristic frequencies and which is not caused by random or Brownian processes. This motion is measured with the AFM tip which acts as a nanomechanical sensor, permitting the motion of the cell wall to be recorded as a function of time, applied force, etc. We present persuasive evidence which shows that the local nanomechanical motion is characteristic of metabolic processes taking place inside the cell. This is demonstrated by clear differences between living cells and living cells treated with a metabolic inhibitor. This inhibitor specifically targets cytochrome oxidase inside the mitochondria and inhibits ATP production. The cells observed in this study display characteristic local cell wall motion with amplitudes between 1 and 3 nm and frequencies between 500 and 1700 Hz. The motion is temperature dependant which also suggests the mechanism for the observed motion has biological origins. In addition to a stringent series of control experiments we also discuss local measurements of the cell's mechanical properties and their influence on the observed bionanomechanical motion.

  20. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology

    PubMed Central

    Siewert, F.; Buchheim, J.; Zeschke, T.; Störmer, M.; Falkenberg, G.; Sankari, R.

    2014-01-01

    To fully exploit the ultimate source properties of the next-generation light sources, such as free-electron lasers (FELs) and diffraction-limited storage rings (DLSRs), the quality requirements for gratings and reflective synchrotron optics, especially mirrors, have significantly increased. These coherence-preserving optical components for high-brightness sources will feature nanoscopic shape accuracies over macroscopic length scales up to 1000 mm. To enable high efficiency in terms of photon flux, such optics will be coated with application-tailored single or multilayer coatings. Advanced thin-film fabrication of today enables the synthesis of layers on the sub-nanometre precision level over a deposition length of up to 1500 mm. Specifically dedicated metrology instrumentation of comparable accuracy has been developed to characterize such optical elements. Second-generation slope-measuring profilers like the nanometre optical component measuring machine (NOM) at the BESSY-II Optics laboratory allow the inspection of up to 1500 mm-long reflective optical components with an accuracy better than 50 nrad r.m.s. Besides measuring the shape on top of the coated mirror, it is of particular interest to characterize the internal material properties of the mirror coating, which is the domain of X-rays. Layer thickness, density and interface roughness of single and multilayer coatings are investigated by means of X-ray reflectometry. In this publication recent achievements in the field of slope measuring metrology are shown and the characterization of different types of mirror coating demonstrated. Furthermore, upcoming challenges to the inspection of ultra-precise optical components designed to be used in future FEL and DLSR beamlines are discussed. PMID:25177985

  1. Chaos control of Hastings–Powell model by combining chaotic motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danca, Marius-F., E-mail: danca@rist.ro; Chattopadhyay, Joydev, E-mail: joydev@isical.ac.in

    2016-04-15

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings–Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can bemore » approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: “losing + losing = winning.” If “loosing” is replaced with “chaos” and, “winning” with “order” (as the opposite to “chaos”), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write “chaos + chaos = regular.” Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.« less

  2. Voluntary attention modulates motion-induced mislocalization

    PubMed Central

    Tse, Peter U.; Whitney, David; Anstis, Stuart; Cavanagh, Patrick

    2013-01-01

    When a test is flashed on top of two superimposed, opposing motions, the perceived location of the test is shifted in opposite directions depending on which of the two motions is attended. Because the stimulus remains unchanged as attention switches from one motion to the other, the effect cannot be due to stimulus-driven, low-level motion. A control condition ruled out any contribution from possible attention-induced cyclotorsion of the eyes. This provides the strongest evidence to date for a role of attention in the perception of location, and establishes that what we attend to influences where we perceive objects to be. PMID:21415228

  3. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  4. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  5. High speed, precision motion strategies for lightweight structures

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1987-01-01

    Abstracts of published papers and dissertations generated during the reporting period are compiled. Work on fine motion control was completed. Specifically, real time control of flexible manipulator vibrations were experimentally investigated. A linear model based on the application of Lagrangian dynamics to a rigid body mode and a series of separable flexible modes was examined with respect to model order requirements, and modal candidate selection. State feedback control laws were implemented based upon linear quadratic regulator design. Specification of the closed loop poles in the regulator design process was obtained by inclusion of a prescribed degree of stability in the manipulator model. Work on gross motion planning and control is also summarized. A systematic method to symbolically derive the full nonlinear dynamic equations of motion of multi-link flexible manipulators was developed.

  6. Orbital and angular motion construction for low thrust interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  7. Motion deficit of the thumb in CMC joint arthritis.

    PubMed

    Gehrmann, Sebastian V; Tang, Jie; Li, Zong Ming; Goitz, Robert J; Windolf, Joachim; Kaufmann, Robert A

    2010-09-01

    Idiopathic osteoarthritis (OA) of the thumb carpometacarpal (CMC) joint is a common disabling disease that often causes pain and motion loss. The aims of this study were to characterize the multidimensional motion capability of the thumb CMC joint in a group with severe CMC OA and to compare it with a control group. We included 15 subjects with stage III/IV CMC OA according to the Eaton/Littler classification, and 15 control subjects. A motion analysis system using surface markers was employed to quantify the maximum boundary of the thumb circumduction envelope during repetitive thumb movements. We measured the area enclosed by the angular circumduction envelope and the ranges of motion (ROM) in multiple directions for the thumb CMC joint. Thumb osteoarthritis of the CMC joint stage III/IV resulted in a significantly smaller ROM in flexion/extension (45 degrees +/- 11 degrees for the CMC OA group, 59 degrees +/- 10 degrees for the controls), abduction-adduction (37 degrees +/- 6 degrees for the CMC OA group, 63 degrees +/- 13 degrees for the controls), and pronation-supination (49 degrees +/- 10 degrees for the CMC OA group, 62 degrees +/- 11 degrees for the controls) (p < .01). When analyzing the motion directions in flexion-extension and abduction-adduction separately, there was only a loss of extension and adduction (p < .01). Severe stages of thumb CMC OA cause an asymmetrical motion deficit with decreased ROM in extension and adduction, leading to decreased capability of counteropposition. Copyright 2010. Published by Elsevier Inc.

  8. Seismic switch for strong motion measurement

    DOEpatents

    Harben, Philip E.; Rodgers, Peter W.; Ewert, Daniel W.

    1995-01-01

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  9. Seismic switch for strong motion measurement

    DOEpatents

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  10. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  11. Adaptation without parameter change: Dynamic gain control in motion detection

    PubMed Central

    Borst, Alexander; Flanagin, Virginia L.; Sompolinsky, Haim

    2005-01-01

    Many sensory systems adapt their input-output relationship to changes in the statistics of the ambient stimulus. Such adaptive behavior has been measured in a motion detection sensitive neuron of the fly visual system, H1. The rapid adaptation of the velocity response gain has been interpreted as evidence of optimal matching of the H1 response to the dynamic range of the stimulus, thereby maximizing its information transmission. Here, we show that correlation-type motion detectors, which are commonly thought to underlie fly motion vision, intrinsically possess adaptive properties. Increasing the amplitude of the velocity fluctuations leads to a decrease of the effective gain and the time constant of the velocity response without any change in the parameters of these detectors. The seemingly complex property of this adaptation turns out to be a straightforward consequence of the multidimensionality of the stimulus and the nonlinear nature of the system. PMID:15833815

  12. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1987-01-01

    The objectives of this proposal were developed to further explore and quantify the orientation reference selection abilities of subjects and the relation, if any, between motion sickness and orientation reference selection. The overall objectives of this proposal are to determine (1) if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects, (2) if abnormal vertical canal-otolith function is the source of these abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and (3) if quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability demonstrated by tests which systematically control the sensory imformation available for orientation.

  13. Individualistic weight perception from motion on a slope

    PubMed Central

    Zintus-art, K.; Shin, D.; Kambara, H.; Yoshimura, N.; Koike, Y.

    2016-01-01

    Perception of an object’s weight is linked to its form and motion. Studies have shown the relationship between weight perception and motion in horizontal and vertical environments to be universally identical across subjects during passive observation. Here we show a contradicting finding in that not all humans share the same motion-weight pairing. A virtual environment where participants control the steepness of a slope was used to investigate the relationship between sliding motion and weight perception. Our findings showed that distinct, albeit subjective, motion-weight relationships in perception could be identified for slope environments. These individualistic perceptions were found when changes in environmental parameters governing motion were introduced, specifically inclination and surface texture. Differences in environmental parameters, combined with individual factors such as experience, affected participants’ weight perception. This phenomenon may offer evidence of the central nervous system’s ability to choose and combine internal models based on information from the sensory system. The results also point toward the possibility of controlling human perception by presenting strong sensory cues to manipulate the mechanisms managing internal models. PMID:27174036

  14. Motion and Balance. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Motion allows things to get done, to communicate and to travel. But is motion controlled? Students will learn about the universal laws that apply to motion, the forces that cause it and how it is related to balance. They will also discover why motion occurs when forces are out of control and learn more about this interesting concept by viewing…

  15. Theoretical Insights Reveal Novel Motions in Csk’s SH3 Domain That Control Kinase Activation

    PubMed Central

    Barkho, Sulyman; Pierce, Levi C. T.; Li, Sheng; Adams, Joseph A.; Jennings, Patricia A.

    2015-01-01

    The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD) simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS) and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk’s activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk. PMID:26030592

  16. Neural correlates of coherent and biological motion perception in autism.

    PubMed

    Koldewyn, Kami; Whitney, David; Rivera, Susan M

    2011-09-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. © 2011 Blackwell Publishing Ltd.

  17. Neural correlates of coherent and biological motion perception in autism

    PubMed Central

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2011-01-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. PMID:21884323

  18. Trunk motion and gait characteristics of pregnant women when walking: report of a longitudinal study with a control group

    PubMed Central

    2013-01-01

    Background A longitudinal repeated measures design over pregnancy and post-birth, with a control group would provide insight into the mechanical adaptations of the body under conditions of changing load during a common female human lifespan condition, while minimizing the influences of inter human differences. The objective was to investigate systematic changes in the range of motion for the pelvic and thoracic segments of the spine, the motion between these segments (thoracolumbar spine) and temporospatial characteristics of step width, stride length and velocity during walking as pregnancy progresses and post-birth. Methods Nine pregnant women were investigated when walking along a walkway at a self-selected velocity using an 8 camera motion analysis system on four occasions throughout pregnancy and once post birth. A control group of twelve non-pregnant nulliparous women were tested on three occasions over the same time period. The existence of linear trends for change was investigated. Results As pregnancy progresses there was a significant linear trend for increase in step width (p = 0.05) and a significant linear trend for decrease in stride length (p = 0.05). Concurrently there was a significant linear trend for decrease in the range of motion of the pelvic segment (p = 0.03) and thoracolumbar spine (p = 0.01) about a vertical axis (side to side rotation), and the pelvic segment (p = 0.04) range of motion around an anterio-posterior axis (side tilt). Post-birth, step width readapted whereas pelvic (p = 0.02) and thoracic (p < 0.001) segment flexion-extension range of motion decreased and increased respectively. The magnitude of all changes was greater than that accounted for with natural variability with re testing. Conclusions As pregnancy progressed and post-birth there were significant linear trends seen in biomechanical changes when walking at a self-determined natural speed that were greater than that accounted for by natural

  19. Changes in plasma vasopressin during motion sickness in cats

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Keil, L.; Daunton, Nancy G.; Thomsen, D.; Dictor, M.; Chee, O.

    1991-01-01

    Changes in levels of plasma vasopressin (AVP) and cortisol (C) have been shown to be correlated with motion sickness and nausea in man. As part of the research aimed at validation of the cat as an appropriate animal model for motion sickness research, levels of these hormones were investigated in the cat during motion sickness elicited by vertical linear acceleration of approximately 0.6 Hz and 1 +/- 0.6 G. In Study 1, 15 cats previously screened for susceptibility to motion sickness were prepared with indwelling jugular catheters to permit withdrawl of blood with minimal disruption of the stimulus and minimum stress to the animal. AVP and C were measured in blood samples obtained during exposure to vertical linear acceleration and during control sessions in which the animals were placed in the stationary apparatus. 10 min and 1 min prior to duration; 1, 5, 10, and 20 min after start of motion. Total duration of exposure to motion was 20 min. The data indicate that both AVP and C are elevated during exposure to motion if emesis occurs. AVP reaches maximum levels during or about the same time as emesis, while C increases gradually throughout the period of vertical acceleration. In Study 2, four cats were prepared with indwelling catheters and AVP was measured in blood withdrawn during exposure to the vertical linear acceleration. A single pre-motion sample consisting of three samples drawn 5 min prior to motion onset. Two series of samples consisting of three samples drawn at 3-min intervals were obtained during motion. The first series was initiated at emesis, and the second 25 min after emesis. Results show that levels of circulating AVP were elevated (2 to 27 times the control and pre-motion levels) in the samples taken during emesis and decreased, but remained 1 to 6 times above the pre-motion or control levels within 25 min. The results of these two studies indicate that AVP is elevated during motion-produced emesis than is C. These findings are in general

  20. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    NASA Technical Reports Server (NTRS)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  1. Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores

    PubMed Central

    Belkin, Maxim; Maffeo, Christopher; Wells, David B.

    2013-01-01

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013

  2. Theoretical and Analog Studies of the Effects of Nonlinear Stability Derivatives on the Longitudinal Motions of an Aircraft in Response to Step Control Deflections and to the Influence of Proportional Automatic Control

    NASA Technical Reports Server (NTRS)

    Curfman, Howard J , Jr

    1955-01-01

    Through theoretical and analog results the effects of two nonlinear stability derivatives on the longitudinal motions of an aircraft have been investigated. Nonlinear functions of pitching-moment and lift coefficients with angle of attack were considered. Analog results of aircraft motions in response to step elevator deflections and to the action of the proportional control systems are presented. The occurrence of continuous hunting oscillations was predicted and demonstrated for the attitude stabilization system with proportional control for certain nonlinear pitching-moment variations and autopilot adjustments.

  3. Brownian motion of graphene.

    PubMed

    Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C

    2010-12-28

    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.

  4. Control of trunk motion following sudden stop perturbations during cart pushing.

    PubMed

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2011-01-04

    External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Computer Controlled Optical Surfacing With Orbital Tool Motion

    NASA Astrophysics Data System (ADS)

    Jones, Robert A.

    1985-11-01

    Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by hand grinding and polishing, using small laps with orbital tool motion. However, this is a time consuming process unsuitable for large optical elements.

  6. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  7. On-track test of tilt control strategies for less motion sickness on tilting trains

    NASA Astrophysics Data System (ADS)

    Persson, Rickard; Kufver, Björn; Berg, Mats

    2012-07-01

    Carbody tilting is today a mature and inexpensive technology that permits higher train speeds in horizontal curves, thus shortening travel time. However, tilting trains run a greater risk of causing motion sickness than non-tilting ones. It is likely that the difference in motions between the two train types contributes to the observed difference in risk of motion sickness. Decreasing the risk of motion sickness has until now been equal to increasing the discomfort related to quasi-static lateral acceleration. But, there is a difference in time perception between discomfort caused by quasi-static quantities and motion sickness, which opens up for new solutions. One proposed strategy is to let the local track conditions influence the tilt and give each curve its own optimised tilt angle. This is made possible by new tilt algorithms, storing track data and using a positioning system to select the appropriate data. The present paper reports from on-track tests involving more than 100 test subjects onboard a tilting train. A technical approach is taken evaluating the effectiveness of the new tilt algorithms and the different requirements on quasi-static lateral acceleration and lateral jerk in relative terms. The evaluation verifies that the rms values important for motion sickness can be influenced without changing the requirements on quasi-static lateral acceleration and lateral jerk. The evaluation shows that reduced quantities of motions assumed to have a relation to motion sickness also lead to a reduction in experienced motion sickness. However, a limitation of applicability is found as the lowest risk of motion sickness was not recorded for the test case with motions closest to those of a non-tilting train. An optimal level of tilt, different from no tilt at all, is obtained. This non-linear relation has been observed by other researchers in laboratory tests.

  8. MO-B-201-02: Motion Management for Proton Lung SBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flampouri, S.

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanicsmore » of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major

  9. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George [Reno, NV

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  10. Direction detection thresholds of passive self-motion in artistic gymnasts.

    PubMed

    Hartmann, Matthias; Haller, Katia; Moser, Ivan; Hossner, Ernst-Joachim; Mast, Fred W

    2014-04-01

    In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward-rightward) motion. Gymnasts showed lower thresholds for the linear leftward-rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14-20 years) than for the younger (7-13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.

  11. Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin.

    PubMed

    Siewert, F; Löchel, B; Buchheim, J; Eggenstein, F; Firsov, A; Gwalt, G; Kutz, O; Lemke, St; Nelles, B; Rudolph, I; Schäfers, F; Seliger, T; Senf, F; Sokolov, A; Waberski, Ch; Wolf, J; Zeschke, T; Zizak, I; Follath, R; Arnold, T; Frost, F; Pietag, F; Erko, A

    2018-01-01

    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm -1 and 1200 lines mm -1 . A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.

  12. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study.

    PubMed

    Iosa, Marco; Morone, Giovanni; Fusco, Augusto; Castagnoli, Marcello; Fusco, Francesca Romana; Pratesi, Luca; Paolucci, Stefano

    2015-08-01

    The leap motion controller (LMC) is a new optoelectronic system for capturing motion of both hands and controlling a virtual environment. Differently from previous devices, it optoelectronically tracks the fine movements of fingers neither using glows nor markers. This pilot study explored the feasibility of adapting the LMC, developed for videogames, to neurorehabilitation of elderly with subacute stroke. Four elderly patients (71.50 ± 4.51 years old) affected by stroke in subacute phase were enrolled and tested in a cross-over pilot trial in which six sessions of 30 minutes of LMC videogame-based therapy were added on conventional therapy. Measurements involved participation to the sessions, evaluated by means of the Pittsburgh Rehabilitation Participation Scale, hand ability and grasp force evaluated respectively by means of the Abilhand Scale and by means of the dynamometer. Neither adverse effects nor spasticity increments were observed during LMC training. Participation to the sessions was excellent in three patients and very good in one patient during the LMC trial. In this period, patients showed a significantly higher improvement in hand abilities (P = 0.028) and grasp force (P = 0.006). This feasibility pilot study was the first one using leap motion controller for conducting a videogame-based therapy. This study provided a proof of concept that LMC can be a suitable tool even for elderly patients with subacute stroke. LMC training was in fact performed with a high level of active participation, without adverse effects, and contributed to increase the recovery of hand abilities.

  13. The Influence of Head Motion on Intrinsic Functional Connectivity MRI

    PubMed Central

    Van Dijk, Koene R.A.; Sabuncu, Mert R.; Buckner, Randy L.

    2011-01-01

    Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A confounding factor is head motion. Children move more than adults, older adults more than younger adults, and patients more than controls. Head motion varies considerably among individuals within the same population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation across subjects was not linked to estimated head motion. However, head motion had significant, systematic effects on fcMRI network measures. Head motion was associated with decreased functional coupling in the default and frontoparietal control networks – two networks characterized by coupling among distributed regions of association cortex. Other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions – a region pair sometimes used as a control in studies to establish specificity. Comparisons between groups of individuals with subtly different levels of head motion yielded difference maps that could be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting variation between groups and across individuals. PMID:21810475

  14. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.

    PubMed

    Wang, Jane; Ho, Cindy S; Giaschi, Deborah E

    2007-01-01

    Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.

  15. Planning and executing motions for multibody systems in free-fall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.

    1991-01-01

    The purpose of this research is to develop an end-to-end system that can be applied to a multibody system in free-fall to analyze its possible motions, save those motions in a database, and design a controller that can execute those motions. A goal is for the process to be highly automated and involve little human intervention. Ideally, the output of the system would be data and algorithms that could be put in ROM to control the multibody system in free-fall. The research applies to more than just robots in space. It applies to any multibody system in free-fall. Mathematical techniques from nonlinear control theory were used to study the nature of the system dynamics and its possible motions. Optimization techniques were applied to plan motions. Image compression techniques were proposed to compress the precomputed motion data for storage. A linearized controller was derived to control the system while it executes preplanned trajectories.

  16. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  17. Motion perception: behavior and neural substrate.

    PubMed

    Mather, George

    2011-05-01

    Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion

  18. Forward flight of swallowtail butterfly with simple flapping motion.

    PubMed

    Tanaka, Hiroto; Shimoyama, Isao

    2010-06-01

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  19. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-01

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  20. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups.

    PubMed

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-08

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  1. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  2. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  3. Machine learning in motion control

    NASA Technical Reports Server (NTRS)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  4. A motion sensing-based framework for robotic manipulation.

    PubMed

    Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing

    2016-01-01

    To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.

  5. The Digital Motion Control System for the Submillimeter Array Antennas

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  6. Realtime motion planning for a mobile robot in an unknown environment using a neurofuzzy based approach

    NASA Astrophysics Data System (ADS)

    Zheng, Taixiong

    2005-12-01

    A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.

  7. Comparison of three different techniques for camera and motion control of a teleoperated robot.

    PubMed

    Doisy, Guillaume; Ronen, Adi; Edan, Yael

    2017-01-01

    This research aims to evaluate new methods for robot motion control and camera orientation control through the operator's head orientation in robot teleoperation tasks. Specifically, the use of head-tracking in a non-invasive way, without immersive virtual reality devices was combined and compared with classical control modes for robot movements and camera control. Three control conditions were tested: 1) a condition with classical joystick control of both the movements of the robot and the robot camera, 2) a condition where the robot movements were controlled by a joystick and the robot camera was controlled by the user head orientation, and 3) a condition where the movements of the robot were controlled by hand gestures and the robot camera was controlled by the user head orientation. Performance, workload metrics and their evolution as the participants gained experience with the system were evaluated in a series of experiments: for each participant, the metrics were recorded during four successive similar trials. Results shows that the concept of robot camera control by user head orientation has the potential of improving the intuitiveness of robot teleoperation interfaces, specifically for novice users. However, more development is needed to reach a margin of progression comparable to a classical joystick interface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy.

    PubMed

    Li, Zhi; Milutinović, Dejan; Rosen, Jacob

    2017-05-01

    Reach-to-grasp arm postures differ from those in pure reaching because they are affected by grasp position/orientation, rather than simple transport to a position during a reaching motion. This paper investigates this difference via an analysis of experimental  data collected on reaching and reach-to-grasp motions. A seven-degree-of-freedom (DOFs) kinematic arm model with the swivel angle is used for the motion analysis. Compared to a widely used anatomical arm model, this model distinguishes clearly the four grasping-relevant DOFs (GR-DOFs) that are affected by positions and orientations of the objects to be grasped. These four GR-DOFs include the swivel angle that measures the elbow rotation about the shoulder-wrist axis, and three wrist joint angles. For each GR-DOF, we quantify position vs orientation task-relevance bias that measures how much the DOF is affected by the grasping position vs orientation. The swivel angle and forearm supination have similar bias, and the analysis of their motion suggests two hypotheses regarding the synergistic coordination of the macro- and micro-structures of the human arm (1) DOFs with similar task-relevance are synergistically coordinated; and (2) such synergy breaks when a task-relevant DOF is close to its joint limit without necessarily reaching the limit. This study provides a motion analysis method to reduce the control complexity for reach-to-grasp tasks, and suggests using dynamic coupling to coordinate the hand and arm of upper-limb exoskeletons.

  9. Complex motion measurement using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Jianjun; Tu, Dan; Shen, Zhenkang

    1997-12-01

    Genetic algorithm (GA) is an optimization technique that provides an untraditional approach to deal with many nonlinear, complicated problems. The notion of motion measurement using genetic algorithm arises from the fact that the motion measurement is virtually an optimization process based on some criterions. In the paper, we propose a complex motion measurement method using genetic algorithm based on block-matching criterion. The following three problems are mainly discussed and solved in the paper: (1) apply an adaptive method to modify the control parameters of GA that are critical to itself, and offer an elitism strategy at the same time (2) derive an evaluate function of motion measurement for GA based on block-matching technique (3) employ hill-climbing (HC) method hybridly to assist GA's search for the global optimal solution. Some other related problems are also discussed. At the end of paper, experiments result is listed. We employ six motion parameters for measurement in our experiments. Experiments result shows that the performance of our GA is good. The GA can find the object motion accurately and rapidly.

  10. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion.

    PubMed

    Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W

    2016-02-15

    Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  12. Why do adults with dyslexia have poor global motion sensitivity?

    PubMed

    Conlon, Elizabeth G; Lilleskaret, Gry; Wright, Craig M; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg(2). These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion.

  13. Why do adults with dyslexia have poor global motion sensitivity?

    PubMed Central

    Conlon, Elizabeth G.; Lilleskaret, Gry; Wright, Craig M.; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg2. These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion. PMID:24376414

  14. Helicopter flight simulation motion platform requirements

    NASA Astrophysics Data System (ADS)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  15. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  16. Effect of focusing flow on stationary spot machining properties in elastic emission machining

    PubMed Central

    2013-01-01

    Ultraprecise optical elements are applied in advanced optical apparatus. Elastic emission machining (EEM) is one of the ultraprecision machining methods used to fabricate shapes with 0.1-nm accuracy. In this study, we proposed and experimentally tested the control of the shape of a stationary spot profile by introducing a focusing-flow state between the nozzle outlet and the workpiece surface in EEM. The simulation results indicate that the focusing-flow nozzle sharpens the distribution of the velocity on the workpiece surface. The results of machining experiments verified those of the simulation. The obtained stationary spot conditions will be useful for surface processing with a high spatial resolution. PMID:23680043

  17. Can the Functional Movement Screen™ be used to capture changes in spine and knee motion control following 12 weeks of training?

    PubMed

    Frost, David M; Beach, Tyson A C; Campbell, Troy L; Callaghan, Jack P; McGill, Stuart M

    2017-01-01

    To examine whether objective measures of spine and frontal plane knee motion exhibited during Functional Movement Screen™ (FMS) task performance changed following a movement-guided fitness (MOV) and conventional fitness (FIT) exercise intervention. Secondary analysis of a randomized controlled experiment. Before and after 12 weeks of exercise, participants' kinematics were quantified while performing the FMS and a series of general whole-body movement tasks. Biomechanics laboratory. Fifty-two firefighters were assigned to MOV, FIT, or a control (CON) group. Peak lumbar spine flexion/extension, lateral bend and axial twist, and frontal plane knee motion. The post-training kinematic changes exhibited by trainees while performing the FMS tasks were similar in magnitude (effect size < 0.8) to those exhibited by CON. However, when performing the battery of general whole-body movement tasks, only MOV showed significant improvements in spine and frontal plane knee motion control (effect size > 0.5). Whether graded qualitatively, or quantitatively via kinematic analyses, the FMS may not be a viable tool to detect movement-based exercise adaptations. Amendments to the FMS tasks and/or scoring method are needed before it can be used for reasons beyond appraising the ability to move freely, symmetrically, and without pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Motion coherence and direction discrimination in healthy aging.

    PubMed

    Pilz, Karin S; Miller, Louisa; Agnew, Hannah C

    2017-01-01

    Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (<30 years) participants' ability to discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.

  19. Jerk-level synchronous repetitive motion scheme with gradient-type and zeroing-type dynamics algorithms applied to dual-arm redundant robot system control

    NASA Astrophysics Data System (ADS)

    Chen, Dechao; Zhang, Yunong

    2017-10-01

    Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.

  20. The Influence of Motion Cues on Driver-Vehicle Performance in a Simulator

    NASA Technical Reports Server (NTRS)

    Repa, B. S.; Leucht, P. M.; Wierwille, W. W.

    1981-01-01

    Four different motion base configurations were studied on driving simulator. Differently responding vehicles were simulated on each motion configurations and the effects of the vehicle characteristics on driver vehicle system performance, driver control activity, and driver opinion ratings of vehicle performance during driving are compared for different motion configurations. Data show that: (1)) the effects of changes in vehicle characteristics on the different objective and subjective measures of driver vehicle performance are not disguised by the lack of physical motion; (2) fixed base simulator can be used to draw inferences despite the lack of motion; (3) the presence of motion tends to reduce path keeping errors and driver control activity; (4) roll and yaw motions are recommended because of their marked influence on driver vehicle performance (5) the importance of motion increases as the driving maneuvers become more extreme.

  1. Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task.

    PubMed

    Ochiai, Tetsuji; Mushiake, Hajime; Tanji, Jun

    2005-07-01

    The ventral premotor cortex (PMv) has been implicated in the visual guidance of movement. To examine whether neuronal activity in the PMv is involved in controlling the direction of motion of a visual image of the hand or the actual movement of the hand, we trained a monkey to capture a target that was presented on a video display using the same side of its hand as was displayed on the video display. We found that PMv neurons predominantly exhibited premovement activity that reflected the image motion to be controlled, rather than the physical motion of the hand. We also found that the activity of half of such direction-selective PMv neurons depended on which side (left versus right) of the video image of the hand was used to capture the target. Furthermore, this selectivity for a portion of the hand was not affected by changing the starting position of the hand movement. These findings suggest that PMv neurons play a crucial role in determining which part of the body moves in which direction, at least under conditions in which a visual image of a limb is used to guide limb movements.

  2. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  3. Evaluation of the Leap Motion Controller during the performance of visually-guided upper limb movements.

    PubMed

    Niechwiej-Szwedo, Ewa; Gonzalez, David; Nouredanesh, Mina; Tung, James

    2018-01-01

    Kinematic analysis of upper limb reaching provides insight into the central nervous system control of movements. Until recently, kinematic examination of motor control has been limited to studies conducted in traditional research laboratories because motion capture equipment used for data collection is not easily portable and expensive. A recently developed markerless system, the Leap Motion Controller (LMC), is a portable and inexpensive tracking device that allows recording of 3D hand and finger position. The main goal of this study was to assess the concurrent reliability and validity of the LMC as compared to the Optotrak, a criterion-standard motion capture system, for measures of temporal accuracy and peak velocity during the performance of upper limb, visually-guided movements. In experiment 1, 14 participants executed aiming movements to visual targets presented on a computer monitor. Bland-Altman analysis was conducted to assess the validity and limits of agreement for measures of temporal accuracy (movement time, duration of deceleration interval), peak velocity, and spatial accuracy (endpoint accuracy). In addition, a one-sample t-test was used to test the hypothesis that the error difference between measures obtained from Optotrak and LMC is zero. In experiment 2, 15 participants performed a Fitts' type aiming task in order to assess whether the LMC is capable of assessing a well-known speed-accuracy trade-off relationship. Experiment 3 assessed the temporal coordination pattern during the performance of a sequence consisting of a reaching, grasping, and placement task in 15 participants. Results from the t-test showed that the error difference in temporal measures was significantly different from zero. Based on the results from the 3 experiments, the average temporal error in movement time was 40±44 ms, and the error in peak velocity was 0.024±0.103 m/s. The limits of agreement between the LMC and Optotrak for spatial accuracy measures ranged between

  4. Evaluation of the Leap Motion Controller during the performance of visually-guided upper limb movements

    PubMed Central

    Gonzalez, David; Nouredanesh, Mina; Tung, James

    2018-01-01

    Kinematic analysis of upper limb reaching provides insight into the central nervous system control of movements. Until recently, kinematic examination of motor control has been limited to studies conducted in traditional research laboratories because motion capture equipment used for data collection is not easily portable and expensive. A recently developed markerless system, the Leap Motion Controller (LMC), is a portable and inexpensive tracking device that allows recording of 3D hand and finger position. The main goal of this study was to assess the concurrent reliability and validity of the LMC as compared to the Optotrak, a criterion-standard motion capture system, for measures of temporal accuracy and peak velocity during the performance of upper limb, visually-guided movements. In experiment 1, 14 participants executed aiming movements to visual targets presented on a computer monitor. Bland-Altman analysis was conducted to assess the validity and limits of agreement for measures of temporal accuracy (movement time, duration of deceleration interval), peak velocity, and spatial accuracy (endpoint accuracy). In addition, a one-sample t-test was used to test the hypothesis that the error difference between measures obtained from Optotrak and LMC is zero. In experiment 2, 15 participants performed a Fitts’ type aiming task in order to assess whether the LMC is capable of assessing a well-known speed-accuracy trade-off relationship. Experiment 3 assessed the temporal coordination pattern during the performance of a sequence consisting of a reaching, grasping, and placement task in 15 participants. Results from the t-test showed that the error difference in temporal measures was significantly different from zero. Based on the results from the 3 experiments, the average temporal error in movement time was 40±44 ms, and the error in peak velocity was 0.024±0.103 m/s. The limits of agreement between the LMC and Optotrak for spatial accuracy measures ranged

  5. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  6. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    PubMed

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  7. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  8. Full-motion video analysis for improved gender classification

    NASA Astrophysics Data System (ADS)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  9. Control of Supercavitation Flow and Stability of Supercavitating Motion of Bodies

    DTIC Science & Technology

    2001-02-01

    sign opposite to a sign of angle Vf - accidental deflection of the model Sgn M = -Sgn i. 4.3. EQUATIONS OF THE SCM DYNAMICS The most effective method of...the motion stability in interactive regime "researcher - computer" [ 16]. The complete mathematical model of the SCM motion includes a set of equations ...of solid body dynamics, equations to calculate the unsteady cavity shape and relations to calculate the acting forces. A set of dynamic equations of

  10. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag

    NASA Astrophysics Data System (ADS)

    Erofeev, A. I.; Nikiforov, A. P.; Popov, G. A.; Suvorov, M. O.; Syrin, S. A.; Khartov, S. A.

    2017-12-01

    Problems on designing the air-breathing ramjet electric propulsion thruster for controlling loworbit spacecraft motion are examined in the paper. Information for choosing orbits' altitudes for reasonable application of an air-breathing ramjet electric propulsion thruster and propellant exhaust velocity is presented. Estimates of the probable increase of gas concentration in the area of air-breathing ramjet ionization are presented. The test results of the thruster are also given.

  11. Adaptive control of center of mass (global) motion and its joint (local) origin in gait.

    PubMed

    Yang, Feng; Pai, Yi-Chung

    2014-08-22

    Dynamic gait stability can be quantified by the relationship of the motion state (i.e. the position and velocity) between the body center of mass (COM) and its base of support (BOS). Humans learn how to adaptively control stability by regulating the absolute COM motion state (i.e. its position and velocity) and/or by controlling the BOS (through stepping) in a predictable manner, or by doing both simultaneously following an external perturbation that disrupts their regular relationship. Post repeated-slip perturbation training, for instance, older adults learned to forward shift their COM position while walking with a reduced step length, hence reduced their likelihood of slip-induced falls. How and to what extent each individual joint influences such adaptive alterations is mostly unknown. A three-dimensional individualized human kinematic model was established. Based on the human model, sensitivity analysis was used to systematically quantify the influence of each lower limb joint on the COM position relative to the BOS and the step length during gait. It was found that the leading foot had the greatest effect on regulating the COM position relative to the BOS; and both hips bear the most influence on the step length. These findings could guide cost-effective but efficient fall-reduction training paradigm among older population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    PubMed

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  13. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  14. Neural Correlates of Coherent and Biological Motion Perception in Autism

    ERIC Educational Resources Information Center

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2011-01-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but…

  15. Reference equations of motion for automatic rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1992-01-01

    The analysis presented in this paper defines the reference coordinate frames, equations of motion, and control parameters necessary to model the relative motion and attitude of spacecraft in close proximity with another space system during the Automatic Rendezvous and Capture phase of an on-orbit operation. The relative docking port target position vector and the attitude control matrix are defined based upon an arbitrary spacecraft design. These translation and rotation control parameters could be used to drive the error signal input to the vehicle flight control system. Measurements for these control parameters would become the bases for an autopilot or feedback control system (FCS) design for a specific spacecraft.

  16. Laser interferometric system for six-axis motion measurement.

    PubMed

    Zhang, Zhipeng; Menq, Chia-Hsiang

    2007-08-01

    This article presents the development of a precision laser interferometric system, which is designed to achieve six-axis motion measurement for real-time applications. By combining the advantage of the interferometer with a retroreflector and that of the interferometer with a plane mirror reflector, the system is capable of simultaneously measuring large transverse motions along and large rotational motions about three orthogonal axes. Based on optical path analysis along with the designed kinematics of the system, a closed form relationship between the six-axis motion parameters of the object being measured and the readings of the six laser interferometers is established. It can be employed as a real-time motion sensor for various six-axis motion control stages. A prototype is implemented and integrated with a six-axis magnetic levitation stage to illustrate its resolution and measurement range.

  17. The Role of Motion Concepts in Understanding Non-Motion Concepts

    PubMed Central

    Khatin-Zadeh, Omid; Banaruee, Hassan; Khoshsima, Hooshang; Marmolejo-Ramos, Fernando

    2017-01-01

    This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems. PMID:29240715

  18. Motion sickness elicited by passive rotation in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Current theory and recent evidence suggest that motion sickness occurs under conditions of sensory input in which the normal motor programs for producing eye, head, and body movements are not functionally effective, i.e. under conditions in which there are difficulties in maintaining posture and controlling eye movements. Conditions involving conflicting or inconsistent visual-vestibular (VV) stimulation should thus result in greater sickness rates since the existing motor programs do not produce effective control of eye-head-body movements under such conditions. It is felt that the relationship of postural control to motion sickness is an important one and one often overlooked. The results are reported which showed that when postural requirements were minimized by fully restraining squirrel monkeys during hypogravity parabolic flight, no animals became motion sick, but over 80 percent of the same 11 animals became sick if they were unrestrained and maintained control of their posture.

  19. Computational Motion Phantoms and Statistical Models of Respiratory Motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian

    Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.

  20. The Structure, Design, and Closed-Loop Motion Control of a Differential Drive Soft Robot.

    PubMed

    Wu, Pang; Jiangbei, Wang; Yanqiong, Fei

    2018-02-01

    This article presents the structure, design, and motion control of an inchworm inspired pneumatic soft robot, which can perform differential movement. This robot mainly consists of two columns of pneumatic multi-airbags (actuators), one sensor, one baseboard, front feet, and rear feet. According to the different inflation time of left and right actuators, the robot can perform both linear and turning movements. The actuators of this robot are composed of multiple airbags, and the design of the airbags is analyzed. To deal with the nonlinear performance of the soft robot, we use radial basis function neural networks to train the turning ability of this robot on three different surfaces and create a mathematical model among coefficient of friction, deflection angle, and inflation time. Then, we establish the closed-loop automatic control model using three-axis electronic compass sensor. Finally, the automatic control model is verified by linear and turning movement experiments. According to the experiment, the robot can finish the linear and turning movements under the closed-loop control system.

  1. Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control.

    PubMed

    Zhang, Kuan; Fraxedas, Jordi; Sepulveda, Borja; Esplandiu, Maria J

    2017-12-27

    Self-propelled micro/nanomotors that can transform chemical energy from the surrounding environment into mechanical motion are cutting edge nanotechnologies with potential applications in biomedicine and environmental remediation. These applications require full understanding of the propulsion mechanisms to improve the performance and controllability of the motors. In this work, we demonstrate that there are two competing chemomechanical mechanisms at semiconductor/metal (Si/Pt) micromotors in a pump configuration under visible light exposure. The first propulsion mechanism is driven by an electro-osmotic process stemmed from a photoactivation reaction mediated by H 2 O 2 , which takes place in two separated redox reactions at the Si and Pt interfaces. One reaction involves the oxidation of H 2 O 2 at the silicon side, and the other the H 2 O 2 reduction at the metal side. The second mechanism is not light responsive and is triggered by the redox decomposition of H 2 O 2 exclusively at the Pt surface. We show that it is possible to enhance/suppress one mechanism over the other by tuning the surface roughness of the micromotor metal. More specifically, the actuation mechanism can be switched from light-controlled electrokinetics to light-insensitive diffusio-osmosis by only increasing the metal surface roughness. The different actuation mechanisms yield strikingly different fluid flow velocities, electric fields, and light sensitivities. Consequently, these findings are very relevant and can have a remarkable impact on the design and optimization of photoactivated catalytic devices and, in general, on bimetallic or insulating-metallic motors.

  2. Electrical acustimulation relieves vection-induced motion sickness

    NASA Technical Reports Server (NTRS)

    Hu, S.; Stern, R. M.; Koch, K. L.

    1992-01-01

    The aim of this study was to examine the effects of electrical acustimulation on gastric myoelectric activity and severity of symptoms of motion sickness. In experiment 1, 16 Chinese subjects received electrical acustimulation in one of two sessions. In experiment 2, 45 white and black American subjects were randomly divided into three groups: acustimulation, sham acustimulation, and control. Each subject sat in an optokinetic drum for 15 minutes baseline and 15 minutes of drum rotation. Subjects' electrogastrograms and subjective symptoms of motion sickness were obtained. In experiment 1, the mean symptom score and tachyarrhythmia during acustimulation sessions were significantly lower than during no-acustimulation sessions. In experiment 2, the mean symptom score of the acustimulation group was significantly lower than that of the sham-stimulation group and the control group; tachyarrhythmia in the acustimulation group was significantly less than that of the control group but not the sham-stimulation group. In conclusion, electrical acustimulation reduces the severity of symptoms of motion sickness and appears to decrease gastric tachyarrhythmia.

  3. Orientation Control Method and System for Object in Motion

    NASA Technical Reports Server (NTRS)

    Whorton, Mark Stephen (Inventor); Redmon, Jr., John W. (Inventor); Cox, Mark D. (Inventor)

    2012-01-01

    An object in motion has a force applied thereto at a point of application. By moving the point of application such that the distance between the object's center-of-mass and the point of application is changed, the object's orientation can be changed/adjusted.

  4. A Phase-Locked Loop Model of the Response of the Postural Control System to Periodic Platform Motion

    PubMed Central

    Schilling, Robert J.; Robinson, Charles J.

    2010-01-01

    A phase-locked loop (PLL) model of the response of the postural control system to periodic platform motion is proposed. The PLL model is based on the hypothesis that quiet standing (QS) postural sway can be characterized as a weak sinusoidal oscillation corrupted with noise. Because the signal to noise ratio is quite low, the characteristics of the QS oscillator are not measured directly from the QS sway, instead they are inferred from the response of the oscillator to periodic motion of the platform. When a sinusoidal stimulus is applied, the QS oscillator changes speed as needed until its frequency matches that of the platform, thus achieving phase lock in a manner consistent with a PLL control mechanism. The PLL model is highly effective in representing the frequency, amplitude, and phase shift of the sinusoidal component of the phase-locked response over a range of platform frequencies and amplitudes. Qualitative analysis of the PLL control mechanism indicates that there is a finite range of frequencies over which phase lock is possible, and that the size of this capture range decreases with decreasing platform amplitude. The PLL model was tested experimentally using nine healthy subjects and the results reveal good agreement with a mean phase shift error of 13.7° and a mean amplitude error of 0.8 mm. PMID:20378479

  5. Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains

    NASA Technical Reports Server (NTRS)

    Zaal, P. M. T; Pool, D. M.

    2014-01-01

    In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.

  6. Combined pitching and yawing motion of airplanes

    NASA Technical Reports Server (NTRS)

    Baranoff, A V; Hopf, L

    1931-01-01

    This report treats the following problems: The beginning of the investigated motions is always a setting of the lateral controls, i.e., the rudder or the ailerons. Now, the first interesting question is how the motion would proceed if these settings were kept unchanged for some time; and particularly, what upward motion would set in, how soon, and for how long, since therein lie the dangers of yawing. Two different motions ensue with a high rate of turn and a steep down slope of flight path in both but a marked difference in angle of attack and consequently different character in the resultant aerodynamic forces: one, the "corkscrew" dive at normal angle, and the other, the "spin" at high angle.

  7. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance.

    PubMed

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul

    2017-01-01

    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts

  9. Chinese hyper-susceptibility to vection-induced motion sickness

    NASA Technical Reports Server (NTRS)

    Stern, Robert M.; Hu, Senqi; Leblanc, Ree; Koch, Kenneth L.

    1993-01-01

    Little is known about the factors that control individual differences in susceptible to motion sickness. A serendipitous observation in our laboratory that most Chinese subjects become motion sick prompted this study. We used a rotating optokinetic drum to provoke motion sickness and compared gastric responses and symptom reports of Chinese, European-American, and African-American subjects. There was no difference in the responses of European-American and African-American subjects; however, Chinese subjects showed significantly greater disturbances in gastric activity and reported significantly more severe symptoms. We suggest that this hypersusceptibility presents a natural model for the study of physiological mechanisms of nausea and other symptoms of motion sickness.

  10. Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility

    NASA Technical Reports Server (NTRS)

    Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

    2014-01-01

    The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

  11. Tongue Motion Patterns in Post-Glossectomy and Typical Speakers: A Principal Components Analysis

    PubMed Central

    Stone, Maureen; Langguth, Julie M.; Woo, Jonghye; Chen, Hegang; Prince, Jerry L.

    2015-01-01

    Purpose In this study, the authors examined changes in tongue motion caused by glossectomy surgery. A speech task that involved subtle changes in tongue-tip positioning (the motion from /i/ to /s/) was measured. The hypothesis was that patients would have limited motion on the tumor (resected) side and would compensate with greater motion on the nontumor side in order to elevate the tongue tip and blade for /s/. Method Velocity fields were extracted from tagged magnetic resonance images in the left, middle, and right tongue of 3 patients and 10 controls. Principal components (PCs) analysis quantified motion differences and distinguished between the subject groups. Results PCs 1 and 2 represented variance in (a) size and independence of the tongue tip, and (b) direction of motion of the tip, body, or both. Patients and controls were correctly separated by a small number of PCs. Conclusions Motion of the tumor slice was different between patients and controls, but the nontumor side of the patients’ tongues did not show excessive or adaptive motion. Both groups contained apical and laminal /s/ users, and 1 patient created apical /s/ in a highly unusual manner. PMID:24023377

  12. Automatic spacecraft detumbling by internal mass motion

    NASA Technical Reports Server (NTRS)

    Edwards, T. L.; Kaplan, M. H.

    1974-01-01

    In the operation of future manned space vehicles, there will always be a finite probability that an accident will occur which results in uncontrolled tumbling of a craft. Hard docking by a manned rescue vehicle is not acceptable because of the hazardous environment to which rescue crewmen would be exposed and excessive maneuvering accelerations during docking operations. A movable-mass control concept, which is activated upon initiation of tumbling and is autonomous, can convert tumbling motion into simple spin. The complete equations of motion for an asymmetric rigid spacecraft containing a movable mass are presented, and appropriate control law and system parameters are selected to minimize kinetic energy, resulting in simple spin about the major principal axis. Simulations indicate that for a large space station experiencing a collision, which results in tumbling, a 1% movable mass is capable of stabilizing motion in 2 hr.

  13. A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2012-01-01

    The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930

  14. Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders

    PubMed Central

    Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole

    2015-01-01

    Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342

  15. A Pilot/Vehicle Model Analysis of the Effects of Motion Cues on Harrier Control Tasks.

    DTIC Science & Technology

    1983-09-01

    7 D- R136 291 A PILOT/VEHILE MODEL ANALYSIS OF THE EFFECTS OF MOTION i/i LS 91 CUES ON HARRIER C..(U) BOLT BERANEK AND NEWMAN INC CAMBRIDGE MA S...provided by well-designed platform motion systems , the actual rovement of performance or training effectiveness that results from incorporating these...for the Harrier AV-8B. The effects of providing motion cues via an idealized platform motion system or a g-seat device are predicted with the model, and

  16. Beyond the Schr{umlt o}dinger Equation: Quantum Motion with Traversal Time Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolovski, D.

    1997-12-01

    We study a quantum particle, for which the duration {tau} it spends in some region of space is controlled by a meter, e.g., a Larmor clock. The particle is described by a wave function {Psi}(x,t{vert_bar}{tau}) , with {vert_bar}{Psi}(x,t{vert_bar}{tau}){vert_bar}{sup 2} giving the distribution of the meter{close_quote}s readings at location x . The wave function satisfies the {open_quotes}clocked{close_quotes} Schr{umlt o}dinger equation, which we solve numerically for the cases of bound motion and wave packet scattering. The method is shown to be a natural extension of the conventional quantum mechanics. {copyright} {ital 1997} {ital The American Physical Society}

  17. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    PubMed Central

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (p<0.001). The unstable group also demonstrated increased anterior-posterior joint contact point motion variability for the medial tibiofemoral compartment compared to the control (p=0.03) and stable groups (p=0.03). Interpretation The finding of decreased knee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  18. Hip and ankle range of motion and hip muscle strength in young female ballet dancersand controls

    PubMed Central

    Bennell, K.; Khan, K. M.; Matthews, B.; De Gruyter, M.; Cook, E.; Holzer, K.; Wark, J. D.

    1999-01-01

    OBJECTIVES: To compare the hip and ankle range of motion and hip muscle strength in 8-11 year old novice female ballet dancers and controls. METHODS: Subjects were 77 dancers and 49 controls (mean (SD) age 9.6 (0.8) and 9.6 (0.7) years respectively). Supine right active hip external rotation (ER) and internal rotation (IR) were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. The measure of ER achieved from below the hip during turnout (non-hip ER) was calculated by subtracting hip ER range from turnout range, and hip ER:IR was derived by dividing ER range by IR range. Range of right weight bearing ankle dorsiflexion was measured in a standing lunge using two methods: the distance from the foot to the wall (in centimetres) and the angle of the shank to the vertical via an inclinometer (in degrees). Right calf muscle range was measured in weight bearing using an inclinometer. A manual muscle tester was used to assess right isometric hip flexor, internal rotator, external rotator, abductor, and adductor strength. RESULTS: Dancers had less ER (p<0.05) and IR (p<0.01) range than controls but greater ER:IR (p<0.01). Although there was no difference in turnout between groups, the dancers had greater non-hip ER. Dancers had greater range of ankle dorsiflexion than controls, measured in both centimetres (p<0.01) and degrees (p<0.05), but similar calf muscle range. After controlling for body weight, controls had stronger hip muscles than dancers except for hip abductor strength which was similar. Regression analyses disclosed a moderate relation between turnout and hip ER (r = 0.40). There were no significant correlations between range of motion and training years and weekly training hours. CONCLUSIONS: Longitudinal follow up will assist in determining whether or not hip and ankle range in young dancers is genetically fixed and unable to be improved with further balletic training. 


 PMID:10522638

  19. A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.

    2002-01-01

    This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is

  20. Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.

    PubMed

    Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp

    2012-07-30

    Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.

  1. Relationship of area postrema to three putative measures of motion sickness

    NASA Technical Reports Server (NTRS)

    Sutton, R.; Fox, Robert A.; Daunton, Nancy G.

    1991-01-01

    Although the rat has an incomplete emetic reflex, several species-specific responses to motion were proposed as measures of 'motion sickness' in rats. The purpose was to determine the dependence of these responses on one of several neural structures known to be essential to motion-induced vomiting in species with a complete emetic reflex. The Area Postrema (AP) was shown to play an important role in the production of motion sickness in vomiting species. The effects of thermo-cautery ablations of the AP on three different responses supposedly reflecting motion sickness in the rat were compared: conditioned taste aversion (CTA); drinking suppression; and fecal boli. Efficacy of the ablations was determined by subjecting ablated, sham-operated, and unoperated control animals to a CTA test which is known to require a functional AP. Animals with AP ablations failed to form CTA when 0.15 M LiCl was paired with a 10 percent sucrose solution, while sham-operated control subjects conditioned as well as the unoperated control subjects. The extent of the ablations was evaluated histologically at the end of the experiment. To determine the effects of the ablations on the measures of motion sickness, all animals were subjected to rotation for 30 min or 90 min on a platform displaced 20 deg from earth horizontal. Results indicate that ablation of AP in the rat has no effect on the formation of CTA to a 4 percent solution of cider paired with motion, on the suppression of drinking immediately after exposure to motion, or on the frequency of fecal boli during exposure to motion. This failure of AP ablations to eliminate the effects of motion on any of these responses discourages their use as equivalents of motion-induced vomiting. The appropriateness of other suggested measures, e.g., pica, remains untested but the dependence of such measures on stimulation more severe than commonly used in motion sickness research and the absence of a demonstration of their dependence on neural

  2. Centralized Networks to Generate Human Body Motions

    PubMed Central

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan

    2017-01-01

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons’ states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers’ trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings. PMID:29240694

  3. Centralized Networks to Generate Human Body Motions.

    PubMed

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  4. [Motion sickness in motion: from carsickness to cybersickness].

    PubMed

    Bos, J E; van Leeuwen, R B; Bruintjes, T D

    2018-01-01

    - Motion sickness is not a disorder, but a normal response to a non-normal situation in which movement plays a central role, such as car travel, sailing, flying, or virtual reality.- Almost anyone can suffer from motion sickness, as long as at least one of the organs of balance functions. If neither of the organs of balance functions the individual will not suffer from carsickness, seasickness, airsickness, nor from cybersickness. - 'Cybersickness' is a form of motion sickness that is stimulated by artificial moving images such as in videogames. Because we are now exposed more often and for longer periods of time to increasingly realistic artificial images, doctors will also encounter cases of motion sickness more often. - The basis for motion sickness is the vestibular system, which can be modulated by visual-vestibular conflicts, i.e. when the movements seen by the eyes are not the same as those experienced by the organs of balance.- Antihistamines can be effective against motion sickness in everyday situations such as car travel if taken before departure, but the effectiveness of medication for motion sickness is limited.

  5. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  6. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  7. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  8. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  9. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  10. Motion streaks in fast motion rivalry cause orientation-selective suppression.

    PubMed

    Apthorp, Deborah; Wenderoth, Peter; Alais, David

    2009-05-14

    We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.

  11. Alert Response to Motion Onset in the Retina

    PubMed Central

    Chen, Eric Y.; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; da Silveira, Rava Azeredo

    2013-01-01

    Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system. PMID:23283327

  12. Extended analytical formulas for the perturbed Keplerian motion under a constant control acceleration

    NASA Astrophysics Data System (ADS)

    Zuiani, Federico; Vasile, Massimiliano

    2015-03-01

    This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are fixed in either a rotating or inertial reference frame. Moreover, the contribution of the zonal harmonic is included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical integration with different integration schemes. An averaging technique is then proposed as an application of the analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a spacecraft from an elliptical to a circular orbit around the Earth.

  13. Motion onset does not capture attention when subsequent motion is "smooth".

    PubMed

    Sunny, Meera Mary; von Mühlenen, Adrian

    2011-12-01

    Previous research on the attentional effects of moving objects has shown that motion per se does not capture attention. However, in later studies it was argued that the onset of motion does capture attention. Here, we show that this motion-onset effect critically depends on motion jerkiness--that is, the rate at which the moving stimulus is refreshed. Experiment 1 used search displays with a static, a motion-onset, and an abrupt-onset stimulus, while systematically varying the refresh rate of the moving stimulus. The results showed that motion onset only captures attention when subsequent motion is jerky (8 and 17 Hz), not when it is smooth (33 and 100 Hz). Experiment 2 replaced motion onset with continuous motion, showing that motion jerkiness does not affect how continuous motion is processed. These findings do not support accounts that assume a special role for motion onset, but they are in line with the more general unique-event account.

  14. An Exoskeleton Robot for Human Forearm and Wrist Motion Assist

    NASA Astrophysics Data System (ADS)

    Ranathunga Arachchilage Ruwan Chandra Gopura; Kiguchi, Kazuo

    The exoskeleton robot is worn by the human operator as an orthotic device. Its joints and links correspond to those of the human body. The same system operated in different modes can be used for different fundamental applications; a human-amplifier, haptic interface, rehabilitation device and assistive device sharing a portion of the external load with the operator. We have been developing exoskeleton robots for assisting the motion of physically weak individuals such as elderly or slightly disabled in daily life. In this paper, we propose a three degree of freedom (3DOF) exoskeleton robot (W-EXOS) for the forearm pronation/ supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper describes the wrist anatomy toward the development of the exoskeleton robot, the hardware design of the exoskeleton robot and EMG-based control method. The skin surface electromyographic (EMG) signals of muscles in forearm of the exoskeletons' user and the hand force/forearm torque are used as input information for the controller. By applying the skin surface EMG signals as main input signals to the controller, automatic control of the robot can be realized without manipulating any other equipment. Fuzzy control method has been applied to realize the natural and flexible motion assist. Experiments have been performed to evaluate the proposed exoskeleton robot and its control method.

  15. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds

  16. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  17. Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing

    NASA Astrophysics Data System (ADS)

    Carvalho, Schubert R.; Boulic, Ronan; Thalmann, Daniel

    The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator's work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.

  18. Human sensitivity to vertical self-motion.

    PubMed

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  19. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, Irene M., E-mail: i.m.lips@umcutrecht.nl; Gils, Carla H. van; Kotte, Alexis N.T.J.

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondarymore » outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.« less

  20. A fast implementation of MPC-based motion cueing algorithms for mid-size road vehicle motion simulators

    NASA Astrophysics Data System (ADS)

    Bruschetta, M.; Maran, F.; Beghi, A.

    2017-06-01

    The use of dynamic driving simulators is constantly increasing in the automotive community, with applications ranging from vehicle development to rehab and driver training. The effectiveness of such devices is related to their capabilities of well reproducing the driving sensations, hence it is crucial that the motion control strategies generate both realistic and feasible inputs to the platform. Such strategies are called motion cueing algorithms (MCAs). In recent years several MCAs based on model predictive control (MPC) techniques have been proposed. The main drawback associated with the use of MPC is its computational burden, that may limit their application to high performance dynamic simulators. In the paper, a fast, real-time implementation of an MPC-based MCA for 9 DOF, high performance platform is proposed. Effectiveness of the approach in managing the available working area is illustrated by presenting experimental results from an implementation on a real device with a 200 Hz control frequency.

  1. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    NASA Astrophysics Data System (ADS)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  2. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  3. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  4. Ego-motion based on EM for bionic navigation

    NASA Astrophysics Data System (ADS)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  5. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual

  6. Is Vestibular Self-Motion Perception Controlled by the Velocity Storage? Insights from Patients with Chronic Degeneration of the Vestibulo-Cerebellum

    PubMed Central

    Bertolini, Giovanni; Ramat, Stefano; Bockisch, Christopher J.; Marti, Sarah; Straumann, Dominik; Palla, Antonella

    2012-01-01

    Background The rotational vestibulo-ocular reflex (rVOR) generates compensatory eye movements in response to rotational head accelerations. The velocity-storage mechanism (VSM), which is controlled by the vestibulo-cerebellar nodulus and uvula, determines the rVOR time constant. In healthy subjects, it has been suggested that self-motion perception in response to earth-vertical axis rotations depends on the VSM in a similar way as reflexive eye movements. We aimed at further investigating this hypothesis and speculated that if the rVOR and rotational self-motion perception share a common VSM, alteration in the latter, such as those occurring after a loss of the regulatory control by vestibulo-cerebellar structures, would result in similar reflexive and perceptual response changes. We therefore set out to explore both responses in patients with vestibulo-cerebellar degeneration. Methodology/Principal Findings Reflexive eye movements and perceived rotational velocity were simultaneously recorded in 14 patients with chronic vestibulo-cerebellar degeneration (28–81yrs) and 12 age-matched healthy subjects (30–72yrs) after the sudden deceleration (90°/s2) from constant-velocity (90°/s) rotations about the earth-vertical yaw and pitch axes. rVOR and perceived rotational velocity data were analyzed using a two-exponential model with a direct pathway, representing semicircular canal activity, and an indirect pathway, implementing the VSM. We found that VSM time constants of rVOR and perceived rotational velocity co-varied in cerebellar patients and in healthy controls (Pearson correlation coefficient for yaw 0.95; for pitch 0.93, p<0.01). When constraining model parameters to use the same VSM time constant for rVOR and perceived rotational velocity, moreover, no significant deterioration of the quality of fit was found for both populations (variance-accounted-for >0.8). Conclusions/Significance Our results confirm that self-motion perception in response to rotational

  7. Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    NASA Astrophysics Data System (ADS)

    Tavakoli, M. M.; Assadian, N.

    2018-03-01

    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.

  8. Weigh-in-Motion Sensor and Controller Operation and Performance Comparison

    DOT National Transportation Integrated Search

    2018-01-01

    This research project utilized statistical inference and comparison techniques to compare the performance of different Weigh-in-Motion (WIM) sensors. First, we analyzed test-vehicle data to perform an accuracy check of the results reported by the sen...

  9. Motion of Solid Grains During Magnetic Field-Assisted Directional Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Lin, Xin; Fautrelle, Yves; Nguyen-Thi, Henri; Ren, Zhongming

    2018-06-01

    In this paper, we report the visible evidence for thermoelectric magnetic forces (TEMFs) during magnetic field-assisted directional solidification, and their potential to control the motion of solid grains (dendrite fragments or equiaxed grains). These motions are observed by means of synchrotron X-ray radiography and compared with analytic calculations for a spherical particle's motion driven only by TEMFs, which confirms that the observed solid grain motions are the combined result of the TEMFs and gravity. We also carried out corresponding 3D numerical simulations to validate the calculations and further prove our conclusion that TEMF acts on the solid grain and affects its motion trajectory.

  10. Space station rotational equations of motion

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Carroll, S. N.

    1985-01-01

    Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.

  11. Self-motion perception: assessment by real-time computer-generated animations

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  12. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1995-01-01

    The objective is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness.

  13. Motion Analysis System for Instruction of Nihon Buyo using Motion Capture

    NASA Astrophysics Data System (ADS)

    Shinoda, Yukitaka; Murakami, Shingo; Watanabe, Yuta; Mito, Yuki; Watanuma, Reishi; Marumo, Mieko

    The passing on and preserving of advanced technical skills has become an important issue in a variety of fields, and motion analysis using motion capture has recently become popular in the research of advanced physical skills. This research aims to construct a system having a high on-site instructional effect on dancers learning Nihon Buyo, a traditional dance in Japan, and to classify Nihon Buyo dancing according to style, school, and dancer's proficiency by motion analysis. We have been able to study motion analysis systems for teaching Nihon Buyo now that body-motion data can be digitized and stored by motion capture systems using high-performance computers. Thus, with the aim of developing a user-friendly instruction-support system, we have constructed a motion analysis system that displays a dancer's time series of body motions and center of gravity for instructional purposes. In this paper, we outline this instructional motion analysis system based on three-dimensional position data obtained by motion capture. We also describe motion analysis that we performed based on center-of-gravity data obtained by this system and motion analysis focusing on school and age group using this system.

  14. Dynamics and motion control of a chain of particles on a rough surface

    NASA Astrophysics Data System (ADS)

    Behn, C.; Schale, F.; Zeidis, I.; Zimmermann, K.; Bolotnik, N.

    2017-05-01

    In this paper the mechanics and control of the motion of a straight chain of three particles interconnected with kinematical constraints are investigated. The ground contact is described by dry (discontinuous) or viscous (continuous) friction. Here, we understand this model as a methodological basis for the design of worm-like locomotion systems, i.e., non-pedal mobile robots. This kind of robots will prove an efficient form of locomotion in application to inspection of pipes or for rescue missions. In this paper, a number of issues related to the dynamics and control of artificial limbless locomotion systems are discussed. Simplest models of a limbless locomotor are two-body or three-body systems that move along a horizontal straight line. In the first part of the paper, the controls are assumed in the form of periodic functions with zero average, shifted on a phase one concerning each other. Thus, there is a traveling wave along the chain of particles. In the second part, actuator models are discussed. It is supposed that there are unknown actuator data or the worm system parameter are not known or exactly as well. The focus is on adaptive control algorithms for the worm-like locomotion systems in order to track given reference trajectories, like kinematic gaits. Finally, a prototype together with its signal processing and control software is presented. Theoretically (analytically and numerically) calculated results of the dynamical behavior of the mobile system are compared to experimental data.

  15. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  16. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  17. Modeling depth from motion parallax with the motion/pursuit ratio

    PubMed Central

    Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith

    2014-01-01

    The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed. PMID:25339926

  18. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  19. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  20. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    NASA Astrophysics Data System (ADS)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.