Sample records for ultrapure water upw

  1. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  2. Genesis Ultrapure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Stansbery, Eileen K.; Calaway, Michael J.; Rodriquez, Melissa C.

    2013-01-01

    A device removes, with high precision, the majority of surface particle contamination greater than 1-micron-diameter in size from ultrapure semiconductor wafer materials containing implanted solar wind samples returned by NASA's Genesis mission. This cleaning device uses a 1.5-liter/minute flowing stream of heated ultrapure water (UPW) with 1- MHz oscillating megasonic pulse energy focused at 3 to 5 mm away from the wafer surface spinning at 1,000 to 10,000 RPM, depending on sample size. The surface particle contamination is removed by three processes: flowing UPW, megasonic cavitations, and centripetal force from the spinning wafer. The device can also dry the wafer fragment after UPW/megasonic cleaning by continuing to spin the wafer in the cleaning chamber, which is purged with flowing ultrapure nitrogen gas at 65 psi (.448 kPa). The cleaner also uses three types of vacuum chucks that can accommodate all Genesis-flown array fragments in any dimensional shape between 3 and 100 mm in diameter. A sample vacuum chuck, and the manufactured UPW/megasonic nozzle holder, replace the human deficiencies by maintaining a consistent distance between the nozzle and wafer surface as well as allowing for longer cleaning time. The 3- to 5-mm critical distance is important for the ability to remove particles by megasonic cavitations. The increased UPW sonication time and exposure to heated UPW improve the removal of 1- to 5-micron-sized particles.

  3. Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.

    2008-01-01

    Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].

  4. Ultra-Pure Water and Extremophilic Bacteria interactions with Germanium Surfaces

    NASA Astrophysics Data System (ADS)

    Sah, Vasu R.

    Supported by a consortium of semiconductor industry sponsors, an international "TIE" project among 5 National Science Foundation (NSF) Industry/university Cooperative Research Centers discovered that a particular extremophilic microbe, Pseudomonas syzygii, persists in the UltraPure Water (UPW) supplies of chip fabrication facilities (FABs) and can bio-corrode germanium wafers to produce microbe-encased optically transparent crystals. Considered as potentially functional "biochips", this investigation explored mechanisms for the efficient and deliberate production of such microbe-germania adducts as a step toward later testing of their properties as sensors or switches in bioelectronic or biophotonic circuits. Recirculating UPW (Ultra-Pure Water) and other purified water, laminar-flow loops were developed across 50X20x1mm germanium (Ge) prisms, followed by subsequent examination of the prism surfaces using Multiple Attenuated Internal Reflection InfraRed (MAIR-IR) spectroscopy, Contact Potential measurements, Differential Interference Contrast Light Microscopy (DICLM), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDS), and Electron Spectroscopy for Chemical Analysis (ESCA; XPS). P. syzygii cultures originally obtained from a working FAB at University of Arizona were successfully grown on R2A minimal nutrient media. They were found to be identical to the microbes in stored UPW from the same facility, such microbes routinely capable of nucleation and entrapment within GeO2 crystals on the Ge flow surfaces. Optimum flow rates and exposure times were 1 ml/minute (3.2 s-1 shear rate) for 4 days at room temperature, producing densest crystal arrays at the prism central zones 2-3 cm from the flow inlets. Other flow rates and exposure times have higher shear rate which induces a different nucleation mechanism and saturation of crystal formation. Nucleation events began with square and circular oxide deposits surrounding active attached bacteria

  5. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    PubMed

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion.

  6. Analysis of trace contamination of phthalate esters in ultrapure water using a modified solid-phase extraction procedure and automated thermal desorption-gas chromatography/mass spectrometry.

    PubMed

    Liu, Hsu-Chuan; Den, Walter; Chan, Shu-Fei; Kin, Kuan Tzu

    2008-04-25

    The present study was aimed to develop a procedure modified from the conventional solid-phase extraction (SPE) method for the analysis of trace concentration of phthalate esters in industrial ultrapure water (UPW). The proposed procedure allows UPW sample to be drawn through a sampling tube containing hydrophobic sorbent (Tenax TA) to concentrate the aqueous phthalate esters. The solid trap was then demoisturized by two-stage gas drying before subjecting to thermal desorption and analysis by gas chromatography-mass spectrometry. This process removes the solvent extraction procedure necessary for the conventional SPE method, and permits automation of the analytical procedure for high-volume analyses. Several important parameters, including desorption temperature and duration, packing quantity and demoisturizing procedure, were optimized in this study based on the analytical sensitivity for a standard mixture containing five different phthalate esters. The method detection limits for the five phthalate esters were between 36 ng l(-1) and 95 ng l(-1) and recovery rates between 15% and 101%. Dioctyl phthalate (DOP) was not recovered adequately because the compound was both poorly adsorbed and desorbed on and off Tenax TA sorbents. Furthermore, analyses of material leaching from poly(vinyl chloride) (PVC) tubes as well as the actual water samples showed that di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) were the common contaminants detected from PVC contaminated UPW and the actual UPW, as well as in tap water. The reduction of DEHP in the production processes of actual UPW was clearly observed, however a DEHP concentration of 0.20 microg l(-1) at the point of use was still being quantified, suggesting that the contamination of phthalate esters could present a barrier to the future cleanliness requirement of UPW. The work demonstrated that the proposed modified SPE procedure provided an effective method for rapid analysis and contamination

  7. Bioburden control for Space Station Freedom's Ultrapure Water System

    NASA Technical Reports Server (NTRS)

    Snodgrass, Donald W.; Rodgers, Elizabeth B.; Obenhuber, Don; Huff, Tim

    1991-01-01

    Bioburden control is one of the challenges for the Ultrapure Water System on Space Station Freedom. Bioburden control must enable the system to deliver water with a low bacterial count as well as maintain biological contamination at a manageable level, to permit continued production of quality water. Ozone has been chosen as the primary means of Bioburden control. Planned tests to determine the effectiveness of ozone on free-floating microbes and biofilms are described.

  8. Bacteriological Evaluation of an Ultra-Pure Water-Distilling System

    PubMed Central

    Kayser, W. V.; Hickman, K. C. D.; Bond, W. W.; Favero, M. S.; Carson, L. A.

    1975-01-01

    A prototype distillation and storage system with recycle for producing ultrapure water was monitored for bacteriological contamination during a period of 24 months. Naturally occurring Pseudomonas aeruginosa and P. cepacia were found to grow rapidly to levels of about 105/ml in water taken from the storage reservoir and also in commercially prepared distilled water. The system was found to eliminate bacterial contaminants introduced into the still with the feed water, but the reservoir, once contaminated, remained contaminated during prolonged recycle. After a single treatment with free chlorine, the entire system remained uncontaminated until accidental or purposeful shutdown. PMID:811168

  9. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: identification of transformation products and pathways.

    PubMed

    Pareja, Lucía; Pérez-Parada, Andrés; Agüera, Ana; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2012-05-01

    Quinclorac (QNC) is an effective but rather persistent herbicide commonly used in rice production. This herbicide presents a mean persistence in the environment so its residues are considered of environmental relevance. However, few studies have been conducted to investigate its environmental behavior and degradation. In the present work, direct photolysis and TiO(2) photocatalysis of the target compound in ultrapure and paddy field water were investigated. After 10h photolysis in ultrapure water, the concentration of QNC declined 26% and 54% at 250 and 700 W m(-2), respectively. However, the amount of quinclorac in paddy field water remained almost constant under the same irradiation conditions. QNC dissipated completely after 40 min of TiO(2) photocatalysis in ultrapure water, whereas 130 min were necessary to degrade 98% of the initial concentration in paddy field water. Possible QNC photolytic and photocatalytic degradation pathways are proposed after structure elucidation of the main transformation products, through liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and exact mass measurements. Pyridine ring hydroxylation at C-9 followed by ring opening and/or oxidative dechlorination were the key steps of QNC degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process.

    PubMed

    Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G

    2016-10-15

    Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack

  11. Portable device for generation of ultra-pure water vapor feeds

    NASA Astrophysics Data System (ADS)

    Velin, P.; Stenman, U.; Skoglundh, M.; Carlsson, P.-A.

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  12. Portable device for generation of ultra-pure water vapor feeds.

    PubMed

    Velin, P; Stenman, U; Skoglundh, M; Carlsson, P-A

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  13. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation

    PubMed Central

    Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu SM; Blandin, Pierre; Chon, James WM; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew HA; Juodkazis, Saulius

    2013-01-01

    Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed. PMID:23888114

  14. Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars

    NASA Astrophysics Data System (ADS)

    Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.

    2015-04-01

    Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.

  15. Enhanced Cleaning of Genesis Solar Wind Sample 61348 for Film Residue Removal

    NASA Technical Reports Server (NTRS)

    Allums, K. K.; Gonzalez, C. P.; Kuhlman, K. R.; Allton, J. H.

    2015-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a nonnominal reentry. During the recovery of the collector materials from the capsule, many of the collector fragments were placed on the adhesive protion of post-it notes to prevent the fragments from moving during transport back to Johnson Space Center. This unknowingly provided an additional contaminate that would prove difficult to remove with the limited chemistries allowed in the Genesis Curation Laboratory. Generally when collector material samples are prepared for allocation to PIs, the samples are cleaned front side only with Ultra-Pure Water (UPW) via megasonic dispersion to the collector surface to remove crash debris and contamination. While this cleaning method works well on samples that were not placed on post-its during recovery, it has caused movement of the residue on the back of the sample to be deposited on the front in at least two examples. Therefore, samples placed on the adhesive portion on post-it note, require enhanced cleaning methods since post-it residue has proved resistant to UPW cleaning.

  16. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE PAGES

    Singh, Andy; Luening, Katharina; Brennan, Sean; ...

    2017-01-01

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  17. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Andy; Luening, Katharina; Brennan, Sean

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  18. Pilot evaluation of the efficacy of shampoo treatment with ultrapure soft water for canine pruritus.

    PubMed

    Ohmori, Keitaro; Tanaka, Akane; Makita, Yuka; Takai, Masaki; Yoshinari, Yuji; Matsuda, Hiroshi

    2010-10-01

    Ultrapure soft water (UPSW) is water in which calcium and magnesium ions have been replaced with sodium ions using a cation-exchange resin. We recently demonstrated that washing with soap and UPSW reduced the clinical severity of dermatitis and improved the skin barrier function in NC/NgaTnd mice, a murine model for human atopic dermatitis. The purpose of this pilot study was to evaluate the efficacy of shampoo treatment with UPSW for dogs with pruritus. Eleven dogs with pruritus were randomly assigned to two groups depending on whether they received weekly shampoo treatment with UPSW or tap water for 4 weeks. After a washout period, the treatment protocol was switched such that each dog received both treatments. The pre-treatment and post-treatment values of the following were compared: pruritus scores assessed by the owners; dermatitis scores recorded by an investigator; and transepidermal water loss (TEWL). Shampoo treatment with UPSW significantly decreased pruritus and dermatitis scores in the dogs, whereas shampoo treatment with tap water did not. In addition, shampoo treatment with UPSW, but not with tap water, significantly reduced TEWL in the dogs. Adverse events due to the treatment were not observed in the dogs. Furthermore, we found that topical application of UPSW for barrier-disrupted skin caused by tape stripping in healthy dogs decreased TEWL more rapidly than topical application of tap water. Our findings suggest that shampoo treatment with UPSW promotes skin barrier recovery and thus could be considered as a possible therapeutic option in the management of pruritus and dermatitis in dogs. © 2010 The Authors. Journal compilation © 2010 ESVD and ACVD.

  19. Linoleic acid salt with ultrapure soft water as an antibacterial combination against dermato-pathogenic Staphylococcus spp.

    PubMed

    Jang, H; Makita, Y; Jung, K; Ishizaka, S; Karasawa, K; Oida, K; Takai, M; Matsuda, H; Tanaka, A

    2016-02-01

    Skin colonization of Staphylococcus spp. critically affects the severity of dermatitis in humans and animals. We examined different types of fatty acid salts for their antibacterial activity against Staphylococcus spp. when used in ultrapure soft water (UPSW). We also evaluated their therapeutic effect on a spontaneous canine model of dermatitis. UPSW, in which Ca(++) and Mg(++) were replaced with Na(+) , was generated using a water softener with cation-exchange resin. Staphylococcus aureus (Staph. aureus), Staphylococcus intermedius (Staph. intermedius), and Staphylococcus pseudintermedius (Staph. pseudintermedius) were incubated with various fatty acid salts in distilled water (DW) or UPSW and the number of bacteria was counted. Among the fatty acids, oleic acid salt and linoleic acid (LA) salt reduced the number of these bacteria. Also, UPSW enhanced the antibacterial effect of LA on Staph. spp. In spontaneously developed itchy dermatitis in companion dogs, shampoo treatment with liquid soap containing 10% LA in UPSW improved skin conditions. LA salt showed antibacterial activity against Staph. spp. Treatment with soap containing LA with UPSW reduced clinical conditions in dogs with dermatitis. Because colonization of Staph. spp. on the skin exacerbates dermatitis, the use of LA-containing soap in UPSW may reduce unpleasant clinical symptoms of the skin. © 2015 The Society for Applied Microbiology.

  20. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    PubMed

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  1. Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.

    2009-01-01

    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.

  2. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    PubMed

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Growth and Identification of Bacteria in N-Halamine Dental Unit Waterline Tubing Using an Ultrapure Water Source

    PubMed Central

    Porteous, Nuala; Luo, Jie; Hererra, Monica; Schoolfield, John; Sun, Yuyu

    2011-01-01

    This study examined bacterial growth and type on biofilm-controlling dental unit waterline (DUWL) tubing (T) and control manufacturer's tubing (C) in a laboratory DUWL model using ultrapure source water that was cycled through the lines. Sections of tubing lines were detached and examined for biofilm growth using SEM imaging at six sampling periods. Bacteria from inside surfaces of T and C, source unit, and reservoir were cultured and enumerated. At six months, organisms were molecularly identified from the alignment matches obtained from the top three BLAST searches for the 16S region. There was a 1–3 log increase in organism growth in a clean, nonsterile reservoir within an hour. Biofilm was established on the inside surfaces of C within three weeks, but not on T. Proteobacteria, and Sphingomonas spp. were identified in the source reservoir and C line, and a variation of the genera was found in T line. PMID:22220171

  4. Ins(1,4,5)P{sub 3} facilitates ATP accumulation via phosphocreatine/creatine kinase in the endoplasmic reticulum extracted from MDCK cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Department of Dental Implantology, School of Stomatology, Tongji University, Shanghai 200072; Ogata, Shigenori

    2010-07-02

    So far, the content and accumulation of ATP in isolated endoplasmic reticulum (ER) are little understood. First, we confirmed using electron microscopic and Western blotting techniques that the samples extracted from MDCK cells are endoplasmic reticulum (ER). The amounts of ATP in the extracted ER were measured from the filtrate after a spinning down of ultrafiltration spin column packed with ER. When the ER sample (5 {mu}g) after 3 days freezing was suspended in intracellular medium (ICM), 0.1% Triton X and ultrapure water (UPW), ATP amounts from the ER with UPW were the highest and over 10 times compared withmore » that from the control with ICM, indicating that UPW is the most effective tool in destroying the ER membrane. After a 10-min-incubation with ICM containing phosphocreatine (PCr)/creatine kinase (CK) of the fresh ER. ATP amounts in the filtrate obtained by spinning down were not changed from that in the control (no PCr/CK). However, ATP amounts in the filtrate from the second spinning down of the ER (treated with PCr/CK) suspended in UPW became over 10-fold compared with the control. When 1 {mu}M inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) was added in the incubation medium (ICM with PCr/CK), ATP amounts from the filtrate after the second spinning down were further enhanced around three times. This enhancement was almost canceled by Ca{sup 2+}-removal from ICM and by adding thapsigargin, a Ca{sup 2+}-ATPase inhibitor, but not by 2-APB and heparin, Ins(1,4,5)P{sub 3} receptor antagonists. Administration of 500 {mu}M adenosine to the incubation medium (with PCr/CK) failed to enhance the accumulation of ATP in the ER. These findings suggest that the ER originally contains ATP and ATP accumulation in the ER is promoted by PCr/CK and Ins(1,4,5)P{sub 3}.« less

  5. A Method to Identify Estuarine Water Quality Exceedances Associated with Ocean Conditions

    EPA Science Inventory

    Wind driven coastal upwelling along the Pacific Northwest Coast of the US results in oceanic water that may be periodically entrained into adjacent estuaries and which possess high nutrients and low dissolved oxygen (DO). Measurement of water quality indicators during these upwe...

  6. Ultra Pure Water Cleaning Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Burkett, P. J.; Allton, J. H.; Allen, C. C.

    2013-01-01

    Future sample return missions will require strict protocols and procedures for reducing inorganic and organic contamination in isolation containment systems. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs [1, 2]. As part of this in-depth organic study, the current curatorial technical support procedure (TSP) 23 was used for cleaning the gloveboxes with ultra pure water (UPW) [3-5]. Particle counts and identification were obtained that could be used as a benchmark for future mission designs that require glovebox decontamination. The UPW baseline study demonstrates that TSP 23 works well for gloveboxes that have been thoroughly degreased. However, TSP 23 could be augmented to provide even better glovebox decontamination. JSC 03243 could be used as a starting point for further investigating optimal cleaning techniques and procedures. DuPont Vertrel XF or other chemical substitutes to replace Freon- 113, mechanical scrubbing, and newer technology could be used to enhance glovebox cleanliness in addition to high purity UPW final rinsing. Future sample return missions will significantly benefit from further cleaning studies to reduce inorganic and organic contamination.

  7. Ultrapure Water System for Hemodialysis Therapy

    ClinicalTrials.gov

    2011-07-21

    The Change of Biomarkers CRP, CBC With the Use of Ultra Pure Water System for; Hemodialysis.; The Rate of Adverse Events Such as Hypotension During Hemodialysis Therapy With Ultra Pure Water; System as Compared to Conventional Water System.

  8. Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.

    2012-01-01

    The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.

  9. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  10. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Low temperature processing of ultra-pure cellulose fibers into nylon 6 and other thermoplastics

    Treesearch

    Rod Jacobson; Dan Caulfield; Karl Sears; John Underwood

    2002-01-01

    The objective of this research was to develop a stable process for compound ultra-pure cellulose fibers into polyamides. This has been a difficult procedure and has taken years of trial and error to understand the viscosity shear heating effects associated with compounding cellulose into high-melting point engineering thermoplastics. The evolution of the low...

  12. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1980-01-01

    The alkali-borosilicate system was selected as the glass system for the preparation of ultrapure low loss glasses suitable for optical communication. The effect of different oxide contents on the absorption loss was critically reviewed. One composition was chosen to develop the gel preparation procedure in the alkali-borosilicate system. In addition, several procedures for the preparation of gels based on two different approaches were developed. The influence of different preparation parameters were investigated qualitatively. Several conclusions are drawn from the results.

  13. Genesis Solar Wind Sample 61422: Experiment in Variation of Sequence of Cleaning Solvent for Removing Carbon-Bearing Contamination

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Kuhlman, K. R.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J. G.; Burnett, D. S.; Woolum, D. S.

    2015-01-01

    The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used.

  14. Clean Assembly of Genesis Collector Canister for Flight: Lessons for Planetary Sample Return

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; Allen, C. C.; Warren, J. L.; Schwartz, C. M.

    2007-01-01

    Measurement of solar composition in the Genesis collectors requires not only high sensitivity but very low blanks; thus, very strict collector contamination minimization was required beginning with mission planning and continuing through hardware design, fabrication, assembly and testing. Genesis started with clean collectors and kept them clean inside of a canister. The mounting hardware and container for the clean collectors were designed to be cleanable, with access to all surfaces for cleaning. Major structural components were made of aluminum and cleaned with megasonically energized ultrapure water (UPW). The UPW purity was >18 M resistivity. Although aluminum is relatively difficult to clean, the Genesis protocol achieved level 25 and level 50 cleanliness on large structural parts; however, the experience suggests that surface treatments may be helpful on future missions. All cleaning was performed in an ISO Class 4 (Class 10) cleanroom immediately adjacent to an ISO Class 4 assembly room; thus, no plastic packaging was required for transport. Persons assembling the canister were totally enclosed in cleanroom suits with face shield and HEPA filter exhaust from suit. Interior canister materials, including fasteners, were installed, untouched by gloves, using tweezers and other stainless steel tools. Sealants/lubricants were not exposed inside the canister, but vented to the exterior and applied in extremely small amounts using special tools. The canister was closed in ISO Class 4, not to be opened until on station at Earth-Sun L1. Throughout the cleaning and assembly, coupons of reference materials that were cleaned at the same time as the flight hardware were archived for future reference and blanks. Likewise reference collectors were archived. Post-mission analysis of collectors has made use of these archived reference materials.

  15. Efficient HOMO-LUMO separation by multiple resonance effect toward ultrapure blue thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Takuji; Ikuta, Toshiaki; Shiren, Kazushi; Nakajima, Kiichi; Nomura, Shintaro; Ni, Jingping

    2016-09-01

    Organic light-emitting diodes (OLEDs) play an important role in the new generation of flat-panel displays. Conventional OLEDs employing fluorescent materials together with triplet-triplet annihilation suffer from a relatively low internal quantum efficiency (IQE) of 62.5%. On the other hand, the IQE of OLEDs employing phosphorescent or thermally activated delayed fluorescence (TADF) materials can reach 100%. However, these materials exhibit very broad peaks with a full-width at half-maximum (FWHM) of 70-100 nm and cannot satisfy the color-purity requirements for displays. Therefore, the latest commercial OLED displays employ blue fluorescent materials with a relatively low IQE, and efficient blue emitters with a small FWHM are highly needed. In our manuscript, we present organic molecules that exhibit ultrapure blue fluorescence based on TADF. These molecules consist of three benzene rings connected by one boron and two nitrogen atoms, which establish a rigid polycyclic framework and significant localization of the highest occupied and lowest unoccupied molecular orbitals by a multiple resonance effect. An OLED device based on the new emitter exhibits ultrapure blue emission at 467 nm with an FWHM of 28 nm, Commission Internationale de l'Eclairage (CIE) coordinates of (0.12, 0.13), and an IQE of 100%, which represent record-setting performance for blue OLED devices.

  16. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0

  17. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.; Holman, R. A.

    1981-01-01

    Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process referred to here is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation. The use of gels offers several advantages such as high purity and lower melting times and temperatures. The sol-gel process is studied for utilization in the preparation of multicomponent ultrapure glass batches for subsequent containerless melting of the batches in space to prepare glass blanks for optical waveguides.

  18. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates.

    PubMed

    Kumar, Sudhir; Jagielski, Jakub; Kallikounis, Nikolaos; Kim, Young-Hoon; Wolf, Christoph; Jenny, Florian; Tian, Tian; Hofer, Corinne J; Chiu, Yu-Cheng; Stark, Wendelin J; Lee, Tae-Woo; Shih, Chih-Jen

    2017-09-13

    Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr 3 ) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr 3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (η CE ) of 13.02 cd A -1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in η CE (11.3 cd A -1 ) at 1000 cd m -2 . We further demonstrate large-area (3 cm 2 ) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

  19. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Containerless melting of glasses in space for the preparation of ultrapure homogeneous glass for optical waveguides is discussed. The homogenization of the glass using conventional raw materials is normally achieved on Earth either by the gravity induced convection currents or by the mechanical stirring of the melt. Because of the absence of gravity induced convection currents, the homogenization of glass using convectional raw materials is difficult in the space environment. Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation.

  20. Removal of bromide and bromate from drinking water using granular activated carbon.

    PubMed

    Zhang, Yong-Qing; Wu, Qing-Ping; Zhang, Ju-Mei; Yang, Xiu-Hua

    2015-03-01

    Granular activated carbon (GAC) was used to remove bromide (Br⁻) and bromate (BrO(3)(-)) from drinking water in both bench- and pilot-scale experiments. The present study aims to minimize BrO(3)(-) formation and eliminate BrO(3)(-) generated during the ozonation of drinking water, particularly in packaged drinking water. Results show that the Br⁻ and BrO(3)(-) levels in GAC-treated water decreased in both bench- and pilot-scale experiments. In the bench-scale experiments, when the empty bed contact time (EBCT) was 5 min, the highest reduction rates of Br(-) in the mineral and ultrapure water were found to be 74.9% and 91.2%, respectively, and those of BrO(3)(-) were 94.4% and 98.8%, respectively. The GAC capacity for Br⁻ and BrO(3)(-) removal increased with the increase in EBCT. Reduction efficiency was better in ultrapure water than in mineral water. In the pilot-scale experiments, the minimum reduction rates of Br⁻ and BrO(3)(-) were 38.5% and 73.2%, respectively.

  1. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment.

    PubMed

    Ellis, Laura-Jayne A; Valsami-Jones, Eugenia; Lead, Jamie R; Baalousha, Mohammed

    2016-10-15

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water - MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV-visible spectrometry (UV-vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96h (4days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Method for simultaneous recovery of hydrogen from water and from hydrocarbons

    DOEpatents

    Willms, R. Scott

    1996-01-01

    Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

  3. Study on Formation of Plasma Nanobubbles in Water

    NASA Astrophysics Data System (ADS)

    Sato, Takehiko; Nakatani, Tatsuyuki; Miyahara, Takashi; Ochiai, Shiroh; Oizumi, Masanobu; Fujita, Hidemasa; Miyazaki, Takamichi

    2015-12-01

    Nanobubbles of less than 400 nm in diameter were formed by plasma in pure water. Pre-breakdown plasma termed streamer discharges, generated gas channels shaped like fine dendritic coral leading to the formation of small bubbles. Nanobubbles were visualized by an optical microscope and measured by dynamic laser scattering. However, it is necessary to verify that these nanobubbles are gas bubbles, not solid, because contamination such as platinum particles and organic compounds from electrode and residue in ultrapure water were also observed.

  4. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    PubMed

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  5. Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells.

    PubMed

    Ciofani, Gianni; Del Turco, Serena; Rocca, Antonella; de Vito, Giuseppe; Cappello, Valentina; Yamaguchi, Maho; Li, Xia; Mazzolai, Barbara; Basta, Giuseppina; Gemmi, Mauro; Piazza, Vincenzo; Golberg, Dmitri; Mattoli, Virgilio

    2014-05-01

    Boron nitride nanotubes (BNNTs) are tubular nanoparticles with a structure analogous to that of carbon nanotubes, but with B and N atoms that completely replace the C atoms. Many favorable results indicate BNNTs as safe nanomaterials; however, important concerns have recently been raised about ultra-pure, long (~10 µm) BNNTs tested on several cell types. Here, we propose additional experiments with the same BNNTs, but shortened (~1.5 µm) with a homogenization/sonication treatment that allows for their dispersion in gum Arabic aqueous solutions. Obtained BNNTs are tested on human endothelial and neuron-like cells with several independent biocompatibility assays. Moreover, for the first time, their strong sum-frequency generation signal is exploited to assess the cellular uptake. Our data demonstrate no toxic effects up to concentrations of 20 µg/ml, once more confirming biosafety of BNNTs, and again highlighting that nanoparticle aspect ratio plays a key role in the biocompatibility evaluation.

  6. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    PubMed

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-07-03

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  7. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells.

    PubMed

    Nordli, Henriette Rogstad; Chinga-Carrasco, Gary; Rokstad, Anne Mari; Pukstad, Brita

    2016-10-05

    Wood cellulose nanofibrils (CNF) have been suggested as a potential wound healing material, but its utilization is limited by FDA requirements regarding endotoxin levels. In this study a method using sodium hydroxide followed by TEMPO mediated oxidation was developed to produce ultrapure cellulose nanofibrils, with an endotoxin level of 45 endotoxin units/g (EU/g) cellulose. Scanning transmission electron microscopy (S(T)EM) revealed a highly nanofibrillated structure (lateral width of 3.7±1.3nm). Assessment of cytotoxicity and metabolic activity on Normal Human Dermal Fibroblasts and Human Epidermal Keratinocytes was done. CNF-dispersion of 50μg/ml did not affect the cells. CNF-aerogels induced a reduction of metabolic activity by the fibroblasts and keratinocytes, but no significant cell death. Cytokine profiling revealed no induction of the 27 cytokines tested upon exposure to CNF. The moisture-holding capacity of aerogels was relatively high (∼7500%), compared to a commercially available wound dressing (∼2500%), indicating that the CNF material is promising as dressing material for management of wounds with a moderate to high amount of exudate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix

    NASA Astrophysics Data System (ADS)

    Cruz, Marta; Gomez, Cristina; Duran-Valle, Carlos J.; Pastrana-Martínez, Luisa M.; Faria, Joaquim L.; Silva, Adrián M. T.; Faraldos, Marisol; Bahamonde, Ana

    2017-09-01

    The photocatalytic activity of a home-made titanium dioxide (TiO2) and its corresponding composite based on graphene oxide (GO), the GO-TiO2 catalyst, has been investigated under UV-vis in the photodegradation of a mixture of four pesticides classified by the European Union as priority pollutants: diuron, alachlor, isoproturon and atrazine. The influence of two water matrices (ultrapure or natural water) was also studied. Natural water led to a decrease on the degradation of the studied pollutants when the bare TiO2 photocatalyst was employed, since this water contains both inorganic and organic species that are dissolved and commonly restrain the photocatalytic process. On the contrary, the photo-efficiency of the GO-TiO2 composite seems to be less affected by water matrix variation, with very good initial pesticide photodegradation rates under both natural and ultrapure water matrices. A comparative study between GO-TiO2 and the commercial Evonik TiO2 P25 catalyst was also carried out to analyze the photocatalytic degradation of these pesticides under visible light illumination conditions. Once again, a higher photocatalytic activity was found for the GO-TiO2 composite.

  9. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.

    2016-08-15

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  10. High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Ikuko, E-mail: akimoto@sys.wakayama-u.ac.jp; Handa, Yushi; Fukai, Katsuyuki

    2014-07-21

    We have performed time-resolved cyclotron resonance measurements in ultrapure diamond crystals for the temperature range of T=7.3–40 K and obtained the temperature-dependent momentum relaxation times based on the cyclotron resonance widths for optically generated electrons and holes. The relaxation time follows a T{sup −3/2} law down to 12 K, which is expected for acoustic-phonon scattering without impurity effect because of the high purity of our samples. The deviation from the law at lower temperatures is explained by the impurity scattering and the breakdown of the high-temperature approximation for the phonon scattering. We extract the carrier drift mobility by using the directly measuredmore » effective masses and the relaxation times. The mobility at 10 K for 600 ns delay time after optical injection is found to be μ{sub e}=1.5×10{sup 6} cm{sup 2}/V s for the electrons, and μ{sub lh}=2.3×10{sup 6} cm{sup 2}/V s and  μ{sub hh}=2.4×10{sup 5} cm{sup 2}/V s for the light and heavy holes, respectively. These high values are achieved by our high-sensitivity detection for low-density carriers (at <10{sup 11} cm{sup −3}) free from the carrier-carrier scattering as well as by the suppression of the impurity scattering in the high-purity samples.« less

  11. Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J.; Burnett, D. S.; Allton, J. H.; Kuhlman, K. R.; Woolum, D.

    2015-01-01

    To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult.

  12. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included < 0.6 ng/cm2 of DBP, DEP, TXIB, and DIBP. Silicones included < 0.5 ng/cm2 of cyclo(Me2SiO)x (x = 6, 8, 9, 10) and siloxane. Solvents included < 1.0 ng/cm2 of 2-cyclohexen-1-one, 3,5,5-trimethyl- (Isopho-rone), N-formylpiperidine, and 2-(2-butoxyethoxy) ethanol. In addition, DBF, rubber/polymer additive was found at < 0.2 ng/cm2 and caprolactam, nylon-6 at < 0.6 ng/cm2. Reducing Organics: The Apollo program was the last sam-ple return mission to place high-level organic requirements and biological containment protocols on a curation facility. The high vacuum complex F-201 glovebox in the Lunar Receiving Labora-tory used ethyl alcohol (190 proof), 3:1 benzene/methanol (nano grade solution), and heat sterilization at 130degC for 48 hours to reduce organic

  13. Microbiological investigation of an industrial ultra pure supply water plant using cultivation-based and cultivation-independent methods.

    PubMed

    Bohus, Veronika; Tóth, Erika M; Székely, Anna J; Makk, Judit; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Márialigeti, Károly

    2010-12-01

    Ultra pure waters (UPW), characterized by extremely low salt and nutrient concentrations, can suffer from microbial contamination which causes biofouling and biocorrosion, possibly leading to reduced lifetime and increased operational costs. Samples were taken from an ultra pure supply water producing plant of a power plant. Scanning electron microscopic examination was carried out on the biofilms formed in the system. Biofilm, ion exchange resin, and water samples were characterized by culture-based methods and molecular fingerprinting (terminal restriction fragment length polymorphism [T-RFLP] analysis and molecular cloning). Identification of bacteria was based on 16S rDNA sequence comparison. A complex microbial community structure was revealed. Nearly 46% of the clones were related to as yet uncultured bacteria. The community profiles of the water samples were the most diverse and most of bacteria were recruited from bacterial communities of tube surface and ion exchange resin biofilms. Microbiota of different layers of the mixed bed ion exchange resin showed the highest similarity. Most of the identified taxa (dominated by β-Proteobacteria) could take part in microbially influenced corrosion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Development of an Ultra-Pure, Carrier-Free 209Po Solution Standard

    PubMed Central

    Collé, R.; Fitzgerald, R. P.; Laureano-Perez, L.

    2015-01-01

    Ultra-pure, carrier-free 209Po solution standards have been prepared and standardized for their massic alpha-particle emission rate. The standards, which will be disseminated by the National Institute of Standards and Technology (NIST) as Standard Reference Material SRM 4326a, have a mean mass of (5.169 ± 0.003) g of a solution of polonium in nominal 2.0 mol▪L−1 HCl (having a solution density of (1.032 ± 0.002) g▪ mL−1 at 20 °C) that are contained in 5 mL, flame-sealed, borosilicate glass ampoules. They are certified to contain a 209Po massic alpha-particle emission rate of (39.01 ± 0.18) s−1▪g−1 as of a reference time of 1200 EST, 01 December 2013. This new standard series replaces SRM 4326 that was issued by NIST in 1994. The standardization was based on 4πα liquid scintillation (LS) spectrometry with two different LS counting systems and under wide variations in measurement and counting source conditions. The methodology for the standardization, with corrections for detection of the low-energy conversion electrons from the delayed 2 keV isomeric state in 205Pb and for the radiations accompanying the small 0.45 % electron-capture branch to 209Bi, involves a unique spectral analysis procedure that is specific for the case of 209Po decay. The entire measurement protocol is similar, but revised and improved from that used for SRM 4326. Spectroscopic impurity analyses revealed that no photon-emitting or alpha-emitting radionuclidic impurities were detected. The most common impurity associated with 209Po is 208Po and the activity ratio of 208Po/209Po was < 10−7. PMID:26958444

  15. Synthesis and evaluation of ultra-pure rare-earth-coped glass for laser refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Wendy M; Hehlen, Markus P; Epstein, Richard I

    2009-01-01

    Significant progress has been made in synthesizing and characterizing ultra-pure, rare-earth doped ZIBLAN (ZrF{sub 4}-InF{sub 3}BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) glass capable of laser refrigeration. The glass was produced from fluorides which were purified and subsequently treated with hydrofluoric gas at elevated temperatures to remove impurities before glass formation. Several Yb3 +-doped samples were studied with degrees of purity and composition with successive iterations producing an improved material. We have developed a non-invasive, spectroscopic technique, two band differential luminescence thermometry (TBDLT), to evaluate the intrinsic quality of the ytterbium doped ZIBLAN used for laser cooling experiments. TBDLT measures local temperature changesmore » within an illuminated volume resulting solely from changes in the relative thermal population of the excited state levels. This TBDLT technique utilizes two commercially available band pass filters to select and integrate the 'difference regions' of interest in the luminescence spectra. The goal is to determine the minimum temperature to which the ytterbium sample can cool on the local scale, unphased by surface heating. This temperature where heating and cooling are exactly balanced is the zero crossing temperature (ZCT) and can be used as a measure for the presence of impurities and the overall quality of the laser cooling material. Overall, favorable results were obtained from 1 % Yb3+-doped glass, indicating our glasses are desirable for laser refrigeration.« less

  16. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    NASA Astrophysics Data System (ADS)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  17. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time.

    PubMed

    Zhang, Hongyan; Yang, Liquan; Zhou, Bingjiang; Liu, Weimin; Ge, Jiechao; Wu, Jiasheng; Wang, Ying; Wang, Pengfei

    2013-09-15

    An ultrasensitive and selective detection of mercury (II) was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01ng/ml for Hg(2+) ions in ultrapure and tap water based on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg(2+)-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg(2+) ion concentration, which is unaffected by the presence of other metal ions. The coefficients obtained for ultrapure and tap water were 0.99902 and 0.99512, respectively, for the linear part over a range of 0.01-100ng/ml. The results show that the double-effect sensor has potential for practical applications with ultra sensitivity and selectivity, especially in online or real-time monitoring of Hg(2+) ions pollution in tap water with the further improvement of portable LSCI-SPR instrument. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    NASA Astrophysics Data System (ADS)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  19. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  20. Curating NASA's Past, Present, and Future Astromaterial Sample Collections

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (hereafter JSC curation) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections in seven different clean-room suites: (1) Apollo Samples (ISO (International Standards Organization) class 6 + 7); (2) Antarctic Meteorites (ISO 6 + 7); (3) Cosmic Dust Particles (ISO 5); (4) Microparticle Impact Collection (ISO 7; formerly called Space-Exposed Hardware); (5) Genesis Solar Wind Atoms (ISO 4); (6) Stardust Comet Particles (ISO 5); (7) Stardust Interstellar Particles (ISO 5); (8) Hayabusa Asteroid Particles (ISO 5); (9) OSIRIS-REx Spacecraft Coupons and Witness Plates (ISO 7). Additional cleanrooms are currently being planned to house samples from two new collections, Hayabusa 2 (2021) and OSIRIS-REx (2023). In addition to the labs that house the samples, we maintain a wide variety of infra-structure facilities required to support the clean rooms: HEPA-filtered air-handling systems, ultrapure dry gaseous nitrogen systems, an ultrapure water system, and cleaning facilities to provide clean tools and equipment for the labs. We also have sample preparation facilities for making thin sections, microtome sections, and even focused ion-beam sections. We routinely monitor the cleanliness of our clean rooms and infrastructure systems, including measurements of inorganic or organic contamination, weekly airborne particle counts, compositional and isotopic monitoring of liquid N2 deliveries, and daily UPW system monitoring. In addition to the physical maintenance of the samples, we track within our databases the current and ever changing characteristics (weight, location, etc.) of more than 250,000 individually numbered samples across our various collections, as well as more than 100,000 images, and countless "analog" records that record the sample processing records of each individual sample. JSC Curation is co-located with JSC

  1. INTERACTION OF LASER RADIATION WITH MATTER: Influence of Ca and Pb impurities on the bulk optical strength of ultrapure NaCl and KCl crystals

    NASA Astrophysics Data System (ADS)

    Vinogradov, An V.; Voszka, R.; Kovalev, Valerii I.; Faĭzullov, F. S.; Janszky, J.

    1987-06-01

    A significant increase (by a factor of about 3) of the bulk damage threshold in the case of interaction of CO2 laser radiation pulses with ultrapure NaCl and KCl crystals grown in a reactive atmosphere was observed on introduction of divalent metal ions Ca and Pb in concentrations of 10-5-10-6 mol/mol. Impurities were introduced in concentrations of 10-8-10-3 and 2×10-7-10-4 mol/mol into the melts of KCl and NaCl, respectively. The concentration of other impurities (including OH) did not exceed ~10-6 mol/mol. A physical model was developed to account for the observed dependence on the basis of an analogy between a system of colloidal particles and F centers in a crystal and a liquid-vapor system.

  2. MODFLOW-NWT, A Newton formulation for MODFLOW-2005

    USGS Publications Warehouse

    Niswonger, Richard G.; Panday, Sorab; Ibaraki, Motomu

    2011-01-01

    This report documents a Newton formulation of MODFLOW-2005, called MODFLOW-NWT. MODFLOW-NWT is a standalone program that is intended for solving problems involving drying and rewetting nonlinearities of the unconfined groundwater-flow equation. MODFLOW-NWT must be used with the Upstream-Weighting (UPW) Package for calculating intercell conductances in a different manner than is done in the Block-Centered Flow (BCF), Layer Property Flow (LPF), or Hydrogeologic-Unit Flow (HUF; Anderman and Hill, 2000) Packages. The UPW Package treats nonlinearities of cell drying and rewetting by use of a continuous function of groundwater head, rather than the discrete approach of drying and rewetting that is used by the BCF, LPF, and HUF Packages. This further enables application of the Newton formulation for unconfined groundwater-flow problems because conductance derivatives required by the Newton method are smooth over the full range of head for a model cell. The NWT linearization approach generates an asymmetric matrix, which is different from the standard MODFLOW formulation that generates a symmetric matrix. Because all linear solvers presently available for use with MODFLOW-2005 solve only symmetric matrices, MODFLOW-NWT includes two previously developed asymmetric matrix-solver options. The matrix-solver options include a generalized-minimum-residual (GMRES) Solver and an Orthomin / stabilized conjugate-gradient (CGSTAB) Solver. The GMRES Solver is documented in a previously published report, such that only a brief description and input instructions are provided in this report. However, the CGSTAB Solver (called XMD) is documented in this report. Flow-property input for the UPW Package is designed based on the LPF Package and material-property input is identical to that for the LPF Package except that the rewetting and vertical-conductance correction options of the LPF Package are not available with the UPW Package. Input files constructed for the LPF Package can be used

  3. An experimental study on the cavitation of water with dissolved gases

    NASA Astrophysics Data System (ADS)

    Li, Buxuan; Gu, Youwei; Chen, Min

    2017-12-01

    Cavitation inception is generally determined by the tensile strengths of liquids. Investigations on the tensile strength of water, which is essential in many fields, will help understand the promotion/prevention of cavitation and related applications in water. Previous experimental studies, however, vary in their conclusions about the value of tensile strength of water; the difference is commonly attributed to the existence of impurities in water. Dissolved gases, especially oxygen and nitrogen from the air, are one of the most common kinds of impurities in water. The influence of these gases on the tensile strength of water is still unclear. This study investigated the effects of dissolved gases on water cavitation through experiments. Cavitation in water is generated by acoustic method. Water samples are prepared with dissolved oxygen and nitrogen in different gas concentrations. Results show that under the same temperature, the tensile strength of water with dissolved oxygen or nitrogen decreases with increased gas concentration compared with that of ultrapure water. Under the same gas concentration and temperature, water with dissolved oxygen shows a lower tensile strength than that with dissolved nitrogen. Possible reasons of these results are also discussed.

  4. Environmental Consequences of Nanotechnologies: Nanoparticle Dispersion in Aqueous Media: SOP-T-1

    DTIC Science & Technology

    2015-02-01

    containing ice • Bath sonicator • Weighing dish (aluminum) • Stainless steel spatula • Analytical balance • Lab jack for lifting sample • Volumetric...balance and an aluminum dish, weigh an adequate mass of dry powder under a fume hood to achieve the desired concentration into ultrapure water (<T>, <R...0.025 0.5 0.05 1 0.5 10 1 20 2. Add ultra-pure water in a glass beaker with NP powder to /flask under fume hood (<T>, <R>). 3. Degas the bath

  5. A rapid method for the preparation of ultrapure, functional lysosomes using functionalized superparamagnetic iron oxide nanoparticles.

    PubMed

    Walker, Mathew W; Lloyd-Evans, Emyr

    2015-01-01

    Lysosomes are an emerging and increasingly important cellular organelle. With every passing year, more novel proteins and key cellular functions are associated with lysosomes. Despite this, the methodologies for their purification have largely remained unchanged since the days of their discovery. With little advancement in this area, it is no surprise that analysis of lysosomal function has been somewhat stymied, largely in part by the change in buoyant densities that occur under conditions where lysosomes accumulate macromolecules. Such phenotypes are often associated with the lysosomal storage diseases but are increasingly being observed under conditions where lysosomal proteins or, in some cases, cellular functions associated with lysosomal proteins are being manipulated. These altered lysosomes poise a problem to the classical methods to purify lysosomes that are reliant largely on their correct sedimentation by density gradient centrifugation. Building upon a technique developed by others to purify lysosomes magnetically, we have developed a unique assay using superparamagnetic iron oxide nanoparticles (SPIONs) to purify high yields of ultrapure functional lysosomes from multiple cell types including the lysosomal storage disorders. Here we describe this method in detail, including the rationale behind using SPIONs, the potential pitfalls that can be avoided and the potential functional assays these lysosomes can be used for. Finally we also summarize the other methodologies and the exact reasons why magnetic purification of lysosomes is now the method of choice for lysosomal researchers. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Biofilm formation and control in a simulated spacecraft water system - Two-year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Carr, Sandra E.; Bruce, Rebekah J.; Svoboda, Judy V.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1991-01-01

    The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  7. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freij, N.; Nelson, C. J.; Mumford, S.

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardlymore » propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 ± 0.5 km s{sup –1} and a minimum vertical velocity of 42 ± 21 km s{sup –1}. The estimated energy of the waves is around 150 W m{sup –2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.« less

  8. Modeling the photodegradation of emerging contaminants in waters by UV radiation and UV/H2O2 system.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-01-01

    Five emerging contaminants (1-H-Benzotriazole, N,N-diethyl-m-toluamide or DEET, Chlorophene, 3-Methylindole, and Nortriptyline HCl), frequently found in surface waters and wastewaters, were selected to be photooxidized in several water matrices. Previous degradation experiments of these compounds individually dissolved in ultra pure water were performed by using UV radiation at 254 nm and the Fenton's reagent. These oxidation systems allowed the determination of the quantum yields and the rate constants for the radical reaction between each compound and hydroxyl radicals. Later, the simultaneous photodegradation of mixtures of the selected ECs in several types of water (ultrapure water, reservoir water, and two effluents from WWTPs) was carried out and a kinetic study was conducted. A model is proposed for the ECs elimination, and the theoretically calculated concentrations with this model agreed well with the experimental results obtained, which confirmed that it constitutes an excellent tool to predict the elimination of these compounds in waters.

  9. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    PubMed

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling

  10. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays.

    PubMed

    Escher, Beate I; Allinson, Mayumi; Altenburger, Rolf; Bain, Peter A; Balaguer, Patrick; Busch, Wibke; Crago, Jordan; Denslow, Nancy D; Dopp, Elke; Hilscherova, Klara; Humpage, Andrew R; Kumar, Anu; Grimaldi, Marina; Jayasinghe, B Sumith; Jarosova, Barbora; Jia, Ai; Makarov, Sergei; Maruya, Keith A; Medvedev, Alex; Mehinto, Alvine C; Mendez, Jamie E; Poulsen, Anita; Prochazka, Erik; Richard, Jessica; Schifferli, Andrea; Schlenk, Daniel; Scholz, Stefan; Shiraishi, Fujio; Snyder, Shane; Su, Guanyong; Tang, Janet Y M; van der Burg, Bart; van der Linden, Sander C; Werner, Inge; Westerheide, Sandy D; Wong, Chris K C; Yang, Min; Yeung, Bonnie H Y; Zhang, Xiaowei; Leusch, Frederic D L

    2014-01-01

    Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.

  11. Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Zhenyu; Misra, R. D. K.; Liu, Haitao; Yu, Fuxiao

    2014-09-01

    The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750-1000 °C and strain rates of 0.5 to 10 s-1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s-1 and 900 °C in 10 s-1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.

  12. Design and development of an automated flow injection instrument for the determination of arsenic species in natural waters.

    PubMed

    Hanrahan, Grady; Fan, Tina K; Kantor, Melanie; Clark, Keith; Cardenas, Steven; Guillaume, Darrell W; Khachikian, Crist S

    2009-10-01

    The design and development of an automated flow injection instrument for the determination of arsenite [As(III)] and arsenate [As(V)] in natural waters is described. The instrument incorporates solenoid activated self-priming micropumps and electronic switching valves for controlling the fluidics of the system and a miniature charge-coupled device spectrometer operating in a graphical programming environment. The limits of detection were found to be 0.79 and 0.98 microM for As(III) and As(V), respectively, with linear range of 1-50 microM. Spiked ultrapure water samples were analyzed and recoveries were found to be 97%-101% for As(III) and 95%-99% for As(V), respectively. Future directions in terms of automation, optimization, and field deployment are discussed.

  13. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    PubMed

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  14. Determination of microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement.

    PubMed

    Li, Wei; Duan, Jinming; Niu, Chaoying; Qiang, Naichen; Mulcahy, Dennis

    2011-10-01

    A simple detection method using ultra-performance liquid chromatography electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS-MS) coupled with the sample dilution method for determining trace microcystin-LR (MC-LR) in drinking water is presented. The limit of detection (LOD) was 0.04 µg/L and the limit of quantitation (LOQ) was 0.1 µg/L. Water matrix effects of ionic strength, dissolved organic carbon (DOC) and pH were examined. The results indicate that signal detection intensity for MC-LR was significantly suppressed as the ionic strength increased from ultrapure water condition, whereas it increased slightly with solution pH and DOC at low concentrations. However, addition of methanol (MeOH) into the sample was able to counter the signal suppression effects. In this study, dilution of the tap water sample by adding 4% MeOH (v/v) was observed to be adequate to compensate for the signal suppression. The recoveries of the samples fortified with MC-LR (0.2, 1, and 10 µg/L) for three different tap water samples ranged from 84.4% to 112.9%.

  15. Effect of natural aquatic humic substances on the photodegradation of estrone.

    PubMed

    Silva, Carla Patrícia; Lima, Diana L D; Groth, Milena B; Otero, Marta; Esteves, Valdemar I

    2016-02-01

    Photodegradation of estrone (E1) was investigated under simulated solar radiation in absence and presence of the different fractions of humic substances (HS), namely humic acids (HA), fulvic acids (FA) and XAD-4 fraction. The pseudo-first order photodegradation rate constants increased from 0.1137 h(-1), in ultrapure (MQ) water, to 0.1774, 0.1943 and 0.3109 h(-1), in presence of HA, FA and XAD-4, respectively. Half-life time decreased from 6.10 h in MQ water to 3.91, 3.57 and 2.23 h in presence of HA, FA and XAD-4, respectively. These results evidence the relevant photosensitizing effect of XAD-4 fraction of HS on the degradation of E1, which, to the best of our knowledge have never been studied. Photodegradation studies were also conducted in organic matter-rich environmental aquatic matrices, namely fresh, estuarine and waste water. After 2 h, photodegradation achieved values ranged between 35.6 and 57.1% in natural water samples, compared with 26.4% in ultrapure water. The higher photodegradation occurred in an estuarine water sample, known to be rich in XAD-4 fraction and poor in HA, indicating that not only the presence of organic matter, but also its type, are determinant in the E1 photodegradation rate. Finally, the use of sodium azide as singlet oxygen ((1)O2) scavenger during the phototransformation of E1 in ultrapure and in two wastewater samples allowed to conclude that (1)O2 has an important role in the E1 photodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Toxicological profile of ultrapure 2,2',3,4,4',5,5'-heptachlorbiphenyl (PCB 180) in adult rats.

    PubMed

    Viluksela, Matti; Heikkinen, Päivi; van der Ven, Leo T M; Rendel, Filip; Roos, Robert; Esteban, Javier; Korkalainen, Merja; Lensu, Sanna; Miettinen, Hanna M; Savolainen, Kari; Sankari, Satu; Lilienthal, Hellmuth; Adamsson, Annika; Toppari, Jorma; Herlin, Maria; Finnilä, Mikko; Tuukkanen, Juha; Leslie, Heather A; Hamers, Timo; Hamscher, Gerd; Al-Anati, Lauy; Stenius, Ulla; Dervola, Kine-Susann; Bogen, Inger-Lise; Fonnum, Frode; Andersson, Patrik L; Schrenk, Dieter; Halldin, Krister; Håkansson, Helen

    2014-01-01

    PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological

  17. Degradation of propyl paraben by activated persulfate using iron-containing magnetic carbon xerogels: investigation of water matrix and process synergy effects.

    PubMed

    Metheniti, Maria Evangelia; Frontistis, Zacharias; Ribeiro, Rui S; Silva, Adrián M T; Faria, Joaquim L; Gomes, Helder T; Mantzavinos, Dionissios

    2017-10-06

    An advanced oxidation process comprising an iron-containing magnetic carbon xerogel (CX/Fe) and persulfate was tested for the degradation of propyl paraben (PP), a contaminant of emerging concern, in various water matrices. Moreover, the effect of 20 kHz ultrasound or light irradiation on process performance was evaluated. The pseudo-first order degradation rate of PP was found to increase with increasing SPS concentration (25-500 mg/L) and decreasing PP concentration (1690-420 μg/L) and solution pH (9-3). Furthermore, the effect of water matrix on kinetics was detrimental depending on the complexity (i.e., wastewater, river water, bottled water) and the concentration of matrix constituents (i.e., humic acid, chloride, bicarbonate). The simultaneous use of CX/Fe and ultrasound as persulfate activators resulted in a synergistic effect, with the level of synergy (between 35 and 50%) depending on the water matrix. Conversely, coupling CX/Fe with simulated solar or UVA irradiation resulted in a cumulative effect in experiments performed in ultrapure water.

  18. Stability Characterization of Quinazoline Derivative BG1188 by Optical Methods

    NASA Astrophysics Data System (ADS)

    Militaru, Andra; Smarandache, Adriana; Mahamoud, Abdallah; Damian, Victor; Ganea, Paul; Alibert, Sandrine; Pagès, Jean-Marie; Pascu, Mihail-Lucian

    2011-08-01

    3-[2-(dimethylamino)ethyl]-6-nitroquinazolin-4(3H)-one, labeled BG1188, is a new synthesized compound, out of a series of quinazoline derivatives developed to fight the multidrug resistance of antibiotics acquired by bacteria. A characterization of the BG1188 powder was made using FTIR spectra in order to evidence the functional groups in the medicine's molecule. The ultraviolet-visible (UV-Vis) absorption spectra were used to study the stability of the BG1188 solutions in two solvents and at different temperatures. BG1188 concentration in ultrapure water was varied between 2×10-3 M (stock solution) and 10-6 M. The concentration recommended by higher activity on bacteria was 10-3 M. For the same reason, this was the utilized concentration of BG1188 in dimethyl sulfoxide (DMSO). Time stability was characterized by comparing the time evolution of the UV-Vis absorption spectra of the BG1188 solutions in ultrapure de-ionized water or in DMSO. The spectra were recorded daily for about 4 months after the preparation for the BG1188 solutions in ultrapure water. Generally, samples are stable within the experimental errors at concentrations higher than 10-5 M, but the stability time interval may vary from 119 days at 10-4 M to 34 days at 10-5 M. Time evolution of the absorption spectra at 10-3 M in ultrapure water shows reproducibility within the measuring errors (±1.045%) for time intervals up to 1032 hours (more than 40 days) after preparation. On the other hand, BG1188 solutions in DMSO may be considered unstable because the absorption spectra modify in terms of peak shapes and intensities, indicating that the samples exhibit modifications immediately after preparation. Regardless the solvent used, some aggregation phenomena took place and wire-like aggregates were observed in all the solutions with the naked eye. These aggregates were analyzed, tentatively, using optical microscopy and FTIR.

  19. Effect of sunlight exposure on the release of intentionally and/or non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and in vitro toxicity.

    PubMed

    Bach, Cristina; Dauchy, Xavier; Severin, Isabelle; Munoz, Jean-François; Etienne, Serge; Chagnon, Marie-Christine

    2014-11-01

    The effect of sunlight exposure on chemical migration into PET-bottled waters was investigated. Bottled waters were exposed to natural sunlight for 2, 6 and 10 days. Migration was dependent on the type of water. Formaldehyde, acetaldehyde and Sb migration increased with sunlight exposure in ultrapure water. In carbonated waters, carbon dioxide promoted migration and only formaldehyde increased slightly due to sunlight. Since no aldehydes were detected in non-carbonated waters, we conclude that sunlight exposure has no effect. Concerning Sb, its migration levels were higher in carbonated waters. No unpredictable NIAS were identified in PET-bottled water extracts. Cyto-genotoxicity (Ames and micronucleus assays) and potential endocrine disruption effects (transcriptional-reporter gene assays) were checked in bottled water extracts using bacteria (Salmonella typhimurium) and human cell lines (HepG2 and MDA-MB453-kb2). PET-bottled water extracts did not induce any toxic effects (cyto-genotoxicity, estrogenic or anti-androgenic activity) in vitro at relevant consumer-exposure levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Endotoxin contamination and control in surface water sources and a drinking water treatment plant in Beijing, China.

    PubMed

    Can, Zhang; Wenjun, Liu; Wen, Sun; Minglu, Zhang; Lingjia, Qian; Cuiping, Li; Fang, Tian

    2013-07-01

    In this paper, endotoxin contamination was determined in treated water following each unit of a drinking water treatment plant (WTP) in Beijing, China and its source water (SW) from a long water diversion channel (Shijiazhuang-Beijing) originating from four reservoirs in Hebei province, China. The total-endotoxin activities in SW ranged from 21 to 41 EU/ml at five selected cross sections of the diversion channel. The total-endotoxin in raw water of the WTP ranged from 11 to 16 EU/ml due to dilution and pretreatment during water transportation from Tuancheng Lake to the WTP, and finished water of the WTP ranged from 4 to 10 EU/ml, showing a 49% decrease following the full-scale treatment process at the WTP. Compared with the 31% removal of free-endotoxin, the WTP removed up to 71% of bound-endotoxin in raw water. The traditional treatment processes (coagulation, sedimentation and filtration) in the WTP removed substantial amounts of total-endotoxin (up to 63%), while endotoxin activities increased after granular activated carbon (GAC) adsorption and chlorination. The total-endotoxin in the actual water was composed of free-endotoxin and bound-endotoxin (endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins). The endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins co-exist as suspended particles in water, and only the bacteria-bound endotoxins were correlated with bacterial cells suspended in water. The particle distribution of endotoxin aggregates in ultrapure water was also tested and the results showed that the majority (64-89%) of endotoxin aggregates had diameters <2 μm. The endotoxin contamination and control in treated water following each unit of the WTP processes and its SW from reservoirs are discussed and compared with regard to bacterial cell counts and particle characteristics, which were dependent, to a certain extent, on different flow rates and turbulence of the water environments. Copyright

  1. Investigation of Stainless Steel Corrosion in Ultrahigh-Purity Water and Steam Systems by Surface Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Iacocca, Ronald G.; Bustard, Bethany L.; Kemp, Craig A. J.

    2010-02-01

    Stainless steel pipes with different degrees of rouging and a Teflon®-coated rupture disc with severe corrosion were thoroughly investigated by combining multiple surface analytical techniques. The surface roughness and iron oxide layer thickness increase with increasing rouge severity, and the chromium oxide layer coexists with the iron oxide layer in samples with various degrees of rouging. Unlike the rouging observed for stainless steel pipes, the fast degradation of the rupture disc was caused by a crevice corrosion environment created by perforations in the protective Teflon coating. This failure analysis clearly shows the highly corrosive nature of ultrapure water used in the manufacture of pharmaceutical products, and demonstrates some of the unexpected corrosion mechanisms that can be encountered in these environments.

  2. FPGA-based digital signal processing for the next generation radio astronomy instruments: ultra-pure sideband separation and polarization detection

    NASA Astrophysics Data System (ADS)

    Alvear, Andrés.; Finger, Ricardo; Fuentes, Roberto; Sapunar, Raúl; Geelen, Tom; Curotto, Franco; Rodríguez, Rafael; Monasterio, David; Reyes, Nicolás.; Mena, Patricio; Bronfman, Leonardo

    2016-07-01

    Field Programmable Gate Arrays (FPGAs) capacity and Analog to Digital Converters (ADCs) speed have largely increased in the last decade. Nowadays we can find one million or more logic blocks (slices) as well as several thousand arithmetic units (ALUs/DSP) available on a single FPGA chip. We can also commercially procure ADC chips reaching 10 GSPS, with 8 bits resolution or more. This unprecedented power of computing hardware has allowed the digitalization of signal processes traditionally performed by analog components. In radio astronomy, the clearest example has been the development of digital sideband separating receivers which, by replacing the IF hybrid and calibrating the system imbalances, have exhibited a sideband rejection above 40dB; this is 20 to 30dB higher than traditional analog sideband separating (2SB) receivers. In Rodriguez et al.,1 and Finger et al.,2 we have demonstrated very high digital sideband separation at 3mm and 1mm wavelengths, using laboratory setups. We here show the first implementation of such technique with a 3mm receiver integrated into a telescope, where the calibration was performed by quasi-optical injection of the test tone in front of the Cassegrain antenna. We also reported progress in digital polarization synthesis, particularly in the implementation of a calibrated Digital Ortho-Mode Transducer (DOMT) based on the Morgan et al. proof of concept.3 They showed off- line synthesis of polarization with isolation higher than 40dB. We plan to implement a digital polarimeter in a real-time FPGA-based (ROACH-2) platform, to show ultra-pure polarization isolation in a non-stop integrating spectrometer.

  3. Production of H2 from aluminium/water reaction and its potential for CO2 methanation

    NASA Astrophysics Data System (ADS)

    Khai Phung, Khor; Sethupathi, Sumathi; Siang Piao, Chai

    2018-04-01

    Carbon dioxide (CO2) is a natural gas that presents in excess in the atmosphere. Owing to its ability to cause global warming, capturing and conversion of CO2 have attracted much attention worldwide. CO2 methanation using hydrogen (H2) is believed to be a promising route for CO2 removal. In the present work, H2 is produced using aluminum-water reaction and tested for its ability to convert CO2 to methane (CH4). Different type of water i.e. tap water, distilled water, deionized water and ultrapure water, concentration of sodium hydroxide (NaOH) (0.2 M to 1.0 M) and particle size of aluminum (45 m to 500 μm) were varied as parameter study. It was found that the highest yield of H2 was obtained using distilled water, 1.0 M of NaOH and 45μm particle size of aluminium. However, the highest yield of methane was achieved using a moderate and progressive H2 production (distilled water, 0.6 M of NaOH and 45 μm particle size of aluminium) which allowed sufficient time for H2 to react with CO2. It was concluded that 1130 ml of H2 can produce about 560 ppm of CH4 within 25 min of batch reaction using nickel catalyst.

  4. Ultrafast quantitation of six quinolones in water samples by second-order capillary electrophoresis data modeling with multivariate curve resolution-alternating least squares.

    PubMed

    Alcaráz, Mirta R; Vera-Candioti, Luciana; Culzoni, María J; Goicoechea, Héctor C

    2014-04-01

    This paper presents the development of a capillary electrophoresis method with diode array detector coupled to multivariate curve resolution-alternating least squares (MCR-ALS) to conduct the resolution and quantitation of a mixture of six quinolones in the presence of several unexpected components. Overlapping of time profiles between analytes and water matrix interferences were mathematically solved by data modeling with the well-known MCR-ALS algorithm. With the aim of overcoming the drawback originated by two compounds with similar spectra, a special strategy was implemented to model the complete electropherogram instead of dividing the data in the region as usually performed in previous works. The method was first applied to quantitate analytes in standard mixtures which were randomly prepared in ultrapure water. Then, tap water samples spiked with several interferences were analyzed. Recoveries between 76.7 and 125 % and limits of detection between 5 and 18 μg L(-1) were achieved.

  5. Biofilm formation and control in a simulated spacecraft water system - Three year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Flanagan, David T.; Bruce, Rebekah J.; Mudgett, Paul D.; Carr, Sandra E.; Rutz, Jeffrey A.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1992-01-01

    Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. SEM indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm. Metals analyses reveal some corrosion in the iodinated system after 3 years of continuous exposure. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  6. ISOLATION AND IDENTIFICATION OF NONTUBERCULOUS MYCOBACTERIA FROM FOODS AS POSSIBLE EXPOSURE SOURCES

    EPA Science Inventory

    A variety of foods collected from local supermarkets and produce stands were examined as possible sources of nontuberculous mycobacterial exposure. Food samples were combined with sterile ultrapure water and manually shaken. To remove large particles, the suspensions were filtere...

  7. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep.

    PubMed

    Uebersax, Lorenz; Apfel, Tanja; Nuss, Katja M R; Vogt, Rainer; Kim, Hyoen Yoo; Meinel, Lorenz; Kaplan, David L; Auer, Joerg A; Merkle, Hans P; von Rechenberg, Brigitte

    2013-09-01

    The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Higher Anti-Liver Fibrosis Effect of Cordyceps militaris-Fermented Product Cultured with Deep Ocean Water via Inhibiting Proinflammatory Factors and Fibrosis-Related Factors Expressions.

    PubMed

    Hung, Yu-Ping; Lee, Chun-Lin

    2017-06-08

    Deep ocean water (DOW) has been shown to enhance the functional components of fungi, resulting in increased health benefits. Therefore, using DOW for culturing fungi can enhance the cordycepin and adenosine of Cordyceps militaris (CM) and its protective effects on the liver. In this study, the antiliver fibrosis effects and mechanisms of ultrapure water-cultured CM (UCM), DOW-cultured CM (DCM), synthetic water-cultured CM, DOW, cordycepin, and adenosine were compared in the liver fibrosis mice induced by intraperitoneal injections of thioacetamide (TAA). The results indicated that DCM exhibited superior performance in reducing liver collagen accumulation, mitigating liver injuries, inhibiting proinflammatory factors and fibrosis-related factor (TGF-β1, Smad2/3, α-SMA, COL1A1) expression compared with UCM. DOW, cordycepin, and adenosine also performed antiliver fibrosis effect. Therefore, because DCM is rich in DOW and functional components, it can achieve anti-liver fibrosis effects through multiple pathways. These ameliorative effects are considerably superior to those of UCM.

  9. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents.

    PubMed

    Fayad, Paul B; Zamyadi, Arash; Broseus, Romain; Prévost, Michèle; Sauvé, Sébastien

    2013-01-01

    This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M(-1) sec(-1) in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M(-1) sec(-1) in ultrapure water and 26 to 149 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M(-1) sec(-1) in ultrapure water and 180 to 368 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L(-1) after contact times of 10 to 60 min. This

  10. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents

    PubMed Central

    2013-01-01

    Background This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. Results The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M-1 sec-1 in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M-1 sec-1 in ultrapure water and 26 to 149 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M-1 sec-1 in ultrapure water and 180 to 368 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L-1 after contact times of 10 to 60

  11. Salmonella Newport as Reported by the Animal Arm of the National Antimicrobial Resistance Monitoring System – Enteric Bacteria (NARMS) 1997-2007

    USDA-ARS?s Scientific Manuscript database

    Introduction: Since the early 1990’s there has been increasing awareness and concern regarding the development of antimicrobial resistance among bacteria of public health significance. Reports targeting zoonotic bacteria, and in particular Salmonella species, suggest that resistance is trending upw...

  12. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    PubMed

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  13. Kinetics, mechanisms, and influencing factors on the treatment of haloacetonitriles (HANs) in water by two household heating devices.

    PubMed

    Shi, Wendong; Wang, Lei; Chen, Baiyang

    2017-04-01

    Haloacetonitriles (HANs) are a group of nitrogenous disinfection by-products (DBPs) commonly found in treated water with potential carcinogenic, cytotoxic, and genotoxic risks. In order to control HANs and understand their real intake levels by people via drinking water, this study evaluated a list of structural, operational, and environmental factors affecting the treatment of HANs by two domestic heating devices, i.e., an electric boiler and a microwave oven. Results show that the concentrations of HANs decreased exponentially over time with increasing temperature, water turbulence, and bubbles, and the phenomena were most likely due to a combined effect of volatilization and hydrolysis. Among HANs, the lability increased with increasing halogenation degrees (i.e., tri- > di- > mono- HANs) yet decreasing halogen molecular weights (i.e., Cl- > Br- > I- HANs); such trends were well captured by quantitative structure activity relationship models (R 2  = 0.99). Operational factors played critical roles in controlling HANs too, including the rate of heating, water volume, water temperature at time of pouring, cooling method, and capping condition, suggesting that people could benefit from proper handling methods and procedures. In addition, HANs added to tap water exhibited higher removals than those added to ultrapure water, probably because of the presence of free chlorine in tap water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. QUANTIFYING SEASONAL SHIFTS IN NITROGEN SOURCES TO OREGON ESTUARIES. PART I: EMPIRICAL 15N MACROALGAE DATA

    EPA Science Inventory

    “Green Tides” are typically considered to be a symptom of eutrophication associated with anthropogenic nutrient loading. In many estuaries along the Pacific Northwest (PNW), the seasonal development of macroalgal mats or “Green Tides” coincides with the initiation of coastal upw...

  15. Fullerene Transport in Saturated Porous Media

    EPA Science Inventory

    We investigated the effects of background solution chemistry and residence time within the soil column on the transport of aqu/C60 through saturated ultrapure quartz sand columns. Aqu/C60 breakthrough curves were obtained under different pore water velocities, solution pHs, and i...

  16. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach - A Raman micro-spectroscopy study.

    PubMed

    Ghosal, Sutapa; Chen, Michael; Wagner, Jeff; Wang, Zhong-Min; Wall, Stephen

    2018-02-01

    Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance

  17. [Influence of mineral water on absorption of oral alendronate in rats].

    PubMed

    Akagi, Yuuki; Sakaue, Tomoyuki; Yoneyama, Eiji; Aoyama, Takao

    2011-01-01

    Alendronate, an oral bisphosphonate (e.g., Fosamax(®)), is effective in the treatment of osteoporosis, and the Fosamax(®) package insert advises that the bioavailability is reduced when taken with mineral water containing high levels of metal cations (Ca(2+), Mg(2+), etc.). However, standards regarding the water used when taking alendronate are unclear. In this study, the influence of mineral water on the absorption of oral alendronate was investigated based on urinary excretion of its unchanged form in rats. Alendronate was diluted in each water sample and administered orally (0.7 mg/kg) to male Wistar rats after 24-hour fast. Urine samples were collected until 24 h after dosing. Urine samples were alkalinized, and alendronate in urine was precipitated as a calcium salt, followed by loading on an anion exchange cartridge. Eluted alendronate was derivatized with 9-fluorenylmethoxycarbonyl (Fmoc) chloride and determined by HPLC with fluorescent detection. Cumulative urinary excretion recoveries of alendronate were calculated from the amounts of urinary excretion. Alendronate was rapidly excreted in the first 6 h, and similar elimination rate constants were seen (from 0.28 to 0.45 h(-1/2)) among the water samples. Cumulative urinary excretion recoveries with tap water, evian(®) and 100% deep ocean water were 0.98±0.17%, 0.80±0.18% and 1.01±0.16% (mean±S.E., n=4). Those with Contrex(®) (0.33±0.07%) were significantly lower when compared with ultrapure water (1.56±0.35%, p<0.01). These findings suggest that the absorption of alendronate decreases based on the calcium concentration of mineral water. In conclusion, mineral water containing high levels of calcium is not recommended when alendronate is taken.

  18. Metals of Deep Ocean Water Increase the Anti-Adipogenesis Effect of Monascus-Fermented Product via Modulating the Monascin and Ankaflavin Production.

    PubMed

    Lung, Tzu-Ying; Liao, Li-Ya; Wang, Jyh-Jye; Wei, Bai-Luh; Huang, Ping-Yi; Lee, Chun-Lin

    2016-05-27

    Deep ocean water (DOW) obtained from a depth of more than 200 m includes abundant nutrients and minerals. DOW was proven to positively increase monascin (MS) and ankaflavin (AK) production and the anti-adipogenesis effect of Monascus-fermented red mold dioscorea (RMD). However, the influences that the major metals in DOW have on Monascus secondary metabolite biosynthesis and anti-adipogenesis remain unknown. Therefore, the major metals in DOW were used as the culture water to produce RMD. The secondary metabolites production and anti-adipogenesis effect of RMD cultured with various individual metal waters were investigated. In the results, the addition of water with Mg, Ca, Zn, and Fe increased MS and AK production and inhibited mycotoxin citrinin (CT). However, the positive influence may be contributed to the regulation of pigment biosynthesis. Furthermore, in the results of cell testing, higher lipogenesis inhibition was seen in the treatments of various ethanol extracts of RMD cultured with water containing Mg, K, Zn, and Fe than in those of RMD cultured with ultra-pure water. In conclusion, various individual metals resulted in different effects on MS and AK productions as well as the anti-adipogenesis effect of RMD, but the specific metals contained in DOW may cause synergistic or comprehensive effects that increase the significantly positive influence.

  19. Metals of Deep Ocean Water Increase the Anti-Adipogenesis Effect of Monascus-Fermented Product via Modulating the Monascin and Ankaflavin Production

    PubMed Central

    Lung, Tzu-Ying; Liao, Li-Ya; Wang, Jyh-Jye; Wei, Bai-Luh; Huang, Ping-Yi; Lee, Chun-Lin

    2016-01-01

    Deep ocean water (DOW) obtained from a depth of more than 200 m includes abundant nutrients and minerals. DOW was proven to positively increase monascin (MS) and ankaflavin (AK) production and the anti-adipogenesis effect of Monascus-fermented red mold dioscorea (RMD). However, the influences that the major metals in DOW have on Monascus secondary metabolite biosynthesis and anti-adipogenesis remain unknown. Therefore, the major metals in DOW were used as the culture water to produce RMD. The secondary metabolites production and anti-adipogenesis effect of RMD cultured with various individual metal waters were investigated. In the results, the addition of water with Mg, Ca, Zn, and Fe increased MS and AK production and inhibited mycotoxin citrinin (CT). However, the positive influence may be contributed to the regulation of pigment biosynthesis. Furthermore, in the results of cell testing, higher lipogenesis inhibition was seen in the treatments of various ethanol extracts of RMD cultured with water containing Mg, K, Zn, and Fe than in those of RMD cultured with ultra-pure water. In conclusion, various individual metals resulted in different effects on MS and AK productions as well as the anti-adipogenesis effect of RMD, but the specific metals contained in DOW may cause synergistic or comprehensive effects that increase the significantly positive influence. PMID:27240384

  20. Central online hemodiafiltration in Japan: management of water quality and practice.

    PubMed

    Yamashita, Akihiro C; Sato, Takashi

    2009-01-01

    Hemodiafiltration (HDF) includes a variety of technologies and preparation of ultrapure dialysis fluid has made it possible to perform online HDF and its extensive alternatives. According to current statistics, 5.8% of ESRD patients are treated with HDF in Japan. The majority of these HDF treatments are performed using the central dialysis fluid delivery system (CDDS), this is because most Japanese clinicians and researchers consider that with CDDS it is easier to prepare substitution fluid; moreover, CDDS has economical advantages against single-patient dialysis machine (SPDM)-based counterparts. The water quality at each patient station (dialysis console) is regularly validated by bacterial culture (colony-forming units) and by measuring endotoxin concentration (ET). Since ET measurement takes much less time than bacterial culture, ET is often used as an indicator to verify the water quality for online use. Dialysis fluid with ET below the detection level (usually <0.001 EU/ml) is used for online substitution. In CDDS online HDF, since dialysis clinics must prepare not only the dialysis fluid but also the substitution fluid, they need to satisfy almost the same requirements as pharmaceutical water treatment factories do. The Japanese Society for Dialysis Therapy (JSDT) together with the Japanese Society for Hemodiafiltration (JS-HDF) is now preparing guidelines to meet all these necessary requirements on a worldwide basis. (c) 2009 S. Karger AG, Basel.

  1. Enhanced electron transfer and silver-releasing suppression in Ag-AgBr/titanium-doped Al2O3 suspensions with visible-light irradiation.

    PubMed

    Zhou, Xuefeng; Hu, Chun; Hu, Xuexiang; Peng, Tianwei

    2012-06-15

    Ag-AgBr was deposited onto mesoporous alumina (MA) and titanium-doped MA by a deposition-precipitation method. The photocatalytic activity and the dissolution of Ag(+) from different catalysts were investigated during the photodegradation of 2-chlorophenol (2-CP) and phenol in ultrapure water and tap water with visible-light irradiation. With the increase in doped titanium, the Ag(+) dissolution decreased with a decrease in the photocatalytic activity. Ag-AgBr/MA-Ti1 was considered the better catalyst for practical applications because its Ag(+) dissolution was minimal (0.4 mg L(-1) in ultrapure water and 5 μg L(-1) in tap water), although its photoactivity was slightly less than that of Ag-AgBr/MA. The dissolution of Ag(+) was related to a charge-transfer process based on the study of cyclic voltammetry analyses under a variety of experimental conditions. The results suggested that several types of anions in the water, including CO(3)(2-), SO(4)(2-), and Cl(-), could act as electron donors that trap the photogenerated holes on Ag nanoparticles to facilitate electron circulation; this would decrease the release of Ag(+). Our studies indicated that the catalyst had a higher activity and stability in water purification. Copyright © 2012. Published by Elsevier B.V.

  2. Comparison of in vitro and in vivo bioassays to measure thyroid hormone disrupting activity in water extracts.

    PubMed

    Leusch, Frederic D L; Aneck-Hahn, Natalie H; Cavanagh, Jo-Anne E; Du Pasquier, David; Hamers, Timo; Hebert, Armelle; Neale, Peta A; Scheurer, Marco; Simmons, Steven O; Schriks, Merijn

    2018-01-01

    Environmental chemicals can induce thyroid disruption through a number of mechanisms including altered thyroid hormone biosynthesis and transport, as well as activation and inhibition of the thyroid receptor. In the current study six in vitro bioassays indicative of different mechanisms of thyroid disruption and one whole animal in vivo assay were applied to 9 model compounds and 4 different water samples (treated wastewater, surface water, drinking water and ultra-pure lab water; both unspiked and spiked with model compounds) to determine their ability to detect thyroid active compounds. Most assays correctly identified and quantified the model compounds as agonists or antagonists, with the reporter gene assays being the most sensitive. However, the reporter gene assays did not detect significant thyroid activity in any of the water samples, suggesting that activation or inhibition of the thyroid hormone receptor is not a relevant mode of action for thyroid endocrine disruptors in water. The thyroperoxidase (TPO) inhibition assay and transthyretin (TTR) displacement assay (FITC) detected activity in the surface water and treated wastewater samples, but more work is required to assess if this activity is a true measure of thyroid activity or matrix interference. The whole animal Xenopus Embryonic Thyroid Assay (XETA) detected some activity in the unspiked surface water and treated wastewater extracts, but not in unspiked drinking water, and appears to be a suitable assay to detect thyroid activity in environmental waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantifying In Situ Contaminant Mobility in Marine Sediments

    DTIC Science & Technology

    2008-01-01

    and rinsing the collection and sensor chambers and the circulation subsystem with prepared solutions is followed. For metals, a nitric acid soak/rinse...fluids beginning with tap water, then de-ionized water, then a special detergent (“RBS”), then de- ionized water, then nitric acid for metals or Methanol...component parts are soaked, four-hours minimum, in each fluid. A 25% concentration of ultra-pure nitric acid is used to soak Teflon™ parts (bottles, lids

  4. Simultaneous determination of cyanogen chloride and cyanogen bromide in treated water at sub-microg/L levels by a new solid-phase microextraction-gas chromatographic-electron-capture detection method.

    PubMed

    Cancho, B; Ventur, F; Galceran, M

    2000-11-03

    A headspace solid-phase microextraction (HS-SPME) procedure has been developed and applied for the determination of cyanogen halides in treated water samples at microg/L concentrations. Several SPME coatings were tested, the divinylbenzene-Carboxen-polydimethylsiloxane fiber being the most appropriate coating. GC-electron-capture detection was used for separation and quantitation. Experimental parameters such as sample volume, addition of a salt, extraction time and desorption conditions were studied. The optimized method has an acceptable linearity, good precision, with RSD values <10% for both compounds, and it is sufficiently sensitive to detect ng/L levels. HS-SPME was compared with liquid-liquid microextraction (US Environmental Protection Agency Method 551.1) for the analysis of spiked ultrapure and granular activated carbon filtered water samples. There was good agreement between the results from both methods. Finally, the optimized procedure was applied to determine both compounds at the Barcelona water treatment plant (N.E. Spain). Cyanogen chloride in treated water was <1.0 microg/L and cyanogen bromide ranged from 3.2 to 6.4 microg/L.

  5. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    PubMed

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.

    PubMed

    Li, Mei; Zhu, Lizhong; Lin, Daohui

    2011-03-01

    Water chemistry can be a major factor regulating the toxicity mechanism of ZnO nanoparticles (nano-ZnO) in water. The effect of five commonly used aqueous media with various chemical properties on the toxicity of nano-ZnO to Escherichia coli O111 (E. coli) was investigated, including ultrapure water, 0.85% NaCl, phosphate-buffered saline (PBS), minimal Davis (MD), and Luria-Bertani (LB). Combined results of physicochemical characterization and antibacterial tests of nano-ZnO in the five media suggest that the toxicity of nano-ZnO is mainly due to the free zinc ions and labile zinc complexes. The toxicity of nano-ZnO in the five media deceased as follows: ultrapure water > NaCl > MD > LB > PBS. The generation of precipitates (Zn(3)(PO(4))(2) in PBS) and zinc complexes (of zinc with citrate and amino acids in MD and LB, respectively) dramatically decreased the concentration of Zn(2+) ions, resulting in the lower toxicity in these media. Additionally, the isotonic and rich nutrient conditions improved the tolerance of E. coli to toxicants. Considering the dramatic difference of the toxicity of nano-ZnO in various aqueous media, the effect of water chemistry on the physicochemical properties of nanoparticles should be paid more attention in future nanotoxicity evaluations.

  7. The Fresenius Medical Care home hemodialysis system.

    PubMed

    Schlaeper, Christian; Diaz-Buxo, Jose A

    2004-01-01

    The Fresenius Medical Care home dialysis system consists of a newly designed machine, a central monitoring system, a state-of-the-art reverse osmosis module, ultrapure water, and all the services associated with a successful implementation. The 2008K@home hemodialysis machine has the flexibility to accommodate the changing needs of the home hemodialysis patient and is well suited to deliver short daily or prolonged nocturnal dialysis using a broad range of dialysate flows and concentrates. The intuitive design, large graphic illustrations, and step-by-step tutorial make this equipment very user friendly. Patient safety is assured by the use of hydraulic systems with a long history of reliability, smart alarm algorithms, and advanced electronic monitoring. To further patient comfort with their safety at home, the 2008K@home is enabled to communicate with the newly designed iCare remote monitoring system. The Aquaboss Smart reverse osmosis (RO) system is compact, quiet, highly efficient, and offers an improved hygienic design. The RO module reduces water consumption by monitoring the water flow of the dialysis system and adjusting water production accordingly. The Diasafe Plus filter provides ultrapure water, known for its long-term benefits. This comprehensive approach includes planning, installation, technical and clinical support, and customer service.

  8. Rapid removal of bacterial endotoxin and natural organic matter in water by dielectric barrier discharge plasma: Efficiency and toxicity assessment.

    PubMed

    Zhang, Can; Fang, Zhendong; Liu, Wenjun; Tian, Fang; Bai, Miao

    2016-11-15

    Low-temperature plasma was used to control bacteria, endotoxins and natural organic matter (NOM) in water by a dielectric barrier discharge (DBD) device. Results indicate that DBD plasma has an obvious inactivation effect on various bacteria in water. The degree of inactivation from difficult to easy is as follows: Bacillus subtilis>Escherichia coli>Staphylococcus aureus. Activated ultrapure water treated using DBD plasma exhibited a sustained sterilization effect, but this sterilization effect decreased gradually after 1h. The total-endotoxin (free-endotoxin and bound-endotoxin) released by Escherichia coli during inactivation, as well as artificially simulated endotoxin in a control solution, was significantly controlled by DBD plasma. Both the metabolites that appeared after inactivation of microorganisms by plasma treatment, and the NOM in filtration effluent of a water treatment plant were well removed by DBD plasma if the treatment duration was sufficiently long. However, the acute toxicity increased significantly, and persisted for at least 2h, indicating that some long-life active substances were generated during the DBD process. Therefore, the removal of bacteria, endotoxins or NOM does not mean a safe water is produced. It is also important to eliminate the toxicity and byproducts produced during water treatment for the continuous promotion and industrial application of DBD plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Toxicological Profile of Ultrapure 2,2′,3,4,4′,5,5′-Heptachlorbiphenyl (PCB 180) in Adult Rats

    PubMed Central

    Viluksela, Matti; Heikkinen, Päivi; van der Ven, Leo T. M.; Rendel, Filip; Roos, Robert; Esteban, Javier; Korkalainen, Merja; Lensu, Sanna; Miettinen, Hanna M.; Savolainen, Kari; Sankari, Satu; Lilienthal, Hellmuth; Adamsson, Annika; Toppari, Jorma; Herlin, Maria; Finnilä, Mikko; Tuukkanen, Juha; Leslie, Heather A.; Hamers, Timo; Hamscher, Gerd; Al-Anati, Lauy; Stenius, Ulla; Dervola, Kine-Susann; Bogen, Inger-Lise; Fonnum, Frode; Andersson, Patrik L.; Schrenk, Dieter; Halldin, Krister; Håkansson, Helen

    2014-01-01

    PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological

  10. A straightforward method for measuring the range of apparent density of microplastics.

    PubMed

    Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong

    2018-10-15

    Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  11. High salinity leads to accumulation of soil organic carbon in mangrove soil.

    PubMed

    Kida, Morimaru; Tomotsune, Mitsutoshi; Iimura, Yasuo; Kinjo, Kazutoshi; Ohtsuka, Toshiyuki; Fujitake, Nobuhide

    2017-06-01

    Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils. Copyright © 2017. Published by Elsevier Ltd.

  12. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    USDA-ARS?s Scientific Manuscript database

    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (...

  13. Micro solid-phase derivatization analysis of low-molecular mass aldehydes in treated water by micellar electrokinetic chromatography.

    PubMed

    Fernández-Molina, José María; Silva, Manuel

    2014-03-01

    A MEKC method was developed for the determination of aliphatic and aromatic low-molecular mass aldehydes (LMMAs) in treated water samples. The method involves the precapillary derivatization and extraction of the aldehydes on a Telos™ENV μ-SPE column impregnated with 2,4-dinitrophenylhydrazine . After elution of the hydrazones with ACN, the derivatives were analyzed using MEKC-DAD. Resolution of the MEKC procedure was studied by changing the pH and the concentration of the buffer, the type, and the concentration of surfactant, and the organic modifier content in the BGE. A running buffer consisting of a phosphate buffer (pH 7.2, 75 mM) with CTAB (50 mM) and ACN (30%) gave the best results. Linearity was established over the concentration range 0.5-500 μg/L and LODs from 65 to 775 ng/L; the interday precision was expressed as the RSD of the aldehydes ranging from 6.6 to 8.4%. Matrix effects were shown to be negligible by comparing the response factors obtained in ultrapure and treated waters. Aldehydes were readily determined at 1.1-8.4 μg/L levels in ozonated and chlorinated water samples, the method proposed being the first CE contribution developed for the systematic analysis of both aliphatic and aromatic LMMAs in water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interaction between Bisphosphonates and Mineral Water: Study of Oral Risedronate Absorption in Rats.

    PubMed

    Itoh, Akihisa; Akagi, Yuuki; Shimomura, Hitoshi; Aoyama, Takao

    2016-01-01

    Bisphosphonates are antiosteoporotic agents prescribed for patients with osteoporosis. Drug package inserts for bisphosphonate supplements indicate that their bioavailability is reduced by high levels of metal cations (Ca(2+), Mg(2+), etc.). However, standards for these cations in water used for taking risedronate have not been defined. Here, we examined the effect of calcium and magnesium in mineral waters on the bioavailability of the third-generation bisphosphonate, risedronate, following oral administration in rats. As risedronate is unchanged and eliminated renally, risedronate absorption was estimated from the amount excreted in the urine. Risedronate was dissolved in mineral water samples and administered orally at 0.35 mg/kg. Urine samples were collected for 24 h after dosing. Risedronate was extracted from urine using ion-pair solid-phase cartridges and quantified by HPLC with UV detection (262 nm). Cumulative recovery of risedronate was calculated from the amount excreted in the urine. The 24-h recovery of risedronate from evian® (0.32±0.02% [mean±standard deviation (S.D.)], n=4) and Contrex(®) (0.22±0.05%) mineral waters was significantly lower than that from tap water (0.47±0.04%, p<0.01). Absorption of risedronate in calcium chloride and magnesium chloride aqueous solutions of the same hardness (822 mg/L) was 54% (0.27±0.04%) and 12% (0.51±0.08%) lower, respectively, compared with ultrapure water; suggesting that absorption of risedronate declines as the calcium concentration of mineral waters increases. Consumption of mineral waters containing high levels of calcium (80 mg/L or above), such as evian® and Contrex(®), is therefore not recommended when taking risedronate.

  15. Photolysis of 2,4,6-trinitrotoluene in seawater and estuary water: Impact of pH, temperature, salinity, and dissolved organic matter.

    PubMed

    Luning Prak, Dianne J; Breuer, James E T; Rios, Evelyn A; Jedlicka, Erin E; O'Sullivan, Daniel W

    2017-01-30

    The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS+® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32°C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid. Published by Elsevier Ltd.

  16. Measurement of Polycyclic Aromatic Hydrocarbons in Airborne Particulate Matter at Low Concentrations

    DTIC Science & Technology

    2012-03-01

    Soil & Water Colorimetric (diphenylcarbazide) 7199 Hexavalent Chromium by Ion Chromatography 218.6 Low level chelation & extraction NATTS...Hexane:Dichloromethane:Methanol Dionex ASE 200 Sample Concentration Evaporation in Ultrapure Nitrogen Stream Zymark Turbovap Solid Phase Extraction Supelco Custom...Glass Silica SPE Cartridge 1% Dichloromethane + 1% Acetone in Hexane GCMS Analysis Conventional Splitless Injection Selective Ion Monitoring

  17. Biocolloid transport in water saturated columns packed with sand

    NASA Astrophysics Data System (ADS)

    Syngouna, V. I.; Chrysikopoulos, C.

    2010-12-01

    Protection of groundwater supplies from microbial contamination necessitates a solid understanding of the factors controlling the migration and retention of pathogenic organisms (biocolloids) in the subsurface. The transport behavior of three waterborne pathogens (Escherichia coli, MS2, and ΦΧ174) was investigated using laboratory-scale columns packed with clean quartz sand. Various grain sizes and pore water velocities were examined. Though coliform bacteria and coliphages are used worldwide to indicate fecal pollution of groundwater, the various parameters controlling the transport of Escherichia coli MS2 and ΦΧ174 in the subsurface are not fully understood. In this study, the attachment behavior of Escherichia coli, MS2, and ΦΧ174 onto ultra-pure quartz sand were evaluated. The mass recoveries of the three biocolloids examined were found to be proportional to the sand size. The observed mass recoveries were in the order: Escherichia coli > ΦΧ174 > MS2. To assess the importance of biocolloid attachment, the single collector removal efficiency, and the collision efficiency were quantified using the classical colloid filtration theory. Our results indicate that the secondary energy minimum plays an important role in biocolloid deposition even for smaller biocolloid particles (e.g. viruses).

  18. Further damage induced by water in micro-indentations in phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Jian, Qingyun; Yuan, Weifeng; Gu, Bin; Ji, Fang; Huang, Wen

    2014-02-01

    Using a microhardness tester, artificial flaws were made by micro-indentation in N31 Nd-doped phosphate laser glass. Indentation fracture toughness, KIC, was estimated as 0.45-0.53 MPa m1/2 from these indentations. The glasses with indentations were then immersed in ultrapure water to investigate further water-induced damage of these indentations. Stress-enhanced hydrolysis leads to the propagations of radial crack, lateral cracks and microcracks in the subsurface. These crack propagations therefore cause deformation in subsurface to form annular reflections regions around the indentations and further material collapse within imprints. After the residual stresses are exhausted, the leaching plays a more dominated role in glass corrosion in the further immersion. After immersion, the material structure slackens around micro-indentation, which decreases the contact stiffness and results in a lower nano-hardness. For the surface far away from flaws, water immersion presents a weak effect on the near-surface mechanical since the matrix leaching in phosphate glass restricts the formation of hydration layer. During first 20 min immersion, due to higher chemical activity and lower fracture toughness, the radial cracks show a faster propagation in phosphate glass compared with that in K9 silicate glass. For further immersion, crack healing occurs in silicate glass but not in phosphate glass. Analysis shows that the formation of hydration layer on crack walls plays an important role in crack healing in glasses.

  19. Evaluation of polyethersulfone performance for the microextraction of polar chlorinated herbicides from environmental water samples.

    PubMed

    Prieto, Ailette; Rodil, Rosario; Quintana, José Benito; Cela, Rafael; Möder, Monika; Rodríguez, Isaac

    2014-05-01

    In this work, the suitability of bulk polyethersulfone (PES) for sorptive microextraction of eight polar, chlorinated phenoxy acids and dicamba from environmental water samples is assessed and the analytical features of the optimized method are compared to those reported for other microextraction techniques. Under optimized conditions, extractions were performed with samples (18 mL) adjusted at pH 2 and containing a 30% (w/v) of sodium chloride, using a tubular PES sorbent (1 cm length × 0.7 mm o.d., sorbent volume 8 µL). Equilibrium conditions were achieved after 3h of direct sampling, with absolute extraction efficiencies ranging from 39 to 66%, depending on the compound. Analytes were recovered soaking the polymer with 0.1 mL of ethyl acetate, derivatized and determined by gas chromatography-mass spectrometry (GC-MS). Achieved quantification limits (LOQs) varied between 0.005 and 0.073 ng mL(-1). After normalization with the internal surrogate (IS), the efficiency of the extraction was only moderately affected by the particular characteristics of different water samples (surface and sewage water); thus, pseudo-external calibration, using spiked ultrapure water solutions, can be used as quantification technique. The reduced cost of the PES polymer allowed considering it as a disposable sorbent, avoiding variations in the performance of the extraction due to cross-contamination problems and/or surface modification with usage. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L−1 (S/N = 3) in lake water samples and ~0.5 μg·L−1 in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10–1000 μg·L−1. Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L−1 gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples. PMID:27529262

  1. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-08-11

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  2. Silicon Hybrid Wafer Scale Integration Interconnect Evaluation

    DTIC Science & Technology

    1989-12-01

    perform Wafer Scale Integration on a routine basis is being vigorously pursued by a number of interests in military, academic , and commercial sectors...A iliciosi rip1 St -110 illic. (;11ptai / W. -a ;,tcd Ihat Ilesc hybhrid futl liods separiltely soI lie llixiiiul’upw~v~ ielts andl ~il (otii’ie thli

  3. Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst.

    PubMed

    Munoz, Macarena; Mora, Francisco J; de Pedro, Zahara M; Alvarez-Torrellas, Silvia; Casas, Jose A; Rodriguez, Juan J

    2017-06-05

    CWPO has proved to be effective for the treatment of representative pharmaceuticals (sulfamethoxazole, atenolol, metronidazole, diltiazem, trimethoprim and ranitidine) in different water matrices (ultrapure water, surface water, WWTP effluent and hospital wastewater). Complete removal of the pollutants and the aromatic intermediates was achieved using the stoichiometric dose of H 2 O 2 , a catalyst (Fe 3 O 4 /γ-Al 2 O 3 ) load of 2gL -1 , pH 3 and temperature of 50-75°C. Accordingly, the ecotoxicity was reduced to negligible values. The degradation was faster when the pharmaceuticals were together, being the reaction time for the elimination of the most refractory species (metronidazole) shortened from 4h to 1h. The mineralization of the drugs was fairly different, being the most reactive species those containing several aromatic rings (X TOC ∼80%) and the most refractory that bearing an imidazolium ring (X TOC ∼35%). The water matrix affected the kinetics of the process but in all cases complete conversion of the drugs was reached within 1h. The presence of dissolved organic matter (surface water) seemed to promote drugs degradation while the occurrence of inorganic ions (real WTTP and hospital effluents) partially inhibited it due to scavenging effects. Remarkably, the process was successfully operated at the typical concentrations of main micropollutant sources (μgL -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Producing standard damaged DNA samples by heating: pitfalls and suggestions.

    PubMed

    Fattorini, Paolo; Marrubini, Giorgio; Bonin, Serena; Bertoglio, Barbara; Grignani, Pierangela; Recchia, Elisa; Pitacco, Paola; Procopio, Francesca; Cantoni, Carolina; Pajnič, Irena Zupanič; Sorçaburu-Cigliero, Solange; Previderè, Carlo

    2018-05-15

    Heat-mediated hydrolysis of DNA is a simple and inexpensive method for producing damaged samples in vitro. Despite heat-mediated DNA hydrolysis is being widely used in forensic and clinical validation procedures, the lack of standardized procedures makes it impossible to compare the intra and inter-laboratory outcomes of the damaging treatments. In this work, a systematic approach to heat induced DNA hydrolysis was performed at 70 °C for 0-18 h to test the role both of the hydrolysis buffer and of the experimental conditions. Specifically, a trial DNA sample, resuspended in three different media (ultrapure water, 0.1% DEPC-water and, respectively, TE) was treated both in Eppendorf tubes ("Protocol P") and in Eppendorf tubes provided with screwcaps ("Protocol S"). The results of these comparative tests were assessed by normalization of the qPCR results. DEPC-water increased the degradation of the samples up to about 100 times when compared to the ultrapure water. Conversely, the TE protected the DNA from degradation whose level was about 1700 times lower than in samples treated in ultrapure water. Even the employment of the "Protocol S" affected the level of degradation, by consistently increasing it (up to about 180 times in DEPC-water). Thus, this comparative approach showed that even seemingly apparently trivial and often underestimated parameters modify the degradation level up to 2-3 orders of magnitude. The chemical-physical reasons of these findings are discussed together with the role of potential factors such as enhanced reactivity of CO 2 , ROS, NO x and pressure, which are likely to be involved. Since the intra and inter-laboratory comparison of the outcomes of the hydrolytic procedure is the first step toward its standardization, the normalization of the qPCR data by the UV/qPCR ratio seems to be the simplest and most reliable way to allow this. Finally, the supplying (provided with the commercial qPCR kits) of a DNA sample whose degree of

  5. On-line monitoring of the photocatalytic degradation of 2,4-D and dicamba using a solid-phase extraction-multisyringe flow injection system.

    PubMed

    Chávez-Moreno, Carmín; Ferrer, Laura; Hinojosa-Reyes, Laura; Hernández-Ramírez, Aracely; Cerdà, Víctor; Guzmán-Mar, Jorge

    2013-11-15

    A fully automated on-line system for monitoring the photocatalytic degradation of herbicides was developed using multisyringe flow injection analysis (MSFIA) coupled to a solid phase extraction (SPE) unit with UV detection. The calibration curves were linear in the concentration range of 100-1000 μg L(-1) for 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 500-3000 μg L(-1) for 2,4-dichlorophenoxyacetic acid (2,4-D), while the detection limits were 30 and 135 μg L(-1) for dicamba and 2,4-D, respectively. The monitoring of the photocatalytic degradation (TiO2 anatase/UV 254 nm) of these two herbicides was performed by MSFIA-SPE system using a small sample volume (2 mL) in a fully automated approach. The degradation was assessed in ultrapure and drinking water with initial concentrations of 1000 and 2000 μg L(-1) for dicamba and 2,4-D, respectively. Degradation percentages of approximately 85% were obtained for both herbicides in ultrapure water after 45 min of photocatalytic treatment. A similar degradation efficiency in drinking water was observed for 2,4-D, whereas dicamba exhibited a lower degradation percentage (75%), which could be attributed to the presence of inorganic species in this kind of water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water.

    PubMed

    Márquez, Gracia; Rodríguez, Eva M; Beltrán, Fernando J; Álvarez, Pedro M

    2014-10-01

    Aqueous solutions of mixtures of four pharmaceutical compounds (atenolol, hydrochlorothiazide, ofloxacin and trimethoprim) both in Milli-Q ultrapure water and in a secondary effluent from a municipal wastewater treatment plant have been treated at pH 7 by different oxidation methods, such as conventional ozonation, photolytic ozonation, TiO2 catalytic ozonation, TiO2 photocatalytic oxidation and TiO2 photocatalytic ozonation. Experiments were carried out using a solar compound parabolic concentrator. The performance results have been compared in terms of removal of emerging contaminants (ECs), generation rate of phenolic intermediates, organic matter mineralization, ecotoxicity removal and enhancement of biodegradability. Also, the consumption of ozone to achieve certain treatment goals (95% removal of ECs and 40% mineralization) is discussed. Results reveal that solar photocatalytic ozonation is a promising oxidation method as it led to the best results in terms of EC mineralization (∼85%), toxicity removal (∼90%) and efficient use of ozone (∼2mgO3mgEC(-1) to achieve complete EC removal and ∼18mgO3mgTOC(-1) to achieve 40% EC mineralization, respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Flow injection determination of aluminium by spectrofluorimetric detection after complexation with N-o-vanillidine-2-amino-p-cresol: the application to natural waters.

    PubMed

    Kara, Derya; Fisher, Andrew; Hill, Steve J

    2008-03-17

    An on-line flow injection spectrofluorimetric method for the direct determination of aluminium in water samples is described. The method is based on the reaction of aluminium with N-o-vanillidine-2-amino-p-cresol (OVAC) in acidic medium at pH 4.0 to form a water-soluble complex. The excitation and emission wavelengths were 423.0 and 553.0nm, respectively, at which the OVAC-Al complex gave the maximum fluorescence intensity at pH 4.0 in a 50% methanol-50% water medium at 50 degrees C. An interference from fluoride ions was minimised by the addition of Be(2+). Other ions were found not to interfere at the concentrations likely to be found in natural waters. The proposed methods were validated in terms of linearity, repeatability, detection limit, accuracy and selectivity. Under these conditions, the calibration was linear up to 1000microgL(-1) (r=0.999). The limit of detection (3sigma) for the determination of Al(III) was 0.057microgL(-1) and the precision for multiple determinations of 3ngmL(-1) Al(III) prepared in ultra-pure water was found to be 0.62% (n=10). The Schiff base ligand could be used to determine ultra-trace aluminium from natural waters. Analysis of environmental certified reference materials showed good agreement with the certified values. The procedure was found to be equally applicable to both freshwater and saline solutions, including seawater.

  8. Dependence of precipitation of trace elements on pH in standard water

    NASA Astrophysics Data System (ADS)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, K. P.; Behera, B. R.; Kumar, Ashok

    2018-04-01

    The present work aimed to study the dependence of precipitation of trace elements on the pH of solution. A standard solution was prepared by using ultrapure deionized water (18.2 MΩ/cm) as the solvent and 11 water-soluble salts having different elements as solutes. Five samples of different pH values (2 acidic, 2 basic, and 1 neutral) were prepared from this standard solution. Sodium-diethyldithiocarbamate was used as the chelating agent to precipitate the metal ions present in these samples of different pH values. The targets were prepared by collecting these precipitates on mixed cellulose esters filter of 0.4 μm pore size by vacuum filtration. Elemental analysis of these targets was performed by particle-induced X-ray emission (PIXE) using 2.7 MeV protons from the single Dee variable energy cyclotron at Panjab University, Chandigarh, India. PIXE data were analyzed using GUPIXWIN software. For most of the elements, except Hg with oxidation state +2, such as Co, Ni, Zn, Ba, and Cd, a general trend of enhancement in precipitation was observed with the increase in pH. However, for other elements such as V, As, Mo, Ag, and Bi, which have oxidation state other than +2, no definite pattern was observed. Precipitation of Ba and As using this method was negligible at all five pH values. From these results, it can be concluded that the precipitation and recovery of elements depend strongly on the pH of the water sample.

  9. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.

    PubMed

    Acero, Juan L; Benitez, F Javier; Real, Francisco J; Roldan, Gloria

    2010-07-01

    Apparent rate constants for the reactions of four selected pharmaceutical compounds (metoprolol, naproxen, amoxicillin, and phenacetin) with chlorine in ultra-pure (UP) water were determined as a function of the pH. It was found that amoxicillin (in the whole pH range 3-12), and naproxen (in the low pH range 2-4) presented high reaction rates, while naproxen (in the pH range 5-9), and phenacetin and metoprolol (in the pH range 2.5-12 for phenacetin, and 3-10 for metoprolol) followed intermediate and slow reaction rates. A mechanism is proposed for the chlorination reaction, which allowed the evaluation of the intrinsic rate constants for the elementary reactions of the ionized and un-ionized species of each selected pharmaceutical with chlorine. An excellent agreement is obtained between experimental and calculated rate constants by this mechanism.The elimination of these substances in several waters (a groundwater, a surface water from a public reservoir, and two effluents from municipal wastewater treatment plants) was also investigated at neutral pH. The efficiency of the chlorination process with respect to the pharmaceuticals elimination and the formation THMs was also established. It is generally observed that the increasing presence of organic and inorganic matter in the water matrices demand more oxidant agent (chlorine), and therefore, less chlorine is available for the oxidation of these compounds. Finally, half-life times and oxidant exposures (CT) required for the removal of 99% of the four pharmaceuticals are also evaluated. These parameters are useful for the establishment of safety chlorine doses in oxidation or disinfection stages of pharmaceuticals in treatment plants.

  10. Analysis of perfluoroalkyl substances in waters from Germany and Spain.

    PubMed

    Llorca, Marta; Farré, Marinella; Picó, Yolanda; Müller, Jutta; Knepper, Thomas P; Barceló, Damià

    2012-08-01

    Water has been identified as one of the main routes of human exposure to perfluoroalkyl substances (PFASs). This work assessed the presence of 21 PFASs along the whole water cycle using a new fast and cost effective analytical method based on an online sample enrichment followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated for different types of matrices (ultrapure water, tap water and treated wastewater). The quality parameters for the 21 selected compounds presented good limits of detection (LOD) and quantification (LOQ) ranging, in general, from 0.83-10 ng/L to 2.8-50 ng/L, respectively. The method was applied to assess the occurrence of PFASs in 148 water samples of different steps along the whole water cycle, including: mineral bottled water, tap water, river water and treated effluent wastewater, from Germany to Spain. In addition, in order to prove the good performance of the online analytical method, the analysis of PFASs was carried out in parallel using a method based on offline anionic solid phase extraction (SPE) followed by LC-MS/MS. Consistent results were obtained using both approaches. The more frequently found compounds were perfluoroalkyl acids, such as the perfluorobutanoic acid which was in the 54% of the tap water samples investigated with concentrations in the range between 2.4 and 27 ng/L, the perfluoroheptanoic acid (0.23-53 ng/L) and perfluorooctanoic acid (0.16-35 ng/L), and the sulphonate perfluorooctanesulfonate (0.04-258 ng/L) which was the second more frequent compound and also the compound found in with the higher concentration. It should be remarked that the 88% of the samples analyzed presented at least one of the compounds at quantifiable concentrations. In addition, PFASs including short chain compounds were proved to be prevalent in drinking water, and the 50% of the drinking water samples showed quantifiable concentrations of PFASs. It should be said that the great majority of

  11. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation.

    PubMed

    Peitsch, T; Klocke, A; Kahl-Nieke, B; Prymak, O; Epple, M

    2007-09-01

    The influence of dynamic mechanical loading and of surface nitridation on the nickel release from superelastic nickel-titanium orthodontic wires was investigated under ultrapure conditions. Commercially available superelastic NiTi arch wires (size 0.018 x 0.025'') without surface modification (Neo Sentalloy) and with nitrogen ion implantation surface treatment (Neo Sentalloy Ionguard) were analyzed. Mechanical loading of wire segments with a force similar to the physiological situation was performed with a frequency of 5 Hz in ultrapure water and saline solution, respectively. The release of nickel was monitored by atomic absorption spectroscopy for up to 36 days. The mechanically loaded wires released significantly more nickel ( approximately 45 ng cm(-2) d(-1)) than did nonloaded wires (<1 ng cm(-2) d(-1)). There was no statistically significant effect of the testing solution (water or NaCl) or of the surface nitridation. The total amount of released nickel was small in all cases, but may nevertheless account for the occasional clinical observations of adverse reactions during application of NiTi-based orthodontic appliances. The surface nitridation did not constrain the release of nickel from NiTi under continuous mechanical stress.

  12. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  13. Emerging nitrogenous disinfection byproducts: Transformation of the antidiabetic drug metformin during chlorine disinfection of water.

    PubMed

    Armbruster, Dominic; Happel, Oliver; Scheurer, Marco; Harms, Klaus; Schmidt, Torsten C; Brauch, Heinz-Jürgen

    2015-08-01

    As an environmental contaminant of anthropogenic origin metformin is present in the high ng/L- up to the low μg/L-range in most surface waters. Residues of metformin may lead to the formation of disinfection by-products during chlorine disinfection, when these waters are used for drinking water production. Investigations on the underlying chemical processes occurring during treatment of metformin with sodium hypochlorite in aqueous medium led to the discovery of two hitherto unknown transformation products. Both substances were isolated and characterized by HPLC-DAD, GC-MS, HPLC-ESI-TOF, (1)H-NMR and single-crystal X-ray structure determination. The immediate major chlorination product is a cyclic dehydro-1,2,4-triazole-derivate of intense yellow color (Y; C4H6ClN5). It is a solid chlorimine of limited stability. Rapid formation was observed between 10 °C and 30 °C, as well as between pH 3 and pH 11, in both ultrapure and tap water, even at trace quantities of reactants (ng/L-range for metformin, mg/L-range for free chlorine). While Y is degraded within a few hours to days in the presence of light, elevated temperature, organic solvents and matrix constituents within tap water, a secondary degradation product was discovered, which is stable and colorless (C; C4H6ClN3). This chloroorganic nitrile has a low photolysis rate in ambient day light, while being resistant to heat and not readily degraded in the presence of organic solvents or in the tap water matrix. In addition, the formation of ammonia, dimethylamine and N,N-dimethylguanidine was verified by cation exchange chromatography. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water.

    PubMed

    Montiel-León, Juan Manuel; Duy, Sung Vo; Munoz, Gabriel; Amyot, Marc; Sauvé, Sébastien

    2018-04-01

    A study was initiated to investigate a fast and reliable method for the determination of selected systemic insecticides in water matrixes and to evaluate potential sources of bias in their analysis. Acetamiprid, clothianidin, desnitro-imidacloprid, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam were amenable to analysis via on-line sample enrichment hyphenated to ultra-high-performance liquid chromatography tandem mass spectrometry. The selection of on-line solid-phase extraction parameters was dictated by a multicriterion desirability approach. A 2-mL on-line injection volume with a 1500 μL min -1 loading flow rate met the objectives sought in terms of chromatographic requirements, extraction efficiency, sensitivity, and precision. A total analysis time of 8 min per sample was obtained with method limits of detection in the range of 0.1-5 ng L -1 for the scope of targeted analytes. Automation at the sample concentration step yielded intraday and interday precisions in the range of 1-23 and 2-26%, respectively. Factors that could affect the whole method accuracy were further evaluated in matrix-specific experiments. The impact of the initial filtration step on analyte recovery was evaluated in ultra-pure water, tap water, and surface water. Out of the nine membranes tested, glass fiber filters and polyester filters appeared as the most appropriate materials. Sample storage stability was also investigated across the three matrix types; the targeted analytes displayed suitable stability during 28 days at either 4 °C or - 20 °C, with little deviations (± 10%) with respect to the initial T 0 concentration. Method applicability was demonstrated in a range of tap water and surface water samples from the province of Québec, Canada. Results from the present survey indicated a predominance of thiamethoxam (< 0.5-10 and 3-61 ng L -1 in tap water and river water, respectively), clothianidin (< 0.5-6 and 2-88 ng L -1 in

  15. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE PAGES

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; ...

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  16. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways.

    PubMed

    Xu, Xinxin; Chen, Jing; Qu, Ruijuan; Wang, Zunyao

    2017-10-01

    The feasibility of UV-activated peroxymonosulfate (PMS) technology for the degradation of Tris (2-chloroethyl) phosphate (TCEP) in an aqueous solution was investigated in this study. The conditions of [PMS] 0 : [TCEP] 0  = 20:1, T = 25 ± 2 °C and pH = 5.5 ± 0.5 cause a 94.6% removal of TCEP (1 mg L -1 ) after 30 min of Hg lamp irradiation. The effects of operating parameters (the oxidant doses, pH and presence of typical cations (Fe 3+ , Cu 2+ , Ni 2+ , NH 4 + ), anions (Cl - , HCO 3 - , NO 3 - , HPO 4 2- ) and humic acid (HA)) were evaluated. It was found that an increase of the PMS dose and the presence of Fe 3+ could accelerate the reaction, while the anions and HA inhibited the reaction. Meanwhile, TCEP removal in various water matrices was compared, and the order for TCEP removal was as follows: ultrapure water > tap water > synthetic water > secondary clarifier effluent > Jiuxiang river water. Twenty-two oxidation products were identified using an electrospray time-of-flight mass spectrometer, and the degradation pathways mainly involved radicals' addition and CO bond cleavage. Furthermore, ECOSAR analysis revealed that the intermediate products during the TCEP oxidation process were generally not harmful to three typical aquatic species. Hence, UV/PMS can be used as an efficient technology to treat TCEP-containing water and wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Standard on microbiological management of fluids for hemodialysis and related therapies by the Japanese Society for Dialysis Therapy 2008.

    PubMed

    Kawanishi, Hideki; Akiba, Takashi; Masakane, Ikuto; Tomo, Tadashi; Mineshima, Michio; Kawasaki, Tadayuki; Hirakata, Hideki; Akizawa, Tadao

    2009-04-01

    The Committee of Scientific Academy of the Japanese Society for Dialysis Therapy (JSDT) proposes a new standard on microbiological management of fluids for hemodialysis and related therapies. This standard is within the scope of the International Organization for Standardization (ISO), which is currently under revision. This standard is to be applied to the central dialysis fluid delivery systems (CDDS), which are widely used in Japan. In this standard, microbiological qualities for dialysis water and dialysis fluids are clearly defined by endotoxin level and bacterial count. The qualities of dialysis fluids were classified into three levels: standard, ultrapure, and online prepared substitution fluid. In addition, the therapeutic application of each dialysis fluid is clarified. Since high-performance dialyzers are frequently used in Japan, the standard recommends that ultrapure dialysis fluid be used for all dialysis modalities at all dialysis facilities. It also recommends that the dialysis equipment safety management committee at each facility should validate the microbiological qualities of online prepared substitution fluid.

  18. Assessment of the UV/Cl2 advanced oxidation process for the degradation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in water systems.

    PubMed

    Javier Benitez, F; Real, Francisco J; Acero, Juan L; Casas, Francisco

    2017-10-01

    Three emerging contaminants (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) frequently found in wastewaters were selected to be individually degraded in ultra-pure water by the advanced oxidation process (AOP) constituted by the combination of UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: AH > MS > PE. A later kinetic study was carried out focused on the evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water was also performed by the same combination UV/Cl 2 . The efficiency of this combined system UV/Cl 2 was compared to other oxidants such as the UV/[Formula: see text] and UV/H 2 O 2 AOPs, and the influence of the operating variables was discussed. Results confirmed that the UV/Cl 2 system provides higher elimination efficiencies among the AOPs tested. The presence of dissolved organic matter and bicarbonate ions in the water matrix caused a decrease in the treatment efficiency.

  19. Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water

    PubMed Central

    2013-01-01

    Background The widespread utilization of organic compounds in modern society and their dispersion through wastewater have resulted in extensive contamination of source and drinking waters. The vast majority of these compounds are not regulated in wastewater outfalls or in drinking water while trace amounts of certain compounds can impact aquatic wildlife. Hence it is prudent to monitor these contaminants in water sources until sufficient toxicological data relevant to humans becomes available. A method was developed for the analysis of 36 trace organic contaminants (TOrCs) including pharmaceuticals, pesticides, steroid hormones (androgens, progestins, and glucocorticoids), personal care products and polyfluorinated compounds (PFCs) using a single solid phase extraction (SPE) technique with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was applied to a variety of water matrices to demonstrate method performance and reliability. Results UHPLC-MS/MS in both positive and negative electrospray ionization (ESI) modes was employed to achieve optimum sensitivity while reducing sample analysis time (<20 min) compared with previously published methods. The detection limits for most compounds was lower than 1.0 picogram on the column while reporting limits in water ranged from 0.1 to 15 ng/L based on the extraction of a 1 L sample and concentration to 1 mL. Recoveries in ultrapure water for most compounds were between 90-110%, while recoveries in surface water and wastewater were in the range of 39-121% and 38-141% respectively. The analytical method was successfully applied to analyze samples across several different water matrices including wastewater, groundwater, surface water and drinking water at different stages of the treatment. Among several compounds detected in wastewater, sucralose and TCPP showed the highest concentrations. Conclusion The proposed method is sensitive, rapid and robust; hence it can

  20. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration

    PubMed Central

    Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.

    2016-01-01

    of HAdV 40 was evaluated, with postelution recoveries from ultrapure water (99%), tap water (∼91%), and high-carbon-content surface water (∼84%) being demonstrated. These results are significant because of the very low adenovirus recoveries that have been reported, to date, for other methods. The recovery data were interpreted in terms of specific interactions, and the eluent composition was designed accordingly to maximize HAdV 40 recovery. PMID:27287319

  1. Paper pulp-based adsorbents for the removal of pharmaceuticals from wastewater: A novel approach towards diversification.

    PubMed

    Oliveira, Gonçalo; Calisto, Vânia; Santos, Sérgio M; Otero, Marta; Esteves, Valdemar I

    2018-08-01

    In this work, two pulps, bleached (BP) and raw pulp (RP), derived from the paper production process, were used as precursors of non-activated and activated carbons (ACs). In the case of non-ACs, the production involved either pyrolysis or pyrolysis followed by acid washing. For ACs production, the pulps were impregnated with K 2 CO 3 or H 3 PO 4 , and then pyrolysed and acid washed. After production, the materials were physically and chemically characterized. Then, batch adsorption tests on the removal of two pharmaceuticals (the anti-epileptic carbamazepine (CBZ) and the antibiotic sulfamethoxazole (SMX)) from ultra-pure water and from Waste Water Treatment Plant (WWTP) effluents were performed. In ultra-pure water, non-ACs were not able to adsorb CBZ or SMX while ACs showed good adsorption capacities. In WWTP effluents, although ACs satisfactorily adsorbed CBZ and SMX, they showed lower adsorption capacities for the latter. Tests with WWTP effluents revealed that the best adsorption capacities were achieved by carbons produced from BP and activated with H 3 PO 4 : 92±19mgg -1 for CBZ and 13.0±0.6mgg -1 for SMX. These results indicate the potential of paper pulps as precursors for ACs that can be applied in wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. © 2013 Institute of Food Technologists®

  3. Microwave-Assisted Extraction of Fucoidan from Marine Algae.

    PubMed

    Mussatto, Solange I

    2015-01-01

    Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass.

  4. Ultraviolet light-emitting diodes in water disinfection.

    PubMed

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  5. Comparison of Two Methods for Determination of Strontium Isotopes in Pore Water at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Futa, K.; Scofield, K. M.

    2002-12-01

    The proposed radioactive waste repository at Yucca Mountain, Nevada would be constructed in the high-silica rhyolite member of the Topopah Spring Tuff, an ash-flow tuff within the ~500-m-thick unsaturated zone. Dry-drilled rock cores from this unit have been packaged to preserve their water content. Two methods have been used to extract the strontium contained in the pore water for isotopic measurements. In the first method, samples of dried core were crushed, and the 0.25 to 2.4 mm size fractions were leached with ultra-pure water for about 1 hour to dissolve the salts left behind by the evaporated pore water. Concentrations of strontium in the pore water were calculated from determinations of porosity and saturation on adjacent core and the measured strontium concentration in the leachate. In the second method, pore water was extracted from sealed core using an ultracentrifuge, minimizing evaporation of water from the core at all steps in the process. The centrifugation of 150 to 200 g of welded tuff at 15,000 rpm for 6 hours typically results in the recovery of as much as 3 ml of pore water for analysis. Strontium isotope compositions were determined by thermal ionization mass spectrometry; 87Sr /86Sr ratios have a reproducibility of 0.00005. The ranges of 87Sr/86Sr ratios determined by the two methods are identical: 0.71215 to 0.71267 in the leachates (n = 35) and 0.71214 to 0.71266 in the extracted pore waters (n = 21). However, the calculated strontium concentrations in the leachates average 300 μg/L, whereas those in the extracted pore water average 1440 μg/L, indicating that a substantial portion of the pore-water salts remain in the crushed rock after leaching. The strontium data determined on extracted pore water shows that the leaching of pore-water salts results in accurate 87Sr/86Sr, but that a substantial correction to the strontium concentration is required due to the inefficiency of the leaching procedure and the small pore sizes in the welded

  6. Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon.

    PubMed

    de Ridder, D J; Verliefde, A R D; Heijman, S G J; Verberk, J Q J C; Rietveld, L C; van der Aa, L T J; Amy, G L; van Dijk, J C

    2011-01-01

    Natural organic matter (NOM) can influence pharmaceutical adsorption onto granular activated carbon (GAC) by direct adsorption competition and pore blocking. However, in the literature there is limited information on which of these mechanisms is more important and how this is related to NOM and pharmaceutical properties. Adsorption batch experiments were carried out in ultrapure, waste- and surface water and fresh and NOM preloaded GAC was used. Twenty-one pharmaceuticals were selected with varying hydrophobicity and with neutral, negative or positive charge. The influence of NOM competition and pore blocking could not be separated. However, while reduction in surface area was similar for both preloaded GACs, up to 50% lower pharmaceutical removal was observed on wastewater preloaded GAC. This was attributed to higher hydrophobicity of wastewater NOM, indicating that NOM competition may influence pharmaceutical removal more than pore blocking. Preloaded GAC was negatively charged, which influenced removal of charged pharmaceuticals significantly. At a GAC dose of 6.7 mg/L, negatively charged pharmaceuticals were removed for 0-58%, while removal of positively charged pharmaceuticals was between 32-98%. Charge effects were more pronounced in ultrapure water, as it contained no ions to shield the surface charge. Solutes with higher log D could compete better with NOM, resulting in higher removal.

  7. An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    PubMed

    Chapa-Martínez, C A; Hinojosa-Reyes, L; Hernández-Ramírez, A; Ruiz-Ruiz, E; Maya-Treviño, L; Guzmán-Mar, J L

    2016-09-15

    The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 2(3) factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28-2.30μg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5μg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Super-Kamiokande [CETUP 2015: Workshop on dark matter, neutrino physics and astrophysics; PPC 2015: 9. international conference on interconnections between particle physics and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magro, Lluís Martí, E-mail: martillu@suketto.icrr.u-tokyo.ac.jp

    The Super-Kamiokande experiment performs a large variety of studies, many of them in the neutrino sector. The archetypes are atmospheric neutrino (recently awarded with the Nobel prize for Mr. T. Kajita) and the solar neutrinos analyses. In these proceedings we report our latest results and present updates to indirect dark matter searches, our solar neutrino analysis and discuss the future upgrade of Super-Kamiokande by loading gadolinium into our ultra-pure water.

  9. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    DTIC Science & Technology

    2016-01-13

    excess Au salt. The purified sample was lyophilized and resuspended at a concentration of 10 mg/mL in ultrapure water . BSA ( PDB :3v03) 100 % α...effect of scaffold protein secondary structure on the pressure response of protein-stabilized gold nanoclusters (P:NCs). These studies were...demonstrate that the pressure response of P:NCs is indeed dependent on the secondary structure of the protein. Proteins with high beta sheet content

  10. Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem mass spectrometry.

    PubMed

    Le-Minh, Nhat; Stuetz, Richard M; Khan, Stuart J

    2012-01-30

    A highly sensitive method for the analysis of six sulfonamide antibiotics (sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethazine and sulfamethoxazole), two sulfonamide metabolites (N(4)-acetyl sulfamethazine and N(4)-acetyl sulfamethoxazole) and the commonly co-applied antibiotic trimethoprim was developed for the analysis of complex wastewater samples. The method involves solid phase extraction of filtered wastewater samples followed by liquid chromatography-tandem mass spectral detection. Method detection limits were shown to be matrix-dependent but ranged between 0.2 and 0.4 ng/mL for ultrapure water, 0.4 and 0.7 ng/mL for tap water, 1.4 and 5.9 ng/mL for a laboratory-scale membrane bioreactor (MBR) mixed liquor, 0.7 and 1.7 ng/mL for biologically treated effluent and 0.5 and 1.5 ng/g dry weight for MBR activated sludge. An investigation of analytical matrix effects was undertaken, demonstrating the significant and largely unpredictable nature of signal suppression observed for variably complex matrices compared to an ultrapure water matrix. The results demonstrate the importance of accounting for such matrix effects for accurate quantitation, as done in the presented method by isotope dilution. Comprehensive validation of calibration linearity, reproducibility, extraction recovery, limits of detection and quantification are also presented. Finally, wastewater samples from a variety of treatment stages in a full-scale wastewater treatment plant were analysed to illustrate the effectiveness of the method. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Enhancement for trace analysis of sulfonamide antibiotics in water matrices using bar adsorptive microextraction (BAμE).

    PubMed

    Ide, A H; Ahmad, S M; Neng, N R; Nogueira, J M F

    2016-09-10

    In this study, the enhancement for trace analysis of sulfonamide antibiotics (sulfathiazole, sulfamethoxazole and sulfadimethoxine) and trimethoprim in water matrices is proposed using bar adsorptive microextraction combined with micro-liquid desorption followed by high-performance liquid chromatography with diode array detection (BAμE-μLD/HPLC-DAD). By comparing different polymers and activated carbons as sorbent coatings for BAμE, the polystyrene-divinylbenzene polymer (PS-DVB) showed the best selectivity for the compounds under study. Assays performed through BAμE(PS-DVB)-μLD on 25mL of ultrapure water samples spiked at the 8.0μgL(-1) level showed recoveries ranging from 63.8±1.5% to 84.2±1.9%, under optimized experimental conditions. The validated method provided satisfactory limits of detection (0.08-0.16μgL(-1)) and good linear dynamic ranges (0.16-8.00μgL(-1)) with determination coefficients higher than 0.9958. The proposed analytical methodology was applied to real matrices, such as tap, estuarine and wastewater samples using the standard addition method. It showed to be easy to implement, with good reproducibility, sensitivity and requiring small amount of sample. Furthermore, negligible consumption of organic solvents was used in compliance with the green analytical chemistry principles. When compared to other well-established microextraction approaches, BAμE demonstrated better performance concerning recovery yields and sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    PubMed

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and <4% for 2 precursors. Bromide concentration was important for three compounds (1,1-dimethylhydrazine, acetone dimethylhydrazone and dimethylsulfamide), but did not enhance NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All

  13. Stability and tribological performances of fluid phospholipid bilayers: effect of buffer and ions.

    PubMed

    Dekkiche, F; Corneci, M C; Trunfio-Sfarghiu, A-M; Munteanu, B; Berthier, Y; Kaabar, W; Rieu, J-P

    2010-10-15

    We have investigated the mechanical and tribological properties of supported Dioleoyl phosphatidylcholine (DOPC) bilayers in different solutions: ultrapure water (pH 5.5), saline solution (150 mM NaCl, pH 5.8), Tris buffer (pH 7.2) and Tris saline buffer (150 mM NaCl, pH 7.2). Friction forces are measured using a homemade biotribometer. Lipid bilayer degradation is controlled in situ during friction tests using fluorescence microscopy. Mechanical resistance to indentation is measured by force spectroscopy with an atomic force microscope. This study confirms that mechanical stability under shear or normal load is essential to obtain low and constant friction coefficients. In ultrapure water, bilayers are not resistant and have poor lubricant properties. On the other hand, in Tris saline buffer, they fully resist to indentation and exhibit low (micro=0.035) and stable friction coefficient with no visible wear during the 50 min of the friction test. The unbuffered saline solution improves the mechanical resistance to indentation but not the lubrication. These results suggest that the adsorption of ions to the zwiterrionic bilayers has different effects on the mechanical and tribological properties of bilayers: higher resistance to normal indentation due to an increase in bilayer cohesion, higher lubrication due to an increase in bilayer-bilayer repulsion. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. [Effect on calcium carbonate morphology by a strain of rock actinomycete].

    PubMed

    Chu, Yue; Cao, Chengliang; Lian, Bin

    2016-07-04

    Microbes-induced mineralization is one of the hottest issues in the field of geomicrobiology. Strain DHS C013T isolated from the surfaces of rocks in the Karst region was used to investigate microbial influence on the formation of carbonate and its morphology in the metallogenic system consisting NaHCO3 and Ca(NO3)2·4H2O. Strain DHS C013T was inoculated into malt extract-glucose-yeast extract peptone (MGYP) liquid medium. After cultivation we put the fermented solution, supernatant, hypha pellets, sterile MGYP liquid medium and ultrapure water into the metallogenic system separately. Scanning electronic microscope was applied to observe the crystals at the bottom of the petri dishes. In the metallogenic system with ultrapure water, only standard calcite of rhombohedron was found. However, special morphology of CaCO3, such as dumbbelllike, spherulite and scaly cylindrical shapes, were found in the metallogenic system with actinomycetes, hyphae fragment and their cell metabolism products. These calcium carbonates of special morphology might be resulted from their nucleation on smaller hypha pellets, hyphae fragment or extracellular secretion. Actinomycetes can induce the formation of CaCO3, and the mycelium and metabolites have important effects on regulating and influencing CaCO3 morphology. Our data provide new evidence for further understanding of the biological mineralization mediated by actinomycete and its metabolic products.

  15. Aluminum Exposure at Human Dietary Levels for 60 Days Reaches a Threshold Sufficient to Promote Memory Impairment in Rats.

    PubMed

    Martinez, Caroline S; Alterman, Caroline D C; Peçanha, Franck M; Vassallo, Dalton V; Mello-Carpes, Pâmela B; Miguel, Marta; Wiggers, Giulia A

    2017-01-01

    Aluminum (Al) is a significant environmental contaminant. While a good deal of research has been conducted on the acute neurotoxic effects of Al, little is known about the effects of longer-term exposure at human dietary Al levels. Therefore, the purpose of this study was to investigate the effects of 60-day Al exposure at low doses for comparison with a model of exposure known to produce neurotoxicity in rats. Three-month-old male Wistar rats were divided into two major groups: (1) low aluminum levels, and (2) a high aluminum level. Group 1 rats were treated orally by drinking water for 60 days as follows: (a) control-received ultrapure drinking water; (b) aluminum at 1.5 mg/kg b.w., and (c) aluminum at 8.3 mg/kg b.w. Group 2 rats were treated through oral gavages for 42 days as follows: (a) control-received ultrapure water; (b) aluminum at 100 mg/kg b.w. We analyzed cognitive parameters, biomarkers of oxidative stress and acetylcholinesterase (AChE) activity in hippocampus and prefrontal cortex. Al treatment even at low doses promoted recognition memory impairment seen in object recognition memory testing. Moreover, Al increased hippocampal reactive oxygen species and lipid peroxidation, reduced antioxidant capacity, and decreased AChE activity. Our data demonstrate that 60-day subchronic exposure to low doses of Al from feed and added to the water, which reflect human dietary Al intake, reaches a threshold sufficient to promote memory impairment and neurotoxicity. The elevation of oxidative stress and cholinergic dysfunction highlight pathways of toxic actions for this metal.

  16. Time-of-flight mass spectrometry assessment of fluconazole and climbazole UV and UV/H2O2 degradability: Kinetics study and transformation products elucidation.

    PubMed

    Castro, Gabriela; Casado, Jorge; Rodríguez, Isaac; Ramil, María; Ferradás, Aida; Cela, Rafael

    2016-01-01

    The efficiency of UV irradiation for the removal of the antimycotic drugs fluconazole (FCZ) and climbazole (CBZ) from water samples is evaluated. Degradation experiments, at laboratory scale, were carried out with spiked aliquots of ultrapure water solutions and treated wastewater samples using low-pressure mercury lamps emitting at 254 nm. Time course of precursor pollutants and identification of arising transformation products (TPs) was performed by injection of different reaction time aliquots in a liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) system. Chemical structures of identified TPs were proposed from their full-product ion spectra, acquired using different collision energies. During UV irradiation experiments, the half-lives (t1/2) of FCZ and CBZ were similar in ultrapure water solutions and wastewater samples; however, the first species was more recalcitrant than the second one. Four TPs were identified in case of FCZ resulting from substitution of fluorine atoms by hydroxyl moieties and intramolecular cyclization with fluorine removal. CBZ interacted with UV radiation through reductive dechlorination, hydroxylation and cleavage of the ether bond; moreover, five additional primary TPs, with the same empirical formula as CBZ, were also noticed. Given the relatively long t1/2 of FCZ under direct photolysis (ca. 42 min), UV irradiation was combined with H2O2 addition to promote formation of reactive hydroxyl radicals. Under such conditions, the degradation rate of FCZ was enhanced significantly and no TPs were detected. These latter conditions allowed also the effective removal of CBZ TPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    PubMed

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart

  18. Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water.

    PubMed

    Korak, Julie A; Wert, Eric C; Rosario-Ortiz, Fernando L

    2015-01-01

    Intracellular organic matter (IOM) from cyanobacteria may be released into natural waters following cell death in aquatic ecosystems and during oxidation processes in drinking water treatment plants. Fluorescence spectroscopy was evaluated to identify the presence of IOM from three cyanobacteria species during simulated release into natural water and following oxidation processes (i.e. ozone, free chlorine, chloramine, chlorine dioxide). Peak picking and the fluorescence index (FI) were explored to determine which IOM components (e.g., pigments) provide unique and persistent fluorescence signatures with minimal interferences from the background dissolved organic matter (DOM) found in Colorado River water (CRW). When IOM was added to ultrapure water, the fluorescence signature of the three cyanobacteria species showed similarities to each other. Each IOM exhibited a strong protein-like fluorescence and fluorescence at Ex 370 nm and Em 460 nm (FDOM), where commercial fluorescence sensors monitor. All species also had strong phycobiliprotein fluorescence (i.e. phycocyanin or phycoerythrin) in the higher excitation range (500-650 nm). All three IOM isolates had FI values greater than 2. When IOM was added to CRW, phycobiliprotein fluorescence was quenched through interactions between IOM and CRW-DOM. Mixing IOM and CRW demonstrated that protein-like and FDOM intensity responses were not a simple superposition of the starting material intensities, indicating that interactions between IOM and CRW-DOM fluorescing moieties were important. Fluorescence intensity in all regions decreased with exposure to ozone, free chlorine, and chlorine dioxide, but the FI still indicated compositional differences compared to CRW-DOM. The phycobiliproteins in IOM are not promising as a surrogate for IOM release, because their fluorescence intensity is quenched by interactions with DOM and decreased during oxidation processes. Increases in both FDOM intensity and FI are viable qualitative

  19. Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusuf, Sara Yasina; Yusoff, NikAthirah; Lee, Sin-Li

    2018-07-01

    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The V oc , J sc and P max for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Evaluation of the Antimicrobial Functions of N-halamine Dental Unit Waterline Tubing for One Year.

    PubMed

    Porteous, N; Dang, S; Schoolfield, J; Sun, Y

    2016-03-01

    The objective of this study was to test the biofilm-controlling properties of N-halamine antimicrobial dental unit waterline (DUWL) tubing (T) tubing, without recharging over one year, compared to a control line (C). A simulated clinical model was used to pump ultrapure water through T and C lines at a rate of 1.4 mL/min, five minutes on, 15 minutes off, eight hours/day, five days a week. Samples of source water, effluent from T and C, and from the stagnant water in the carboy (liquid container) after bench work was completed (S2), were collected aseptically, serially diluted, and cultured on R2A agar for seven days every six weeks. SEM images of the inside surfaces of detached tubing sections were also taken. The carboy was rinsed with a 1:10 dilution of sodium hypochlorite after six months. Means of log transformed CFU values obtained in triplicate were paired by T and C lines across months for comparison by paired Student's t-tests. An increase in effluent and carboy bacterial counts were noted after six months, but decreased after bleach rinse of the carboy. No significant difference (p > 0.25) between T and C lines were observed; similarly, T and carboy were not significantly different (p > 0.30). SEM images showed biofilm attachment on the inside surface of C after two months, but not on T. Organisms identified in the effluent reflected those in the source carboy. No biofilm attachment was detected on the N-halamine test line after 12 months, indicating its antimicrobial properties were retained. Further evaluation is recommended to determine the optimal recharge interval for N-halamine DUWL tubing when ultrapure source water is used.

  1. Evaluation of the Antimicrobial Functions of N-halamine Dental Unit Waterline Tubing for One Year

    PubMed Central

    Porteous, N.; Dang, S.; Schoolfield, J.; Sun, Y.

    2017-01-01

    Objective The objective of this study was to test the biofilm-controlling properties of N-halamine antimicrobial dental unit waterline (DUWL) tubing (T) tubing, without recharging over one year, compared to a control line (C). Methods A simulated clinical model was used to pump ultrapure water through T and C lines at a rate of 1.4 mL/min, five minutes on, 15 minutes off, eight hours/day, five days a week. Samples of source water, effluent from T and C, and from the stagnant water in the carboy (liquid container) after bench work was completed (S2), were collected aseptically, serially diluted, and cultured on R2A agar for seven days every six weeks. SEM images of the inside surfaces of detached tubing sections were also taken. The carboy was rinsed with a 1:10 dilution of sodium hypochlorite after six months. Means of log transformed CFU values obtained in triplicate were paired by T and C lines across months for comparison by paired Student’s t-tests. Results An increase in effluent and carboy bacterial counts were noted after six months, but decreased after bleach rinse of the carboy. No significant difference (p > 0.25) between T and C lines were observed; similarly, T and carboy were not significantly different (p > 0.30). SEM images showed biofilm attachment on the inside surface of C after two months, but not on T. Organisms identified in the effluent reflected those in the source carboy. Conclusions No biofilm attachment was detected on the N-halamine test line after 12 months, indicating its antimicrobial properties were retained. Further evaluation is recommended to determine the optimal recharge interval for N-halamine DUWL tubing when ultrapure source water is used. PMID:28390212

  2. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro.

    PubMed

    Bonaterra, Gabriel A; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf

    2017-03-15

    Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  3. The Impact of Membrane Permeability and Dialysate Purity on Cardiovascular Outcomes

    PubMed Central

    Tӧz, Huseyin; Ozkahya, Mehmet; Duman, Soner; Demirci, Meltem Sezis; Cirit, Mustafa; Sipahi, Savas; Dheir, Hamad; Bozkurt, Devrim; Kircelli, Fatih; Ok, Ebru Sevinc; Erten, Sinan; Ertilav, Muhittin; Kose, Timur; Basci, Ali; Raimann, Jochen G.; Levin, Nathan W.; Ok, Ercan

    2013-01-01

    The effects of high-flux dialysis and ultrapure dialysate on survival of hemodialysis patients are incompletely understood. We conducted a randomized controlled trial to investigate the effects of both membrane permeability and dialysate purity on cardiovascular outcomes. We randomly assigned 704 patients on three times per week hemodialysis to either high- or low-flux dialyzers and either ultrapure or standard dialysate using a two-by-two factorial design. The primary outcome was a composite of fatal and nonfatal cardiovascular events during a minimum 3 years follow-up. We did not detect statistically significant differences in the primary outcome between high- and low-flux (HR=0.73, 95% CI=0.49 to 1.08, P=0.12) and between ultrapure and standard dialysate (HR=0.90, 95% CI=0.61 to 1.32, P=0.60). Posthoc analyses suggested that cardiovascular event-free survival was significantly better in the high-flux group compared with the low-flux group for the subgroup with arteriovenous fistulas, which constituted 82% of the study population (adjusted HR=0.61, 95% CI=0.38 to 0.97, P=0.03). Furthermore, high-flux dialysis associated with a lower risk for cardiovascular events among diabetic subjects (adjusted HR=0.49, 95% CI=0.25 to 0.94, P=0.03), and ultrapure dialysate associated with a lower risk for cardiovascular events among subjects with more than 3 years of dialysis (adjusted HR=0.55, 95% CI=0.31 to 0.97, P=0.04). In conclusion, this trial did not detect a difference in cardiovascular event-free survival between flux and dialysate groups. Posthoc analyses suggest that high-flux hemodialysis may benefit patients with an arteriovenous fistula and patients with diabetes and that ultrapure dialysate may benefit patients with longer dialysis vintage. PMID:23620396

  4. Higher Magnification Imaging of the Polished Aluminum Collector Returned from the Genesis Mission

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Burkett, P. J.; Allton, J. H.

    2011-01-01

    The polished aluminum collector (previously referred to as the polished aluminum kidney) was intended for noble gas analysis for the Gene-sis mission. The aluminum collector, fabricated from alloy 6061T, was polished for flight with alumina, then diamond paste. Final cleaning was performed by soak-ing and rinsing with hexane, then isopropanol, and last-ly megasonically energized ultrapure water prior to installation. It was mounted inside the collector canister on the thermal shield at JSC in 2000. The polished aluminum collector was not surveyed microscopically prior to flight.

  5. Ultrapulse welding: A new joining technique. [for automotive industry

    NASA Technical Reports Server (NTRS)

    Anderson, D. G.

    1972-01-01

    The ultrapulse process is a resistance welding process that utilizes unidirectional current of high magnitude for a very short time with a precisely controlled dynamic force pulse. Peak currents of up to 220,000 amperes for two to ten milliseconds are used with synchronized force pulses of up to nine thousand pounds. The welding current passing through the relatively high resistance of the interface between the parts that are being joined results in highly localized heating. Described is the UPW process as it applies to the automotive industry.

  6. Mesoporous silica based MCM-41 as solid-phase extraction sorbent combined with micro-liquid chromatography-quadrupole-mass spectrometry for the analysis of pharmaceuticals in waters.

    PubMed

    Dahane, S; Martínez Galera, M; Marchionni, M E; Socías Viciana, M M; Derdour, A; Gil García, M D

    2016-05-15

    This paper reports the first application of the silica based mesoporous material MCM-41 as a sorbent in solid phase extraction, to pre-concentrate pharmaceuticals of very different polarity (atenolol, nadolol, pindolol, timolol, bisoprolol, metoprolol, betaxolol, ketoprofen, naproxen, ibuprofen, diclofenac, tolfenamic acid, flufenamic acid and meclofenamic acid) in surface waters. The analytes were extracted from 100mL water samples at pH 2.0 (containing 10(-3) mol/L of sodium chloride) by passing the solution through a cartridge filled with 100 mg of MCM-41. Following elution, the pharmaceuticals were determined by micro-liquid chromatography and triple quadrupole-mass spectrometry. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. Matrix effect was found in real waters for most analytes and was overcome using the standard addition method, which compared favorably with the matrix matched calibration method. The detection limits in solvent (acetonitrile:water 10:90, v/v) ranged from 0.01 to 1.48 μg/L and in real water extracts from 0.10 to 3.85 μg/L (0.001-0.0385 μg/L in the water samples). The quantitation limits in solvent were in the range 0.02-4.93 μg/L, whereas in real water extracts were between 0.45 and 10.00 μg/L (0.0045 and 0.1000 μg/L in the water samples). When ultrapure water samples were spiked at two concentration levels of each pharmaceutical (0.1 and 0.2 μg/L) and quantified using solvent based calibration graphs, recoveries were near 100%. However, recoveries for most pharmaceuticals were comparable or better than de described above, when river water samples (spiked at the same concentration levels) were quantified by the standard addition method and slightly worse using the matrix matched calibration method. Five real samples (two rivers, one dam and two fountain water samples) were analyzed by the developed method, atenolol

  7. Use of experimental design in the investigation of stir bar sorptive extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry for the analysis of explosives in water samples.

    PubMed

    Schramm, Sébastien; Vailhen, Dominique; Bridoux, Maxime Cyril

    2016-02-12

    A method for the sensitive quantification of trace amounts of organic explosives in water samples was developed by using stir bar sorptive extraction (SBSE) followed by liquid desorption and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The proposed method was developed and optimized using a statistical design of experiment approach. Use of experimental designs allowed a complete study of 10 factors and 8 analytes including nitro-aromatics, amino-nitro-aromatics and nitric esters. The liquid desorption study was performed using a full factorial experimental design followed by a kinetic study. Four different variables were tested here: the liquid desorption mode (stirring or sonication), the chemical nature of the stir bar (PDMS or PDMS-PEG), the composition of the liquid desorption phase and finally, the volume of solvent used for the liquid desorption. On the other hand, the SBSE extraction study was performed using a Doehlert design. SBSE extraction conditions such as extraction time profiles, sample volume, modifier addition, and acetic acid addition were examined. After optimization of the experimental parameters, sensitivity was improved by a factor 5-30, depending on the compound studied, due to the enrichment factors reached using the SBSE method. Limits of detection were in the ng/L level for all analytes studied. Reproducibility of the extraction with different stir bars was close to the reproducibility of the analytical method (RSD between 4 and 16%). Extractions in various water sample matrices (spring, mineral and underground water) have shown similar enrichment compared to ultrapure water, revealing very low matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cadmium determination in natural waters at the limit imposed by European legislation by isotope dilution and TiO2 solid-phase extraction.

    PubMed

    García-Ruiz, Silvia; Petrov, Ivan; Vassileva, Emilia; Quétel, Christophe R

    2011-11-01

    The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 μg L(-1) depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below μg L(-1) level in natural water. It is based on solid-phase extraction using TiO(2) nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 ± 2.8 ng kg(-1) (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3-4% k = 2 for a cadmium content of around 100 ng kg(-1)). We applied the developed method to the groundwater and wastewater

  9. Jarosite dissolution rates in perchlorate brine

    NASA Astrophysics Data System (ADS)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures <250 K, and may exist as metastable or stable liquids for extended time periods, even under current Mars surface conditions. Therefore, jarosite-bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  10. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments.

    PubMed

    Cai, Liqi; Wang, Jundong; Peng, Jinping; Wu, Ziqing; Tan, Xiangling

    2018-07-01

    Plastic debris represents one of the most prevalent and persistent pollution problems in the marine environment. In particular, microplastics that are mainly degraded from larger plastic debris have become a growing environmental concern. However, studies on the degradation of plastics in the aquatic environment that hydrobios reside in have been limited, while several studies regarding the degradation of plastics have been conducted under outdoor or accelerated weathering conditions. Thus, observation of the degradation of three types of virgin plastic pellets exposed to UV irradiation in three different environments (i.e., simulated seawater, ultrapure water, and a waterless (air) condition) was carried out. Data on the changes in physical and chemical properties were collected. The FTIR spectra showed that hydroxyl groups and carbonyl groups developed in three types of weathered plastic pellets under the air and ultrapure water environmental conditions after 3months of UV irradiation, while only carbonyl groups were found in plastic pellets in the simulated seawater environment. In contrast, the Raman spectra showed no significant changes in the weathered plastic pellets, but there were different intensities of characteristic peaks after exposure to UV irradiation. In addition, SEM images illustrated that granular oxidation, cracks and flakes were common patterns during degradation, and the plastic pellets in the three different environments experienced different levels of chemical weathering. We suggest that further studies on the degradation processes of plastic debris are needed to predict the fate of plastic debris in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids.

    PubMed

    Sarmiento-González, Alejandro; Marchante-Gayón, Juan Manuel; Tejerina-Lobo, José María; Paz-Jiménez, José; Sanz-Medel, Alfredo

    2005-06-01

    A sector field high-resolution (HR)-ICP-MS and an octapole reaction system (ORS)-ICP-MS have been compared for the simultaneous determination of traces of metals (Ti, V, Cr, Co, Ni, and Mo) released from dental implants and articular prostheses in human biological fluids. Optimum sample treatments were evaluated to minimize matrix effects in urine and whole blood. Urine samples were diluted tenfold with ultrapure water, whereas whole blood samples were digested with high-purity nitric acid and hydrogen peroxide and finally diluted tenfold with ultrapure water. In both matrices, internal standardization (Ga and Y) was employed to avoid potential matrix interferences and ICP-MS signal drift. Spectral interferences arising from the plasma gases or the major components of urine and whole blood were identified by (HR)-ICP-MS at 3,000 resolving power. The capabilities of (HR)-ICP-MS and (ORS)-ICP-MS for the removal of such spectral interferences were evaluated and compared. Results indicate that polyatomic interferences, which hamper the determination of such metallic elements in these biological samples, could be overcome by using a resolving power of 3,000. Using (ORS)-ICP-MS, all those elements could be quantified except Ti and V (due to the polyatomic ions 31P16O and 35Cl16O, respectively). The accuracy of the proposed methodologies by (HR)- and (ORS)-ICP-MS was checked against two reference materials. Good agreement between the given values and the concentrations obtained for all the analytes under scrutiny was found except for Ti and V when analyzed by (ORS)-ICP-MS.

  12. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter.

    PubMed

    Lin, Shih-Hang; Chou, Mei-Ling; Chen, Wei-Cheng; Lai, Yi-Syuan; Lu, Kuan-Hung; Hao, Cherng-Wei; Sheen, Lee-Yan

    2015-12-04

    Depression is a serious psychological disorder that causes extreme economic loss and social problems. However, the conventional medications typically cause side effects that result in patients opting to out of therapy. Lemon balm (Melissa officinalis L., MO) is an old and particularly reliable medicinal herb for relieving feelings of melancholy, depression and anxiety. The present study aims to investigate the antidepressant-like activity of water extract of MO (WMO) by evaluating its influence on the behaviors and the relevant neurotransmitters of rats performed to forced swimming test. Two phases of the experiment were conducted. In the acute model, rats were administered ultrapure water (control), fluoxetine, WMO, or the indicated active compound (rosmarinic acid, RA) three times in one day. In the sub-acute model, rats were respectively administered ultrapure water (control), fluoxetine, or three dosages of WMO once a day for 10 days. Locomotor activity and depression-like behavior were examined using the open field test and the forced swimming test, respectively. The levels of relevant neurotransmitters and their metabolites in the frontal cortex, amygdala, hippocampus, and striatum were analyzed by high performance liquid chromatography. In the acute model, WMO and RA significantly reduced depressive-like behavior but the type of related neurotransmitter could not be determined. The results indicated that the effect of WMO administration on the reduction of immobility time was associated with an increase in swimming time of the rats, indicative of serotonergic neurotransmission modulation. Chromatography data validated that the activity of WMO was associated with a reduction in the serotonin turnover rate. The present study shows the serotonergic antidepressant-like activity of WMO. Hence, WMO may offer a serotonergic antidepressant activity to prevent depression and to assist in conventional therapies. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Cavity Preparation/assembly Techniques and Impact on Q, Realistic Q - Factors in a Module, Review of Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Kneisel

    2005-03-19

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO{sub 2} snow cleaning and high temperature heat treatments for hydrogen degassing or postpurification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance (Q - value and accelerating gradient E{sub acc}) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY(TTF), Jlab (Upgrade) and SNS.

  14. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, Tsuyoshi

    2016-06-30

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  15. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro

    PubMed Central

    Bonaterra, Gabriel A.; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf

    2017-01-01

    Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity. PMID:28294970

  16. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.

  17. Cleaning Genesis Mission Payload for Flight with Ultra-Pure Water and Assembly in ISO Class 4 Environment

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.

    2012-01-01

    Genesis mission to capture and return to Earth solar wind samples had very stringent contamination control requirements in order to distinguish the solar atoms from terrestrial ones. Genesis mission goals were to measure solar composition for most of the periodic table, so great care was taken to avoid particulate contamination. Since the number 1 and 2 science goals were to determine the oxygen and nitrogen isotopic composition, organic contamination was minimized by tightly controlling offgassing. The total amount of solar material captured in two years is about 400 micrograms spread across one sq m. The contamination limit requirement for each of C, N, and O was <1015 atoms/sq cm. For carbon, this is equivalent to 10 ng/cm2. Extreme vigilance was used in pre-paring Genesis collectors and cleaning hardware for flight. Surface contamination on polished silicon wafers, measured in Genesis laboratory is approximately 10 ng/sq cm.

  18. Improvements on bar adsorptive microextraction (BAμE) technique--application for the determination of insecticide repellents in environmental water matrices.

    PubMed

    Almeida, C; Strzelczyk, Rafał; Nogueira, J M F

    2014-03-01

    Bar adsorptive microextraction combined with micro-liquid desorption followed by large volume injection-gas chromatography-mass spectrometry operating in the selected-ion monitoring acquisition mode (BAµE-µLD/LVI-GC-MS(SIM)), is proposed for the determination of trace levels of three insecticide repellents (N,N-diethyl-meta-toluamide (DEET), cis and trans permethrin (PERM)) in environmental water matrices. By comparing different sorbent coatings (five activated carbons and six polymers) through BAµE, an activated carbon (AC2) proved to be the best compromise between selectivity and efficiency, even against polydimethylsiloxane through stir bar sorptive extraction. The novel improvement proposed on the back-extraction stage performed in a single step, by reducing the desorption solvent volume at the microliter level, demonstrated remarkable performance turning possible to save time, making easier the practical manipulation and more environmentally friendly. Assays performed by BAµE(AC2)-µLD/LVI-GC-MS(SIM) on 25 mL of ultrapure water samples spiked at the 1.0 μg/L level, yielded recoveries ranging from 73.8±8.8% (trans-PERM) to 96.4±9.9% (DEET), under optimised experimental conditions. The analytical performance showed convenient detection limits (8-20 ng/L) and good linear dynamic ranges (0.04-4.0 µg/L) with suitable determination coefficients (r(2)>0.9963, DEET). Excellent repeatability were also achieved through intraday (RSD<14.9%) and interday (RSD<11.9%) experiments. The novel improvement on downsizing the BAµE device to half-size proved to be either a promising option in forthcoming to reduce still more the desorption solvent volume without losing microextraction efficiency. By using the standard addition methodology, the application of the present analytical approach on tap, ground, river, swimming-pool and estuary water samples revealed good sensitivity at trace level and absence of matrix effects. © 2013 Elsevier B.V. All rights reserved.

  19. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications.

    PubMed

    Dong, Qi; Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2017-10-18

    As-synthetized single walled carbon nanotubes (SWCNTs) contain both metallic and semiconducting nanotubes. For the electronics, it is desirable to separate semiconducting SWCNTs (s-SWCNTs) from the metallic ones as s-SWCNTs provide desirable electronic properties. Here we test whether ultrapure semi-conducting single-walled carbon nanotubes (s-SWCNTs) provide advantageous electrochemical properties over the as prepared SWCNTs which contain a mixture of semiconducting and metallic CNTs. We test them as a transducer platform which enhanced the detection of target analytes (ascorbic acid, dopamine, uric acid) when compared to a bare glassy carbon (GC) electrode. Despite that, the two materials exhibit significantly different electrochemical properties and performances. A mixture of m-SWCNTs and s-SWCNTs demonstrated superior performance over ultrapure s-SWCNTs with greater peak currents and pronounced shift in peak potentials to lower values in cyclic and differential pulse voltammetry for the detection of target analytes. The mixture of m- and s-SWCNTs displayed about a 4 times improved heterogeneous electron transfer rate as compared to bare GC and a 2 times greater heterogeneous electron transfer rate than s-SWCNTs, demonstrating that ultrapure SWCNTs do not provide any major enhancement over the as prepared SWCNTs.

  20. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, C.; Sempéré, R.

    2003-04-01

    Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in

  1. Design and Field Evaluation of a Fuel Filtration/Additive Unit (FAU)

    DTIC Science & Technology

    1993-06-01

    requtrements of various types of indusiry. DISTRIBUTE.D BY: FUDPOWER PRODUMC, MJC. HW N ANO GE NESEE RO 9 C box~m STICKFAW. LA 704664U P"WO~ (504) 542 S? FA...match pressure and capacity a Low la t/high presEtýire to low pres&jre/ high flovw from the same frame Was.-ID q~ 0 10 126 hiydveulic Motors OMP, OMPW...8TWANOR XSIA. 128. MECHAICAL SEAL -OPTIONAL UPW. PaM umAfl pamu- UI ow. MAT PA 4M vu p" owm umpm PA U3 ~ ~~~ 331W26 2 la wi- = 0p XS2*A,(82. MECHANICAL

  2. Metal mobilization from metallurgical wastes by soil organic acids.

    PubMed

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. On-line hemodiafiltration at home.

    PubMed

    Vega, Almudena; Abad, Soraya; Macías, Nicolás; Aragoncillo, Inés

    2018-04-01

    Survival with online hemodiafiltration (OL-HDF) is higher than with hemodialysis; frequent hemodialysis has also improved survival and quality of life. Home hemodialysis facilitates frequent therapy. We report our experience with 2 patients with stage 5 CKD who started home hemodialysis with OL-HDF in November 2016. After a training period at the hospital, they started home hemodialysis with OL-HDF after learning how to manage dialysis monitors and how to administer water treatment. We used the "5008-home" (FMC © ) monitor, and the Acqua C © (Fresenius Medical Care) for water treatment. Water conductivity was always checked before and during dialysis sessions and was always 2.5 to 3 mS/cm. Water cultures always fulfilled the criteria for ultrapurity. As far as we know, this is the first report on patients receiving OL-HDF at home. The technique proved to be safe and valid for renal replacement therapy and transfers the benefits of hospital convective therapy to the home setting. Future data will enable us to determine whether survival has also improved. © 2017 International Society for Hemodialysis.

  4. Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu(II) ions removal from water and aquatic ecotoxicity.

    PubMed

    Côa, Francine; Strauss, Mathias; Clemente, Zaira; Rodrigues Neto, Laís L; Lopes, Josias R; Alencar, Rafael S; Souza Filho, Antônio G; Alves, Oswaldo L; Castro, Vera Lúcia S S; Barbieri, Edison; Martinez, Diego Stéfani T

    2017-12-31

    In this work, industrial grade multi-walled carbon nanotubes (MWCNT) were coated with humic acid (HA) for the first time by means of a milling process, which can be considered an eco-friendly mechanochemical method to prepare materials and composites. The HA-MWCNT hybrid material was characterized by atomic force microscopy (AFM), scanning electron microscopies (SEM and STEM), X-ray photoelectron spectroscopy (XPS), termogravimetric analysis (TGA), and Raman spectroscopy. STEM and AFM images demonstrated that the MWCNTs were efficiently coated by the humic acid, thus leading to an increase of 20% in the oxygen content at the nanotube surface as observed by the XPS data. After the milling process, the carbon nanotubes were shortened as unveiled by SEM images and the values of ID/IG intensity ratio increased due to shortening of the nanotubes and increasing in the number defects at the graphitic structure of carbon nanotubes walls. The analysis of TGA data showed that the quantity of the organic matter of HA on the nanotube surface was 25%. The HA coating was responsible to favor the dispersion of MWCNTs in ultrapure water (i.e. -42mV, zeta-potential value) and to improve their capacity for copper removal. HA-MWCNTs hybrid material adsorbed 2.5 times more Cu(II) ions than oxidized MWCNTs with HNO 3 , thus evidencing that it is a very efficient adsorbent material for removing copper ions from reconstituted water. The HA-MWCNTs hybrid material did not show acute ecotoxicity to the tested aquatic model organisms (Hydra attenuata, Daphnia magna, and Danio rerio embryos) up to the highest concentration evaluated (10mgL -1 ). The results allowed concluding that the mechanochemical method is effective to coat carbon nanotubes with humic acid, thus generating a functional hybrid material with low aquatic toxicity and great potential to be applied in environmental nanotechnologies such as the removal of heavy metal ions from water. Copyright © 2017 Elsevier B.V. All rights

  5. Vehicle Detection in Emplaced Sensor Fields: A User’s Guide to a Simulation Model and a Track-Identification Algorithm

    DTIC Science & Technology

    1973-01-01

    KCNOT NRTRUK* NRTJC , NBRTRK* NENI ) , NSIZ3 ,CHKA 100 5 NSNS 9 RETA , IWCNT , NSENSR, MSFNS 9 CSENS ,CHKA 110 NO, NB9 1 9 NTRAJC, LSTCNV9 WCAP, NqARAY...CELL COVI. 760 N aN + I COVI 770 If (N .GT. NENI ’, N a 1 CUVI 7RO 18(IK) 0 N COVI 790 c CDVI 791 C**** THIS SECTION T’STS TO SEE IF THIS NEW WINDOW NOW...TMELST9 TSHAR , UPW.\\j0 9 14 VALO 110 3 WL14TM, W0PTM , IK o 9EGTME, FINTME, NRGEN , VALn 120 4 NCNDT 9 NRTROK, NRTJC 9 NH4RTRK, NENI ) , NSIz3 ,VALO 130

  6. Total and water-soluble trace metal content of urban background PM 10, PM 2.5 and black smoke in Edinburgh, UK

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Hibbs, Leon R.; Agius, Raymond M.; Beverland, Iain J.

    Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM 10, PM 2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO 3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median ( n>349) daily water-soluble metal concentration in PM 2.5 ranged from 0.05 ng m -3 for Ti to 5.1 ng m -3 for Pb; and in PM 10 from 0.18 ng m -3 for Ti to 11.7 ng m -3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM 2.5 ranged from 0.3 ng m -3 for As to 27.6 ng m -3 for Fe; and in PM 10 from 0.37 ng m -3 for As to 183 ng m -3 for Fe. The PM 2.5:PM 10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM 10-2.5 fraction than of the PM 2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM 10-2.5, to >50% water-soluble V, Zn, As and Cd in PM 2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for

  7. Outstanding catalytic activity of ultra-pure platinum nanoparticles.

    PubMed

    Januszewska, Aneta; Dercz, Grzegorz; Piwowar, Justyna; Jurczakowski, Rafal; Lewera, Adam

    2013-12-09

    Small (4 nm) nanoparticles with a narrow size distribution, exceptional surface purity, and increased surface order, which exhibits itself as an increased presence of basal crystallographic planes, can be obtained without the use of any surfactant. These nanoparticles can be used in many applications in an as-received state and are threefold more active towards a model catalytic reaction (oxidation of ethylene glycol). Furthermore, the superior properties of this material are interesting not only due to the increase in their intrinsic catalytic activity, but also due to the exceptional surface purity itself. The nanoparticles can be used directly (i.e., as-received, without any cleaning steps) in biomedical applications (i.e., as more efficient drug carriers due to an increased number of adsorption sites) and in energy-harvesting/data-storage devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Efficient production of ultrapure manganese oxides via electrodeposition.

    PubMed

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  10. Copper nanowire coated carbon fibers as efficient substrates for detecting designer drugs using SERS.

    PubMed

    Halouzka, Vladimir; Halouzkova, Barbora; Jirovsky, David; Hemzal, Dusan; Ondra, Peter; Siranidi, Eirini; Kontos, Athanassios G; Falaras, Polycarpos; Hrbac, Jan

    2017-04-01

    Miniature Surface Enhanced Raman Scattering (SERS) sensors were fabricated by coating the carbon fiber microelectrodes with copper nanowires. The coating procedure, based on anodizing the copper wire in ultrapure water followed by cathodic deposition of the anode-derived material onto carbon fiber electrodes, provides a "clean" copper nanowire network. The developed miniature (10µm in diameter and 2mm in length) and nanoscopically rough SERS substrates are applicable in drug sensing, as shown by the detection and resolving of a range of seized designer drugs in trace amounts (microliter volumes of 10 -10 -10 -12 M solutions). The copper nanowire modified carbon microfiber substrates could also find further applications in biomedical and environmental sensing. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Low background materials and fabrication techniques for cables and connectors in the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Busch, M.; Abgrall, N.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Bradley, A. W.; Brudanin, V.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Rouf, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale 76Ge-based search (the LEGEND collaboration). In the Demonstrator, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the Majorana Demonstrator, including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements

  12. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.

    PubMed

    Jiang, Luhua; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Hu, Xinjiang; Hu, Xi; Guo, Zhi; Tan, Xiaofei; Wang, Lele; Wu, Zhibin

    2017-06-06

    Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.

  13. Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions.

    PubMed

    Horikoshi, Satoshi; Sumi, Takuya; Serpone, Nick

    2012-01-01

    The heating characteristics of aqueous electrolyte solutions (NaCl, KCl, CaCl2, NaBF4, and NaBr) of varying concentrations in ultrapure water by 2.45 GHz microwave radiation from a single-mode resonance microwave device and a semiconductor microwave generator were examined under conditions where the electric field (E-field) was dominant and where the magnetic field (H-field) dominated. Although magnetic field heating is not generally used in microwave chemistry, the electrolyte solutions were heated almost entirely by the microwaves' H-field. The heating rates under H-field irradiation at the higher concentrations of electrolytes (0.125 M to 0.50 M) exceeded the rates under E-field irradiation. This inversion phenomenon in heating is described in terms of the penetration depth of the microwaves. On the other hand, the action of the microwave radiation on ethylene glycol containing an electrolyte differed from that observed for water under E-field and H-field conditions.

  14. Graphene oxide sheets-based platform for induced pluripotent stem cells culture: toxicity, adherence, growth and application

    NASA Astrophysics Data System (ADS)

    Durán, Marcela; Andrade, Patricia F.; Durán, Nelson; Luzo, Angela C. M.; Fávaro, Wagner J.

    2015-05-01

    It was prepared the graphene oxide (GO) sheets by suspension of GO in ultrapure deionized water or in Pluronic F-68 using a ultrasonicator bath. Total characterization of GO sheets was carried out. The results on suspension of GO in water showed excellent growth and cell adhesion. GO/Pluronic F-68 platform for the growth and adhesion of adipose-derived stem cells (ASCs) that exhibits excellent properties for these processes. GO in water suspension exhibited an inhibition of the cell growth over 5 μg/mL In vivo study with GO suspended in water (100 μg/mL) on Fisher 344 rats via i.p. administration showed low toxicity. Despite GO particle accumulates in the intraperitoneal cavity, this fact did not interfere with the final absorption of GO. The AST (aspartate aminotransferase) and ALT (alanine aminotransferase) levels (liver function) did not differ statistically in all experimental groups. Also, creatinine and urea levels (renal function) did not differ statistically in all experimental groups. Taking together, the data suggest the great potential of graphene oxide sheets as platform to ACSs, as well as, new material for treatment several urological diseases.

  15. Portable Intravenous Fluid Production Device for Ground Use

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip J.; Scheuer, Wolfgang K.

    2012-01-01

    There are several medical conditions that require intravenous (IV) fluids. Limitations of mass, volume, storage space, shelf-life, transportation, and local resources can restrict the availability of such important fluids. These limitations are expected in long-duration space exploration missions and in remote or austere environments on Earth. Current IV fluid production requires large factory-based processes. Easy, portable, on-site production of IV fluids can eliminate these limitations. Based on experience gained in developing a device for spaceflight, a ground-use device was developed. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endotoxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (.25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters.

  16. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution

    PubMed Central

    Baati, Tarek; Al-Kattan, Ahmed; Esteve, Marie-Anne; Njim, Leila; Ryabchikov, Yury; Chaspoul, Florence; Hammami, Mohamed; Sentis, Marc; Kabashin, Andrei V.; Braguer, Diane

    2016-01-01

    Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics). PMID:27151839

  17. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution

    NASA Astrophysics Data System (ADS)

    Baati, Tarek; Al-Kattan, Ahmed; Esteve, Marie-Anne; Njim, Leila; Ryabchikov, Yury; Chaspoul, Florence; Hammami, Mohamed; Sentis, Marc; Kabashin, Andrei V.; Braguer, Diane

    2016-05-01

    Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, M.; Abgrall, N.; Alvis, S. I.

    Here, the Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale 76Ge-based search (the LEGEND collaboration). In the Demonstrator, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the Majorana Demonstrator,more » including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements« less

  19. Low background materials and fabrication techniques for cables and connectors in the Majorana Demonstrator

    DOE PAGES

    Busch, M.; Abgrall, N.; Alvis, S. I.; ...

    2018-01-03

    Here, the Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale 76Ge-based search (the LEGEND collaboration). In the Demonstrator, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the Majorana Demonstrator,more » including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements« less

  20. Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich.

    PubMed

    Tolu, Julie; Thiry, Yves; Bueno, Maïté; Jolivet, Claudy; Potin-Gautier, Martine; Le Hécho, Isabelle

    2014-05-01

    Selenium adsorption onto oxy-hydroxides mainly controls its mobility in volcanic soils, red earths and soils poor in organic matter (OM) while the influence of OM was emphasized in podzol and peat soils. This work aims at deciphering how those solid phases influence ambient Se mobility and speciation under less contrasted conditions in 26 soils spanning extensive ranges of OM (1-32%), Fe/Al oxy-hydroxides (0.3-6.1%) contents and pH (4.0-8.3). The soil collection included agriculture, meadow and forest soils to assess the influence of OM quality as well. Trace concentrations of six ambient Se species (Se(IV), Se(VI) and 4 organo-Se compounds) were analyzed by HPLC-ICP-MS in three extractants (ultrapure water, phosphate and sodium hydroxide) targeting Se associated to different soil phases. The Kd values determined from ultrapure water extraction were higher than those reported in commonly used short-term experiments after Se-spiking. Correlations of ambient Se content and distribution with soil parameters explained this difference by an involvement of slow processes in Se retention in soils. The 26 Kd values determined here for a wide variety of soils thus represent a relevant database for long-term prediction of Se mobility. For soils containing less than 20% OM, ambient Se solubility is primarily controlled by its adsorption onto crystalline oxy-hydroxides. However, OM plays an important role in Se mobility by forming organo-mineral associations that may protect adsorbed Se from leaching and/or create anoxic zones (aggregates) where Se is immobilized after its reduction. Although for the first time, inorganic Se(IV), Se(VI) and organo-Se compounds were simultaneously investigated in a large soil collection, high Se proportions remain unidentified in each soil extract, most probably due to Se incorporation and/or binding to colloidal-sized OM. Variations of environmental factors regulating the extent of OM-mineral associations/aggregation may thus lead to changes

  1. Antimicrobial Activity and Physicochemical Properties of Calcium Hydroxide Pastes Used as Intracanal Medication.

    PubMed

    Zancan, Rafaela Fernandes; Vivan, Rodrigo Ricci; Milanda Lopes, Marcelo Ribeiro; Weckwerth, Paulo Henrique; de Andrade, Flaviana Bombarda; Ponce, José Burgos; Duarte, Marco Antonio Hungaro

    2016-12-01

    The aim of the present study was to evaluate the pH, calcium release, solubility, and antimicrobial action against biofilms of calcium hydroxide + saline solution, Calen (SS White Artigos Dentários Ltd, Rio de Janeiro, Brazil) (CH/P), Calen camphorated paramonochlorophenol (CMCP) (CH/CMPC), and calcium hydroxide + chlorhexidine (CH/CHX) pastes. The pH of the pastes was determined with a calibrated pH meter placed in direct contact with each paste. The root canals of acrylic teeth (N = 10) were filled with the previously mentioned intracanal dressings and immersed in ultrapure water to measure hydroxyl (pH meter) and calcium ion release (atomic absorption spectrophotometer) at time intervals of 3, 7, 15, and 30 days. To assess solubility, the root canals of acrylic teeth (N = 10) were filled with the previously mentioned pastes and scanned by micro-computed tomographic imaging before (initial) and after 7, 15, and 30 days of immersion in ultrapure water. The solubility of each specimen was the difference between the initial and final volume scanning. For antimicrobial analysis, monospecies and dual-species biofilms were in vitro induced on dentin blocks (N = 20). Afterward, they were treated with the pastes for 7 days. Live/dead dye and a confocal microscope were used to measure the percentage of living cells. Data were statistically compared (P < .05). The highest OH - ion release values were found in 3 and 30 days. Ca 2+ releases were greater in CH/CMCP. CH/P and CH/CMCP showed a higher percentage of volume loss values. CH/CHX presented the greatest antimicrobial action. CH/P and CH/CMPC showed higher solubility values in the period analyzed. Seven days of contact may be insufficient for calcium hydroxide + saline solution, CH/P, and CH/CMCP pastes to kill bacterial cells in the biofilms studied. Chlorhexidine added to CH favored greater effectiveness against the previously mentioned bacterial biofilms. Copyright © 2016 American Association of

  2. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1991-01-01

    A new instrument based on a constant-frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonic wave velocity in liquids and changes in ultrasonic wave velocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques. Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measure velocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10 to the 7th.

  3. Study on Surface Permeability of Concrete under Immersion

    PubMed Central

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations. PMID:28788490

  4. Burial of gas-phase HNO(3) by growing ice surfaces under tropospheric conditions.

    PubMed

    Ullerstam, Maria; Abbatt, Jonathan P D

    2005-10-21

    The uptake of gas-phase nitric acid by ice surfaces undergoing growth by vapor deposition has been performed for the first time under conditions of the free troposphere. The investigation was performed using a coated-wall flow tube coupled to a chemical ionization mass spectrometer, at nitric acid partial pressures between 10(-7) and 10(-6) hPa, at 214, 229 and 239 K. Ice surfaces were prepared as smooth ice films from ultra-pure water. During the experiments an excess flow of water vapor was added to the carrier gas flow and the existing ice surfaces grew by depositing water vapor. The average growth rates ranged from 0.7-5 microm min(-1), values similar to those which prevail in some portions of the atmosphere. With growing ice the long term uptake of nitric acid is significantly enhanced compared to an experiment performed at equilibrium, i.e. at 100% relative humidity (RH) with respect to ice. The fraction of HNO(3) that is deposited onto the growing ice surface is independent of the growth rate and may be driven by the solubility of the nitric acid in the growing ice film rather than by condensation kinetics alone.

  5. Novel separation method for highly sensitive speciation of cancerostatic platinum compounds by HPLC-ICP-MS.

    PubMed

    Hann, S; Stefánka, Zs; Lenz, K; Stingeder, G

    2005-01-01

    A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method is presented for analysis of cisplatin, monoaquacisplatin, diaquacisplatin, carboplatin, and oxaliplatin in biological and environmental samples. Chromatographic separation was achieved on pentafluorophenylpropyl-functionalized silica gel. For cisplatin, carboplatin, and oxaliplatin limits of detection of 0.09, 0.10, and 0.15 microg L(-1), respectively, were calculated at m/z 194, using aqueous standard solutions. (3 microL injection volume). The method was utilized for model experiments studying the stability of carboplatin and oxaliplatin at different chloride concentrations simulating wastewater and surface water conditions. It was found that a high fraction of carboplatin is stable in ultrapure water and in solutions containing 1.5 mol L(-1) Cl-, whereas oxaliplatin degradation was increased by increasing the chloride concentration. In order to support the assessment of oxaliplatin eco-toxicology, the method was tested for speciation of patient urine. The urine sample contained more than 17 different reaction products, which demonstrates the extensive biotransformation of the compound. In a second step of the study the method was successfully evaluated for monitoring cancerostatic platinum compounds in hospital waste water.

  6. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production

    PubMed Central

    Alique, David; Martinez-Diaz, David; Sanz, Raul

    2018-01-01

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  7. Commissioning the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Caden, E.; Coulter, I.; SNO+ Collaboration

    2017-09-01

    SNO+ is a multipurpose liquid scintillator neutrino experiment based at SNOLAB in Sudbury, Ontario, Canada. The experiment’s main physics goal is a search for neutrinoless double beta decay in Tellurium-130, but SNO+ will also study low energy solar neutrinos, geo- and reactor-antineutrinos, among other topics. We are reusing much of the hardware from the original SNO experiment, but significant work has taken place to transform the heavy water detector into a liquid scintillator detector. We present upgrades and improvements to the read-out electronics and trigger system to handle the higher data rates expected by a scintillator experiment. We show the successful installation and testing of a hold-down rope net for the acrylic vessel to counter-act the buoyancy of organic liquid scintillator. We also describe the new scintillator process plant and cover gas systems that have been constructed to achieve the purification necessary to meet our physics goals. We are currently commissioning the experiment with ultra-pure water in preparation for filling with scintillator in early 2017 and present the current status of this work.

  8. Investigations and application in piezoelectric phenol sensor of Langmuir-Schäfer films of a copper phthalocyanine derivative functionalized with bulky substituents.

    PubMed

    Giancane, G; Basova, T; Hassan, A; Gümüş, G; Gürek, A G; Ahsen, V; Valli, L

    2012-07-01

    An octa-substituted copper phthalocyanine was dissolved in chloroform and spread on ultrapure water subphase in a Langmuir trough. The floating films were characterized at the air-water interface by the Langmuir isotherm, Brewster angle microscopy, and UV-Vis reflection spectroscopy and transferred by Langmuir-Schäfer technique on a silicon substrate, and thickness, refractive index, and extinction coefficient of the phthalocyanine derivative thin film were calculated by means of spectroscopic ellipsometry. A different number of layers were deposited using Langmuir-Schäfer method onto QCM crystals, and the active layers were tested as sensors for the detection of phenols in aqueous solution. The piezoelectric sensor response, totally reversible, is influenced by the number of transferred layers and by the nature of the substituent; on the contrary, the pK(a) value of the injected analytes slightly affects the device performances. Repeatability of the sensor responses was tested, and the frequency variation appears unchanged at least for 100 days. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue.

    PubMed

    Villa-Lojo, M C; Alonso-Rodríguez, E; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2002-06-10

    A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.

  10. Furosemide removal in constructed wetlands: Comparative efficiency of LECA and Cork granulates as support matrix.

    PubMed

    Machado, A I; Dordio, A; Fragoso, R; Leitão, A E; Duarte, E

    2017-12-01

    The removal efficiency of LECA and cork granulates as support matrix for pharmaceuticals active compounds in a constructed wetland system was investigated using the diuretic drug Furosemide. Kinetics studies were performed testing three different concentrations of Furosemide in an ultrapure water matrix, along seven days. LECA achieved higher removal values compared to cork granulates. However, cork granulates presented a higher removal in the first 24 h of contact time compared to the other adsorbent. The kinetic studies showed that LECA and cork granulates have different adsorption behaviours for Furosemide which is controlled by different adsorption mechanisms. Both materials showed good removal efficiencies and a combination of the two should be further explored in order to applied both materials as support matrix to cope with different furosemide concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. New approach for papaya latex storage without virus degradation

    PubMed Central

    Rodrigues, Silas P.; Andrade, Josemar S.; Ventura, José A.; Fernandes, Patricia M. B.

    2009-01-01

    Papaya meleira virus (PMeV) is the causal agent of papaya (Carica papaya L.) sticky disease, which has been detected through analysis of its double-stranded RNA (dsRNA) genome from plant latex. In this work we demonstrate that PMeV dsRNA is protected during 25 days when latex is diluted in citrate buffer pH 5.0 (1:1 v/v) and maintained at -20ºC. At the same temperature, some protection was observed for pure latex or latex diluted in ultra-pure water. Conversely, the dsRNA was almost completely degraded after 25 days when maintained at 25ºC, indicating the need for freezing. The proper procedures to collect and store papaya latex described here will contribute to efficient and large scale use of molecular diagnosis of PMeV. PMID:24031329

  12. Percutaneous multiple electrode connector, design parameters and fabrication (biomedical)

    NASA Technical Reports Server (NTRS)

    Myers, L. A.

    1977-01-01

    A percutaneous multielectrode connector was designed which utilizes an ultrapure carbon collar to provide an infection free biocompatible passage through the skin. The device provides reliable electrical continuity, mates and demates readily with the implant, and is fabricated with processes and materials oriented to commercial production.

  13. Process for preparing fluorine-18

    DOEpatents

    Winchell, Harry S.; Wells, Dale K.; Lamb, James F.; Beaudry, Samuel B.

    1976-09-21

    An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.

  14. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.

    PubMed

    Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine

    2018-02-02

    A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges

  15. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  16. Heterogeneous freezing of super cooled water droplets in micrometre range- freezing on a chip

    NASA Astrophysics Data System (ADS)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    A new setup to analyse the freezing behaviour of ice nucleation particles (INPs) dispersed in aqueous droplets has been developed with the aim to analyse ensembles of droplets with sizes in the micrometre range, in which INPs are immersed. Major disadvantages of conventional drop-freezing experiments like varying drop sizes or interactions between the water- oil mixture and the INP, were solved by introducing a unique freezing- chip consisting of an etched and sputtered 15x15x1 mm gold-plated silicon or pure gold film (Pummer et al., 2012; Zolles et al., 2015). Using this chip, isolated micrometre-sized droplets can be generated with sizes similar to droplets in real world clouds. The experimental set-up for drop-freezing experiments was revised and improved by establishing automated process control and image evaluation. We were able to show the efficiency and accuracy of our setup by comparing measured freezing temperatures of different INPs (Snomax®, K- feldspar, birch pollen (Betula pendula) washing water, juniper pollen suspension (Juniperus communis) and ultrapure water) with already published results (Atkinson et al., 2013; Augustin et al., 2013; Pruppacher and Klett, 1997; Pummer et al., 2012; Wex et al., 2015; Zolles et al., 2015). Comparison of our measurements with literature data show the important impact of droplet size, INP concentration and number of active sites on the T50 values. Here, the new set-up exhibits its strength in reproducibility and accuracy which is due to the defined and isolated droplets. Finally, it opens a temperature window down to -37˚ C for freezing experiments which was not accessible with former traditional approaches .Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds (vol 498, pg 355, 2013), Nature, 500, 491-491, 2013. Augustin, S., Wex, H

  17. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution.

    PubMed

    Ocampo-Pérez, R; Orellana-Garcia, F; Sánchez-Polo, M; Rivera-Utrilla, J; Velo-Gala, I; López-Ramón, M V; Alvarez-Merino, M A

    2013-07-01

    The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pH<3, which favors the repulsive forces between dimetridazole or metronidazole and the ACC surface. The formation of hydrogen bonds and dispersive interactions play the predominant role at higher pH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts.

    PubMed

    Kassmannhuber, Johannes; Rauscher, Mascha; Schöner, Lea; Witte, Angela; Lubitz, Werner

    2017-09-03

    In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between -5.6 °C and -6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs).

  19. Distribution of inorganic and organic nutrients in the South Pacific Ocean - evidence for long-term accumulation of organic matter in nitrogen-depleted waters

    NASA Astrophysics Data System (ADS)

    Raimbault, P.; Garcia, N.; Cerutti, F.

    2007-08-01

    The BIOSOPE cruise of the RV Atalante was devoted to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W-8° S) and the Chilean upwelling (73° W-34° S). The 8000 km cruise had the opportunity to encounter different trophic situations, and especially strong oligotrophic conditions in the Central South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between surface and 160-180 m, while regenerated nitrogen (nitrite and ammonium) only revealed some traces (<20 nmoles l-1), even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. In spite of this severe nitrogen-depletion, phosphate was always present at significant concentrations (≍0.1 μmoles l-1), while silicate maintained at low but classical oceanic levels (≍1 μmoles l-1). In contrast, the Marquesas region (MAR) at west and Chilean upwelling (UPW) at east were characterized by large nutrient contents one hundred to one thousand fold higher than in the SPG. Distribution of surface chlorophyll concentration reflected this gradient of nitrate availability. The lowest value (0.023 nmoles l-1) was measured in the centre of the SPG, where integrated chlorophyll over the photic layer was very weak (≍10 mg m-2), since a great part (up to 50%) of the deep chlorophyll maximum (DCM) was located below the 1% light. But, because of the relative high concentration encountered in the DCM (0.2 μg l-1), chlorophyll a content over the photic layer varied much less (by a factor 2 to 5) than the nitrate content. In contrast to chlorophyll a, integrated content of particulate organic matter (POM) remained more or less constant along the investigated area (500 mmoles m-2, 60 mmoles m-2 and 3.5 mmoles m-2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), except in the upwelling where values were two fold higher

  20. SINTERING OF NASCENT CALCIUM OXIDE

    EPA Science Inventory

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  1. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  2. Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance.

    PubMed

    Ishizaki, Takahiro; Sakamoto, Michiru

    2011-03-15

    The design of color-tuned magnesium alloy with anticorrosive properties and damping capacity was created by means of a simple and inexpensive method. The vertically self-aligned nano- and microsheets were formed on magnesium alloy AZ31 by a chemical-free immersion process in ultrapure water at a temperature of 120 °C, resulting in the color expression. The color changed from silver with metallic luster to some specific colors such as orange, green, and orchid, depending on the immersion time. The color-tuned magnesium alloy showed anticorrosive performance and damping capacity. In addition, the colored surface with minute surface textures was modified with n-octadecyltrimethoxysilane (ODS), leading to the formation of color-tuned superhydrophobic surfaces. The corrosion resistance of the color-tuned superhydrophobic magnesium alloy was also investigated using electrochemical potentiodynamic measurements. Moreover, the color-tuned superhydrophobic magnesium alloy showed high hydrophobicity not just for pure water but also for corrosive liquids, such as acidic, basic, and some aqueous salt solutions. In addition, the American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the color-tuned superhydrophobic film to the magnesium alloy surface.

  3. Water, Water Everywhere

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2009-01-01

    Everybody knows that children love water and how great water play is for children. The author discusses ways to add water to one's playscape that fully comply with health and safety regulations and are still fun for children. He stresses the importance of creating water play that provides children with the opportunity to interact with water.

  4. Application of micro-X-ray fluorescence to chemical mapping of polar ice

    NASA Astrophysics Data System (ADS)

    Fourcade, M. C. Morel; Barnola, J. M.; Susini, J.; Baker, R.; Durand, G.; de Angelis, M.; Duval, P.

    Synchrotron-based micro-X-ray fluorescence (μXRF) equipment has been used to analyze impurities in polar ice. A customized sample holder has been developed and the μXRF equipment has been adapted with a thermal control system to keep samples unaltered during analyses. Artificial ice samples prepared from ultra-pure water were analyzed to investigate possible contamination and/or experimental artefacts. Analyses of polar ice from Antarctica (Dome C and Vostok) confirm this μXRF technique is non-destructive and sensitive. Experiments can be reproduced to confirm or refine results by focusing on interesting spots such as crystal grain boundaries or specific inclusions. Integration times and resolution can be adjusted to optimize sensitivity. Investigation of unstable particles is possible due to the short analysis time. In addition to identification of elements in impurities, μXRF is able to determine their speciations. The accuracy and reliability of the results confirm the potential of this technique for research in glaciology.

  5. Cleaning Study of Genesis Sample 60487

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kim R.; Rodriquez, M. C.; Gonzalez, C. P.; Allton, J. H.; Burnett, D. S.

    2013-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind were stopped in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. Particles of Genesis wafers, brine from the Utah Testing Range and an organic film have deleterious effects on many of the high-resolution instruments that have been developed to analyze the implanted solar wind. We have conducted a correlative microscopic study of the efficacy of cleaning Genesis samples with megasonically activated ultrapure water and UV/ozone cleaning. Sample 60487, the study sample, is a piece of float-zone silicon from the B/C array approximately 4.995mm x 4.145 mm in size

  6. Nanostructured films employed as sensing units in an "electronic tongue" system.

    PubMed

    da Silva, B A; Antunes, P A; Pasquini, D; Curvelo, A A S; Aroca, R F; Riul, A Júnior; Constantino, C J L

    2007-02-01

    Nanostructured films of lignin (macromolecule extracted from sugar cane bagasse), polypyrrole (conducting polymer) and bis butylimido perylene (organic dye) were used in the detection of trace levels of fluorine (from H2SiF6), chlorine (from NaClO), Pb(+2), Cu(+2), and Cd(+2) in aqueous solutions. Langmuir monolayers on ultrapure water were characterised by surface pressure-mean molecular area (II-A) isotherms. Langmuir-Blodgett (LB) films were transferred onto gold interdigitated electrodes and used as individual sensing units of an electronic tongue system. Impedance spectroscopy measurements were taken with the sensor immersed into aqueous solutions containing the ions described above in different molar concentrations. Fourier transform infrared absorption (FTIR) was employed to identify possible interactions between the LB films and the analytes in solution, and no significant changes could be observed in the FTIR spectra of BuPTCD and Ppy. Therefore, the results for lignin point to an interaction involving the electronic cloud of the phenyl groups with the metallic ions.

  7. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  8. Evidence for hydrodynamic electron flow in PdCoO₂.

    PubMed

    Moll, Philip J W; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P

    2016-03-04

    Electron transport is conventionally determined by the momentum-relaxing scattering of electrons by the host solid and its excitations. Hydrodynamic fluid flow through channels, in contrast, is determined partly by the viscosity of the fluid, which is governed by momentum-conserving internal collisions. A long-standing question in the physics of solids has been whether the viscosity of the electron fluid plays an observable role in determining the resistance. We report experimental evidence that the resistance of restricted channels of the ultrapure two-dimensional metal palladium cobaltate (PdCoO2) has a large viscous contribution. Comparison with theory allows an estimate of the electronic viscosity in the range between 6 × 10(-3) kg m(-1) s(-1) and 3 × 10(-4) kg m(-1) s(-1), versus 1 × 10(-3) kg m(-1) s(-1) for water at room temperature. Copyright © 2016, American Association for the Advancement of Science.

  9. Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts

    PubMed Central

    Kassmannhuber, Johannes; Rauscher, Mascha; Schöner, Lea; Witte, Angela; Lubitz, Werner

    2017-01-01

    ABSTRACT In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between −5.6 °C and −6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs). PMID:28121482

  10. Super-Kamiokande Solar Neutrino Results and NSI Analysis

    NASA Astrophysics Data System (ADS)

    Weatherly, Pierce; Super-Kamiokande Collaboration

    2017-09-01

    Super-Kamiokande (SK) detects the Cerenkov light from elastic scattering of solar 8B neutrinos with electrons in its ultra-pure water. The directionality, energy, and timing of the recoil electrons determines the interaction rate, the flight path, as well as the energy dependence of the 8B neutrinos’ electron-flavor survival probability P ee . While the P ee below 1 MeV is equivalent to averaged vacuum neutrino flavor oscillations, the P ee above 7 MeV is suppressed by the Mikheyev-Smirnov-Wolfenstein (MSW) resonance resulting from the interaction of the solar neutrinos with solar matter. In the same way, Earth matter effects influence Pee, leading to an apparent Day/Night effect. Non-standard interactions (NSI) extend the MSW model to include interactions between the quarks in matter and neutrinos, thereby modifying P ee . We present the signatures of matter effects on solar neutrinos in Super-Kamiokande and present limits on NSI parameters, in particular couplings to the down quark.

  11. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  12. Photodegradation behaviour of estriol: An insight on natural aquatic organic matter influence.

    PubMed

    Oliveira, Cindy; Lima, Diana L D; Silva, Carla Patrícia; Otero, Marta; Esteves, Valdemar I

    2016-09-01

    Estriol (E3) is one of the steroidal estrogens ubiquitously found in the aquatic environment, photodegradation being an important pathway for the elimination of such endocrine disrupting compounds. However, it is important to understand how environmentally important components present in aquatic matrices, such as organic matter, may affect their photodegradation. The main objective of this work was to investigate the photodegradation of E3 in water, under simulated solar radiation, as well as the effect of humic substances (HS - humic acids (HA), fulvic acids (FA) and XAD-4 fraction) in E3 photodegradation. Moreover, the photodegradation behaviour of E3 when present in different environmental aquatic matrices (fresh, estuarine and waste water samples) was also assessed. Results showed a completely different E3 degradation rate depending on the aquatic matrix. In ultrapure water the half-life obtained was about 50 h, while in presence of HS it varied between 5 and 10 h. Then, half-life times between 1.6 and 9.5 h were determined in environmental samples, in which it was observed that the matrix composition contributed up to 97% for the overall E3 photodegradation. Therefore, E3 photodegradation in the considered aquatic matrices was mostly caused by photosensitizing reactions (indirect photodegradation). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simulation of 20-year deterioration of acrylic IOLs using severe accelerated deterioration tests.

    PubMed

    Kawai, Kenji; Hayakawa, Kenji; Suzuki, Takahiro

    2012-09-20

    To investigate IOL deterioration by conducting severe accelerated deterioration testing of acrylic IOLs. Department of Ophthalmology, Tokai University School of Medicine Methods: Severe accelerated deterioration tests performed on 7 types of acrylic IOLs simulated 20 years of deterioration. IOLs were placed in a screw tube bottle containing ultra-pure water and kept in an oven (100°C) for 115 days. Deterioration was determined based the outer appearance of the IOL in water and under air-dried conditions using an optical microscope. For accelerated deterioration of polymeric material, the elapse of 115 days was considered to be equivalent to 20 years based on the Arrhenius equation. All of the IOLs in the hydrophobic acrylic group except for AU6 showed glistening-like opacity. The entire optical sections of MA60BM and SA60AT became yellowish white in color. Hydrophilic acrylic IOL HP60M showed no opacity at any of the time points examined. Our data based on accelerated testing showed differences in water content to play a major role in transparency. There were differences in opacity among manufacturers. The method we have used for determining the relative time of IOL deterioration might not represent the exact clinical setting, but the appearance of the materials would presumably be very similar to that seen in patients.

  14. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse.

    PubMed

    Umezawa, Masakazu; Sekita, Keisuke; Suzuki, Ken-Ichiro; Kubo-Irie, Miyoko; Niki, Rikio; Ihara, Tomomi; Sugamata, Masao; Takeda, Ken

    2013-12-21

    Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized "white dust." However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 10(4)/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects.

  15. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by

  16. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  17. Shock synthesis of amino acids in simulated primitive environments.

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Bar-Nun, N.; Bauer, S. H.; Sagan, C.

    1971-01-01

    A single pulse shock tube of a uniform bore was used in the experiments. The reaction mixture consisted of 3.3 per cent methane, 11 per cent ethane, and 5.6 per cent ammonia, diluted with ultra-pure argon. The formation of glycine, alanine, valine, and leucine under conditions of shock heating was observed. Thermodynamic relations are discussed together with questions of conversion efficiency.

  18. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  19. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  20. Simple extraction method for quantification of phenothiazine residues in pork muscle using liquid chromatography-triple quadrupole tandem mass spectrometry.

    PubMed

    Zhang, Dan; Park, Jin-A; Kim, Seong-Kwan; Cho, Sang-Hyun; Cho, Soo-Min; Shim, Jae-Han; Kim, Jin-Suk; Abd El-Aty, A M; Shin, Ho-Chul

    2017-06-01

    In this study, an analytical method was developed for quantification of residues of the anthelmintic drug phenothiazine (PTZ) in pork muscle using liquid chromatography-tandem mass spectrometry. Muscles were extracted using 0.2% formic acid and 10 mm ammonium formate in acetonitrile, defatted and purified using n-hexane. The drug was well separated on a Waters XBridge™ C 18 analytical column using a binary solvent system consisting of 0.2% formic acid and 10 mm ammonium formate in ultrapure water (A) and acetonitrile (B). Good linearity was achieved over a six-point concentration range in matrix-matched calibration with determination coefficient =0.9846. Fortified pork muscle having concentrations equivalent to and double the limit of quantification (1 ng/g) yielded recovery ranges between 100.82 and 104.03% and relative standard deviations <12%. Samples (n = 5) collected from large markets located in Seoul City tested negative for PTZ residue. In conclusion, 0.2% formic acid and ammonium formate in acetonitrile can effectively extract PTZ from pork muscle without solid-phase extraction, a step normally required for cleanup before analysis and the validated method can be used for routine analysis to ensure the quality of animal products. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation.

    PubMed

    Sayed, Murtaza; Khan, Javed Ali; Shah, Luqman Ali; Shah, Noor S; Khan, Hasan M; Rehman, Faiza; Khan, Abdur Rahman; Khan, Asad M

    2016-07-01

    This study reports the efficiency of gamma-ray irradiation to degrade quinolone antibiotic, norfloxacin, in aqueous solution. Laboratory batch experiments were conducted to determine the "pseudo-first" order degradation kinetics of norfloxacin in the concentration ranges of 3.4-16.1 mg L(-1) by gamma-ray irradiation. The dose constant was found to be dependent on the initial concentration of norfloxacin and gamma-ray irradiation dose rate (D r). The saturation of norfloxacin sample solutions with N2, air or N2O, and the presence of tert-butanol and 2-propanol showed that (•)OH played more crucial role in the degradation of norfloxacin. The second order rate constants of (•)OH, eaq (-), and (•)H with norfloxacin were calculated to be 8.81 × 10(9), 9.54 × 10(8), and 1.10 × 10(9) M(-1) s(-1), respectively. The effects of various additives including CO3 (2-), HCO3 (-), NO3 (-), NO2 (-), and thiourea and the pH of the medium on the degradation of norfloxacin were also investigated. Norfloxacin degradation was lower in surface water and wastewater than in ultrapure water. Several degradation byproducts of norfloxacin were identified from which the possible degradation pathway was proposed.

  2. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    NASA Astrophysics Data System (ADS)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  3. Host-Guest Interaction between Herbicide Oxadiargyl and Hydroxypropyl-β-Cyclodextrin

    PubMed Central

    Benfeito, Sofia; Borges, Fernanda; Garrido, E. Manuela

    2013-01-01

    In the face of a growing human population and increased urbanization, the demand for pesticides will simply rise. Farmers must escalate yields on increasingly fewer farm acres. However, the risks of pesticides, whether real or perceived, may force changes in the way these chemicals are used. Scientists are working toward pest control plans that are environmentally sound, effective, and profitable. In this context the development of new pesticide formulations which may improve application effectiveness, safety, handling, and storage can be pointed out as a solution. As a contribution to the area, the microencapsulation of the herbicide oxadiargyl (OXA) in (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was performed. The study was conducted in different aqueous media (ultrapure water and in different pH buffer solutions). In all cases an increment of the oxadiargyl solubility as a function of the HP-β-CD concentration that has been related to the formation of an inclusion complex was verified. UV-Vis and NMR experiments allowed concluding that the stoichiometry of the OXA/HP-β-CD complex formed is 1 : 1. The gathered results can be regarded as an important step for its removal from industrial effluents and/or to increase the stabilizing action, encapsulation, and adsorption in water treatment plants. PMID:24396310

  4. Bacteria Inside Semiconductors as Potential Sensor Elements: Biochip Progress

    PubMed Central

    Sah, Vasu R.; Baier, Robert E.

    2014-01-01

    It was discovered at the beginning of this Century that living bacteria—and specifically the extremophile Pseudomonas syzgii—could be captured inside growing crystals of pure water-corroding semiconductors—specifically germanium—and thereby initiated pursuit of truly functional “biochip-based” biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips. PMID:24961215

  5. Bacteria inside semiconductors as potential sensor elements: biochip progress.

    PubMed

    Sah, Vasu R; Baier, Robert E

    2014-06-24

    It was discovered at the beginning of this Century that living bacteria-and specifically the extremophile Pseudomonas syzgii-could be captured inside growing crystals of pure water-corroding semiconductors-specifically germanium-and thereby initiated pursuit of truly functional "biochip-based" biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips.

  6. Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2003-01-01

    Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  7. Water Resources Data, Wyoming, Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Swanson, R.B.; Woodruff, R.E.; Laidlaw, G.A.; Watson, K.R.; Clark, M.L.

    2002-01-01

    Water resources data for the 2001 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 151 gaging stations, stage and contents for 12 lakes and reservoirs, and water quality for 33 gaging stations and 32 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  8. Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2004-01-01

    Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  9. Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water

    USGS Publications Warehouse

    Mason, J.P.; Swanson, R.B.; Roberts, S.C.

    2001-01-01

    Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  10. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  11. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  12. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  13. Water Resources Data, California, Water Year 1989. Volume 5. Ground-Water Data

    USGS Publications Warehouse

    Lamb, C.E.; Johnson, J.A.; Fogelman, R.P.; Grillo, D.A.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in weils. Volume 5 contains water levels for 1,037 observation wells and water-quality data for 254 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperatine State and Federal agencies in California.

  14. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  15. Target Water Consumption Calculation for Human Water Management based on Water Balance

    NASA Astrophysics Data System (ADS)

    Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.

    2016-12-01

    Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.

  16. Water

    USGS Publications Warehouse

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  17. Water resources data--North Dakota water year 2005, Volume 1. Surface water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2006-01-01

    Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  18. Water Resources Data, Louisiana, Water Year 2002

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.

    2003-01-01

    Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  19. Water resources data, Louisiana, water year 2004

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.

    2005-01-01

    Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  20. Water stress, water salience, and the implications for water supply planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  1. Water technology for specific water usage.

    PubMed

    Frimmel, Fritz H

    2003-01-01

    Water is the basis for life and culture. In addition to the availability of water its quality has become a major issue in industrialized areas and in developing countries as well. Water usage has to be seen as part of the hydrological cycle. As a consequence water management has to be sustainable. The aim of the contribution is to give water usage oriented quality criteria and to focus on the technical means to achieve them. Water is used for many purposes, ranging from drinking and irrigation to a broad variety of technical processes. Most applications need specific hygienic, chemical and/or physical properties. To meet these demands separation and reaction principles are applied. The reuse of water and the application of water treatment with little or no waste and by-product formation is the way to go. Membrane separation and advanced oxidation including catalytic reactions are promising methods that apply natural processes in sustainable technical performance. Thus elimination of specific water constituents (e.g. salts and metals, microorganisms) and waste water cleaning (e.g. pollutants, nutrients and organic water) can be done efficiently. Learning from nature and helping nature with appropriate technology is a convincing strategy for sustainable water management.

  2. Handheld isotope identification system

    DOEpatents

    Frankle, Christen M [Los Alamos, NM; Becker, John A [Alameda, CA; Cork,; Christopher, P [Pleasant Hill, CA; Madden, Norman W [Livermore, CA

    2007-01-09

    A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal. The crystal is located within a container pressurized with ultra-pure nitrogen, and the container is located within a cryostat under vacuum.

  3. International Journal of Quantum Chemistry. Quantum Chemistry Symposium Number 27: Proceedings of the International Symposium on Atomic, Molecular, and Condensed Matter Theory and Computational Methods Held in St. Augustine, Florida on 13-20 March 1993

    DTIC Science & Technology

    1993-03-20

    photochromic glasses, x - ray absorbing television glasses, extrudablc oriented ceramics, and the ultra-pure materials for optical fibers. While...quartz through the analysis of x - ray diffraction experiments. The repeating nature of the quartz crystal give, many diffraction peaks which allow the...fused silica, which serves as a backbone for most of the silicate glasses. Doris Evans, an x - ray crystallographer at Corning, built a model of fused

  4. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  5. Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  6. Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2004-01-01

    Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  7. Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.

    2002-01-01

    Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  8. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  9. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  10. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  11. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  12. Water Power Research | Water Power | NREL

    Science.gov Websites

    Water Power Research Water Power Research NREL conducts water power research; develops design tools Columbia River, Washington. Hydropower Research Hydropower technologies convert the energy of water moving ; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo

  13. Water Resources Data--Kansas, Water Year 2003

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2004-01-01

    Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  14. Water resources data, Kansas, water year 2004

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2005-01-01

    Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  15. Water Resources Data, Nebraska, Water Year 2003

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.; Miller, J.D.; Drudik, R.A.

    2004-01-01

    The Nebraska water resources data report for water year 2003 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 103 continuous and 5 crest-stage gaging stations, and 5 miscellaneous sites; stream water quality for 14 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 40 observation wells; and ground-water quality for 132 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, State, and Federal agencies.

  16. Water resources data, Nebraska, water year 2004

    USGS Publications Warehouse

    Hitch, D. E.; Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.

    2005-01-01

    The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.

  17. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.

    PubMed

    Kobayashi, Atsuko; Golash, Harry N; Kirschvink, Joseph L

    2016-06-01

    An outstanding biophysical puzzle is focused on the apparent ability of weak, extremely low-frequency oscillating magnetic fields to enhance cryopreservation of many biological tissues. A recent theory holds that these weak magnetic fields could be inhibiting ice-crystal nucleation on the nanocrystals of biological magnetite (Fe3O4, an inverse cubic spinel) that are present in many plant and animal tissues by causing them to oscillate. In this theory, magnetically-induced mechanical oscillations disrupt the ability of water molecules to nucleate on the surface of the magnetite nanocrystals. However, the ability of the magnetite crystal lattice to serve as a template for heterogeneous ice crystal nucleation is as yet unknown, particularly for particles in the 10-100 nm size range. Here we report that the addition of trace-amounts of finely-dispersed magnetite into ultrapure water samples reduces strongly the incidence of supercooling, as measured in experiments conducted using a controlled freezing apparatus with multiple thermocouples. SQUID magnetometry was used to quantify nanogram levels of magnetite in the water samples. We also report a relationship between the volume change of ice, and the degree of supercooling, that may indicate lower degassing during the crystallization of supercooled water. In addition to supporting the role of ice-crystal nucleation by biogenic magnetite in many tissues, magnetite nanocrystals could provide inexpensive, non-toxic, and non-pathogenic ice nucleating agents needed in a variety of industrial processes, as well as influencing the dynamics of ice crystal nucleation in many natural environments. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Water Resources Data--Nebraska, Water Year 2002

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.

    2002-01-01

    The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.

  19. Surface-Water Data, Georgia, Water Year 1999

    USGS Publications Warehouse

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  20. Water Resources Data, Alabama, Water Year 2004

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2005-01-01

    Water resources data for the 2004 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 19 partial-record or miscellaneous streamflow stations; (2) stage and content records for 16 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 21 streamflow-gaging stations, for 11 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 20 surface-water stations; (5) specific conductance and dissolved oxygen at 20 stations; (6) turbidity at 5 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observa-tion wells; and (9) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous sur-face-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  1. Water Resources Data, Alabama, Water Year 2005

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2006-01-01

    Water resources data for the 2005 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations and 23 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 125 streamflow-gaging stations and 67 ungaged streamsites; (4) water temperature at 179 surface-water stations; (5) specific conductance at 180 stations; (6) dissolved oxygen at 17 stations; (7) turbidity at 52 stations; (8) sediment data at 2 stations; (9) water-level records for 2 recording observation wells; and (10) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface- water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  2. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  3. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  4. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  5. Water Resources Data, Kansas, Water Year 2000

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2001-01-01

    Water-resources data for the 2000 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 144 complete-record gaging stations; elevation and contents at 19 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 8 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, and miscellaneous onsite water-quality data collected at 134 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  6. Photodegradation of perfluorooctanoic acid by graphene oxide-deposited TiO2 nanotube arrays in aqueous phase.

    PubMed

    Park, Kyungmin; Ali, Imran; Kim, Jong-Oh

    2018-07-15

    Perfluorooctanoic acid (PFOA) is a persistent organic pollutant in the environment with serious health risks including endocrine-disrupting characteristics, immunotoxicity, and causing developmental defects. The photocatalytic deposition has proven to be an inexpensive, effective, and sustainable technology for the removal of PFOA in the aqueous phase. Most investigations are conducted in ultrapure water at concentrations higher than those detected in actual water systems. A few studies deal with the toxicity of treated water. In this research, the photocatalytic degradation of PFOA, including photo-oxidative and photo-reductive degradation, is reviewed comprehensively. Compared to photo-oxidation, photo-reduction is more suitable for PFOA removal since it favors defluorination of PFOA and complete mineralization. We used graphene oxide/TiO 2 nanotubes array for photocatalytic degradation of PFOA. The effects of key parameters on the photocatalytic degradation and defluorination processes of PFOA, such as initial PFOA concentration, initial pH of the solution, an initial temperature of the solution, and external bias constant potential, are addressed. We observed that at pH 3 the PFOA degradation was around 83% in 4 h, and at 75 °C almost complete PFOA degradation was observed in 2.5 h. In photoelectrocatalytic process at 2.0 V external bias 97% of PFOA was degraded in 4 h. The mechanisms of the PFOA photodegradation process are also discussed in detail. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of CoOx/BiVO4 photocatalysts for the degradation of propyl paraben.

    PubMed

    Petala, Athanasia; Noe, Antigoni; Frontistis, Zacharias; Drivas, Charalampos; Kennou, Stella; Mantzavinos, Dionissios; Kondarides, Dimitris I

    2018-03-13

    Cobalt-promoted bismuth vanadate photocatalysts of variable cobalt content (0-1.0 wt.%) were synthesized and characterized with various techniques including BET, XRD, DRS, XPS and TEM. BiVO 4 exists in the monoclinic scheelite structure, while cobalt addition improves the absorbance in the visible region although it does not affect the band gap energy of BiVO 4 . Cobalt exists in the form of well-dispersed Co 3 O 4 nanocrystallites, which are in intimate contact with the much larger BiVO 4 nanoparticles. Photocatalytic activity was evaluated for the degradation of propyl paraben (PP) under simulated solar radiation. The activity of pristine BiVO 4 is significantly improved adding small amounts of cobalt and is maximized for the catalyst containing 0.5 wt.% Co. PP degradation in ultrapure pure water increases with increasing photocatalyst loading (100 mg/L to 1.5 g/L), and decreasing PP concentration (1600-200 μg/L). Experiments in bottled water, as well as in pure water spiked with bicarbonate and chloride ions showed little effect of non-target inorganics on degradation. Conversely, degradation is severely impeded in secondary treated wastewater. The enhancement of the photocatalytic activity of the synthesized catalysts is attributed to efficient electron-hole separation, achieved at the p-n junction formed between the p-type Co 3 O 4 and the n-type BiVO 4 semiconductors. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Water Resources Data, Alabama, Water Year 2002

    USGS Publications Warehouse

    Pearman, J.L.; Stricklin, V.E.; Psinakis, W.L.

    2003-01-01

    Water resources data for the 2002 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 41 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 47 stations; (3) water-quality records for 12 streamflow-gaging stations, for 17 ungaged streamsites, and for 2 precipitation stations; (4) water temperature at 14 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 21 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  9. Water Resources Data, Alabama, Water Year 2003

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2004-01-01

    Water resources data for the 2003 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 130 streamflow-gaging stations, for 29 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 46 stations; (3) water-quality records for 12 streamflow-gaging stations, for 29 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 12 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 9 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  10. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.

    PubMed

    Kobayashi, Atsuko; Horikawa, Masamoto; Kirschvink, Joseph L; Golash, Harry N

    2018-05-22

    In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe 3 O 4 ) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect. Copyright © 2018 the Author(s). Published by PNAS.

  11. Water resources data, Wyoming, water year 2004; Volume 1. Surface water; with List of discontinued and active surface-water, water-quality, sediment, and biological stations

    USGS Publications Warehouse

    Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.

    2005-01-01

    Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  12. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  13. The DarkSide experiment

    NASA Astrophysics Data System (ADS)

    Bottino, B.; Aalseth, C. E.; Acconcia, G.; Acerbi, F.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A.; Ampudia, P.; Ardito, R.; Arisaka, K.; Arnquist, I. J.; Asner, D. M.; Back, H. O.; Baldin, B.; Batignani, G.; Biery, K.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Bunker, R.; Bussino, S.; Buttafava, M.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Calandri, N.; Calaprice, F.; Calvo, J.; Campajola, L.; Canci, N.; Candela, A.; Cantini, C.; Cao, H.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Citterio, M.; Cocco, A. G.; Corgiolu, S.; Covone, G.; Crivelli, P.; D'Angelo, D.; D'Incecco, M.; Daniel, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Guido, G.; De Vincenzi, M.; Demontis, P.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dromia, I.; Dussoni, S.; Edkins, E.; Empl, A.; Fan, A.; Ferri, A.; Filip, C. O.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Gendotti, A.; Ghioni, M.; Ghisi, A.; Giagu, S.; Gibertoni, G.; Giganti, C.; Giorgi, M.; Giovannetti, G. K.; Gligan, M. L.; Gola, A.; Goretti, A.; Granato, F.; Grassi, M.; Grate, J. W.; Gromov, M.; Guan, M.; Guardincerri, Y.; Gulinatti, A.; Haaland, R. K.; Hackett, B.; Harrop, B.; Herner, K.; Hoppe, E. W.; Horikawa, S.; Hungerford, E.; Ianni, Al.; Ianni, An.; Ivashchuk, O.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M. W.; Lissia, M.; Li, X.; Lodi, G. U.; Lombardi, P.; Longo, G.; Loverre, P.; Luitz, S.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I.; Mais, L.; Mandarano, A.; Mapelli, L.; Marcante, M.; Mari, S.; Mariani, M.; Maricic, J.; Marinelli, M.; Marini, L.; Martoff, C. J.; Mascia, M.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Miller, J. D.; Moioli, S.; Monasterio, S.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Morrocchi, M.; Mosteiro, P.; Mount, B.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Napolitano, J.; Nelson, A.; Nosov, V.; Nurakhov, N. N.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pantic, E.; Paoloni, E.; Parmeggiano, S.; Paternoster, G.; Pazzona, F.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perasso, S.; Peronio, P.; Perotti, F.; Perruzza, R.; Piemonte, C.; Pilo, F.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Radics, B.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Rech, I.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A.; Rescigno, M.; Ricotti, M.; Riffard, Q.; Rizzardini, S.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rountree, D.; Rubbia, A.; Ruggeri, A.; Sablone, D.; Saggese, P.; Salatino, P.; Salemme, L.; Sands, W.; Sangiorgio, S.; Sant, M.; Santorelli, R.; Sanzaro, M.; Savarese, C.; Sechi, E.; Segreto, E.; Semenov, D.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Shields, E.; Simeone, M.; Singh, P. N.; Skorokhvatov, M.; Smallcomb, M.; Smirnov, O.; Sokolov, A.; Sotnikov, A.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tamborini, D.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E.; Vacca, A.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wilhelmi, J.; Wojcik, M.; Wu, S.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zappa, F.; Zappalà, G.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zullo, A.; Zullo, M.; Zuzel, G.

    2017-01-01

    DarkSide is a dark matter direct search experiment at Laboratori Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear recoils possibly induced by hypothetical dark matter particles, which are supposed to be neutral, massive (m>10{ GeV}) and weakly interactive (WIMP). The dark matter detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid argon. The TPC is placed inside a muon and a neutron active vetoes to suppress the background. Using argon as active target has many advantages, the key features are the strong discriminant power between nuclear and electron recoils, the spatial reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50 is filled with ultra-pure argon, extracted from underground sources, and from April 2015 it is taking data in its final configuration. When combined with the preceding search with an atmospheric argon target, it is possible to set a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10^{-44} cm ^2 for a WIMP mass of 100 GeV/ c^2 . The next phase of the experiment, DarkSide-20k, will be the construction of a new detector with an active mass of ˜20 tons.

  14. Water, Water Everywhere: Phase Diagrams of Ordinary Water Substance

    ERIC Educational Resources Information Center

    Glasser, L.

    2004-01-01

    The full phase diagram of water in the form of a graphical representation of the three-dimensional (3D) PVT diagram using authentic data is presented. An interesting controversy regarding the phase behavior of water was the much-touted proposal of a solid phase of water, polywater, supposedly stable under atmospheric conditions.

  15. Cleaning of titanium substrates after application in a bioreactor.

    PubMed

    Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C

    2015-03-10

    Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.

  16. Water, Water, Everywhere.

    ERIC Educational Resources Information Center

    Selinger, Ben

    1979-01-01

    Water is a major component in many consumer products. Azeotropic distillation of products such as detergents and foodstuffs to form a two-phase distillate is a simple experimental method to determine the percentage of water in the product. (Author/GA)

  17. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  18. Assess water scarcity integrating water quantity and quality

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  19. Water Resources Data, Kansas, Water Year 2001

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.

    2002-01-01

    Water-resources data for the 2001 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 145 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 140 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  20. Water Resources Data, Kansas, Water Year 2002

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2003-01-01

    Water-resources data for the 2002 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 149 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 142 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  1. Water Resources Data, Kansas, Water Year 1999

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2000-01-01

    Water-resources data for the 1999 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 143 gaging stations; elevation and contents at 19 watershed lakes and reservoirs; and water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 4 stations. Also included are data for 26 high-flow and 2 low-flow partial-record stations; and 2 chemical quality of precipitation stations. Miscellaneous onsite water-quality data were collected at 132 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with State, local, and Federal agencies in Kansas.

  2. Water resources data Virginia water year 2005 Volume 1. Surface-water discharge and surface-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  3. Water resources data, Utah, water year 1989

    USGS Publications Warehouse

    ReMillard, M.D.; Herbert, L.R.; Sandberg, G.W.; Birdwell, G.A.

    1990-01-01

    Water resources data for the 1989 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water quality of ground water. This report contains discharge records for 185 gaging stations; stage and contents for 22 lakes and reservoirs; water quality for 21 hydrologic stations and 217 wells; miscellaneous temperature measurements and field determinations for 147 stations; and water levels for 29 observations wells. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  4. Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes

    PubMed Central

    2014-01-01

    Carbon nanotubes are a natural choice as gas sensor components given their high surface to volume ratio, electronic properties, and capability to mediate chemical reactions. However, a realistic assessment of the interaction of the tube wall and the adsorption processes during gas phase reactions has always been elusive. Making use of ultraclean single-walled carbon nanotubes, we have followed the adsorption kinetics of NO2 and found a physisorption mechanism. Additionally, the adsorption reaction directly depends on the metallic character of the samples. Franck–Condon satellites, hitherto undetected in nanotube–NOx systems, were resolved in the N 1s X-ray absorption signal, revealing a weak chemisorption, which is intrinsically related to NO dimer molecules. This has allowed us to identify that an additional signal observed in the higher binding energy region of the core level C 1s photoemission signal is due to the C=O species of ketene groups formed as reaction byproducts . This has been supported by density functional theory calculations. These results pave the way toward the optimization of nanotube-based sensors with tailored sensitivity and selectivity to different species at room temperature. PMID:24404865

  5. Ultrapure glass optical waveguide: Development in microgravity by the sol gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.; Debsikdar, J. C.; Beam, T.

    1983-01-01

    The sol-gel process for the preparation of homogeneous gels in three binary oxide systems was investigated. The glass forming ability of certain compositions in the selected oxide systems (SiO-GeO2, GeO2-PbO, and SiO2-TiO2) were studied based on their potential importance in the design of optical waveguide at longer wavelengths.

  6. A method for Removing Surface Contamination on Ultra-pure Copper Spectrometer Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Seifert, Allen; Aalseth, Craig E.

    Spectrometers for the lowest-level radiometric measurements require materials of extreme radiopurity. Measurements of rare nuclear decays, e.g. neutrinoless double-beta decay, can require construction and shielding materials with bulk radiopurity reaching one micro-Becquerel per kilogram or less. When such extreme material purity is achieved, surface contamination, particularly solid daughters in the natural radon decay chains, can become the limiting background. High-purity copper is an important material for ultra-low-background spectrometers and thus is the focus of this work. A method for removing surface contamination at very low levels without attacking the bulk material is described. An assay method using a low-background proportionalmore » counter made of the material under examination is employed, and the resulting preliminary result of achievable surface contamination levels is presented.« less

  7. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  8. Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Barker, R.G.; Robinson, J.B.

    2003-01-01

    Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  9. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  10. Water conservation in irrigation can increase water use

    PubMed Central

    Ward, Frank A.; Pulido-Velazquez, Manuel

    2008-01-01

    Climate change, water supply limits, and continued population growth have intensified the search for measures to conserve water in irrigated agriculture, the world's largest water user. Policy measures that encourage adoption of water-conserving irrigation technologies are widely believed to make more water available for cities and the environment. However, little integrated analysis has been conducted to test this hypothesis. This article presents results of an integrated basin-scale analysis linking biophysical, hydrologic, agronomic, economic, policy, and institutional dimensions of the Upper Rio Grande Basin of North America. It analyzes a series of water conservation policies for their effect on water used in irrigation and on water conserved. In contrast to widely-held beliefs, our results show that water conservation subsidies are unlikely to reduce water use under conditions that occur in many river basins. Adoption of more efficient irrigation technologies reduces valuable return flows and limits aquifer recharge. Policies aimed at reducing water applications can actually increase water depletions. Achieving real water savings requires designing institutional, technical, and accounting measures that accurately track and economically reward reduced water depletions. Conservation programs that target reduced water diversions or applications provide no guarantee of saving water. PMID:19015510

  11. Potentially improved glasses from space environment

    NASA Technical Reports Server (NTRS)

    Nichols, R.

    1977-01-01

    The benefits of processing glasses in a low-gravity space environment are examined. Containerless processing, the absence of gravity driven convection, and lack of sedimentation are seen as potential advantages. Potential applications include the formation of glass-ceramics with a high content of active elements for ferromagnetic devices, the production of ultrapure chalcogenide glasses for laser windows and IR fiber optics, and improved glass products for use in optical systems and laser fusion targets.

  12. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  13. Bottled Water Mania: Americas Misguided Infatuation with Bottled Water over Tap Water

    DTIC Science & Technology

    2010-05-01

    AU/ACSC/BROWN, S/AY10 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY Bottled Water Mania: America’s Misguided...Infatuation with Bottled Water over Tap Water by Seiho P. Brown, LCDR, U.S. Navy A Research Report Submitted to the Faculty In...iii Abstract The purpose of this paper is to analyze the tendency for American people to drink bottled water over tap water even though it costs

  14. Magnetic water-in-water droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Navi, Maryam; Abbasi, Niki; Tsai, Scott

    2017-11-01

    Aqueous two-phase systems (ATPS) have shown to be ideal candidates for replacing the conventional water-oil systems used in droplet microfluidics. We use an ATPS of Polyethylene Glycol (PEG) and Dextran (DEX) for microfluidic generation of magnetic water-in-water droplets. As ferrofluid partitions to DEX phase, there is no significant diffusion of ferrofluid at the interface of the droplets, rendering generation of magnetic DEX droplets in a non-magnetic continuous phase of PEG possible. In this system, both phases are water-based and highly biocompatible. We microfluidically generate magnetic DEX droplets at a flow-focusing junction in a jetting regime. We sort the droplets based on their size by placing a permanent magnet downstream of the droplet generation region, and show that the deflection of droplets is in good agreement with a mathematical model. We also show that the magnetic DEX droplets can be stabilized by lysozyme and be used for separation of single cell containing water-in-water droplets. This system of magnetic water-in-water droplet manipulation may find biomedical applications such as single-cell studies and drug delivery.

  15. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2016-08-06

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  16. Some Interesting Facts about Water and Water Conservation

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  17. Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.

    2002-01-01

    Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  18. Water resources data, Indiana, water year 1982

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1983-01-01

    Water resources data for the 1982 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 176 gaging stations, stage and contents for 9 lakes and reservoirs, releases from 8 flood control reservoirs, water quality for 26 gaging stations, and water levels for 87 observation wells. Also included are 71 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  19. Water resources data, Indiana, water year 1983

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1984-01-01

    Water resources data for the 1983 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations, stage and contents for 9 lake and reservoirs, releases from 7 flood control reservoirs, water quality for 5 gaging stations, and water levels for 84 observation wells. Also included are 23 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  20. Jumping of water striders on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jaehak; Jablonski, Piotr; Kim, Ho-Young

    2012-11-01

    Small insects such as water striders, springtails, fishing spiders freely move on water by adopting various modes of locomotion, such as rowing, galloping, jumping and meniscus-climbing. As the physics of jumping have not yet been fully understood among those ways of semi-aquatic propulsion, here we present the results of a combined experimental and theoretical investigation of the dynamics of water striders leaping off water. We first image and analyze the trajectories of the legs and body of jumping water striders of three different species with a high-speed camera. We then theoretically compute the forces acting on the body by considering the capillary interaction between the flexible legs and deforming water meniscus. Our theory enables us to predict the maximum take-off speed for given leg lengths. The experimental measurements suggest that the water striders drive their legs near the optimal speed to gain the maximum take-off speed.

  1. Global monthly water scarcity: blue water footprints versus blue water availability.

    PubMed

    Hoekstra, Arjen Y; Mekonnen, Mesfin M; Chapagain, Ashok K; Mathews, Ruth E; Richter, Brian D

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.

  2. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  3. Water Resources Data for Alaska, Water Year 1996

    USGS Publications Warehouse

    Linn, K.R.; Shaw, S.K.; Swanner, W.C.; Rickman, R.L.; Schellekens, M.F.

    1997-01-01

    Water resources data for the 1996 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 85 gaging stations; stage or contents only at 5 gaging stations; water quality at 19 gaging stations; and water levels for 49 observation wells. Also included are data for 56 crest-stage partial-record stations and 2 lakes. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  4. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  5. Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  6. Water dependency and water exploitation at global scale as indicators of water security

    NASA Astrophysics Data System (ADS)

    De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.

    2015-12-01

    A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.

  7. Water resources data for Kansas, water year 1973; Part 2, Water quality records

    USGS Publications Warehouse

    Diaz, A.M.; Albert, C.D.

    1974-01-01

    Water-resources data for the 1973 water year for Kansas include records of data for the chemical and physical characteristics of surface and ground water. Data on the quality of surface water (chemical, microbiological, temperature, and sediment) were collected from designated sampling sites at predetermined intervals such as once daily, weekly, monthly, or less frequently, and at some sites data were recorded on punched paper tape at 60-minute intervals. Records are given for 70 sampling stations of which 7 are partial-record stations, and for 51 miscellaneous sites. Miscellaneous temperatures of streamflow are given for 77 gaging stations, and records of chemical analyses are given for 224 ground-water sites. Locations of surface water-quality stations are shown in Figure 1, page 2. Records for pertinent water-quality stations in bordering States are also included. The records were collected by the Water Resources Division of the U.S. Geological Survey under the direction of C. W. Lane, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Kansas. Kansas District personnel who contributed significantly to the collection and preparation of data included in this report were: B. L. Day, L. R. Shelton, M. L. Penny, L. R. Stringer, and D. J. Dark (Kansas State Department of Health).The Geological Survey has published records of chemical quality, suspended sediment, and water temperatures since 1941 in annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Beginning with the 1964 water year, water-quality records also have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. These records will be published later in Geological

  8. Water Resources Data, Florida, Water Year 2003 Volume 2A: South Florida Surface Water

    USGS Publications Warehouse

    Price, C.; Woolverton, J.; Overton, K.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  9. Water Resources Data, Florida, Water Year 2003 Volume 2B: South Florida Ground Water

    USGS Publications Warehouse

    Prinos, S.; Irvin, R.; Byrne, M.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  10. National water-information clearinghouse activities; ground-water perspective

    USGS Publications Warehouse

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  11. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability

    PubMed Central

    Hoekstra, Arjen Y.; Mekonnen, Mesfin M.; Chapagain, Ashok K.; Mathews, Ruth E.; Richter, Brian D.

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption. PMID:22393438

  12. Water microbiology. Bacterial pathogens and water.

    PubMed

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  13. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0more » of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of

  14. Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages

    MedlinePlus

    ... verifies that the plant's product water and operational water supply are obtained from an approved source; inspects washing and sanitizing procedures; inspects bottling operations; and determines whether ... water and product water for contaminants. Americans like bottled ...

  15. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  16. Water repellents and water-repellent preservatives for wood

    Treesearch

    R. Sam Williams; William C. Feist

    1999-01-01

    Water repellents and water-repellent preservatives increase the durability of wood by enabling the wood to repel liquid water. This report focuses on water-repellent finishes for wood exposed outdoors above ground. The report includes a discussion of the effects of outdoor exposure on wood, the characteristics of water repellent and water-repellent preservative...

  17. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOEpatents

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  18. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  19. Water Resources Data, West Virginia, Water Year 2003

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2004-01-01

    Water-resources data for the 2003 water year for West Virginia consists of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 70 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 16 crest-stage partial-record stations; stage records for 6 detention reservoirs; water-quality records for 2 stations; and water-level records for 8 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water data were collected at various sites, not involved in the systematic data-collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  20. Water resources data-West Virginia, water year 2004

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2005-01-01

    Water-resources data for the 2004 water year for West Virginia consist of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 17 crest-stage partial-record stations; stage records for 14 detention reservoirs; water-quality records for 2 stations; and water-level records for 10 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water-quality data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  1. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  2. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  3. Water Resources Data for California, Water Year 1987. Volume 5. Ground-water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 786 observation wells and water-quality data for 168 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Water Resources Data for California, Water Year 1986. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Keeter, G.L.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 765 observation wells and water-quality data for 174 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Training Rats Using Water Rewards Without Water Restriction

    PubMed Central

    Reinagel, Pamela

    2018-01-01

    High-throughput behavioral training of rodents has been a transformative development for systems neuroscience. Water or food restriction is typically required to motivate task engagement. We hypothesized a gap between physiological water need and hedonic water satiety that could be leveraged to train rats for water rewards without water restriction. We show that when Citric Acid (CA) is added to water, female rats drink less, yet consume enough to maintain long term health. With 24 h/day access to a visual task with water rewards, rats with ad lib CA water performed 84% ± 18% as many trials as in the same task under water restriction. In 2-h daily sessions, rats with ad lib CA water performed 68% ± 13% as many trials as under water restriction. Using reward sizes <25 μl, rats with ad lib CA performed 804 ± 285 trials/day in live-in sessions or 364 ± 82 trials/day in limited duration daily sessions. The safety of CA water amendment was previously shown for male rats, and the gap between water need and satiety was similar to what we observed in females. Therefore, it is likely that this method will generalize to male rats, though this remains to be shown. We conclude that at least in some contexts rats can be trained using water rewards without water restriction, benefitting both animal welfare and scientific productivity. PMID:29773982

  6. The rain-watered lawn: Informing effective lawn watering behavior.

    PubMed

    Survis, Felicia D; Root, Tara L

    2017-09-01

    Water restrictions are a common municipal water conservation strategy to manage outdoor water demand, which generally represents more than 50% of total urban-suburban water use. Although water restrictions are designed to limit the frequency of lawn watering, they do not always result in actual water savings. The project described here tested a weather-based add-on water conservation strategy in a South Florida suburban community to determine if it promoted more effective lawn watering behavior than mandatory water restrictions alone. The "rain-watered lawn" pilot program was designed to inform people of recent rainfall and how that contributed to naturally watering their lawns and offset the need to irrigate as often, or in some cases, at all. The goal of the study was to determine if homeowners would water more conservatively than with water restrictions alone if they were also informed of recent rainfall totals. The results show that households in neighborhoods where the add-on rain watered lawn strategy was implemented watered up to 61% less frequently than the control neighborhoods with water restrictions alone. This study demonstrates that weather-based information strategies can be effective for conservation and suggests that a program that focuses on coupling lawn watering behavior with actual climate variables such as rainfall can yield significant water savings. This study holds significance for municipal areas with water restrictions and provides a model to help improve outdoor water conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Water tight.

    PubMed

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use

  8. Water Resources Data for California, Water Year 1988. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water-quality in wells. Volume 5 contains water levels for 980 observation wells and water-quality data for 239 observation monitoring wells. These data represent that part of the National water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  9. Selected Works in Water Supply, Water Conservation and Water Quality Planning.

    DTIC Science & Technology

    1981-05-01

    of change (1970- 1980 ). The Institute’s work reflects the fact that the Corps of Engineers is not a novice in the business of providing water supply for...Urban Water Supply of the Task Force was chaired by the Secretary of the Army. The Subcommittee produced a report on 6 June 1980 evaluating urban water...persuant to the President’s Water Pvizcy message to Congress in 1978. The two other reports were published in 1980 and are discussed below. IWR staff

  10. Water resources data, Kentucky. Water year 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at amore » regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.« less

  11. Global consumptive water use for crop production: The importance of green water and virtual water

    NASA Astrophysics Data System (ADS)

    Liu, Junguo; Zehnder, Alexander J. B.; Yang, Hong

    2009-05-01

    Over the last 4 decades the use of blue water has received increasing attention in water resources research, but little attention has been paid to the quantification of green water in food production and food trade. In this paper, we estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface. The results show that the global CWU of these crops amounted to 3823 km3 a-1 for the period 1998-2002. More than 80% of this amount was from green water. Around 94% of the world crop-related virtual water trade has its origin in green water, which generally constitutes a low-opportunity cost of green water as opposed to blue water. High levels of net virtual water import (NVWI) generally occur in countries with low CWU on a per capita basis, where a virtual water strategy is an attractive water management option to compensate for domestic water shortage for food production. NVWI is constrained by income; low-income countries generally have a low level of NVWI. Strengthening low-income countries economically will allow them to develop a virtual water strategy to mitigate malnutrition of their people.

  12. Water Microbiology. Bacterial Pathogens and Water

    PubMed Central

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  13. Natural mineral waters, curative-medical waters and their protection

    NASA Astrophysics Data System (ADS)

    Fricke, M.

    1993-10-01

    In Europe different types of water are marketed, each strictly defined by EC Directive 80/777 (Natural Mineral Water, Spring and Table Water) or 80/778 (Drinking Water). In Germany, an additional type of water is common in the market: curative/medical water. Product quality and safety, registration as medicine, and pharmaceutical control are defined by the German Federal Medicine Act. A medical water is treated as any other medicine and may be sold only in pharmacies. The use of any water in Germany is controlled and strictly regulated by the Federal Water Act (Fricke 1981). The following requirements are set by the act: (1) No water use without a permit, which is limited in time and quantity. (2) No single or juristic person may own water. (3) Water resources of public interest and their recharge areas are to be protected by the definition of water protection zones. (Natural mineral water is not of public interest and therefore is not required to be protected by the definition of water protection zones, although it represents a market value of more than US2 billion. Medical water is of public interest). The definition of water protection zones impacts private property rights and has to be handled carefully. In order to protect water resources, sometimes the economic basis of a traditional industrial and/or agricultural infrastructure is destroyed. The concerns and needs all citizens, including industry, must be considered in analyzing the adequacy of water protection zones.

  14. Heat Pipe and Thermal Energy Storage and Corrosion Studies (1988)

    DTIC Science & Technology

    1989-06-01

    of air environment melting and end cap TIG welding [2]. Because of its severity, vacuum thermal cycling of the salt clad capsules between salt eutectic...melting of the salt under an inert gas atmosphere and welding of the specimen capsules by electron beam welding in contrast to previously used methods...electron beam welding . However, no ill effects were believed to have occurred on the overall testing program. Ultrapure fluoride salts LiF, MgF2, NaF

  15. Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.; McGreevy, T. E.

    This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.

  16. Two-Step Vapor/Liquid/Solid Purification

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1986-01-01

    Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.

  17. Water Resources Data, New Jersey, Water Year 2002, Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Spehar, A.B.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.; Holzer, G.K.

    2003-01-01

    Water-resources data for the 2002 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 93 gaging stations; tide summaries at 31 gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 104 crest-stage partial-record stations and stage-only at 31 tidal crest-stage gages. Locations of these sites are shown in figures 8-11. Additional water data were collected at various sites that are not part of the systematic data-collection program. Discharge measurements were made at 201 low-flow partial-record stations and 121 miscellaneous sites.

  18. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, H.; Hammer, M. U.; Reuter, S.

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stablemore » reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.« less

  19. Determination of phthalate esters in soil using a quick, easy, cheap, effective, rugged, and safe method followed by GC-MS.

    PubMed

    Liu, Qianjun; Chen, Di; Wu, Jiyuan; Yin, Guangcai; Lin, Qintie; Zhang, Min; Hu, Huawen

    2018-04-01

    A quick, easy, cheap, effective, rugged, and safe procedure was designed to extract pesticide residues from fruits and vegetables with a high percentage of water. It has not been used extensively for the extraction of phthalate esters from sediments, soils, and sludges. In this work, this procedure was combined with gas chromatography with mass spectrometry to determine 16 selected phthalate esters in soil. The extraction efficiency of the samples was improved by ultrasonic extraction and dissolution of the soil samples in ultra-pure water, which promoted the dispersion of the samples. Furthermore, we have simplified the extraction step and reduced the risk of organic solvent contamination by minimizing the use of organic solvents. Different extraction solvents and clean-up adsorbents were compared to optimize the procedure. Dichloromethane/n-hexane (1:1, v/v) and n-hexane/acetone (1:1, v/v) were selected as the extractants from the six extraction solvents tested. C18/primary secondary amine (1:1, m/m) was selected as the sorbent from the five clean-up adsorbents tested. The recoveries from the spiked soils ranged from 70.00 to 117.90% with relative standard deviation values of 0.67-4.62%. The proposed approach was satisfactorily applied for the determination of phthalate esters in 12 contaminated soil samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis.

    PubMed

    Jain, Rajeev; Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Ch, Ratnasekhar; Murthy, R C; Khan, Haider A

    2013-11-01

    A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Current Status and Future Prospects of the SNO+ Experiment

    DOE PAGES

    Andringa, S.

    2016-01-01

    SNO+ ismore » a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of a search for the neutrinoless double-beta decay (0 ν β β ) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0 ν β β Phase I is foreseen for 2017.« less

  2. Fluidized Bed Membrane Reactors for Ultra Pure H₂ Production--A Step forward towards Commercialization.

    PubMed

    Helmi, Arash; Fernandez, Ekain; Melendez, Jon; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; van Sint Annaland, Martin

    2016-03-19

    In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H₂ partial pressure differences. The membranes showed very high H₂ fluxes (3.89 × 10(-6) mol·m(-2)·Pa(-1)·s(-1) at 400 °C and 1 atm pressure difference) with a H₂/N₂ ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell.

  3. Rapid and sensitive ultra-high-pressure liquid chromatography method for quantification of antichagasic benznidazole in plasma: application in a preclinical pharmacokinetic study.

    PubMed

    Davanço, Marcelo Gomes; de Campos, Michel Leandro; Peccinini, Rosângela Gonçalves

    2015-07-01

    Benznidazole (BNZ) and nifurtimox are the only drugs available for treating Chagas disease. In this work, we validated a bioanalytical method for the quantification of BNZ in plasma aimed at improving sensitivity and time of analysis compared with the assays already published. Furthermore, we demonstrated the application of the method in a preclinical pharmacokinetic study after administration of a single oral dose of BNZ in Wistar rats. A Waters® Acquity UHPLC system equipped with a UV-vis detector was employed. The method was established using an Acquity® UHPLC HSS SB C18 protected by an Acquity® UHPLC HSS SB C18 VanGuard guard column and detection at 324 nm. The mobile phase consisted of ultrapure water-acetonitrile (65:35), and elution was isocratic. The mobile phase flow rate was 0.55 mL/min, the volume of injection was 1 μL, and the run time was just 2 min. The samples were kept at 25°C until injection and the column at 45°C for the chromatographic separation. The sample preparation was performed by a rapid protein precipitation with acetonitrile. The linear concentration range was 0.15-20 µg/mL. The pharmacokinetic parameters of BNZ in rats were determined and the method was considered sensitive, fast and suitable for application in pharmacokinetic studies. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Water Resources Data, Florida, Water Year 2003, Volume 1A: Northeast Florida Surface Water

    USGS Publications Warehouse

    ,

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  5. Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water

    USGS Publications Warehouse

    George, H.G.; Nazarian, A.P.; Dickerson, S.M.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  6. Water Resources Data, Georgia, 2000, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2000

    USGS Publications Warehouse

    McCallum, Brian E.; Hickey, Andrew C.

    2000-01-01

    Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  7. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  8. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  9. PREFACE: Water at interfaces Water at interfaces

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  10. Branding water

    PubMed Central

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-01-01

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water – specifically recycled water, desalinated water, tap water and rainwater from personal rainwater tanks – are each perceived very differently by the public, (2) external events out of the control of water managers, such as serious droughts or floods, had a minimal effect on people's perceptions of water, (3) perceptions of water were stable over time, and (4) certain water attributes are anticipated to be more effective to use in public communication campaigns aiming at increasing public acceptance for drinking purposes. The results from this study can be used by a diverse range of water stakeholders to increase public acceptance and adoption of water from alternative sources. PMID:24742528

  11. Branding water.

    PubMed

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-06-15

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water - specifically recycled water, desalinated water, tap water and rainwater from personal rainwater tanks - are each perceived very differently by the public, (2) external events out of the control of water managers, such as serious droughts or floods, had a minimal effect on people's perceptions of water, (3) perceptions of water were stable over time, and (4) certain water attributes are anticipated to be more effective to use in public communication campaigns aiming at increasing public acceptance for drinking purposes. The results from this study can be used by a diverse range of water stakeholders to increase public acceptance and adoption of water from alternative sources. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Indian water rights settlements and water management innovations: The role of the Arizona Water Settlements Act

    NASA Astrophysics Data System (ADS)

    Bark, Rosalind H.; Jacobs, Katharine L.

    2009-05-01

    In the American southwest, over-allocated water supplies, groundwater depletion, and potential climate change impacts are major water management concerns. It may therefore seem counterintuitive that the resolution of outstanding senior tribal water claims, essentially reallocating finite water supplies to tribes, could support improved water supply reliability for many water users as is the case with the 2004 Arizona Water Settlements Act. The large size of the settlement and its multiple components translate to significant impacts on water policy in Arizona. Key water management solutions incorporated into the settlement and associated legislation have expanded the water manager's "toolbox" and are expected to enhance water supply reliability both within and outside Arizona's active management areas. Many of these new tools are transferable to water management applications in other states.

  13. [Influence of water source switching on water quality in drinking water distribution system].

    PubMed

    Wang, Yang; Niu, Zhang-bin; Zhang, Xiao-jian; Chen, Chao; He, Wen-jie; Han, Hong-da

    2007-10-01

    This study investigates the regularity of the change on the physical and chemical water qualities in the distribution system during the process of water source switching in A city. Due to the water source switching, the water quality is chemical-astable. Because of the differences between the two water sources, pH reduced from 7.54 to 7.18, alkalinity reduced from 188 mg x L(-1) to 117 mg x L(-1), chloride (Cl(-)) reduced from 310 mg x L(-1) to 132 mg x L(-1), conductance reduced from 0.176 S x m(-1) to 0.087 S x m(-1) and the ions of calcium and magnesium reduced to 15 mg x L(-1) and 11 mg x L(-1) respectively. Residual chlorine changed while the increase of the chlorine demand and the water quantity decreasing at night, and the changes of pH, alkalinity and residual chlorine brought the iron increased to 0.4 mg x L(-1) at the tiptop, which was over the standard. The influence of the change of the water parameters on the water chemical-stability in the drinking water distribution system is analyzed, and the controlling countermeasure is advanced: increasing pH, using phosphate and enhancing the quality of the water in distribution system especially the residual chlorine.

  14. Accounting for Water Insecurity in Modeling Domestic Water Demand

    NASA Astrophysics Data System (ADS)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  15. Water resources data for Texas, water year 1993. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1993-11-01

    Water-resources data for the 1993 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 771 observation wells and water-quality data for 226 monitoring wells.

  16. Water resources data for Texas, water year 1996. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1995-30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1996-11-22

    Water-resources data for the 1996 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 845 observation wells and 187 water-quality data for monitoring wells.

  17. Water resources data for Texas, water year 1994. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1994-12-12

    Water-resources data for the 1994 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 698 observation wells and water-quality data for 97 monitoring wells.

  18. Water resources data for Texas, water year 1997. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1996-30 September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1997-12-03

    Water-resources data for the 1997 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 790 observation wells and 245 water-quality data for monitoring wells.

  19. Water resources data for Texas, water year 1995. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1994-30 September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1995-12-18

    Water-resources data for the 1995 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 919 observation wells and 226 water-quality data for monitoring wells.

  20. Impact of RO-desalted water on distribution water qualities.

    PubMed

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  1. Clean Water State Revolving Fund (CWSRF): Water Conservation

    EPA Pesticide Factsheets

    The CWSRF can provide financial assistance for water conservation projects that reduce the demand for POTW capacity through reduced water consumption (i.e., water efficiency), as well as water reuse and precipitation harvesting.

  2. Inferring foliar water uptake using stable isotopes of water.

    PubMed

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  3. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  4. DISINFECTION OF WATER: DRINKING WATER, RECREATIONAL WATER, AND WASTEWATER

    EPA Science Inventory

    This chapter describes and categorizes the methodology used for disinfection of drinking water, recreational water and wastewater including wastewater sludges. It largely is a literature summary and references articles covering the years of 1939 through 1999, with a few reference...

  5. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria.

    PubMed

    Oksińska, Małgorzata P; Magnucka, Elżbieta G; Lejcuś, Krzysztof; Pietr, Stanisław J

    2016-03-01

    Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21-7.49 log10 cfu g(-1) of water absorbed by the SAP and decreased by 1.35-1.61 log10 units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk's salt medium, and biodegradation activity was equal to 2.95 and 6.72 μg of SAP μg(-1) of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively.

  6. Water resources data West Virginia water wear 2001

    USGS Publications Warehouse

    Ward, S.M.; Taylor, B.C.; Crosby, G.R.

    2002-01-01

    Water-resources data for the 2001 water year for West Virginia consist of records of discharge and water quality of streams and water levels of observation wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 7 streamflow-gaging stations; annual maximum discharge at 18 crest-stage partial-record stations; water-quality records for 4 stations; and water-level records for 10 observation wells. Locations of these sites are shown on figures 4 and 5. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  7. Utah water use data: Public water supplies, 1979

    USGS Publications Warehouse

    Hooper, David; Schwarting, Richard

    1981-01-01

    This report presents data for public water suppliers in Utah during 1979. A public water supply system supplies water for human consumption and other domestic uses. It can be publicly or privately owned and includes systems supplying water to cities, subdivisions, federal installations, summer homes, and camping areas. The data were collected through questionnaires mailed to the various public water suppliers in the state. The public suppliers and their data listed in this report are not complete but will be expanded as more water utility personnel respond to the questionnaire. Through telephone and personal visits, attempts were made to verify those data which seemed inconsistent with water data collected in other areas of the state. While the degree of confidence in the accuracy of the data is believed to be good, some caution should be exercised in its interpretation. In most cases, the information submitted is only as good as the water measuring devices or personal estimations of the public water supply personnel.

  8. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  9. Water footprint as a tool for integrated water resources management

    NASA Astrophysics Data System (ADS)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  10. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  11. Water rights in areas of ground-water mining

    USGS Publications Warehouse

    Thomas, Harold E.

    1955-01-01

    Ground-water mining, the progressive depletion of storage in a ground-water reservoir, has been going on for several years in some areas, chiefly in the Southwestern States. In some of these States a water right is based on ownership of land overlying the ground-water reservoir and does not depend upon putting the water to use; in some States a right is based upon priority of appropriation and use and may be forfeited if the water is allowed to go unused for a specified period, but ownership of land is not essential; and in several States both these doctrines or modifications thereof are accepted, and each applies to certain classes of water or to certain conditions of development.Experience to date indicates that a cure for ground-water mining does not necessarily depend upon the water-rights doctrine that is accepted in the area. Indeed, some recent court decisions have incorporated both the areal factor of the landownership doctrines and the time factor of the appropriation doctrine. Overdraft can be eliminated if water is available from another source to replace some of the water taken from the affected aquifer. In areas where no alternate source of supply is available at reasonable cost, public opinion so far appears to favor treating ground water as a nonrenewable resource comparable to petroleum and metals, and mining it until the supply is exhausted, rather than curbing the withdrawals at an earlier date.

  12. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  13. Water Resources Data, New Jersey, Water Year 2003; Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.

    2004-01-01

    Water-resources data for the 2003 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 100 gaging stations; tide summaries at 29 tidal gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 106 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 142 low-flow partial- record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 143 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including streamflow, precipitation, reservoir conditions, and air temperatures.

  14. Water hyacinths for removal of phenols from polluted waters

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1975-01-01

    Removal of phenol by water hyacinths (Eichhornia crassipes (Mart.) Solms) in static water was investigated. 2.75 g dry weight of this aquatic plant demonstrated the ability to absorb 100 mg of phenol per plant per 72 hours from distilled water, river water, and bayou water. One hectare of water hyacinth plants is shown to be potentially capable of removing 160 kg of phenol per 72 hours from waters polluted with this chemical.

  15. [Unconventional hemodiafiltration: double-high-flux and push-pull].

    PubMed

    Lentini, Paolo; Pellanda, Valentina; Contestabile, Andrea; Berlingo, Graziella; de Cal, Massimo; Ronco, Claudio; Dell'Aquila, Roberto

    2012-01-01

    Growing evidence demonstrates that morbidity and mortality in patients with end-stage renal disease correlate significantly with retention of larger uremic toxins including β2 microglobulin. Even when hemodialysis is performed, complications such as dialysis-associated amyloidosis are likely to develop. These complications seem to be related to the retention and accumulation of larger uremic substances, only a small amount of which are removed by hemodialysis. On-line hemodiafiltration (OL-HDF) is popular but expensive; double-highflux hemodiafiltration (DHF-HDF) and push-pull hemodiafiltration (PP-HDF), special types of HDF, are very efficient treatments without the need for ultrapure substitution fluid. In DHF-HDF two high-flux dialyzers are connected in series by blood and dialysate lines. In the first dialyzer mixed diffusion convection removes fluid and solutes; in the second dialyzer backfiltration of sterile dialysate occurs, resembling the post-dilution OL-HDF mode. The PP-HDF method alternates rapid convection of body fluids and rapid backfiltration of sterile pyrogen-free dialysate using a high-flux membrane and a double-pump system. These treatments require an elevated blood flow and have the advantage that they use dialysis fluid instead of ultrapure fluid. Several studies have shown an elevated removal rate of middle molecules and reduction of dialysis-related amyloidosis symptoms like back and shoulder pain, restless leg syndrome, and carpal tunnel syndrome.

  16. Source-Water Protection and Water-Quality Investigations in the Cambridge, Massachusetts, Drinking-Water Supply System

    USGS Publications Warehouse

    Waldron, Marcus C.; Norton, Chip; MacDonald, Timothy W.D.

    1998-01-01

    Introduction The Cambridge Water Department (CWD) supplies about 15 million gallons of water each day to more than 95,000 customers in the City of Cambridge, Massachusetts. Most of this water is obtained from a system of reservoirs located in Cambridge and in parts of five other suburban-Boston communities. The drainage basin that contributes water to these reservoirs includes several potential sources of drinking-water contaminants, including major highways, secondary roads, areas of commercial and industrial development, and suburban residential tracts. The CWD is implementing a comprehensive Source-Water Protection Plan to ensure that the highest quality water is delivered to the treatment plant. A key element of this plan is a program that combines systematic monitoring of the drainage basin with detailed investigations of the effects of nonpoint-source contaminants, such as highway-deicing chemicals, nutrients, oxygen-demanding organic compounds, bacteria, and trace metals arising from stormwater runoff. The U.S. Geological Survey (USGS) is working with the CWD and the Massachusetts Highway Department (MassHighway) to develop a better understanding of the sources, transport, and fate of many of these contaminants. This Fact Sheet describes source-water protection and water-quality investigations currently underway in the Cambridge drinking-water supply system. The investigations are designed to complement a national effort by the USGS to provide water suppliers and regulatory agencies with information on the vulnerability of water supplies and the movement and fate of source-water contaminants.

  17. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  18. Water Underground

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.

    2014-12-01

    The world's largest accessible source of freshwater is hidden underground. However it remains difficult to estimate its volume, and we still cannot answer the question; will there be enough for everybody? In many places of the world groundwater abstraction is unsustainable: more water is used than refilled, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions in the world unsustainable water use will increase in the coming decades, due to rising human water use under a changing climate. It would not take long before water shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to prevent such large water conflicts. The world's largest aquifers are mapped, but these maps do not mention how much water these aquifers contain or how fast water levels decline. If we can add thickness and geohydrological information to these aquifer maps, we can estimate how much water is stored and its flow direction. Also, data on groundwater age and how fast the aquifer is refilled is needed to predict the impact of human water use and climate change on the groundwater resource. Ultimately, if we can provide this knowledge water conflicts will focus more on a fair distribution instead of absolute amounts of water.

  19. Evaluation of Titanium Dioxide as a Binding Phase for the Passive Sampling of Glyphosate and Aminomethyl Phosphonic Acid in an Aquatic Environment.

    PubMed

    Fauvelle, Vincent; Nhu-Trang, Tran-Thi; Feret, Thibaut; Madarassou, Karine; Randon, Jérôme; Mazzella, Nicolas

    2015-06-16

    Glyphosate is the most widely used herbicide on a world scale for the last 40 years, for both urban and agricultural uses. Here we describe the first passive sampling method for estimating the concentration of glyphosate and AMPA (aminomethyl phosphonic acid, one of its major degradation products) in surface water. The sampling method is based on a newly developed configuration of the diffusive gradient in thin-film (DGT) technique, which includes a TiO2 binding phase, already in use for a wide range of anions. Glyphosate and AMPA were retained well on a TiO2 binding phase, and elution in a 1 mL of 1 M NaOH led to recoveries greater than 65%. We found no influence of pH or flow velocity on the diffusion coefficients through 0.8 mm polyacrylamide gels, although they did increase with temperature. TiO2 binding gels were able to accumulate up to 1167 ng of P for both glyphosate and AMPA, and linear accumulation was expected over several weeks, depending on environmental conditions. DGT sampling rates were close to 10 mL day(-1) in ultrapure water, while they were less than 1 mL day(-1) in the presence of naturally occurring ions (e.g., copper, iron, calcium, magnesium). These last results highlighted (i) the ability of DGT to measure only the freely dissolved fraction of glyphosate and AMPA in water and (ii) the needs to determine which fraction (total, particulate, dissolved, freely dissolved) is indeed bioactive.

  20. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  1. Measurement Of Multiphase Flow Water Fraction And Water-cut

    NASA Astrophysics Data System (ADS)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  2. Water resources data for New Mexico, water year 1975

    USGS Publications Warehouse

    ,

    1976-01-01

    Water resources data for the 1975 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 201 gaging stations; stage and contents far 23 lakes and reservoirs; water quality for 62 gaging stations, 77 partial-record flow stations, 1 reservoir, 47 springs and 197 wells; and water levels for 93 observation wells. Also included are 162 crest-stage partial-record stations and 2 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic da,ta collection program, and are pu,blis"Q,ed as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  3. Water resources data for Michigan, water year 1974; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1975-01-01

    Surface-water records for the 1974 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T.R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan.Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan are contained in Part 4 of that series.Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and they are designed primarily for rapid release of data shortly after the end of the water year.

  4. Water Conservation and Water Storage

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  5. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  6. Water-resources activities in Ohio, 1986 (water fact sheet)

    USGS Publications Warehouse

    Hindall, S.M.

    1986-01-01

    The Ohio District of the Water Resources Division, U.S. Geological Survey, provides information on Ohio 's water resources for the overall benefit of the State and the Nation. An integral part of the Survey 's mission is to conduct investigations of the Nation 's land, mineral, and water resources, and to publish and disseminate the information needed to understand, to plan the use of, and to manage these resources. The activities fall into eight broad categories: collection of hydrologic data; water resources investigations and assessments; basic and problem-oriented hydrologic and water related research; acquisition of information useful in predicting and delineating water related natural hazards; coordination of the activities of all Federal agencies in the acquisition of water data, and operation of water information centers; dissemination of data and the results of investigations; provision of scientific and technical assistance in hydrologic studies; and the administration of the State Water Resources Research Institute Program and the National Water Resources Research Grant Program. (Lantz-PTT)

  7. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  8. Water resources data for Kansas, water year 1972; Part 1, Surface water records

    USGS Publications Warehouse

    Thompson, M.L.; Curtis, R. E.

    1973-01-01

    Surface-water records for the 1972 water year for Kansas, including records of streamflow or reservoir storage at gaging stations and partial-record stations, are given in this report. The locations of the stations are on figures 1 and 2. Records for a few pertinent gaging stations in bordering States also are included. These data represent that part of the National Water Data System collected by the U. S. Geological Survey and cooperating State and Federal agencies in Kansas. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey under the direction of C. W. Lane, district chief. Kansas district personnel who contributed significantly to the collection and preparation of data included in this report were: J. L. Ebling, C. 0. Geiger, K. D. Medina, L. E. Stuliken, C. 0. Peek, J. D. Craig, L. L. Jones, A. T. Klamm, J. P. Marshall, C. W. Kennedy, W. J. Carswell, D. L. Lacock, G. G. Quy II, J. T. Religa, R. D. Thomas, S. V. Bond, S. T. Green, C. G. Sauer, A. B. Evans, A. F. Browning, M. J. Goetz, M. L. Penny, and M. Pabst.Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States."Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also have been published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65."

  9. Water resources data for Kansas, water year 1973; Part 1, Surface water records

    USGS Publications Warehouse

    Thompson, M.L.; Curtis, R. E.

    1974-01-01

    Surface-water records for the 1973 water year for Kansas, including records of streamflow or reservoir storage at gaging stations and partial-record stations, are given in this report. The locations of the stations are on figures 1 and 2. Records for a few pertinent gaging stations in bordering States also are included. These data represent that part of the National Water Data System collected by the U. S. Geological Survey and cooperating State and Federal agencies in Kansas. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey under the direction of C. W. Lane, district chief. Kansas district personnel who contributed significantly to the collection and preparation of data included in this report were: J. L. Ebling, C. 0. Geiger, K. D. Medina, C. 0. Peek, J. D. Craig, L. L. Jones, J. P. Marshall, W. J. Carswell, D. L. Lacock, G. G. Quy II, J. T. Religa, R. D. Thomas, S. V. Bond, S. T. Green, C. G. Sauer, L. M. Pope, F. D. Toepfer, A. F. Browning, M. L. Penny, M. Pabst, and L. R. Stringer.Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States."Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also have been published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65."

  10. Healthy Water

    MedlinePlus

    ... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Get Email Updates To receive ... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Magnitude & Burden of Waterborne Disease ...

  11. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  12. Ground-water, surface-water, and water-chemistry data, Black Mesa area, Northeastern Arizona: 1999

    USGS Publications Warehouse

    Thomas, Blakemore E.; Truini, Margot

    2000-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and a precipitation of only about 6 to 12 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 1999, total ground-water withdrawals were 7,110 acre-feet, industrial use was 4,210 acre-feet, and municipal use was 2,900 acre-feet. From 1998 to 1999, total withdrawals increased by 0.7 percent, industrial use increased by 4 percent, and municipal use decreased by 4 percent. From 1998 to 1999, water levels declined in 11 of 15 wells in the unconfined part of the aquifer, and the median decline was 0.7 foot. Water levels declined in 14 of 16 wells in the confined part of the aquifer, and the median decline was 1.2 feet. From the prestress period (prior to 1965) to 1999, the median water-level decline in 31 wells was 10.6 feet. Median water-level changes were 0.0 foot for 15 wells in the unconfined part of the aquifer and a decline of 45.5 feet in 16 wells in the confined part. From 1998 to 1999, discharges were measured annually at four springs. Discharges declined 30 percent and 3 percent at 2 springs, did not change at 1 spring, and increased by 11 percent at 1 spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend was not observed. Continuous records of surface-water discharge have been collected from July 1976 to 1999 at Moenkopi Wash, July 1996 to 1999 at Laguna Creek, June 1993 to 1999 at Dinnebito Wash, and April

  13. Water resources data-Maine, water year 2003

    USGS Publications Warehouse

    Stewart, G.J.; Caldwell, J.M.; Cloutier, A.R.

    2004-01-01

    This volume of the annual hydrologic data report of Maine is one of a series of annual reports that document data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  14. Surface-Water Conditions in Georgia, Water Year 2005

    USGS Publications Warehouse

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  15. Water resources data for Michigan, water year 1972; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1973-01-01

    Surface-water records for the 1972 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T. R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan were contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  16. Water resources data for Michigan, water year 1971; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1972-01-01

    Surface-water records for the 1971 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T. R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan were contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  17. Water resources data for Michigan, water year 1973; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1974-01-01

    Surface-water records for the 1973 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T.R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan are contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  18. Water Conditioner

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A home use water treatment incorporates technology developed to purify water aboard Space Shuttle Orbiters. The General Ionics Model IQ Bacteriostatic Water Softener softens water and inhibits bacteria growth in the filtering unit. Ionics used NASA silver ion technology as a basis for development of a silver carbon dense enough to remain on top of the water softening resin bed.

  19. Water quality risks of 'improved' water sources: evidence from Cambodia.

    PubMed

    Shaheed, A; Orgill, J; Ratana, C; Montgomery, M A; Jeuland, M A; Brown, J

    2014-02-01

    The objective of this study was to investigate the quality of on-plot piped water and rainwater at the point of consumption in an area with rapidly expanding coverage of 'improved' water sources. Cross-sectional study of 914 peri-urban households in Kandal Province, Cambodia, between July-August 2011. We collected data from all households on water management, drinking water quality and factors potentially related to post-collection water contamination. Drinking water samples were taken directly from a subsample of household taps (n = 143), stored tap water (n = 124), other stored water (n = 92) and treated stored water (n = 79) for basic water quality analysis for Escherichia coli and other parameters. Household drinking water management was complex, with different sources used at any given time and across seasons. Rainwater was the most commonly used drinking water source. Households mixed different water sources in storage containers, including 'improved' with 'unimproved' sources. Piped water from taps deteriorated during storage (P < 0.0005), from 520 cfu/100 ml (coefficient of variation, CV: 5.7) E. coli to 1100 cfu/100 ml (CV: 3.4). Stored non-piped water (primarily rainwater) had a mean E. coli count of 1500 cfu/100 ml (CV: 4.1), not significantly different from stored piped water (P = 0.20). Microbial contamination of stored water was significantly associated with observed storage and handling practices, including dipping hands or receptacles in water (P < 0.005), and having an uncovered storage container (P = 0.052). The microbial quality of 'improved' water sources in our study area was not maintained at the point of consumption, possibly due to a combination of mixing water sources at the household level, unsafe storage and handling practices, and inadequately treated piped-to-plot water. These results have implications for refining international targets for safe drinking water access as well as the assumptions underlying global burden of disease

  20. Assessment of microbial quality of reclaimed water, roof-harvest water, and creek water for irrigation

    USDA-ARS?s Scientific Manuscript database

    The availability of water for crop irrigation is decreasing due to droughts, population growth, and pollution. The Food Safety and Modernization Act (FSMA) standards for irrigation water may also discourage growers to use poor microbial quality water for produce crop irrigation. Reclaimed water use ...

  1. Assessment of microbial quality of reclaimed water, roof-harvest water, and creek water for irrigation

    USDA-ARS?s Scientific Manuscript database

    The availability of water for crop irrigation is decreasing due to droughts, population growth, and pollution. Food Safety and Modernization Act (FSMA) for irrigation water standards may also discourage growers to use poor microbial quality water for produce crop irrigation. Reclaimed water use for ...

  2. New England's Drinking Water | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  3. Measuring scarce water saving from interregional virtual water flows in China

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  4. Mineral water or tap water? An endless debate.

    PubMed

    De Giglio, O; Quaranta, A; Lovero, G; Caggiano, G; Montagna, M T

    2015-01-01

    The consumption of mineral water has been increasing because of the frequent and unjustified reports of the water supply contamination. However some authors have shown that bottled waters are not always better than tap water. Mineral waters are more palatable for organoleptic characteristic because, being pure at source, they do not undergo disinfection treatments and are sometimes enriched with CO2. In fact, they are characterized by their microbial facies subject to changes during the production cycle which can contribute to their contamination. It is necessary to provide people with the tools necessary to operate a critical choice of the type of water to be consumed not exclusively for their organoleptic characteristics or marketing strategies.

  5. Water Resources Data: New Jersey, Water Year 1998, Volume 1, Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; Centinaro, G.L.; Dudek, J.F.; Corcino, V.; Stekroadt, G.C.; McTigure, R.C.

    1999-01-01

    This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  6. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  7. Water accounting implementation: water footprint and water efficiency of the coffee shop in Indonesia

    NASA Astrophysics Data System (ADS)

    Hendratno, S. P.; Agustine, Y.

    2018-01-01

    The purpose of this paper is for understand the water accounting practice in the company, especially beverage industry in Indonesia. The sample in this study is one coffee shop near Jakarta. Case study has been choosen as the method in this study. We collect data with semi-structured interview, observation, and survey about the water efficiency in the coffee shop. The operational officers such as barista, cashier, supervisor, and store manager are the respondents in this study. Operational management already understand about the importance of water efficiency in the coffee shop operation, but it can’t be implemented because their standard operation haven’t use the water efficiency as part of their procedures. The coffee shop’s operational standard in cleaning always takes much time and use so much water. The cleaning itself takes one until two hours each day only for cleaning bar and all operational equipment. This paper is for understand the water efficiency in the coffee shop with the focus is in their water footprint, operational standard that used every day in the coffee shop, and the connection between operational standard and the water efficiency.

  8. Water Works.

    ERIC Educational Resources Information Center

    Van De Walle, Carol

    1988-01-01

    Describes a two-day field trip, along with follow-up classroom activities and experiments which relate to water resources and water quality. Discusses how trips to a lake and water treatment facilities can enhance appreciation of water. (TW)

  9. Water Resources Data Massachusetts and Rhode Island Water Year 1999

    USGS Publications Warehouse

    Socolow, R.S.; Zanca, J.L.; Murino, Domenic; Ramsbey, L.R.

    2000-01-01

    INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Massachusetts and Rhode Island each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the States. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled 'Water Resources Data-Massachusetts and Rhode Island.' Hydrologic data are also available through the Massachusetts-Rhode Island District Home Page on the world-wide web (http://ma.water.usgs.gov). Historical data and real-time data (for sites equipped with satellite gage-height telemeter) are also available. The home page also contains a link to the U.S. Geological Survey National Home Page where streamflow data from locations throughout the United States can be retrieved. This report series includes records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; water levels of ground-water wells; and water quality of ground-water wells. This volume contains discharge records at 90 gaging stations; stage records at 2 gaging stations; monthend contents of 4 lakes and reservoirs; water quality at 31 gaging stations; water quality at 27 observation wells; and water levels for 139 observation wells. Locations of these sites are shown in figures 1 and 2. Short-term water-quality data were collected at 21 gaging stations and 27 observation wells and are shown in figure 3. Miscellaneous hydrologic data were collected at various sites that were not involved in the systematic data-collection program and are published as miscellaneous discharge measurements. The data in this report represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies

  10. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  11. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  12. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  13. Water Purifier

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Floatron water purifier combines two space technologies - ionization for water purification and solar electric power generation. The water purification process involves introducing ionized minerals that kill microorganisms like algae and bacteria. The 12 inch unit floats in a pool while its solar panel collects sunlight that is converted to electricity. The resulting current energizes a specially alloyed mineral electrode below the waterline, causing release of metallic ions into the water. The electrode is the only part that needs replacing, and water purified by the system falls within EPA drinking water standards.

  14. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  15. [Case study of red water phenomenon in drinking water distribution systems caused by water source switch].

    PubMed

    Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Pan, An-jun; Xu, Yang; Liao, Ping-an; Zhang, Su-xia; Gu, Jun-nong

    2009-12-01

    Red water phenomenon occurred in some communities of a city in China after water source switch in recent days. The origin of this red water problem and mechanism of iron release were investigated in the study. Water quality of local and new water sources was tested and tap water quality in suffered area had been monitored for 3 months since red water occurred. Interior corrosion scales on the pipe which was obtained from the suffered area were analyzed by XRD, SEM, and EDS. Corrosion rates of cast iron under the conditions of two source water were obtained by Annular Reactor. The influence of different source water on iron release was studied by pipe section reactor to simulate the distribution systems. The results indicated that large increase of sulfate concentration by water source shift was regarded as the cause of red water problem. The Larson ratio increased from about 0.4 to 1.7-1.9 and the red water problem happened in the taps of some urban communities just several days after the new water source was applied. The mechanism of iron release was concluded that the stable shell of scales in the pipes had been corrupted by this kind of high-sulfate-concentration source water and it was hard to recover soon spontaneously. The effect of sulfate on iron release of the old cast iron was more significant than its effect on enhancing iron corrosion. The rate of iron release increased with increasing Larson ratio, and the correlation of them was nonlinear on the old cast-iron. The problem remained quite a long time even if the water source re-shifted into the blended one with only small ratio of the new source and the Larson ratio reduced to about 0.6.

  16. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    PubMed

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  17. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    USGS Publications Warehouse

    Smith, Kirk P.

    2011-01-01

    Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during the study period. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 3 days. Composite sampl

  18. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  19. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  20. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    NASA Astrophysics Data System (ADS)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  1. Water underground

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  2. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.

    PubMed

    Xinchun, Cao; Mengyang, Wu; Xiangping, Guo; Yalian, Zheng; Yan, Gong; Nan, Wu; Weiguang, Wang

    2017-12-31

    An indicator, agricultural water stress index (AWSI), was established based blue-green water resources and water footprint framework for regional water scarcity in agricultural production industry evaluation. AWSI is defined as the ratio of the total agricultural water footprint (AWF) to water resources availability (AWR) in a single year. Then, the temporal and spatial patterns of AWSI in China during 1999-2014 were analyzed based on the provincial AWR and AWF quantification. The results show that the annual AWR in China has been maintained at approximately 2540Gm 3 , of which blue water accounted for >70%. The national annual AWF was approximately 1040Gm 3 during the study period and comprised 65.6% green, 12.7% blue and 21.7% grey WFs The space difference in both the AWF for per unit arable land (AWFI) and its composition was significant. National AWSI was calculated as 0.413 and showed an increasing trend in the observed period. This index increased from 0.320 (mid-water stress level) in 2000 to 0.490 (high water stress level) in the present due to the expansion of the agricultural production scale. The Northern provinces, autonomous regions and municipalities (PAMs) have been facing high water stress, particularly the Huang-Huai-Hai Plain, which was at a very high water stress level (AWSI>0.800). Humid South China faces increasingly severe water scarcity, and most of the PAMs in the region have converted from low water stress level (AWSI=0.100-0.200) to mid water stress level (AWSI=0.200-0.400). The AWSI is more appropriate for reflecting the regional water scarcity than the existing water stress index (WSI) or the blue water scarcity (BWS) indicator, particularly for the arid agricultural production regions due to the revealed environmental impacts of agricultural production. China should guarantee the sustainable use of agricultural water resources by reducing its crop water footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    USGS Publications Warehouse

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and

  4. Public Water-Supply Systems and Associated Water Use in Tennessee, 2000

    USGS Publications Warehouse

    Webbers, Ank

    2003-01-01

    Public water-supply systems in Tennessee provide water to meet customer needs for domestic, industrial, and commercial users and municipal services. In 2000, more than 500 public water-supply systems distributed about 890 million gallons per day (Mgal/d) of surface water and ground water to a population of about 5 million in Tennessee. Surface-water sources provided 64 percent (about 569 Mgal/d) of the State?s water supplies, primarily in Middle and East Tennessee. Ground water produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 321 Mgal/d) of the public water supplies. Springs in Middle and East Tennessee provided about 14 percent (about 42 Mgal/d) of ground-water supplies used in the State. Per capita water use for Tennessee in 2000 was about 136 gallons per day. An additional 146 public water-supply systems provided approximately 84 Mgal/d of water supplies that were purchased from other water systems. Water withdrawals by public water-supply systems in Tennessee have increased by over 250 percent; from 250 Mgal/d in 1955 to 890 Mgal/d in 2000. Although Tennessee public water-supply systems withdraw less ground water than surface water, ground-water withdrawal rates reported by these systems continue to increase. In addition, the number of public water-supply systems reporting ground-water withdrawals of 1 Mgal/d or more in West Tennessee is increasing.

  5. Urban-Water Harmony model to evaluate the urban water management.

    PubMed

    Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun

    2014-01-01

    Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.

  6. WaterML: an XML Language for Communicating Water Observations Data

    NASA Astrophysics Data System (ADS)

    Maidment, D. R.; Zaslavsky, I.; Valentine, D.

    2007-12-01

    One of the great impediments to the synthesis of water information is the plethora of formats used to publish such data. Each water agency uses its own approach. XML (eXtended Markup Languages) are generalizations of Hypertext Markup Language to communicate specific kinds of information via the internet. WaterML is an XML language for water observations data - streamflow, water quality, groundwater levels, climate, precipitation and aquatic biology data, recorded at fixed, point locations as a function of time. The Hydrologic Information System project of the Consortium of Universities for the Advancement of Hydrologic Science, Inc (CUAHSI) has defined WaterML and prepared a set of web service functions called WaterOneFLow that use WaterML to provide information about observation sites, the variables measured there and the values of those measurments. WaterML has been submitted to the Open GIS Consortium for harmonization with its standards for XML languages. Academic investigators at a number of testbed locations in the WATERS network are providing data in WaterML format using WaterOneFlow web services. The USGS and other federal agencies are also working with CUAHSI to similarly provide access to their data in WaterML through WaterOneFlow services.

  7. Compilation of Water-Resources Data for Montana, Water Year 2006

    USGS Publications Warehouse

    Ladd, P. B.; Berkas, W.R.; White, M.K.; Dodge, K.A.; Bailey, F.A.

    2007-01-01

    The U.S. Geological Survey, Montana Water Science Center, in cooperation with other Federal, State, and local agencies, and Tribal governments, collects a large amount of data pertaining to the water resources of Montana each water year. This report is a compilation of Montana site-data sheets for the 2006 water year, which consists of records of stage and discharge of streams; water quality of streams and ground water; stage and contents of lakes and reservoirs; water levels in wells; and precipitation data. Site-data sheets for selected stations in Canada and Wyoming also are included in this report. The data for Montana, along with data from various parts of the Nation, are included in 'Water-Resources Data for the United States, Water Year 2006', which is published as U.S. Geological Survey Water-Data Report WDR-US-2006 and is available at http://pubs.water.usgs.gov/wdr2006. Additional water year 2006 data collected at crest-stage gage and miscellaneous-measurement stations were collected but were not published. These data are stored in files of the U.S. Geological Survey Montana Water Science Center in Helena, Montana, and are available on request.

  8. Lunchtime School Water Availability and Water Consumption among California Adolescents

    PubMed Central

    Bogart, Laura M.; Babey, Susan H.; Patel, Anisha I.; Wang, Pan; Schuster, Mark A.

    2015-01-01

    Purpose To examine the potential impact of California SB1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Methods Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Results Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, BMI, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, b (SE) = 0.67 (0.28), p = .02. School water access did not significantly vary across the two years. Conclusions Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. PMID:26552740

  9. Natural water purification and water management by artificial groundwater recharge.

    PubMed

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  10. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  11. STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.

    USGS Publications Warehouse

    Burton, James S.; ,

    1985-01-01

    This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.

  12. EPA Office of Water (OW): Nutrient, Sediment, and Pathogens Water Impairments

    EPA Pesticide Factsheets

    National dataset consisting of a snapshot of 303(d) Listed Impaired Waters combined with Impaired Waters with TMDLs whose parent cause is Nutrients, Sediments, and Pathogens. The snapshot constitutes the top water impairments. The Impaired Waters with TMDLs and the 303(d) Listed Impaired Waters are combined into three mapping service layers in MyWaters Mapper application to provide a comprehensive view of each of these impairments. These waters are linked to the 303(d) information stored in EPAs Assessment and TMDL Tracking and Implementation System (ATTAINS). Below is a brief description of the two programs.The 303(d) Listed Impaired Waters program system provides impaired water data and impaired water features reflecting river segments, lakes, and estuaries designated under Section 303(d) of the Clean Water Act. Each State will establish Total Maximum Daily Loads (TMDLs) for these waters. Note the CWA Section 303(d) list of impaired waters does not represent waters that are impaired but have an EPA-approved TMDL established, impaired waters for which other pollution control mechanisms are in place and expected to attain water quality standards, or waters impaired as a result of pollution and is not caused by a pollutant; therefore, the Impaired Waters layers do not represent all impaired waters reported in a state's Integrated Report, but only the waters comprised of a state's approved 303(d) list. For more information regarding impaired waters refer to EPA's

  13. Water resources data for New Mexico, water year 1965; Part 1. Surface water records

    USGS Publications Warehouse

    ,

    1966-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also Included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. E. Hale, District Chief, Water Resources Division. This report is the fifth In a series presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled Surface Water Supply of the United States. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8 and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5~year intervals. These 5-year water-supply papers will show daily discharge and will be compi led On the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  14. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  15. Linking water resources to food security through virtual water

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  16. Assessing the risk posed by high-turbidity water to water supplies.

    PubMed

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  17. A simple method for determination of erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolates by capillary electrophoresis with capacitively coupled contactless conductivity detection.

    PubMed

    Coelho, Aline Guadalupe; de Jesus, Dosil Pereira

    2016-11-01

    In this work, a novel and simple analytical method using capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C 4 D) is proposed for the determination of the polyols erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolate. CE separation of the polyols was achieved in less than 6 min, and it was mediated by the interaction between the polyols and the borate ions in the background electrolyte, forming negatively charged borate esters. The extraction of the polyols from the samples was simply obtained using ultra-pure water and ultrasonic energy. Linearity was assessed by calibration curves that showed R 2 varying from 0.9920 to 0.9976. The LOQs were 12.4, 15.9, 9.0, and 9.0 μg/g for erythritol, maltitol, xylitol, and sorbitol, respectively. The accuracy of the method was evaluated by recovery tests, and the obtained recoveries varied from 70 to 116% with standard deviations ranging from 0.2 to 19%. The CE-C 4 D method was successfully applied for the determination of the studied polyols in commercial samples of sugar-free chocolate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Aqueous Cleaning and Validation for Space Shuttle Propulsion Hardware at the White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy

    1999-01-01

    The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.

  19. Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry.

    PubMed

    Dall'Olmo, Giorgio; Brewin, Robert J W; Nencioli, Francesco; Organelli, Emanuele; Lefering, Ina; McKee, David; Röttgers, Rüdiger; Mitchell, Catherine; Boss, Emmanuel; Bricaud, Annick; Tilstone, Gavin

    2017-11-27

    Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m -1 and a precision of about 0.0025 m -1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.

  20. Blanching of paint and varnish layers in easel paintings: contribution to the understanding of the alteration

    NASA Astrophysics Data System (ADS)

    Genty-Vincent, Anaïs; Eveno, Myriam; Nowik, Witold; Bastian, Gilles; Ravaud, Elisabeth; Cabillic, Isabelle; Uziel, Jacques; Lubin-Germain, Nadège; Menu, Michel

    2015-11-01

    The blanching of easel paintings can affect the varnish layer and also the paint layer with a blurring effect. The understanding of the physicochemical and optical phenomena involved in the whitening process remains an important challenge for the painting conservation. A set of ca. 50 microsamples from French, Flemish, and Italian blanched oil paintings, from sixteenth to nineteenth century, have been collected for in deep investigations. In parallel, the reproduction of the alteration was achieved by preparing some paint layers according to historical treatises and altering them in a climatic chamber in a humid environment or directly by immersing in ultrapure water. The observation of raw samples with a field-emission gun scanning electron microscope revealed for the first time that the altered layers have an unexpected highly porous structure with a pore size ranging from ca. 40 nm to 2 μm. The formation mechanism of these pores should mostly be physical as the supplementary analyses (Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry) do not reveal any noticeable molecular modification. Considering the tiny size of the pores, the alteration can be explained by the Rayleigh or Mie light scattering.

  1. Ultra-high pressure LC for astaxanthin determination in shrimp by-products and active food packaging.

    PubMed

    Sanches-Silva, A; Ribeiro, T; Albuquerque, T G; Paseiro, P; Sendón, R; de Quirós, A Bernaldo; López-Cervantes, J; Sánchez-Machado, D I; Soto Valdez, H; Angulo, I; Aurrekoetxea, G P; Costa, H S

    2013-06-01

    Nowadays, there is increasing interest in natural antioxidants from food by-products. Astaxanthin is a potent antioxidant and one of the major carotenoids in crustaceans and salmonids. An ultra-high pressure liquid chromatographic method was developed and validated for the determination of astaxanthin in shrimp by-products, and its migration from new packaging materials to food simulants was also studied. The method uses an UPLC® BEH guard-column (2.1 × 5 mm, 1.7 µm particle size) and an UPLC® BEH analytical column (2.1 × 50 mm, 1.7 µm particle size). Chromatographic separation was achieved using a programmed gradient mobile phase consisting of (A) acetonitrile-methanol (containing 0.05 m ammonium acetate)-dichloromethane (75:20:5, v/v/v) and (B) ultrapure water. This method was evaluated with respect to validation parameters such as linearity, precision, limit of detection, limit of quantification and recovery. Low-density polyethylene films were prepared with different amounts of the lipid fraction of fermented shrimp waste by extrusion, and migration was evaluated into food simulants (isooctane and ethanol 95%, v/v). Migration was not detected under the tested conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Advanced oxidation processes on doxycycline degradation: monitoring of antimicrobial activity and toxicity.

    PubMed

    Spina-Cruz, Mylena; Maniero, Milena Guedes; Guimarães, José Roberto

    2018-05-08

    Advanced oxidation processes (AOPs) have been highly efficient in degrading contaminants of emerging concern (CEC). This study investigated the efficiency of photolysis, peroxidation, photoperoxidation, and ozonation at different pH values to degrade doxycycline (DC) in three aqueous matrices: fountain, tap, and ultrapure water. More than 99.6% of DC degradation resulted from the UV/H 2 O 2 and ozonation processes. Also, to evaluate the toxicity of the original solution and throughout the degradation time, antimicrobial activity tests were conducted using Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, and acute toxicity test using the bioluminescent marine bacterium (Vibrio fischeri). Antimicrobial activity reduced as the drug degradation increased in UV/H 2 O 2 and ozonation processes, wherein the first process only 6 min was required to reduce 100% of both bacteria activity. In ozonation, 27.7 mg L -1 of ozone was responsible for reducing 100% of the antimicrobial activity. When applied the photoperoxidation process, an increase in the toxicity occurred as the high levels of degradation were achieved; it means that toxic intermediates were formed. The ozonated solutions did not present toxicity.

  3. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. A Two-stage Approach for Water Demand Prediction under Constrained total water use and Water Environmental Capacity

    NASA Astrophysics Data System (ADS)

    He, Y.; Xiaohong, C.; Lin, K.; Wang, Z.

    2016-12-01

    Water demand (WD) is the basis for water allocation (WA) because it can fully reflect the pressure on water resources from population and socioeconomic development. To deal with the great uncertainties and the absence of consideration of water environmental capacity (WEC) in traditional water demand prediction methods, e.g. Statistical models, System Dynamics and quota method, this study develops a two-stage approach to predict WD under constrained total water use from the perspective of ecological restraint. Regional total water demand (RTWD) is constrained by WEC, available water resources amount and total water use quota. Based on RTWD, WD is allocated in two stages according to the game theory, including predicting sub regional total water demand (SRWD) by calculating the sub region weights based on the selected indicators of socioeconomic development and predicting industrial water demand (IWD) according to the game theory. Taking the Dongjiang river basin, South China as an example of WD prediction, according to its constrained total water use quota and WEC, RTWD in 2020 is 9.83 billion m3, and IWD for agriculture, industry, service, ecology (off-stream), and domesticity are 2.32 billion m3, 3.79 billion m3, 0.75 billion m3 , 0.18 billion m3and 1.79 billion m3 respectively. The results from this study provide useful insights for effective water allocation under climate change and the strict policy of water resources management.

  5. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    PubMed

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  7. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona-2005-06

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2007-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area averages about 6 to 14 inches per year. The water monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2005 to September 2006. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2005, ground-water withdrawals in the Black Mesa area totaled 7,330 acre-feet, including ground-water withdrawals for industrial (4,480 acre-feet) and municipal (2,850 acre-feet) uses. From 2004 to 2005, total withdrawals increased by less than 2 percent, industrial withdrawals increased by approximately 3 percent, and total municipal withdrawals increased by 0.35 percent. From 2005 to 2006, annually measured water levels in the Black Mesa area declined in 10 of 13 wells in the unconfined areas of the N aquifer, and the median change was -0.5 foot. Measurements indicated that water levels declined in 12 of 15 wells in the confined area of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2006, the median water-level change for 29 wells was -8.5 feet. Median water-level changes were -0.2 foot for 13 wells in the unconfined areas and -46.6 feet for 16 wells in the confined area. Ground-water discharges were measured once in 2005 and once in 2006 at Moenkopi School Spring and Burro

  8. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  9. Water Log.

    ERIC Educational Resources Information Center

    Science Activities, 1995

    1995-01-01

    Presents a Project WET water education activity. Students use a Water Log (journal or portfolio) to write or illustrate their observations, feelings, and actions related to water. The log serves as an assessment tool to monitor changes over time in knowledge of and attitudes toward the water. (LZ)

  10. Be Water Wise.

    ERIC Educational Resources Information Center

    Birch, Sandra K.; Pettus, Alvin M.

    Various topics on water and water conservation are discussed, each general topic followed by a student activity. Topics include: (1) importance of water; (2) water in the environment; (3) getting water to and from homes (making water usable; treating wastewater; on-site systems, including water wells and septic tanks); (4) relationship between…

  11. Utah water use data: Public water supplies, 1960-1978

    USGS Publications Warehouse

    Mills, David; Jibson, Ronald; Riley, James; Hooper, David; Schwarting, Richard

    1980-01-01

    This report was prepared as a part of the Statewide cooperative water-resources investigation program administered jointly by the Utah Department of Natural Resources, Division of Water Rights and the United States Geological Survey.  The program is conducted to meet the water administration and water-resources data needs of the State, as well as the water information needs of many units of government and the general public.

  12. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  13. Where this occurs: Ground Water and Drinking Water

    EPA Pesticide Factsheets

    As ground water works its way through the soil, it can pick up excess nutrients and transport them to the water table. When polluted groundwater reaches drinking water systems it can pose serious public health threats.

  14. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    USGS Publications Warehouse

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  15. Natural water purification and water management by artificial groundwater recharge

    PubMed Central

    Balke, Klaus-Dieter; Zhu, Yan

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624

  16. The water-water cycle as alternative photon and electron sinks.

    PubMed

    Asada, K

    2000-10-29

    The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the water-water cycle, the rate of photoreduction of dioxygen in PS I is several orders of magnitude lower than those of the disproportionation of superoxide catalysed by superoxide dismutase, the reduction of hydrogen peroxide to water catalysed by ascorbate peroxidase, and the reduction of the resulting oxidized forms of ascorbate by reduced ferredoxin or catalysed by either dehydroascorbate reductase or monodehydroascorbate reductase. The water-water cycle therefore effectively shortens the lifetimes of photoproduced superoxide and hydrogen peroxide to suppress the production of hydroxyl radicals, their interactions with the target molecules in chloroplasts, and resulting photoinhibition. When leaves are exposed to photon intensities of sunlight in excess of that required to support the fixation of CO2, the intersystem electron carriers are over-reduced, resulting in photoinhibition. Under such conditions, the water-water cycle not only scavenges active oxygens, but also safely dissipates excess photon energy and electrons, in addition to downregulation of PS II and photorespiration. The dual functions of the water-water cycle for protection from photoinhibition under photon excess stress are discussed, along with its functional evolution.

  17. Lunchtime School Water Availability and Water Consumption Among California Adolescents.

    PubMed

    Bogart, Laura M; Babey, Susan H; Patel, Anisha I; Wang, Pan; Schuster, Mark A

    2016-01-01

    To examine the potential impact of California SB 1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 years were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, body mass index, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, bivariate (standard error) = .67 (.28), p = .02. School water access did not significantly vary across the 2 years. Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  18. Assessment of global water security: moving beyond water scarcity assessment

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Gain, A. K.; Giupponi, C.

    2015-12-01

    Water plays an important role in underpinning equitable, stable and productive societies, and the ecosystems on which we depend. Many international river basins are likely to experience 'low water security' over the coming decades. Hence, ensuring water security along with energy and food securities has been recognised as priority goals in Sustainable Development Goals (SDGs) by the United Nations. This water security is not rooted only in the limitation of physical resources, i.e. the shortage in the availability of freshwater relative to water demand, but also on social and economic factors (e.g. flawed water planning and management approaches, institutional incapability to provide water services, unsustainable economic policies). Until recently, advanced tools and methods are available for assessment of global water scarcity. However, integrating both physical and socio-economic indicators assessment of water security at global level is not available yet. In this study, we present the first global understanding of water security using a spatial multi-criteria analysis framework that goes beyond available water scarcity assessment. For assessing water security at global scale, the term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The Water security index is calculated by aggregating the indicators using both simple additive weighting (SAW) and ordered weighted average (OWA).

  19. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1997

    USGS Publications Warehouse

    Littin, Gregory R.; Baum, Bradley M.; Truini, Margot

    1999-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined parts of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1997, ground-water withdrawals for industrial and municipal use totaled about 7,090 acre-feet, which is less than a 1-percent increase from 1996. Pumpage from the confined part of the aquifer increased by about 2 percent to 5,510 acre-feet, and pumpage from the unconfined part of the aquifer decreased by about 4 percent to 1,580 acre-feet. Water-level declines in the confined part during 1997 were recorded in 5 of 12 wells; however, the median change was a rise of about 0.2 foot as opposed to a decline of 2.8 feet for 1996. Water-level declines in the unconfined part were recorded in 7 of 15 wells, and the median change was 0.0 foot in 1997 as opposed to a decline of 0.5 foot in 1996. The low-flow discharge at the Moenkopi streamflow-gaging station ranged from 1.6 to 2.0 cubic feet per second in 1997. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1997. The low-flow discharge ranged from 2.3 to 4.2 cubic feet per second at Laguna Creek, 0.44 to 0.48 cubic foot per second at Dinnebito Wash, and 0.15 to 0.26 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring increased by about 3 gallons per minute from the measurement in 1996. Discharge from an unnamed spring near Dennehotso increased by 9.9 gallons per minute from the measurement made in

  20. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1996

    USGS Publications Warehouse

    Littin, Gregory R.; Monroe, Stephen A.

    1997-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1996, ground-water withdrawals for industrial and municipal use totaled about 7,040 acre-feet, which is less than a 1-percent decrease from 1995. Pumpage from the confined part of the aquifer decreased by about 3 percent to 5,390 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 9 percent to 1,650 acre-feet. Water-level declines in the confined area during 1996 were recorded in 11 of 13 wells, and the median change was a decline of about 2.7 feet as opposed to a decline of 1.8 feet for 1995. Water-level declines in the unconfined area were recorded in 11 of 18 wells, and the median change was a decline of 0.5 foot in 1996 as opposed to a decline of 0.1 foot in 1995. The average low-flow discharge at the Moenkopi streamflow-gaging station was 2.3 cubic feet per second in 1996. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1996. Average low-flow discharge was 2.3 cubic feet per second at Laguna Creek, 0.4 cubic foot per second at Dinnebito Wash, and 0.2 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring decreased by about 2 gallons per minute from the measurement in 1995. Discharge from an unnamed spring near Dennehotso decreased by 1.3 gallons per minute from the measurement made in 1995; however

  1. Water Budgets: Foundations for Effective Water-Resources and Environmental Management

    USGS Publications Warehouse

    Healy, Richard W.; Winter, Thomas C.; LaBaugh, James W.; Franke, O. Lehn

    2007-01-01

    INTRODUCTION Water budgets provide a means for evaluating availability and sustainability of a water supply. A water budget simply states that the rate of change in water stored in an area, such as a watershed, is balanced by the rate at which water flows into and out of the area. An understanding of water budgets and underlying hydrologic processes provides a foundation for effective water-resource and environmental planning and management. Observed changes in water budgets of an area over time can be used to assess the effects of climate variability and human activities on water resources. Comparison of water budgets from different areas allows the effects of factors such as geology, soils, vegetation, and land use on the hydrologic cycle to be quantified. Human activities affect the natural hydrologic cycle in many ways. Modifications of the land to accommodate agriculture, such as installation of drainage and irrigation systems, alter infiltration, runoff, evaporation, and plant transpiration rates. Buildings, roads, and parking lots in urban areas tend to increase runoff and decrease infiltration. Dams reduce flooding in many areas. Water budgets provide a basis for assessing how a natural or human-induced change in one part of the hydrologic cycle may affect other aspects of the cycle. This report provides an overview and qualitative description of water budgets as foundations for effective water-resources and environmental management of freshwater hydrologic systems. Perhaps of most interest to the hydrologic community, the concepts presented are also relevant to the fields of agriculture, atmospheric studies, meteorology, climatology, ecology, limnology, mining, water supply, flood control, reservoir management, wetland studies, pollution control, and other areas of science, society, and industry. The first part of the report describes water storage and movement in the atmosphere, on land surface, and in the subsurface, as well as water exchange among these

  2. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.

    2016-12-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  3. Advanced water iodinating system. [for potable water aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.

    1975-01-01

    Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.

  4. Ground-water, surface-water and water-chemistry data, Black Mesa area, northeastern Arizona: 2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2002-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 2001, total ground-water withdrawals were 7,680 acre-feet, industrial use was 4,530 acre-feet, and municipal use was 3,150 acre-feet. From 2000 to 2001, total withdrawals decreased by 1 percent, industrial use increased by 1 percent, and municipal use decreased by 3 percent. From 2001 to 2002, water levels declined in 5 of 14 wells in the unconfined part of the aquifer, and the median change was +0.2 foot. Water levels declined in 12 of 17 wells in the confined part of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2002, the median water-level change for 32 wells was -15.8 feet. Median water-level changes were -1.3 feet for 15 wells in the unconfined part of the aquifer and -31.7 feet for 17 wells in the confined part. Discharges were measured once in 2001 and once in 2002 at four springs. Discharges decreased by 26 percent and 66 percent at two springs, increased by 100 percent at one spring, and did not change at one spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent. Continuous records of surface-water discharge have been collected from 1976 to 2001 at Moenkopi Wash, 1996 to 2001 at Laguna Creek, 1993 to 2001 at Dinnebito Wash, and 1994 to 2001 at

  5. Testing the Waters.

    ERIC Educational Resources Information Center

    Finks, Mason

    1993-01-01

    Provides information about home drinking water treatment systems to address concerns about the safety and quality of drinking water. Discusses water testing, filtration, product options and selection, water testing resources, water treatment device guidelines, water analysis terminology, and laboratory selection. (MCO)

  6. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  7. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2003-04

    USGS Publications Warehouse

    Truini, Margot; Macy, Jamie P.; Porter, Thomas J.

    2005-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2003, total ground-water withdrawals were 7,240 acre-feet, industrial withdrawals were 4,450 acre-feet, and municipal withdrawals were 2,790 acre-feet. From 2002 to 2003, total withdrawals decreased by 10 percent, industrial withdrawals decreased by 4 percent, and municipal withdrawals decreased by 20 percent. Flowmeter testing was completed for 24 municipal wells in 2004. The median difference between pumping rates for the permanent meter and a test meter for all the sites tested was -2.9 percent. Values ranged from -10.9 percent at Forest Lake NTUA 1 to +7.8 percent at Rough Rock NTUA 2. From 2003 to 2004, water levels declined in 6 of 12 wells in the unconfined part of the aquifer, and the median change was -0.1 foot. Water levels declined in 7 of 11 wells in the confined part of the aquifer, and the median change was -2.7 feet. From the prestress period (prior to 1965) to 2003, the median water-level change for 26 wells was -23.2 feet. Median water-level change were -6.1 feet for 14 wells in the unconfined parts of the aquifer and and -72.1 feet for 12 wells in the confined part. Discharges were measured once in 2003 and once in 2004 at four springs. Discharge stayed the same at Pasture Canyon Spring, increased 9 percent at

  8. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 2002-03

    USGS Publications Warehouse

    Truini, Margot; Thomas, Blakemore E.

    2004-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2002, total ground-water withdrawals were 8,000 acre-feet, industrial use was 4,640 acre-feet, and municipal use was 3,360 acre-feet. From 2001 to 2002, total withdrawals increased by 4 percent, industrial use increased by 2 percent, and municipal use increased by 7 percent. Flowmeter testing was completed for 32 municipal wells in 2003. The median difference between pumping rates for the permanent meter and a test meter for all the sites tested was -2.0 percent. Values ranged from -13.7 percent at Hopi High School no. 2 to +12.9 percent at Shonto PM3. From 2002 to 2003, water levels declined in 5 of 13 wells in the unconfined part of the aquifer, and the median change was 0.0 foot. Water levels declined in 8 of 13 wells in the confined part of the aquifer, and the median change was -1.1 feet. From the prestress period (prior to 1965) to 2003, the median water-level change for 26 wells was -8.3 feet. Median water-level changes were -0.4 foot for 13 wells in the unconfirned part of the aquifer and -60.3 feet for 13 wells in the confined part. Discharges were measured once in 2002 and once in 2003 at four springs. Discharge decreased by 16 percent at Pasture Canyon Spring, increased 10 percent at Moenkopi Spring and 90 percent at an

  9. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2004-05

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2006-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2004, total ground-water withdrawals were 7,210 acre-feet, industrial withdrawals were 4,370 acre-feet, and municipal withdrawals were 2,840 acre-feet. From 2003 to 2004, total withdrawals decreased by less than 1 percent, industrial withdrawals decreased by 2 percent, and municipal withdrawals increased by 2 percent. From 2004 to 2005, annually measured water levels declined in 6 of 13 wells in the unconfined areas of the aquifer, and the median change was -0.1 foot. Water levels declined in 8 of 12 wells in the confined area of the aquifer, and the median change was -1.2 feet. From the prestress period (prior to 1965) to 2005, the median water-level change for 33 wells was -9.0 feet. Median water-level changes were -0.6 foot for 16 wells in the unconfined areas and -32.0 feet for 17 wells in the confined area. Discharges were measured once in 2004 and once in 2005 at four springs. Discharge increased by 8 percent at Pasture Canyon Spring, decreased by 5 percent at Moenkopi School Spring, increased by 71 percent at an unnamed spring near Dennehotso, and stayed the same at Burro Spring. For the period of record at each spring, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent

  10. Water pumps

    PubMed Central

    Loo, Donald D F; Wright, Ernest M; Zeuthen, Thomas

    2002-01-01

    The transport of water across epithelia has remained an enigma ever since it was discovered over 100 years ago that water was transported across the isolated small intestine in the absence of osmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute transport, the actual mechanisms are not well understood. Current dogma holds that active ion transport sets up local osmotic gradients in the spaces between epithelial cells, the lateral intercellular spaces, and this in turn drives water transport by local osmosis. In the case of the small intestine, which in humans absorbs about 8 l of water a day, there is no direct evidence for either local osmosis or aquaporin gene expression in enterocytes. Intestinal water absorption is greatly enhanced by glucose, and this is the basis for oral rehydration therapy in patients with secretory diarrhoea. In our studies of the intestinal brush border Na+-glucose cotransporter we have obtained evidence that there is a direct link between the transport of Na+, glucose and water transport, i.e. there is cotransport of water along with Na+ and sugar, that will account for about 50 % of the total water transport across the human intestinal brush border membrane. In this short review we summarize the evidence for water cotransport and propose how this occurs during the enzymatic turnover of the transporter. This is a general property of cotransporters and so we expect that this may have wider implications in the transport of water and other small polar molecules across cell membranes in animals and plants. PMID:12096049

  11. Water pumps.

    PubMed

    Loo, Donald D F; Wright, Ernest M; Zeuthen, Thomas

    2002-07-01

    The transport of water across epithelia has remained an enigma ever since it was discovered over 100 years ago that water was transported across the isolated small intestine in the absence of osmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute transport, the actual mechanisms are not well understood. Current dogma holds that active ion transport sets up local osmotic gradients in the spaces between epithelial cells, the lateral intercellular spaces, and this in turn drives water transport by local osmosis. In the case of the small intestine, which in humans absorbs about 8 l of water a day, there is no direct evidence for either local osmosis or aquaporin gene expression in enterocytes. Intestinal water absorption is greatly enhanced by glucose, and this is the basis for oral rehydration therapy in patients with secretory diarrhoea. In our studies of the intestinal brush border Na+-glucose cotransporter we have obtained evidence that there is a direct link between the transport of Na+, glucose and water transport, i.e. there is cotransport of water along with Na+ and sugar, that will account for about 50 % of the total water transport across the human intestinal brush border membrane. In this short review we summarize the evidence for water cotransport and propose how this occurs during the enzymatic turnover of the transporter. This is a general property of cotransporters and so we expect that this may have wider implications in the transport of water and other small polar molecules across cell membranes in animals and plants.

  12. Sustainability and Water

    NASA Astrophysics Data System (ADS)

    Sharma, Virender A.

    2009-07-01

    World's population numbered 6.1 billion in 2000 and is currently increasing at a rate of about 77 million per year. By 2025, the estimated total world population will be of the order of 7.9 billion. Water plays a central role in any systematic appraisal of life sustaining requirements. Water also strongly influences economic activity (both production and consumption) and social roles. Fresh water is distributed unevenly, with nearly 500 million people suffering water stress or serious water scarcity. Two-thirds of the world's population may be subjected to moderate to high water stress in 2025. It is estimated that by 2025, the total water use will increase by to 40%. The resources of water supply and recreation may also come under stress due to changes in climate such as water balance for Lake Balaton (Hungary). Conventional urban water systems such as water supply, wastewater, and storm water management are also currently going through stress and require major rethinking. To maintain urban water systems efficiently in the future, a flexibility approach will allow incorporation of new technologies and adaptation to external changes (for example society or climate change). Because water is an essential resource for sustaining health, both the quantity and quality of available water supplies must be improved. The impact of water quality on human health is severe, with millions of deaths each year from water-borne diseases, while water pollution and aquatic ecosystem destruction continue to rise. Additionally, emerging contaminants such as endocrine disruptor chemicals (EDCs), pharmaceuticals, and toxins in the water body are also of a great concern. An innovative ferrate(VI) technology is highly effective in removing these contaminants in water. This technology is green, which addresses problems associated with chlorination and ozonation for treating pollutants present in water and wastewater. Examples are presented to demonstrate the applications of ferrate

  13. Measuring water potential (activity) from free water to oven dryness.

    PubMed

    Wiebe, H H

    1981-12-01

    Water activities (potentials) in plant materials were measured over the range from free water to oven dryness with a Spanner thermocouple psychrometer. In a two-step procedure, water was first condensed on the thermocouple junction for several minutes. The sample was then inserted under the wet thermocouple and the maximum psychrometric cooling was measured in about 10 seconds. Calibration was with saturated salt slurries of known water activities. Psychrometric cooling was a nearly linear function of the water activity and of the negative log of the water potential. The psychrometric cooling to water activity relationship agreed with wetbulb temperature depression to relative humidity relationships given in tables. Water activities of wheat grains and leaves decreased sharply in a curvilinear fashion as their water contents decreased. Some problems of the procedure are discussed.

  14. WatER: The proposed Water Elevation Recovery satellite mission

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Mognard, N.; Rodriguez, E.; Participants, W.

    2005-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water storage and discharge globally. The core mission objective is to describe and understand the continental water cycle and the hydrological processes (e.g., floodplain hydraulics) at work in a river basin. The key question that will be answered by WatER is: "Where is water stored on Earth's land surfaces, and how does this storage vary in space and time?" WatER will facilitate societal needs by (1) improving our understanding of flood hazards; (2) freely providing water volume information to countries who critically rely on rivers that cross political borders; and (3) mapping the variations in water bodies that contribute to disease vectors (e.g., malaria). Conventional altimeter profiles are, without question, incapable of supplying the measurements needed to address scientific and societal questions. WatER will repeatedly measure the spatially distributed water surface elevations (h) of wetlands, rivers, lakes, reservoirs, etc. Successive h measurements yield dh/dt, (t is time), hence a volumetric change in water stored or lost. Individual images of h yield dh/dx (x is distance), hence surface water slope, which is necessary for estimating streamflow. WatER's main instrument is a Ka-band radar interferometer (KaRIN) which is the only technology capable of supplying the required imaging capability of h. KaRIN has a rich heritage based on (1) the many highly successful ocean observing radar altimeters, (2) the Shuttle Radar Topography Mission (SRTM), and (3) the development effort of the Wide Swath Ocean Altimeter (WSOA). The interferometric altimeter is a near-nadir viewing, 120 km wideswath based instrument that uses interferometric SAR processing of the returned pulses to yield single-look 5m azimuth and 10m to 70m range resolution, with an elevation accuracy of approximately 50 cm. Polynomial based averaging of heights along the

  15. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  16. Automation of Space Processing Applications Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Crosmer, W. E.; Neau, O. T.; Poe, J.

    1975-01-01

    The Space Processing Applications Program is examining the effect of weightlessness on key industrial materials processes, such as crystal growth, fine-grain casting of metals, and production of unique and ultra-pure glasses. Because of safety and in order to obtain optimum performance, some of these processes lend themselves to automation. Automation can increase the number of potential Space Shuttle flight opportunities and increase the overall productivity of the program. Five automated facility design concepts and overall payload combinations incorporating these facilities are presented.

  17. Research and preparation of ultra purity silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Wan, Ye; Zhao, Xiong; Yan, Dazhou; Yang, Dian; Li, Yunhao; Guo, Shuhu

    2017-10-01

    This article demonstrated a technology for producing ultra-purity silicon tetrachloride, which using the high purity SiCl4 as raw material through the method of combination ray reaction with purification. This technology could remove metal impurities and compounds impurities contained hydrogen effectively. The purity of product prepared by this technology can reach at 99.9999%, content of metal impurities can be low at 0.3PPb, meeting the requirement of industry easily. This technology has the advantages of simple process, continuous operation, and stable performance.

  18. Dimensionless Analysis and Mathematical Modeling of Electromagnetic Levitation (EML) of Metals

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; Yang, Yindong; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor

    2016-02-01

    Electromagnetic levitation (EML), a contactless metal melting method, can be used to produce ultra-pure metals and alloys. In the EML process, the levitation force exerted on the droplet is of paramount importance and is affected by many parameters. In this paper, the relationship between levitation force and parameters affecting the levitation process were investigated by dimensionless analysis. The general formula developed by dimensionless analysis was tested and evaluated by numerical modeling. This technique can be employed to design levitation systems for a variety of materials.

  19. Water Resources Data, Massachusetts and Rhode Island, Water Year 2003

    USGS Publications Warehouse

    Socolow, R.S.; Zanca, J.L.; Driskell, T.R.; Ramsbey, L.R.

    2004-01-01

    Water resources data for the 2003 water year for Massachusetts and Rhode Island consists of records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; and water levels of ground-water wells. This report contains discharge records for 108 gaging stations, stage records for 2 gaging stations, stage records for 3 ponds; monthend contents of 1 reservoir, precipitation totals at 8 gaging stations; water quality for 27 gaging stations, air temperature at 2 climatological stations; water levels for 129 observation wells, and ground-water quality for 15 wells. Miscellaneous hydrologic data were collected at various sites that were not a part of the systematic data-collection program and are published as miscellaneous discharge measurements and miscellaneous surface-water-quality data. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.

  20. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien