Sample records for ultrasensitive biochemical diagnostics

  1. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    PubMed

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  2. Do Ultrasensitive Prostate Specific Antigen Measurements Have a Role in Predicting Long-Term Biochemical Recurrence-Free Survival in Men after Radical Prostatectomy?

    PubMed

    Sokoll, Lori J; Zhang, Zhen; Chan, Daniel W; Reese, Adam C; Bivalacqua, Trinity J; Partin, Alan W; Walsh, Patrick C

    2016-02-01

    In this study we evaluate an ultrasensitive prostate specific antigen assay in patients with prostate cancer after radical prostatectomy to predict long-term biochemical recurrence-free survival. A total of 754 men who underwent radical prostatectomy and had an undetectable prostate specific antigen after surgery (less than 0.1 ng/ml) were studied. Prostate specific antigen was measured in banked serum specimens with an ultrasensitive assay (Hybritech® PSA, Beckman Coulter Access® 2) using a cutoff of 0.01 ng/ml. Prostate specific antigen was also measured in 44 men after cystoprostatectomy who had no pathological evidence of prostate cancer with the Hybritech assay and with the Quanterix AccuPSA™ assay. Of the 754 men 17% (131) experienced biochemical recurrence (median 4.0 years). Those men without biochemical recurrence (83%, 623) had a minimum of 5 years of followup (median 11). Prostate specific antigen was less than 0.01 ng/ml in 93.4% of men with no biochemical recurrence, whereas 30.5% of men with biochemical recurrence had a prostate specific antigen of 0.01 ng/ml or greater. On multivariate analysis postoperative prostate specific antigen at a 0.01 ng/ml cutoff, pathological stage and Gleason score, and surgical margins were significant independent predictors of biochemical recurrence risk. Kaplan-Meier estimates for mean biochemical recurrence-free survival were 15.2 years (95% CI 14.9-15.6) for prostate specific antigen less than 0.01 ng/ml and 10.0 years (95% CI 8.4-11.5) for prostate specific antigen 0.01 ng/ml or greater (p <0.0001). Biochemical recurrence-free rates 11 years after surgery were 86.1% (95% CI 83.2-89.0) for prostate specific antigen less than 0.01 ng/ml and 48.9% (95% CI 37.5-60.3) for prostate specific antigen 0.01 ng/ml or greater (p <0.0001). Prostate specific antigen concentrations in 44 men after cystoprostatectomy were all less than 0.03 ng/ml, with 95.4% less than 0.01 ng/ml. In men with a serum prostate specific antigen

  3. Recent advances in rapid and ultrasensitive biosensors for infectious agents: lesson from Bacillus anthracis diagnostic sensors.

    PubMed

    Kim, Joungmok; Yoon, Moon-Young

    2010-06-01

    Here, we review the cumulative efforts to develop rapid and ultrasensitive diagnostic systems, especially for the infectious agent, Bacillus anthracis, as a model system. This Minireview focuses on demonstrating the features of various probes for target molecule detection and recent methods of signal generation within the biosensors. Also, we discuss the possibility of using peptides as next-generation probe molecules.

  4. [Ultra-sensitive C-reactive protein associated to nutritional status and biochemical profile in Mexican shoolchildren].

    PubMed

    Haro-Acosta, María Elena; Ruíz Esparza-Cisneros, Josefina; Delgado-Valdez, Jesús Hernán; Díaz-Molina, Raúl; Ayala-Figueroa, Rafael Iván

    2014-01-01

    C-reactive protein (CRP) is a nonspecific marker of inflammation with low serum levels, which are not usually detectable. In order to assess cardiovascular risk in adults apparently healthy, ultrasensitive methods are used, and the CRP measured through these techniques is known as ultrasensitive C-reactive protein (US-CRP). Some researchers report an association of US-CRP with some anthropometric parameters in children with no apparent disease. The aim was to associate US-CRP with nutritional status and biochemical profiles in Mexican schoolchildren. In this cross-sectional study 300 healthy children (aged 10 to 12 years) were evaluated. Weight, height, body mass index (BMI), waist circumference, body fat percentage, glucose, lipid profiles and US-CRP were measured. Exclusion criteria was: US-CRP > 10mg/L. We used multivariate regression models. 53.7 % were girls and 46.3 % were boys. The US-CRP median was of 0.3 mg/L (range: 0.3 mg/L-6.8 mg/L), and it was positively and significantly correlated with BMI (ß = 0.226, p = 0.032) and LDL-C (ß = -0.267, p = 0.007) and negatively associated with cholesterol (ß = -0.267, p = 0.007). There is an association between US-CRP and cardiovascular risk indicators, such as obesity and some lipid disorder in childhood; therefore, US-CRP may be used for close examination in Mexican children.

  5. Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics

    PubMed Central

    Gao, Anran; Lu, Na; Wang, Yuelin; Li, Tie

    2016-01-01

    For point-of-care (POC) applications, robust, ultrasensitive, small, rapid, low-power, and low-cost sensors are highly desirable. Here, we present a novel biosensor based on a complementary metal oxide semiconductor (CMOS)-compatible silicon nanowire tunneling field-effect transistor (SiNW-TFET). They were fabricated “top-down” with a low-cost anisotropic self-stop etching technique. Notably, the SiNW-TFET device provided strong anti-interference capacity by applying the inherent ambipolarity via both pH and CYFRA21-1 sensing. This offered a more robust and portable general protocol. The specific label-free detection of CYFRA21-1 down to 0.5 fgml−1 or ~12.5 aM was achieved using a highly responsive SiNW-TFET device with a minimum sub-threshold slope (SS) of 37 mVdec−1. Furthermore, real-time measurements highlighted the ability to use clinically relevant samples such as serum. The developed high performance diagnostic system is expected to provide a generic platform for numerous POC applications. PMID:26932158

  6. Ultrasensitivity in signaling cascades revisited: Linking local and global ultrasensitivity estimations.

    PubMed

    Altszyler, Edgar; Ventura, Alejandra C; Colman-Lerner, Alejandro; Chernomoretz, Ariel

    2017-01-01

    Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.

  7. Ultrasensitivity in signaling cascades revisited: Linking local and global ultrasensitivity estimations

    PubMed Central

    Altszyler, Edgar; Ventura, Alejandra C.; Colman-Lerner, Alejandro; Chernomoretz, Ariel

    2017-01-01

    Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system’s ultrasensitivity, how a given combination of layers affects a cascade’s ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade’s ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O’Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models. PMID:28662096

  8. Detection of HIV-1 p24 at Attomole Level by Ultrasensitive ELISA with Thio-NAD Cycling

    PubMed Central

    Nakatsuma, Akira; Kaneda, Mugiho; Kodama, Hiromi; Morikawa, Mika; Watabe, Satoshi; Nakaishi, Kazunari; Yamashita, Masakane; Yoshimura, Teruki; Miura, Toshiaki; Ninomiya, Masaki; Ito, Etsuro

    2015-01-01

    To reduce the window period between HIV-1 infection and the ability to diagnose it, a fourth-generation immunoassay including the detection of HIV-1 p24 antigen has been developed. However, because the commercially available systems for this assay use special, high-cost instruments to measure, for example, chemiluminescence, it is performed only by diagnostics companies and hub hospitals. To overcome this limitation, we applied an ultrasensitive ELISA coupled with a thio-NAD cycling, which is based on a usual enzyme immunoassay without special instruments, to detect HIV-1 p24. The p24 detection limit by our ultrasensitive ELISA was 0.0065 IU/assay (i.e., ca. 10-18 moles/assay). Because HIV-1 p24 antigen is thought to be present in the virion in much greater numbers than viral RNA copies, the value of 10-18 moles of the p24/assay corresponds to ca. 103 copies of the HIV-1 RNA/assay. That is, our ultrasensitive ELISA is chasing the detection limit (102 copies/assay) obtained by PCR-based nucleic acid testing (NAT) with a margin of only one different order. Further, the detection limit by our ultrasensitive ELISA is less than that mandated for a CE-marked HIV antigen/antibody assay. An additional recovery test using blood supported the reliability of our ultrasensitive ELISA. PMID:26098695

  9. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials

    PubMed Central

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2015-01-01

    Infrared vibrational spectroscopy is an effective technique which enables the direct probe of molecular fingerprints, and such detection can be further enhanced by the emerging engineered plasmonic metamaterials. Here we experimentally demonstrate ultrasensitive detection and characterization of polymer molecules based on an asymmetric infrared plasmonic metamaterial, and quantitatively analyze the molecule detection sensitivity and molecule-structure interactions. A sharp, non-radiative Fano resonance supported by the plasmonic metamaterial exhibits strongly enhanced near-field, and the resonance frequency is tailored to match the vibrational fingerprint of the target molecule. By utilizing the near-field nature of the plasmonic excitation, significantly enhanced absorption signal of molecules in the infrared spectroscopy are obtained, enabling ultrasensitive detection of only minute quantities of organic molecules. The enhancement of molecular absorption up to 105 fold is obtained, and sensitive detection of molecules at zeptomole levels (corresponding to a few tens of molecules within a unit cell) is achieved with high signal-to-noise ratio in our experiment. The demonstrated infrared plasmonic metamaterial sensing platform offers great potential for improving the specificity and sensitivity of label-free, biochemical detection. PMID:26388404

  10. Ultrasensitivity and sharp threshold theorems for multisite systems

    NASA Astrophysics Data System (ADS)

    Dougoud, M.; Mazza, C.; Vinckenbosch, L.

    2017-02-01

    This work studies the ultrasensitivity of multisite binding processes where ligand molecules can bind to several binding sites. It considers more particularly recent models involving complex chemical reactions in allosteric phosphorylation processes and for transcription factors and nucleosomes competing for binding on DNA. New statistics-based formulas for the Hill coefficient and the effective Hill coefficient are provided and necessary conditions for a system to be ultrasensitive are exhibited. It is first shown that the ultrasensitivity of binding processes can be approached using sharp-threshold theorems which have been developed in applied probability theory and statistical mechanics for studying sharp threshold phenomena in reliability theory, random graph theory and percolation theory. Special classes of binding process are then introduced and are described as density dependent birth and death process. New precise large deviation results for the steady state distribution of the process are obtained, which permits to show that switch-like ultrasensitive responses are strongly related to the multi-modality of the steady state distribution. Ultrasensitivity occurs if and only if the entropy of the dynamical system has more than one global minimum for some critical ligand concentration. In this case, the Hill coefficient is proportional to the number of binding sites, and the system is highly ultrasensitive. The classical effective Hill coefficient I is extended to a new cooperativity index I q , for which we recommend the computation of a broad range of values of q instead of just the standard one I  =  I 0.9 corresponding to the 10%-90% variation in the dose-response. It is shown that this single choice can sometimes mislead the conclusion by not detecting ultrasensitivity. This new approach allows a better understanding of multisite ultrasensitive systems and provides new tools for the design of such systems.

  11. New technology for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Leary, James F.; McLaughlin, Scott R.

    1995-04-01

    A high-speed, 11-parameter, 6-color fluorescence, laser flow cytometer/cell sorter with a number of special and unique features has been built for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics. The software for real-time data acquisition and sort control, written as C++ programming language modules with a WindowsTM graphical user interface, runs on a 66-MHz 80486 computer joined by an extended bus to 23 sophisticated multi-layered boards of special data acquisition and sorting electronics. Special features include: high-speed (> 100,000 cells/sec) real-time data classification module (U.S. Patent 5,204,884 (1993)); real-time principal component cell sorting; multi-queue signal-processing system with multiple hardware and software event buffers to reduce instrument dead time, LUT charge-pulse definition, high-resolution `flexible' sorting for optimal yield/purity sort strategies (U.S. Patent 5,199,576); pre-focusing optical wavelength correction for a second laser beam; and two trains of three fluorescence detectors-- each adjustable for spatial separation to interrogate only one of two laser beams, syringe- driven or pressure-driven fluidics, and time-windowed parameters. The system has been built to be both expandable and versatile through the use of LUT's and a modular hardware and software design. The instrument is especially useful at detection and isolation of rare cell subpopulations for which our laboratory is well-known. Cell subpopulations at frequencies as small as 10-7 have been successfully studied with this system. Current applications in clinical diagnostics and therapeutics include detection and isolation of (1) fetal cells from material blood for prenatal diagnosis of birth defects, (2) hematopoietic stem and precursor cells for autologous bone marrow transplantation, (3) metastatic breast cancer cells for molecular characterization, and (4) HIV-infected maternal cells in newborn blood to study mother

  12. Single-molecule detection: applications to ultrasensitive biochemical analysis

    NASA Astrophysics Data System (ADS)

    Castro, Alonso; Shera, E. Brooks

    1995-06-01

    Recent developments in laser-based detection of fluorescent molecules have made possible the implementation of very sensitive techniques for biochemical analysis. We present and discuss our experiments on the applications of our recently developed technique of single-molecule detection to the analysis of molecules of biological interest. These newly developed methods are capable of detecting and identifying biomolecules at the single-molecule level of sensitivity. In one case, identification is based on measuring fluorescence brightness from single molecules. In another, molecules are classified by determining their electrophoretic velocities.

  13. Diagnostic value of the biochemical tests in patients with purulent pericarditis.

    PubMed

    Ekim, Meral; Ekim, Hasan

    2014-07-01

    Purulent pericarditis is a collection of purulent effusion in the pericardial space. It has become a rare entity with the increased availability and use of antibiotics. In contrast to pleural empyema, there are few data regarding the biochemical parameters of purulent pericardial effusion to aid diagnosis. Therefore, in this study, we have evaluated the diagnostic utility of biochemical tests in patients with purulent pericarditis. Between September 2004 and September 2012, we treated fifteen children with purulent pericarditis and tamponade. There were 8 boys and 7 girls, ranging in age from 8 months to 14 years, with a mean age of 5.3 ± 3.2 years. Echocardiographic diagnosis of cardiac tamponade was made in all patients. All patients underwent immediate surgical drainage due to cardiac tamponade. The diagnosis of purulent pericarditis was supported by biochemical tests. Anterior mini-thoracotomy or subxiphoid approach was performed for surgical drainage. The most common clinical findings were tamponade, hepatomegaly, tachycardia, fever refractory antibiotic therapy, dyspnea, tachypnea, cough, and increased jugular venous pressure. Central venous pressure decreased and arterial tension increased immediately after the evacuation of purulent effusion during operation in all patients. The pericardial effusion had high lactic dehydrogenase, and low glucose concentration, confirming purulent pericarditis. Also, pH (mean± SD) was 7.01 ± 0.06. The culture of pericardial effusions and blood samples were negative. Biochemical tests are useful guideline when assessing the pericardial effusions. However, these tests should be interpreted with the clinical and operative findings.

  14. Diagnostic value of the biochemical tests in patients with purulent pericarditis

    PubMed Central

    Ekim, Meral; Ekim, Hasan

    2014-01-01

    Objectives: Purulent pericarditis is a collection of purulent effusion in the pericardial space. It has become a rare entity with the increased availability and use of antibiotics. In contrast to pleural empyema, there are few data regarding the biochemical parameters of purulent pericardial effusion to aid diagnosis. Therefore, in this study, we have evaluated the diagnostic utility of biochemical tests in patients with purulent pericarditis. Methods: Between September 2004 and September 2012, we treated fifteen children with purulent pericarditis and tamponade. There were 8 boys and 7 girls, ranging in age from 8 months to 14 years, with a mean age of 5.3 ± 3.2 years. Echocardiographic diagnosis of cardiac tamponade was made in all patients. All patients underwent immediate surgical drainage due to cardiac tamponade. The diagnosis of purulent pericarditis was supported by biochemical tests. Anterior mini-thoracotomy or subxiphoid approach was performed for surgical drainage. Results: The most common clinical findings were tamponade, hepatomegaly, tachycardia, fever refractory antibiotic therapy, dyspnea, tachypnea, cough, and increased jugular venous pressure. Central venous pressure decreased and arterial tension increased immediately after the evacuation of purulent effusion during operation in all patients. The pericardial effusion had high lactic dehydrogenase, and low glucose concentration, confirming purulent pericarditis. Also, pH (mean± SD) was 7.01 ± 0.06. The culture of pericardial effusions and blood samples were negative. Conclusion: Biochemical tests are useful guideline when assessing the pericardial effusions. However, these tests should be interpreted with the clinical and operative findings. PMID:25097529

  15. Applications of ultrasensitive magnetic measurement technologies (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Hirschkoff, Eugene C.

    1993-05-01

    The development of reliable, easy-to-use magnetic measurement systems with significantly enhanced levels of sensitivity has opened up a number of broad new areas of application for magnetic sensing. Magnetometers based on optical pumping offer sensitivities at the picotesla level, while those that utilize superconducting quantum interference devices can operate at the femtotesla level. These systems are finding applications in areas as diverse as geophysical exploration, communications, and medical diagnostics. This review briefly surveys the capabilities and application areas for a number of magnetic sensing technologies. The emphasis then focuses on the application of the most sensitive of these to the field of medical diagnostics and functional imaging. Protocols for specific applications to noninvasive presurgical planning and to the noninvasive assay of cortical dysfunction in diseases ranging from epilepsy to migraine and schizophrenia will be described in detail. Data will be presented reporting independent validation of these techniques in ten patients who subsequently underwent surgery. Routine and reliable utilization of this ultrasensitive magnetic sensing technology in the clinic is now feasible and practical.

  16. Computer-aided biochemical programming of synthetic microreactors as diagnostic devices.

    PubMed

    Courbet, Alexis; Amar, Patrick; Fages, François; Renard, Eric; Molina, Franck

    2018-04-26

    Biological systems have evolved efficient sensing and decision-making mechanisms to maximize fitness in changing molecular environments. Synthetic biologists have exploited these capabilities to engineer control on information and energy processing in living cells. While engineered organisms pose important technological and ethical challenges, de novo assembly of non-living biomolecular devices could offer promising avenues toward various real-world applications. However, assembling biochemical parts into functional information processing systems has remained challenging due to extensive multidimensional parameter spaces that must be sampled comprehensively in order to identify robust, specification compliant molecular implementations. We introduce a systematic methodology based on automated computational design and microfluidics enabling the programming of synthetic cell-like microreactors embedding biochemical logic circuits, or protosensors , to perform accurate biosensing and biocomputing operations in vitro according to temporal logic specifications. We show that proof-of-concept protosensors integrating diagnostic algorithms detect specific patterns of biomarkers in human clinical samples. Protosensors may enable novel approaches to medicine and represent a step toward autonomous micromachines capable of precise interfacing of human physiology or other complex biological environments, ecosystems, or industrial bioprocesses. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Ultra-Sensitive Detection of Plasmodium falciparum by Amplification of Multi-Copy Subtelomeric Targets

    PubMed Central

    Hofmann, Natalie; Mwingira, Felista; Shekalaghe, Seif; Robinson, Leanne J.; Mueller, Ivo; Felger, Ingrid

    2015-01-01

    Background Planning and evaluating malaria control strategies relies on accurate definition of parasite prevalence in the population. A large proportion of asymptomatic parasite infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is limited by the abundance of the target sequence in a DNA sample; thus, detection becomes imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting multi-copy genomic sequences for reliable detection of low-density infections, and investigated the impact of these PCR assays on community prevalence data. Methods and Findings Two quantitative PCR (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ∼250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/μl blood and were 10× more sensitive than standard 18S rRNA qPCR. In a population cross-sectional study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light microscopy missed 169 infections (57%). 18S rRNA qPCR failed to identify 48 infections (16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcription PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput screens, their performance was tested on sample pools. Both ultra-sensitive assays correctly detected all pools containing one low-density P. falciparum–positive sample, which went undetected by 18S rRNA qPCR, among nine negatives. TARE-2 and varATS qPCRs improve estimates of prevalence rates, yet other infections might still remain undetected when absent in the limited blood volume sampled. Conclusions Measured malaria prevalence in communities is largely determined by the

  18. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  19. Development of class model based on blood biochemical parameters as a diagnostic tool of PSE meat.

    PubMed

    Qu, Daofeng; Zhou, Xu; Yang, Feng; Tian, Shiyi; Zhang, Xiaojun; Ma, Lin; Han, Jianzhong

    2017-06-01

    A fast, sensitive and effective method based on the blood biochemical parameters for the detection of PSE meat was developed in this study. A total of 200 pigs were slaughtered in the same slaughterhouse. Meat quality was evaluated by measuring pH, electrical conductivity and color at 45min, 2h and 24h after slaughtering in M. longissimus thoracis et lumborum (LD). Blood biochemical parameters were determined in blood samples collected during carcass bleeding. Principal component analysis (PCA) biplot showed that high levels of exsanguination Creatine Kinase, Lactate Dehydrogenase, Aspertate aminotransferase, blood glucose and lactate were associated with the PSE meat, and the five biochemical parameters were found to be good indicators of PSE meat Discriminant function analysis (DFA) was able to clearly identify PSE meat using the five biochemical parameters as input data, and the class model is an effective diagnostic tool in pigs which can be used to detect the PSE meat and reduce economic loss for the company. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Accuracy of biochemical markers for predicting nasogastric tube placement in adults--a systematic review of diagnostic studies.

    PubMed

    Fernandez, Ritin S; Chau, Janita Pak-Chun; Thompson, David R; Griffiths, Rhonda; Lo, Hoi-Shan

    2010-08-01

    The objective of this study was to investigate the diagnostic performance of biochemical tests used to determine placement of nasogastric (NG) tubes after insertion in adults. A systematic review of diagnostic studies was undertaken. A literature search of the bibliographic databases and the World Wide Web was performed to locate original diagnostic studies in English or Chinese on biochemical markers for detecting NG tube location. Studies in which one or more different tests were evaluated with a reference standard, and diagnostic values were reported or could be calculated were included. Two reviewers independently checked all abstracts and full text studies for inclusion criteria. Included studies were assessed for their quality using the QUADAS tool. Study features and diagnostic values were extracted from the included studies. Of the 10 studies included in this review, seven investigated the diagnostic accuracy of pH, one investigated the diagnostic accuracy of pH and bilirubin respectively, two a combination of pH and bilirubin and one a combination of pH, pepsin and trypsin levels in identifying NG tube location. All studies used X-rays as the reference standard for comparison. Pooled results demonstrated that a pH of diagnostic performance of the different tests cannot be drawn. Better designed studies exploring the accuracy of diagnostic tests are needed to improve

  1. Ultrasensitivity of the Bacillus subtilis sporulation decision.

    PubMed

    Narula, Jatin; Devi, Seram N; Fujita, Masaya; Igoshin, Oleg A

    2012-12-11

    Starving Bacillus subtilis cells execute a gene expression program resulting in the formation of stress-resistant spores. Sporulation master regulator, Spo0A, is activated by a phosphorelay and controls the expression of a multitude of genes, including the forespore-specific sigma factor σ(F) and the mother cell-specific sigma factor σ(E). Identification of the system-level mechanism of the sporulation decision is hindered by a lack of direct control over Spo0A activity. This limitation can be overcome by using a synthetic system in which Spo0A activation is controlled by inducing expression of phosphorelay kinase KinA. This induction results in a switch-like increase in the number of sporulating cells at a threshold of KinA. Using a combination of mathematical modeling and single-cell microscopy, we investigate the origin and physiological significance of this ultrasensitive threshold. The results indicate that the phosphorelay is unable to achieve a sufficiently fast and ultrasensitive response via its positive feedback architecture, suggesting that the sporulation decision is made downstream. In contrast, activation of σ(F) in the forespore and of σ(E) in the mother cell compartments occurs via a cascade of coherent feed-forward loops, and thereby can produce fast and ultrasensitive responses as a result of KinA induction. Unlike σ(F) activation, σ(E) activation in the mother cell compartment only occurs above the KinA threshold, resulting in completion of sporulation. Thus, ultrasensitive σ(E) activation explains the KinA threshold for sporulation induction. We therefore infer that under uncertain conditions, cells initiate sporulation but postpone making the sporulation decision to average stochastic fluctuations and to achieve a robust population response.

  2. Ultrasensitive biochemical sensing device and method of sensing analytes

    DOEpatents

    Pinchuk, Anatoliy

    2017-06-06

    Systems and methods biochemically sense a concentration of a ligand using a sensor having a substrate having a metallic nanoparticle array formed onto a surface of the substrate. A light source is incident on the surface. A matrix is deposited over the nanoparticle array and contains a protein adapted to binding the ligand. A detector detects s-polarized and p-polarized light from the reflective surface. Spacing of nanoparticles in the array and wavelength of light are selected such that plasmon resonance occurs with an isotropic point such that -s and -p polarizations of the incident light result in substantially identical surface Plasmon resonance, wherein binding of the ligand to the protein shifts the resonance such that differences between the -S and -P polarizations give in a signal indicative of presence of the ligand.

  3. Phaeochromocytoma: diagnostic challenges for biochemical screening and diagnosis.

    PubMed

    Barron, Jeffrey

    2010-08-01

    The aim of this article is to provide knowledge of the origin of catecholamines and metabolites so that there can be an informed approach to the methods for biochemical screening for a possible phaeochromocytoma; The article includes a review of catecholamine and metadrenaline metabolism, with methods used in biochemical screening. In the adrenal medulla and a phaeochromocytoma, catecholamines continuously leak from chromaffin granules into the cytoplasm and are converted to metadrenalines. For a phaeochromocytoma to become biochemically detectable, metnoradrenaline secretion needs to rise fourfold, whereas noradrenaline secretion needs to rise 15-fold. The prevalence of a sporadic phaeochromocytoma is low; therefore false-positive results exceed true-positive results. Assay sensitivity is high because it is important not to miss a possible phaeochromocytoma. The use of urine or plasma fractionated metadrenalines as the first-line test has been recommended due to improved sensitivity. A negative result excludes a phaeochromocytoma. Only after a sporadic phaeochromocytoma has been diagnosed biochemically is it cost effective to request imaging. Sensitivities and specificities of the assays differ according to pre-test probabilities of the presence of a phaeochromocytoma, with hereditary and incidentalomas having a higher pre-test probability than sporadic phaeochromocytoma. In conclusion, in screening for a possible phaeochromocytoma, biochemical investigations should be completed first to exclude or establish the diagnosis. The preferred biochemical screening test is fractionated metadrenalines, including methoxytyramine so as not to miss dopamine-secreting tumours.

  4. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6. The open-end of MWNTs present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. Oligonucleotide probes are selectively functionalized at the open ends cf the nanotube array and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of subattomoles of PCR amplified DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the Ru(bpy)32' amplification mechanism. This system provides a general platform of molecular diagnostics for applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparations.

  5. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    PubMed

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Erythrocyte and Biochemical Abnormalities as Diagnostic Markers in Dogs With Hemangiosarcoma Related Hemoabdomen.

    PubMed

    Wong, Richard W; Gonsalves, Mishka N; Huber, Michael L; Rich, Lon; Strom, Adam

    2015-10-01

    To investigate: 1) acanthocytosis and presence of acanthocytes in peritoneal fluid as a diagnostic marker for hemangiosarcoma (HSA) in dogs with non-traumatic hemoabdomen; and 2) the association between other erythrocyte, biochemical, and hematologic abnormalities as a mean of differentiating HSA from other disease. Prospective double-blinded cohort study. Dogs (n = 40) with non-traumatic hemoabdomen. Dogs diagnosed with hemoabdomen (January 2012 to May 2013) had cytologic evaluation of abdominal effusion and peripheral blood smears. Peripheral blood CBC, PT, and aPTT, as well as blood and effusion acanthocytes, keratocytes, schistocytes, lactate, glucose, PCV, and TP results were compared using the paired t-test or Fisher's exact test. Based on histologic confirmation of HSA, dogs were divided into 2 groups (HSA, non-HSA) and variables compared. There was no significant difference in erythrocyte morphology in abdominal effusion or peripheral blood between dogs with HSA or non-HSA related hemoabdomen. Platelet concentration and peripheral blood PCV were significantly lower in the HSA group. A reliable preoperative biochemical or cytologic test to differentiate between HSA and non-HSA related hemoabdomen was not identified. © Copyright 2015 by The American College of Veterinary Surgeons.

  7. Ultra-sensitive transducer advances micro-measurement range

    NASA Technical Reports Server (NTRS)

    Rogallo, V. L.

    1964-01-01

    An ultrasensitive piezoelectric transducer, that converts minute mechanical forces into electrical impulses, measures the impact of micrometeoroids against space vehicles. It has uniform sensitivity over the entire target area and a high degree of stability.

  8. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.

    PubMed

    Cheng, Wei; Zhang, Wei; Yan, Yurong; Shen, Bo; Zhu, Dan; Lei, Pinhua; Ding, Shijia

    2014-12-15

    A novel electrochemical biosensing strategy was developed for ultrasensitive and specific detection of target DNA using a cascade signal amplification based on molecular beacon (MB) mediated circular strand displacement (CSD), rolling circle amplification (RCA), biotin-strepavidin system, and enzymatic amplification. The target DNA hybridized with the loop portion of MB probe immobilized on the gold electrode and triggered the CSD, leading to multiple biotin-tagged DNA duplex. Furthermore, via biotin-streptavidin interaction, the RCA was implemented, producing long massive tandem-repeat DNA sequences for binding numerous biotinylated detection probes. This enabled an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor showed very high sensitivity and selectivity with a dynamic response range from 1 fM to 100 pM. The proposed strategy could have the potential for applying in clinical molecular diagnostics and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Ion implantation system and process for ultrasensitive determination of target isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, III, Orville T.; Liezers, Martin

    2016-09-13

    A system and process are disclosed for ultrasensitive determination of target isotopes of analytical interest in a sample. Target isotopes may be implanted in an implant area on a high-purity substrate to pre-concentrate the target isotopes free of contaminants. A known quantity of a tracer isotope may also be implanted. Target isotopes and tracer isotopes may be determined in a mass spectrometer. The present invention provides ultrasensitive determination of target isotopes in the sample.

  10. Atomic magnetometer-based ultra-sensitive magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-03-01

    An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.

  11. Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    PubMed Central

    Lapitan Jr., Lorico D. S.; Guo, Yuan

    2015-01-01

    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10–18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted. PMID:25785914

  12. Luteal phase deficiency in regularly menstruating women: prevalence and overlap in identification based on clinical and biochemical diagnostic criteria.

    PubMed

    Schliep, Karen C; Mumford, Sunni L; Hammoud, Ahmad O; Stanford, Joseph B; Kissell, Kerri A; Sjaarda, Lindsey A; Perkins, Neil J; Ahrens, Katherine A; Wactawski-Wende, Jean; Mendola, Pauline; Schisterman, Enrique F

    2014-06-01

    Although adequate luteal hormone production is essential for establishing pregnancy, luteal phase deficiency (LPD) is poorly characterized among eumenorrheic women. We assessed the prevalence and overlap of two established LPD diagnostic criteria: short luteal phase duration less than10 days (clinical LPD) and suboptimal luteal progesterone of 5 ng/mL or less (biochemical LPD) and their relationship with reproductive hormone concentrations. We conducted a prospective study in western New York (2005-2007) following 259 women, aged 18-44 years, for up to two menstrual cycles. Among ovulatory cycles with recorded cycle lengths (n = 463), there were 41 cycles (8.9%) with clinical LPD, 39 cycles (8.4%) with biochemical LPD, and 20 cycles (4.3%) meeting both criteria. Recurrent clinical and biochemical LPD was observed in eight (3.4%) and five (2.1%) women, respectively. Clinical and biochemical LPD were each associated with lower follicular estradiol (both P ≤ .001) and luteal estradiol (P = .03 and P = .02, respectively) after adjusting for age, race, and percentage body fat. Clinical, but not biochemical, LPD was associated with lower LH and FSH across all phases of the cycle (P ≤ .001). Clinical and biochemical LPD were evident among regularly menstruating women. Estradiol was lower in LPD cycles under either criterion, but LH and FSH were lower only in association with shortened luteal phase (ie, clinical LPD), indicating that clinical and biochemical LPD may reflect different underlying mechanisms. Identifying ovulation in combination with a well-timed luteal progesterone measurement may serve as a cost-effective and specific tool for LPD assessment by clinicians and researchers.

  13. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical bio-sensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  14. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  15. Performance of an ultra-sensitive Plasmodium falciparum HRP2-based rapid diagnostic test with recombinant HRP2, culture parasites, and archived whole blood samples.

    PubMed

    Das, Smita; Peck, Roger B; Barney, Rebecca; Jang, Ihn Kyung; Kahn, Maria; Zhu, Meilin; Domingo, Gonzalo J

    2018-03-17

    As malaria endemic countries shift from control to elimination, the proportion of low density Plasmodium falciparum infections increases. Current field diagnostic tools, such as microscopy and rapid diagnostic tests (RDT), with detection limits of approximately 100-200 parasites/µL (p/µL) and 800-1000 pg/mL histidine-rich protein 2 (HRP2), respectively, are unable to detect these infections. A novel ultra-sensitive HRP2-based Alere™ Malaria Ag P.f RDT (uRDT) was evaluated in laboratory conditions to define the test's performance against recombinant HRP2 and native cultured parasites. The uRDT detected dilutions of P. falciparum recombinant GST-W2 and FliS-W2, as well as cultured W2 and ITG, diluted in whole blood down to 10-40 pg/mL HRP2, depending on the protein tested. uRDT specificity was 100% against 123 archived frozen whole blood samples. Rapid test cross-reactivity with HRP3 was investigated using pfhrp2 gene deletion strains D10 and Dd2, pfhrp3 gene deletion strain HB3, and controls pfhrp2 and pfhrp3 double deletion strain 3BD5 and pfhrp2 and pfhrp3 competent strain ITG. The commercial Standard Diagnostics, Inc. BIOLINE Malaria Ag P.f RDT (SD-RDT) and uRDT detected pfhrp2 positive strains down to 49 and 3.13 p/µL, respectively. The pfhrp2 deletion strains were detected down to 98 p/µL by both tests. The performance of the uRDT was variable depending on the protein, but overall showed a greater than 10-fold improvement over the SD-RDT. The uRDT also exhibited excellent specificity and showed the same cross-reactivity with HRP3 as the SD-RDT. Together, the results support the uRDT as a more sensitive HRP2 test that could be a potentially effective tool in elimination campaigns. Further clinical evaluations for this purpose are merited.

  16. Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein.

    PubMed

    Chen, Jing; He, Qing-hua; Xu, Yang; Fu, Jin-heng; Li, Yan-ping; Tu, Zhui; Wang, Dan; Shu, Mei; Qiu, Yu-lou; Yang, Hong-wei; Liu, Yuan-yuan

    2016-01-15

    Immunoassay for cancer biomarkers plays an important role in cancer prevention and early diagnosis. To the development of immunoassay, the quality and stability of applied antibody is one of the key points to obtain reliability and high sensitivity for immunoassay. The main purpose of this study was to develop a novel immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein (AFP) based on nanobody against AFP. Two nanobodies which bind to AFP were selected from a phage display nanobody library by biopanning strategy. The prepared nanobodies are clonable, thermally stable and applied in both sandwich enzyme linked immunoassay (ELISA) and immuno-PCR assay for ultrasensitive detection of AFP. The limit detection of sandwich ELISA setup with optimized nanobodies was 0.48ng mL(-1), and the half of saturation concentration (SC50) value was 6.68±0.56ng mL(-1). These nanobodies were also used to develop an immuno-PCR assay for ultrasensitive detection of AFP, its limit detection values was 0.005ng mL(-1), and the linear range was 0.01-10,000ng mL(-1). These established immunoassays based on nanobodies were highly specific to AFP and with negligible cross reactivity with other tested caner biomarkers. Furthermore, this novel concept of nanobodies mediated immunoassay may provide potential applications in a general method for the ultrasensitive detection of various cancer biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Examining the Relationship between Gender and Drug-Using Behaviors in Adolescents: The Use of Diagnostic Assessments and Biochemical Analyses of Urine Samples.

    ERIC Educational Resources Information Center

    James, William H.; Moore, David D.

    1999-01-01

    Examines the relationship between gender and drug use among adolescents using diagnostic assessments and biochemical analyses of urine samples. Statistical significance was found in the relationship between gender and marijuana use. The study confirms that more research is needed in this area. (Author/MKA)

  18. Luteal Phase Deficiency in Regularly Menstruating Women: Prevalence and Overlap in Identification Based on Clinical and Biochemical Diagnostic Criteria

    PubMed Central

    Schliep, Karen C.; Mumford, Sunni L.; Hammoud, Ahmad O.; Stanford, Joseph B.; Kissell, Kerri A.; Sjaarda, Lindsey A.; Perkins, Neil J.; Ahrens, Katherine A.; Wactawski-Wende, Jean; Mendola, Pauline

    2014-01-01

    Context: Although adequate luteal hormone production is essential for establishing pregnancy, luteal phase deficiency (LPD) is poorly characterized among eumenorrheic women. Objective: We assessed the prevalence and overlap of two established LPD diagnostic criteria: short luteal phase duration less than10 days (clinical LPD) and suboptimal luteal progesterone of 5 ng/mL or less (biochemical LPD) and their relationship with reproductive hormone concentrations. Design, Setting, and Participants: We conducted a prospective study in western New York (2005–2007) following 259 women, aged 18–44 years, for up to two menstrual cycles. Results: Among ovulatory cycles with recorded cycle lengths (n = 463), there were 41 cycles (8.9%) with clinical LPD, 39 cycles (8.4%) with biochemical LPD, and 20 cycles (4.3%) meeting both criteria. Recurrent clinical and biochemical LPD was observed in eight (3.4%) and five (2.1%) women, respectively. Clinical and biochemical LPD were each associated with lower follicular estradiol (both P ≤ .001) and luteal estradiol (P = .03 and P = .02, respectively) after adjusting for age, race, and percentage body fat. Clinical, but not biochemical, LPD was associated with lower LH and FSH across all phases of the cycle (P ≤ .001). Conclusions: Clinical and biochemical LPD were evident among regularly menstruating women. Estradiol was lower in LPD cycles under either criterion, but LH and FSH were lower only in association with shortened luteal phase (ie, clinical LPD), indicating that clinical and biochemical LPD may reflect different underlying mechanisms. Identifying ovulation in combination with a well-timed luteal progesterone measurement may serve as a cost-effective and specific tool for LPD assessment by clinicians and researchers. PMID:24606080

  19. Standardization and performance evaluation of "modified" and "ultrasensitive" versions of the Abbott RealTime HIV-1 assay, adapted to quantify minimal residual viremia.

    PubMed

    Amendola, Alessandra; Bloisi, Maria; Marsella, Patrizia; Sabatini, Rosella; Bibbò, Angela; Angeletti, Claudio; Capobianchi, Maria Rosaria

    2011-09-01

    Numerous studies investigating clinical significance of HIV-1 minimal residual viremia (MRV) suggest potential utility of assays more sensitive than those routinely used to monitor viral suppression. However currently available methods, based on different technologies, show great variation in detection limit and input plasma volume, and generally suffer from lack of standardization. In order to establish new tools suitable for routine quantification of minimal residual viremia in patients under virological suppression, some modifications were introduced into standard procedure of the Abbott RealTime HIV-1 assay leading to a "modified" and an "ultrasensitive" protocols. The following modifications were introduced: calibration curve extended towards low HIV-1 RNA concentration; 4 fold increased sample volume by concentrating starting material; reduced volume of internal control; adoption of "open-mode" software for quantification. Analytical performances were evaluated using the HIV-1 RNA Working Reagent 1 for NAT assays (NIBSC). Both tests were applied to clinical samples from virologically suppressed patients. The "modified" and the "ultrasensitive" configurations of the assay reached a limit of detection of 18.8 (95% CI: 11.1-51.0 cp/mL) and 4.8 cp/mL (95% CI: 2.6-9.1 cp/mL), respectively, with high precision and accuracy. In clinical samples from virologically suppressed patients, "modified" and "ultrasensitive" protocols allowed to detect and quantify HIV RNA in 12.7% and 46.6%, respectively, of samples resulted "not-detectable", and in 70.0% and 69.5%, respectively, of samples "detected <40 cp/mL" in the standard assay. The "modified" and "ultrasensitive" assays are precise and accurate, and easily adoptable in routine diagnostic laboratories for measuring MRV. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Ultrasensitive sensing with three-dimensional terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Tan, Siyu; Yan, Fengping; Wang, Wei; Zhou, Hong; Hou, Yafei

    2018-05-01

    Planar metasurfaces and metamaterial absorbers have shown great promise for label-free sensing applications at microwaves, optical and terahertz frequencies. The realization of high-quality-factor resonance in these structures is of significant interest to enhance the sensing sensitivities to detect minute frequency shifts. We propose and demonstrate in this manuscript an ultrasensitive terahertz metamaterial absorber sensor based on a three-dimensional split ring resonator absorber with a high quality factor of 60.09. The sensing performance of the proposed absorber sensor was systematically investigated through detailed numerical calculations and a maximum refractive index sensitivity of 34.40% RIU‑1 was obtained. Furthermore, the absorber sensor can maintain a high sensitivity for a wide range of incidence angles up to 60° under TM polarization incidence. These findings would improve the design flexibility of the absorber sensors and further open up new avenues to achieve ultrasensitive sensing in the terahertz regime.

  1. An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing.

    PubMed

    Men, Dong; Zhang, Zhi-Ping; Guo, Yong-Chao; Zhu, Duan-Hao; Bi, Li-Jun; Deng, Jiao-Yu; Cui, Zong-Qiang; Wei, Hong-Ping; Zhang, Xian-En

    2010-12-15

    In order to obtain an ultra-sensitive molecular biosensor, we designed an auto-biotinylated bifunctional protein nanowire (bFPNw) based on the self-assembly of a yeast amyloid protein, Sup35, to which protein G and a biotin acceptor peptide (BAP) were genetically fused. These auto-biotinylated bFPNws can transfer hundreds of commercially available diagnostic enzymes to an antigen-antibody complex via the biotin-avidin system, greatly enhancing the sensitivity of immune-biosensing. Compared to our previously reported seeding-induced bFPNws (Men et al., 2009), these auto-biotinylated bFPNws gave greater signal amplification, reduced non-specific binding and improved stability. The auto-biotinylated self-assembled bFPNw molecular biosensors were applied to detect Yersinia pestis (Y. pestis) F1 antigen and showed a 2000- to 4000-fold increase in sensitivity compared to traditional immunoassays, demonstrating the potential use of these self-assembling protein nanowires in biosensing. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus.

    PubMed

    Adegoke, Oluwasesan; Seo, Min-Woong; Kato, Tatsuya; Kawahito, Shoji; Park, Enoch Y

    2016-12-15

    Ultrasensitive, rapid and selective diagnostic probes are urgently needed to overcome the limitations of traditional probes for norovirus (NV). Here, we report the detection of NV genogroup II via nucleic acid hybridization technology using a quantum dot (QD)-conjugated molecular beacon (MB) probe. To boost the sensitivity of the MB assay system, an ultrasensitive QD fluorophore with unique optical properties was synthesized, characterized and exploited as a fluorescence signal generator. Alloyed thioglycolic (TGA)-capped CdZnSeS QDs with a high photoluminescence (PL) quantum yield (QY) value of 92% were synthesized, and a modified silanization method was employed to encapsulate the thiol-capped QDs in a silica layer. The resulting highly luminescent alloyed SiO2-coated CdZnSeS QDs had a remarkable PL QY value of 98%. Transmission electron microscopy and dynamic light scattering confirmed the monodispersity of the alloyed nanocrystals, and zeta potential analysis confirmed their colloidal stability. Powder X-ray diffraction and PL lifetime measurements confirmed the surface modification of the QDs. The alloyed TGA-capped and SiO2-coated CdZnSeS QD-conjugated MB bioprobes detected extremely low concentrations of NV RNA. Ultrasensitive detection of low concentrations of NV RNA with a limit of detection (LOD) of 8.2copies/mL in human serum and a LOD of 9.3 copies/mL in buffer was achieved using the SiO2-coated CdZnSeS QD-MB probes, an increase in sensitivity of 3-fold compared with the detection limit for NV RNA using TGA-capped CdZnSeS QD-MBs. The additional merits of our detection system are rapidity, specificity and improved sensitivity over conventional molecular test probes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels

    DOE PAGES

    Nikitin, M. P.; Orlov, A. V.; Sokolov, I. L.; ...

    2018-01-01

    The magnetically soft, disk-shaped particles reveal a strong nonlinearity of the magnetization process due to irreversible transitions from the spin vortex to single-domain configuration, enabling their ultrasensitive detection in high-background environments.

  4. Luminescent Quantum Dots as Ultrasensitive Biological Labels

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2000-03-01

    Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

  5. The Ultrasensitivity of Living Polymers

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Ben; Vavylonis, Dimitrios

    2003-03-01

    Synthetic and biological living polymers are self-assembling chains whose chain length distributions (CLDs) are dynamic. We show these dynamics are ultrasensitive: Even a small perturbation (e.g., temperature jump) nonlinearly distorts the CLD, eliminating or massively augmenting short chains. The origin is fast relaxation of mass variables (mean chain length, monomer concentration) which perturbs CLD shape variables before these can relax via slow chain growth rate fluctuations. Viscosity relaxation predictions agree with experiments on the best-studied synthetic system, α-methylstyrene.

  6. [Interpretation of false positive results of biochemical prenatal tests].

    PubMed

    Sieroszewski, Piotr; Słowakiewicz, Katarzyna; Perenc, Małgorzata

    2010-03-01

    Modern, non-invasive prenatal diagnostics based on biochemical and ultrasonographic markers of fetal defects allows us to calculate the risk of fetal chromosomal aneuploidies with high sensitivity and specificity An introduction of biochemical, non-invasive prenatal tests turned out to result in frequent false positive results of these tests in cases when invasive diagnostics does not confirm fetal defects. However prospective analysis of these cases showed numerous complications in the third trimester of the pregnancies.

  7. Furthur remarks on atmospheric probing by ultrasensitive radar

    NASA Technical Reports Server (NTRS)

    Atlas, D.

    1969-01-01

    This paper is supplementary to that of Hardy and Katz. It emphasizes the meteorological value of the various capabilities of ultrasensitive radar, highlights the points of agreement and disagreement, and focuses upon the directions of promising research. The theory of backscatter from a refractively turbulent region is said to be confirmed by the radar observations both with respect to magnitude and wavelength dependence. A reason for the apparent discrepancy between the results of some of the forwardscatter experiments and theory is suggested. Disagreement still exists with respect to the origin of clear air sea breeze echoes; the author does not agree with Hardy and Katz that they are due to insects. However, it is agreed that some unusually widespread echo displays on clear days are indeed due to insects. The meteorological value of ultrasensitive radars demonstrated by Hardy and Katz, here, and by others is so profound as to demand their use in remote atmospheric probing.

  8. Ultra-sensitive detection of leukemia by graphene

    NASA Astrophysics Data System (ADS)

    Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza

    2014-11-01

    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to

  9. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections.

    PubMed

    Zainabadi, Kayvan; Adams, Matthew; Han, Zay Yar; Lwin, Hnin Wai; Han, Kay Thwe; Ouattara, Amed; Thura, Si; Plowe, Christopher V; Nyunt, Myaing M

    2017-09-18

    Greater Mekong Subregion countries are committed to eliminating Plasmodium falciparum malaria by 2025. Current elimination interventions target infections at parasite densities that can be detected by standard microscopy or rapid diagnostic tests (RDTs). More sensitive detection methods have been developed to detect lower density "asymptomatic" infections that may represent an important transmission reservoir. These ultrasensitive polymerase chain reaction (usPCR) tests have been used to identify target populations for mass drug administration (MDA). To date, malaria usPCR tests have used either venous or capillary blood sampling, which entails complex sample collection, processing and shipping requirements. An ultrasensitive method performed on standard dried blood spots (DBS) would greatly facilitate the molecular surveillance studies needed for targeting elimination interventions. A highly sensitive method for detecting Plasmodium falciparum and P. vivax 18S ribosomal RNA from DBS was developed by empirically optimizing nucleic acid extraction conditions. The limit of detection (LoD) was determined using spiked DBS samples that were dried and stored under simulated field conditions. Further, to assess its utility for routine molecular surveillance, two cross-sectional surveys were performed in Myanmar during the wet and dry seasons. The lower LoD of the DBS-based ultrasensitive assay was 20 parasites/mL for DBS collected on Whatman 3MM filter paper and 23 parasites/mL for Whatman 903 Protein Saver cards-equivalent to 1 parasite per 50 µL DBS. This is about 5000-fold more sensitive than standard RDTs and similar to the LoD of ≤16-22 parasites/mL reported for other ultrasensitive methods based on whole blood. In two cross-sectional surveys in Myanmar, nearly identical prevalence estimates were obtained from contemporaneous DBS samples and capillary blood samples collected during the wet and dry season. The DBS-based ultrasensitive method described in this

  10. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.

    PubMed

    Jung, Il Young; Kim, Ji Su; Choi, Bo Ram; Lee, Kyuri; Lee, Hyukjin

    2017-06-01

    Hydrogel-based biosensors have drawn considerable attention due to their various advantages over conventional detection systems. Recent studies have shown that hydrogel biosensors can be excellent alternative systems to detect a wide range of biomolecules, including small biochemicals, pathogenic proteins, and disease specific genes. Due to the excellent physical properties of hydrogels such as the high water content and stimuli-responsive behavior of cross-linked network structures, this system can offer substantial improvement for the design of novel detection systems for various diagnostic applications. The other main advantage of hydrogels is the role of biomimetic three-dimensional (3D) matrix immobilizing enzymes and aptamers within the detection systems, which enhances their stability. This provides ideal reaction conditions for enzymes and aptamers to interact with substrates within the aqueous environment of the hydrogel. In this review, we have highlighted various novel detection approaches utilizing the outstanding properties of the hydrogel. This review summarizes the recent progress of hydrogel-based biosensors and discusses their future perspectives and clinical limitations to overcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Advances in ultrasensitive mass spectrometry of organic molecules.

    PubMed

    Kandiah, Mathivathani; Urban, Pawel L

    2013-06-21

    Ultrasensitive mass spectrometric analysis of organic molecules is important for various branches of chemistry, and other fields including physics, earth and environmental sciences, archaeology, biomedicine, and materials science. It finds applications--as an enabling tool--in systems biology, biological imaging, clinical analysis, and forensics. Although there are a number of technical obstacles associated with the analysis of samples by mass spectrometry at ultratrace level (for example analyte losses during sample preparation, insufficient sensitivity, ion suppression), several noteworthy developments have been made over the years. They include: sensitive ion sources, loss-free interfaces, ion optics components, efficient mass analyzers and detectors, as well as "smart" sample preparation strategies. Some of the mass spectrometric methods published to date can achieve sensitivity which is by several orders of magnitude higher than that of alternative approaches. Femto- and attomole level limits of detection are nowadays common, while zepto- and yoctomole level limits of detection have also been reported. We envision that the ultrasensitive mass spectrometric assays will soon contribute to new discoveries in bioscience and other areas.

  12. Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.

    PubMed

    Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang

    2014-01-01

    A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.

  13. DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercuryion

    USDA-ARS?s Scientific Manuscript database

    In this study, plasmonic heteropyramids (HPs) made from two different sized gold nanoparticles (Au NPs) and five ssDNA sequences and their application for ultrasensitive detection of mercury ion (Hg2+) were demonstrated. Four ssDNA sequences were used as building blocks to form apyramidal DNA frame,...

  14. Ultrasensitive Detection of Shigella Species in Blood and Stool.

    PubMed

    Luo, Jieling; Wang, Jiapeng; Mathew, Anup S; Yau, Siu-Tung

    2016-02-16

    A modified immunosensing system with voltage-controlled signal amplification was used to detect Shigella in stool and blood matrixes at the single-digit CFU level. Inactivated Shigella was spiked in these matrixes and detected directly. The detection was completed in 78 min. Detection limits of 21 CFU/mL and 18 CFU/mL were achieved in stool and blood, respectively, corresponding to 2-7 CFUs immobilized on the detecting electrode. The outcome of the detection of extremely low bacterium concentration, i.e., below 100 CFU/mL, blood samples show a random nature. An analysis of the detection probabilities indicates the correlation between the sample volume and the success of detection and suggests that sample volume is critical for ultrasensitive detection of bacteria. The calculated detection limit is qualitatively in agreement with the empirically determined detection limit. The demonstrated ultrasensitive detection of Shigella on the single-digit CFU level suggests the feasibility of the direct detection of the bacterium in the samples without performing a culture.

  15. Collective behaviours: from biochemical kinetics to electronic circuits.

    PubMed

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; Di Biasio, Aldo; Uguzzoni, Guido

    2013-12-10

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.

  16. Collective behaviours: from biochemical kinetics to electronic circuits

    PubMed Central

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; Di Biasio, Aldo; Uguzzoni, Guido

    2013-01-01

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics. PMID:24322327

  17. Collective behaviours: from biochemical kinetics to electronic circuits

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; di Biasio, Aldo; Uguzzoni, Guido

    2013-12-01

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.

  18. Strategically functionalized carbon nanotubes as the ultrasensitive electrochemical probe for picomolar detection of sildenafil citrate (Viagra).

    PubMed

    Gopalan, Anantha Iyengar; Lee, Kwang Pill; Komathi, Shanmugasundaram

    2011-02-15

    The present work demonstrates the utility of the functionalized carbon nanotubes, poly(4-aminobenzene sulfonic acid) (PABS) grafted multiwalled carbon nanotubes, MWNT-g-PABS, as an electrode modifier towards achieving ultrasensitive detection of a model drug, sildenafil citrate (SC). PABS units in MWNT-g-PABS interact with SC, pre-concentrate and accumulate at the surface. The electron transduction from SC to electrode is augmented via MWNT-g-PABS. As a result, the MWNT-g-PABS modified electrode exhibited ultrasensitive (57.7 μA/nM) and selective detection of SC with a detection limit of 4.7 pM. The present work provides scope towards targeting ultrasensitivity for the detection of biomolecules/drug through rational design and incorporation of appropriate chemical components to carbon nanotubes. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring.

    PubMed

    Yao, Yingyi; Guo, Weisheng; Zhang, Jian; Wu, Yudong; Fu, Weihua; Liu, Tingting; Wu, Xiaoli; Wang, Hanjie; Gong, Xiaoqun; Liang, Xing-Jie; Chang, Jin

    2016-09-07

    Ultrasensitive and quantitative fast screening of cancer biomarkers by immunochromatography test strip (ICTS) is still challenging in clinic. The gold nanoparticles (NPs) based ICTS with colorimetric readout enables a quick spectrum screening but suffers from nonquantitative performance; although ICTS with fluorescence readout (FICTS) allows quantitative detection, its sensitivity still deserves more efforts and attentions. In this work, by taking advantages of colorimetric ICTS and FICTS, we described a reverse fluorescence enhancement ICTS (rFICTS) with bimodal signal readout for ultrasensitive and quantitative fast screening of carcinoembryonic antigen (CEA). In the presence of target, gold NPs aggregation in T line induced colorimetric readout, allowing on-the-spot spectrum screening in 10 min by naked eye. Meanwhile, the reverse fluorescence enhancement signal enabled more accurately quantitative detection with better sensitivity (5.89 pg/mL for CEA), which is more than 2 orders of magnitude lower than that of the conventional FICTS. The accuracy and stability of the rFICTS were investigated with more than 100 clinical serum samples for large-scale screening. Furthermore, this rFICTS also realized postoperative monitoring by detecting CEA in a patient with colon cancer and comparing with CT imaging diagnosis. These results indicated this rFICTS is particularly suitable for point-of-care (POC) diagnostics in both resource-rich and resource-limited settings.

  20. Macro-/Nano- Materials Based Ultrasensitive Lateral Flow Nucleic Acid Biosensors

    NASA Astrophysics Data System (ADS)

    Takalkar, Sunitha

    Ultrasensitive detection of nucleic acids plays a very important role in the field of molecular diagnosis for the detection of various diseases. Lateral flow biosensors (LFB) are convenient, easy-to-use, patient friendly forms of detection methods offering rapid and convenient clinical testing in close proximity to the patients thus drawing a lot of attention in different areas of research over the years. In comparison with the traditional immunoassays, the nucleic acid based lateral flow biosensors (NABLFB) has several advantages in terms of stability and interference capabilities. NABLFB utilizes nucleic acid probes as the bio-recognition element. The target analyte typically is the oligonucleotide like the DNA, mRNA, miRNA which are among the nucleic acid secretions by the tumor cells when it comes to detection of cancer. Traditionally gold nanoparticles (GNPs) have been used as labels for conjugating with the detection probes for the qualitative and semi quantitative analysis, the application of GNP-based LFB is limited by its low sensitivity. This dissertation describes the use of different nanomaterials and advanced detection technologies to enhance the sensitivities of the LFB based methods. Silica Nanorods decorated with GNP were synthesized and employed as labels for ultrasensitive detection of miRNA on the LFB. Owing to the biocompatibility and convenience in surface modification of SiNRs, they acted as good carriers to load numerous GNPs. The sensitivity of the GNP-SiNR-based LFSB was enhanced six times compared to the previous GNP-based LFSB. A fluorescent carbon nanoparticle (FCN) was first used as a tag to develop a lateral flow nucleic acid biosensor for ultrasensitive and quantitative detection of nucleic acid samples. Under optimal conditions, the FCN-based LFNAB was capable of detecting minimum 0.4 fM target DNA without complex operations and additional signal amplification. The carbon nanotube was used as a label and carrier of numerous enzyme

  1. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A.

    PubMed

    Huang, Lin; Wu, Jingjing; Zheng, Lei; Qian, Haisheng; Xue, Feng; Wu, Yucheng; Pan, Daodong; Adeloju, Samuel B; Chen, Wei

    2013-11-19

    A novel electrochemical aptasensor is described for rapid and ultrasensitive detection of ochratoxin A (OTA) based on signal enhancement with rolling circle amplification (RCA). The primer for RCA was designed to compose of a two-part sequence, one part of the aptamer sequence directed against OTA while the other part was complementary to the capture probe on the electrode surface. In the presence of target OTA, the primer, originally hybridized with the RCA padlock, is replaced to combine with OTA. This induces the inhibition of RCA and decreases the OTA sensing signal obtained with the electrochemical aptasensor. Under the optimized conditions, ultrasensitive detection of OTA was achieved with a limit of detection (LOD) of 0.065 ppt (pg/mL), which is much lower than previously reported. The electrochemical aptasensor was also successfully applied to the determination of OTA in wine samples. This ultrasensitive electrochemical aptasensor is of great practical importance in food safety and could be widely extended to the detection of other toxins by replacing the sequence of the recognition aptamer.

  2. Ultrasensitive Electrochemical Detection of mRNA Using Branched DNA Amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Xun; Liu, Guodong; Wang, Shengfu

    2008-11-01

    We describe here an ultrasensitive electrochemical detection of m RNA protocol without RNA purification and PCR amplification. The new m RNA electrical detection capability is coupled to the amplification feature of branched DNA (bDNA) technology and with the nagnetic beads based electrochemical bioassay.

  3. Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors.

    PubMed

    Zhao, Haiguang; Vomiero, Alberto; Rosei, Federico

    2015-11-18

    Core-shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150-373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the highest ever reported, which makes them essentially unique in the panorama of biocompatible nanothermometers with potential for in vivo biological thermal imaging and/or thermoablative therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    NASA Astrophysics Data System (ADS)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  5. Additional diagnostic and prognostic value of copeptin ultra-sensitive for diagnosis of non-ST-elevation myocardial infarction in older patients presenting to the emergency department.

    PubMed

    Bahrmann, Philipp; Bahrmann, Anke; Breithardt, Ole-A; Daniel, Werner G; Christ, Michael; Sieber, Cornel C; Bertsch, Thomas

    2013-06-01

    Identifying older patients with non-ST- elevation myocardial infarction (NSTEMI) within the very large proportion with elevated high-sensitive cardiac troponin T (hs-cTnT) is a diagnostic challenge because they often present without clear symptoms or electrocardiographic features of acute coronary syndrome to the emergency department (ED). We prospectively investigated the diagnostic and prognostic performance of copeptin ultra-sensitive (copeptin-us) and hs-cTnT compared to hs-cTnT alone for NSTEMI at prespecified cut-offs in unselected older patients. We consecutively enrolled 306 non-surgical patients ≥70 years presenting to the ED. In addition to clinical examination, copeptin-us and hs-cTnT were measured at admission. Two cardiologists independently adjudicated the final diagnosis of NSTEMI after reviewing all available data. All patients were followed up for cardiovascular-related death within the following 12 months. NSTEMI was diagnosed in 38 (12%) patients (age 81±6 years). The combination of copeptin-us ≥14 pmol/L and hs-cTnT ≥0.014 µg/L compared to hs-cTnT ≥0.014 µg/L alone had a positive predictive value of 21% vs. 19% to rule in NSTEMI. The combination of copeptin-us <14 pmol/L and hs-cTnT <0.014 µg/L compared to hs-cTnT <0.014 µg/L alone had a negative predictive value of 100% vs. 99% to rule out NSTEMI. Hs-cTnT ≥0.014 µg/L alone was significantly associated with outcome. When copeptin-us ≥14 pmol/L was added, the net reclassification improvement for outcome was not significant (p=0.809). In unselected older patients presenting to the ED, the additional use of copeptin-us at predefined cut-offs may help to reliably rule out NSTEMI but may not help to increase predicted risk for outcome compared to hs-cTnT alone.

  6. Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids.

    PubMed

    Wang, Lu; Fan, Fuqiang; Cao, Wei; Xu, Huaping

    2015-07-29

    Reactive oxygen species (ROS) play crucial roles in cell signaling and redox homeostasis and are strongly related to metabolic activities. The increase of the ROS concentration in organisms can result in several diseases, such as cardiovascular diseases and cancer. The concentration of ROS in biologically relevant conditions is typically as low as around tens of micromolars to 100 μM H2O2, which makes it necessary to develop ultrasensitive ROS-responsive systems. A general approach is reported here to fabricate an ultrasensitive ROS-responsive system via coassembly between tellurium-containing molecules and phospholipids, combining the ROS-responsiveness of tellurium and the biocompatibility of phospholipids. By using dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and NMR spectra, coassembly behaviors and the responsiveness of the coassemblies have been investigated. These coassemblies can respond to 100 μM H2O2, which is a biologically relevant ROS concentration, and demonstrate reversible redox properties.

  7. Evaluation of a new ultrasensitive assay for cardiac troponin I.

    PubMed

    Casals, Gregori; Filella, Xavier; Bedini, Josep Lluis

    2007-12-01

    We evaluated the analytical and clinical performance of a new ultrasensitive cardiac troponin I assay (cTnI) on the ADVIA Centaur system (TnI-Ultra). The evaluation included the determination of detection limit, within-assay and between-assay variation and comparison with two other non-ultrasensitive methods. Moreover, cTnI was determined in 120 patients with acute chest pain with three methods. To evaluate the ability of the new method to detect MI earlier, it was assayed in 8 MI patients who first tested negative then positive by the other methods. The detection limit was 0.009 microg/L and imprecision was <10% at all concentrations evaluated. In comparison with two other methods, 10% of the anginas diagnosed were recategorized to MI. The ADVIA Centaur TnI-Ultra assay presented high reproducibility and high sensitivity. The use of the recommended lower cutpoint (0.044 microg/L) implied an increased and earlier identification of MI.

  8. One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    PubMed

    Kumarasamy, Jayakumar; Camarada, María Belén; Venkatraman, Dharuman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-01-18

    A layer-by-layer (LBL) assembly was employed for preparing multilayer thin films with a controlled architecture and composition. In this study, we report the one-step coelectrodeposition-assisted LBL assembly of both gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) on the surface of a glassy carbon electrode (GCE) for the ultrasensitive electrochemical impedance sensing of DNA hybridization. A self-healable nanohybrid thin film with a three-dimensional (3D) alternate-layered nanoarchitecture was obtained by the one-step simultaneous electro-reduction of both graphene oxide and gold chloride in a high acidic medium of H 2 SO 4 using cyclic voltammetry and was confirmed by different characterization techniques. The DNA bioelectrode was prepared by immobilizing the capture DNA onto the surface of the as-obtained self-healable AuNP/rGO/AuNP/GCE with a 3D LBL nanoarchitecture via gold-thiol interactions, which then served as an impedance sensing platform for the label-free ultrasensitive electrochemical detection of DNA hybridization over a wide range from 1.0 × 10 -9 to 1.0 × 10 -13 g ml -1 , a low limit of detection of 3.9 × 10 -14 g ml -1 (S/N = 3), ultrahigh sensitivity, and excellent selectivity. This study presents a promising electrochemical sensing platform for the label-free ultrasensitive detection of DNA hybridization with potential application in cancer diagnostics and the preparation of a self-healable nanohybrid thin film with a 3D alternate-layered nanoarchitecture via a one-step coelectrodeposition-assisted LBL assembly.

  9. DREAMing: a simple and ultrasensitive method for assessing intratumor epigenetic heterogeneity directly from liquid biopsies

    PubMed Central

    Pisanic, Thomas R.; Athamanolap, Pornpat; Poh, Weijie; Chen, Chen; Hulbert, Alicia; Brock, Malcolm V.; Herman, James G.; Wang, Tza-Huei

    2015-01-01

    Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14ARF and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively. PMID:26304549

  10. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  11. Quantum dot bioconjugates for ultrasensitive nonisotopic detection.

    PubMed

    Chan, W C; Nie, S

    1998-09-25

    Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

  12. First Indian study evaluating role of biochemical investigations and diagnostic tools in detection of adverse drug reactions.

    PubMed

    Tandon, Vishal R; Khajuria, Vijay; Raina, Kapila; Mahajan, Vivek; Sharma, Aman; Gillani, Zahid

    2014-09-01

    To evaluate the role of biochemical investigations (BI) and diagnostic tools (DT) in ADR detection. An observational prospective cross-sectional study was done using suspected ADR data collection form. A total of 2381 ADR related events were recorded in two years. Total number/percentage of biochemical abnormalities (BA) related ADR detection rate was 14.57% and of DT was 1.091% in contrast to 84.33% recorded with clinical presentation. Maximum cases were inward patients (87.13%), 67.02% were recorded by active surveillance. ADR detection rate at one point & detection on follow up was 56.31% Vs 46.38%. ADR detection rate of ECG, endoscopy, X-ray were 0.57%, 0.22%, 0.22% and of CT scan, MRI, DEXA scan, USG and biopsy was 0.04% each. Maximum ADRs were severe/serious, latent and Type-A in nature. Anemia (4.6%), followed by liver dysfunction (2.8%), renal dysfunction, electrolyte imbalance, hyperglycemia (1.1% each), abnormal coagulation profile (1%), decrease platelet count (0.8%), hypoglycemia (0.7%) were the most common BAs. Anti retroviral drugs (ART), tirofiban and methotrexate accounted for anemia, ART and anti tubercular drugs for liver & renal dysfunction, insulin for hypoglycemia, tirofiban, paclitaxel, capecipabine and ifosfamide for thrombocytopenia, hematuria by enoxaparin & dyslipidemia with ART were common ADRs. BI and DT can play very important role in ADR detection.

  13. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods.

    PubMed

    Westergaard Mulberg, Mads; Taskova, Maria; Thomsen, Rasmus P; Okholm, Anders H; Kjems, Jørgen; Astakhova, Kira

    2017-08-17

    For decades the detection of nucleic acids and their interactions at low abundances has been a challenging task that has thus far been solved by enzymatic target amplification. In this work we aimed at developing efficient tools for amplification-free nucleic acid detection, which resulted in the synthesis of new fluorescent nanoparticles. Here, the fluorescent nanoparticles were made by simple and inexpensive radical emulsion polymerization of butyl acrylate in the presence of fluorescent dyes and additional functionalization reagents. This provided ultra-bright macrofluorophores of 9-84 nm mean diameter, modified with additional alkyne and amino groups for bioconjugation. By using click and NHS chemistries, the new nanoparticles were attached to target-specific DNA probes that were used in fluorimetry and fluorescence microscopy. Overall, these fluorescent nanoparticles and their oligonucleotide derivatives have higher photostability, brighter fluorescence and hence dramatically lower limits of target detection than the individual organic dyes. These properties make them useful in approaches directed towards ultrasensitive detection of nucleic acids, in particular for imaging and in vitro diagnostics of DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Magnetic Nanozyme-Linked Immunosorbent Assay for Ultrasensitive Influenza A Virus Detection.

    PubMed

    Oh, Sangjin; Kim, Jeonghyo; Tran, Van Tan; Lee, Dong Kyu; Ahmed, Syed Rahin; Hong, Jong Chul; Lee, Jaewook; Park, Enoch Y; Lee, Jaebeom

    2018-04-18

    Rapid and sensitive detection of influenza virus is of soaring importance to prevent further spread of infections and adequate clinical treatment. Herein, an ultrasensitive colorimetric assay called magnetic nano(e)zyme-linked immunosorbent assay (MagLISA) is suggested, in which silica-shelled magnetic nanobeads (MagNBs) and gold nanoparticles are combined to monitor influenza A virus up to femtogram per milliliter concentration. Two essential strategies for ultrasensitive sensing are designed, i.e., facile target separation by MagNBs and signal amplification by the enzymelike activity of gold nanozymes (AuNZs). The enzymelike activity was experimentally and computationally evaluated, where the catalyticity of AuNZ was tremendously stronger than that of normal biological enzymes. In the spiked test, a straightforward linearity was presented in the range of 5.0 × 10 -15 -5.0 × 10 -6 g·mL -1 in detecting the influenza virus A (New Caledonia/20/1999) (H1N1). The detection limit is up to 5.0 × 10 -12 g·mL -1 only by human eyes, as well as up to 44.2 × 10 -15 g·mL -1 by a microplate reader, which is the lowest record to monitor influenza virus using enzyme-linked immunosorbent assay-based technology as far as we know. Clinically isolated human serum samples were successfully observed at the detection limit of 2.6 PFU·mL -1 . This novel MagLISA demonstrates, therefore, a robust sensing platform possessing the advances of fathomable sample separation, enrichment, ultrasensitive readout, and anti-interference ability may reduce the spread of influenza virus and provide immediate clinical treatment.

  15. Ultra-sensitive high performance liquid chromatography-laser-induced fluorescence based proteomics for clinical applications.

    PubMed

    Patil, Ajeetkumar; Bhat, Sujatha; Pai, Keerthilatha M; Rai, Lavanya; Kartha, V B; Chidangil, Santhosh

    2015-09-08

    An ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique has been developed by our group at Manipal, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from volunteers (normal, and different pre-malignant/malignant conditions) were recorded using this set-up. The protein profiles were analyzed using principal component analysis (PCA) to achieve objective detection and classification of malignant, premalignant and healthy conditions with high sensitivity and specificity. The HPLC-LIF protein profiling combined with PCA, as a routine method for screening, diagnosis, and staging of cervical cancer and oral cancer, is discussed in this paper. In recent years, proteomics techniques have advanced tremendously in life sciences and medical sciences for the detection and identification of proteins in body fluids, tissue homogenates and cellular samples to understand biochemical mechanisms leading to different diseases. Some of the methods include techniques like high performance liquid chromatography, 2D-gel electrophoresis, MALDI-TOF-MS, SELDI-TOF-MS, CE-MS and LC-MS techniques. We have developed an ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from healthy and volunteers with different malignant conditions were recorded by using this set-up. The protein profile data were analyzed using principal component analysis (PCA) for objective

  16. Ultra-sensitive PSA Following Prostatectomy Reliably Identifies Patients Requiring Post-Op Radiotherapy

    PubMed Central

    Kang, Jung Julie; Reiter, Robert; Steinberg, Michael; King, Christopher R.

    2015-01-01

    PURPOSE Integrating ultra-sensitive PSA (uPSA) into surveillance of high-risk patients following radical prostatectomy (RP) potentially optimizes management by correctly identifying actual recurrences, promoting an early salvage strategy and minimizing overtreatment. The power of uPSA following surgery to identify eventual biochemical failures is tested. PATIENTS AND METHODS From 1991–2013, 247 high-risk patients with a median follow-up was 44 months after RP were identified (extraprostatic extension and/or positive margin). Surgical technique, initial PSA (iPSA), pathology and post-op PSA were analyzed. The uPSA assay threshold was 0.01 ng/mL. Conventional biochemical relapse (cBCR) was defined as PSA ≥0.2 ng/mL. Kaplan Meier and Cox multivariate analyses (MVA) compared uPSA recurrence vs. cBCR rates. RESULTS Sensitivity analysis identified uPSA ≥0.03 as the optimal threshold identifying recurrence. First post-op uPSA ≥0.03, Gleason grade, T-stage, iPSA, and margin status predicted cBCR. On MVA, only first post-op uPSA ≥0.03, Gleason grade, and T-stage independently predicted cBCR. First post-op uPSA ≥0.03 conferred the highest risk (HR 8.5, p<0.0001) and discerned cBCR with greater sensitivity than undetectable first conventional PSA (70% vs. 46%). Any post-op PSA ≥0.03 captured all failures missed by first post-op value (100% sensitivity) with accuracy (96% specificity). Defining failure at uPSA ≥0.03 yielded a median lead-time advantage of 18 months (mean 24 months) over the conventional PSA ≥0.2 definition. CONCLUSION uPSA ≥0.03 is an independent factor, identifies BCR more accurately than any traditional risk factors, and confers a significant lead-time advantage. uPSA enables critical decisions regarding timing and indication for post-op RT among high-risk patients following RP. PMID:25463990

  17. Identifying ultrasensitive HGF dose-response functions in a 3D mammalian system for synthetic morphogenesis.

    PubMed

    Senthivel, Vivek Raj; Sturrock, Marc; Piedrafita, Gabriel; Isalan, Mark

    2016-12-16

    Nonlinear responses to signals are widespread natural phenomena that affect various cellular processes. Nonlinearity can be a desirable characteristic for engineering living organisms because it can lead to more switch-like responses, similar to those underlying the wiring in electronics. Steeper functions are described as ultrasensitive, and can be applied in synthetic biology by using various techniques including receptor decoys, multiple co-operative binding sites, and sequential positive feedbacks. Here, we explore the inherent non-linearity of a biological signaling system to identify functions that can potentially be exploited using cell genome engineering. For this, we performed genome-wide transcription profiling to identify genes with ultrasensitive response functions to Hepatocyte Growth Factor (HGF). We identified 3,527 genes that react to increasing concentrations of HGF, in Madin-Darby canine kidney (MDCK) cells, grown as cysts in 3D collagen cell culture. By fitting a generic Hill function to the dose-responses of these genes we obtained a measure of the ultrasensitivity of HGF-responsive genes, identifying a subset with higher apparent Hill coefficients (e.g. MMP1, TIMP1, SNORD75, SNORD86 and ERRFI1). The regulatory regions of these genes are potential candidates for future engineering of synthetic mammalian gene circuits requiring nonlinear responses to HGF signalling.

  18. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    NASA Astrophysics Data System (ADS)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  19. Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection

    PubMed Central

    Yin, Ming-jie; Huang, Bobo; Gao, Shaorui; Zhang, A. Ping; Ye, Xuesong

    2016-01-01

    An optical fiber sensor integrated microfluidic chip is presented for ultrasensitive detection of glucose. A long-period grating (LPG) inscribed in a small-diameter single-mode fiber (SDSMF) is employed as an optical refractive-index (RI) sensor. With the layer-by-layer (LbL) self-assembly technique, poly (ethylenimine) (PEI) and poly (acrylic acid) (PAA) multilayer film is deposited on the SDSMF-LPG sensor for both supporting and signal enhancement, and then a glucose oxidase (GOD) layer is immobilized on the outer layer for glucose sensing. A microfluidic chip for glucose detection is fabricated after embedding the SDSMF-LPG biosensor into the microchannel of the chip. Experimental results reveal that the SDSMF-LPG biosensor based on such a hybrid sensing film can ultrasensitively detect glucose concentration as low as 1 nM. After integration into the microfluidic chip, the detection range of the sensor is extended from 2 µM to 10 µM, and the response time is remarkablely shortened from 6 minutes to 70 seconds. PMID:27231643

  20. Signal-boosted qualitative ultrasensitive p24 antigen assay for diagnosis of subtype C HIV-1 infection in infants under the age of 2 years.

    PubMed

    Zijenah, Lynn S; Tobaiwa, Ocean; Rusakaniko, Simbarashe; Nathoo, Kusum J; Nhembe, Margaret; Matibe, Petronella; Katzenstein, David A

    2005-08-01

    The gold standard for diagnosis of HIV-1 infection in infants under the age of 2 years is DNA or reverse transcriptase polymerase chain reaction. However, these tests are expensive and therefore not available in resource-limited countries. With the increasing availability of antiretroviral drugs for prevention of mother-to-child transmission of HIV and treatment of AIDS in resource-poor countries, there is an urgent need to develop cheaper, alternative, and cost-effective laboratory methods for early diagnosis of infant HIV-1 infection that will be useful in identifying infected infants who may benefit from early cotrimoxazole prophylaxis or commencement of antiretroviral therapy. We evaluated an alternative method, the enzyme-linked immunosorbent assay-based qualitative ultrasensitive p24 antigen assay for diagnosis of subtype C HIV-1 infection in infants under the age of 2 years using DNA polymerase chain reaction as the reference method. The assay showed a sensitivity of 96.7% (95% CI: 93.0-100) for detection of HIV-1 infection among infants 0-18 months of age with a specificity of 96.1% (95% CI: 91.7-100). These evaluated parameters were not statistically different between infants aged 0-6 and 7-18 months. The ultrasensitive p24 antigen assay is a useful diagnostic test for detection of HIV-1 infection among infants aged 0-18 months.

  1. Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels.

    PubMed

    Cui, Zhentao; Wu, Dan; Zhang, Yong; Ma, Hongmin; Li, He; Du, Bin; Wei, Qin; Ju, Huangxian

    2014-01-07

    An ultrasensitive multiplexed immunoassay method was developed at a disposable immunosensor array using mesoporous platinum nanoparticles (M-Pt NPs) as nonenzymatic labels. M-Pt NPs were prepared by ultrasonic method and employed to label the secondary antibody (Ab2) for signal amplification. The immunosensor array was constructed by covalently immobilizing capture antibody (Ab1) on graphene modified screen printed carbon electrodes (SPECs). After the sandwich-type immunoreactions, the M-Pt-Ab2 was bound to immunosensor surface to catalyze the electro-reduction of H2O2 reaction, which produced detectable signals for readout of analytes. Using breast cancer related panel of tumor markers (CA125, CA153 and CEA) as model analytes, this method showed wide linear ranges of over 4 orders of magnitude with the detection limits of 0.002 U mL(-1), 0.001 U mL(-1) and 7.0 pg mL(-1) for CA125, CA153 and CEA, respectively. The disposable immunosensor array possessed excellent clinical value in cancer screening as well as convenient point of care diagnostics. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A Multi-Region Magnetoimpedance-Based Bio-Analytical System for Ultrasensitive Simultaneous Determination of Cardiac Biomarkers Myoglobin and C-Reactive Protein.

    PubMed

    Yang, Zhen; Wang, Huanhuan; Guo, Pengfei; Ding, Yuanyuan; Lei, Chong; Luo, Yongsong

    2018-06-01

    Cardiac biomarkers (CBs) are substances that appear in the blood when the heart is damaged or stressed. Measurements of the level of CBs can be used in course of diagnostics or monitoring the state of the health of group risk persons. A multi-region bio-analytical system (MRBAS) based on magnetoimpedance (MI) changes was proposed for ultrasensitive simultaneous detection of CBs myoglobin (Mb) and C-reactive protein (CRP). The microfluidic device was designed and developed using standard microfabrication techniques for their usage in different regions, which were pre-modified with specific antibody for specified detection. Mb and CRP antigens labels attached to commercial Dynabeads with selected concentrations were trapped in different detection regions. The MI response of the triple sensitive element was carefully evaluated in initial state and in the presence of biomarkers. The results showed that the MI-based bio-sensing system had high selectivity and sensitivity for detection of CBs. Compared with the control region, ultrasensitive detections of CRP and Mb were accomplished with the detection limits of 1.0 pg/mL and 0.1 pg/mL, respectively. The linear detection range contained low concentration detection area and high concentration detection area, which were 1 pg/mL⁻10 ng/mL, 10⁻100 ng/mL for CRP, and 0.1 pg/mL⁻1 ng/mL, 1 n/mL⁻80 ng/mL for Mb. The measurement technique presented here provides a new methodology for multi-target biomolecules rapid testing.

  3. Ultrasensitive HIV-1 p24 Assay Detects Single Infected Cells and Differences in Reservoir Induction by Latency Reversal Agents.

    PubMed

    Passaes, Caroline Pereira Bittencourt; Bruel, Timothée; Decalf, Jérémie; David, Annie; Angin, Mathieu; Monceaux, Valerie; Muller-Trutwin, Michaela; Noel, Nicolas; Bourdic, Katia; Lambotte, Olivier; Albert, Matthew L; Duffy, Darragh; Schwartz, Olivier; Sáez-Cirión, Asier

    2017-03-15

    The existence of HIV reservoirs in infected individuals under combined antiretroviral therapy (cART) represents a major obstacle toward cure. Viral reservoirs are assessed by quantification of HIV nucleic acids, a method which does not discriminate between infectious and defective viruses, or by viral outgrowth assays, which require large numbers of cells and long-term cultures. Here, we used an ultrasensitive p24 digital assay, which we report to be 1,000-fold more sensitive than classical enzyme-linked immunosorbent assays (ELISAs) in the quantification of HIV-1 Gag p24 production in samples from HIV-infected individuals. Results from ultrasensitive p24 assays were compared to those from conventional viral RNA reverse transcription-quantitative PCR (RT-qPCR)-based assays and from outgrowth assay readout by flow cytometry. Using serial dilutions and flow-based single-cell sorting, we show that viral proteins produced by a single infected cell can be detected by the ultrasensitive p24 assay. This unique sensitivity allowed the early (as soon as day 1 in 43% of cases) and more efficient detection and quantification of p24 in phytohemagglutinin-L (PHA)-stimulated CD4 + T cells from individuals under effective cART. When seven different classes of latency reversal agents (LRA) in resting CD4 + T cells from HIV-infected individuals were tested, the ultrasensitive p24 assay revealed differences in the extent of HIV reactivation. Of note, HIV RNA production was infrequently accompanied by p24 protein production (19%). Among the drugs tested, prostratin showed a superior capacity in inducing viral protein production. In summary, the ultrasensitive p24 assay allows the detection and quantification of p24 produced by single infected CD4 + T cells and provides a unique tool to assess early reactivation of infectious virus from reservoirs in HIV-infected individuals. IMPORTANCE The persistence of HIV reservoirs in infected individuals under effective antiretroviral treatment

  4. Ultra-Sensitive Photoreceiver Boosts Data Transmission

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA depends on advanced, ultra-sensitive photoreceivers and photodetectors to provide high-data communications and pinpoint image-detection and -recognition capabilities from great distances. In 2003, Epitaxial Technologies LLC was awarded a Small Business Innovation Research (SBIR) contract from Goddard Space Flight Center to address needs for advanced sensor components. Epitaxial developed a photoreciever capable of single proton sensitivity that is also smaller, lighter, and requires less power than its predecessor. This receiver operates in several wavelength ranges; will allow data rate transmissions in the terabit range; and will enhance Earth-based missions for remote sensing of crops and other natural resources, including applications for fluorescence and phosphorescence detection. Widespread military and civilian applications are anticipated, especially through enhancing fiber optic communications, laser imaging, and laser communications.

  5. Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform.

    PubMed

    Talbert, Joey N; Alcaine, Samuel D; Nugen, Sam R

    2016-04-01

    Bacteriophages represent multifaceted building blocks that can be incorporated as substitutes for, or in unison with other detection methods, to create powerful new diagnostics for the detection of bacteria. The ease of phage manipulation, production, and detection speed clearly highlights that there remains unrealized opportunities to leverage these phage-based components in diagnostics amenable to resource-limited settings. The passage of regulations like the Food Safety Modernization act, and the ever increasing extent of global trade and travel, will create further demand for these types of diagnostics. While phage-based diagnostics have begun to entering the market place, further research is needed to ensure the potential benefits of phage-based technologies for public health are fully realized. We are just beginning to explore the possibilities that phage-based detection can offer us in the future. The combination of engineered phages as well as engineered enzymes could result in ultrasensitive detection systems for low-resource settings. Because the reporter enzyme is synthesized in vivo, we need to consider the options outside of normal enzyme reporters. In this case, common enzyme issues such as purification and long-term stability are less important. Phage-based diagnostics were conceptualized from out-of-the box thinking and the evolution of these systems should be as well.

  6. Ultrasensitive and low-volume point-of-care diagnostics on flexible strips - a study with cardiac troponin biomarkers

    NASA Astrophysics Data System (ADS)

    Shanmugam, Nandhinee Radha; Muthukumar, Sriram; Prasad, Shalini

    2016-09-01

    We demonstrate a flexible, mechanically stable, and disposable electrochemical sensor platform for monitoring cardiac troponins through the detection and quantification of cardiac Troponin-T (cTnT). We designed and fabricated nanostructured zinc oxide (ZnO) sensing electrodes on flexible porous polyimide substrates. We demonstrate ultrasensitive detection is capable at very low sample volumes due to the confinement phenomenon of target species within the ZnO nanostructures leading to enhancement of biomolecular binding on the sensor electrode surface. The performance of the ZnO nanostructured sensor electrode was evaluated against gold and nanotextured ZnO electrodes. The electrochemical sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for cTnT were immobilized on the sensor electrodes using thiol based chemistry. Detection of cTnT in phosphate buffered saline (PBS) and human serum (HS) buffers was achieved at low sample volumes of 20 μL using non-faradaic electrochemical impedance spectroscopy (EIS). Limit of detection (LOD) of 1E-4 ng/mL (i.e. 1 pg/mL) at 7% CV (coefficient of variation) for cTnT in HS was demonstrated on nanostructured ZnO electrodes. The mechanical integrity of the flexible biosensor platform was demonstrated with cyclic bending tests. The sensor performed within 12% CV after 100 bending cycles demonstrating the robustness of the nanostructured ZnO electrochemical sensor platform.

  7. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    PubMed Central

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben

    2015-01-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157

  8. Rapid, ultrasensitive detection of microorganisms based on interferometry and lab-on-a-chip nanotechnology

    NASA Astrophysics Data System (ADS)

    Ymeti, Aurel; Nederkoorn, Paul H. J.; Dudia, Alma; Subramaniam, Vinod; Kanger, Johannes S.

    2009-05-01

    Future viral outbreaks are a major threat to societal and economic development throughout the world. A rapid, sensitive, and easy-to-use test for viral infections is essential to prevent and to control such viral pandemics. Furthermore, a compact, portable device is potentially very useful in remote or developing regions without easy access to sophisticated laboratory facilities. We have developed a rapid, ultrasensitive sensor that could be used in a handheld device to detect various viruses and measure their concentration. The essential innovation in this technique is the combination of an integrated optical interferometric sensor with antibody-antigen recognition approaches to yield a very sensitive, very rapid test for virus detection. The sensor is able to spot the herpes virus at concentrations of just 850 particles per milliliter under physiological conditions. The sensitivity of the sensor approaches detection of a single virus particle, yielding a sensor of unprecedented sensitivity with wide applications for viral diagnostics. The sensor's detection principle can be extended to any biological target such as bacteria, cells and proteins and for which there are specific antibodies. The nature of the sensor enables multiplexed detection of several analytes at the same time.

  9. Ultrasensitive Raman sensor based on a highly scattering porous structure

    NASA Astrophysics Data System (ADS)

    Yakovlev, V. V.

    2010-02-01

    Analytical methods capable of in situ monitoring of water quality have been in high demand for environmental safety, the identification of minute impurities and fundamental understanding of potential risks of these molecular species. Raman spectroscopy, which provides 'fingerprint' information about molecular species in the excitation volume, is a powerful tool for in vivo diagnostics. However, due to a relatively weak Raman signal (~ 1 out of 1014 incident photons produces the useful signal) there is a need to significantly (by many orders of magnitude) enhance this signal, to raise the detection sensitivity of this technique. Traditionally, surface enhanced Raman spectroscopy is employed to dramatically increase the local field intensity and substantially improve the efficiency of Raman scattering. However, the above enhancement occurs only in "hot spots", which represent only a small percent of the total surface are of the substrate. Plasmonic nanostructures are also found to be hard to manufacture in large quantities with the desired degree of reproducibility and to be unable to handle high laser power. We propose and experimentally demonstrate a new type of approach for ultrasensitive Raman sensing. It is based on manufacturing a random porous structure of high-index material, such as GaP, and use the effect of light localization to help improving the detection sensitivity of such sensor. The desired structure was manufactured using electrochemical etching of GaP wafers. The observed Raman signal amplitudes are favorably compared to the best known plasmonic substrates.

  10. ATTA - A New Method of Ultrasensitive Trace-Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; O'Connor, T. P.; Young, L.; Winkler, G.

    2000-10-01

    We have developed a new method of ultrasensitive trace-isotope analysis based upon the technique of laser manipulation of neutral atoms [1]. This new method allows us to count individual 85Kr and 81Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10-11 and 10-13, respectively. Isotope analysis of 81Kr can be used to date polar ice, and 85Kr is a tracer used in monitoring nuclear wastes. In this experiment metastable Kr atoms were produced in a discharge, decelerated via the Zeeman slowing technique, and captured by a Magneto-Optical Trap where the atoms were counted by measuring their fluorescence. At present our system is capable of counting, in average, one 81Kr atom for about 12 minutes with a total efficiency of 2x10-7. We are currently working to improve our system efficiency by applying cryogenic cooling to the Kr atoms in the discharge region and by recirculating the gas in the vacuum system. This method can be used to analyze many other isotope tracers for a wide range of applications including measuring solar neutrino flux, searching for exotic particles, tracing atmospheric and oceanic currents, archeological and geological dating, medical diagnostics, monitoring fission products in the environment for nuclear waste management, etc. This work is supported by the U.S. Department of Energy, Nuclear Physics Division; L.Young is supported by the Office of Basic Energy Sciences, Division of Chemical Sciences (Contract W-31-109-ENG-38). [1] C.Y. Chen et. al., Science 286, 1139 (1999).

  11. Ultrasensitive biomolecular assays with amplifying nanowire FET biosensors

    NASA Astrophysics Data System (ADS)

    Chui, Chi On; Shin, Kyeong-Sik; Mao, Yufei

    2013-09-01

    In this paper, we review our recent development and validation of the ultrasensitive electronic biomolecular assays enabled by our novel amplifying nanowire field-effect transistor (nwFET) biosensors. Our semiconductor nwFET biosensor platform technology performs extreme proximity signal amplification in the electrical domain that requires neither labeling nor enzymes nor optics. We have designed and fabricated the biomolecular assay prototypes and developed the corresponding analytical procedures. We have also confirmed their analytical performance in quantitating key protein biomarker in human serum, demonstrating an ultralow limit of detection and concurrently high output current level for the first time.

  12. UltraSensitive Mycotoxin Detection by STING Sensors

    PubMed Central

    Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader

    2010-01-01

    Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024

  13. Anthropometric and Biochemical Characteristics of Patients with Nonalcoholic Fatty Liver Diagnosed by Non-Invasive Diagnostic Methods

    PubMed Central

    Novakovic, Tatjana; Mekic, Mevludin; Smilic, Ljiljana; Smilic, Tanja; Inić-Kostic, Biljana; Jovicevic, Ljiljana; Mirkovic, Zlatica; Milinic, Srbislava

    2014-01-01

    ABSTRACT Introduction: Non-alcoholic (NAFLD) encompasses a spectrum of disease states, from steatosis (fatty liver) to non-alcoholic steatohepatitis (also called NASH steatosis with inflammatory changes) followed by progression to fibrosis and cirrhosis and hepatocellular carcinoma Excess liver fat is believed to be a manifestation of the metabolic syndrome and not surprisingly NASH is associated with obesity, insulin resistance, dyslipidemia and type 2 diabetes in humans. Aim of the study: is to establish anthropometric and biochemical specificities in patients with non-alcoholic steatohepatitis diagnosed with non-invasive diagnostic methods Material and methods: Study enrolled 170 participants, 130 with NASH steatosis. The non-alcoholic group (control), consisted of 40 normal weight patients without metabolic syndrome. Alcohol intake was estimated with established protocol. Routine biochemistry analysis were performed by standard laboratory procedures; serum levels of serum levels of fasting cholesterol and triglycerides, fasting glucose and insulin, insulin resistance estimated by HOMA index (Homeostasis model assessment), biochemistry tests and a liver ultrasound examination. Results: In study participants group, patients were more obese comparing with controls p < 0, 01, waist line extent also was of greater statistical significance in the non-alcoholic group fatty liver (p < 0, 01). Comparing biochemical parameter values, significant statistical deference has been noted in glaucosis and insulin levels, total cholesterol and gama-glutamil transferase levels, between groups (p<0, 01). Fasting glucose and insulin levels, HOMA-IR were significantly greater in study cohort group patients, as was significantly positive correlation between BMI and waist line extent. Conclusion: Patients with non-alcoholic fatty liver are excessively obese, have greater waist line extent, consequently insulin resistance and impaired glucose metabolism, insulin resistance

  14. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO₂ Gas Sensor.

    PubMed

    Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming

    2017-12-19

    Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO₂ sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO₂ sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO₂ sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

  15. In-electrode vs. on-electrode: ultrasensitive Faraday cage-type electrochemiluminescence immunoassay.

    PubMed

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Wang, Sui

    2016-03-28

    A new-concept of an "in-electrode" Faraday cage-type electrochemiluminescence immunoassay (ECLIA) method for the ultrasensitive detection of neurotensin (NT) was reported with capture antibody (Ab1)-nanoFe3O4@graphene (GO) and detector antibody (Ab2)&N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@GO, which led to about 1000-fold improvement in sensitivity by extending the Helmholtz plane (OHP) of the proposed electrode assembly effectively.

  16. Distinguishing graded and ultrasensitive signalling cascade kinetics by the shape of morphogen gradients in Drosophila.

    PubMed

    MacNamara, Shev; Baker, Ruth E; Maini, Philip K

    2011-09-21

    Recently, signalling gradients in cascades of two-state reaction-diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose-response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  18. Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer.

    PubMed

    Yan, Qiang; Yuan, Jinying; Kang, Yan; Cai, Zhinan; Zhou, Lilin; Yin, Yingwu

    2010-04-28

    A porphyrin-containing copolymer has dual-sensing in response to metal ions and temperature as a novel nanosensor. Triggered by ions, the sensor exhibits full-color tunable behavior as a cationic detector and colorimeter. Responding to temperature, the sensor displays an "isothermal" thermochromic point as an ultra-sensitive thermometer.

  19. BASIC BIOCHEMICAL AND CLINICAL ASPECTS OF NONINVASIVE TESTS HELIC.

    PubMed

    Dmitrienko, M A; Dmitrienko, V S; Kornienko, E A; Parolova, N I; Colomina, E O; Aronov, E B

    Biochemical process that lay in the core of non-invasive detection of Helico ho cter pylod with the help of HELIC Ammonia breath test, manufactured by AMA Co Ltd., St.Petersburg, is shown. Patents from various countries, describing ammonia as H.pyiori diagnostic marker, are reviewed. Approaches for evaluation of efficacy of the test-system are analyzed, validation and verification data is provided. High diagnostic characteristics are confirmed by the results of comparative studies on patients of different age groups, reaching 97% sensitivity and 96% specificity.

  20. Turfgrass diagnostics and new, advanced technologies

    USDA-ARS?s Scientific Manuscript database

    Strategies for sustainable, integrated disease management start with reliable pathogen identification. Conventional identification methods such as disease symptomology, host association, morphology and biochemical tests are still key diagnostic indicators for many phytopathogens; however, nucleic ac...

  1. A ligation DNAzyme-induced magnetic nanoparticles assembly for ultrasensitive detection of copper ions.

    PubMed

    Yin, Honghong; Kuang, Hua; Liu, Liqiang; Xu, Liguang; Ma, Wei; Wang, Libing; Xu, Chuanlai

    2014-04-09

    A novel biosensor for ultrasensitive detection of copper (Cu(2+)) was established based on the assembly of magnetic nanoparticles induced by the Cu(2+)-dependent ligation DNAzyme. With a low limit of detection of 2.8 nM and high specificity, this method has the potential to serve as a general platform for the detection of heavy metal ions.

  2. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    NASA Astrophysics Data System (ADS)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly

  3. [Mitochondrial diseases in children including Leigh syndrome--biochemical and molecular background].

    PubMed

    Pronicka, Ewa; Piekutowska-Abramczuk, Dorota; Pronicki, Maciej

    2008-01-01

    Mitochondrial diseases in children are more frequently caused by mutations in nuclear DNA then in mtDNA. Special clinical phenotypes are associated with the mutations in SURF1 gene, in SCO2 gene and with mtDNA depletion syndromes. Leigh syndrome is the most common clinical presentation of various mitochondrial disorders during childhood. Elevation of lactate in blood, cerebrospinal fluid and urine is a simple biochemical marker of mitochondrial disorders but its specificity and sensitivity are low. Biochemical investigation of muscle biopsy and search for mitochondrial mutations remain a gold standard in the diagnosis. The standarized diagnostic criteria to establish level of diagnostic certainty (possible, probable, definite) are proposed to be used in practice; these include clinical features, neuroimaging and muscle biopsy investigations. Further research directions to improve our understanding of mitochondrial pathologies in children are suggested.

  4. Diagnostic accuracy of functional, imaging and biochemical tests for patients presenting with chest pain to the emergency department: A systematic review and meta-analysis.

    PubMed

    Iannaccone, Mario; Gili, Sebastiano; De Filippo, Ovidio; D'Amico, Salvatore; Gagliardi, Marco; Bertaina, Maurizio; Mazzilli, Silvia; Rettegno, Sara; Bongiovanni, Federica; Gatti, Paolo; Ugo, Fabrizio; Boccuzzi, Giacomo G; Colangelo, Salvatore; Prato, Silvia; Moretti, Claudio; D'Amico, Maurizio; Noussan, Patrizia; Garbo, Roberto; Hildick-Smith, David; Gaita, Fiorenzo; D'Ascenzo, Fabrizio

    2018-01-01

    Non-invasive ischaemia tests and biomarkers are widely adopted to rule out acute coronary syndrome in the emergency department. Their diagnostic accuracy has yet to be precisely defined. Medline, Cochrane Library CENTRAL, EMBASE and Biomed Central were systematically screened (start date 1 September 2016, end date 1 December 2016). Prospective studies (observational or randomised controlled trial) comparing functional/imaging or biochemical tests for patients presenting with chest pain to the emergency department were included. Overall, 77 studies were included, for a total of 49,541 patients (mean age 59.9 years). Fast and six-hour highly sensitive troponin T protocols did not show significant differences in their ability to detect acute coronary syndromes, as they reported a sensitivity and specificity of 0.89 (95% confidence interval 0.79-0.94) and 0.84 (0.74-0.9) vs 0.89 (0.78-0.94) and 0.83 (0.70-0.92), respectively. The addition of copeptin to troponin increased sensitivity and reduced specificity, without improving diagnostic accuracy. The diagnostic value of non-invasive tests for patients without troponin increase was tested. Coronary computed tomography showed the highest level of diagnostic accuracy (sensitivity 0.93 (0.81-0.98) and specificity 0.90 (0.93-0.94)), along with myocardial perfusion scintigraphy (sensitivity 0.85 (0.77-0.91) and specificity 0.92 (0.83-0.96)). Stress echography was inferior to coronary computed tomography but non-inferior to myocardial perfusion scintigraphy, while exercise testing showed the lower level of diagnostic accuracy. Fast and six-hour highly sensitive troponin T protocols provide an overall similar level of diagnostic accuracy to detect acute coronary syndrome. Among the non-invasive ischaemia tests for patients without troponin increase, coronary computed tomography and myocardial perfusion scintigraphy showed the highest sensitivity and specificity.

  5. Ultrasensitive electrochemical DNA detection based on dual amplification of circular strand-displacement polymerase reaction and hybridization chain reaction.

    PubMed

    Wang, Cui; Zhou, Hui; Zhu, Wenping; Li, Hongbo; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2013-09-15

    We developed a novel electrochemical strategy for ultrasensitive DNA detection using a dual amplification strategy based on the circular strand-displacement polymerase reaction (CSDPR) and the hybridization chain reaction (HCR). In this assay, hybridization of hairpin-shaped capture DNA to target DNA resulted in a conformational change of the capture DNA with a concomitant exposure of its stem. The primer was then hybridized with the exposed stem and triggered a polymerization reaction, allowing a cyclic reaction comprising release of target DNA, hybridization of target with remaining capture DNA, polymerization initiated by the primer. Furthermore, the free part of the primer propagated a chain reaction of hybridization events between two DNA hairpin probes with biotin labels, enabling an electrochemical reading using the streptavidin-alkaline phosphatase. The proposed biosensor showed to have very high sensitivity and selectivity with a dynamic response range through 10fM to 1nM, and the detect limit was as low as 8fM. The proposed strategy could have the potential for molecular diagnostics in complex biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Comparative evaluation of the Cobas Amplicor HIV-1 Monitor Ultrasensitive Test, the new Cobas AmpliPrep/Cobas Amplicor HIV-1 Monitor Ultrasensitive Test and the Versant HIV RNA 3.0 assays for quantitation of HIV-1 RNA in plasma samples.

    PubMed

    Berger, Annemarie; Scherzed, Lina; Stürmer, Martin; Preiser, Wolfgang; Doerr, Hans Wilhelm; Rabenau, Holger Felix

    2005-05-01

    There are several commercially available assays for the quantitation of HIV RNA. A new automated specimen preparation system, the Cobas AmpliPrep, was developed to automate this last part of the PCR. We compared the results obtained by the Roche Cobas Amplicor HIV-1 Monitor Ultrasensitive Test (MCA, manual sample preparation) with those by the Versant HIV-1 RNA 3.0 assay (bDNA). Secondly we compared the MCA with the new Cobas AmpliPrep/Cobas Amplicor HIV Monitor Ultrasensitive Test (CAP/CA, automated specimen preparation) by investigating clinical patient samples and a panel of HIV-1 non-B subtypes. Furthermore, we assessed the assay throughput and workflow (especially hands-on time) for all three assays. Seventy-two percent of the 140 investigated patient samples gave concordant results in the bDNA and MCA assays. The MCA values were regularly higher than the bDNA values. One sample was detected only by the MCA within the linear range of quantification. In contrast, 38 samples with results <50 copies/ml in the MCA showed in the bDNA results between 51 and 1644 copies/ml (mean value 74 copies/ml); 21 of these specimens were shown to have detectable HIV RNA < 50 copies/ml in the MCA assay. The overall agreement between the MCA and the CAP/CA was 94.3% (551/584). The quantification results showed significant correlation, although the CAP/CA generated values slightly lower than those generated by the manual procedure. We found that the CAP/CA produced comparable results with the MCA test in a panel of HIV-1 non-B subtypes. All three assays showed comparable results. The bDNA provides a high sample throughput without the need of full automation. The new CAP/CA provides reliable test results with no HIV-subtype specific influence and releases time for other works in the laboratory; thus it is suitable for routine diagnostic PCR.

  7. Signal Amplification by Glyco-qPCR for Ultrasensitive Detection of Carbohydrates: Applications in Glycobiology**

    PubMed Central

    Kwon, Seok Joon; Lee, Kyung Bok; Solakyildirim, Kemal; Masuko, Sayaka; Ly, Mellisa; Zhang, Fuming; Li, Lingyun; Dordick, Jonathan S.; Linhardt, Robert J.

    2012-01-01

    Tiny amounts of carbohydrates (ca. 1 zmol) can be detected quantitatively by a real-time method based on the conjugation of carbohydrates with DNA markers (see picture). The proposed method (glyco-qPCR) provides uniform, ultrasensitive detection of carbohydrates, which can be applied to glycobiology, as well as carbohydrate-based drug discovery. PMID:23073897

  8. Diagnostic performance of traditional hepatobiliary biomarkers of drug-induced liver injury in the rat.

    PubMed

    Ennulat, Daniela; Magid-Slav, Michal; Rehm, Sabine; Tatsuoka, Kay S

    2010-08-01

    Nonclinical studies provide the opportunity to anchor biochemical with morphologic findings; however, liver injury is often complex and heterogeneous, confounding the ability to relate biochemical changes with specific patterns of injury. The aim of the current study was to compare diagnostic performance of hepatobiliary markers for specific manifestations of drug-induced liver injury in rat using data collected in a recent hepatic toxicogenomics initiative in which rats (n = 3205) were given 182 different treatments for 4 or 14 days. Diagnostic accuracy of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (Tbili), serum bile acids (SBA), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total cholesterol (Chol), and triglycerides (Trig) was evaluated for specific types of liver histopathology by Receiver Operating Characteristic (ROC) analysis. To assess the relationship between biochemical and morphologic changes in the absence of hepatocellular necrosis, a second ROC analysis was performed on a subset of rats (n = 2504) given treatments (n = 152) that did not cause hepatocellular necrosis. In the initial analysis, ALT, AST, Tbili, and SBA had the greatest diagnostic utility for manifestations of hepatocellular necrosis and biliary injury, with comparable magnitude of area under the ROC curve and serum hepatobiliary marker changes for both. In the absence of hepatocellular necrosis, ALT increases were observed with biochemical or morphologic evidence of cholestasis. In both analyses, diagnostic utility of ALP and GGT for biliary injury was limited; however, ALP had modest diagnostic value for peroxisome proliferation, and ALT, AST, and total Chol had moderate diagnostic utility for phospholipidosis. None of the eight markers evaluated had diagnostic value for manifestations of hypertrophy, cytoplasmic rarefaction, inflammation, or lipidosis.

  9. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor

    PubMed Central

    Pichlo, Magdalena; Bungert-Plümke, Stefanie; Weyand, Ingo; Seifert, Reinhard; Bönigk, Wolfgang; Strünker, Timo; Kashikar, Nachiket Dilip; Goodwin, Normann; Müller, Astrid; Körschen, Heinz G.; Collienne, Ursel; Pelzer, Patric; Van, Qui; Enderlein, Jörg; Klemm, Clementine; Krause, Eberhard; Trötschel, Christian; Poetsch, Ansgar; Kremmer, Elisabeth

    2014-01-01

    Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons. PMID:25135936

  10. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  11. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  12. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-02

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.

  13. Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly.

    PubMed

    Song, Weiling; Zhang, Qiao; Sun, Wenbo

    2015-02-11

    An ultrasensitive protocol for fluorescent detection of DNA is designed by combining the template enhanced hybridization process (TEHP) with Rolling Circle Amplification (RCA) and Catalytic Hairpin Assembly (CHA), showing a remarkable amplification efficiency.

  14. [Contemporary methods for preterm labor diagnostics].

    PubMed

    Kolev, N; Kovachev, E; Ivanov, S; Kornovski, Y; Tsvetkov, K; Angelova, M; Tsonev, A; Ismail, E

    2013-01-01

    Authors track current trends in preterm labor diagnostics. The emphasis is laid on biochemical tests for examination of fibronectin (fFN) and insulin-like growth factor-binding protein (IGFBP-1) in cervical and vaginal secretions, as well as ultrasound assessment of cervical length.

  15. Fully Automated Centrifugal Microfluidic Device for Ultrasensitive Protein Detection from Whole Blood.

    PubMed

    Park, Yang-Seok; Sunkara, Vijaya; Kim, Yubin; Lee, Won Seok; Han, Ja-Ryoung; Cho, Yoon-Kyoung

    2016-04-16

    Enzyme-linked immunosorbent assay (ELISA) is a promising method to detect small amount of proteins in biological samples. The devices providing a platform for reduced sample volume and assay time as well as full automation are required for potential use in point-of-care-diagnostics. Recently, we have demonstrated ultrasensitive detection of serum proteins, C-reactive protein (CRP) and cardiac troponin I (cTnI), utilizing a lab-on-a-disc composed of TiO2 nanofibrous (NF) mats. It showed a large dynamic range with femto molar (fM) detection sensitivity, from a small volume of whole blood in 30 min. The device consists of several components for blood separation, metering, mixing, and washing that are automated for improved sensitivity from low sample volumes. Here, in the video demonstration, we show the experimental protocols and know-how for the fabrication of NFs as well as the disc, their integration and the operation in the following order: processes for preparing TiO2 NF mat; transfer-printing of TiO2 NF mat onto the disc; surface modification for immune-reactions, disc assembly and operation; on-disc detection and representative results for immunoassay. Use of this device enables multiplexed analysis with minimal consumption of samples and reagents. Given the advantages, the device should find use in a wide variety of applications, and prove beneficial in facilitating the analysis of low abundant proteins.

  16. The way to universal and correct medical presentation of diagnostic informations for complex spectrophotometry noninvasive medical diagnostic systems

    NASA Astrophysics Data System (ADS)

    Rogatkin, Dmitrii A.; Tchernyi, Vladimir V.

    2003-07-01

    The optical noninvasive diagnostic systems are now widely applied and investigated in different areas of medicine. One of the such techniques is the noninvasive spectrophotometry, the complex diagnostic technique consisting on elastic scattering spectroscopy, absorption spectroscopy, fluorescent diagnostics, photoplethismography, etc. Today a lot of real optical diagnostic systems indicate the technical parameters and physical data only as a result of the diagnostic procedure. But, it is clear that for the medical staff the more convenient medical information is needed. This presentation lights the general way for development a diagnostic system"s software, which can produce the full processing of the diagnostic data from a physical to a medical level. It is shown, that this process is a multilevel (3-level) procedure and the main diagnostic result for noninvasive spectrophotometry methods, the biochemical and morphological composition of the tested tissues, arises in it on a second level of calculations.

  17. Ultrasensitive dual-channel detection of matrix metalloproteinase-2 in human serum using gold-quantum dot core-satellite nanoprobes.

    PubMed

    Zheng, Tingting; Zhang, Rui; Zhang, Qingfeng; Tan, Tingting; Zhang, Kui; Zhu, Jun-Jie; Wang, Hui

    2013-09-18

    We have developed a robust enzymatic peptide cleavage-based assay for the ultrasensitive dual-channel detection of matrix metalloproteinase-2 (MMP-2) in human serum using gold-quantum dot (Au-QD) core-satellite nanoprobes.

  18. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays.

    PubMed

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-11-07

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.

  19. Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry.

    PubMed

    Mosko, Michael J; Nakorchevsky, Aleksey A; Flores, Eunice; Metzler, Heath; Ehrich, Mathias; van den Boom, Dirk J; Sherwood, James L; Nygren, Anders O H

    2016-01-01

    Multiplex detection of low-frequency mutations is becoming a necessary diagnostic tool for clinical laboratories interested in noninvasive prognosis and prediction. Challenges include the detection of minor alleles among abundant wild-type alleles, the heterogeneous nature of tumors, and the limited amount of available tissue. A method that can reliably detect minor variants <1% in a multiplexed reaction using a platform amenable to a variety of throughputs would meet these requirements. We developed a novel approach, UltraSEEK, for high-throughput, multiplexed, ultrasensitive mutation detection and used it for detection of mutant sequence mixtures as low as 0.1% minor allele frequency. The process consisted of multiplex PCR, followed by mutation-specific, single-base extension using chain terminators labeled with a moiety for solid phase capture. The captured and enriched products were then identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. For verification, we successfully analyzed ultralow fractions of mutations in a set of characterized cell lines, and included a direct comparison to droplet digital PCR. Finally, we verified the specificity in a set of 122 paired tumor and circulating cell-free DNA samples from melanoma patients. Our results show that the UltraSEEK chemistry is a particularly powerful approach for the detection of somatic variants, with the potential to be an invaluable resource to investigators in saving time and material without compromising analytical sensitivity and accuracy. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. A diagnostic approach to hemochromatosis

    PubMed Central

    Tavill, Anthony S; Adams, Paul C

    2006-01-01

    In the present clinical review, a diagnostic approach to hemochromatosis is discussed from the perspective of two clinicians with extensive experience in this area. The introduction of genetic testing and large-scale population screening studies have broadened our understanding of the clinical expression of disease and the utility of biochemical iron tests for the detection of disease and for the assessment of disease severity. Liver biopsy has become more of a prognostic test than a diagnostic test. The authors offer a stepwise, diagnostic algorithm based on current evidence-based data, that they regard as most cost-effective. An early diagnosis can lead to phlebotomy therapy to prevent the development of cirrhosis. PMID:16955151

  1. Ultrasensitive sliver nanorods array SERS sensor for mercury ions.

    PubMed

    Song, Chunyuan; Yang, Boyue; Zhu, Yu; Yang, Yanjun; Wang, Lianhui

    2017-01-15

    With years of outrageous mercury emissions, there is an urgent need to develop convenient and sensitive methods for detecting mercury ions in response to increasingly serious mercury pollution in water. In the present work, a portable, ultrasensitive SERS sensor is proposed and utilized for detecting trace mercury ions in water. The SERS sensor is prepared on an excellent sliver nanorods array SERS substrate by immobilizing T-component oligonucleotide probes labeled with dye on the 3'-end and -SH on the 5'-end. The SERS sensor responses to the specific chemical bonding between thymine and mercury ions, which causes the previous flexible single strand of oligonucleotide probe changing into rigid and upright double chain structure. Such change in the structure drives the dyes far away from the excellent SERS substrate and results in a SERS signal attenuation of the dye. Therefore, by monitoring the decay of SERS signal of the dye, mercury ions in water can be detected qualitatively and quantitatively. The experimental results indicate that the proposed optimal SERS sensor owns a linear response with wide detecting range from 1pM to 1μM, and a detection limit of 0.16pM is obtained. In addition, the SERS sensor demonstrates good specificity for Hg 2+ , which can accurately identify trace mercury ions from a mixture of ten kinds of other ions. The SERS sensor has been further executed to analyze the trace mercury ions in tap water and lake water respectively, and good recovery rates are obtained for sensing both kinds of water. With its high selectivity and good portability, the ultrasensitive SERS sensor is expected to be a promising candidate for discriminating mercury ions in the fields of environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ultrasensitive and rapid detection of β-conglutin combining aptamers and isothermal recombinase polymerase amplification.

    PubMed

    Jauset-Rubio, Miriam; Sabaté Del Río, Jonathan; Mairal, Teresa; Svobodová, Markéta; El-Shahawi, Mohammad S; Bashammakh, Abdulaziz S; Alyoubi, Abdulrahman O; O'Sullivan, Ciara K

    2017-01-01

    Lupin is increasingly being used in a variety of food products due to its nutritional, functional and nutraceutical properties. However, several examples of severe and even fatal food-associated anaphylaxis due to lupin inhalation or ingestion have been reported, resulting in the lupin subunit β-conglutin, being defined as the Lup an 1 allergen by the International Union of Immunological Societies (IUIS) in 2008. Here, we report an innovative method termed aptamer-recombinase polymerase amplification (Apta-RPA) exploiting the affinity and specificity of a DNA aptamer selected against the anaphylactic β-conglutin allergen termed β-conglutin binding aptamer II (β-CBA II), facilitating ultrasensitive detection via isothermal amplification. Combining magnetic beads as the solid phase with Apta-RPA detection, the total assay time was reduced from 210 min to just 25 min, with a limit of detection of 3.5 × 10 -11  M, demonstrating a rapid and ultrasensitive generic methodology that can be used with any aptamer. Future work will focus on further simplification of the assay to a lateral flow format. Graphical Abstract Schematic representation of the rapid and novel bead-based Apta-RPA assay.

  3. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  4. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruihua; Li, Haitao; Kong, Weiqian

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright bluemore » photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.« less

  5. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  6. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  7. Diagnostic value of the biochemical composition of pericardial effusions in patients undergoing pericardiocentesis.

    PubMed

    Ben-Horin, Shomron; Bank, Ilan; Shinfeld, Ami; Kachel, Erez; Guetta, Victor; Livneh, Avi

    2007-05-01

    In contrast to pleural effusion or ascites, there are few data regarding the chemical and cell-count parameters of pericardial effusions (PEs) to aid diagnosis. In the present work, all patients who underwent pericardiocentesis during a 9-year period (1995 to 2004) at a tertiary hospital and who had available fluid laboratory results were retrospectively identified. Causes of PE were diagnosed using predetermined criteria. The results of pericardial fluid biochemical and hematologic tests were compared with blood test results and analyzed to identify cut-off points that could distinguish among the various causes or among various groups of causes. Of 173 patients who underwent pericardiocentesis in the study period, 120 had available fluid laboratory results, and these patients constituted the study population. The most common causes of PE were neoplastic, idiopathic, and effusion related to acute pericarditis (accounting for 42, 22, and 17 of 120 patients, respectively). Most fluids (118 of 120) would have been classified as exudates by adopting Light's pleural effusion criteria. Moreover, in all parameters examined, there was a considerable overlap of test results among the different pericardial disorders. Thus, no biochemical or cell-count parameter was found useful at reasonable accuracy for differentiating among the individual causes or among various groups of pericardial disorders. In conclusion, most PEs are exudates. The analysis of pericardial fluid biochemical and cell-count composition is generally not helpful for the diagnosis of most PEs.

  8. [Diagnostic imaging of changes of the canine intervertebral disc].

    PubMed

    Harder, Lisa K

    2016-10-12

    Intervertebral disc degeneration can cause intervertebral disc herniation. Diagnostic imaging, including radiography, computed tomography and magnetic resonance imaging, is the most important tool in diagnosis. Firstly, an overview of macroscopic and biochemical physiology and pathology of the intervertebral disc will be given. Subsequently, the physics of diagnostic imaging and the appearance of intervertebral disc degeneration and displacement in several imaging methods are described.

  9. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    PubMed

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  10. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.

    PubMed

    Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-30

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  11. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    NASA Astrophysics Data System (ADS)

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  12. Ultrasensitive sensor for detection of early stage chronic kidney disease in human.

    PubMed

    Desai, Dignya; Kumar, Ashok; Bose, Debajyoti; Datta, Manali

    2018-05-15

    A facile label free, ultrasensitive platform for a rapid detection of chronic kidney disease has been fabricated. Early intervention in patients with chronic kidney disease has the potential to delay, or even prevent, the development of end stage renal disease and complications, leading to a marked impact on life expectancy and quality of life. Thus, a potable electrochemical diagnostic biosensor has become an attractive option as electrochemical analysis is feasible to use for on-site detection of samples. In human, Cystatin C present in human body fluids is freely filtered by the glomerulus, but reabsorbed and catabolised by the renal tubules. Trace detectable amount is eliminated in urine, giving this molecular marker an edge over serum creatinine's disadvantages. A carboxyl functionalized multiwalled carbon nanotubes screen printed electrode was immobilized with papain (cysteine protease) where amino group of papain covalently bound carboxyl group on electrode surface by EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) and NHS (N-hydroxysuccinimide) chemistry. The modifications on sensor surface were characterized by field emission scanning electron microscopy. Interaction between papain and chronic kidney disease specific biomarker, Cystatin C was detected by cyclic voltammetry and differential pulse voltammetry within 10min. The sensor is highly specific to Cystatin C and showed negligible response to non-specific macromolecules present in urine. The sensitivity of the sensor was 1583.49µAcm -2 µg -1 and lower limit of detection of Cystatin C was found 0.58ngL -1 which presents as a promising platform for designing potable kidney disease detector. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Rapid, On-Site, Ultrasensitive Melamine Quantitation Method for Protein Beverages Using Time-Resolved Fluorescence Detection Paper.

    PubMed

    Li, Guanghua; Wang, Du; Zhou, Aijun; Sun, Yimin; Zhang, Qi; Poapolathep, Amnart; Zhang, Li; Fan, Zhiyong; Zhang, Zhaowei; Li, Peiwu

    2018-06-06

    To ensure protein beverage safety and prevent illegal melamine use to artificially increase protein content, a rapid, on-site, ultrasensitive detection method for melamine must be developed because melamine is detrimental to human health. Herein, an ultrasensitive time-resolved fluorescence detection paper (TFDP) was developed to detect melamine in protein beverages within 15 min using a one-step sample preparation. The lower limits of detection were 0.89, 0.94, and 1.05 ng/mL, and the linear ranges were 2.67-150, 2.82-150, and 3.15-150 ng/mL (R 2 > 0.982) for peanut, walnut, and coconut beverages, respectively. The recovery rates were 85.86-110.60% with a coefficient of variation <7.80% in the spiking experiment. A high specificity was observed in the interferent experiment. When detecting real protein beverage samples, the TFDP and ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) results were consistent. This method is a promising alternative for rapid, on-site detection of melamine in beverages.

  14. Translational HIV-1 research: from routine diagnostics to new virology insights in Amsterdam, the Netherlands during 1983-2013

    PubMed Central

    2013-01-01

    An HIV-1 diagnostic laboratory was established in the Academic Medical Center (AMC) of the University of Amsterdam after the discovery of human immunodeficiency virus (HIV) as the cause of the acquired immunodeficiency syndrome (AIDS). The first AIDS patients were diagnosed here in 1981 and since 1983 we have tested the samples of 50992 patients using a variety of assays that greatly improved over the years. We will describe some of the basic results from this diagnostic laboratory and then focus on the spin-off in terms of the development of novel virus assays to detect super-infections and ultra-sensitive assays to measure the intracellular HIV-1 RNA load. We also review several original research findings in the field of HIV-1 virology that stem from initial observations made in the diagnostic unit. This includes the study of genetic defects in the HIV-1 genome and time trends of the replication fitness over 30 years of viral evolution, but also the description of novel HIV-1 variants in difficult-to-diagnose clinical specimen. PMID:23985078

  15. Translational HIV-1 research: from routine diagnostics to new virology insights in Amsterdam, the Netherlands during 1983-2013.

    PubMed

    van der Kuyl, Antoinette C; Bakker, Margreet; Jurriaans, Suzanne; Back, Nicole K T; Pasternak, Alexander O; Cornelissen, Marion; Berkhout, Ben

    2013-08-28

    An HIV-1 diagnostic laboratory was established in the Academic Medical Center (AMC) of the University of Amsterdam after the discovery of human immunodeficiency virus (HIV) as the cause of the acquired immunodeficiency syndrome (AIDS). The first AIDS patients were diagnosed here in 1981 and since 1983 we have tested the samples of 50992 patients using a variety of assays that greatly improved over the years. We will describe some of the basic results from this diagnostic laboratory and then focus on the spin-off in terms of the development of novel virus assays to detect super-infections and ultra-sensitive assays to measure the intracellular HIV-1 RNA load. We also review several original research findings in the field of HIV-1 virology that stem from initial observations made in the diagnostic unit. This includes the study of genetic defects in the HIV-1 genome and time trends of the replication fitness over 30 years of viral evolution, but also the description of novel HIV-1 variants in difficult-to-diagnose clinical specimen.

  16. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water.

    PubMed

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-09

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  17. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    PubMed Central

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836

  18. High Surface Area MoS 2/Graphene Hybrid Aerogel for Ultrasensitive NO 2 Detection

    DOE PAGES

    Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; ...

    2016-05-23

    A MoS 2/graphene hybrid aerogel synthesized with two-dimensional MoS 2 sheets coating a high surface area graphene aerogel scaffold is characterized and used for ultrasensitive NO 2 detection. The combination of graphene and MoS 2 leads to improved sensing properties with the graphene scaffold providing high specific surface area and high electrical and thermal conductivity and the single to few-layer MoS2 sheets providing high sensitivity and selectivity to NO 2. The hybrid aerogel is integrated onto a low-power microheater platform to probe the gas sensing performance. At room temperature, the sensor exhibits an ultralow detection limit of 50 ppb NOmore » 2. By heating the material to 200 °C, the response and recovery times to reach 90% of the final signal decrease to <1 min, while retaining the low detection limit. The MoS 2/graphene hybrid also shows good selectivity for NO 2 against H 2 and CO, especially when compared to bare graphene aerogel. The unique structure of the hybrid aerogel is responsible for the ultrasensitive, selective, and fast NO 2 sensing. The improved sensing performance of this hybrid aerogel also suggests the possibility of other 2D material combinations for further sensing applications.« less

  19. Design of In Situ Poled Ce(3+)-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator.

    PubMed

    Garain, Samiran; Jana, Santanu; Sinha, Tridib Kumar; Mandal, Dipankar

    2016-02-01

    We report an efficient, low-cost in situ poled fabrication strategy to construct a large area, highly sensitive, flexible pressure sensor by electrospun Ce(3+) doped PVDF/graphene composite nanofibers. The entire device fabrication process is scalable and enabling to large-area integration. It can able to detect imparting pressure as low as 2 Pa with high level of sensitivity. Furthermore, Ce(3+)-doped PVDF/graphene nanofiber based ultrasensitive pressure sensors can also be used as an effective nanogenerator as it generating an output voltage of 11 V with a current density ∼6 nA/cm(2) upon repetitive application of mechanical stress that could lit up 10 blue light emitting diodes (LEDs) instantaneously. Furthermore, to use it in environmental random vibrations (such as wind flow, water fall, transportation of vehicles, etc.), nanogenerator is integrated with musical vibration that exhibits to power up three blue LEDs instantly that promises as an ultrasensitive acoustic nanogenerator (ANG). The superior sensing properties in conjunction with mechanical flexibility, integrability, and robustness of nanofibers enabled real-time monitoring of sound waves as well as detection of different type of musical vibrations. Thus, ANG promises to use as an ultrasensitive pressure sensor, mechanical energy harvester, and effective power source for portable electronic and wearable devices.

  20. Immuno Nanosensor for the Ultrasensitive Naked Eye Detection of Tuberculosis.

    PubMed

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Jaafar; Wasoh, Helmi; Md Noor, Siti Suraiya; Ahmad Raston, Nurul Hanun; Mohammad, Faruq

    2018-06-14

    In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.

  1. Lipid Bilayer-Enabled Synthesis of Waxberry-like Core/Fluidic Satellite Nanoparticles: toward Ultrasensitive SERS Tags for Bioimaging.

    PubMed

    Mei, Rongchao; Wang, Yunqing; Liu, Wanhui; Chen, Lingxin

    2018-06-25

    Herein, we presented waxberry-like core-satellite (C-S) nanoparticles (NPs) prepared by in situ growth of satellite gold NPs on spherical phospholipid bilayer-coated gold cores. The fluidic lipid bilayer cross-linker was reported for the first time, which imparted several novel morphological and optical properties to the C-S NPs. First, it regulated the anisotropic growth of the satellite NPs into vertically oriented nanorods on the core NP surface. Thus, an interesting waxberry-like nanostructure could be obtained, which was different from the conventional raspberry-like C-S structures decorated with spherical satellite NPs. Second, the satellite NPs were "soft-landed" on the lipid bilayer and could move on the core NP surface under certain conditions. The movement induced tunable plasmonic features in the C-S NPs. Furthermore, the fluidic lipid bilayer was capable of not only holding an abundance of reporter molecules but also delivering them to hotspots at junctions between the core and satellite NPs, which made the C-S NPs an excellent candidate for preparing ultrasensitive surface-enhanced Raman scattering (SERS) tags. The bioimaging capabilities of the C-S NP-based SERS tags were successfully demonstrated in living cells and mice. The developed SERS tags hold great potential for bioanalysis and medical diagnostics.

  2. Open Cascades as Simple Solutions to Providing Ultrasensitivity and Adaptation in Cellular Signaling

    PubMed Central

    Srividhya, Jeyaraman; Li, Yongfeng; Pomerening, Joseph R.

    2011-01-01

    Cell signaling is achieved predominantly by reversible phosphorylation-dephosphorylation reaction cascades. Up until now, circuits conferring adaptation have all required the presence of a cascade with some type of closed topology: negative–feedback loop with a buffering node, or incoherent feedforward loop with a proportioner node. In this paper—using Goldbeter and Koshland-type expressions—we propose a differential equation model to describe a generic, open signaling cascade that elicits an adaptation response. This is accomplished by coupling N phosphorylation–dephosphorylation cycles unidirectionally, without any explicit feedback loops. Using this model, we show that as the length of the cascade grows, the steady states of the downstream cycles reach a limiting value. In other words, our model indicates that there are a minimum number of cycles required to achieve a maximum in sensitivity and amplitude in the response of a signaling cascade. We also describe for the first time that the phenomenon of ultrasensitivity can be further subdivided into three sub–regimes, separated by sharp stimulus threshold values: OFF, OFF-ON-OFF, and ON. In the OFF-ON-OFF regime, an interesting property emerges. In the presence of a basal amount of activity, the temporal evolution of early cycles yields damped peak responses. On the other hand, the downstream cycles switch rapidly to a higher activity state for an extended period of time, prior to settling to an OFF state (OFF-ON-OFF). This response arises from the changing dynamics between a feed–forward activation module and dephosphorylation reactions. In conclusion, our model gives the new perspective that open signaling cascades embedded in complex biochemical circuits may possess the ability to show a switch–like adaptation response, without the need for any explicit feedback circuitry. PMID:21566270

  3. Carbon Nanotube Nanoelectrode Array as an Electronic Chip for Ultrasensitive Label-free DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6 and ferrocene derivatives. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. BRCA1 related oligonucleotide probes with 18 bp are selectively functionalized at the open ends of the nanotube array and specifically hybridized with oligonucleotide targets incorporated with a polyG tag. The guanine groups are employed as the signal moieties in the electrochemical measurements. R(bpy)(sup 2+, sub 3) mediator is used to further amplify the guanine oxidation signal. The hybridization of sub-attomoles of DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the R(bpy)(sup 2+, sub 3) amplification mechanism. This technique was employed for direct electrochemical detection of label-free PCR amplicon from a healthy donor through specific hybridization with the BRCA1 probe. The detection limit is estimated to be less than 1000 DNA molecules since abundant guanine bases in the PCR amplicon provides a large signal. This system provides a general platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparation, and low-cost operation.

  4. Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles

    PubMed Central

    Ade, Maria Paz; Baird, J. Kevin; Cheng, Qin; Cunningham, Jane; Dhorda, Mehul; Drakeley, Chris; Felger, Ingrid; Gamboa, Dionicia; Harbers, Matthias; Herrera, Socrates; Lucchi, Naomi; Mayor, Alfredo; Mueller, Ivo; Sattabongkot, Jetsumon; Ratsimbason, Arsène; Richards, Jack; Tanner, Marcel; González, Iveth J.

    2017-01-01

    The global prevalence of malaria has decreased over the past fifteen years, but similar gains have not been realized against Plasmodium vivax because this species is less responsive to conventional malaria control interventions aimed principally at P. falciparum. Approximately half of all malaria cases outside of Africa are caused by P. vivax. This species places dormant forms in human liver that cause repeated clinical attacks without involving another mosquito bite. The diagnosis of acute patent P. vivax malaria relies primarily on light microscopy. Specific rapid diagnostic tests exist but typically perform relatively poorly compared to those for P. falciparum. Better diagnostic tests are needed for P. vivax. To guide their development, FIND, in collaboration with P. vivax experts, identified the specific diagnostic needs associated with this species and defined a series of three distinct target product profiles, each aimed at a particular diagnostic application: (i) point-of-care of acutely ill patients for clinical care purposes; (ii) point-of-care asymptomatic and otherwise sub-patent residents for public health purposes, e.g., mass screen and treat campaigns; and (iii) ultra-sensitive not point-of-care diagnosis for epidemiological research/surveillance purposes. This report presents and discusses the rationale for these P. vivax-specific diagnostic target product profiles. These contribute to the rational development of fit-for-purpose diagnostic tests suitable for the clinical management, control and elimination of P. vivax malaria. PMID:28369085

  5. An electronic thesaurus of Evidence Based Laboratory Medicine hematological and biochemical diagnostic tests.

    PubMed

    Dorizzi, R M; Maconi, M; Giavarina, D; Loza, G; Aman, M; Moreira, J; Bisoffi, Z; Gennuso, C

    2009-10-01

    The adoption of Evidence Based Laboratory Medicine (EBLM) has been hampered until today by the lack of effective tools. The SIMeL EBLM e-Thesaurus (on-line Repertoire of the diagnostic effectiveness of the laboratory, radiology and cardiology test) provides a useful support to clinical laboratory professionals and to clinicians for the interpretation of the diagnostic tests. The e-Thesaurus is an application developed using Microsoft Active Server Pages technology and carried out with Web Server Microsoft Internet Information Server and is available at the SIMeL website using a browser running JavaScript scripts (Internet Explorer is recommended). It contains a database (in Italian, English and Spanish) of the sensitivity and specificity (including the 95% confidence interval), the positive and negative likelihood ratios, the Diagnostic Odds Ratio and the Number Needed to Diagnose of more than 2000 diagnostic (most laboratory but also cardiology and radiology) tests. The e-Thesaurus improves the previous SIMeL paper and CD Thesaurus; its main features are a three languages search and a continuous and an easy updating capability.

  6. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  7. The BetaCage: Ultrasensitive Screener for Radioactive Backgrounds

    NASA Astrophysics Data System (ADS)

    Thompson, Michael; BetaCage Collaboration

    2017-09-01

    Rare event searches, such as dark matter detection and neutrinoless double beta decay, require screening of materials for backgrounds such as beta emission and alpha decaying isotopes. The BetaCage is a proposed ultra-sensitive time-projection chamber to screen for alpha-emitting and low energy beta-emitting (10-200 keV) contaminants. The expected sensitivity is 0.1 beta particles (perkeV -m2 - day) and 0.1 alpha particles (perm2 - day) , where the former will be limited by Compton scattering of external photons in the screening samples and the latter is expected to be signal-limited. The prototype BetaCage under commissioning at South Dakota School of Mines & Technology is filled with P10 gas (10% methane, 90% argon) in place of neon and is 40×40×20 cm in size. Details on design, construction and characterization will be presented.

  8. Rational Design of an Ultrasensitive Quorum-Sensing Switch.

    PubMed

    Zeng, Weiqian; Du, Pei; Lou, Qiuli; Wu, Lili; Zhang, Haoqian M; Lou, Chunbo; Wang, Hongli; Ouyang, Qi

    2017-08-18

    One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.

  9. Biochemical markers in the assessment of bone disease

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.

    1997-01-01

    As the mean age of our population increases, increasing attention has been paid to the diseases associated with aging, including diseases of the skeleton such as osteoporosis. Effective means of treating and possibly preventing such skeletal disorders are emerging, making their early recognition an important goal for the primary care physician. Although bone density measurements and skeletal imaging studies remain of primary diagnostic importance in this regard, a large number of assays for biochemical markers of bone formation and resorption are being developed that promise to complement the densitometry measurements and imaging studies, providing an assessment of the rates of bone turnover and an earlier evaluation of the effects of therapy. In this review, emphasizing the recent literature, the major biochemical markers currently in use or under active investigation are described, and their application in a number of diseases of the skeleton including osteoporosis is evaluated.

  10. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Xu, Chunxiang; Lu, Junfeng; Zhu, Zhu; Zhu, Qiuxiang; Manohari, A. Gowri; Shi, Zengliang

    2018-01-01

    The porous structured zinc oxide (ZnO) microspheres decorated with silver nanoparticles (Ag NPs) have been fabricated as surface-enhanced Raman scattering (SERS) substrate for ultra-sensitive, highly reproducible and stable biological/chemical sensing of various organic molecules. The ZnO microspheres were hydrothermally synthesized without any template, and the Ag NPs decorated on microspheres via photochemical reaction in situ, which provided stable Ag/ZnO contact to achieve a sensitive SERS response. It demonstrates a higher enhancement factor (EF) of 2.44 × 1011 and a lower detection limit of 10-11 M-10-12 M. This porous SERS substrate could also be self-cleaned through a photocatalytic process and then further recycled for the detection of same or different molecules, such as phenol red (PhR), dopamine (DA) and glucose (GLU) with ultra-low concentration and it possessed a sensitive response. The excellent performances are attributed to morphology of porous microspheres, hybrid structure of semiconductor/metal and corresponding localized field enhancement of surface plasmons. Therefore, it is expected to design the recyclable ultra-sensitive SERS sensors for the detection of biological molecules and organic pollutant monitoring.

  11. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  12. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system.

    PubMed

    Chai, Ying; Tian, Dayong; Wang, Wei; Cui, Hua

    2010-10-28

    Luminol functionalized gold nanoparticles were used as labels for electrochemiluminescence signal amplification and an ultrasensitive, highly selective, convenient, low cost DNA detection strategy was developed.

  13. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification.

    PubMed

    Ji, Hanxu; Yan, Feng; Lei, Jianping; Ju, Huangxian

    2012-08-21

    An ultrasensitive protocol for electrochemical detection of DNA is designed with quantum dots (QDs) as a signal tag by combining the template enhanced hybridization process (TEHP) and rolling circle amplification (RCA). Upon the recognition of the molecular beacon (MB) to target DNA, the MB hybridizes with assistants and target DNA to form a ternary ''Y-junction''. The target DNA can be dissociated from the structure under the reaction of nicking endonuclease to initiate the next hybridization process. The template enhanced MB fragments further act as the primers of the RCA reaction to produce thousands of repeated oligonucleotide sequences, which can bind with oligonucleotide functionalized QDs. The attached signal tags can be easily read out by square-wave voltammetry after dissolving with acid. Because of the cascade signal amplification and the specific TEHP and RCA reaction, this newly designed protocol provides an ultrasensitive electrochemical detection of DNA down to the attomolar level (11 aM) with a linear range of 6 orders of magnitude (from 1 × 10(-17) to 1 × 10(-11) M) and can discriminate mismatched DNA from perfect matched target DNA with high selectivity. The high sensitivity and specificity make this method a great potential for early diagnosis in gene-related diseases.

  14. Adverse pathology and undetectable ultrasensitive prostate-specific antigen after radical prostatectomy: is adjuvant radiation warranted?

    PubMed

    Simon, Ross M; Howard, Lauren E; Freedland, Stephen J; Aronson, William J; Terris, Martha K; Kane, Christopher J; Amling, Christopher L; Cooperberg, Matthew R; Vidal, Adriana C

    2016-06-01

    To determine if men with adverse pathology but undetectable ultrasensitive (<0.01 ng/mL) PSA are at high-risk for biochemical recurrence (BCR), or if there is a subset of patients at low-risk for whom the benefit of adjuvant radiation therapy might be limited. We evaluated 411 patients treated with RP from 2001 to 2013 without adjuvant radiation who had an undetectable (<0.01 ng/mL) PSA level after RP but with adverse pathology [positive surgical margins (PSMs), extraprostatic extension (EPE), and/or seminal vesicle invasion (SVI)]. Multivariable Cox regression analyses tested the relationship between pathological characteristics and BCR to identify groups of men at highest risk of early BCR. On multivariable analysis, only pathological Gleason 7 (4 + 3), Gleason ≥8, and SVI independently predicted BCR (P = 0.019, P < 0.001, and P = 0.001, respectively), although on two-way analysis men with Gleason 7 (4 + 3) did not have significantly higher rates of BCR compared with patients with Gleason ≤6 (log-rank, P = 0.074). Men with either Gleason ≥8 (with PSMs or EPE) or SVI (15% of the cohort) defined a high-risk group vs men without these characteristics (3-year BCR risk of 50.4% vs 11.9%, log-rank, P < 0.001). Among men with adverse pathology but an undetectable (<0.01 ng/mL) PSA level after RP, the benefits of adjuvant radiation are probably limited except for men with Gleason 8-10 (with PSMs or EPE) or SVI who are at high-risk of early BCR. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  15. Aptamer-phage reporters for ultrasensitive lateral flow assays

    PubMed Central

    Adhikari, Meena; Strych, Ulrich; Kim, Jinsu; Goux, Heather; Dhamane, Sagar; Poongavanam, Mohan-Vivekanandan; Hagström, Anna E. V.; Kourentzi, Katerina; Conrad, Jacinta C.; Willson, Richard C.

    2015-01-01

    We introduce the modification of bacteriophage particles with aptamers for the use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ~100 times lower than those of previously reported IgE assays. PMID:26456715

  16. Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays.

    PubMed

    Adhikari, Meena; Strych, Ulrich; Kim, Jinsu; Goux, Heather; Dhamane, Sagar; Poongavanam, Mohan-Vivekanandan; Hagström, Anna E V; Kourentzi, Katerina; Conrad, Jacinta C; Willson, Richard C

    2015-12-01

    We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.

  17. Fabrication of Compact Superconducting Lowpass Filters for Ultrasensitive Detectors

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Chervenak, James; Chuss, David; Mikula, Vilem; Ray, Christopher; Rostem, Karwan; U-Yen, Kongpop; Wassell, Edward; Wollack, Edward

    2012-01-01

    It is extremely important for current and future far-infrared and sub-millimeter ultrasensitive detectors, which include transition edge sensors (TES) and microwave kinetic inductance detectors, to be adequately filtered from stray electromagnetic radiation in order to achieve their optimal performance. One means of filtering stray radiation is to block leakage associated with electrical connections in the detector environment. Here we discuss a fabrication methodology for realizing non-dissipative planar filters imbedded in the wall of the detector enclosure to limit wave propagation modes up to far-infrared frequencies. Our methodology consists of fabricating a boxed stripline transmission line, in which a superconducting (Nb, Mo, or Al) transmission line is encased in a silicon dioxide dielectric insulator coated with a metallic shell. We report on achieved attenuation and return loss and find that it replicates the simulated data to a high degree.

  18. Ultrasensitivity by Molecular Titration in Spatially Propagating Enzymatic Reactions

    PubMed Central

    Semenov, Sergey N.; Markvoort, Albert J.; Gevers, Wouter B.L.; Piruska, Aigars; de Greef, Tom F.A.; Huck, Wilhelm T.S.

    2013-01-01

    Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales. PMID:23972857

  19. Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy

    PubMed Central

    Xiang, Yun; Zhang, Yuyong; Qian, Xiaoqing; Chai, Yaqin; Wang, Joseph; Yuan, Ruo

    2010-01-01

    We present an ultrasensitive aptasensor for electronic monitoring of proteins through a dual amplified strategy in this paper. The target protein thrombin is sandwiched between an electrode surface confined aptamer and an aptamer-enzyme-carbon nanotube bioconjugate. The analytical signal amplification is achieved by coupling the signal amplification nature of multiple enzymes with the biocatalytic signal enhancement of redox-recycling. Our novel dramatic signal amplification strategy, with a detection limit of 8.3 fM, shows about 4 orders of magnitude improvement in sensitivity for thrombin detection compared to other universal single enzyme-based assay. This makes our approach an attractive alternative to other common PCR-based signal amplification in ultralow level of protein detection. PMID:20452761

  20. Ultrasensitive Hybridization-Based ELISA Method for the Determination of Phosphorodiamidate Morpholino Oligonucleotides in Biological samples.

    PubMed

    Burki, Umar; Straub, Volker

    2017-01-01

    Determining the concentration of oligonucleotide in biological samples such as tissue lysate and serum is essential for determining the biodistribution and pharmacokinetic profile, respectively. ELISA-based assays have shown far greater sensitivities compared to other methods such as HPLC and LC/MS. Here, we describe a novel ultrasensitive hybridization-based ELISA method for quantitating morpholino oligonucleotides in mouse tissue lysate and serum samples. The assay has a linear detection range of 5-250 pM (R2 > 0.99).

  1. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Liu, J Q; Zhang, Y; Wang, N N; Hu, P; Lu, S Y; Ren, H L; Liu, Z S

    2014-11-15

    A dual labeled probe was synthesized by coating gold nanoparticles (AuNPs) with anti-κ-CN monoclonal antibody (McAb) and horseradish peroxidase (HRP) enzyme on their surface. The McAb was used as detector and HRP was used as label for signal amplification catalytically oxidize the substrate. AuNPs were used as bridges between the McAb and HRP. Based on the probe, an immunoassay was developed for ultrasensitive detection of κ-CN in bovine milk samples. The assay has a linear response range within 4.2-560 ng mL(-1). The limit of detection (LOD) was 4.2 ng mL(-1) which was 10 times lower than that of traditional McAb-HRP based ELISA. The recoveries of κ-CN from three brand bovine milk samples were from 95.8% to 111.0% that had a good correlation (R(2)=0.998) with those obtained by official standard Kjeldahl method. For higher sensitivity and as simple as the traditional ELISA, the developed immunoassay could provide an alternative approach for ultrasensitive detection of κ-CN in bovine milk sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.

    PubMed

    Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong

    2016-05-24

    Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.

  3. Target-aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Xu, Wei; Guo, Yuna; Huang, Jiadong

    2015-05-14

    A novel electrochemical aptasensor for ultrasensitive detection of antibiotics by combining polymerase-assisted target recycling amplification with strand displacement amplification with the help of polymerase and nicking endonuclease has been reported. This work is the first time that target-aptamer binding triggered quadratic recycling amplification has been utilized for electrochemical detection of antibiotics.

  4. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk

    USDA-ARS?s Scientific Manuscript database

    A rapid lateral flow fluorescent microspheres immunochromatography test strip (FMs-ICTS) has been developed for the detection of aflatoxin M1 (AFM1) residues in milk. For this purpose, an ultra-sensitive anti-AFM1 monoclonal antibody (MAb) 1D3 was prepared and identified. The IC50 value of the MA...

  5. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-03-15

    Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences in the regulatory regions of genes to regulate the process of gene transcription. Their expression levels sensitively reflect cell developmental situation and disease state. TFs have become potential diagnostic markers and therapeutic targets of cancers and some other diseases. Hence, high sensitive detection of TFs is of vital importance for early diagnosis of diseases and drugs development. The traditional exonucleases-assisted signal amplification methods suffered from the false positives caused by incomplete digestion of excess recognition probes. Herein, based on a new recognition way-colocalization recognition (CR)-activated dual signal amplification, an ultrasensitive fluorescent detection strategy for TFs was developed. TFs-induced the colocalization of three split recognition components resulted in noticeable increases of local effective concentrations and hybridization of three split components, which activated the subsequent cascade signal amplification including strand displacement amplification (SDA) and exponential rolling circle amplification (ERCA). This strategy eliminated the false positive influence and achieved ultra-high sensitivity towards the purified NF-κB p50 with detection limit of 2.0×10 -13 M. Moreover, NF-κB p50 can be detected in as low as 0.21ngμL -1 HeLa cell nuclear extracts. In addition, this proposed strategy could be used for the screening of NF-κB p50 activity inhibitors and potential anti-NF-κB p50 drugs. Finally, our proposed strategy offered a potential method for reliable detection of TFs in medical diagnosis and treatment research of cancers and other related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids.

    PubMed

    Uttenthaler, E; Schräml, M; Mandel, J; Drost, S

    2001-12-01

    Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5-20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.

  7. Polymer-Based Dense Fluidic Networks for High Throughput Screening with Ultrasensitive Fluorescence Detection

    PubMed Central

    Okagbare, Paul I.; Soper, Steven A.

    2011-01-01

    Microfluidics represents a viable platform for performing High Throughput Screening (HTS) due to its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1–10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40X microscope objective (numerical aperture = 0.75) created a FoV of 200 μm, providing the ability to interrogate ~25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device (EMCCD). The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, APE1, used as a model screening assay. PMID:20872611

  8. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence "turn on-off" nanosensor for lysozyme detection.

    PubMed

    Song, Yu; Li, Yang; Liu, Ziping; Liu, Linlin; Wang, Xinyan; Su, Xingguang; Ma, Qiang

    2014-11-15

    In this work, we developed an ultrasensitive "turn on-off" fluorescence nanosensor for lysozyme (Lyz) detection. The novel nanosensor was constructed with the carboxymethyl chitosan modified CdTe quantum dots (CMCS-QDs). Firstly, the CMCS-QDs were fabricated via the electrostatic interaction between amino groups in CMCS polymeric chains and carboxyl groups on the surface of QDs. In the fluorescence "turn-on" step, the strong binding ability between Zn(2+) and CMCS on the surface of QDs can enhance the photoluminescence intensity (PL) of QDs. In the following fluorescence "turn-off" step, the N-acetyl-glucosamine (NAG) section along the CMCS chains was hydrolyzed by Lyz. As a result, Zn(2+) was released from the surface of QDs, and the Lyz-QDs complexes were formed to quench the QDs PL. Under the optimal conditions, there was a good linear relationship between the PL of QDs and the Lyz concentration (0.1-1.2 ng/mL) with the detection limit of 0.031 ng/mL. The developed method was ultrasensitive, highly selective and fast. It has been successfully employed in the detection of Lyz in the serum with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker.

    PubMed

    Bi, Sai; Zhou, Hong; Zhang, Shusheng

    2009-06-15

    A novel and ultrasensitive chemiluminescence immunoassay (CLIA) method based on multiple enzyme layers assembled multiwall carbon nanotubes (MWCNTs) as signal amplification labels was developed by employing luminol-H(2)O(2)-HRP-bromophenol blue (BPB) enhanced chemiluminescence (CL) system for the detection of a cancer biomarker in human serum samples, as exemplified by the measurement of alpha-fetoprotein (AFP) as a model protein. In this study, horseradish peroxidase (HRP) was assembled onto MWCNTs templates layer-by-layer (LBL) through electrostatic interactions with polyion PDDA, and further conjugated with AFP secondary antibodies (Ab(2)) as the enzyme label. The resulting LBL assembly could maximize the ratio of HRP/Ab(2) which could amplify the sensitivity greatly. To the best of our knowledge, it was the first time for this strategy applied in CLIA to date. Under the optimum conditions of luminol-H(2)O(2)-HRP-BPB CL system and the sandwich immunoreactions, a linear range from 0.02 to 2.0 ng/mL (R=0.9980) was obtained with the detection limit of 8.0 pg/mL (3sigma) which was two orders of magnitude lower than standard ELISA method. Furthermore, accurate detection of AFP in human serum samples was also demonstrated by comparison to ELISA assays. From the above results, such signal amplification strategy proposed by the novel CNT-LBL enzyme label showed an excellent promise for ultrasensitive detection of cancer biomarkers in clinical laboratory.

  10. Programmable Modulation of Copper Nanoclusters Electrochemiluminescence via DNA Nanocranes for Ultrasensitive Detection of microRNA.

    PubMed

    Zhou, Ying; Wang, Haijun; Zhang, Han; Chai, Yaqin; Yuan, Ruo

    2018-03-06

    The DNA nanocrane with functionalized manipulator and fixed-size base offered a programmable approach to modulate the luminous efficiency of copper nanoclusters (Cu NCs) for achieving remarkable electrochemiluminescence (ECL) enhancement, further the Cu NCs as signal label was constructed in biosensor for ultrasensitive detection of microRNA-155. Herein, the DNA nanocrane was first constructed by combining binding-induced DNA assembly as manipulator and tetrahedral DNA nanostructure (TDN) as base, which harnessed a small quantity of specific target (microRNA (miRNA)-155) binding to trigger assembly of separate DNA components for producing numerous AT-rich double-stranded DNA (dsDNA) on the vertex of TDN. Upon the incubation of Cu 2+ on the AT-rich dsDNA, each DNA-stabilized Cu NCs probe could be in situ electrochemically generated on an individual TDN owing to the A-Cu 2+ -T bond. Thus, the generation of Cu NCs was highly regulated with AT-rich dsDNA as the template, and its lateral distance was tuned by the TDN size, which were two key factors to influence the luminous efficiency of Cu NCs. By coordinate modulation, the detection limit of the ultrasensitive biosensor for miRNA-155 down to 36 aM and the programmable modulation strategy paved the way for comprehensive applications of DNA nanomachines and metal nanoclusters in biosensing and clinical diagnosis.

  11. Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.

    PubMed

    Wang, Jian; Hou, Jue; Zhang, Huacheng; Tian, Ye; Jiang, Lei

    2018-01-17

    Ultrasensitive and selective detection of molecules at nano or sub-nanomolar level is very important for many areas such as early diagnosis and drug testing. Herein, we report a high-sensitive cocaine sensor based on a single nanochannel coupled with DNA aptamers. The single nanochannel-aptamer-based biosensor can recognize cocaine molecules with an excellent sensitivity and good selectivity. A linear relationship between target cocaine concentration and output ionic current is obtained in a wide concentration range of cocaine from 1 nM to 10 μM. The cocaine sensor also shows a detection limit down to 1 nM. This study provides a new avenue to develop new nanochannel-aptamer-based biosensors for rapid and ultratrace detection of a variety of illicit drugs.

  12. Ultrasensitive prostate specific antigen assay following laparoscopic radical prostatectomy--an outcome measure for defining the learning curve.

    PubMed

    Viney, R; Gommersall, L; Zeif, J; Hayne, D; Shah, Z H; Doherty, A

    2009-07-01

    Radical retropubic prostatectomy (RRP) performed laparoscopically is a popular treatment with curative intent for organ-confined prostate cancer. After surgery, prostate specific antigen (PSA) levels drop to low levels which can be measured with ultrasensitive assays. This has been described in the literature for open RRP but not for laparoscopic RRP. This paper describes PSA changes in the first 300 consecutive patients undergoing non-robotic laparoscopic RRP by a single surgeon. To use ultrasensitive PSA (uPSA) assays to measure a PSA nadir in patients having laparoscopic radical prostatectomy below levels recorded by standard assays. The aim was to use uPSA nadir at 3 months' post-prostatectomy as an early surrogate end-point of oncological outcome. In so doing, laparoscopic oncological outcomes could then be compared with published results from other open radical prostatectomy series with similar end-points. Furthermore, this end-point could be used in the assessment of the surgeon's learning curve. Prospective, comprehensive, demographic, clinical, biochemical and operative data were collected from all patients undergoing non-robotic laparoscopic RRP. We present data from the first 300 consecutive patients undergoing laparoscopic RRP by a single surgeon. uPSA was measured every 3 months post surgery. Median follow-up was 29 months (minimum 3 months). The likelihood of reaching a uPSA of < or = 0.01 ng/ml at 3 months is 73% for the first 100 patients. This is statistically lower when compared with 83% (P < 0.05) for the second 100 patients and 80% for the third 100 patients (P < 0.05). Overall, 84% of patients with pT2 disease and 66% patients with pT3 disease had a uPSA of < or = 0.01 ng/ml at 3 months. Pre-operative PSA, PSA density and Gleason score were not correlated with outcome as determined by a uPSA of < or = 0.01 ng/ml at 3 months. Positive margins correlate with outcome as determined by a uPSA of < or = 0.01 ng/ml at 3 months but operative time and

  13. Ultrasensitive electrochemical sensing platform based on graphene wrapping SnO2 nanocorals and autonomous cascade DNA duplication strategy.

    PubMed

    Chen, Ying-Xu; Huang, Ke-Jing; Lin, Feng; Fang, Lin-Xia

    2017-12-01

    In this work, a sensitive, universal and reusable electrochemical biosensor based on stannic oxide nanocorals-graphene hybrids (SnO 2 NCs-Gr) is developed for target DNA detection by using two kinds of DNA enzymes for signal amplification through an autonomous cascade DNA duplication strategy. A hairpin probe is designed composing of a projecting part at the 3'-end as identification sequence for target, a recognition site for nicking endonuclease, and an 18-carbon shim to stop polymerization process. The designed DNA duplication-incision-replacement process is handled by KF polymerase and endonuclease, then combining with gold nanoparticles as signal carrier for further signal amplification. In the detection system, the electrochemical-chemical-chemical procedure, which uses ferrocene methanol, tris(2-carboxyethyl)phosphine and l-ascorbic acid 2-phosphate as oxidoreduction neurogen, deoxidizer and zymolyte, separately, is applied to amplify detection signal. Benefiting from the multiple signal amplification mechanism, the proposed sensor reveals a good linear connection between the peak current and logarithm of analyte concentration in range of 0.0001-1 × 10 -11 molL -1 with a detection limit of 1.25 × 10 -17 molL -1 (S/N=3). This assay also opens one promising strategy for ultrasensitive determination of other biological molecules for bioanalysis and biomedicine diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Highly photostable "super"-photoacids for ultrasensitive fluorescence spectroscopy.

    PubMed

    Finkler, Björn; Spies, Christian; Vester, Michael; Walte, Frederick; Omlor, Kathrin; Riemann, Iris; Zimmer, Manuel; Stracke, Frank; Gerhards, Markus; Jung, Gregor

    2014-03-01

    The photoacid 8-hydroxypyren-1,3,6-trisulfonic acid (HPTS, pyranine) is a widely used model compound for the examination of excited state proton transfer (ESPT). We synthesized five "super"-photoacids with varying hydrophilicity and acidity on the basis of HPTS. By chemical modification of the three sulfonic acid substituents, the photoacidity is enhanced by up to more than five logarithmic units from pK*≈ 1.4 to ∼-3.9 for the most acidic compound. As a result, nearly quantitative ESPT in DMSO can be observed. The novel photoacids were characterized by steady-state and time-resolved fluorescence techniques showing distinctively red shifted spectra compared to HPTS while maintaining a high quantum yield near 90%. Photostability of the compounds was checked by fluorescence correlation spectroscopy (FCS) and was found to be adequately high for ultrasensitive fluorescence spectroscopy. The described photoacids present a valuable palette for a wide range of applications, especially when the properties of HPTS, i.e. highly charged, low photostability and only moderate excited state acidity, are limiting.

  15. ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH.

    PubMed

    Minca, Eugen C; Portier, Bryce P; Wang, Zhen; Lanigan, Christopher; Farver, Carol F; Feng, Yan; Ma, Patrick C; Arrossi, Valeria A; Pennell, Nathan A; Tubbs, Raymond R

    2013-05-01

    ALK gene rearrangements in advanced non-small cell lung carcinomas (NSCLC) are an indication for targeted therapy with crizotinib. Fluorescence in situ hybridization (FISH) using a recently approved companion in vitro diagnostic class FISH system commonly assesses ALK status. More accessible IHC is challenged by low expression of ALK-fusion transcripts in NSCLC. We compared ultrasensitive automated IHC with FISH for detecting ALK status on 318 FFPE and 40 matched ThinPrep specimens from 296 patients with advanced NSCLC. IHC was concordant with FFPE-FISH on 229 of 231 dual-informative samples (31 positive and 198 negative) and with ThinPrep-FISH on 34 of 34 samples (5 positive and 29 negative). Two cases with negative IHC and borderline-positive FFPE-FISH (15% and 18%, respectively) were reclassified as concordant based on negative matched ThinPrep-FISH and clinical data consistent with ALK-negative status. Overall, after including ThinPrep-FISH and amending the false-positive FFPE-FISH results, IHC demonstrated 100% sensitivity and specificity (95% CI, 0.86 to 1.00 and 0.97 to 1.00, respectively) for ALK detection on 249 dual-informative NSCLC samples. IHC was informative on significantly more samples than FFPE-FISH, revealing additional ALK-positive cases. The high concordance with FISH warrants IHC's routine use as the initial component of an algorithmic approach to clinical ALK testing in NSCLC, followed by reflex FISH confirmation of IHC-positive cases. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  16. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.

    PubMed

    Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin

    2014-01-15

    We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Exonuclease III-assisted cascade signal amplification strategy for label-free and ultrasensitive electrochemical detection of nucleic acids.

    PubMed

    Xiong, Erhu; Yan, Xiaoxia; Zhang, Xiaohua; Liu, Yunqing; Zhou, Jiawan; Chen, Jinhua

    2017-01-15

    In this work, a simple, signal-on and label-free electrochemical biosensor for ultrasensitive DNA detection is reported on the basis of an autocatalytic and exonuclease III (Exo III)-assisted cascade signal amplification strategy. In the presence of target DNA (T-DNA), the hybridization between the 3'-protruding DNA fragment of hairpin DNA probe (HP1) and T-DNA triggered the Exo III cleavage process, accompanied by the releasing of T-DNA and autonomous generation of new DNA fragment which was used for the successive hybridization with the another hairpin DNA (HP2) on the electrode. After the Exo III cleavage process, numerous quadruplex-forming oligomers which caged in HP2 were liberated on the electrode surface and folded into G-quadruplex-hemin complexes with the help of K + and hemin to give a remarkable electrochemical response. As a result, a low detection limit of 4.83fM with an excellent selectivity toward T-DNA was achieved. The developed electrochemical biosensor should be further extended for the detection of a wide spectrum of analytes and has great potential for the development of ultrasensitive biosensing platform for early diagnosis in gene-related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    NASA Astrophysics Data System (ADS)

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-03-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources.

  19. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    PubMed Central

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  20. Ultra-sensitive chemiluminescence imaging DNA hybridization method in the detection of mosquito-borne viruses and parasites.

    PubMed

    Zhang, Yingjie; Liu, Qiqi; Zhou, Biao; Wang, Xiaobo; Chen, Suhong; Wang, Shengqi

    2017-01-25

    Mosquito-borne viruses (MBVs) and parasites (MBPs) are transmitted through hematophagous arthropods-mosquitoes to homoiothermous vertebrates. This study aims at developing a detection method to monitor the spread of mosquito-borne diseases to new areas and diagnose the infections caused by MBVs and MBPs. In this assay, an ultra-sensitive chemiluminescence (CL) detection method was developed and used to simultaneously detect 19 common MBVs and MBPs. In vitro transcript RNA, virus-like particles (VLPs), and plasmids were established as positive or limit of detection (LOD) reference materials. MBVs and MBPs could be genotyped with high sensitivity and specificity. The cut-off values of probes were calculated. The absolute LODs of this strategy to detect serially diluted in vitro transcribed RNAs of MBVs and serially diluted plasmids of MBPs were 10 2 -10 3 copies/μl and 10 1 -10 2 copies/μl, respectively. Further, the LOD of detecting a strain of pre-quantified JEV was 10 1.8 -10 0.8 PFU/ml, fitted well in a linear regression model (coefficient of determination = 0.9678). Ultra-sensitive CL imaging DNA hybridization was developed and could simultaneously detect various MBVs and MBPs. The method described here has the potential to provide considerable labor savings due to its ability to screen for 19 mosquito-borne pathogens simultaneously.

  1. Ultra-sensitive near-infrared fiber-optic gas sensors enhanced by metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Kim, Ki-Joong; Li, Erwen; Zhang, Yujing; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.

    2016-03-01

    We demonstrate ultra-sensitive near-infrared (NIR) fiber-optic gas sensors enhanced by metalorganic framework (MOF) Cu-BTC (BTC=benzene-1,3,5- tricarboxylate), which is coated on a single-mode optical fiber. For the first time, we obtained high-resolution NIR spectroscopy of CO2 adsorbed in MOF without seeing any rotational side band. Real-time measurement showed different response time depending on the concentration of CO2, which is attributed to the complex adsorption and desorption mechanism of CO2 in Cu-BTC. The lowest detection limit of CO2 we achieved is 20 ppm with only 5-cm long Cu-BTC film.

  2. Ultrasensitive Label-free Electronic Chip for DNA Analysis Using Carbon Nanotube Nanoelectrode Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Ye, Qi; Han, Jie; Meyyappan, M.

    2004-01-01

    There is a strong need for faster, cheaper, and simpler methods for nucleic acid analysis in today s clinical tests. Nanotechnologies can potentially provide solutions to these requirements by integrating nanomaterials with biofunctionalities. Dramatic improvement in the sensitivity and multiplexing can be achieved through the high-degree miniaturization. Here, we present our study in the development of an ultrasensitive label-free electronic chip for DNA/RNA analysis based on carbon nanotube nanoelectrode arrays. A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in a SiO2 matrix is fabricated using a bottom-up approach. Characteristic nanoelectrode behavior is observed with a low-density MWNT nanoelectrode array in measuring both the bulk and surface immobilized redox species. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes, with a wide potential window, flexible chemical functionalities, and good biocompatibility. A BRCA1 related oligonucleotide probe with 18 bases is covalently functionalized at the open ends of the MWNTs and specifically hybridized with an oligonucleotide target as well as a PCR amplicon. The guanine bases in the target molecules are employed as the signal moieties for the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. This technique has been employed for direct electrochemical detection of label-free PCR amplicon through specific hybridization with the BRCAl probe. The detection limit is estimated to be less than approximately 1000 DNA molecules, approaching the limit of the sensitivity by laser-based fluorescence techniques in DNA microarray. This system provides a general electronic platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, simple sample preparation, and low- cost operation.

  3. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    PubMed

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  4. Salivary testosterone may not serve as a screening test in the diagnosis of biochemical hyperandrogenism.

    PubMed

    Ambroziak, Urszula; Kuryłowicz, Alina; Kępczyńska-Nyk, Anna; Kondracka, Agnieszka; Gajda, Sylvia; Sieńko, Damian

    2018-06-01

    The diagnosis of biochemical hyperandrogenism is still challenging because a set of appropriate, recommended diagnostic tests has not been established. In our study, we aimed to answer the question of whether salivary testosterone is a reliable test to establish the diagnosis of biochemical hyperandrogenism as compared to serum total testosterone (TT) measured either by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or immunoassay and to assess which set of biochemical tests would be the most appropriate for the identification of biochemical hyperandrogenism. A total of 39 women, aged 18-45 years, with clinical or biochemical hyperandrogenism and 41 healthy individuals, aged 19-45 years, were enrolled in the study. Salivary testosterone was measured using the Salimetrics test. Serum TT was measured either using the LC-MS/MS method or immunoassay, and dehydroepiandrosterone sulphate (DHEA-S) and androstenedione were measured using LC-MS/MS. In 15 of 17 (88%) patients with elevated serum TT measured by LC-MS/MS and in 14 of 16 (87%) measured with immunoassay, salivary testosterone showed normal levels. In 11 of 39 women (28%) with normal serum testosterone levels, DHEA-S was elevated. All patients with elevated androstenedione presented with an elevated concentration of either serum testosterone or DHEA-S. Salivary testosterone measurement may lead to the underdiagnosis of biochemical hyperandrogenism. Both serum testosterone and DHEA-S should be measured in the endocrine work-up toward biochemical hyperandrogenism. © 2018 Japan Society of Obstetrics and Gynecology.

  5. Diagnostic value of morphological, physiological and biochemical tests in distinguishing Trichophyton rubrum from Trichophyton mentagrophytes complex.

    PubMed

    Ates, Aylin; Ozcan, Kadri; Ilkit, Macit

    2008-12-01

    The two most frequently encountered dermatophyte etiologic agents of glabrous skin and nail dermatophytoses are Trichophyton rubrum and T. mentagrophytes. This study was aimed to discuss the efficacy of morphological, physiological and biochemical diagnostic tests commonly used in the identification of T. rubrum and members of the T. mentagrophytes complex. In this study, we evaluated; hydrolysis of urea in broth and on urea agar slants and Petri plates incubated at 22 degrees C, 28 degrees C and 37 degrees C, in vitro hair perforation (blond child, sheep and goat hair), pigment production on cornmeal dextrose agar (CMDA) and bromcresol purple-milk solids-glucose agar (BCP-MS-G), Tween opacity, sorbitol assimilation, and salt tolerance. Additionally, the production of micro- and macroconidia was investigated by using brain heart infusion agar (BHIA), Christensen's urea agar in Petri plates (UPA), CMDA, Lowenstein-Jensen agar (LJA), malt extract agar, oatmeal agar, Oxoid chromogenic Candida agar, and potato dextrose agar. All cultures were incubated at 28 degrees C, and conidial production was compared on days 5, 10 and 15. It was found that the urea hydrolysis test yielded more rapid and significant results when urea medium was prepared in Petri plates and incubated at 28 degrees C (P<0.01). LJA supported the highest production of microconidia after 15 days (P<0.001). Additionally, it was found that T. rubrum strains produced red pigment on CMDA (P<0.01) and BCP-MS-G, while strains of the T. mentagrophytes species complex did not. A special algorithm containing the various test procedures employed in these studies is presented which was found to be useful in the differentiation of T. rubrum strains from T. mentagrophytes complex. Our results revealed that UPA, CMDA, BCP-MS-G, LJA, and BHIA may be used as common mycological agars in routine practice.

  6. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    PubMed Central

    Al-Abd, Nazeh M.; Nor, Zurainee Mohamed; Al-Adhroey, Abdulelah H.; Suhaimi, Anwar; Sivanandam, S.

    2013-01-01

    Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented. PMID:24298292

  7. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  8. Resonance phenomenon of the ATP motor as an ultrasensitive biosensor.

    PubMed

    Wang, Peirong; Zhang, Xiaoguang; Zhang, Xu; Wang, Xia; Li, Xueren; Yue, Jiachang

    2012-09-28

    We designed a rotary biosensor as a damping effector, with the rotation of the F(0)F(1)-ATPase driven by Adenosine Triphosphate (ATP) synthesis being indicated by the fluorescence intensity and a damping effect force being induced by the binding of an RNA molecule to its probe on the rotary biosensor. We found that the damping effect could contribute to the resonance phenomenon and energy transfer process of our rotary biosensor in the liquid phase. This result indicates that the ability of the rotary motor to operate in the vibration harmonic mode depends on the environmental conditions and mechanism in that a few molecules of the rotary biosensor could induce all of the sensor molecules to fluoresce together. These findings contribute to the theory study of the ATPase motor and future development of biosensors for ultrasensitive detection. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Ultrasensitive Magnetic Field Sensing Based on Refractive-Index-Matched Coupling.

    PubMed

    Rao, Jie; Pu, Shengli; Yao, Tianjun; Su, Delong

    2017-07-07

    An ultrasensitive magnetic field sensor is proposed and investigated experimentally. The no-core fiber is fusion-spliced between two pieces of single-mode fibers and then immersed in magnetic fluid with an appropriate value of refractive index. Under the refractive-index-matched coupling condition, the guided mode becomes leaky and a coupling wavelength dip in the transmission spectrum of the structure is observed. The coupling wavelength dip is extremely sensitive to the ambient environment. The excellent sensitivity to the refractive index is measured to be 116.681 μm/RIU (refractive index unit) in the refractive index range of 1.45691-1.45926. For the as-fabricated sensors, the highest magnetic field sensing sensitivities of 6.33 and 1.83 nm/mT are achieved at low and high fields, respectively. The sensitivity is considerably enhanced compared with those of previously designed, similar structures.

  10. Force microscopy experiments with ultrasensitive cantilevers.

    PubMed

    Rast, S; Gysin, U; Ruff, P; Gerber, Ch; Meyer, E; Lee, D W

    2006-04-14

    Force microscopy experiments with the pendulum geometry are performed with attonewton sensitivity (Rugar et al 2004 Nature 43 329). Single-crystalline cantilevers with sub-millinewton spring constants were annealed under ultrahigh-vacuum conditions. It is found that annealing with temperatures below 500 °C can improve the quality factor by an order of magnitude. The high force sensitivity of these ultrasoft cantilevers is used to characterize small magnetic and superconductive particles, which are mounted on the end of the cantilever. Their magnetic properties are analysed in magnetic fields as a function of temperature. The transition of a superconducting sample mounted on a cantilever is measured by the detection of frequency shifts. An increase of dissipation is observed below the critical temperature. The magnetic moment of ferromagnetic particles is determined by real time frequency detection with a phase-locked loop (PLL) as a function of the magnetic field. The dissipation between the probing tip and the sample is another important ingredient for ultrasensitive force measurements. It is found that dissipation increases at separations of 30 nm. The origins of this type of dissipation are poorly understood. However, it is predicted theoretically that adsorbates can increase this dissipation channel (Volokitin and Persson 2005 Phys. Rev. Lett. 94 086104). First experiments are performed under ultrahigh vacuum to investigate this type of dissipation. Long-range dissipation is closely related to long-range forces. The distance dependence of the contact potential is found to be an important aspect.

  11. Manganese porphyrin decorated on DNA networks as quencher and mimicking enzyme for construction of ultrasensitive photoelectrochemistry aptasensor.

    PubMed

    Huang, Liaojing; Zhang, Li; Yang, Liu; Yuan, Ruo; Yuan, Yali

    2018-05-01

    In this work, the manganese porphyrin (MnPP) decorated on DNA networks could serve as quencher and mimicking enzyme to efficiently reduce the photocurrent of photoactive material 3,4,9,10-perylene tetracarboxylic acid (PTCA), which was elaborately used to construct a novel label-free aptasensor for ultrasensitive detection of thrombin (TB) in a signal-off manner. The Au-doped PTCA (PTCA-PEI-Au) with outstanding membrane-forming and photoelectric property was modified on electrode to acquire a strong initial photoelectrochemistry (PEC) signal. Afterward, target binding aptamer Ι (TBAΙ) was modified on electrode to specially recognize target TB, which could further combine with TBAII and single-stranded DNA P1-modified platinum nanoparticles (TBAII-PtNPs-P1) for immobilizing DNA networks with abundant MnPP. Ingeniously, the MnPP could not only directly quench the photocurrent of PTCA, but also acted as hydrogen peroxide (HRP) mimicking enzyme to remarkably stimulate the deposition of benzo-4-chlorhexidine (4-CD) on electrode for further decreasing the photocurrent of PTCA, thereby obtaining a definitely low photocurrent for detection of TB. As a result, the proposed PEC aptasensor illustrated excellent sensitivity with a low detection limit down to 3 fM, exploiting a new avenue about intergrating two functions in one substance for ultrasensitive biological monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation.

    PubMed

    Duraipandian, Shiyamala; Mo, Jianhua; Zheng, Wei; Huang, Zhiwei

    2014-11-07

    Raman spectroscopy measures the inelastically scattered light from tissue that is capable of identifying native tissue biochemical constituents and their changes associated with disease transformation. This study aims to characterize the Raman spectroscopic properties of cervical tissue associated with the multi-stage progression of cervical precarcinogenic sequence. A rapid-acquisition fiber-optic near-infrared (NIR) Raman diagnostic system was employed for tissue Raman spectral measurements at 785 nm excitation. A total of 68 Raman spectra (23 benign, 29 low-grade squamous intraepithelial lesions (LSIL) and 16 high grade squamous intraepithelial lesions (HSIL)) were measured from 25 cervical tissue biopsy specimens, as confirmed by colposcopy-histopathology. The semi-quantitative biochemical modeling based on the major biochemicals (i.e., DNA, proteins (histone, collagen), lipid (triolein) and carbohydrates (glycogen)) in cervical tissue uncovers the stepwise accumulation of biomolecular changes associated with progressive cervical precarcinogenesis. Multi-class partial least squares-discriminant analysis (PLS-DA) together with leave-one tissue site-out, cross-validation yielded the diagnostic sensitivities of 95.7%, 82.8% and 81.3%; specificities of 100.0%, 92.3% and 88.5%,for discrimination among benign, LSIL and HSIL cervical tissues, respectively. This work suggests that the Raman spectral biomarkers have identified the potential to be used for monitoring the multi-stage cervical precarcinogenesis, forming the foundation of applying NIR Raman spectroscopy for the early diagnosis of cervical precancer in vivo at the molecular level.

  13. A new nanostructured Silicon biosensor for diagnostics of bovine leucosis

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.; Starodub, N. F.; Shmyryeva, O. M.

    2010-08-01

    In this report we propose a new instrumental method for the biochemical diagnostics of the bovine leucosis through the registration of the formation of the specific immune complex (antigen-antibody) with the help of biosensor based on the nano-structured silicon. The principle of the measurements is based on the determination of the photosensitivity of the surface. In spite of the existed traditional methods of the biochemical diagnostics of the bovine leucosis the proposed approach may provide the express control of the milk quality as direct on the farm and during the process raw materials. The proposed variant of the biosensor based on the nano-structured silicon may be applied for the determination of the concentration of different substances which may form the specific complex in the result of the bioaffine reactions. A new immune technique based on the nanostructured silicon and intended for the quantitative determination of some toxic substances is offered. The sensitivity of such biosensor allows determining T-2 mycotoxin at the concentration of 10 ng/ml during several minutes.

  14. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks

    PubMed Central

    Ollivier, Julien F.; Soyer, Orkun S.

    2016-01-01

    Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612

  15. Diagnostic instruments for behavioural addiction: an overview

    PubMed Central

    Albrecht, Ulrike; Kirschner, Nina Ellen; Grüsser, Sabine M.

    2007-01-01

    In non-substance-related addiction, the so-called behavioural addiction, no external psychotropic substances are consumed. The psychotropic effect consists of the body’s own biochemical processes induced only by excessive activities. Until recently, knowledge was limited with respect to clinically relevant excessive reward-seeking behaviour, such as pathological gambling, excessive shopping and working which meet diagnostic criteria of dependent behaviour. To date, there is no consistent concept for diagnosis and treatment of excessive reward-seeking behaviour, and its classification is uncertain. Therefore, a clear conceptualization of the so-called behavioural addictions is of great importance. The use of adequate diagnostic instruments is necessary for successful therapeutical implications. This article provides an overview of the current popular diagnostic instruments assessing the different forms of behavioural addiction. Especially in certain areas there are only few valid and reliable instruments available to assess excessive rewarding behaviours that fulfill the criteria of addiction. PMID:19742294

  16. Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Anwar, S.; Rafya, R.

    2018-06-01

    Surface plasmon resonance (SPR) has become an important optical biosensing technology due to its real-time, label-free, and noninvasive nature. These techniques allow for rapid and ultra-sensitive detection of biological analytes, with applications in medical diagnostics, environmental monitoring, and agriculture. SPR is widely used in the detection of biomolecular interactions, and improvements are required for both sensitivity and in vivo uses for practical applications. In this study, we developed an SPR biosensor to provide a highly sensitive and specific approach to early-stage detection of viral and malignant diseases, such as cancer tumors, for which biomarker detection is very important. A cancer cell line (HeLa cells) with biomarker Rodamine 6G was experimentally analyzed in vitro with our constructed SPR biosensor. It was observed that the biosensor can offer a potentially powerful solution for tumor screening with dominant angular shift. The angular shift for both regents is dominant with a time curve at a wavelength of 632.8 nm of a He–Ne laser. We have successfully captured and detected a biomarker in vitro for cancer diagnostics using the developed instrument.

  17. Future of diagnostic microbiology.

    PubMed

    Khardori, N

    2014-01-01

    Diagnostic Microbiology is the tool that makes it possible to identify the exact etiology of infectious diseases and the most optimal therapy at the level of individual patients as well as communities. Conventional methods require time to grow the microbes in vitro under specific conditions and not all microbes are easily cultivable. This is followed by biochemical methods for identification which also require hours and sometimes days. Transport of the specimens under less than ideal conditions, prior use of antibiotics and small number of organisms are among the factors that render culture-based methods less reliable. Newer methods depend on amplification of nucleic acids followed by use of probes for identification. This mitigates the need for higher microbial load, presence of metabolically active viable organisms and shortens the time to reporting. These methods can be used to detect antibiotic resistance genes directly from the specimen and help direct targeted therapy. Since these methods will not fulfill all the diagnostic needs, a second approach is being used to shorten the time to identification after the organism has already grown. Mass spectrometry and bioinformatics are the tools making this possible. This review gives a historical perspective on diagnostic microbiology, discusses the pitfalls of current methodology and provides an overview of newer and future methods.

  18. Four biochemical tests for identification of probable enteroinvasive Escherichia coli strains.

    PubMed

    Flores Abuxapqui, J J; Suárez Hoil, G J; Heredia Navarrete, M R; Puc Franco, M A; Vivas Rosel, M L

    1999-01-01

    Enteroinvasive Escherichia coli (EIEC) share important features with Shigella spp., but EIEC strains are difficult to identify because their biochemical reactions are variable, and Sereny tests or other biological and molecular assays are expensive or hard to perform. The aim of this work was to detect probable enteroinvasive E. coli strains by using four biochemical tests, in children under 5 years of age with and without acute diarrhea. 330 strains of E. coli isolated from children with diarrhea, and 660 strains from children without diarrhea were studied. All strains were tested with the following tests: mucus , lysine and ornithine decarboxylase and motility. The strains which were negative to the four tests were tested by Sereny assay. Twelve strains (3.6%) isolated from children with diarrhea were negative to the tests proposed; eleven were lactose positive and only one was lactose negative. Three strains (0.5%) from children without diarrhea were negative to the tests proposed and were lactose positive. All the 15 strains (100%) were positive in Sereny assay. We recommend the use of these four biochemical tests for initial detection of EIEC strains, because their cost is very low and it is feasible carry out them in small diagnostic laboratories.

  19. Ultrasensitive Nanoimmunosensor by coupling non-covalent functionalized graphene oxide platform and numerous ferritin labels on carbon nanotubes.

    PubMed

    Akter, Rashida; Jeong, Bongjin; Choi, Jong-Soon; Rahman, Md Aminur

    2016-06-15

    An ultrasensitive electrochemical nanostructured immunosensor for a breast cancer biomarker carbohydrate antigen 15-3 (CA 15-3) was fabricated using non-covalent functionalized graphene oxides (GO/Py-COOH) as sensor probe and multiwalled carbon nanotube (MWCNTs)-supported numerous ferritin as labels. The immunosensor was constructed by immobilizing a monoclonal anti-CA 15-3 antibody on the GO modified cysteamine (Cys) self-assembled monolayer (SAM) on an Au electrode (Au/Cys) through the amide bond formation between the carboxylic acid groups of GO/Py-COOH and amine groups of anti-CA 15-3. Secondary antibody conjugated MWCNT-supported ferritin labels (Ab2-MWCNT-Ferritin) were prepared through the amide bond formation between amine groups of Ab2 and ferritin and carboxylic acid groups of MWCNTs. The detection of CA 15-3 was based on the enhanced bioelectrocatalytic reduction of hydrogen peroxide mediated by hydroquinone (HQ) at the GO/Py-COOH-based sensor probe. The GO/Py-COOH-based sensor probe and Ab2-MWCNT-Ferritin labels were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), transmission electron microscope (TEM), and x-ray photoelectron spectroscopy (XPS) techniques. Using differential pulse voltammetry (DPV) technique, CA 15-3 can be selectively detected as low as 0.01 ± 0.07 U/mL in human serum samples. Additionally, the proposed CA 15-3 immunosensor showed excellent selectivity and better stability in human serum samples, which demonstrated that the proposed immunosensor has potentials in proteomic researches and diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Using p-type PbS Quantum Dots to Quench Photocurrent of Fullerene-Au NP@MoS2 Composite Structure for Ultrasensitive Photoelectrochemical Detection of ATP.

    PubMed

    Li, Meng-Jie; Zheng, Ying-Ning; Liang, Wen-Bin; Yuan, Ruo; Chai, Ya-Qin

    2017-12-06

    Ultrasensitive and rapid quantification of the universal energy currency adenosine triphosphate (ATP) is an extremely critical mission in clinical applications. In this work, a "signal-off" photoelectrochemical (PEC) biosensor was designed for ultrasensitive ATP detection based on a fullerene (C 60 )-decorated Au nanoparticle@MoS 2 (C 60 -Au NP@MoS 2 ) composite material as a signal indicator and a p-type PbS quantum dot (QD) as an efficient signal quencher. Modification of wide band gap C 60 with narrow band gap MoS 2 to form an ideal PEC signal indicator was proposed, which could significantly improve photocurrent conversion efficiency, leading to a desirable PEC signal. In the presence of p-type PbS QDs, the PEC signal of n-type C 60 -Au NP@MoS 2 was effectively quenched because p-type PbS QDs could compete with C 60 -Au NP@MoS 2 to consume light energy and electron donor. Besides, the conversion of a limited amount of target ATP into an amplified output PbS QD-labeled short DNA sequence (output S 1 ) was achieved via target-mediated aptazyme cycling amplification strategy, facilitating ultrasensitive ATP detection. The proposed signal-off PEC strategy exhibited a wide linear range from 1.00 × 10 -2 pM to 100 nM with a low detection limit of 3.30 fM. Importantly, this proposed strategy provides a promising platform to detect ATP at ultralow levels and has potential applications, including diagnosis of ATP-related diseases, monitoring of diseases progression and evaluation of prognosis.

  1. Programming A Molecular Relay for Ultrasensitive Biodetection through 129 Xe NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanfei; Roose, Benjamin W.; Philbin, John P.

    2015-12-21

    We reported a supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR. A cucurbit[6]uril (CB[6])-based molecular relay was programmed for three sequential equilibrium conditions by designing a two-faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. Moreover, the protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]- and carbonic anhydrase II (CAII)-binding domains were synthesized in one or two steps. X-ray crystallography confirmed TFG binding to Zn 2+ in the deep CAII active-site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidinmore » by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.« less

  2. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    NASA Astrophysics Data System (ADS)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  3. A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle.

    PubMed

    Zhuo, Hao; Hu, Yijie; Tong, Xing; Chen, Zehong; Zhong, Linxin; Lai, Haihong; Liu, Linxiang; Jing, Shuangshuang; Liu, Qingzhong; Liu, Chuanfu; Peng, Xinwen; Sun, Runcang

    2018-05-01

    Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nucleic acid-based diagnostics for infectious diseases in public health affairs.

    PubMed

    Yu, Albert Cheung-Hoi; Vatcher, Greg; Yue, Xin; Dong, Yan; Li, Mao Hua; Tam, Patrick H K; Tsang, Parker Y L; Wong, April K Y; Hui, Michael H K; Yang, Bin; Tang, Hao; Lau, Lok-Ting

    2012-06-01

    Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.

  5. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers.

    PubMed

    Xu, Jin-Long; Sun, Yi-Jian; He, Jing-Liang; Wang, Yan; Zhu, Zhao-Jie; You, Zhen-Yu; Li, Jian-Fu; Chou, Mitch M C; Lee, Chao-Kuei; Tu, Chao-Yang

    2015-10-07

    Dirac-like topological insulators have attracted strong interest in optoelectronic application because of their unusual and startling properties. Here we report for the first time that the pure topological insulator Bi2Te3 exhibited a naturally ultrasensitive nonlinear absorption response to photoexcitation. The Bi2Te3 sheets with lateral size up to a few micrometers showed extremely low saturation absorption intensities of only 1.1 W/cm(2) at 1.0 and 1.3 μm, respectively. Benefiting from this sensitive response, a Q-switching pulsed laser was achieved in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power was only 31 mW. This is the lowest threshold in Q-switched solid-state bulk lasers to the best of our knowledge. A pulse duration of 97 ns was observed with an average power of 26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration as short as 93 ns. Moreover, the mode locking operation was demonstrated. These results strongly exhibit that Bi2Te3 is a promising optical device for constructing broadband, miniature and integrated high-energy pulsed laser systems with low power consumption. Our work clearly points out a significantly potential avenue for the development of two-dimensional-material-based broadband ultrasensitive photodetector and other optoelectronic devices.

  6. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers

    PubMed Central

    Xu, Jin-Long; Sun, Yi-Jian; He, Jing-Liang; Wang, Yan; Zhu, Zhao-Jie; You, Zhen-Yu; Li, Jian-Fu; Chou, Mitch M. C.; Lee, Chao-Kuei; Tu, Chao-Yang

    2015-01-01

    Dirac-like topological insulators have attracted strong interest in optoelectronic application because of their unusual and startling properties. Here we report for the first time that the pure topological insulator Bi2Te3 exhibited a naturally ultrasensitive nonlinear absorption response to photoexcitation. The Bi2Te3 sheets with lateral size up to a few micrometers showed extremely low saturation absorption intensities of only 1.1 W/cm2 at 1.0 and 1.3 μm, respectively. Benefiting from this sensitive response, a Q-switching pulsed laser was achieved in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power was only 31 mW. This is the lowest threshold in Q-switched solid-state bulk lasers to the best of our knowledge. A pulse duration of 97 ns was observed with an average power of 26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration as short as 93 ns. Moreover, the mode locking operation was demonstrated. These results strongly exhibit that Bi2Te3 is a promising optical device for constructing broadband, miniature and integrated high-energy pulsed laser systems with low power consumption. Our work clearly points out a significantly potential avenue for the development of two-dimensional-material-based broadband ultrasensitive photodetector and other optoelectronic devices. PMID:26442909

  7. Graphene-bimetal plasmonic platform for ultra-sensitive biosensing

    NASA Astrophysics Data System (ADS)

    Tong, Jinguang; Jiang, Li; Chen, Huifang; Wang, Yiqin; Yong, Ken-Tye; Forsberg, Erik; He, Sailing

    2018-03-01

    A graphene-bimetal plasmonic platform for surface plasmon resonance biosensing with ultra-high sensitivity was proposed and optimized. In this hybrid configuration, graphene nanosheets was employed to effectively absorb the excitation light and serve as biomolecular recognition elements for increased adsorption of analytes. Coating of an additional Au film prevents oxidation of the Ag substrate during manufacturing process and enhances the sensitivity at the same time. Thus, a bimetal Au-Ag substrate enables improved sensing performance and promotes stability of this plasmonic sensor. In this work we optimized the number of graphene layers as well as the thickness of the Au film and the Ag substrate based on the phase-interrogation sensitivity. We found an optimized configuration consisting of 6 layers of graphene coated on a bimetal surface consisting of a 5 nm Au film and a 30 nm Ag film. The calculation results showed the configuration could achieve a phase sensitivity as high as 1 . 71 × 106 deg/RIU, which was more than 2 orders of magnitude higher than that of bimetal structure and graphene-silver structure. Due to this enhanced sensing performance, the graphene-bimetal plasmonic platform proposed in this paper is potential for ultra-sensitive plasmonic sensing.

  8. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  9. Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces.

    PubMed

    Chang, Hochan; Kim, Sungwoong; Jin, Sumin; Lee, Seung-Woo; Yang, Gil-Tae; Lee, Ki-Young; Yi, Hyunjung

    2018-01-10

    Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.

  10. Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Kuen; Lee, Jun Ha; Kim, Ki-Sub; Kang, Jeong Won

    2013-01-01

    We propose schematics for an ultra-sensitive pressure sensor based on graphene-nanoribbon (GNR) and investigate its electromechanical properties using classical molecular dynamics simulations and piezo-electricity theory. Since the top plate applied to the actual pressure is large whereas the contact area on the GNR is very small, both the sensitivity and the sensing range can be adjusted by controlling the aspect ratio between the top plate and the contact point areas. Our calculation shows that the electrical conductivity of GNRs can be tuned by the applied pressure and the electric conductance of the deflected GNR linearly increases with increasing applied pressure for the linear elastic region in low pressure below the cut-off point. In the curves for both the deflection and potential energy, the linear elastic regime in low pressure was explicitly separated with the non-linear elastic regime in high pressure. The proposed GNR-based nanoelectromechanical devices have great potential for application as electromechanical memory, relay or switching devices.

  11. Ultra-sensitive magnetic microscopy with an atomic magnetometer and flux guides

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    Many applications in neuroscience, biomedical research, and material science require high-sensitivity, high-resolution magnetometry. In order to meet this need we recently combined a cm-size spin-exchange relaxation-free Atomic Magnetometer (AM) with a flux guide (FG) to produce ultra-sensitive FG-AM magnetic microscopy. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution to tiny magnetic objects. In this talk, we will describe existing and next generation FG-AM devices and present experimental and numerical tests of its sensitivity and resolution. We demonstrate that an optimized FG-AM has sufficient resolution and sensitivity for the detection of a small number of neurons, which would be an important milestone in neuroscience. In addition, as a demonstration of one possible application of the FG-AM device, we conducted high-resolution magnetic imaging of micron-size magnetic particles. We will show that the device can produce clear microscopic magnetic image of 10 μm-size magnetic particles.

  12. The future of medical diagnostics: review paper

    PubMed Central

    2011-01-01

    While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. PMID:21861912

  13. Quantitative and Cost Comparison of Ultrasensitive Human Immunodeficiency Virus Type 1 RNA Viral Load Assays: Bayer bDNA Quantiplex Versions 3.0 and 2.0 and Roche PCR Amplicor Monitor Version 1.5

    PubMed Central

    Elbeik, Tarek; Charlebois, Edwin; Nassos, Patricia; Kahn, James; Hecht, Frederick M.; Yajko, David; Ng, Valerie; Hadley, Keith

    2000-01-01

    Quantification of human immunodeficiency virus type 1 (HIV-1) RNA as a measure of viral load has greatly improved the monitoring of therapies for infected individuals. With the significant reductions in viral load now observed in individuals treated with highly active anti-retroviral therapy (HAART), viral load assays have been adapted to achieve greater sensitivity. Two commercially available ultrasensitive assays, the Bayer Quantiplex HIV-1 bDNA version 3.0 (bDNA 3.0) assay and the Roche Amplicor HIV-1 Monitor Ultrasensitive version 1.5 (Amplicor 1.5) assay, are now being used to monitor HIV-1-infected individuals. Both of these ultrasensitive assays have a reported lower limit of 50 HIV-1 RNA copies/ml and were developed from corresponding older generation assays with lower limits of 400 to 500 copies/ml. However, the comparability of viral load data generated by these ultrasensitive assays and the relative costs of labor, disposables, and biohazardous wastes were not determined in most cases. In this study, we used matched clinical plasma samples to compare the quantification of the newer bDNA 3.0 assay with that of the older bDNA 2.0 assay and to compare the quantification and costs of the bDNA 3.0 assay and the Amplicor 1.5 assay. We found that quantification by the bDNA 3.0 assay was approximately twofold higher than that by the bDNA 2.0 assay and was highly correlated to that by the Amplicor 1.5 assay. Moreover, cost analysis based on labor, disposables, and biohazardous wastes showed significant savings with the bDNA 3.0 assay as compared to the costs of the Amplicor 1.5 assay. PMID:10699005

  14. Quantitative and cost comparison of ultrasensitive human immunodeficiency virus type 1 RNA viral load assays: Bayer bDNA quantiplex versions 3.0 and 2.0 and Roche PCR Amplicor monitor version 1.5.

    PubMed

    Elbeik, T; Charlebois, E; Nassos, P; Kahn, J; Hecht, F M; Yajko, D; Ng, V; Hadley, K

    2000-03-01

    Quantification of human immunodeficiency virus type 1 (HIV-1) RNA as a measure of viral load has greatly improved the monitoring of therapies for infected individuals. With the significant reductions in viral load now observed in individuals treated with highly active anti-retroviral therapy (HAART), viral load assays have been adapted to achieve greater sensitivity. Two commercially available ultrasensitive assays, the Bayer Quantiplex HIV-1 bDNA version 3.0 (bDNA 3.0) assay and the Roche Amplicor HIV-1 Monitor Ultrasensitive version 1.5 (Amplicor 1.5) assay, are now being used to monitor HIV-1-infected individuals. Both of these ultrasensitive assays have a reported lower limit of 50 HIV-1 RNA copies/ml and were developed from corresponding older generation assays with lower limits of 400 to 500 copies/ml. However, the comparability of viral load data generated by these ultrasensitive assays and the relative costs of labor, disposables, and biohazardous wastes were not determined in most cases. In this study, we used matched clinical plasma samples to compare the quantification of the newer bDNA 3.0 assay with that of the older bDNA 2.0 assay and to compare the quantification and costs of the bDNA 3.0 assay and the Amplicor 1.5 assay. We found that quantification by the bDNA 3.0 assay was approximately twofold higher than that by the bDNA 2.0 assay and was highly correlated to that by the Amplicor 1.5 assay. Moreover, cost analysis based on labor, disposables, and biohazardous wastes showed significant savings with the bDNA 3.0 assay as compared to the costs of the Amplicor 1.5 assay.

  15. Ultra-Sensitive Lab-on-a-Chip Detection of Sudan I in Food using Plasmonics-Enhanced Diatomaceous Thin Film.

    PubMed

    Kong, Xianming; Squire, Kenny; Chong, Xinyuan; Wang, Alan X

    2017-09-01

    Sudan I is a carcinogenic compound containing an azo group that has been illegally utilized as an adulterant in food products to impart a bright red color to foods. In this paper, we develop a facile lab-on-a-chip device for instant, ultra-sensitive detection of Sudan I from real food samples using plasmonics-enhanced diatomaceous thin film, which can simultaneously perform on-chip separation using thin layer chromatography (TLC) and highly specific sensing using surface-enhanced Raman scattering (SERS) spectroscopy. Diatomite is a kind of nature-created photonic crystal biosilica with periodic pores and was used both as the stationary phase of the TLC plate and photonic crystals to enhance the SERS sensitivity. The on-chip chromatography capability of the TLC plate was verified by isolating Sudan I in a mixture solution containing Rhodamine 6G, while SERS sensing was achieved by spraying gold colloidal nanoparticles into the sensing spot. Such plasmonics-enhanced diatomaceous film can effectively detect Sudan I with more than 10 times improvement of the Raman signal intensity than commercial silica gel TLC plates. We applied this lab-on-a-chip device for real food samples and successfully detected Sudan I in chili sauce and chili oil down to 1 ppm, or 0.5 ng/spot. This on-chip TLC-SERS biosensor based on diatomite biosilica can function as a cost-effective, ultra-sensitive, and reliable technology for screening Sudan I and many other illicit ingredients to enhance food safety.

  16. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review.

    PubMed

    Ding, Liang; Bond, Alan M; Zhai, Jianping; Zhang, Jie

    2013-10-03

    Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. New ultrasensitive pickup device for deep-sea robots: underwater super-HARP color TV camera

    NASA Astrophysics Data System (ADS)

    Maruyama, Hirotaka; Tanioka, Kenkichi; Uchida, Tetsuo

    1994-11-01

    An ultra-sensitive underwater super-HARP color TV camera has been developed. The characteristics -- spectral response, lag, etc. -- of the super-HARP tube had to be designed for use underwater because the propagation of light in water is very different from that in air, and also depends on the light's wavelength. The tubes have new electrostatic focusing and magnetic deflection functions and are arranged in parallel to miniaturize the camera. A deep sea robot (DOLPHIN 3K) was fitted with this camera and used for the first sea test in Sagami Bay, Japan. The underwater visual information was clear enough to promise significant improvements in both deep sea surveying and safety. It was thus confirmed that the Super- HARP camera is very effective for underwater use.

  18. A review of the management of positive biochemical screening for phaeochromocytoma and paraganglioma: a salutary tale.

    PubMed

    Garrahy, A; Casey, R; Wall, D; Bell, M; O'Shea, P M

    2015-07-01

    Phaeochromocytomas (PC) and paragangliomas (PGL) are rare neuroendocrine tumours of chromaffin cells. Diagnosis depends on biochemical evidence of excessive production of catecholamines. This is straightforward when test results are orders of magnitude above the concentrations expected in healthy individuals and those with essential hypertension. Equivocal results pose a management dilemma. We reviewed biochemical screens that were positive and the ensuing management for PC/PGL at our institution. The objective was to inform the development of a standardised approach to investigation and clinical follow-up. All records of positive biochemical screening for PC/PGL were extracted from the laboratory information system between January 2004 and June 2012. Clinical notes of patients with positive results were reviewed. A total of 2749 biochemical screens were performed during the evaluation period. Of these, 106 (3.9%) performed on 82 patients were positive. Chart review determined that 12/82 patients had histologically confirmed PC/PG. Of the 70 patients remaining, the most common indication for biochemical screening was hypertension and the medical subspecialty most frequently requesting the test was Endocrinology. The primary team carried out repeat testing on 35/70 (50%) patients and in 29 results normalised. Notably, 35/70 (50%) patients did not have any follow-up of positive test results. This study highlights the necessity for a standardised diagnostic protocol for PC/PGL. We suggest that appropriate follow-up of borderline-elevated results should first include repeat biochemical testing. This should be performed under standardised pre-analytical conditions and where possible off all potentially interfering medications, measuring plasma free metadrenalines. © 2015 John Wiley & Sons Ltd.

  19. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.

    PubMed

    Johnson, Mitchell E; Landers, James P

    2004-11-01

    Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

  20. Balanced Biochemical Reactions: A New Approach to Unify Chemical and Biochemical Thermodynamics

    PubMed Central

    Sabatini, Antonio; Vacca, Alberto; Iotti, Stefano

    2012-01-01

    A novel procedure is presented which, by balancing elements and electric charge of biochemical reactions which occur at constant pH and pMg, allows assessing the thermodynamics properties of reaction ΔrG ′0, ΔrH ′0, ΔrS ′0 and the change in binding of hydrogen and magnesium ions of these reactions. This procedure of general applicability avoids the complex calculations required by the use of the Legendre transformed thermodynamic properties of formation ΔfG ′0, ΔfH ′0 and ΔfS ′0 hitherto considered an obligatory prerequisite to deal with the thermodynamics of biochemical reactions. As a consequence, the term “conditional” is proposed in substitution of “Legendre transformed” to indicate these thermodynamics properties. It is also shown that the thermodynamic potential G is fully adequate to give a criterion of spontaneous chemical change for all biochemical reactions and then that the use of the Legendre transformed G′ is unnecessary. The procedure proposed can be applied to any biochemical reaction, making possible to re-unify the two worlds of chemical and biochemical thermodynamics, which so far have been treated separately. PMID:22247780

  1. Predicting refeeding hypophosphataemia: insulin growth factor 1 (IGF-1) as a diagnostic biochemical marker for clinical practice.

    PubMed

    Goyale, Atul; Ashley, Sarah L; Taylor, David R; Elnenaei, Manal O; Alaghband-Zadeh, Jamshid; Sherwood, Roy A; le Roux, Carel W; Vincent, Royce P

    2015-01-01

    Refeeding syndrome (RS) is a potentially fatal condition that can occur following the re-introduction of nutrition after a period of starvation. Hypophosphataemia following the reintroduction of nutrition is often the only reliable biochemical marker of RS. Refeeding index (RI) generated from baseline insulin-like growth factor-1 (IGF-1) and leptin has been proposed as a useful biochemical marker for the identification of patients at risk of developing refeeding hypophosphataemia (RH). A prospective study included 52 patients referred for parenteral nutrition (PN). The sensitivity and specificity of IGF-1 measured using a sensitive assay was compared to the RI in predicting the development of RH (a ≥ 30% drop in PO4 during the first 36-h of PN administration). Leptin and IGF-1 were analysed on baseline samples using a quantitative enzyme-linked immunoassay. Daily blood samples were collected from all patients for routine biochemistry for the full duration of PN administration. High sensitivity IGF-1 measurement alone was comparable with the RI, using receiver-operating characteristic (ROC) curve analysis, with areas under the curve being 0.79 and 0.80, respectively, and superior to leptin alone (0.72) for predicting ≥ 30% drop in PO4. The cut-off value for IGF-1 that gave best sensitivity (91% [95% CI 75-98%]) and specificity (65% [95% CI 41-85%]) was 63.7 µg/L, with a likelihood ratio of 2.59. Baseline IGF-1 is an objective, sensitive and specific biochemical marker in identifying patients who are at high risk of developing RH prior to PN administration and therefore may have a role in clinical practice. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Quantum dots and duplex-specific nuclease enabled ultrasensitive detection and serotyping of Dengue viruses in one step in a single tube.

    PubMed

    Shen, Wei; Gao, Zhiqiang

    2015-03-15

    Leveraging on the enzymatic processing of Dengue virus (DV) RNA hybridized quantum dot-capped DNA capture probes (QD-CPs), an ultrasensitive assay for the detection and serotyping of DVs is described in the report. Briefly, DV-specific DNA CPs are first capped by QDs and then conjugated to magnetic beads. In a sample solution, strands of DV RNA form heteroduplexes with the QD-CPs on the magnetic beads. The CPs together with the QDs in the heteroduplexes are subsequently cleaved off the magnetic beads by a duplex-specific nuclease (DSN), releasing the QDs to the solution, freeing the target RNA strands, and availing them for another around of hybridization with the remaining QD-CPs. After removing the magnetic beads along with unreacted (uncleaved) QD-CPs by using a permanent magnet, ultrasensitive fluorescent detection of DV is realized through the cleaved QDs. Serotyping of DV is accomplished by a judicious design of the QD-CPs. The assay combines excellent signal generation by the highly fluorescent QDs and the effortlessness of utilizing magnetic beads in the removal of the unreacted QD-CPs. The highly efficient DSN cleavage in conjunction with its excellent mismatch discrimination ability permits serotyping of DVs in one tube with excellent sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Note: optical optimization for ultrasensitive photon mapping with submolecular resolution by scanning tunneling microscope induced luminescence.

    PubMed

    Chen, L G; Zhang, C; Zhang, R; Zhang, X L; Dong, Z C

    2013-06-01

    We report the development of a custom scanning tunneling microscope equipped with photon collection and detection systems. The optical optimization includes the comprehensive design of aspherical lens for light collimation and condensing, the sophisticated piezo stages for in situ lens adjustment inside ultrahigh vacuum, and the fiber-free coupling of collected photons directly onto the ultrasensitive single-photon detectors. We also demonstrate submolecular photon mapping for the molecular islands of porphyrin on Ag(111) under small tunneling currents down to 10 pA and short exposure time down to 1.2 ms/pixel. A high quantum efficiency up to 10(-2) was also observed.

  4. All-in-one bioprobe devised with hierarchical-ordered magnetic NiCo2O4 superstructure for ultrasensitive dual-readout immunosensor for logic diagnosis of tumor marker.

    PubMed

    Dai, Hong; Gong, Lingshan; Zhang, Shupei; Xu, Guifang; Li, Yilin; Hong, Zhensheng; Lin, Yanyu

    2016-03-15

    A new enzyme-free all-in-one bioprobe, consisted of hematin decorated magnetic NiCo2O4 superstructure (ATS-MNS-Hb), was designed for ultrasensitive photoelectrochemical and electrochemical dual-readout immunosensing of carcinoembryonic antigen (CEA) on carbon nanohorns (CNH) support. Herein, the MNS, possessed hierarchical-ordered structure, good porosity and magnetism, acted as nanocarrier to absorb abundant Hb molecular after functionalization, providing a convenient collection means by magnetic control as well as enhanced dual-readout sensing performances. CNH superstructures were employed as support to immobilize abounding captured antibodies, and then as-designed dual mode bioprobe, covalent binding with secondary antibody of CEA, was introduced for ultrasensitive detection of CEA by sandwich immunosensing. Photoelectrochemical response originated from plentiful hematin molecular, a excellent photosensitizer with good visible light harvesting efficiency, absorbed by functionalized porous MNS. The resultant concentration dependant linear calibration range was from 10 fg/mL to 1 ng/mL with ultralow detection limit of 10 fg/mL. For electrochemical process, catalase-like property of MNS was validated, moreover, MNS-Hb hybrid exhibited much higher mimic enzyme catalytic activity and evidently amplified electrocatalytic signal, performing a wide dynamic linear range from 1 ng/mL to 40 ng/mL with low detection limit of 1 ng/mL. Additionally, due to the improved accuracy of dual signals detection, the exact diagnoses of serum samples were gotten by operating resulting dual signals with AND logic system. This work demonstrated the promising application of MNS in developing ultrasensitive, cost-effective and environment friendly dual-readout immunosensor and accurate diagnoses strategy for tumor markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA.

    PubMed

    Adegoke, Oluwasesan; Kato, Tatsuya; Park, Enoch Y

    2016-06-15

    Conventional techniques used to diagnose influenza virus face several challenges, such as low sensitivity, slow detection, false positive results and misinterpreted data. Hence, diagnostic probes that can offer robust detection qualities, such as high sensitivity, rapid detection, elimination of false positive data, and specificity for influenza virus, are urgently needed. The near-infrared (NIR) range is an attractive spectral window due to low photon absorption by biological tissues, hence well-constructed fluorescent biosensors that emit within the NIR window can offer an improved limit of detection (LOD). Here, we demonstrate the use of a newly synthesized NIR quinternary alloyed CdZnSeTeS quantum dots (QDs) as an ultrasensitive fluorescence reporter in a conjugated molecular beacon (MB) assay to detect extremely low concentrations of influenza virus H1N1 RNA. Under optimum conditions, two different strains of influenza virus H1N1 RNA were detected based on fluorescence enhancement signal transduction. We successfully discriminated between two different strains of influenza virus H1N1 RNA based on the number of complementary nucleotide base pairs of the MB to the target RNA sequence. The merits of our bioprobe system are rapid detection, high sensitivity (detects H1N1 viral RNA down to 2 copies/mL), specificity and versatility (detects H1N1 viral RNA in human serum). For comparison, a conventional CdSe/ZnS-MB probe could not detect the extremely low concentrations of H1N1 viral RNA detected by our NIR alloyed CdZnSeTeS-MB probe. Our bioprobe detection system produced a LOD as low as ~1 copy/mL and is more sensitive than conventional molecular tests and rapid influenza detection tests (RIDTS) probes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ultrasensitive Electrochemical Detection of Glycoprotein Based on Boronate Affinity Sandwich Assay and Signal Amplification with Functionalized SiO2@Au Nanocomposites.

    PubMed

    You, Min; Yang, Shuai; Tang, Wanxin; Zhang, Fan; He, Pin-Gang

    2017-04-26

    Herein we propose a multiple signal amplification strategy designed for ultrasensitive electrochemical detection of glycoproteins. This approach introduces a new type of boronate-affinity sandwich assay (BASA), which was fabricated by using gold nanoparticles combined with reduced graphene oxide (AuNPs-GO) to modify sensing surface for accelerating electron transfer, the composite of molecularly imprinted polymer (MIP) including 4-vinylphenylboronic acid (VPBA) for specific capturing glycoproteins, and SiO 2 nanoparticles carried gold nanoparticles (SiO 2 @Au) labeled with 6-ferrocenylhexanethiol (FcHT) and 4-mercaptophenylboronic acid (MPBA) (SiO 2 @Au/FcHT/MPBA) as tracing tag for binding glycoprotein and generating electrochemical signal. As a sandwich-type sensing, the SiO 2 @Au/FcHT/MPBA was captured by glycoprotein on the surface of imprinting film for further electrochemical detection in 0.1 M PBS (pH 7.4). Using horseradish peroxidase (HRP) as a model glycoprotein, the proposed approach exhibited a wide linear range from 1 pg/mL to 100 ng/mL, with a low detection limit of 0.57 pg/mL. To the best of our knowledge, this is first report of a multiple signal amplification approach based on boronate-affinity molecularly imprinted polymer and SiO 2 @Au/FcHT/MPBA, exhibiting greatly enhanced sensitivity for glycoprotein detection. Furthermore, the newly constructed BASA based glycoprotein sensor demonstrated HRP detection in real sample, such as human serum, suggesting its promising prospects in clinical diagnostics.

  7. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.

    PubMed

    Zhu, Ye; Wang, Huijuan; Wang, Lin; Zhu, Jing; Jiang, Wei

    2016-02-03

    An ultrasensitive and highly selective electrochemical assay was first attempted by combining the rolling circle amplification (RCA) reaction with poly(thymine)-templated copper nanoparticles (CuNPs) for cascade signal amplification. As proof of concept, prostate specific antigen (PSA) was selected as a model target. Using a gold nanoparticle (AuNP) as a carrier, we synthesized the primer-AuNP-aptamer bioconjugate for signal amplification by increasing the primer/aptamer ratio. The specific construction of primer-AuNP-aptamer/PSA/anti-PSA sandwich structure triggered the effective RCA reaction, in which thousands of tandem poly(thymine) repeats were generated and directly served as the specific templates for the subsequent CuNP formation. The signal readout was easily achieved by dissolving the RCA product-templated CuNPs and detecting the released copper ions with differential pulse stripping voltammetry. Because of the designed cascade signal amplification strategy, the newly developed method achieved a linear range of 0.05-500 fg/mL, with a remarkable detection limit of 0.020 ± 0.001 fg/mL PSA. Finally, the feasibility of the developed method for practical application was investigated by analyzing PSA in the real clinical human serum samples. The ultrasensitivity, specificity, convenience, and capability for analyzing the clinical samples demonstrate that this method has great potential for practical disease diagnosis applications.

  8. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE PAGES

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-04-22

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  9. Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-04-01

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized device can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). In addition, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.

  10. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  11. Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis.

    PubMed

    Vermassen, Tijl; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Decaestecker, Karel; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2015-01-01

    Although prostatitis is a common male urinary tract infection, clinical diagnosis of prostatitis is difficult. The developmental mechanism of prostatitis is not yet unraveled which led to the elaboration of various biomarkers. As changes in asparagine-linked-(N-)-glycosylation were observed between healthy volunteers (HV), patients with benign prostate hyperplasia and prostate cancer patients, a difference could exist in biochemical parameters and urinary N-glycosylation between HV and prostatitis patients. We therefore investigated if prostatic protein glycosylation could improve the diagnosis of prostatitis. Differences in serum and urine biochemical markers and in total urine N-glycosylation profile of prostatic proteins were determined between HV (N=66) and prostatitis patients (N=36). Additionally, diagnostic accuracy of significant biochemical markers and changes in N-glycosylation was assessed. Urinary white blood cell (WBC) count enabled discrimination of HV from prostatitis patients (P<0.001). Urinary bacteria count allowed for discriminating prostatitis patients from HV (P<0.001). Total amount of biantennary structures (urinary 2A/MA marker) was significantly lower in prostatitis patients compared to HV (P<0.001). Combining the urinary 2A/MA marker and urinary WBC count resulted in an AUC of 0.79, 95% confidence interval (CI)=(0.70-0.89) which was significantly better than urinary WBC count (AUC=0.70, 95% CI=[0.59-0.82], P=0.042) as isolated test. We have demonstrated the diagnostic value of urinary N-glycosylation profiling, which shows great potential as biomarker for prostatitis. Further research is required to unravel the developmental course of prostatic inflammation.

  12. Continuous Wave Ring-Down Spectroscopy Diagnostic for Measuring Argon Ion and Neutral Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl

    2013-10-01

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.

  13. Correction: One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    PubMed

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-02-01

    Correction for 'One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor' by Jayakumar Kumarasamy, et al., Nanoscale, 2018, DOI: 10.1039/c7nr06952a.

  14. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-06-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm-1, while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm-1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases.

  15. Ultrasensitive Characterization of Mechanical Oscillations and Plasmon Energy Shift in Gold Nanorods.

    PubMed

    Soavi, Giancarlo; Tempra, Iacopo; Pantano, Maria F; Cattoni, Andrea; Collin, Stéphane; Biagioni, Paolo; Pugno, Nicola M; Cerullo, Giulio

    2016-02-23

    Mechanical vibrational resonances in metal nanoparticles are intensively studied because they provide insight into nanoscale elasticity and for their potential application to ultrasensitive mass detection. In this paper, we use broadband femtosecond pump-probe spectroscopy to study the longitudinal acoustic phonons of arrays of gold nanorods with different aspect ratios, fabricated by electron beam lithography with very high size uniformity. We follow in real time the impulsively excited extensional oscillations of the nanorods by measuring the transient shift of the localized surface plasmon band. Broadband and high-sensitivity detection of the time-dependent extinction spectra enables one to develop a model that quantitatively describes the periodic variation of the plasmon extinction coefficient starting from the steady-state spectrum with only one additional free parameter. This model allows us to retrieve the time-dependent elongation of the nanorods with an ultrahigh sensitivity and to measure oscillation amplitudes of just a few picometers and plasmon energy shifts on the order of 10(-2) meV.

  16. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    NASA Astrophysics Data System (ADS)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  17. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    PubMed

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The BetaCage, an ultra-sensitive screener for surface contamination

    NASA Astrophysics Data System (ADS)

    Bunker, R.; Ahmed, Z.; Bowles, M. A.; Golwala, S. R.; Grant, D. R.; Kos, M.; Nelson, R. H.; Schnee, R. W.; Rider, A.; Wang, B.; Zahn, A.

    2013-08-01

    Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocon-tamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha-and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas keV-1 m-2 day-1 and 0.1 alphas m-2 day-1, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95 × 95 cm2 sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.

  19. Single molecule fluorescence microscopy for ultra-sensitive RNA expression profiling

    NASA Astrophysics Data System (ADS)

    Hesse, Jan; Jacak, Jaroslaw; Regl, Gerhard; Eichberger, Thomas; Aberger, Fritz; Schlapak, Robert; Howorka, Stefan; Muresan, Leila; Frischauf, Anna-Maria; Schütz, Gerhard J.

    2007-02-01

    We developed a microarray analysis platform for ultra-sensitive RNA expression profiling of minute samples. It utilizes a novel scanning system for single molecule fluorescence detection on cm2 size samples in combination with specialized biochips, optimized for low autofluorescence and weak unspecific adsorption. 20 μg total RNA was extracted from 10 6 cells of a human keratinocyte cell line (HaCaT) and reversely transcribed in the presence of Alexa647-aha-dUTP. 1% of the resulting labeled cDNA was used for complex hybridization to a custom-made oligonucleotide microarray representing a set of 125 different genes. For low abundant genes, individual cDNA molecules hybridized to the microarray spots could be resolved. Single cDNA molecules hybridized to the chip surface appeared as diffraction limited features in the fluorescence images. The à trous wavelet method was utilized for localization and counting of the separated cDNA signals. Subsequently, the degree of labeling of the localized cDNA molecules was determined by brightness analysis for the different genes. Variations by factors up to 6 were found, which in conventional microarray analysis would result in a misrepresentation of the relative abundance of mRNAs.

  20. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A.

    PubMed

    Wang, Xue; Lu, Xianbo; Wu, Lidong; Chen, Jiping

    2015-03-15

    As is well known, bisphenol A (BPA), usually exists in daily plastic products, is one of the most important endocrine disrupting chemicals. In this work, copper-centered metal-organic framework (Cu-MOF) was synthesized, which was characterized by SEM, TEM, XRD, FTIR and electrochemical method. The resultant Cu-MOF was explored as a robust electrochemical biosensing platform by choosing tyrosinase (Tyr) as a model enzyme for ultrasensitive and rapid detection of BPA. The Cu-MOF provided a 3D structure with a large specific surface area, which was beneficial for enzyme and BPA absorption, and thus improved the sensitivity of the biosensor. Furthermore, Cu-MOF as a novel sorbent could increase the available BPA concentration to react with tyrosinase through π-π stacking interactions between BPA and Cu-MOF. The Tyr biosensor exhibited a high sensitivity of 0.2242A M(-1) for BPA, a wide linear range from 5.0×10(-8) to 3.0×10-6moll(-1), and a low detection limit of 13nmoll(-1). The response time for detection of BPA is less than 11s. The proposed method was successfully applied to rapid and selective detection of BPA in plastic products with satisfactory results. The recoveries are in the range of 94.0-101.6% for practical applications. With those remarkable advantages, MOFs-based 3D structures show great prospect as robust biosensing platform for ultrasensitive and rapid detection of BPA. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  1. Biochemical markers for prediction of preclampsia: review of the literature.

    PubMed

    Monte, Santo

    2011-07-01

    Preeclampsia (PE) is one of the most common diseases worldwide, complicating ~5% of all pregnancies.Although no major progress has been achieved in the treatment of PE, our ability to identify women at highrisk has increased considerably during the past decade.The early identification of patients with an increased risk for preeclampsia is therefore one of the most important goals in obstetrics. Today, several markers may offer the potential to be used, most likely in a combinatory analysis, as predictors or diagnostic tools. We present here the current knowledge on the biology of preeclampsia and review several biochemical markers which may be used to monitor preeclampsia in a future, that, we hope, is not to distant from today.

  2. Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Carleton, Karen L.; Davis, Steven J.; Kessler, William J.; Otis, Charles E.; Palombo, Daniel A.; Sonnenfroh, David M.

    1995-06-01

    A dual-beam detection strategy with automatic balancing is described for ultrasensitive spectroscopy. Absorbances of 2 \\times 10-7 Hz-1/2 in free-space configurations and 5 \\times 10-6 Hz -1/2 in fiber-coupled configurations are demonstrated. With the dual-beam technique, atmospherically broadened absorption transitions may be resolved with InGaAsP, AlGaAs, and AlGaInP single-longitudinal-mode diode lasers. Applications to trace measurements of NO2 , O2, and H2O are described by the use of simple, inexpensive laser and detector systems. Small signal gain measurements on optically pumped I2 with a sensitivity of 10-5 are also reported.

  3. Plasma biochemical reference values in clinically healthy captive bearded dragons (Pogona vitticeps) and the effects of sex and season.

    PubMed

    Tamukai, Kenichi; Takami, Yoshinori; Akabane, Yoshihito; Kanazawa, Yuko; Une, Yumi

    2011-09-01

    Bearded dragons are one of the most popular pet lizard species, and biochemical reference values are useful for health management of these reptiles. The objectives of this study were to measure plasma biochemical values in healthy captive bearded dragons, determine reference values, and evaluate the effects of sex and season on the results. Blood samples were collected from 100 captive healthy bearded dragons in Tokyo during the summer and winter. Plasma biochemical measurements were performed using a dry-slide automated biochemical analyzer. The data were then compared based on sex and season using 2-way ANOVA. Globulin, cholesterol, and calcium concentrations of females were higher in both summer and winter compared with the values obtained for males. Both males and females had higher uric acid concentrations in winter than in summer. When compared with males, females had a higher chloride concentration in summer and a higher total protein concentration and aspartate aminotransferase activity in winter. Potassium concentration in males was lower in winter than in summer, whereas in females cholesterol concentration was lower in winter than in summer. Biochemical values that differed based on sex and season in bearded dragons were similar to those in other lizards. These differences reflect physiologic differences in reproductive status in females and seasonal changes in temperature and hydration status. Plasma biochemical values established for bearded dragons in this study will be useful in the diagnostic assessment of captive animals. ©2011 American Society for Veterinary Clinical Pathology.

  4. Diagnostic and prognostic value of procalcitonin for early intracranial infection after craniotomy

    PubMed Central

    Yu, Y.; Li, H.J.

    2017-01-01

    Intracranial infection is a common clinical complication after craniotomy. We aimed to explore the diagnostic and prognostic value of dynamic changing procalcitonin (PCT) in early intracranial infection after craniotomy. A prospective study was performed on 93 patients suspected of intracranial infection after craniotomy. Routine peripheral venous blood was collected on the day of admission, and C reactive protein (CRP) and PCT levels were measured. Cerebrospinal fluid (CSF) was collected for routine biochemical, PCT and culture assessment. Serum and CSF analysis continued on days 1, 2, 3, 5, 7, 9, and 11. The patients were divided into intracranial infection group and non-intracranial infection group; intracranial infection group was further divided into infection controlled group and infection uncontrolled group. Thirty-five patients were confirmed with intracranial infection after craniotomy according to the diagnostic criteria. The serum and cerebrospinal fluid PCT levels in the infected group were significantly higher than the non-infected group on day 1 (P<0.05, P<0.01). The area under curve of receiver operating characteristics was 0.803 for CSF PCT in diagnosing intracranial infection. The diagnostic sensitivity and specificity of CSF PCT was superior to other indicators. The serum and CSF PCT levels have potential value in the early diagnosis of intracranial infection after craniotomy. Since CSF PCT levels have higher sensitivity and specificity, dynamic changes in this parameter could be used for early detection of intracranial infection after craniotomy, combined with other biochemical indicators. PMID:28443989

  5. Chronobiology of epilepsy: diagnostic and therapeutic implications of chrono-epileptology.

    PubMed

    Loddenkemper, Tobias; Lockley, Steven W; Kaleyias, Joseph; Kothare, Sanjeev V

    2011-04-01

    The combination of chronobiology and epilepsy offers novel diagnostic and therapeutic management options. Knowledge of the interactions between circadian periodicity, entrainment, sleep patterns, and epilepsy may provide additional diagnostic options beyond sleep deprivation and extended release medication formulations. It may also provide novel insights into the physiologic, biochemical, and genetic regulation processes of epilepsy and the circadian clock, rendering new treatment options. Temporal fluctuations of seizure susceptibility based on sleep homeostasis and circadian phase in selected epilepsies may provide predictability based on mathematical models. Chrono-epileptology offers opportunities for individualized patient-oriented treatment paradigms based on chrono-pharmacology, differential medication dosing, chrono-drug delivery systems, and utilization of "zeitgebers" such as chronobiotics or light-therapy and desynchronization strategies among others.

  6. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors.

    PubMed

    Fluegel, Brian; Mialitsin, Aleksej V; Beaton, Daniel A; Reno, John L; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10(-4). Comparing our strain sensitivity and signal strength in Al(x)Ga(1-x)As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10(3), thus obviating key constraints in semiconductor strain metrology.

  7. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    PubMed Central

    Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-01-01

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853

  8. Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Benford, Dominic; Chervenak, James; Wollack, Edward

    2012-01-01

    A document describes a zeptobolometer for ultrasensitive, long-wavelength sensors. GSFC is developing pixels based on the zeptobolometer design that sense three THz wavelengths simultaneously. Two innovations are described in the document: (1) a quasiparticle (QO) filter arrangement that enables a compact multicolor spectrum at the focal plane, and (2) a THz antenna readout by up to three bolometers. The innovations enable high efficiency by greatly reducing high, frequency-dependent microstrip losses, and pixel compactness by eliminating the need for bulky filters in the focal plane. The zeptobolometer is a small TES bolometer, on the scale of a few microns, which can be readily coupled through an impedance-matching resistor to a metal or dielectric antenna. The bolometer is voltage-biased in its superconducting transition, allowing the use of superconducting RF multiplexers to read out large arrays. The antenna is geometrically tapped at three locations so as to efficiently couple radiation of three distinct wavelengths to the individual TESs. The transition edge hot electrons in metals offer a simple, compact arrangement for antenna readout, which can be crucial in the THz where line losses at high frequencies can be substantial. A metallic grill filter acts as a high-pass filter and directs the low-frequency components to a location where they will be absorbed. The absorption spectrum shows that three well-separated THz bands are feasible. The filters can be made from high-purity dielectrics such as float zone silicon or sapphire.

  9. Fiber optic evanescent wave biosensor

    NASA Astrophysics Data System (ADS)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  10. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  11. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  12. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  13. Ultrasensitive SERS Flow Detector Using Hydrodynamic Focusing

    PubMed Central

    Negri, Pierre; Jacobs, Kevin T.; Dada, Oluwatosin O.; Schultz, Zachary D.

    2013-01-01

    Label-free, chemical specific detection in flow is important for high throughput characterization of analytes in applications such as flow injection analysis, electrophoresis, and chromatography. We have developed a surface-enhanced Raman scattering (SERS) flow detector capable of ultrasensitive optical detection on the millisecond time scale. The device employs hydrodynamic focusing to improve SERS detection in a flow channel where a sheath flow confines analyte molecules eluted from a fused silica capillary over a planar SERS-active substrate. Increased analyte interactions with the SERS substrate significantly improve detection sensitivity. The performance of this flow detector was investigated using a combination of finite element simulations, fluorescence imaging, and Raman experiments. Computational fluid dynamics based on finite element analysis was used to optimize the flow conditions. The modeling indicates that a number of factors, such as the capillary dimensions and the ratio of the sheath flow to analyte flow rates, are critical for obtaining optimal results. Sample confinement resulting from the flow dynamics was confirmed using wide-field fluorescence imaging of rhodamine 6G (R6G). Raman experiments at different sheath flow rates showed increased sensitivity compared with the modeling predictions, suggesting increased adsorption. Using a 50-millisecond acquisitions, a sheath flow rate of 180 μL/min, and a sample flow rate of 5 μL/min, a linear dynamic range from nanomolar to micromolar concentrations of R6G with a LOD of 1 nM is observed. At low analyte concentrations, rapid analyte desorption is observed, enabling repeated and high-throughput SERS detection. The flow detector offers substantial advantages over conventional SERS-based assays such as minimal sample volumes and high detection efficiency. PMID:24074461

  14. Ultrasensitive protein detection in blood serum using gold nanoparticle probes by single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiji; Wang, Chungang; Irudayaraj, Joseph

    2009-07-01

    A one-step rapid and ultrasensitive immunoassay capable of detecting proteins in blood serum is developed using gold nanoprobes and fluorescence correlation spectroscopy (FCS). In this approach we take advantage of the inherent photoluminescence property of gold nanoparticles (GNPs) to develop a fluorophore-free assay to observe binding entities by monitoring the diffusion of bound versus unbound molecules in a limited confocal volume. 40-nm GNPs conjugated separately with rabbit anti-IgG (Fc) and goat anti-IgG (Fab) when incubated in blood serum containing IgG forms a sandwich structure constituting dimers and oligomers that can be differentiated by to detect IgG in blood serum at a limit of detection (LOD) of 5 pg/ml. The novelty of integrating GNPs with FCS to develop a sensitive blood immunoassay brings single molecule methods one step closer to the clinic.

  15. Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis

    PubMed Central

    Vermassen, Tijl; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Decaestecker, Karel; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie

    2015-01-01

    Introduction Although prostatitis is a common male urinary tract infection, clinical diagnosis of prostatitis is difficult. The developmental mechanism of prostatitis is not yet unraveled which led to the elaboration of various biomarkers. As changes in asparagine-linked-(N-)-glycosylation were observed between healthy volunteers (HV), patients with benign prostate hyperplasia and prostate cancer patients, a difference could exist in biochemical parameters and urinary N-glycosylation between HV and prostatitis patients. We therefore investigated if prostatic protein glycosylation could improve the diagnosis of prostatitis. Materials and methods Differences in serum and urine biochemical markers and in total urine N-glycosylation profile of prostatic proteins were determined between HV (N = 66) and prostatitis patients (N = 36). Additionally, diagnostic accuracy of significant biochemical markers and changes in N-glycosylation was assessed. Results Urinary white blood cell (WBC) count enabled discrimination of HV from prostatitis patients (P < 0.001). Urinary bacteria count allowed for discriminating prostatitis patients from HV (P < 0.001). Total amount of biantennary structures (urinary 2A/MA marker) was significantly lower in prostatitis patients compared to HV (P < 0.001). Combining the urinary 2A/MA marker and urinary WBC count resulted in an AUC of 0.79, 95% confidence interval (CI) = (0.70–0.89) which was significantly better than urinary WBC count (AUC = 0.70, 95% CI = [0.59–0.82], P = 0.042) as isolated test. Conclusions We have demonstrated the diagnostic value of urinary N-glycosylation profiling, which shows great potential as biomarker for prostatitis. Further research is required to unravel the developmental course of prostatic inflammation. PMID:26526330

  16. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  17. Rapid bacterial diagnostics via surface enhanced Raman microscopy.

    PubMed

    Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D

    2012-06-01

    There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.

  18. Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels.

    PubMed

    Nikitin, M P; Orlov, A V; Sokolov, I L; Minakov, A A; Nikitin, P I; Ding, J; Bader, S D; Rozhkova, E A; Novosad, V

    2018-06-21

    Geometrically confined magnetic particles due to their unique response to external magnetic fields find a variety of applications, including magnetic guidance, heat and drug delivery, magneto-mechanical actuation, and contrast enhancement. Highly sensitive detection and imaging techniques based on the nonlinear properties of nanomagnets were recently proposed as innovative strong-translational potential methods applicable in complex, often opaque, biological systems. Here we report on the significant enhancement of the detection capability using optical-lithography-defined, ferromagnetic iron-nickel alloy disk-shaped particles. We show that an irreversible transition between strongly non-collinear (vortex) and single domain states, driven by an alternating magnetic field, translates into a nonlinear magnetic response that enables ultrasensitive detection of these particles. The record sensitivity of ∼3.5 × 10-9 emu, which is equivalent to ∼39 pg of magnetic material is demonstrated at room temperature for arrays of patterned disks. We also show that unbound disks suspended in the aqueous buffer can be successfully detected and quantified in real-time when administered into a live animal allowing for tracing of their biodistribution. The use of nanoscale ferromagnetic particles with engineered nonlinear properties opens prospects for further enhancing the sensitivity, scalability, and tunability of noise-free magnetic tag detection in high-background environments for various applications spanning from biosensing and medical imaging to anti-counterfeiting technologies.

  19. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin

    DOE PAGES

    Koh, Chung -Yan; Schaff, Ulrich Y.; Sandstone Diagnostics, Livermore, CA; ...

    2014-12-18

    In this study, we present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-μL required volume of themore » unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.« less

  20. Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing

    PubMed Central

    Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques WM; Robledo, Mercedes

    2017-01-01

    The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours. PMID:29332973

  1. Biochemical-Pathway Diversity in Archaebacteria

    DTIC Science & Technology

    1990-08-30

    Classification) (U) Biochemical-pathway diversity in Archaebacteria 12 PERSONAL AUTHOR(S) I Jensen, Roy-A. i3o. TYPE OF REN" RT 12b. Tki~ 0’E D-30-9 4...by block numtb.sj FIEL I ROU I SIGRLJP Archaebacteria , biochemical diversity, prephenate 06 03. 1 dehydratase, aromatic amino acid biosynthesis t...1988 RE10SE: lo assess the extent to which the archaebacteria possess unique biochemical features of aromatic amino acid biosynthesis and regulation and

  2. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented-AU pyramid superstructure.

    PubMed

    Zhao, Sen; Ma, Wei; Xu, Liguang; Wu, Xiaoling; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-06-15

    For the first time, we demonstrated the fabrication of silver nanoparticle ornamented-gold nanoparticle pyramids (Ag-Au Pys) using an aptamer-based self-assembly process and investigated their surface-enhanced Raman scattering (SERS) properties in the detection of vascular endothelial growth factor (VEGF). Under optimized conditions, the SERS signal was negatively related to VEGF concentration over the range 0.01-1.0 fM and the limit of detection (LOD) was as low as 22.6 aM. The matrix effect and the specificity of this developed method were further examined, and the results showed that the superstructure sensor was ultrasensitive and highly selective. This developed aptamer-based SERS detection method suggests that it may be a promising strategy for a variety of sensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biochemical abnormalities in neonatal seizures.

    PubMed

    Sood, Arvind; Grover, Neelam; Sharma, Roshan

    2003-03-01

    The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.

  4. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F- detection

    NASA Astrophysics Data System (ADS)

    Liu, Biwu; Huang, Zhicheng; Liu, Juewen

    2016-07-01

    Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ~15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F- capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F- in water and in toothpastes, while no other tested anions can achieve the activity enhancement.Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ~15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F- capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F- in water and in toothpastes, while no other tested anions can achieve the activity enhancement. Electronic supplementary information (ESI) available: Methods, TMB oxidation kinetics and control experiments. See DOI: 10.1039/c6nr02730j

  5. Biochemical markers for prediction of preclampsia: review of the literature

    PubMed Central

    Monte, Santo

    2011-01-01

    Preeclampsia (PE) is one of the most common diseases worldwide, complicating ~5% of all pregnancies. Although no major progress has been achieved in the treatment of PE, our ability to identify women at highrisk has increased considerably during the past decade. The early identification of patients with an increased risk for preeclampsia is therefore one of the most important goals in obstetrics. Today, several markers may offer the potential to be used, most likely in a combinatory analysis, as predictors or diagnostic tools. We present here the current knowledge on the biology of preeclampsia and review several biochemical markers which may be used to monitor preeclampsia in a future, that, we hope, is not to distant from today. PMID:22439080

  6. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye

    NASA Astrophysics Data System (ADS)

    de La Rica, Roberto; Stevens, Molly M.

    2012-12-01

    In resource-constrained countries, affordable methodologies for the detection of disease biomarkers at ultralow concentrations can potentially improve the standard of living. However, current strategies for ultrasensitive detection often require sophisticated instruments that may not be available in laboratories with fewer resources. Here, we circumvent this problem by introducing a signal generation mechanism for biosensing that enables the detection of a few molecules of analyte with the naked eye. The enzyme label of an enzyme-linked immunosorbent assay (ELISA) controls the growth of gold nanoparticles and generates coloured solutions with distinct tonality when the analyte is present. Prostate specific antigen (PSA) and HIV-1 capsid antigen p24 were detected in whole serum at the ultralow concentration of 1 × 10-18 g ml-1. p24 was also detected with the naked eye in the sera of HIV-infected patients showing viral loads undetectable by a gold standard nucleic acid-based test.

  7. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    DOE PAGES

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; ...

    2015-05-28

    In this study, the semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10 –4. Comparing our strain sensitivity andmore » signal strength in Al xGa 1–xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10 3, thus obviating key constraints in semiconductor strain metrology.« less

  8. The BetaCage, an ultra-sensitive screener for surface contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunker, R.; Bowles, M. A.; Schnee, R. W.

    Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocon-tamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha-and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas keV{sup −1} m{sup −2} day{sup −1} and 0.1 alphas m{sup −2} day{sup −1}, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expectedmore » to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95 × 95 cm{sup 2} sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.« less

  9. Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection

    NASA Astrophysics Data System (ADS)

    Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.

    2003-07-01

    The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.

  10. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive nanoLC-MS.

    PubMed

    Zhu, Ying; Clair, Geremy; Chrisler, William; Shen, Yufeng; Zhao, Rui; Shukla, Anil; Moore, Ronald; Misra, Ravi; Pryhuber, Gloria; Smith, Richard; Ansong, Charles; Kelly, Ryan T

    2018-05-24

    We report on the quantitative proteomic analysis of single mammalian cells. Fluorescence-activated cell sorting was employed to deposit cells into a newly developed nanodroplet sample processing chip, after which samples were analysed by ultrasensitive nanoLC-MS. An average of ~670 protein groups were confidently identified from single HeLa cells, which is a far greater level of proteome coverage for single cells than has been previously reported. We demonstrate that the single cell proteomics platform can be used to differentiate cell types from enzyme-dissociated human lung primary cells and identify specific protein markers for epithelial and mesenchymal cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance.

    PubMed

    Decousser, Jean-Winoc; Poirel, Laurent; Nordmann, Patrice

    2017-04-01

    The rapid detection of resistance is a challenge for clinical microbiologists who wish to prevent deleterious individual and collective consequences such as (i) delaying efficient antibiotic therapy, which worsens the survival rate of the most severely ill patients, or (ii) delaying the isolation of the carriers of multidrug-resistant bacteria and promoting outbreaks; this last consequence is of special concern, and there are an increasing number of approaches and market-based solutions in response. Areas covered: From simple, cheap biochemical tests to whole-genome sequencing, clinical microbiologists must select the most adequate phenotypic and genotypic tools to promptly detect and confirm β-lactam resistance from cultivated bacteria or from clinical specimens. Here, the authors review the published literature from the last 5 years about the primary technical approaches and commercial laboratory reagents for these purposes, including molecular, biochemical and immune assays. Furthermore, the authors discuss their intrinsic and relative performance, and we challenge their putative clinical impact. Expert commentary: Until the availability of fully automated wet and dry whole genome sequencing solutions, microbiologists should focus on inexpensive biochemical tests for cultured isolates or monomicrobial clinical specimen and on using the expensive molecular PCR-based strategies for the targeted screening of complex biological environments.

  12. Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics.

    PubMed

    Wood, Bayden R; Hermelink, Antje; Lasch, Peter; Bambery, Keith R; Webster, Grant T; Khiavi, Mehdi Asghari; Cooke, Brian M; Deed, Samantha; Naumann, Dieter; McNaughton, Don

    2009-06-01

    Our goal is to produce a rapid and accurate diagnostic tool for malaria using resonance Raman spectroscopy to detect small inclusions of haemozoin in Plasmodium falciparum infected red blood cells. In pursuit of this aim we serendipitously discovered a partial dark-field effect generated by our experimental setup, which helps identify in thick blood films potential parasites that are normally difficult to see with conventional bright-field microscopy. The haemozoin deposits 'light up' and these can be selectively targeted with the Raman microscope to confirm the presence or absence of haemozoin by the strong 1569 cm(-1) band, which is a marker for haemozoin. With newly developed imaging Raman microscopes incorporating ultra-sensitive rapid readout CCDs it is possible to obtain spectra with a good signal-to-noise ratio in 1 second. Moreover, images from a smear of potentially infected cells can be recorded and analysed with multivariate methods. The reconstructed images show what appear to be sub-micron-inclusions of haemozoin in some cells indicating that the technique has potential to identify low pigmented forms of the parasite including early trophozoite-stage infected cells. Further work is required to unambiguously confirm the presence of such forms through systematic staining but the results are indeed promising and may lead to the development of a new Raman-based malaria diagnostic.

  13. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    PubMed

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  14. Accurate Identification of ALK Positive Lung Carcinoma Patients: Novel FDA-Cleared Automated Fluorescence In Situ Hybridization Scanning System and Ultrasensitive Immunohistochemistry

    PubMed Central

    Conde, Esther; Suárez-Gauthier, Ana; Benito, Amparo; Garrido, Pilar; García-Campelo, Rosario; Biscuola, Michele; Paz-Ares, Luis; Hardisson, David; de Castro, Javier; Camacho, M. Carmen; Rodriguez-Abreu, Delvys; Abdulkader, Ihab; Ramirez, Josep; Reguart, Noemí; Salido, Marta; Pijuán, Lara; Arriola, Edurne; Sanz, Julián; Folgueras, Victoria; Villanueva, Noemí; Gómez-Román, Javier; Hidalgo, Manuel; López-Ríos, Fernando

    2014-01-01

    Background Based on the excellent results of the clinical trials with ALK-inhibitors, the importance of accurately identifying ALK positive lung cancer has never been greater. However, there are increasing number of recent publications addressing discordances between FISH and IHC. The controversy is further fuelled by the different regulatory approvals. This situation prompted us to investigate two ALK IHC antibodies (using a novel ultrasensitive detection-amplification kit) and an automated ALK FISH scanning system (FDA-cleared) in a series of non-small cell lung cancer tumor samples. Methods Forty-seven ALK FISH-positive and 56 ALK FISH-negative NSCLC samples were studied. All specimens were screened for ALK expression by two IHC antibodies (clone 5A4 from Novocastra and clone D5F3 from Ventana) and for ALK rearrangement by FISH (Vysis ALK FISH break-apart kit), which was automatically captured and scored by using Bioview's automated scanning system. Results All positive cases with the IHC antibodies were FISH-positive. There was only one IHC-negative case with both antibodies which showed a FISH-positive result. The overall sensitivity and specificity of the IHC in comparison with FISH were 98% and 100%, respectively. Conclusions The specificity of these ultrasensitive IHC assays may obviate the need for FISH confirmation in positive IHC cases. However, the likelihood of false negative IHC results strengthens the case for FISH testing, at least in some situations. PMID:25248157

  15. Cellular, synaptic and biochemical features of resilient cognition in Alzheimer’s disease

    PubMed Central

    Arnold, Steven. E.; Louneva, Natalia; Cao, Kajia; Wang, Li-San; Han, Li-Ying; Wolk, David A.; Negash, Selamawit; Leurgans, Sue E.; Schneider, Julie A.; Buchman, Aron S.; Wilson, Robert S.; Bennett, David A.

    2012-01-01

    While neuritic plaques and neurofibrillary tangles in older adults are correlated with cognitive impairment and severity of dementia, it has long been recognized that the relationship is imperfect as some people exhibit normal cognition despite high levels of AD pathology. We compared the cellular, synaptic and biochemical composition of midfrontal cortices in female subjects from the Religious Orders Study who were stratified into three subgroups: 1) pathological AD with normal cognition (“AD-Resilient”), 2) pathological AD with AD-typical dementia (“AD-Dementia)” and 3) pathologically normal with normal cognition (“Normal Comparison”). The AD-Resilient group exhibited preserved densities of synaptophysin-labeled presynaptic terminals and synaptopodin-labeled dendritic spines compared to the AD-Dementia group, and increased densities of GFAP astrocytes compared to both the AD-Dementia and Normal Comparison group. Further, in a discovery antibody microarray protein analysis we identified a number of candidate protein abnormalities that were associated with diagnostic group. These data characterize cellular and synaptic features and identify novel biochemical targets that may be associated with resilient cognitive brain aging in the setting of pathological AD. PMID:22554416

  16. [Influence of antitumor system rhenium-platinum on biochemical state of the liver].

    PubMed

    Ivchuk, V V; Polishko, T M; Golichenko, O A; Shtemenko, O V; Shtemenko, N I

    2011-01-01

    Influence of the antitumour rhenium-platinum system on biochemical liver characteristics in the model of tumor growth (Guerin carcinoma) was studied and possible hepatoprotective activity of rhenium cluster compounds when introducing them in different forms was shown, that was confirmed by decreasing of diagnostic enzymes activity in blood (aminotransferase--AST 6 times and ALT 5.6 times, lactatedehydrogenase 4.9 times, gamma-glutamyltranspeptidase 3.6 times) and normalization of morphological state of the liver cells. The hepatoprotective activity of the cluster rhenium compound with adamanthyl ligands was confirmed in the model of acute toxic hepatitis. Introduction of this compound led to reduction of the concentration of MDA in homogenates of liver tissue (2 times), and in blood plasma (3.8 times); to reduction of levels of diagnostic liver enzymes in blood--AST and ALT 5.8 and 5.5 times respectively in comparison with control group. Some aspects of the mechanism of hepatoprotection were discussed, that included the presence of conjugated systems around the quadrupol rhenium-rhenium bond and alkyl radicals with significant positive inductive effects.

  17. Fluorescent diagnostics of epithelial neoplasms of different colon parts.

    PubMed

    Korneva, Yulia S; Dorosevich, Alexander E; Maryakhina, Valeriya S

    2017-10-01

    Changes in the biochemical composition of the tissue during colon cancer progression usually precede morphological changes registered by light microscopy. These changes are very sensitive and may be used for diagnostics in difficult cases, when it is impossible to obtain sufficient amount of material during colonoscopy. The aim of the study is analysis of spectral characteristics of sporadic adenomas and tumors in different parts of colon for improving tumors diagnostics in disputable cases. The spectra of fluorescence excitation of histological sections from 78 patients with colon cancer (adenocarcinoma) and colonic adenomas of different localizations were measured. The spectra of fluorescence excitation of all types of adenomas as well as adenocarcinoma have two maxima at 260/270 nm and at 330/340 nm. The first maximum is primarily defined by tryptophan and phenylalanin containing peptides, one of them is glucagon. The second maximum is mainly defined by collagen in stroma. Progression of precancer lesions to advanced cancer leads to increase of NADH concentration impacting on the second maximum of spectra. However, spectra of all types of the investigated lesions have peculiarities depending on localization. At odds to the previous data about similarities between distal colon and rectum, our results demonstrate similar spectra for proximal colon and rectum due to some similarities in morphological and, as a consequence, biochemical composition. Tumor can be detected by spectral techniques on histological slides even if the specimen contains very few tumorous cells in stroma. Biochemical changes and their similarities for precancer lesions and advanced colon cancer have described. Peculiarities of spectral data for different parts of colon may change the previous opinion about similar mechanisms of cancerogenesis for distal colon and rectum. Moreover, investigation of tissue specimen obtained for histological examination and containing lack of malignant

  18. Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays

    PubMed Central

    La, Moonwoo; Park, Sang Min; Kim, Dong Sung

    2015-01-01

    In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516

  19. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  20. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  1. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  2. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  3. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  4. Dithiobis(succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol.

    PubMed

    Arya, Sunil K; Chornokur, Ganna; Venugopal, Manju; Bhansali, Shekhar

    2010-06-15

    Gold microelectrode arrays functionalized with dithiobis(succinimidyl propionate) self-assembled monolayer (SAM) have been used to fabricate an ultrasensitive, disposable, electrochemical cortisol immunosensor. Cortisol specific monoclonal antibody (C-Mab) was covalently immobilized on the surface of gold microelectrode array and the sensors were exposed to solutions with different cortisol concentration. After C-Mab binding, unreacted active groups of DTSP were blocked using ethanol amine (EA) and label-free electrochemical impedance (EIS) technique was used to determine cortisol concentration. EIS results confirmed that EA/C-Mab/DTSP/Au based biosensor can accurately detect cortisol in the range of 1pM-100nM. The biosensor was successfully used for the measurement of cortisol in interstitial fluid in vitro. This research establishes the feasibility of using impedance based biosensor architecture for disposable, wearable cortisol detector. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  6. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  7. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  8. An enzyme-free and label-free surface plasmon resonance biosensor for ultrasensitive detection of fusion gene based on DNA self-assembly hydrogel with streptavidin encapsulation.

    PubMed

    Guo, Bin; Wen, Bo; Cheng, Wei; Zhou, Xiaoyan; Duan, Xiaolei; Zhao, Min; Xia, Qianfeng; Ding, Shijia

    2018-07-30

    In this research, an enzyme-free and label-free surface plasmon resonance (SPR) biosensing strategy has been developed for ultrasensitive detection of fusion gene based on the heterogeneous target-triggered DNA self-assembly aptamer-based hydrogel with streptavidin (SA) encapsulation. In the presence of target, the capture probes (Cp) immobilized on the chip surface can capture the PML/RARα, forming a Cp-PML/RARα duplex. After that, the aptamer-based network hydrogel nanostructure is formed on the gold surface via target-triggered self-assembly of X shaped polymers. Subsequently, the SA can be encapsulated into hydrogel by the specific binding of SA aptamer, forming the complex with super molecular weight. Thus, the developed strategy achieves dramatic enhancement of the SPR signal. Using PML/RARα "S" subtype as model analyte, the developed biosensing method can detect target down to 45.22 fM with a wide linear range from 100 fM to 10 nM. Moreover, the high efficiency biosensing method shows excellent practical ability to identify the clinical PCR products of PML/RARα. Thus, this proposed strategy presents a powerful platform for ultrasensitive detection of fusion gene and early diagnosis and monitoring of disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA

    NASA Astrophysics Data System (ADS)

    Wen, Yanli; Pei, Hao; Shen, Ye; Xi, Junjie; Lin, Meihua; Lu, Na; Shen, Xizhong; Li, Jiong; Fan, Chunhai

    2012-11-01

    MicroRNAs (miRNAs) have been identified as promising cancer biomarkers due to their stable presence in serum. As an alternative to PCR-based homogenous assays, surface-based electrochemical biosensors offer great opportunities for low-cost, point-of-care tests (POCTs) of disease-associated miRNAs. Nevertheless, the sensitivity of miRNA sensors is often limited by mass transport and crowding effects at the water-electrode interface. To address such challenges, we herein report a DNA nanostructure-based interfacial engineering approach to enhance binding recognition at the gold electrode surface and drastically improve the detection sensitivity. By employing this novel strategy, we can directly detect as few as attomolar (<1, 000 copies) miRNAs with high single-base discrimination ability. Given that this ultrasensitive electrochemical miRNA sensor (EMRS) is highly reproducible and essentially free of prior target labeling and PCR amplification, we also demonstrate its application by analyzing miRNA expression levels in clinical samples from esophageal squamous cell carcinoma (ESCC) patients.

  10. Digitized molecular diagnostics: reading disk-based bioassays with standard computer drives.

    PubMed

    Li, Yunchao; Ou, Lily M L; Yu, Hua-Zhong

    2008-11-01

    We report herein a digital signal readout protocol for screening disk-based bioassays with standard optical drives of ordinary desktop/notebook computers. Three different types of biochemical recognition reactions (biotin-streptavidin binding, DNA hybridization, and protein-protein interaction) were performed directly on a compact disk in a line array format with the help of microfluidic channel plates. Being well-correlated with the optical darkness of the binding sites (after signal enhancement by gold nanoparticle-promoted autometallography), the reading error levels of prerecorded audio files can serve as a quantitative measure of biochemical interaction. This novel readout protocol is about 1 order of magnitude more sensitive than fluorescence labeling/scanning and has the capability of examining multiplex microassays on the same disk. Because no modification to either hardware or software is needed, it promises a platform technology for rapid, low-cost, and high-throughput point-of-care biomedical diagnostics.

  11. New Approaches to Sepsis: Molecular Diagnostics and Biomarkers

    PubMed Central

    Bauer, Michael; Riedemann, Niels C.; Hartog, Christiane S.

    2012-01-01

    Summary: Sepsis is among the most common causes of death in hospitals. It arises from the host response to infection. Currently, diagnosis relies on nonspecific physiological criteria and culture-based pathogen detection. This results in diagnostic uncertainty, therapeutic delays, the mis- and overuse of antibiotics, and the failure to identify patients who might benefit from immunomodulatory therapies. There is a need for new sepsis biomarkers that can aid in therapeutic decision making and add information about screening, diagnosis, risk stratification, and monitoring of the response to therapy. The host response involves hundreds of mediators and single molecules, many of which have been proposed as biomarkers. It is, however, unlikely that one single biomarker is able to satisfy all the needs and expectations for sepsis research and management. Among biomarkers that are measurable by assays approved for clinical use, procalcitonin (PCT) has shown some usefulness as an infection marker and for antibiotic stewardship. Other possible new approaches consist of molecular strategies to improve pathogen detection and molecular diagnostics and prognostics based on transcriptomic, proteomic, or metabolic profiling. Novel approaches to sepsis promise to transform sepsis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsis therapies. PMID:23034322

  12. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  13. Highly Efficient Intramolecular Electrochemiluminescence Energy Transfer for Ultrasensitive Bioanalysis of Aflatoxin M1.

    PubMed

    Liu, Jia-Li; Zhao, Min; Zhuo, Ying; Chai, Ya-Qin; Yuan, Ruo

    2017-02-03

    The intermolecular electrochemiluminescence resonance energy transfer (ECL-RET) between luminol and Ru(bpy) 3 2+ was studied extensively to achieve the sensitive bioanalysis owing to the perfect spectral overlap of the donor and acceptor, but it still suffers from the challenging issue of low energy-transfer efficiency. The intramolecular ECL-RET towards the novel ECL compound containing the donor of luminol and the acceptor of Ru(bpy) 2 (mcpbpy) 2+ (Lum-Ru) was designed and investigated. With the high-efficient ECL-RET in one molecule, the highly intense ECL signal of Lum-Ru was obtained owing to the short path of energy transmission and less energy loss between luminol and Ru(bpy) 2 (mcpbpy) 2+ . Lum-Ru was further applied to construct a signal-off electrochemiluminescence (ECL) aptasensor for ultrasensitive detection of a harsh carcinogen of Aflatoxin M1 (AFM1). This sensing platform also provides a significant boost for the trace detection of other biomolecules in clinical analysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bone sialoprotein in laboratory diagnostic work-up of osteoarthritis.

    PubMed

    Lis, Kinga

    2008-01-01

    Changes in osteoarthritis joint appear in the articular cartilage, synovium and in subchondral bone. It is necessary to find, apart from markers of cartilage destruction, a sensitive and specific biochemical marker which would reflect the metabolism as well as degradation of subchondral bone. Bone sialoprotein is mostly synthesized in osseous tissue found directly under the surface of joint cartilage. As a result, it is being increasingly perceived as a valuable marker of the metabolism rate of this layer of bone. Bone sialoprotein seems to be of use as a marker for subchondral bone degradation rate in laboratory diagnostic work-up of osteoarthritis.

  15. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins.

    PubMed

    Chen, Quansheng; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin

    2016-09-28

    Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF4:Yb/Ho/Gd and NaYF4:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF4 nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001-0.1 ng ml(-1) with the limit of detection (LOD) of 0.001 ng ml(-1). Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Six orders of magnitude dynamic range in capillary electrophoresis with ultrasensitive laser-induced fluorescence detection

    PubMed Central

    Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.

    2009-01-01

    An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546

  17. Selenium-containing organic nanoparticles as silent precursors for ultra-sensitive thiol-responsive transmembrane anion transport.

    PubMed

    Lang, Chao; Zhang, Xin; Dong, Zeyuan; Luo, Quan; Qiao, Shanpeng; Huang, Zupeng; Fan, Xiaotong; Xu, Jiayun; Liu, Junqiu

    2016-02-07

    An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications.

  18. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.

    PubMed

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-04-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis.

  19. Design of an ultrasensitive SPR biosensor based on a graphene-MoS2 hybrid structure with a MgF2 prism.

    PubMed

    Feng, Yuncai; Liu, Youwen; Teng, Jinghua

    2018-05-10

    We propose, to the best of our knowledge, a new configuration of a biosensor based on the graphene-MoS 2 hybrid structure by adopting the lower refractive index MgF 2 prism in order to improve the sensitivity and the figure of merit (FOM). We can obtain an ultrasensitive sensor with values of sensitivity and FOM as high as 540.8°/RIU and 145/RIU, respectively, by modulating the parameters in the configuration and comparatively choosing a different absentee layer material. The proposed structure is applicable in the realization of an integrated device for the surface plasmon resonance biosensor.

  20. Dietary, anthropometric, and biochemical determinants of uric acid in free-living adults

    PubMed Central

    2013-01-01

    Background High plasma uric acid (UA) is a prerequisite for gout and is also associated with the metabolic syndrome and its components and consequently risk factors for cardiovascular diseases. Hence, the management of UA serum concentrations would be essential for the treatment and/or prevention of human diseases and, to that end, it is necessary to know what the main factors that control the uricemia increase. The aim of this study was to evaluate the main factors associated with higher uricemia values analyzing diet, body composition and biochemical markers. Methods 415 both gender individuals aged 21 to 82 years who participated in a lifestyle modification project were studied. Anthropometric evaluation consisted of weight and height measurements with later BMI estimation. Waist circumference was also measured. The muscle mass (Muscle Mass Index – MMI) and fat percentage were measured by bioimpedance. Dietary intake was estimated by 24-hour recalls with later quantification of the servings on the Brazilian food pyramid and the Healthy Eating Index. Uric acid, glucose, triglycerides (TG), total cholesterol, urea, creatinine, gamma-GT, albumin and calcium and HDL-c were quantified in serum by the dry-chemistry method. LDL-c was estimated by the Friedewald equation and ultrasensitive C-reactive protein (CRP) by the immunochemiluminiscence method. Statistical analysis was performed by the SAS software package, version 9.1. Linear regression (odds ratio) was performed with a 95% confidence interval (CI) in order to observe the odds ratio for presenting UA above the last quartile (♂UA > 6.5 mg/dL and ♀ UA > 5 mg/dL). The level of significance adopted was lower than 5%. Results Individuals with BMI ≥ 25 kg/m2 OR = 2.28(1.13-4.6) and lower MMI OR = 13.4 (5.21-34.56) showed greater chances of high UA levels even after all adjustments (gender, age, CRP, gamma-gt, LDL, creatinine, urea, albumin, HDL-c, TG, arterial hypertension and glucose). As

  1. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  2. A Diagnostic Model for Dementia in Clinical Practice-Case Methodology Assisting Dementia Diagnosis.

    PubMed

    Londos, Elisabet

    2015-04-02

    Dementia diagnosis is important for many different reasons. Firstly, to separate dementia, or major neurocognitive disorder, from MCI (mild cognitive impairment), mild neurocognitive disorder. Secondly, to define the specific underlying brain disorder to aid treatment, prognosis and decisions regarding care needs and assistance. The diagnostic method of dementias is a puzzle of different data pieces to be fitted together in the best possible way to reach a clinical diagnosis. Using a modified case methodology concept, risk factors affecting cognitive reserve and symptoms constituting the basis of the brain damage hypothesis, can be visualized, balanced and reflected against test results as well as structural and biochemical markers. The model's origin is the case method initially described in Harvard business school, here modified to serve dementia diagnostics.

  3. Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome?

    PubMed Central

    Cordero, Mario D.; Segundo, María José; Sáez-Francàs, Naia; Calvo, Natalia; Román-Malo, Lourdes; Aliste, Luisa; Fernández de Sevilla, Tomás; Alegre, José

    2015-01-01

    Abstract Chronic fatigue syndrome (CFS) is a chronic and extremely debilitating illness characterized by prolonged fatigue and multiple symptoms with unknown cause, diagnostic test, or universally effective treatment. Inflammation, oxidative stress, mitochondrial dysfunction, and CoQ10 deficiency have been well documented in CFS. We conducted an 8-week, randomized, double-blind placebo-controlled trial to evaluate the benefits of oral CoQ10 (200 mg/day) plus NADH (20 mg/day) supplementation on fatigue and biochemical parameters in 73 Spanish CFS patients. This study was registered in ClinicalTrials.gov (NCT02063126). A significant improvement of fatigue showing a reduction in fatigue impact scale total score (p<0.05) was reported in treated group versus placebo. In addition, a recovery of the biochemical parameters was also reported. NAD+/NADH (p<0.001), CoQ10 (p<0.05), ATP (p<0.05), and citrate synthase (p<0.05) were significantly higher, and lipoperoxides (p<0.05) were significantly lower in blood mononuclear cells of the treated group. These observations lead to the hypothesis that the oral CoQ10 plus NADH supplementation could confer potential therapeutic benefits on fatigue and biochemical parameters in CFS. Larger sample trials are warranted to confirm these findings. Antioxid. Redox Signal. 22, 679–685. PMID:25386668

  4. Confocal fluorescence microscopy: An ultra-sensitive tool used to evaluate intracellular antiretroviral nano-drug delivery in HeLa cells

    NASA Astrophysics Data System (ADS)

    Mandal, Subhra; Zhou, You; Shibata, Annemarie; Destache, Christopher J.

    2015-08-01

    In the last decade, confocal fluorescence microscopy has emerged as an ultra-sensitive tool for real-time study of nanoparticles (NPs) fate at the cellular-level. According to WHO 2007 report, Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) is still one of the world's major health threats by claiming approximately 7,000 new infections daily worldwide. Although combination antiretroviral drugs (cARV) therapy has improved the life-expectancy of HIV-infected patients, routine use of high doses of cARV has serious health consequences and requires complete adherence to the regimen for success. Thus, our research goal is to fabricate long-acting novel cARV loaded poly(lactide-co-glycolic acid) (PLGA) nanoparticles (cARV-NPs) as drug delivery system. However, important aspects of cARV-NPs that require special emphasis are their cellular-uptake, potency, and sustained drug release efficiency over-time. In this article, ultra-sensitive confocal microscopy is been used to evaluate the uptake and sustained drug release kinetics of cARV-NPs in HeLa cells. To evaluate with the above goal, instead of cARV-drug, Rhodamine6G dye (fluorescent dye) loaded NPs (Rho6G NPs) have been formulated. To correlate the Rhodamin6G release kinetics with the ARV release from NPs, a parallel HPLC study was also performed. The results obtained indicate that Rho6G NPs were efficiently taken up at low concentration (<500 ng/ml) and that release was sustained for a minimum of 4 days of treatment. Therefore, high drug assimilation and sustained release properties of PLGA-NPs make them an attractive vehicle for cARV nano-drug delivery with the potential to reduce drug dosage as well as the number of drug administrations per month.

  5. Multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 based on redox hydrogel.

    PubMed

    Tang, Zhongxue; Fu, Yuanyuan; Ma, Zhanfang

    2017-05-15

    In this work, multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 (CA242) were developed using redox sodium alginate-Pb 2+ -graphene oxide (SA-Pb 2+ -GO) hydrogel. The SA-Pb 2+ -GO hydrogel was synthesised by simply mixing SA, GO, and Pb 2+ and then implemented as a novel redox species with a strong current signal at -0.46V (vs. Ag/AgCl). After the three-dimensional and porous SA-Pb 2+ -GO hydrogel was in situ generated on a glassy carbon electrode (GCE), chitosan was adsorbed on the obtained electrode to further enrich Pb 2+ . When chitosan-Pb 2+ /SA-Pb 2+ -GO/GCE was incubated with anti-CA242 using glutaraldehyde and blocked by bovine serum albumin, the immunoassay platform for CA242 was obtained. Owing to the addition of GO, the obtained conductive SA-GO/GCE was beneficial for signal amplification. After incubating SA-GO/GCE with excessive amounts of Pb 2+ , the resistance of SA-Pb 2+ -GO/GCE further decreased and a strong redox signal was obtained. The chitosan fixed by electrostatic adsorption resulted in further adsorption of Pb 2+ , behaving as further amplifying the signal and improving conductivity. In this case, multiple signal amplification strategies were involved in the proposed immunosensor for the ultrasensitive detection of CA242. Under the optimal conditions, the proposed immunosensor exhibited a wide linear range from 0.005UmL -1 to 500UmL -1 with an ultralow detection limit of 0.067mUmL -1 . In comparison to previous works, the sensitivity of this method was 32.98μA (log 10 C CA242 ) -1 , which was a five-fold increase from the previous works. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cross-Clade Ultrasensitive PCR-Based Assays To Measure HIV Persistence in Large-Cohort Studies

    PubMed Central

    Vandergeeten, Claire; Fromentin, Rémi; Merlini, Esther; Lawani, Mariam B.; DaFonseca, Sandrina; Bakeman, Wendy; McNulty, Amanda; Ramgopal, Moti; Michael, Nelson; Kim, Jerome H.; Ananworanich, Jintanat

    2014-01-01

    ABSTRACT A small pool of infected cells persists in HIV-infected individuals receiving antiretroviral therapy (ART). Here, we developed ultrasensitive assays to precisely measure the frequency of cells harboring total HIV DNA, integrated HIV DNA, and two long terminal repeat (2-LTR) circles. These assays are performed on cell lysates, which circumvents the labor-intensive step of DNA extraction, and rely on the coquantification of each HIV molecular form together with CD3 gene sequences to precisely measure cell input. Using primary isolates from HIV subtypes A, B, C, D, and CRF01_A/E, we demonstrate that these assays can efficiently quantify low target copy numbers from diverse HIV subtypes. We further used these assays to measure total HIV DNA, integrated HIV DNA, and 2-LTR circles in CD4+ T cells from HIV-infected subjects infected with subtype B. All samples obtained from ART-naive subjects were positive for the three HIV molecular forms (n = 15). Total HIV DNA, integrated HIV DNA, and 2-LTR circles were detected in, respectively, 100%, 94%, and 77% of the samples from individuals in which HIV was suppressed by ART. Higher levels of total HIV DNA and 2-LTR circles were detected in untreated subjects than individuals on ART (P = 0.0003 and P = 0.0004, respectively), while the frequency of CD4+ T cells harboring integrated HIV DNA did not differ between the two groups. These results demonstrate that these novel assays have the ability to quantify very low levels of HIV DNA of multiple HIV subtypes without the need for nucleic acid extraction, making them well suited for the monitoring of viral persistence in large populations of HIV-infected individuals. IMPORTANCE Since the discovery of viral reservoirs in HIV-infected subjects receiving suppressive ART, measuring the degree of viral persistence has been one of the greatest challenges in the field of HIV research. Here, we report the development and validation of ultrasensitive assays to measure HIV persistence

  7. Supercolor coding methods for large-scale multiplexing of biochemical assays.

    PubMed

    Rajagopal, Aditya; Scherer, Axel; Homyk, Andrew; Kartalov, Emil

    2013-08-20

    We present a novel method for the encoding and decoding of multiplexed biochemical assays. The method enables a theoretically unlimited number of independent targets to be detected and uniquely identified in any combination in the same sample. For example, the method offers easy access to 12-plex and larger PCR assays, as contrasted to the current 4-plex assays. This advancement would allow for large panels of tests to be run simultaneously in the same sample, saving reagents, time, consumables, and manual labor, while also avoiding the traditional loss of sensitivity due to sample aliquoting. Thus, the presented method is a major technological breakthrough with far-reaching impact on biotechnology, biomedical science, and clinical diagnostics. Herein, we present the mathematical theory behind the method as well as its experimental proof of principle using Taqman PCR on sequences specific to infectious diseases.

  8. Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals

    NASA Astrophysics Data System (ADS)

    Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.

    2018-02-01

    Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.

  9. Clinical validity of biochemical and molecular analysis in diagnosing Leigh syndrome: a study of 106 Japanese patients.

    PubMed

    Ogawa, Erika; Shimura, Masaru; Fushimi, Takuya; Tajika, Makiko; Ichimoto, Keiko; Matsunaga, Ayako; Tsuruoka, Tomoko; Ishige, Mika; Fuchigami, Tatsuo; Yamazaki, Taro; Mori, Masato; Kohda, Masakazu; Kishita, Yoshihito; Okazaki, Yasushi; Takahashi, Shori; Ohtake, Akira; Murayama, Kei

    2017-09-01

    Leigh syndrome (LS) is a progressive neurodegenerative disorder of infancy and early childhood. It is clinically diagnosed by typical manifestations and characteristic computed tomography (CT) or magnetic resonance imaging (MRI) studies. Unravelling mitochondrial respiratory chain (MRC) dysfunction behind LS is essential for deeper understanding of the disease, which may lead to the development of new therapies and cure. The aim of this study was to evaluate the clinical validity of various diagnostic tools in confirming MRC disorder in LS and Leigh-like syndrome (LL). The results of enzyme assays, molecular analysis, and cellular oxygen consumption rate (OCR) measurements were examined. Of 106 patients, 41 were biochemically and genetically verified, and 34 had reduced MRC activity but no causative mutations. Seven patients with normal MRC complex activities had mutations in the MT-ATP6 gene. Five further patients with normal activity in MRC were identified with causative mutations. Conversely, 12 out of 60 enzyme assays performed for genetically verified patients returned normal results. No biochemical or genetic background was confirmed for 19 patients. OCR was reduced in ten out of 19 patients with negative enzyme assay results. Inconsistent enzyme assay results between fibroblast and skeletal muscle biopsy samples were observed in 33% of 37 simultaneously analyzed cases. These data suggest that highest diagnostic rate is reached using a combined enzymatic and genetic approach, analyzing more than one type of biological materials where suitable. Microscale oxygraphy detected MRC impairment in 50% cases with no defect in MRC complex activities.

  10. Ultrasensitive electrochemical immunoassay for surface array protein, a Bacillus anthracis biomarker using Au-Pd nanocrystals loaded on boron-nitride nanosheets as catalytic labels.

    PubMed

    Sharma, Mukesh Kumar; Narayanan, J; Pardasani, Deepak; Srivastava, Divesh N; Upadhyay, Sanjay; Goel, Ajay Kumar

    2016-06-15

    Bacillus anthracis, the causative agent of anthrax, is a well known bioterrorism agent. The determination of surface array protein (Sap), a unique biomarker for B. anthracis can offer an opportunity for specific detection of B. anthracis in culture broth. In this study, we designed a new catalytic bionanolabel and fabricated a novel electrochemical immunosensor for ultrasensitive detection of B. anthracis Sap antigen. Bimetallic gold-palladium nanoparticles were in-situ grown on poly (diallyldimethylammonium chloride) functionalized boron nitride nanosheets (Au-Pd NPs@BNNSs) and conjugated with the mouse anti-B. anthracis Sap antibodies (Ab2); named Au-Pd NPs@BNNSs/Ab2. The resulting Au-Pd NPs@BNNSs/Ab2 bionanolabel demonstrated high catalytic activity towards reduction of 4-nitrophenol. The sensitivity of the electrochemical immunosensor along with redox cycling of 4-aminophenol to 4-quinoneimine was improved to a great extent. Under optimal conditions, the proposed immunosensor exhibited a wide working range from 5 pg/mL to 100 ng/mL with a minimum detection limit of 1 pg/mL B. anthracis Sap antigen. The practical applicability of the immunosensor was demonstrated by specific detection of Sap secreted by the B. anthracis in culture broth just after 1h of growth. These labels open a new direction for the ultrasensitive detection of different biological warfare agents and their markers in different matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification

    NASA Astrophysics Data System (ADS)

    Bai, Lijuan; Chai, Yaqin; Pu, Xiaoyun; Yuan, Ruo

    2014-02-01

    Endotoxin, also known as lipopolysaccharide (LPS), is able to induce a strong immune response on its internalization into mammalian cells. To date, aptamer-based biosensors for LPS detection have been rarely reported. This work describes a new signal-on electrochemical aptasensor for the ultrasensitive detection of LPS by combining the three-way DNA hybridization process and nanotechnology-based amplification. With the help of DNA1 (associated with the concentration of target LPS), the capture probe hybridizes with DNA1 and the assistant probe to open its hairpin structure and form a ternary ``Y'' junction structure. The DNA1 can be released from the structure in the presence of nicking endonuclease to initiate the next hybridization process. Then a great deal of cleaved capture probe produced in the cyclic process can bind with DNA2-nanocomposite, which contains the electroactive toluidine blue (Tb) with the amplification materials graphene (Gra) and gold nanoparticles (AuNPs). Thus, an enhanced electrochemical signal can be easily read out. With the cascade signal amplification, this newly designed protocol provides an ultrasensitive electrochemical detection of LPS down to the femtogram level (8.7 fg mL-1) with a linear range of 6 orders of magnitude (from 10 fg mL-1 to 50 ng mL-1). Moreover, the high sensitivity and specificity make this method versatile for the detection of other biomolecules by changing the corresponding sequences of the capture probe and the assistant probe.

  12. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics

    PubMed Central

    Vu, Dung M.; Mendez, Heather M.; Jakhar, Shailja; Mukundan, Harshini

    2017-01-01

    Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential for their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. The biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review. PMID:28677660

  13. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicek-Sutherland, Jessica Z.; Vu, Dung M.; Mendez, Heather M.

    Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential formore » their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. Furthermore, the biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.« less

  14. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics

    DOE PAGES

    Kubicek-Sutherland, Jessica Z.; Vu, Dung M.; Mendez, Heather M.; ...

    2017-07-04

    Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential formore » their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. Furthermore, the biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.« less

  15. Ultrasensitive microchip based on smart microgel for real-time online detection of trace threat analytes.

    PubMed

    Lin, Shuo; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Liu, Zhuang; Yu, Hai-Rong; Zhang, Chuan; Chu, Liang-Yin

    2016-02-23

    Real-time online detection of trace threat analytes is critical for global sustainability, whereas the key challenge is how to efficiently convert and amplify analyte signals into simple readouts. Here we report an ultrasensitive microfluidic platform incorporated with smart microgel for real-time online detection of trace threat analytes. The microgel can swell responding to specific stimulus in flowing solution, resulting in efficient conversion of the stimulus signal into significantly amplified signal of flow-rate change; thus highly sensitive, fast, and selective detection can be achieved. We demonstrate this by incorporating ion-recognizable microgel for detecting trace Pb(2+), and connecting our platform with pipelines of tap water and wastewater for real-time online Pb(2+) detection to achieve timely pollution warning and terminating. This work provides a generalizable platform for incorporating myriad stimuli-responsive microgels to achieve ever-better performance for real-time online detection of various trace threat molecules, and may expand the scope of applications of detection techniques.

  16. A review of current and future molecular diagnostic tests for use in the microbiology laboratory.

    PubMed

    Jannes, Geert; De Vos, Daniel

    2006-01-01

    Nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratories. Similar to conventional tests, the first-generation deoxyribonucleic acid assays determined only a single analyte. Recent improvements in detection technologies have paved the way for the development of multiparameter assays using macroarrays or micro-arrays, while the introduction of closed-tube real-time polymerase chain reaction systems has resulted in the development of rapid microbial diagnostics with a reduced contamination risk. The use of these new molecular technologies is not restricted to detection and identification of microbial pathogens but also can be used for genotyping, allowing one to determine antibiotic resistance or to perform microbial fingerprinting.

  17. Clinical, morphological, and biochemical correlates of head circumference in autism.

    PubMed

    Sacco, Roberto; Militerni, Roberto; Frolli, Alessandro; Bravaccio, Carmela; Gritti, Antonella; Elia, Maurizio; Curatolo, Paolo; Manzi, Barbara; Trillo, Simona; Lenti, Carlo; Saccani, Monica; Schneider, Cindy; Melmed, Raun; Reichelt, Karl-Ludvig; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Persico, Antonio M

    2007-11-01

    Head growth rates are often accelerated in autism. This study is aimed at defining the clinical, morphological, and biochemical correlates of head circumference in autistic patients. Fronto-occipital head circumference was measured in 241 nonsyndromic autistic patients, 3 to 16 years old, diagnosed according to DSM-IV criteria. We assessed 1) clinical parameters using the Autism Diagnostic Observation Schedule, Autism Diagnostic Interview-Revised, Vineland Adaptive Behavioral Scales, intelligence quotient measures, and an ad hoc clinical history questionnaire; 2) height and weight; 3) serotonin (5-HT) blood levels and peptiduria. The distribution of cranial circumference is significantly skewed toward larger head sizes (p < .00001). Macrocephaly (i.e., head circumference >97th percentile) is generally part of a broader macrosomic endophenotype, characterized by highly significant correlations between head circumference, weight, and height (p < .001). A head circumference >75th percentile is associated with more impaired adaptive behaviors and with less impairment in IQ measures and motor and verbal language development. Surprisingly, larger head sizes are significantly associated with a positive history of allergic/immune disorders both in the patient and in his/her first-degree relatives. Our study demonstrates the existence of a macrosomic endophenotype in autism and points toward pathogenetic links with immune dysfunctions that we speculate either lead to or are associated with increased cell cycle progression and/or decreased apoptosis.

  18. Improving Marine Ecosystem Models with Biochemical Tracers

    NASA Astrophysics Data System (ADS)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  19. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  20. Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Gao, Anran; Jin, Qinghui; Li, Tie; Wang, Yuelin; Zhao, Jianlong

    2018-04-01

    In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.

  1. A Diagnostic Model for Dementia in Clinical Practice—Case Methodology Assisting Dementia Diagnosis

    PubMed Central

    Londos, Elisabet

    2015-01-01

    Dementia diagnosis is important for many different reasons. Firstly, to separate dementia, or major neurocognitive disorder, from MCI (mild cognitive impairment), mild neurocognitive disorder. Secondly, to define the specific underlying brain disorder to aid treatment, prognosis and decisions regarding care needs and assistance. The diagnostic method of dementias is a puzzle of different data pieces to be fitted together in the best possible way to reach a clinical diagnosis. Using a modified case methodology concept, risk factors affecting cognitive reserve and symptoms constituting the basis of the brain damage hypothesis, can be visualized, balanced and reflected against test results as well as structural and biochemical markers. The model’s origin is the case method initially described in Harvard business school, here modified to serve dementia diagnostics. PMID:26854146

  2. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  3. Simulation studies in biochemical signaling and enzyme reactions

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  4. The elastase-PK101 structure: Mechanism of an ultrasensitive activity-based probe revealed

    DOE PAGES

    Lechtenberg, Bernhard C.; Robinson, Howard R.; Kasperkiewicz, Paulina; ...

    2015-01-22

    Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle( O-Bzl) function in the P4 position of PK101 reveals and leverages an “exo-pocket” on HNEmore » as a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly–Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.« less

  5. Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue.

    PubMed

    Geng, Fei; Zhao, Huaping; Fu, Qun; Mi, Yan; Miao, Likun; Li, Wei; Dong, Yulian; Wu, Minghong; Lei, Yong

    2018-07-20

    In comparison to conventional spectroscopic techniques based on chromatography, surface-enhanced Raman spectroscopy (SERS) enables the rapid identification and detection of trace pesticide residues present in trace amounts in the environment and foods. Herein, a facile approach to fabricate unique gold nanochestnuts (GNCs) as an ultra-sensitive SERS substrate for detecting trace pesticide residues has been developed based on anodic aluminum oxide (AAO) templates. The GNCs are synthesized through the galvanic replacement of Ag on the top of Ni nanorod arrays. The as-prepared GNCs have well-controlled structural parameters, and importantly have unique anisotropic morphologies that benefit the enhancement in SERS performance. As a result, rhodamine 6 G (R6G) can be efficiently detected with GNCs as the SERS substrate even with a concentration of only 10 -12 M, and the Raman enhancement factor reaches up to 5.4 × 10 9 at this concentration. Further SERS measurement of thiram indicates a remarkable SERS-active sensitivity of the as-prepared GNCs with a detection limit of thiram up to 10 -14 M. The GNCs also exhibit a high signal-to-noise ratio.

  6. Ultrasensitive Detection of Ricin Toxin in Multiple Sample Matrixes Using Single-Domain Antibodies.

    PubMed

    Gaylord, Shonda T; Dinh, Trinh L; Goldman, Ellen R; Anderson, George P; Ngan, Kevin C; Walt, David R

    2015-07-07

    Ricin is an extremely potent ribosomal inactivating protein listed as a Category B select agent. Although ricin intoxication is not transmittable from person to person, even a single ricin molecule can lead to cell necrosis because it inactivates 1500 ribosomes/min. Since there is currently no vaccine or therapeutic treatment for ricin intoxication, ultrasensitive analytical assays capable of detecting ricin in a variety of matrixes are urgently needed to limit exposure to individuals as well as communities. In this paper, we present the development and application of a single-molecule array (Simoa) for the detection of ricin toxin in human urine and serum. Single-domain antibodies (sdAbs), among the smallest engineered binding fragments, were chemically coupled to the surface of paramagnetic beads for the sensitive detection of ricin toxin. The Simoa was able to detect ricin at levels of 10 fg/mL, 100 fg/mL, and 1 pg/mL in buffer, urine and serum, respectively, in a fraction of the assay time need using immuno-polymerase chain reaction (IPCR). Using a fully automated state-of-the-art platform, the Simoa HD-1 analyzer, the assay time was reduced to 64 min.

  7. Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids.

    PubMed

    Sun, Zhongyue; Liao, Tangbin; Zhang, Yulin; Shu, Jing; Zhang, Hong; Zhang, Guo-Jun

    2016-12-15

    A very simple sensing device based on biomimetic nanochannels has been developed for label-free, ultrasensitive and highly sequence-specific detection of DNA. Probe DNA was modified on the inner wall of the nanochannel surface by layer-by-layer (LBL) assembly. After probe DNA immobilization, DNA detection was realized by monitoring the rectified ion current when hybridization occurred. Due to three dimensional (3D) nanoscale environment of the nanochannel, this special geometry dramatically increased the surface area of the nanochannel for immobilization of probe molecules on the inner-surface and enlarged contact area between probes and target-molecules. Thus, the unique sensor reached a reliable detection limit of 10 fM for target DNA. In addition, this DNA sensor could discriminate complementary DNA (c-DNA) from non-complementary DNA (nc-DNA), two-base mismatched DNA (2bm-DNA) and one-base mismatched DNA (1bm-DNA) with high specificity. Moreover, the nanochannel-based biosensor was also able to detect target DNA even in an interfering environment and serum samples. This approach will provide a novel biosensing platform for detection and discrimination of disease-related molecular targets and unknown sequence DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan

    Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.

  9. Anthropometric and Biochemical Characteristics of Polycystic Ovarian Syndrome in South Indian Women Using AES-2006 Criteria.

    PubMed

    Thathapudi, Sujatha; Kodati, Vijayalakshmi; Erukkambattu, Jayashankar; Katragadda, Anuradha; Addepally, Uma; Hasan, Qurratulain

    2014-01-01

    Polycystic ovarian syndrome (PCOS) is one of the most common endocrine conditions affecting women of reproductive age with a prevalence of approximately 5-10% worldwide. PCOS can be viewed as a heterogeneous androgen excess disorder with varying degrees of reproductive and metabolic abnormalities, whose diagnosis is based on anthropometric, biochemical and radiological abnormalities. To our knowledge, this is the first study investigating the anthropometric, biochemical and ultrasonographic characteristics of PCOS in Asian Indians of South India, using the Androgen Excess Society (AES-2006) diagnostic criteria. To assess anthropometric, biochemical and ultrasonographic features of PCOS subgroups and controls among South Indian women using the AES-2006 criteria. Two hundred and four women clinically diagnosed with PCOS, and 204 healthy women controls aged 17 to 35 years were evaluated. PCOS was diagnosed by clinical hyperandrogenism (HA), irregular menstruation (IM), and polycystic ovary (PCO). PCOS was further categorized into phenotypic subgroups including the IM+HA+PCO (n = 181, 89%), HA+PCO (n = 23, 11%), IM+HA (n = 0), and also into obese PCOS (n = 142, 70%) and lean PCOS (n = 62, 30%) using body mass index (BMI). Anthropometric measurements and biochemical characteristics were compared among the PCOS subgroups. The PCOS subgroups with regular menstrual cycles (HA+PCO), had more luteinizing hormone (LH), follicle stimulating hormone (FSH), fasting glucose, fasting insulin, and high insulin resistance (IR) expressed as the Homeostasis Model Assessment (HOMA) score, compared with the IM+HA+PCO subgroups and controls. Similarly, the obese PCOS had high BMI, waist to hip ratio (WHR), fasting glucose, LH, LH/FSH, fasting insulin, HOMA score (IR), and dyslipidemia, compared with lean PCOS and controls. Unilateral polycystic ovary was seen in 32 (15.7%) patients, and bilateral involvement in 172 (84.3%) patients. All the controls showed normal ovaries. Anthropometric

  10. Anthropometric and Biochemical Characteristics of Polycystic Ovarian Syndrome in South Indian Women Using AES-2006 Criteria

    PubMed Central

    Thathapudi, Sujatha; Kodati, Vijayalakshmi; Erukkambattu, Jayashankar; Katragadda, Anuradha; Addepally, Uma; Hasan, Qurratulain

    2014-01-01

    Background: Polycystic ovarian syndrome (PCOS) is one of the most common endocrine conditions affecting women of reproductive age with a prevalence of approximately 5-10% worldwide. PCOS can be viewed as a heterogeneous androgen excess disorder with varying degrees of reproductive and metabolic abnormalities, whose diagnosis is based on anthropometric, biochemical and radiological abnormalities. To our knowledge, this is the first study investigating the anthropometric, biochemical and ultrasonographic characteristics of PCOS in Asian Indians of South India, using the Androgen Excess Society (AES-2006) diagnostic criteria. Objectives: To assess anthropometric, biochemical and ultrasonographic features of PCOS subgroups and controls among South Indian women using the AES-2006 criteria. Materials and Methods: Two hundred and four women clinically diagnosed with PCOS, and 204 healthy women controls aged 17 to 35 years were evaluated. PCOS was diagnosed by clinical hyperandrogenism (HA), irregular menstruation (IM), and polycystic ovary (PCO). PCOS was further categorized into phenotypic subgroups including the IM+HA+PCO (n = 181, 89%), HA+PCO (n = 23, 11%), IM+HA (n = 0), and also into obese PCOS (n = 142, 70%) and lean PCOS (n = 62, 30%) using body mass index (BMI). Anthropometric measurements and biochemical characteristics were compared among the PCOS subgroups. Results: The PCOS subgroups with regular menstrual cycles (HA+PCO), had more luteinizing hormone (LH), follicle stimulating hormone (FSH), fasting glucose, fasting insulin, and high insulin resistance (IR) expressed as the Homeostasis Model Assessment (HOMA) score, compared with the IM+HA+PCO subgroups and controls. Similarly, the obese PCOS had high BMI, waist to hip ratio (WHR), fasting glucose, LH, LH/FSH, fasting insulin, HOMA score (IR), and dyslipidemia, compared with lean PCOS and controls. Unilateral polycystic ovary was seen in 32 (15.7%) patients, and bilateral involvement in 172 (84.3%) patients

  11. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ultrasensitive lateral-flow assays based on quantum dot encapsulations with signal amplification

    NASA Astrophysics Data System (ADS)

    Li, Xue; Gong, Xiaoqun; Zhang, Bo; Liu, Yajuan; Chang, Jin; Zhang, Xuening

    2018-05-01

    Lateral-flow assays (LFAs), with its convenience and low cost, promise to become the in-home test format for early diagnosis and monitoring of tumor marker. However, the insufficient signal intensity was generated by signal reporters reducing the sensitivity of this format. In this study, a novel nanoscale signal reporter capable of amplifying the fluorescence signal is fabricated by encapsulating quantum dots (QDs) into modified tri-copolymer (poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid)) (ODA- g-tri-copolymer). The amplified signal varied by simply adjusting the ratio of QDs to the ODA- g-tri-copolymer for obtaining QD nanospheres with high QD loading. They exhibits outstanding stability compared to the individual QDs both in the biological buffer and strong acid solutions. Here, human chorionic gonadotrophin (HCG) is employed as the model protein of LFAs. The results show that the detection limit of the QD nanospheres is pushed down to 0.016 IU/L, which is about 38.5 times enhanced compared to the individual QD-based LFAs without any signal amplifying. The ultrasensitive LFAs were attributed to the signal amplification strategy, and their efficiency and robustness demonstrated the great potential in clinical applications. [Figure not available: see fulltext.

  13. Ultrasensitive detection of endotoxins using computationally designed nanoMIPs.

    PubMed

    Altintas, Zeynep; Abdin, Mohammed J; Tothill, Alexander M; Karim, Kal; Tothill, Ibtisam E

    2016-09-07

    Novel molecularly imprinted polymer nanoparticles (nanoMIPs) were designed for endotoxin from Escherichia coli 0111:B4, using computational modeling. The screening process based on binding energy between endotoxin and each monomer was performed with 21 commonly used monomers, resulting in the selection of itaconic acid, methacrylic acid and acrylamide as functional monomers due to their strong binding interaction with the endotoxin template. The nanoMIPs were successfully synthesized with functional groups on the outer surface to aid in the immobilization onto sensor surface. The solid phase photopolymerization approach used for the synthesis of nanoMIPs ranging from 200 to 235 nm in diameter. The limit of detection and KD were significantly improved when endotoxin samples were prepared using a novel triethylamine method. This improved the efficiency of gold nanoparticle functionalization by targeting the subunits of the endotoxin. Compared to the vancomycin MIP control, the endotoxin MIPs displayed outstanding affinity and selectivity towards the endotoxin with KD values in the range of 4.4-5.3 × 10(-10) M, with limits of detection of 0.44 ± 0.02 ng mL(-1) as determined by surface plasmon resonance (SPR) sensor when itaconic acid was used as the functional monomer. The MIP surface can be regenerated >30 times without significant loss of binding activity making this approach highly cost effective for expensive analyte templates. The combination of molecular modeling and solid phase synthesis enabled the successful synthesis of nanoMIPs capable of recognition and ultrasensitive detection of endotoxins using the highly sensitive SPR biosensor with triethylamine method. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An Ultrasensitive Bacterial Motor Revealed by Monitoring Signaling Proteins in Single Cells

    NASA Astrophysics Data System (ADS)

    Cluzel, Philippe; Surette, Michael; Leibler, Stanislas

    2000-03-01

    Understanding biology at the single-cell level requires simultaneous measurements of biochemical parameters and behavioral characteristics in individual cells. Here, the output of individual flagellar motors in Escherichia coli was measured as a function of the intracellular concentration of the chemotactic signaling protein. The concentration of this molecule, fused to green fluorescent protein, was monitored with fluorescence correlation spectroscopy. Motors from different bacteria exhibited an identical steep input-output relation, suggesting that they actively contribute to signal amplification in chemotaxis. This experimental approach can be extended to quantitative in vivo studies of other biochemical networks.

  15. Dual Signal Amplification Using Gold Nanoparticles-Enhanced Zinc Selenide Nanoflakes and P19 Protein for Ultrasensitive Photoelectrochemical Biosensing of MicroRNA in Cell.

    PubMed

    Tu, Wenwen; Cao, Huijuan; Zhang, Long; Bao, Jianchun; Liu, Xuhui; Dai, Zhihui

    2016-11-01

    Using Au nanoparticles (NPs)-decorated, water-soluble, ZnSe-COOH nanoflakes (NFs), an ultrasensitive photoelectrochemical (PEC) biosensing strategy based on the dual signal amplification was proposed. As a result of the localized surface plasmon resonance (SPR) of Au NPs, the ultraviolet-visible absorption spectrum of Au NPs overlapped with emission spectrum of ZnSe-COOH NFs, which generated efficient resonant energy transfer (RET) between ZnSe-COOH NFs and Au NPs. The RET improved photoelectric conversion efficiency of ZnSe-COOH NFs and significantly amplified PEC signal. Taking advantage of the specificity and high affinity of p19 protein for 21-23 bp double-stranded RNA, p19 protein was introduced. P19 protein could generate remarkable steric hindrance, which blocked interfacial electron transfer and impeded the access of the ascorbic acid to electrode surface for scavenging holes. This led to the dramatic decrease of photocurrent intensity and the amplification of PEC signal change versus concentration change of target. Using microRNA (miRNA)-122a as a model analyte, an ultrasensitive signal-off PEC biosensor for miRNA detection was developed under 405 nm irradiation at -0.30 V. Owing to RET and remarkable steric hindrance of p19 protein as dual signal amplification, the proposed strategy exhibited a wide linear range from 350 fM to 5 nM, with a low detection limit of 153 fM. It has been successfully applied to analyze the level of miRNA-122a in HeLa cell, which would have promising prospects for early diagnosis of tumor.

  16. Correlations between impulsiveness and biochemical parameters in women with polycystic ovary syndrome.

    PubMed

    Özdil Demiryürek, Esra; Tekin, Atilla; Çakmak, Engin; Temizkan, Osman; Karamustafalıoğlu, Oğuz; Gökova, Sibel; Demiryürek, Enes

    2016-12-01

    The aim of this study was to investigate the relationship between anger, impulsiveness, and biochemical parameters (testosterone, insulin, insulin resistance) in women with polycystic ovary syndrome. We recruited 84 women diagnosed with polycystic ovary syndrome according to the Rotterdam diagnostic criteria. Psychiatric interviews were performed using the Structured Clinical Interview for DSM-IV Axis I Disorders. The Barratt Impulsiveness Scale and the State Trait Anger Expression Inventory were also administered to each participant. Lastly, the women's biochemical parameters, which included total testosterone, free androgen index, dehydroepiandrosterone sulfate, insulin and insulin resistance, thyroid functions, and prolactin, were measured. A statistically significant correlation was found between participants' increasing total testosterone levels and total impulsiveness scores, and their increasing free androgen index levels and motor and non-planning-related impulsiveness (r=0.24, p=0.027; r=0.27, p=0.015; and r=0.26, p=0.017, respectively). High insulin and insulin resistance levels were associated with high non-planning-related impulsiveness scores (r=0.26, p=0.018; and r=0.26, p=0.019). Lastly, high trait anger and anger expression scores were related to high total testosterone and insulin and insulin resistance levels. Androgens and glucose dysregulation seemingly affect anger expression as well as the attentional, motor, and non-planning-related impulsiveness of women with polycystic ovary syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Xeroderma pigmentosum: biochemical and genetic characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Bootsma, D.

    1975-01-01

    Biochemical and genetic studies on xeroderma pigmentosum are reviewed under the following headings: clinical features of xeroderma pigmentosum; karyotype; cell killing and host cell reactivation after irradiation or exposure to chemical carcinogens; SV40 transformation of xeroderma pigmentosum cells; biochemical defects in the common and de Sanctis-Cacchione forms of xeroderma pigmentosum; cell hybridization and complementation groups; biochemical defects in the xeroderma pigmentosum variant and the role of caffeine in DNA repair; DNA repair in xeroderma pigmentosum heterozygotes; response of xeroderma pigmentosum cells to various mutagens and chemical carcinogens; other high and low repair diseases; and possible significance of DNA repair inmore » theories of aging and carcinogenesis. (HLW)« less

  18. Performance of 68Ga-PSMA PET/CT for Prostate Cancer Management at Initial Staging and Time of Biochemical Recurrence.

    PubMed

    Bailey, Jason; Piert, Morand

    2017-09-09

    Recently introduced Gallium-68 labeled PSMA-ligands such as HBED-CC ( 68 Ga-PSMA) have shown promise for unmet diagnostic needs in prostate cancer. 68 Ga-PSMA has demonstrated improved detection rates and specificity for prostate cancer compared to standard imaging approaches. In the setting of primary disease, 68 Ga-PSMA appears to preferentially identify treatment-relevant intermediate and high-risk prostate cancer. There is also a growing evidence that 68 Ga-PSMA positron emission tomography (PET) outperforms alternative conventional imaging methods including choline-based radiotracers for the localization of disease sites at biochemical recurrence, particularly at lower prostate-specific antigen (PSA) levels (< 1 ng/mL). However, the majority of published work lacks rigorous verification of imaging results. 68 Ga-PSMA offers significant promise for both, primary disease and biochemically recurrent prostate cancer. The evidence base to support 68 Ga-PSMA is however still underdeveloped, and more rigorous studies substantiating efficacy are needed.

  19. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems

    PubMed Central

    Esenaliev, Rinat O.

    2017-01-01

    Abstract. Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels. PMID:28444150

  20. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.

    2017-09-01

    Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels.

  1. Cortisol production rates in subjects with suspected Cushing's syndrome: assessment by stable isotope dilution methodology and comparison to other diagnostic methods.

    PubMed

    Samuels, M H; Brandon, D D; Isabelle, L M; Cook, D M; Graham, K E; Purnell, J Q; Loriaux, D L

    2000-01-01

    It can be difficult to establish the diagnosis of Cushing's Syndrome (CS) in patients with mild or nonspecific clinical and biochemical findings, because available diagnostic tests have limited predictive values. We hypothesized that measurement of 24-h cortisol production rates (CPRs) might be a more sensitive indicator of CS in such patients. We measured CPRs in 28 patients with suspected CS (but equivocal biochemical findings) and in 22 healthy control subjects, by infusing tracer amounts of deuterated cortisol, with simultaneous measurements of 24-h urine free cortisol (UFC) levels; and we frequently sampled serum cortisol levels. CPRs were calculated from the ratio of isotopic enrichment to isotopic dilution of cortisol measured by gas chromatography-negative ion chemical ionization mass spectrometry. Nine of the patients proved to have CS by surgery (CS-Yes), whereas 19 patients were determined not to have CS by biochemical testing (CS-No). Mean 24-h UFCs, nocturnal serum cortisol levels, and CPRs were higher in CS-Yes, compared with CS-No and normal subjects. However, one CS-Yes patient had a normal 24-h UFC, two had normal nocturnal serum cortisol levels, and two had normal 24-h CPRs. There was extensive overlap in all of the biochemical parameters between the CS-Yes and the CS-No groups. Thus, measurement of CPR does not seem to offer any diagnostic advantage over available tests for the diagnosis of CS. Patients with proven CS can have normal UFC levels, normal CPRs, or normal nocturnal cortisol levels, whereas patients not thought to have CS may have elevated levels of any one or more these parameters.

  2. Ultrasensitive apurinic/apyrimidinic endonuclease 1 immunosensing based on self-enhanced electrochemiluminescence of a Ru(II) complex.

    PubMed

    Zhuo, Ying; Liao, Ni; Chai, Ya-Qin; Gui, Guo-Feng; Zhao, Min; Han, Jing; Xiang, Yun; Yuan, Ruo

    2014-01-21

    An alternative "signal on" immunosensor for ultrasensitive detection of apurinic/apyrimidinic endonuclease 1 (APE-1) was designed utilizing the self-enhanced electrochemiluminescence (ECL) of a novel Ru(II) complex functionalized coil-like nanocomposite as signal labels. The desirable self-enhanced ECL luminophore was achieved by combining the coreactant of poly(ethylenimine) (PEI) and the luminophor of bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) [Ru(bpy)2(5-NH2-1,10-phen)(2+)] to form one novel Ru(II) complex, which exhibited significantly enhanced ECL efficiency and stability. Moreover, the carbon nanotubes (CNTs) were employed as nanocarriers for self-enhanced Ru(II) complex loading via π-π stacking to obtain the coil-like nanocomposite to act as signal probe. Compared with traditional ECL immunoassay, our proposed strategy is simple and sensitive, avoiding the adding of any coreactant into testing solution for signal amplification, and shows a detection limit down to subfemtogram per milliliter level under the optimized experimental condition.

  3. Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring.

    PubMed

    Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin

    2018-04-30

    Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6  mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.

  4. Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles.

    PubMed

    Lin, Dongyue; Liu, Honglin; Qian, Kai; Zhou, Xia; Yang, Liangbao; Liu, Jinhuai

    2012-09-26

    This study found that 1,2-ethylenediamine (EDA) as a primary amine could be modified onto the surface of citrate-stabilized gold nanoparticles (Au NPs), and the EDA-capped Au NPs were successfully used as an ultrasensitive optical probe for TNT detection. The strong donor-acceptor (D-A) interactions between EDA and trinitrotoluene (TNT) at the Au NP/solution interface induced significant aggregation of the EDA-capped Au NPs, and enabled to easily realize the direct colorimetric detection of ultratrace TNT. The results showed that such a color change was readily seen by the naked eye, and the colorimetric detection could be down to 400 pM level of TNT with excellent discrimination against other nitro compounds. UV-vis absorption spectroscopy was used to examine the TNT-induced changes in local surface plasmon resonance (LSPR) of EDA-capped Au NPs, and a new LSPR band at ca. 630 nm arose along with the addition of TNT, which produced a detection limit of TNT down to ca. 40 pM. Furthermore, dynamic light scattering measurements evidenced the ultratrace TNT-induced small changes in the size of the EDA-capped Au NPs, and realized the quick and accurate detection of TNT in 0.4 pM level. These results demonstrated the ultrahigh sensitivity of this optical probe for TNT detection. Moreover, this optical probe is sample, stable, low-cost, and these excellent properties make it quite promising for infield and rapid detection of TNT. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Early-onset dementias: diagnostic and etiological considerations

    PubMed Central

    2013-01-01

    This paper summarizes the body of literature about early-onset dementia (EOD) that led to recommendations from the Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. A broader differential diagnosis is required for EOD compared with late-onset dementia. Delays in diagnosis are common, and the social impact of EOD requires special care teams. The etiologies underlying EOD syndromes should take into account family history and comorbid diseases, such as cerebrovascular risk factors, that may influence the clinical presentation and age at onset. For example, although many EODs are more likely to have Mendelian genetic and/or metabolic causes, the presence of comorbidities may drive the individual at risk for late-onset dementia to manifest the symptoms at an earlier age, which contributes further to the observed heterogeneity and may confound diagnostic investigation. A personalized medicine approach to diagnosis should therefore be considered depending on the age at onset, clinical presentation, and comorbidities. Genetic counseling and testing as well as specialized biochemical screening are often required, especially in those under the age of 40 and in those with a family history of autosomal dominant or recessive disease. Novel treatments in the drug development pipeline for EOD, such as genetic forms of Alzheimer's disease, should target the specific pathogenic cascade implicated by the mutation or biochemical defect. PMID:24565469

  6. Diagnostic strategies using myoglobin measurement in myocardial infarction.

    PubMed

    Plebani, M; Zaninotto, M

    1998-04-06

    Myoglobin, a low molecular-weight heme protein (17800 D) present in both cardiac and skeletal muscle, is an old test with new perspectives. Advantages and disadvantages of myoglobin determination are well known. Myoglobin is the earliest known, commercially available, biochemical marker of acute myocardial infarction (AMI) and its rapid kinetics make it an early, good marker of reperfusion. However, since myoglobin is present in both skeletal and cardiac muscle, any damage to these muscle types results in its release into blood. Serum myoglobin levels are falsely elevated in conditions unrelated to AMI as skeletal muscle and neuromuscular disorders, renal failure, intramuscular injection, strenuous exercise, and after several toxins and drugs intake. New strategies for myoglobin measurement may resolve this limitation. These strategies include both the combined measurement of myoglobin and a skeletal specific marker (carbonic anhydrase III) or a cardiac specific marker (troponin I), as well as the myoglobin evaluation on serial samples. In particular, the diagnostic algorithm based on the combined measurement of myoglobin and troponin I, assuring a satisfactory analytical turnaround time, significantly improves the diagnostic efficiency of laboratory assessment of suspected AMI patients, allowing the successive monitoring of coronary reperfusion.

  7. Biochemical mechanisms of cisplatin cytotoxicity.

    PubMed

    Cepeda, Victoria; Fuertes, Miguel A; Castilla, Josefina; Alonso, Carlos; Quevedo, Celia; Pérez, Jose M

    2007-01-01

    Since the discovery by Rosenberg and collaborators of the antitumor activity of cisplatin 35 years ago, three platinum antitumor drugs (cisplatin, carboplatin and oxaliplatin) have enjoyed a huge clinical and commercial hit. Ever since the initial discovery of the anticancer activity of cisplatin, major efforts have been devoted to elucidate the biochemical mechanisms of antitumor activity of cisplatin in order to be able to rationally design novel platinum based drugs with superior pharmacological profiles. In this report we attempt to provide a current picture of the known facts pertaining to the mechanism of action of the drug, including those involved in drug uptake, DNA damage signals transduction, and cell death through apoptosis or necrosis. A deep knowledge of the biochemical mechanisms, which are triggered in the tumor cell in response to cisplatin injury not only may lead to the design of more efficient platinum antitumor drugs but also may provide new therapeutic strategies based on the biochemical modulation of cisplatin activity.

  8. Ultrasensitive Immunosensor for Cancer Biomarker Proteins using Gold Nanoparticle Film Electrodes and Multienzyme-Particle Amplification

    PubMed Central

    Mani, Vigneshwaran; Chikkaveeraiah, Bhaskara V.; Patel, Vyomesh; Gutkind, J. Silvio; Rusling, James F.

    2009-01-01

    A densely packed gold nanoparticle platform combined with a multiple-enzyme labeled detection antibody-magnetic bead bioconjugate was used as the basis for an ultrasensitive electrochemical immunosensor to detect cancer biomarkers in serum. Sensitivity was greatly amplified by synthesizing magnetic bioconjugates particles containing 7500 horseradish peroxidase (HRP) labels along with detection antibodies (Ab2) attached to activated carboxyl groups on 1 µm diameter magnetic beads. These sensors had sensitivity of 31.5 µA mL ng−1 and detection limit (DL) of 0.5 pg mL−1 for prostate specific antigen (PSA) in 10 µL of undiluted serum. This represents an ultralow mass DL of 5 fg PSA, eight fold better than a previously reported carbon nanotube (CNT) forest immunosensor featuring multiple labels on carbon nanotubes, and near or below the normal serum levels of most cancer biomarkers. Measurements of PSA in cell lysates and human serum of cancer patients gave excellent correlations with standard ELISA assays. These easily fabricated AuNP immunosensors show excellent promise for future fabrication of bioelectronic arrays. PMID:19216571

  9. How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging.

    PubMed

    Duncan, Niall W; Wiebking, Christine; Muñoz-Torres, Zeidy; Northoff, Georg

    2014-01-15

    There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues – ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures – are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain.

  10. How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging.

    PubMed

    Duncan, Niall W; Wiebking, Christine; Munoz-Torres, Zeidy; Northoff, Georg

    2013-10-25

    There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues - ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures - are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain. Copyright © 2013. Published by Elsevier B.V.

  11. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior

    NASA Astrophysics Data System (ADS)

    Huang, Qingdao; Qian, Hong

    2009-09-01

    We establish a mathematical model for a cellular biochemical signaling module in terms of a planar differential equation system. The signaling process is carried out by two phosphorylation-dephosphorylation reaction steps that share common kinase and phosphatase with saturated enzyme kinetics. The pair of equations is particularly simple in the present mathematical formulation, but they are singular. A complete mathematical analysis is developed based on an elementary perturbation theory. The dynamics exhibits the canonical competition behavior in addition to bistability. Although widely understood in ecological context, we are not aware of a full range of biochemical competition in a simple signaling network. The competition dynamics has broad implications to cellular processes such as cell differentiation and cancer immunoediting. The concepts of homogeneous and heterogeneous multisite phosphorylation are introduced and their corresponding dynamics are compared: there is no bistability in a heterogeneous dual phosphorylation system. A stochastic interpretation is also provided that further gives intuitive understanding of the bistable behavior inside the cells.

  12. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms

    PubMed Central

    Herranen, Anni; Schwarzbach, Armin; Gilbert, Leona

    2015-01-01

    The spirochaete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common tick-borne infection in the northern hemisphere. There is a long-standing debate regarding the role of pleomorphic forms in Lyme disease pathogenesis, while very little is known about the characteristics of these morphological variants. Here, we present a comprehensive analysis of B. burgdorferi pleomorphic formation in different culturing conditions at physiological temperature. Interestingly, human serum induced the bacterium to change its morphology to round bodies (RBs). In addition, biofilm-like colonies in suspension were found to be part of B. burgdorferi’s normal in vitro growth. Further studies provided evidence that spherical RBs had an intact and flexible cell envelope, demonstrating that they are not cell wall deficient, or degenerative as previously implied. However, the RBs displayed lower metabolic activity compared with spirochaetes. Furthermore, our results indicated that the different pleomorphic variants were distinguishable by having unique biochemical signatures. Consequently, pleomorphic B. burgdorferi should be taken into consideration as being clinically relevant and influence the development of novel diagnostics and treatment protocols. PMID:25564498

  13. Diagnostic reasoning strategies and diagnostic success.

    PubMed

    Coderre, S; Mandin, H; Harasym, P H; Fick, G H

    2003-08-01

    Cognitive psychology research supports the notion that experts use mental frameworks or "schemes", both to organize knowledge in memory and to solve clinical problems. The central purpose of this study was to determine the relationship between problem-solving strategies and the likelihood of diagnostic success. Think-aloud protocols were collected to determine the diagnostic reasoning used by experts and non-experts when attempting to diagnose clinical presentations in gastroenterology. Using logistic regression analysis, the study found that there is a relationship between diagnostic reasoning strategy and the likelihood of diagnostic success. Compared to hypothetico-deductive reasoning, the odds of diagnostic success were significantly greater when subjects used the diagnostic strategies of pattern recognition and scheme-inductive reasoning. Two other factors emerged as independent determinants of diagnostic success: expertise and clinical presentation. Not surprisingly, experts outperformed novices, while the content area of the clinical cases in each of the four clinical presentations demonstrated varying degrees of difficulty and thus diagnostic success. These findings have significant implications for medical educators. It supports the introduction of "schemes" as a means of enhancing memory organization and improving diagnostic success.

  14. biochem4j: Integrated and extensible biochemical knowledge through graph databases.

    PubMed

    Swainston, Neil; Batista-Navarro, Riza; Carbonell, Pablo; Dobson, Paul D; Dunstan, Mark; Jervis, Adrian J; Vinaixa, Maria; Williams, Alan R; Ananiadou, Sophia; Faulon, Jean-Loup; Mendes, Pedro; Kell, Douglas B; Scrutton, Nigel S; Breitling, Rainer

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and-crucially-the relationships between them. Such a resource should be extensible, such that newly discovered relationships-for example, those between novel, synthetic enzymes and non-natural products-can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists.

  15. biochem4j: Integrated and extensible biochemical knowledge through graph databases

    PubMed Central

    Batista-Navarro, Riza; Dunstan, Mark; Jervis, Adrian J.; Vinaixa, Maria; Ananiadou, Sophia; Faulon, Jean-Loup; Kell, Douglas B.

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and–crucially–the relationships between them. Such a resource should be extensible, such that newly discovered relationships–for example, those between novel, synthetic enzymes and non-natural products–can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists. PMID:28708831

  16. Luminol, horseradish peroxidase, and glucose oxidase ternary functionalized graphene oxide for ultrasensitive glucose sensing.

    PubMed

    Li, Fang; Ma, Wenjing; Liu, Jiachang; Wu, Xiang; Wang, Yan; He, Jianbo

    2018-01-01

    Luminol, horseradish peroxidase (HRP), and glucose oxidase (GOx) ternary functionalized graphene oxide (HRP/GOx-luminol-GO) with excellent chemiluminescence (CL) activity and specific enzymatic property was prepared via a simple and general strategy for the first time. In this approach, luminol functionalized GO (luminol-GO) was prepared by gently stirring GO with luminol. Then HRP and GOx were further co-immobilized onto the surface of luminol-GO by storing HRP and GOx with luminol-GO at 4 °C overnight, to form HRP/GOx-luminol-GO bionanocomposites. The synthesized HRP/GOx-luminol-GO could react with H 2 O 2 generated from GOx catalyzed glucose oxidization reaction, to produce strong CL emission in the presence of co-immobilized HRP. Thus, we developed an ultrasensitive, homogeneous, reagentless, selective, and simple CL sensing system for glucose detection. The resulting biosensors exhibited ultra-wide linear range from 5.0 nM to 5.0 mM, and an ultra-low detection limit of 1.2 nM, which was more than 3 orders of magnitude lower than previously reported methods. Furthermore, the sensing system was successfully applied for the detection of glucose in human blood samples.

  17. Ultrasensitive NIR-SERRS Probes with Multiplexed Ratiometric Quantification for In Vivo Antibody Leads Validation.

    PubMed

    Kang, Homan; Jeong, Sinyoung; Jo, Ahla; Chang, Hyejin; Yang, Jin-Kyoung; Jeong, Cheolhwan; Kyeong, San; Lee, Youn Woo; Samanta, Animesh; Maiti, Kaustabh Kumar; Cha, Myeong Geun; Kim, Taek-Keun; Lee, Sukmook; Jun, Bong-Hyun; Chang, Young-Tae; Chung, Junho; Lee, Ho-Young; Jeong, Dae Hong; Lee, Yoon-Sik

    2018-02-01

    Immunotargeting ability of antibodies may show significant difference between in vitro and in vivo. To select antibody leads with high affinity and specificity, it is necessary to perform in vivo validation of antibody candidates following in vitro antibody screening. Herein, a robust in vivo validation of anti-tetraspanin-8 antibody candidates against human colon cancer using ratiometric quantification method is reported. The validation is performed on a single mouse and analyzed by multiplexed surface-enhanced Raman scattering using ultrasensitive and near infrared (NIR)-active surface-enhanced resonance Raman scattering nanoprobes (NIR-SERRS dots). The NIR-SERRS dots are composed of NIR-active labels and Au/Ag hollow-shell assembled silica nanospheres. A 93% of NIR-SERRS dots is detectable at a single-particle level and signal intensity is 100-fold stronger than that from nonresonant molecule-labeled spherical Au NPs (80 nm). The result of SERRS-based antibody validation is comparable to that of the conventional method using single-photon-emission computed tomography. The NIR-SERRS-based strategy is an alternate validation method which provides cost-effective and accurate multiplexing measurements for antibody-based drug development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of an ultrasensitive aptasensor for the detection of aflatoxin B1.

    PubMed

    Guo, Xiaodong; Wen, Fang; Zheng, Nan; Luo, Qiujiang; Wang, Haiwei; Wang, Hui; Li, Songli; Wang, Jiaqi

    2014-06-15

    Contamination of feed and food by aflatoxin B1 (AFB1), one of the most toxic of the mycotoxins, is a global concern. To prevent food safety scares, and avoid subsequent economic losses due to the recall of contaminated items, methods for the rapid, sensitive and specific detection of AFB1 at trace levels are much in demand. In this work, a simple, ultrasensitive, and reliable aptasensor is described for the detection of AFB1. An AFB1 aptamer was used as a molecular recognition probe, while its complementary DNA played a role as a signal generator for amplification by real-time quantitative polymerase chain reaction (PCR). Under optimal conditions, a wide linear detection range (5.0 × 10(-5) to 5.0 ng mL(-1)) was achieved, with a high sensitivity (limit of detection (LOD)=25 fg mL(-1)). In addition, the proposed aptasensor exhibited excellent specificity for AFB1 compared with eight other mycotoxins, with no obvious Ct value change. This aptasensor can also be used in quantifying AFB1 levels in Chinese wild rye hay samples and infant rice cereal samples, demonstrating satisfactory recoveries in the range of 88-127% and 94-119%, respectively. This detection technique has a significant potential for high-throughput, quantitative determination of mycotoxin levels in a large range of feeds and foods. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ultra-sensitive atomic magnetometer for studying magnetization fields produced by hyperpolarized helium-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Sheng; Zhang, Hong; Fang, Jian-cheng, E-mail: fangjiancheng@buaa.edu.cn

    2016-04-14

    An ingenious approach to acquire the absolute magnetization fields produced by polarized atoms has been presented in this paper. The method was based on detection of spin precession signal of the hyperpolarized helium-3 with ultra-sensitive atomic magnetometer of potassium by referring to time-domain analysis. At first, dynamic responses of the mixed spin ensembles in the presence of variant external magnetic fields have been analyzed by referring to the Bloch equation. Subsequently, the relevant equipment was established to achieve the functions of hyperpolarizing helium-3 and detecting the precession of spin-polarized noble gas. By analyzing the transient response of the magnetometer inmore » time domain, we obtained the relevant damping ratio and natural frequency. When the value of damping ratio reached the maximum value of 0.0917, the combined atomic magnetometer was in equilibrium. We draw a conclusion from the steady response: the magnetization fields of the polarized electrons and the hyperpolarized nuclei were corresponding 16.12 nT and 90.74 nT. Under this situation, the nuclear magnetization field could offset disturbing magnetic fields perpendicular to the orientation of the electronic polarization, and it preserved the electronic spin staying in a stable axis. Therefore, the combined magnetometer was particularly attractive for inertial measurements.« less

  20. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films.

    PubMed

    Wang, Zi; Huang, Lizhen; Zhu, Xiaofei; Zhou, Xu; Chi, Lifeng

    2017-10-01

    Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO 2 sensor based on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    PubMed

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Complexity and performance of on-chip biochemical assays

    NASA Astrophysics Data System (ADS)

    Kopf-Sill, Anne R.; Nikiforov, Theo; Bousse, Luc J.; Nagle, Rob; Parce, J. W.

    1997-03-01

    The use of microchips for performing biochemical processes has the potential to reduce reagent use and thus assay costs, increase throughput, and automate complex processes. We are building a multifunctional platform that provides sensing and actuation functions for a variety of microchip- based biochemical and analytical processes. Here we describe recent experiments that include on-chip dilution, reagent mixing, reaction, separation, and detection for important classes of biochemical assays. Issues in chip design and control are discussed.

  3. Biochemical Characterization of Prions.

    PubMed

    Fiorini, Michele; Bongianni, Matilde; Monaco, Salvatore; Zanusso, Gianluigi

    2017-01-01

    Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrP Sc ). The pathological and transmissible properties of PrP Sc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrP Sc , biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrP Sc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrP Sc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrP Sc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrP Sc PK-resistant fragment. An additional PrP Sc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrP Sc with an electrophoretic ladder like pattern. Additionally, the presence of PrP Sc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrP Sc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrP Sc biochemical analysis in human and animal prion disorders. Further, we show that PrP Sc glycotypes observed in CJD share

  4. Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy

    PubMed Central

    Lewicki, Rafał; Doty, James H.; Curl, Robert F.; Tittel, Frank K.; Wysocki, Gerard

    2009-01-01

    A transportable prototype Faraday rotation spectroscopic system based on a tunable external cavity quantum cascade laser has been developed for ultrasensitive detection of nitric oxide (NO). A broadly tunable laser source allows targeting the optimum Q3/2(3/2) molecular transition at 1875.81 cm−1 of the NO fundamental band. For an active optical path of 44 cm and 1-s lock-in time constant minimum NO detection limits (1σ) of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. Laboratory performance evaluation and results of continuous, unattended monitoring of atmospheric NO concentration levels are reported. PMID:19625625

  5. Serum calprotectin levels correlate with biochemical and histological markers of disease activity in TNBS colitis

    PubMed Central

    Cury, Didia Bismara; Mizsputen, Sender Jankiel; Versolato, Clara; Miiji, Luciana Odashiro; Pereira, Edson; Delboni, Maria Aparecida; Schor, Nestor; Moss, Alan C.

    2014-01-01

    Background and aim Serum calprotectin is elevated in patients with inflammatory bowel disease (IBD). Whether it correlates other markers of disease activity is unknown. The aim of this study was to correlate serum calprotectin with biochemical and histological measures of intestinal inflammation. Materials and methods TNBS colitis was induced in wistar rats, and serial blood samples were collected at 0, 3, and 12 days. Animals were subsequently sacrificed for pathological evaluation at day 12. Serum calprotectin and cytokines were measured by ELISA. Pathologic changes were classified at the macroscopic and microscopic levels. Results TNBS colitis induced elevated serum calprotectin, TNF and IL-6 within 24 h. Levels of serum calprotectin remained elevated in parallel to persistence of loose stool and weight loss to day 12. Serum calprotectin levels correlated with serum levels of TNF-α and IL6 (p < 0.001), but not CRP. Animals with liquid stool had significantly higher levels of serum calprotectin than control animals. There was a correlation between macroscopic colitis scores, and levels of serum calprotectin. Conclusion Serum calprotectin levels correlate with biochemical and histological markers of inflammation in TNBS colitis. This biomarker may have potential for diagnostic use in patients with IBD. PMID:23685388

  6. Nanoplasmonic Biosensor Using Localized Surface Plasmon Resonance Spectroscopy for Biochemical Detection.

    PubMed

    Zhang, Diming; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun

    2017-01-01

    Localized surface plasmon resonance (LSPR) associated with metal nanostructures has developed into a highly useful sensor technique. Optical LSPR spectroscopy of nanostructures often shows sharp absorption and scattering peaks, which can be used to probe several bio-molecular interactions. Here, we report nanoplasmonic biosensors using LSPR on nanocup arrays (nanoCA) to recognize bio-molecular binding for biochemical detection. These sensors can be modified to quantify binding of small molecules to proteins for odorant and explosive detections. Electrochemical LSPR biosensors can also be designed by coupling electrochemistry and LSPR spectroscopy measurements. Multiple sensing information can be obtained and electrochemical LSPR property can be investigated for biosensors. In some applications, the electrochemical LSPR biosensor can be used to quantify immunoreactions and enzymatic activity. The biosensors exhibit better performance than those of conventional optical LSPR measurements. With multi-transducers, the nanoplasmonic biosensor can provide a promising approach for bio-detection in environmental monitoring, healthcare diagnostics, and food quality control.

  7. Ultrasensitive detection of Ag(I) based on the conformational switching of a multifunctional aptamer probe induced by silver(I)

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Feng; Wang, Yong-Sheng; Zhou, Bin; Huang, Yan-Qin; Li, Xue-Jiao; Chen, Si-Han; Wang, Xiao-Feng; Tang, Xian

    2018-01-01

    We for the first time confirmed that the low concentrations of Ag(I) could induce a silver specific aptamer probe (SAP) from a random coil sequence form to G-quadruplex structure. Thereby, a novel highly sensitive fluorescence strategy for silver(I) assay was established. The designed multifunctional SAP could act as a recognition element for Ag(I) and a signal reporter. The use of such a SAP can ultrasensitively and selectively detect Ag(I), giving a detection limit down to 0.64 nM. This is much lower than those reported by related literatures. This strategy has been applied successfully for the detection of Ag(I) in real samples, further proving its reliability. Taken together, the designed SAP is not only a useful recognition and signal probe for silver, but also gives a platform to study the interaction of monovalent cations with DNA.

  8. Nano strain-amplifier: Making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Nguyen, Tuan-Khoa; Qamar, Afzaal; Namazu, Takahiro; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-09-01

    This paper presents an innovative nano strain-amplifier employed to significantly enhance the sensitivity of piezoresistive strain sensors. Inspired from the dogbone structure, the nano strain-amplifier consists of a nano thin frame released from the substrate, where nanowires were formed at the centre of the frame. Analytical and numerical results indicated that a nano strain-amplifier significantly increases the strain induced into a free standing nanowire, resulting in a large change in their electrical conductance. The proposed structure was demonstrated in p-type cubic silicon carbide nanowires fabricated using a top down process. The experimental data showed that the nano strain-amplifier can enhance the sensitivity of SiC strain sensors at least 5.4 times larger than that of the conventional structures. This result indicates the potential of the proposed strain-amplifier for ultra-sensitive mechanical sensing applications.

  9. Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy.

    PubMed

    Luo, Han; Yang, Hongliu; Zhao, Wanjun; Wei, Tao; Su, Anping; Wang, Bin; Zhu, Jingqiang

    2017-05-25

    To investigate the role of magnesium in biochemical and symptomatic hypocalcemia, a retrospective study was conducted. Less-than-total thyroidectomy patients were excluded from the final analysis. Identified the risk factors of biochemical and symptomatic hypocalcemia, and investigated the correlation by logistic regression and correlation test respectively. A total of 304 patients were included in the final analysis. General incidence of hypomagnesemia was 23.36%. Logistic regression showed that gender (female) (OR = 2.238, p = 0.015) and postoperative hypomagnesemia (OR = 2.010, p = 0.017) were independent risk factors for biochemical hypocalcemia. Both Pearson and partial correlation tests indicated there was indeed significant relation between calcium and magnesium. However, relative decreasing of iPTH (>70%) (6.691, p < 0.001) and hypocalcemia (2.222, p = 0.046) were identified as risk factors of symptomatic hypocalcemia. The difference remained significant even in normoparathyroidism patients. Postoperative hypomagnesemia was independent risk factor of biochemical hypocalcemia. Relative decline of iPTH was predominating in predicting symptomatic hypocalcemia.

  10. Europium(III) complex-functionalized magnetic nanoparticle as a chemosensor for ultrasensitive detection and removal of copper(II) from aqueous solution.

    PubMed

    Liu, Jing; Zuo, Wei; Zhang, Wei; Liu, Jian; Wang, Zhiyi; Yang, Zhengyin; Wang, Baodui

    2014-10-07

    Ultrasensitive, accurate detection and separation of heavy metal ions is very important in environmental monitoring and biological detection. In this paper, a highly sensitive and specific detection method for Cu(2+) based on the fluorescence quenching of a europium(III) hybrid magnetic nanoprobe is presented. This nanoprobe can detect Cu(2+) over a wide pH range (5.0-10.0) with a detection limit as low as 0.1 nM and it can be used for detecting Cu(2+) in living cells. After the magnetic separation, the Cu(2+) concentration decreased to 1.18 ppm, which is less than the US EPA drinking water standard (1.3 ppm), and more than 70% Cu(2+) could be removed when the amount of nanocomposite 1 reached 1 mg.

  11. Seasonal variation in diagnostic enzymes and biochemical constituents of captive northern bobwhites and passerines

    USGS Publications Warehouse

    Hill, E.F.; Murray, H.C.

    1987-01-01

    1. A variety of biochemical measurements were taken periodically in captive northern bobwhite (Colinus virginianus L.), European starlings (Sturnus vulgaris L.), red-winged blackbirds (Agelaius phoeniceus L.) and common grackles (Quiscalus quiscula L.) to determine whether baseline values remain sufficiently stable throughout the year for general clinical use in the absence of concurrent control specimens.2. Variables included whole blood hemotacrit and hemoglobin, plasma lactate dehydrogenase, α-hydroxybutyrate dehydrogenase, aspartate aminotransferase, alinine aminotransferase, creatine kinase, butyrylcholinesterase, alkaline phosphatase, glucose, albumin, total protein, creatinine, urea nitrogen, uric acid, cholesterol, and triglycerides, and brain acetylcholinesterase. Butyrl- and acetylcholinesterase were included because of their specific uses in toxicology.3. Significant seasonal differences were detected for each of the variables except brain acetylcholinesterase in at least one of the species. Significant species differences were detected during at least one season for all of the variables measured.4. All species were maintained outdoors, but only northern bobwhites came into reproductive condition and showed sex-differences in the clinical variables during their normal breeding season.5. It was concluded that reference values for the 18 clinical variables measured could be calculated from our data for adult specimens of the species studied, and that results for one species cannot be extrapolated with certainty to any other species.6. Estimated normal bounds for each of the 18 variables measured by commonly used clinical procedures are presented for reproductively quiescent northern bobwhites, European starlings, red-winged blackbirds, and common grackles.

  12. Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Liu, Huijing; Liao, Yuhong; Zhuo, Ying

    2013-09-15

    An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on an amplified cathodic ECL of luminol at low potential. Firstly, Au nanoparticles (AuNPs) were electrodeposited onto single walled carbon nanotube-graphene composites (CNTs-Gra) coated glass carbon electrode (GCE) with enhanced surface area and good biocompatibility to capture primary antibody (Ab1) and then bind the antigen analytes. Secondly, Pd and Pt nanoparticles (Pd&PtNPs) decorated reduced graphene oxide (Pd&PtNPs@rGO) and glucose oxidase (GOD) labeled secondary antibody (Pd&PtNPs@ rGO-GOD-Ab2) could be captured onto the electrode surface by a sandwich immunoassay protocol to generate amplified cathodic ECL signals of luminol in the presence of glucose. The Pd&PtNPs@rGO composites and loaded GOD promoted luminol cathodic ECL response by efficiently catalyzing glucose to in-situ produce amount of hydrogen peroxide (H2O2) working as a coreactant of luminol. Then in turn Pd&PtNPs catalyzed H2O2 to generate various reactive oxygen species (ROSs), which accelerated the cathodic ECL reaction of luminol, enhanced the cathodic ECL intensity of luminol and improved the sensitivity of the immunosensor. The as-proposed ECL immunosensor exhibited sensitive response on the detection of CEA ranging from 0.0001 ng mL(-1) to 160 ng mL(-1) with a detection limit of 0.03 pg mL(-1) (S/N=3). Moreover, the stability, specificity, lifetime and reproducibility tests demonstrated the feasibility of the developed immunoassay, which can be further extended to the detection of other disease biomarkers. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  14. eQuilibrator—the biochemical thermodynamics calculator

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  15. Coupling gene-based and classic veterinary diagnostics improves interpretation of health and immune function in the Agassiz's desert tortoise (Gopherus agassizii).

    PubMed

    Drake, K Kristina; Bowen, Lizabeth; Lewison, Rebecca L; Esque, Todd C; Nussear, Kenneth E; Braun, Josephine; Waters, Shannon C; Miles, A Keith

    2017-01-01

    The analysis of blood constituents is a widely used tool to aid in monitoring of animal health and disease. However, classic blood diagnostics (i.e. hematologic and plasma biochemical values) often do not provide sufficient information to determine the state of an animal's health. Field studies on wild tortoises and other reptiles have had limited success in drawing significant inferences between blood diagnostics and physiological and immunological condition. However, recent research using gene transcription profiling in the threatened Mojave desert tortoise ( Gopherus agassizii ) has proved useful in identifying immune or physiologic responses and overall health. To improve our understanding of health and immune function in tortoises, we evaluated both standard blood diagnostic (body condition, hematologic, plasma biochemistry values, trace elements, plasma proteins, vitamin A levels) and gene transcription profiles in 21 adult tortoises (11 clinically abnormal; 10 clinically normal) from Clark County, NV, USA. Necropsy and histology evaluations from clinically abnormal tortoises revealed multiple physiological complications, with moderate to severe rhinitis or pneumonia being the primary cause of morbidity in all but one of the examined animals. Clinically abnormal tortoises had increased transcription for four genes (SOD, MyD88, CL and Lep), increased lymphocyte production, biochemical enzymes and organics, trace elements of copper, and decreased numbers of leukocytes. We found significant positive correlations between increased transcription for SOD and increased trace elements for copper, as well as genes MyD88 and Lep with increased inflammation and microbial insults. Improved methods for health assessments are an important element of monitoring tortoise population recovery and can support the development of more robust diagnostic measures for ill animals, or individuals directly impacted by disturbance.

  16. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  17. Target-responsive DNA-capped nanocontainer used for fabricating universal detector and performing logic operations

    PubMed Central

    Wu, Li; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    Nucleic acids have become a powerful tool in nanotechnology because of their controllable diverse conformational transitions and adaptable higher-order nanostructure. Using single-stranded DNA probes as the pore-caps for various target recognition, here we present an ultrasensitive universal electrochemical detection system based on graphene and mesoporous silica, and achieve sensitivity with all of the major classes of analytes and simultaneously realize DNA logic gate operations. The concept is based on the locking of the pores and preventing the signal-reporter molecules from escape by target-induced the conformational change of the tailored DNA caps. The coupling of ‘waking up’ gatekeeper with highly specific biochemical recognition is an innovative strategy for the detection of various targets, able to compete with classical methods which need expensive instrumentation and sophisticated experimental operations. The present study has introduced a new electrochemical signal amplification concept and also adds a new dimension to the function of graphene-mesoporous materials hybrids as multifunctional nanoscale logic devices. More importantly, the development of this approach would spur further advances in important areas, such as point-of-care diagnostics or detection of specific biological contaminations, and hold promise for use in field analysis. PMID:25249622

  18. The Glymphatic Hypothesis of Glaucoma: A Unifying Concept Incorporating Vascular, Biomechanical, and Biochemical Aspects of the Disease

    PubMed Central

    De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul

    2017-01-01

    The pathophysiology of primary open-angle glaucoma is still largely unknown, although a joint contribution of vascular, biomechanical, and biochemical factors is widely acknowledged. Since glaucoma is a leading cause of irreversible blindness worldwide, exploring its underlying pathophysiological mechanisms is extremely important and challenging. Evidence from recent studies appears supportive of the hypothesis that a “glymphatic system” exists in the eye and optic nerve, analogous to the described “glymphatic system” in the brain. As discussed in the present paper, elucidation of a glymphatic clearance pathway in the eye could provide a new unifying hypothesis of glaucoma that can incorporate many aspects of the vascular, biomechanical, and biochemical theories of the disease. It should be stressed, however, that the few research data currently available cannot be considered as proof of the existence of an “ocular glymphatic system” and that much more studies are needed to validate this possibility. Even though nothing conclusive can yet be said, the recent reports suggesting a paravascular transport system in the eye and optic nerve are encouraging and, if confirmed, may offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder. PMID:28948167

  19. The Glymphatic Hypothesis of Glaucoma: A Unifying Concept Incorporating Vascular, Biomechanical, and Biochemical Aspects of the Disease.

    PubMed

    Wostyn, Peter; De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul

    2017-01-01

    The pathophysiology of primary open-angle glaucoma is still largely unknown, although a joint contribution of vascular, biomechanical, and biochemical factors is widely acknowledged. Since glaucoma is a leading cause of irreversible blindness worldwide, exploring its underlying pathophysiological mechanisms is extremely important and challenging. Evidence from recent studies appears supportive of the hypothesis that a "glymphatic system" exists in the eye and optic nerve, analogous to the described "glymphatic system" in the brain. As discussed in the present paper, elucidation of a glymphatic clearance pathway in the eye could provide a new unifying hypothesis of glaucoma that can incorporate many aspects of the vascular, biomechanical, and biochemical theories of the disease. It should be stressed, however, that the few research data currently available cannot be considered as proof of the existence of an "ocular glymphatic system" and that much more studies are needed to validate this possibility. Even though nothing conclusive can yet be said, the recent reports suggesting a paravascular transport system in the eye and optic nerve are encouraging and, if confirmed, may offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder.

  20. Novel Surface-Enhanced Raman Scattering-based Assays for Ultra-sensitive Detection of Human Pluripotent Stem Cells

    PubMed Central

    Han, Jingjia; Qian, Ximei; Wu, Qingling; Jha, Rajneesh; Duan, Jinshuai; Yang, Zhou; Maher, Kevin O.; Nie, Shuming; Xu, Chunhui

    2017-01-01

    Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 106 cells, a sensitivity (0.0001%) which was ~2,000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5+ and TRA-1-60+ cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications. PMID:27509304

  1. A Simple Assay for Ultrasensitive Colorimetric Detection of Ag⁺ at Picomolar Levels Using Platinum Nanoparticles.

    PubMed

    Wang, Yi-Wei; Wang, Meili; Wang, Lixing; Xu, Hui; Tang, Shurong; Yang, Huang-Hao; Zhang, Lan; Song, Hongbo

    2017-11-02

    In this work, uniformly-dispersed platinum nanoparticles (PtNPs) were synthesized by a simple chemical reduction method, in which citric acid and sodium borohydride acted as a stabilizer and reducer, respectively. An ultrasensitive colorimetric sensor for the facile and rapid detection of Ag⁺ ions was constructed based on the peroxidase mimetic activities of the obtained PtNPs, which can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H₂O₂ to produce colored products. The introduced Ag⁺ would be reduced to Ag⁰ by the capped citric acid, and the deposition of Ag⁰ on the PtNPs surface, can effectively inhibit the peroxidase-mimetic activity of PtNPs. Through measuring the maximum absorption signal of oxidized TMB at 652 nm, ultra-low detection limits (7.8 pM) of Ag⁺ can be reached. In addition to such high sensitivity, the colorimetric assay also displays excellent selectivity for other ions of interest and shows great potential for the detection of Ag⁺ in real water samples.

  2. Ultrasensitive determination of jasmonic acid in plant tissues using high-performance liquid chromatography with fluorescence detection.

    PubMed

    Xiong, Xu-Jie; Rao, Wan-Bing; Guo, Xiao-Feng; Wang, Hong; Zhang, Hua-Shan

    2012-05-23

    An ultrasensitive and selective high-performance liquid chromatographic method for the volatile signaling hormone, jasmonic acid, has been developed based on precolumn derivatization with 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide). The derivatization reaction was carried out at 60 °C for 30 min in the presence of phosphoric acid. The formed jasmonic acid derivative was eluted using a mobile phase of methanol/pH 6.50 ammonium formate buffer/tetrahydrofuran (67:30:3, v/v/v) in 10 min on a C(18) column and detected with fluorescence detection at excitation and emission wavelengths of 495 and 505 nm, respectively. The detection limit (signal-to-noise ratio = 4) reached 1.14 × 10(-10) M or 2.29 fmol per injection (20 μL), which is the lowest of the existing methods. The proposed method has been successfully applied to the direct determination of trace jasmonic acid in the crude extracts of soybean leaves from soybean mosaic virus-infected and normal plants with recoveries of 95-104%.

  3. Ultrasensitive Room-Temperature Operable Gas Sensors Using p-Type Na:ZnO Nanoflowers for Diabetes Detection.

    PubMed

    Jaisutti, Rawat; Lee, Minkyung; Kim, Jaeyoung; Choi, Seungbeom; Ha, Tae-Jun; Kim, Jaekyun; Kim, Hyoungsub; Park, Sung Kyu; Kim, Yong-Hoon

    2017-03-15

    Ultrasensitive room-temperature operable gas sensors utilizing the photocatalytic activity of Na-doped p-type ZnO (Na:ZnO) nanoflowers (NFs) are demonstrated as a promising candidate for diabetes detection. The flowerlike Na:ZnO nanoparticles possessing ultrathin hierarchical nanosheets were synthesized by a facile solution route at a low processing temperature of 40 °C. It was found that the Na element acting as a p-type dopant was successfully incorporated in the ZnO lattice. On the basis of the synthesized p-type Na:ZnO NFs, room-temperature operable chemiresistive-type gas sensors were realized, activated by ultraviolet (UV) illumination. The Na:ZnO NF gas sensors exhibited high gas response (S of 3.35) and fast response time (∼18 s) and recovery time (∼63 s) to acetone gas (100 ppm, UV intensity of 5 mW cm -2 ), and furthermore, subppm level (0.2 ppm) detection was achieved at room temperature, which enables the diagnosis of various diseases including diabetes from exhaled breath.

  4. Biochemical Testing in Thyroid Disorders.

    PubMed

    Esfandiari, Nazanene H; Papaleontiou, Maria

    2017-09-01

    This article summarizes the main principles for the appropriate use of laboratory testing in the diagnosis and management of thyroid disorders, as well as controversies that have arisen in association with some of these biochemical tests. To place a test in perspective, its sensitivity and accuracy should be taken into account. Ordering the correct laboratory tests facilitates the early diagnosis of a thyroid disorder and allows for timely and appropriate treatment. This article focuses on a comprehensive update regarding thyroid-stimulating hormone, thyroxine/triiodothyronine, thyroid autoantibodies, thyroglobulin, and calcitonin. Clinical uses of these biochemical tests are outlined. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Osteopenia of prematurity--prophylaxis, diagnostics and treatment].

    PubMed

    Hitrova, St; Slancheva, B; Popivanova, A; Vakrilova, L; Pramatarova, T; Emilova, Z; Yarakova, N

    2012-01-01

    Osteopenia of prematurity is a metabolic bone disease of premature infants with birth weight < 1500 g and gestational age < 32 weeks. Sub-optimal bone matrix, poor skeletal support and an increased risk of fractures characterized the disease. Its importance is determined by relatively high frequency--between 30-70% of infants at risk, multifactorial etiology and impact on early and late morbidity of the newborns. The prevention and treatment of bone disorders are important aspects of the care of preterm babies. To identify of the risk factors, to determine early diagnostic criteria and to create a prevention program for osteopenia in infants with very low and extremely low birth weight. The prospective study includes 39 preterm babies with birth weight below 1500 gr. and < 32 g. w who were admitted to the NICU from September 2011-January 2012. Bone metabolism was monitored by calcium, phosphate and alkaline phosphatise at 2-weeks intervals. Vitamin D levels of the neonates were registered at birth, and at 8th week. PTH was measured at the second and the 8th weeks. The following biochemical abnormalities were found. Hypophosphatemia in two weeks (P < 1,6 mmol/l), a gradual increase in phosphorus levels and normalization at eight weeks of age. There was a significant positive correlation between 25OHD/phosphorus at eight weeks/r = 0.353/. Significantly elevated levels of parathyroid hormone in eight weeks, correlating with low levels of vitamin D (negative correlation between 25OHD/parathormone r = -0.581). Blood levels of calcium and alkaline phosphatase were in normal limits. Risk factors for osteopenia are: the low gestational age and low levels of vitamin D at birth. Biochemical markers of osteopenia are: changes in levels of parathyroid hormone, phosphorus and vitamin D at eight weeks of age. Prevention includes: early supplementation of vitamin D in the risk neonates with individual dose adjustment. Upon biochemical evidence of osteopenia treatment should begin

  6. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels.

    PubMed

    Zhang, Nan; Li, Kaiwei; Cui, Ying; Wu, Zhifang; Shum, Perry Ping; Auguste, Jean-Louis; Dinh, Xuan Quyen; Humbert, Georges; Wei, Lei

    2018-02-13

    All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.

  8. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics.

    PubMed

    Erickson, David; O'Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh

    2014-09-07

    The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260 M active smartphones in the US and millions of health accessories and software "apps" running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings.

  9. Coupling gene-based and classic veterinary diagnostics improves interpretation of health and immune function in the Agassiz’s desert tortoise (Gopherus agassizii)

    USGS Publications Warehouse

    Drake, Karla K.; Bowen, Lizabeth; Lewison, Rebecca L.; Esque, Todd C.; Nussear, Kenneth E.; Braun, Josephine; Waters, Shannon C.; Miles, A. Keith

    2017-01-01

    The analysis of blood constituents is a widely used tool to aid in monitoring of animal health and disease. However, classic blood diagnostics (i.e. hematologic and plasma biochemical values) often do not provide sufficient information to determine the state of an animal’s health. Field studies on wild tortoises and other reptiles have had limited success in drawing significant inferences between blood diagnostics and physiological and immunological condition. However, recent research using gene transcription profiling in the threatened Mojave desert tortoise (Gopherus agassizii) has proved useful in identifying immune or physiologic responses and overall health. To improve our understanding of health and immune function in tortoises, we evaluated both standard blood diagnostic (body condition, hematologic, plasma biochemistry values, trace elements, plasma proteins, vitamin A levels) and gene transcription profiles in 21 adult tortoises (11 clinically abnormal; 10 clinically normal) from Clark County, NV, USA. Necropsy and histology evaluations from clinically abnormal tortoises revealed multiple physiological complications, with moderate to severe rhinitis or pneumonia being the primary cause of morbidity in all but one of the examined animals. Clinically abnormal tortoises had increased transcription for four genes (SOD, MyD88, CL and Lep), increased lymphocyte production, biochemical enzymes and organics, trace elements of copper, and decreased numbers of leukocytes. We found significant positive correlations between increased transcription for SOD and increased trace elements for copper, as well as genes MyD88 and Lep with increased inflammation and microbial insults. Improved methods for health assessments are an important element of monitoring tortoise population recovery and can support the development of more robust diagnostic measures for ill animals, or individuals directly impacted by disturbance.

  10. Coupling gene-based and classic veterinary diagnostics improves interpretation of health and immune function in the Agassiz’s desert tortoise (Gopherus agassizii)

    PubMed Central

    Bowen, Lizabeth; Lewison, Rebecca L.; Esque, Todd C.; Nussear, Kenneth E.; Braun, Josephine; Waters, Shannon C.; Miles, A. Keith

    2017-01-01

    Abstract The analysis of blood constituents is a widely used tool to aid in monitoring of animal health and disease. However, classic blood diagnostics (i.e. hematologic and plasma biochemical values) often do not provide sufficient information to determine the state of an animal’s health. Field studies on wild tortoises and other reptiles have had limited success in drawing significant inferences between blood diagnostics and physiological and immunological condition. However, recent research using gene transcription profiling in the threatened Mojave desert tortoise (Gopherus agassizii) has proved useful in identifying immune or physiologic responses and overall health. To improve our understanding of health and immune function in tortoises, we evaluated both standard blood diagnostic (body condition, hematologic, plasma biochemistry values, trace elements, plasma proteins, vitamin A levels) and gene transcription profiles in 21 adult tortoises (11 clinically abnormal; 10 clinically normal) from Clark County, NV, USA. Necropsy and histology evaluations from clinically abnormal tortoises revealed multiple physiological complications, with moderate to severe rhinitis or pneumonia being the primary cause of morbidity in all but one of the examined animals. Clinically abnormal tortoises had increased transcription for four genes (SOD, MyD88, CL and Lep), increased lymphocyte production, biochemical enzymes and organics, trace elements of copper, and decreased numbers of leukocytes. We found significant positive correlations between increased transcription for SOD and increased trace elements for copper, as well as genes MyD88 and Lep with increased inflammation and microbial insults. Improved methods for health assessments are an important element of monitoring tortoise population recovery and can support the development of more robust diagnostic measures for ill animals, or individuals directly impacted by disturbance. PMID:28835840

  11. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System.

    PubMed

    Tsang, Ming-Kiu; Ye, WeiWei; Wang, Guojing; Li, Jingming; Yang, Mo; Hao, Jianhua

    2016-01-26

    Ebola outbreaks are currently of great concern, and therefore, development of effective diagnosis methods is urgently needed. The key for lethal virus detection is high sensitivity, since early-stage detection of virus may increase the probability of survival. Here, we propose a luminescence scheme of assay consisting of BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) conjugated with oligonucleotide probe and gold nanoparticles (AuNPs) linked with target Ebola virus oligonucleotide. As a proof of concept, a homogeneous assay was fabricated and tested, yielding a detection limit at picomolar level. The luminescence resonance energy transfer is ascribed to the spectral overlapping of upconversion luminescence and the absorption characteristics of AuNPs. Moreover, we anchored the UCNPs and AuNPs on a nanoporous alumina (NAAO) membrane to form a heterogeneous assay. Importantly, the detection limit was greatly improved, exhibiting a remarkable value at the femtomolar level. The enhancement is attributed to the increased light-matter interaction throughout the nanopore walls of the NAAO membrane. The specificity test suggested that the nanoprobes were specific to Ebola virus oligonucleotides. The strategy combining UCNPs, AuNPs, and NAAO membrane provides new insight into low-cost, rapid, and ultrasensitive detection of different diseases. Furthermore, we explored the feasibility of clinical application by using inactivated Ebola virus samples. The detection results showed great potential of our heterogeneous design for practical application.

  12. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy.

    PubMed

    Yang, Xingwang; Qian, Jing; Jiang, Ling; Yan, Yuting; Wang, Kan; Liu, Qian; Wang, Kun

    2014-04-01

    Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ultra-Sensitive Transition-Edge Sensors for the Background Limited Infrared/Sub-mm Spectrograph (BLISS)

    NASA Technical Reports Server (NTRS)

    Beyer, A. D.; Kenyon, M. E.; Echternach, P. M.; Chui, T.; Eom, B.-H.; Day, P. K.; Bock, J. J.; Holmes, W.A.; Bradford, C. M.

    2011-01-01

    We report progress in fabricating ultra-sensitive superconducting transition-edge sensors (TESs) for BLISS. BLISS is a suite of grating spectrometers covering 35-433 micron with R approx. 700 cooled to 50 mK that is proposed to fly on the Japanese space telescope SPICA. The detector arrays for BLISS are TES bolometers readout with a time domain SQUID multiplexer. The required noise equivalent power (NEP) for BLISS is NEP = 10(exp -19) W/Hz(exp 1/2) with an ultimate goal of NEP= 5 x 10(exp -20) W/Hz(exp 1/2) to achieve background limited noise performance. The required and goal response times are tau = 150 ms and tau = 50ms respectively to achieve the NEP at the required and goal optical chop frequency 1-5 Hz. We measured prototype BLISS arrays and have achieved NEP = 6 x 10(exp -18) W/Hz(exp 1/2) and tau = 1.4 ms with a Ti TES (T(sub C) = 565 mK) and NEP approx. 2.5 x 10(exp -19) W/Hz(exp 1/2) and tau approximates 4.5 ms with an Ir TES (T(sub C) = 130 mK). Dark power for these tests is estimated at 1-5 fW.

  14. Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media

    NASA Astrophysics Data System (ADS)

    Tahari, Abdel Kader

    In this work, I describe the development of a simple, inexpensive, and powerful alternative technique to detect and analyze, without enrichment, extremely low concentrations of cells, bacteria, viruses, and protein aggregates in turbid fluids for clinical and biotechnological applications. The anticipated applications of this technique are many. They range from the determination of the somatic cell count in milk for the dairy industry, to the enumeration and characterization of microorganisms in environmental microbiology and the food industry, and to the fast and ultrasensitive detection of protein aggregates for the diagnosis of Alzheimer's and other neurodegenerative diseases in clinical medicine. A prototype instrument has been built and allowed the detection and quantification of particles down to a few per milliliter in short scanning times. It consists of a small microscope that has a horizontal geometry and a mechanical instrument that holds a cylindrical cuvette (1 cm in diameter) with two motors that provide a rotational and a slower vertical inversion motions. The illumination focus is centered about 200 mum from the wall of the cuvette inside the sample. The total volume that is explored is large (˜1ml/min for bright particles). The data is analyzed with a correlation filter program based on particle passage pattern recognition. I will also describe further work on improving the sensitivity of the technique, expanding it for multiple-species discrimination and enumeration, and testing the prototype device in actual clinical and biotechnological applications. The main clinical application of this project seeks to establish conditions and use this new technique to quantify and size-analyze oligomeric complexes of the Alzheimer's disease beta-peptide in cerebrospinal fluid and other body fluids as a molecular biomarker for persons at risk of Alzheimer's disease dementia. The technology could potentially be extended to the diagnosis and therapeutic

  15. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  16. Biochemical phenotypes to discriminate microbial subpopulations and improve outbreak detection.

    PubMed

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F; Stelling, John

    2013-01-01

    Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as "nuisance" biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available

  17. Biochemical Phenotypes to Discriminate Microbial Subpopulations and Improve Outbreak Detection

    PubMed Central

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F.; Stelling, John

    2013-01-01

    Background Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Methodology/Principal Findings Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. Results: 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as “nuisance” biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. Conclusions The statistical approaches explored can improve the

  18. Correlations between female breast density and biochemical markers.

    PubMed

    Kim, Ji-Hye; Lee, Hae-Kag; Cho, Jae-Hwan; Park, Hyong-Keun; Yang, Han-Jun

    2015-07-01

    [Purpose] The aim of this study was to identify biochemical markers related to breast density. The study was performed with 200 patients who received mammography and biochemical marker testing between March 1, 2014 to October 1, 2014. [Subjects and Methods] Following the American College of Radiology, Breast Imaging Reporting and Data System (ACR BI-RADS), breast parenchymal pattern density from mammography was categorized into four grades: grade 1, almost entirely fat; grade 2, fibroglandular densities; grade 3, heterogeneously dense; and grade 4, extremely dense. Regarding biochemical markers, subjects underwent blood and urine tests after a 12-h fast. We analyzed correlations among breast density, general characteristics, and biochemical markers. [Results] Breast density-related factors were age, height, weight, body mass index (BMI), hematocrit, MCH, RDW, AST, ALT, ALP, uric acid, γGT, triglycerides, total cholesterol, HDL-cholesterol, and LDL-cholesterol. [Conclusion] The results can be used as basic and comparative data for the prevention and early control of breast cancer.

  19. A linear spectral matching technique for retrieving equivalent water thickness and biochemical constituents of green vegetation

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1992-01-01

    Over the last decade, technological advances in airborne imaging spectrometers, having spectral resolution comparable with laboratory spectrometers, have made it possible to estimate biochemical constituents of vegetation canopies. Wessman estimated lignin concentration from data acquired with NASA's Airborne Imaging Spectrometer (AIS) over Blackhawk Island in Wisconsin. A stepwise linear regression technique was used to determine the single spectral channel or channels in the AIS data that best correlated with measured lignin contents using chemical methods. The regression technique does not take advantage of the spectral shape of the lignin reflectance feature as a diagnostic tool nor the increased discrimination among other leaf components with overlapping spectral features. A nonlinear least squares spectral matching technique was recently reported for deriving both the equivalent water thicknesses of surface vegetation and the amounts of water vapor in the atmosphere from contiguous spectra measured with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The same technique was applied to a laboratory reflectance spectrum of fresh, green leaves. The result demonstrates that the fresh leaf spectrum in the 1.0-2.5 microns region consists of spectral components of dry leaves and the spectral component of liquid water. A linear least squares spectral matching technique for retrieving equivalent water thickness and biochemical components of green vegetation is described.

  20. Stochastic hybrid systems for studying biochemical processes.

    PubMed

    Singh, Abhyudai; Hespanha, João P

    2010-11-13

    Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.

  1. Chemical and Biochemical Approaches in the Study of Histone Methylation and Demethylation

    PubMed Central

    Li, Keqin Kathy; Luo, Cheng; Wang, Dongxia; Jiang, Hualiang; Zheng, Y. George

    2014-01-01

    Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and provide information otherwise difficulty to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation (ChIP), chemical ligation, mass spectrometry (MS), biochemical assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of the biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic application in the clinic. PMID:22777714

  2. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  3. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  4. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  5. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  6. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  7. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    PubMed

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D; Elsea, Sarah H

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  8. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet

    PubMed Central

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D.

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation. PMID:28961260

  9. Incidence of Abnormal Liver Biochemical Tests in Hyperthyroidism

    PubMed Central

    Lin, Tiffany Y.; Shekar, Anshula O.; Li, Ning; Yeh, Michael W.; Saab, Sammy; Wilson, Mark; Leung, Angela M.

    2017-01-01

    Objective Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen their severity. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Design Single-institution retrospective cohort study. Patients Patients ≥18 years old receiving medical care at a large, academic, urban U.S. medical center between 2002–2016. Measurements Inclusion criteria were a serum thyroid stimulating hormone [TSH] concentration < 0.3 mIU/L or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) and/or thyroxine (T4) concentration [total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. Results In this cohort of 1,514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0.02 mIU/L, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. Conclusions This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. PMID:28199740

  10. Incidence of abnormal liver biochemical tests in hyperthyroidism.

    PubMed

    Lin, Tiffany Y; Shekar, Anshula O; Li, Ning; Yeh, Michael W; Saab, Sammy; Wilson, Mark; Leung, Angela M

    2017-05-01

    Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen the severity of the abnormal serum liver biochemistries. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Single-institution retrospective cohort study. Patients of ≥18 years old receiving medical care at a large, academic, urban US medical centre between 2002-2016. Inclusion criteria were a serum thyroid stimulating hormone (TSH) concentration of <0·3 mIU/l or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) or thyroxine (T4) concentration ([total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. In this cohort of 1514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0·02 mIU/l, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. © 2017 John Wiley & Sons Ltd.

  11. Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology.

    PubMed

    De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Spanu, Teresa; Fiori, Barbara; Posteraro, Brunella; Sanguinetti, Maurizio

    2014-09-12

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful technique for identification of microorganisms, changing the workflow of well-established laboratories so that its impact on microbiological diagnostics has been unparalleled. In comparison with conventional identification methods that rely on biochemical tests and require long incubation procedures, MALDI-TOF MS has the advantage of identifying bacteria and fungi directly from colonies grown on culture plates in a few minutes and with simple procedures. Numerous studies on different systems available demonstrate the reliability and accuracy of the method, and new frontiers have been explored besides microbial species level identification, such as direct identification of pathogens from positive blood cultures, subtyping, and drug susceptibility detection.

  12. High diagnostic accuracy of subcutaneous Triptorelin test compared with GnRH test for diagnosing central precocious puberty in girls.

    PubMed

    Freire, Analía Verónica; Escobar, María Eugenia; Gryngarten, Mirta Graciela; Arcari, Andrea Josefina; Ballerini, María Gabriela; Bergadá, Ignacio; Ropelato, María Gabriela

    2013-03-01

    The GnRH test is the gold standard to confirm the diagnosis of central precocious puberty (CPP); however, this compound is not always readily available. Diagnostic accuracy of subcutaneous GnRH analogues tests compared to classical GnRH test has not been reported. To evaluate the diagnostic accuracy of Triptorelin test (index test) compared to the GnRH test (reference test) in girls with suspicion of CPP. A prospective, case-control, randomized clinical trial was performed. CPP or precocious thelarche (PT) was diagnosed according to maximal LH response to GnRH test and clinical characteristics during follow-up. Forty-six girls with premature breast development randomly underwent two tests: (i) intravenous GnRH 100 μg, (ii) subcutaneous Triptorelin acetate (0.1 mg/m(2), to a maximum of 0.1 mg) with blood sampling at 0, 3 and 24 h for LH, FSH and estradiol ascertainment. Gonadotrophins and estradiol responses to Triptorelin test were measured by ultrasensitive assays. Clinical features were similar between CPP (n = 33) and PT (n = 13) groups. Using receiver operating characteristic curves, maximal LH response (LH-3 h) under Triptorelin test ≥ 7 IU/l by immunofluorometric assay (IFMA) or ≥ 8 IU/l by electrochemiluminescence immunoassay (ECLIA) confirmed the diagnosis of CPP with specificity of 1.00 (95% CI: 0.75-1.00) and sensitivity 0.76 (95% CI: 0.58-0.89). Considering either LH-3 h or maximal estradiol response at 24 h (cut-off value, 295 pm), maintaining the specificity at 1.00, the test sensitivity increased to 0.94 (95% CI: 0.80-0.99) and the diagnostic efficiency to 96%. The Triptorelin test had high accuracy for the differential diagnosis of CPP vs PT in girls providing a valid alternative to the classical GnRH test. This test also allowed a comprehensive evaluation of the pituitary-ovarian axis. © 2012 Blackwell Publishing Ltd.

  13. Biotinidase deficiency: Genotype-biochemical phenotype association in Brazilian patients

    PubMed Central

    Borsatto, Taciane; Sperb-Ludwig, Fernanda; Lima, Samyra E.; S. Carvalho, Maria R.; S. Fonseca, Pablo A.; S. Camelo, José; M. Ribeiro, Erlane; F. V. de Medeiros, Paula; M. Lourenço, Charles; F. M. de Souza, Carolina; Boy, Raquel; Félix, Têmis M.; M. Bittar, Camila; L. C. Pinto, Louise; C. Neto, Eurico; J. Blom, Henk; D. Schwartz, Ida V.

    2017-01-01

    Introduction The association between the BTD genotype and biochemical phenotype [profound biotinidase deficiency (BD), partial BD or heterozygous activity] is not always consistent. This study aimed to investigate the genotype-biochemical phenotype association in patients with low biotinidase activity. Methods All exons, the 5'UTR and the promoter of the BTD gene were sequenced in 72 Brazilian individuals who exhibited low biotinidase activity. For each patient, the expected biochemical phenotype based on the known genotype was compared with the observed biochemical phenotype. Additional non-genetic factors that could affect the biotinidase activity were also analysed. Results Most individuals were identified by neonatal screening (n = 66/72). When consecutive results for the same patient were compared, age, prematurity and neonatal jaundice appeared to affect the level of biotinidase activity. The biochemical phenotype at the time of the second blood collection changed in 11/22 patients compared to results from the first sample. Three novel variants were found: c.1337T>C (p.L446P), c.1466A>G (p.N489S) and c.962G>A (p.W321*). Some patients with the same genotype presented different biochemical phenotypes. The expected and observed biochemical phenotypes agreed in 68.5% of cases (concordant patients). The non-coding variants c.-183G>A, c.-315A>G and c.-514C>T were present in heterozygosis in 5/17 discordant patients. In addition, c.-183G>A and c.-514C>T were also present in 10/37 concordant patients. Conclusions The variants found in the promoter region do not appear to have a strong impact on biotinidase activity. Since there is a disparity between the BTD genotype and biochemical phenotype, and biotinidase activity may be affected by both genetic and non-genetic factors, we suggest that the diagnosis of BD should be based on more than one measurement of plasma biotinidase activity. DNA analysis can be of additional relevance to differentiate between partial BD and

  14. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  15. Brief Report: Biochemical correlates of clinical impairment in high functioning autism and Asperger’s disorder

    PubMed Central

    Kleinhans, Natalia M.; Richards, Todd; Weaver, Kurt E.; Liang, Olivia; Dawson, Geraldine; Aylward, Elizabeth

    2014-01-01

    Amygdala dysfunction has been proposed as a critical contributor to social impairment in autism spectrum disorders (ASD). The current study investigated biochemical abnormalities in the amygdala in 20 high functioning adults with autistic disorder or Asperger’s disorder and 19 typically developing adults matched on age and IQ. Magnetic resonance spectroscopy was used to measure n-acetyl aspartate (NAA), creatine/phosphocreatine (Cre), choline/choline containing compounds (Cho), and Myoinositol (mI) in the right and left amygdala. There were no significant between-group differences in any of the metabolites. However, NAA and Cre levels were significantly correlated to clinical ratings on the Autism Diagnostic Interview-Revised. This suggests that altered metabolite levels in the amygdala may be associated with a more severe early developmental course in ASD. PMID:19234776

  16. Biochemical studies in patients with hyperinsulinaemic hypoglycaemia.

    PubMed

    Al-Otaibi, Hessah; Senniappan, Senthil; Alam, Syeda; Hussain, Khalid

    2013-11-01

    Hyperinsulinaemic hypoglycaemia (HH) is characterised by the dysregulated secretion of insulin from the pancreatic β-cell. It is a major cause of severe and persistent hypoglycaemia in the newborn period. There have been no previous studies assessing the various biochemical alterations at the time of hypoglycaemia in relation to the severity of the hypoglycaemia. Biochemical and clinical data were collected on 90 neonates (gestational age range, 32-42 weeks) with a diagnosis of HH [(based on glucose requirement  > 8 mg/kg/min) and the biochemical profile of insulin action (low beta-hydroxybutyrate and fatty acid concentrations)] who had undergone fasting studies. The results showed that (a) the serum insulin level measured at the time of hypoglycaemia had no correlation with the severity of hypoglycaemia, (b) the serum insulin level was undetectable despite severe hypoglycaemia in a significant proportion of patients, (c) there was no correlation between the birth weight and the insulin level at the time of hypoglycaemia, (d) the suppression of ketogenesis was more marked than that of the non-esterified fatty acids. This study suggests that the diagnosis of HH should not rely solely on a raised serum insulin level at the time of hypoglycaemia but on the constellation of clinical and biochemical findings.

  17. Biochemical characteristics among Mycobacterium bovis BCG substrains.

    PubMed

    Hayashi, Daisuke; Takii, Takemasa; Mukai, Tetsu; Makino, Masahiko; Yasuda, Emi; Horita, Yasuhiro; Yamamoto, Ryuji; Fujiwara, Akiko; Kanai, Keita; Kondo, Maki; Kawarazaki, Aya; Yano, Ikuya; Yamamoto, Saburo; Onozaki, Kikuo

    2010-05-01

    In order to evaluate the biochemical characteristics of 14 substrains of Mycobacterium bovis bacillus Calmette Guérin (BCG) - Russia, Moreau, Japan, Sweden, Birkhaug, Danish, Glaxo, Mexico, Tice, Connaught, Montreal, Phipps, Australia and Pasteur - we performed eight different biochemical tests, including those for nitrate reduction, catalase, niacin accumulation, urease, Tween 80 hydrolysis, pyrazinamidase, p-amino salicylate degradation and resistance to thiophene 2-carboxylic acid hydrazide. Catalase activities of the substrains were all low. Data for nitrate reduction, niacin accumulation, Tween 80 hydrolysis, susceptibility to hydrogen peroxide and nitrate, and optimal pH for growth were all variable among these substrains. These findings suggest that the heterogeneities of biochemical characteristics are relevant to the differences in resistance of BCG substrains to environmental stress. The study also contributes to the re-evaluation of BCG substrains for use as vaccines.

  18. Sodium and T1ρ MRI for molecular and diagnostic imaging of articular cartilage†

    PubMed Central

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J. Bruce; Reddy, Ravinder

    2010-01-01

    In this article, both sodium magnetic resonance (MR) and T1ρ relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1ρ, a brief description of (i) principles of measuring T1ρ relaxation, (ii) pulse sequences for computing T1ρ relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1ρ in biological tissues and (v) effects of exchange and dipolar interaction on T1ρ dispersion are discussed. Correlation of T1ρ relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1ρ data from osteoarthritic specimens, animal models, healthy human

  19. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.

    PubMed

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J Bruce; Reddy, Ravinder

    2006-11-01

    In this article, both sodium magnetic resonance (MR) and T1rho relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1rho, a brief description of (i) principles of measuring T1rho relaxation, (ii) pulse sequences for computing T1rho relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1rho in biological tissues and (v) effects of exchange and dipolar interaction on T1rho dispersion are discussed. Correlation of T1rho relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1rho data from osteoarthritic specimens, animal models

  20. A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori.

    PubMed

    Liu, Ziping; Su, Xingguang

    2017-01-15

    In this work, a novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori (H. pylori) DNA was developed. This strategy took advantage of DNA hybridization between single-stranded DNA (ssDNA, which had been designed as an aptamer specific for H. pylori DNA) and the complementary target H. pylori DNA, and the feature that ssDNA bound to graphene oxide (GO) with significantly higher affinity than double-stranded DNA (dsDNA). ssDNA were firstly covalent conjugated with CuInS 2 quantum dots (QDs) by reaction between the carboxy group of QDs and amino group modified ssDNA, forming ssDNA-QDs genosensor. In the absence of the complementary target H. pylori DNA, GO could adsorb ssDNA-QDs DNA sensor and efficiently quench the fluorescence of ssDNA-QDs. While the complementary target H. pylori DNA was introduced, the ssDNA-QDs preferentially bound with the H. pylori DNA. The formation of dsDNA would alter the conformation of ssDNA and disturb the interaction between ssDNA and GO. Thus, the dsDNA-QDs/GO system exhibited a stronger fluorescence emission than that of the ssDNA-QDs/GO system. Under the optimized conditions, a linear correlation was established between the fluorescence intensity ratio I/I 0 and the concentration of H. pylori DNA in the range of 1.25-875pmolL -1 with a detection limit of 0.46pmolL -1 . The proposed method was applied to the determination of H. pylori DNA sequence in milk samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multi-Compartmentalisation in the MAPK Signalling Pathway Contributes to the Emergence of Oscillatory Behaviour and to Ultrasensitivity

    PubMed Central

    Shuaib, Aban; Hartwell, Adam; Kiss-Toth, Endre; Holcombe, Mike

    2016-01-01

    Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling. PMID:27243235

  2. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  3. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide.

    PubMed

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Yu, Zhongqing; Tao, Yingying; Wu, Yanjie; Zeng, Min; Wang, Sui; Li, Xing; Zhou, Jun; Su, Xiurong

    2016-10-01

    A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP.

  4. Hematological parameters in relation to age, sex and biochemical values for mute swans (Cygnus olor).

    PubMed

    Dolka, B; Włodarczyk, R; Zbikowski, A; Dolka, I; Szeleszczuk, P; Kluciński, W

    2014-06-01

    The knowledge of the correct morphological and biochemical parameters in mute swans is an important indicator of their health status, body condition, adaptation to habitat and useful diagnostic tools in veterinary practice and ecological research. The aim of the study was to obtain hematological parameters in relation to age, sex and serum biochemistry values in wild-living mute swans. We found the significant differences in the erythrocyte count, hematocrit, hemoglobin concentration and erythrocyte sedimentation rate in relation to age of mute swans. There were no differences in hematological values between males and females. The leukogram and H/L ratio did not vary by age and sex in swans. Among of biochemical parameters the slightly increased AST, ALP, CK, K, urea, decreased CHOL and TG values were recorded. As far as we know, this is the first study in which the morphometric parameters of blood cells in mute swans were presented. We found extremely low concentration of lead in blood (at subthreshold level). No blood parasites were found in blood smears. The analysis of body mass and biometric parameters revealed a significant differences dependent on age and sex. No differences in the scaled mass index were found. Our results represent a normal hematologic and blood chemistry values and age-sex related changes, as reference values for the mute swan.

  5. Biochemical Characterization of Prion Strains in Bank Voles

    PubMed Central

    Pirisinu, Laura; Marcon, Stefano; Di Bari, Michele Angelo; D’Agostino, Claudia; Agrimi, Umberto; Nonno, Romolo

    2013-01-01

    Prions exist as different strains exhibiting distinct disease phenotypes. Currently, the identification of prion strains is still based on biological strain typing in rodents. However, it has been shown that prion strains may be associated with distinct PrPSc biochemical types. Taking advantage of the availability of several prion strains adapted to a novel rodent model, the bank vole, we investigated if any prion strain was actually associated with distinctive PrPSc biochemical characteristics and if it was possible to univocally identify strains through PrPSc biochemical phenotypes. We selected six different vole-adapted strains (three human-derived and three animal-derived) and analyzed PrPSc from individual voles by epitope mapping of protease resistant core of PrPSc (PrPres) and by conformational stability and solubility assay. Overall, we discriminated five out of six prion strains, while two different scrapie strains showed identical PrPSc types. Our results suggest that the biochemical strain typing approach here proposed was highly discriminative, although by itself it did not allow us to identify all prion strains analyzed. PMID:25437201

  6. Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics

    DOE PAGES

    Sakamuri, Rama Murthy; Price, Dominique N.; Lee, Myungsun; ...

    2013-02-14

    Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum,more » and demonstrate that the circulating concentrations of ‘monomeric’ LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. Furthermore, this phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host–pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.« less

  7. Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamuri, Rama Murthy; Price, Dominique N.; Lee, Myungsun

    Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum,more » and demonstrate that the circulating concentrations of ‘monomeric’ LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. Furthermore, this phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host–pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.« less

  8. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.

    PubMed

    Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo

    2016-05-01

    Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.

  9. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs.

    PubMed

    Zhang, Yixia; Gao, Guo; Liu, Huijuan; Fu, Hualin; Fan, Jun; Wang, Kan; Chen, Yunsheng; Li, Baojie; Zhang, Chunlei; Zhi, Xiao; He, Lin; Cui, Daxiang

    2014-01-01

    Successful development of novel electrochemical biosensing interface for ultrasensitive detection of volatile biomarkers of gastric cancer cells is a challenging task. Herein we reported to screen out novel volatile biomarkers associated with gastric cancer cells and develop a novel Au-Ag alloy composites-coated MWCNTs as sensing interface for ultrasensitive detection of volatile biomarkers. MGC-803 gastric cancer cells and GES-1 gastric mucous cells were cultured in serum-free media. The sample preparation approaches and HS-SPME conditions were optimized for screening volatile biomarkers. Volatiles emitted from the headspace of the cells/medium culture were identified using GC-MS. The Au-Ag nanoparticles-coated multiwalled carbon nanotubes were prepared as a sensing interface for detection of volatile biomarkers. Results showed that eight different volatile metabolites were screened out between MGC-803 cells and GES-1 cells. Two compounds such as 3-octanone and butanone were specifically present in the headspace of the MGC-803 cells. Three volatiles such as 4-isopropoxybutanol, nonanol and 4-butoxy 1-butanol coexisted in the headspace of both the MGC-803 cells and the GES-1 cells, their concentrations in the headspace of the GES-1cells were markedly higher than those in the MGC-803 cells, three volatiles such as formic acid propyl ester, 1.4-butanediol and 2, 6, 11-trimethyl dodecane solely existed in the headspace of the GES-1 cells. The nanocomposites of MWNTs loaded with Au-Ag nanoparticles were prepared as a electrochemical sensing interface for detection of two volatile biomarkers, cyclic voltammetry studies showed that the fabricated sensor could detect 3-octanone in the range of 0~0.0025% (v/v) and with a detection limitation of 0.3 ppb, could detect butanone in the range of 0 ~ 0.055% (v/v), and with a detection limitation of 0.5 ppb, and exhibited good selectivity. The novel electrochemical biosensor combined with volatile biomarkers of gastric cancer

  10. Identification of Volatile Biomarkers of Gastric Cancer Cells and Ultrasensitive Electrochemical Detection based on Sensing Interface of Au-Ag Alloy coated MWCNTs

    PubMed Central

    Zhang, Yixia; Gao, Guo; Liu, Huijuan; Fu, Hualin; Fan, Jun; Wang, Kan; Chen, Yunsheng; Li, Baojie; Zhang, Chunlei; Zhi, Xiao; He, Lin; Cui, Daxiang

    2014-01-01

    Successful development of novel electrochemical biosensing interface for ultrasensitive detection of volatile biomarkers of gastric cancer cells is a challenging task. Herein we reported to screen out novel volatile biomarkers associated with gastric cancer cells and develop a novel Au-Ag alloy composites-coated MWCNTs as sensing interface for ultrasensitive detection of volatile biomarkers. MGC-803 gastric cancer cells and GES-1 gastric mucous cells were cultured in serum-free media. The sample preparation approaches and HS-SPME conditions were optimized for screening volatile biomarkers. Volatiles emitted from the headspace of the cells/medium culture were identified using GC-MS. The Au-Ag nanoparticles-coated multiwalled carbon nanotubes were prepared as a sensing interface for detection of volatile biomarkers. Results showed that eight different volatile metabolites were screened out between MGC-803 cells and GES-1 cells. Two compounds such as 3-octanone and butanone were specifically present in the headspace of the MGC-803 cells. Three volatiles such as 4-isopropoxybutanol, nonanol and 4-butoxy 1-butanol coexisted in the headspace of both the MGC-803 cells and the GES-1 cells, their concentrations in the headspace of the GES-1cells were markedly higher than those in the MGC-803 cells, three volatiles such as formic acid propyl ester, 1.4-butanediol and 2, 6, 11-trimethyl dodecane solely existed in the headspace of the GES-1 cells. The nanocomposites of MWNTs loaded with Au-Ag nanoparticles were prepared as a electrochemical sensing interface for detection of two volatile biomarkers, cyclic voltammetry studies showed that the fabricated sensor could detect 3-octanone in the range of 0~0.0025% (v/v) and with a detection limitation of 0.3 ppb, could detect butanone in the range of 0 ~ 0.055% (v/v), and with a detection limitation of 0.5 ppb, and exhibited good selectivity. The novel electrochemical biosensor combined with volatile biomarkers of gastric cancer

  11. [Biochemical and clinical aspects of advanced oxidation protein products in kidney diseases and metabolic disturbances].

    PubMed

    Piwowar, Agnieszka

    2014-02-06

    Intensified oxidative modification of proteins and increased concentration of advanced oxidation protein products (AOPPs) are confirmed by many experimental investigations in different pathological states, especially these with well-known participation of oxidative stress (OS) in etiopathogenesis but also these with not well recognized its role. Presented data indicate that AOPPs play a significant role in many disorders with chronic background, because of they reflect both intensification of OS and the degree of pathological changes connected with OS in these diseases. This review sets out the clinical and diagnostic aspects of AOPPs in these diseases such as: renal diseases with different etiology, cardiovascular diseases, as well as connected with metabolic disturbances - e.g. diabetes, atherosclerosis or metabolic syndrome. Moreover results of investigation about utility of AOPPs measurement, mainly in plasma/serum, in these diseases are presented. The review and evaluation of application of AOPPs as useful marker in diagnosis, prognosis and monitoring the course of these diseases were performed. This paper also describes the suggested mechanisms of their action which contribute to biochemical and clinic changes undergoing in the condition of increased OS. Diagnostic or prognostic utility of AOPPs are especially indicated in the course of diabetes and its complications (diabetic nephropahy) and cardiovascular diseases.

  12. A Biochemical Approach to the Problem of Dyslexia.

    ERIC Educational Resources Information Center

    Baker, Sidney McDonald

    1985-01-01

    The paper presents the case of a sixth-grade boy, labeled dyslexic, who responded positively to a biochemical approach. Remedy of iron, zinc, and Vitamin B-6 deficiencies as well as an imbalance of fatty acids resulted in improvements in hair and skin and also in reading. A biochemical approach to behavior problems is proposed. (Author/CL)

  13. Developments in commercially produced microbials at Biochem Products

    Treesearch

    John Lublinkhof; Douglas H. Ross

    1985-01-01

    Biochem Products is part of a large industrial and scientific family - the Solvay Group. Solvay, headquartered in Brussels, Belgium is a multinational company with 46,000 employees worldwide. In the U.S., our working partners include a large polymer manufacturer, a peroxygen producer and a leading poultry and animal health products company. Biochem Products is a...

  14. Management Options for Biochemically Recurrent Prostate Cancer.

    PubMed

    Fakhrejahani, Farhad; Madan, Ravi A; Dahut, William L

    2017-05-01

    Prostate cancer is the most common solid tumor malignancy in men worldwide. Treatment with surgery and radiation can be curative in organ-confined disease. Unfortunately, about one third of men develop biochemically recurrent disease based only on rising prostate-specific antigen (PSA) in the absence of visible disease on conventional imaging. For these patients with biochemical recurrent prostate cancer, there is no uniform guideline for subsequent management. Based on available data, it seems prudent that biochemical recurrent prostate cancer should initially be evaluated for salvage radiation or prostatectomy, with curative intent. In selected cases, high-intensity focused ultrasound and cryotherapy may be considered in patients that meet very narrow criteria as defined by non-randomized trials. If salvage options are not practical or unsuccessful, androgen deprivation therapy (ADT) is a standard option for disease control. While some patients prefer ADT to manage the disease immediately, others defer treatment because of the associated toxicity. In the absence of definitive randomized data, patients may be followed using PSA doubling time as a trigger to initiate ADT. Based on retrospective data, a PSA doubling time of less than 3-6 months has been associated with near-term development of metastasis and thus could be used signal to initiate ADT. Once treatment is begun, patients and their providers can choose between an intermittent and continuous ADT strategy. The intermittent approach may limit side effects but in patients with metastatic disease studies could not exclude a 20% greater risk of death. In men with biochemical recurrence, large studies have shown that intermittent therapy is non-inferior to continuous therapy, thus making this a reasonable option. Since biochemically recurrent prostate cancer is defined by technological limitations of radiographic detection, as new imaging (i.e., PSMA) strategies are developed, it may alter how the disease is

  15. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  16. 2012 HIV Diagnostics Conference: the molecular diagnostics perspective.

    PubMed

    Branson, Bernard M; Pandori, Mark

    2013-04-01

    2012 HIV Diagnostic Conference Atlanta, GA, USA, 12-14 December 2012. This report highlights the presentations and discussions from the 2012 National HIV Diagnostic Conference held in Atlanta (GA, USA), on 12-14 December 2012. Reflecting changes in the evolving field of HIV diagnostics, the conference provided a forum for evaluating developments in molecular diagnostics and their role in HIV diagnosis. In 2010, the HIV Diagnostics Conference concluded with the proposal of a new diagnostic algorithm which included nucleic acid testing to resolve discordant screening and supplemental antibody test results. The 2012 meeting, picking up where the 2010 meeting left off, focused on scientific presentations that assessed this new algorithm and the role played by RNA testing and new developments in molecular diagnostics, including detection of total and integrated HIV-1 DNA, detection and quantification of HIV-2 RNA, and rapid formats for detection of HIV-1 RNA.

  17. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  18. Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells.

    PubMed

    Han, Jingjia; Qian, Ximei; Wu, Qingling; Jha, Rajneesh; Duan, Jinshuai; Yang, Zhou; Maher, Kevin O; Nie, Shuming; Xu, Chunhui

    2016-10-01

    Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 10(6) cells, a sensitivity (0.0001%) which was ∼2000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5(+) and TRA-1-60(+) cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Ultrasensitive Biosensor for the Detection of Vibrio cholerae DNA with Polystyrene-co-acrylic Acid Composite Nanospheres

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Ling, Tan Ling

    2017-08-01

    An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae ( V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M ( R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% ( n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% ( n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.

  20. Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: A cascade signal amplification strategy integrating λ-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis.

    PubMed

    Shi, Xiao-Mei; Fan, Gao-Chao; Tang, Xueying; Shen, Qingming; Zhu, Jun-Jie

    2018-06-30

    Sensitive and specific detection of DNA is of great significance for clinical diagnosis. In this paper, an effective cascade signal amplification strategy was introduced into photoelectrochemical (PEC) biosensor for ultrasensitive detection of human T-cell lymphotropic virus type I (HTLV-I) DNA. This proposed signal amplification strategy integrates λ-exonuclease (λ-Exo) aided target recycling with hybridization chain reaction (HCR) and enzyme catalysis. In the presence of target DNA (tDNA) of HTLV-I, the designed hairpin DNA (h 1 DNA) hybridized with tDNA, subsequently recognized and cleaved by λ-Exo to set free tDNA. With the λ-Exo aided tDNA recycling, an increasing number of DNA fragments (output DNA, oDNA) were released from the digestion of h 1 DNA. Then, triggered by the hybridization of oDNA with capture DNA (cDNA), numerous biotin-labeled hairpin DNAs (h 2 DNA and h 3 DNA) could be loaded onto the photoelectrode via the HCR. Finally, avidin-labeled alkaline phosphatase (avidin-ALP) could be introduced onto the electrode by specific interaction between biotin and avidin. The ALP could catalyze dephosphorylation of phospho-L-ascorbic acid trisodium salt (AAP) to generate an efficient electron donor of ascorbic acid (AA), and thereby greatly increasing the photocurrent signal. By utilizing the proposed cascade signal amplification strategy, the fabricated PEC biosensor exhibited an ultrasensitive and specific detection of HTLV-I DNA down to 11.3 aM, and it also offered an effective strategy to detect other DNAs at ultralow levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Next generation diagnostic molecular pathology: critical appraisal of quality assurance in Europe.

    PubMed

    Dubbink, Hendrikus J; Deans, Zandra C; Tops, Bastiaan B J; van Kemenade, Folkert J; Koljenović, S; van Krieken, Han J M; Blokx, Willeke A M; Dinjens, Winand N M; Groenen, Patricia J T A

    2014-06-01

    Tumor evaluation in pathology is more and more based on a combination of traditional histopathology and molecular analysis. Due to the rapid development of new cancer treatments that specifically target aberrant proteins present in tumor cells, treatment decisions are increasingly based on the molecular features of the tumor. Not only the number of patients eligible for targeted precision medicine, but also the number of molecular targets per patient and tumor type is rising. Diagnostic molecular pathology, the discipline that determines the molecular aberrations present in tumors for diagnostic, prognostic or predictive purposes, is faced with true challenges. The laboratories have to meet the need of comprehensive molecular testing using only limited amount of tumor tissue, mostly fixed in formalin and embedded in paraffin (FFPE), in short turnaround time. Choices must be made for analytical methods that provide accurate, reliable and cost-effective results. Validation of the test procedures and results is essential. In addition, participation and good performance in internal (IQA) and external quality assurance (EQA) schemes is mandatory. In this review, we critically evaluate the validation procedure for comprehensive molecular tests as well as the organization of quality assurance and assessment of competence of diagnostic molecular pathology laboratories within Europe. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Single-centre study of the diagnostic performance of plasma metanephrines with seated sampling for the diagnosis of phaeochromocytoma/paraganglioma.

    PubMed

    Boot, Christopher; Toole, Barry; Johnson, Sarah J; Ball, Stephen; Neely, Dermot

    2017-01-01

    Background Measurement of plasma metanephrines is regarded as one of the best screening tests for phaeochromocytoma/paraganglioma. Current guidelines recommend that samples are ideally collected in the supine position after 30 min rest and interpreted using supine reference ranges, in order to optimize the diagnostic performance of the test. Current practice in our centre is to collect samples for plasma metanephrines from seated patients. The aim of the study was to determine, if seated sampling for plasma metanephrines provides acceptable diagnostic performance in our centre. Methods Clinical and laboratory data of 113 patients, gathered over a four-year period 2010-2014, were reviewed. All had undergone preoperative plasma metanephrines measurement and had postoperative histopathology confirmation or exclusion of phaeochromocytoma/paraganglioma. Results Of 113 patients included in the study, 40 had a histological diagnosis of phaeochromocytoma/paraganglioma. The remaining 73 patients had an alternative adrenal pathology. The diagnostic sensitivity of normetanephrine or metanephrine above the upper limit of our in-house seated reference range was 93%. However, excluding three cases of paraganglioma determined clinically and biochemically to be non-functional raised the sensitivity to 100%. Diagnostic specificity was 90%. Applying published supine reference ranges made no difference to diagnostic sensitivity in this group of patients but decreased diagnostic specificity to 75%. Conclusions While these data are derived from a relatively small study population, they demonstrate acceptable diagnostic performance for seated plasma metanephrines as a screening test for phaeochromocytoma/paraganglioma. These data highlight a high diagnostic sensitivity for plasma metanephrines with seated sampling in our centre.

  3. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei

    2018-04-01

    We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.

  4. R6G molecule induced modulation of the optical properties of reduced graphene oxide nanosheets for use in ultrasensitive SPR sensing

    PubMed Central

    Xue, Tianyu; Yu, Shansheng; Zhang, Xiaoming; Zhang, Xinzheng; Wang, Lei; Bao, Qiaoliang; Chen, Caiyun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-01

    A proper understanding of the role that molecular doping plays is essential to research on the modulation of the optical and electronic properties of graphene. The adsorption of R6G molecules onto defect-rich reduced graphene oxide nanosheets results in a shift of the Fermi energy and, consequently, a variation in the optical constants. This optical variation in the graphene nanosheets is used to develop an ultrasensitive surface plasmon resonance biosensor with a detection limit of 10−17 M (0.01 fM) at the molecular level. A density functional theory calculation shows that covalent bonds were formed between the R6G molecules and the defect sites on the graphene nanosheets. Our study reveals the important role that defects play in tailoring the properties and sensor device applications of graphene materials. PMID:26887525

  5. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  6. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  7. Weak Perturbations of Biochemical Oscillators

    NASA Astrophysics Data System (ADS)

    Gailey, Paul

    2001-03-01

    Biochemical oscillators may play important roles in gene regulation, circadian rhythms, physiological signaling, and sensory processes. These oscillations typically occur inside cells where the small numbers of reacting molecules result in fluctuations in the oscillation period. Some oscillation mechanisms have been reported that resist fluctuations and produce more stable oscillations. In this paper, we consider the use of biochemical oscillators as sensors by comparing inherent fluctuations with the effects of weak perturbations to one of the reactants. Such systems could be used to produce graded responses to weak stimuli. For example, a leading hypothesis to explain geomagnetic navigation in migrating birds and other animals is based on magnetochemical reactions. Because the magnitude of magnetochemical effects is small at geomagnetic field strengths, a sensitive, noise resistant detection scheme would be required.

  8. Discovering Reliable Sources of Biochemical Thermodynamic Data to Aid Students' Understanding

    ERIC Educational Resources Information Center

    Me´ndez, Eduardo; Cerda´, María F.

    2016-01-01

    Students of physical chemistry in biochemical disciplines need biochemical examples to capture the need, not always understood, of a difficult area in their studies. The use of thermodynamic data in the chemical reference state may lead to incorrect interpretations in the analysis of biochemical examples when the analysis does not include relevant…

  9. [The usefulness of evaluation of: ferritin, ultrasensitive CRP and tissue specific polypeptide 18th (TPS) in assessment of therapy efficacy in patients with nasal polyps].

    PubMed

    Pałac, Jacek; Bratek, Szczepan; Partyka, Robert; Misiołek, Maciej

    2014-01-01

    Chronic rhinosinusitis with nasal polyps is social, clinical and cost-effective problem, by reason of bothersome symptoms, chronic nature of the disease, tendency to recur and lack of satisfying treatment. The aim of this study is assessment of suitability of hsCRP, ferritin and blood levels in nasal polyps patients in evaluation of treatment efficacy. The study enrolled 38 patients between 20 and 68 years of age. Patients were divided into 2 groups. Levels of ultrasensitive CRP ferritin and TPS have been measured in all patients. The ultrasensitive CRP levels have been measured by chemiluminescence method. Ferritin levels have been measured by MEIA method. The TPS levels have been measured by chemiluminescence method. Comparison of mean ferritin levels in both study groups in each stage of observation shows the significant difference of mean values in only 6 weeks after surgery. Mean ferritin level is significantly lower in group I than in group II (p<0.05). Mean hsCRP levels vary from one corresponding to ferritin levels. Statistically significant difference between study groups in 2nd and 6th week after surgery has been ascertained (p<0.05). Similarly, like in ferritin levels, the TPS levels are significantly different in 6th week after surgery. Analysis of ferritin, hsCRP and TPS serum levels indicates that these may be useful in assessment of treatment efficacy in patients with nasal polyps. Rise of the chosen inflammatory state parameter level in the postoperative monitoring and anti-inflammatory treatment introduction in nasal polyps patients may inhibit the recurrence of the disease. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  10. Glycine and GABAA Ultra-Sensitive Ethanol Receptors as Novel Tools for Alcohol and Brain Research

    PubMed Central

    Naito, Anna; Muchhala, Karan H.; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Perkins, Daya I.; Alkana, Ronald L.

    2014-01-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABAARs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABAARs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol. PMID:25245406

  11. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus.

    PubMed

    Lee, I M; Bartoszyk, I M; Gundersen, D E; Mogen, B; Davis, R E

    1997-07-01

    Oligonucleotide primers derived from sequences of the 16S rRNA gene (CMR16F1, CMR16R1, CMR16F2, and CMR16R2) and insertion element IS1121 of Clavibacter michiganensis subsp. sepedonicus (CMSIF1, CMSIR1, CMSIF2, and CMISR2) were used in nested PCR to detect the potato ring rot bacterium C. michiganensis subsp. sepedonicus. Nested PCR with primer pair CMSIF1-CMSIR1 followed by primer pair CMSIF2-CMSIR2 specifically detected C. michiganensis subsp. sepedonicus, while nested PCR with CMR16F1-CMR16R1 followed by CMR16F2-CMR16R2 detected C. michiganensis subsp. sepedonicus and the other C. michiganensis subspecies. In the latter case, C. michiganensis subsp. sepedonicus can be differentiated from the other subspecies by restriction fragment length polymorphism (RFLP) analyses of the nested PCR products (16S rDNA sequences). The nested PCR assays developed in this work allow ultrasensitive detection of very low titers of C. michiganensis subsp. sepedonicus which may be present in symptomiess potato plants or tubers and which cannot be readily detected by direct PCR (single PCR amplification). RFLP analysis of PCR products provides for an unambiguous confirmation of the identify of C. michiganensis subsp. sepedonicus.

  12. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack.

    PubMed

    Bhatnagar, Deepika; Kaur, Inderpreet; Kumar, Ashok

    2017-02-01

    An ultrasensitive cardiac troponin I antibody conjugated with graphene quantum dots (GQD) and polyamidoamine (PAMAM) nanohybrid modified gold electrode based sensor was developed for the rapid detection of heart attack (myocardial infarction) in human. Screen printed gold (Au) electrode was decorated with 4-aminothiophenol for amine functionalization of the Au surface. These amino groups were further coupled with carboxyl functionalities of GQD with EDC-NHS reaction. In order to enhance the sensitivity of the sensor, PAMAM dendrimer was successively embedded on GQD through carbodiimide coupling to provide ultra-high surface area for antibody immobilization. The activated cardiac troponin I (cTnI) monoclonal antibody was immobilized on PAMAM to form nanoprobe for sensing specific heart attack marker cTnI. Various concentrations of cardiac marker, cTnI were electrochemically measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in human blood serum. The modifications on sensor surface were characterized by FTIR and AFM techniques. The sensor is highly specific to cTnI and showed negligible response to non-specific antigens. The sensitivity of the sensor was 109.23μAcm -2 μg -1 and lower limit of detection of cTnI was found 20fgmL -1 . Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mössbauer study of the time evolution of the biochemical composition of the hematomas. Relationship with magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Rimbert, J. N.; Lafargue, C.; Pachot, M.; Dumas, F.; Eugene, M.; Brunelle, F.; Lallemand, D.

    1990-07-01

    Biochemical constitution of the hematoma is depending of its evolution. In order to obtain a reliable diagnostic of the NMR images in case of vascular accidents, a systematic study of the time-evolution of hematomas has been performed, using Mössbauer spectrometry and complementary technics (ESR and visible absorption spectrophotometry). The change, in the course of time, of HbO2 in deoxyhemoglobin Hb and other denaturation products (MHb, hemi- and hemochromes,…) are well-recognized on the different spectra. T 1 and T 2 NMR relaxation times are measured in the same time and their shortening is related to the appearance of the paramagnetic denaturation blood compounds.

  14. [Biochemical failure after curative treatment for localized prostate cancer].

    PubMed

    Zouhair, Abderrahim; Jichlinski, Patrice; Mirimanoff, René-Olivier

    2005-12-07

    Biochemical failure after curative treatment for localized prostate cancer is frequent. The diagnosis of biochemical failure is clear when PSA levels rise after radical prostatectomy, but may be more difficult after external beam radiation therapy. The main difficulty once biochemical failure is diagnosed is to distinguish between local and distant failure, given the low sensitivity of standard work-up exams. Metabolic imaging techniques currently under evaluation may in the future help us to localize the site of failures. There are several therapeutic options depending on the initial curative treatment, each with morbidity risks that should be considered in multidisciplinary decision-making.

  15. Ultrasensitive determination of DNA sequences by flow injection chemiluminescence using silver ions as labels.

    PubMed

    Zheng, Lichun; Liu, Xiuhui; Zhou, Min; Ma, Yongjun; Wu, Guofan; Lu, Xiaoquan

    2014-10-27

    We presented a new strategy for ultrasensitive detection of DNA sequences based on the novel detection probe which was labeled with Ag(+) using metallothionein (MT) as a bridge. The assay relied on a sandwich-type DNA hybridization in which the DNA targets were first hybridized to the captured oligonucleotide probes immobilized on Fe3O4@Au composite magnetic nanoparticles (MNPs), and then the Ag(+)-modified detection probes were used to monitor the presence of the specific DNA targets. After being anchored on the hybrids, Ag(+) was released down through acidic treatment and sensitively determined by a coupling flow injection-chemiluminescent reaction system (Ag(+)-Mn(2+)-K2S2O8-H3PO4-luminol) (FI-CL). The experiment results showed that the CL intensities increased linearly with the concentrations of DNA targets in the range from 10 to 500 pmol L(-1) with a detection limit of 3.3 pmol L(-1). The high sensitivity in this work may be ascribed to the high molar ratio of Ag(+)-MT, the sensitive determination of Ag(+) by the coupling FI-CL reaction system and the perfect magnetic separation based on Fe3O4@Au composite MNPs. Moreover, the proposed strategy exhibited excellent selectivity against the mismatched DNA sequences and could be applied to real samples analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Know-how and know-why in biochemical engineering.

    PubMed

    von Stockar, U; Valentinotti, S; Marison, I; Cannizzaro, C; Herwig, C

    2003-08-01

    This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.

  17. Recommendations for terminology and databases for biochemical thermodynamics.

    PubMed

    Alberty, Robert A; Cornish-Bowden, Athel; Goldberg, Robert N; Hammes, Gordon G; Tipton, Keith; Westerhoff, Hans V

    2011-05-01

    Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Conditions for duality between fluxes and concentrations in biochemical networks

    PubMed Central

    Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.

    2016-01-01

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817

  19. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE PAGES

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...

    2016-06-23

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  20. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  1. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics

    PubMed Central

    Erickson, David; O’Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh

    2014-01-01

    The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260M active smartphones in the US and millions of health accessories and software “apps” running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings. PMID:24700127

  2. Diagnostics and therapy of Alzheimer's disease.

    PubMed

    Mikiciuk-Olasik, Elzbieta; Szymański, Paweł; Zurek, Elzbieta

    2007-04-01

    Alzheimer's Disease (AD) is described as a degenerative disease of the central nervous system characterized by a noticeable cognitive decline defined by a loss of memory and learning ability, together with a reduced ability to perform basic activities of daily living. In the brain of an AD patients is the dramatic decrease in cholinergic innervation in the cortex and hippocampus due to the loss of neurons in the basal forebrain. The above findings led to the development of the cholinergic hypothesis, which proposes that the cognitive loss associated with AD is related to decreased cortical cholinergic neurotransmission. In brain of Alzheimer's patient's one ascertained presence of neuritic plaques containing the beta-amyloid peptide and protein tau. Biochemical and genetics studies implicated a central role for beta-amyloid in the pathological cascade of events in AD. The most therapeutic strategies in AD have been directed to two main targets: the beta-amyloid peptide and the cholinergic neurotransmission. The first approach is to act on the amyloid precursor protein (APP) processing. The second main approach is to slow of decline of neuronal degeneration or increasing cholinergic transmission. Diagnosis of AD is very difficult and to date no specific diagnostic tests of the disease are available. Intellectual function testing to determine the degree of cognitive status during routine medical examination is a useful supplementary method of diagnosing dementia. The permissible result, come down from radiopharmacy, which is an integral part of a nuclear medicine. A radiopharmaceutical may be defined as a pharmaceutical substance containing radioactive atoms. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are capable of mapping the distribution of radionuclides in three dimensions, producing maps of brain biochemical and physiological processes. The techniques are reasonably sensitive and specific in differentiating AD from

  3. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  4. Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis.

    PubMed

    Garrett, Natalie L; Vukusic, Peter; Ogrin, Feodor; Sirotkin, Evgeny; Winlove, C Peter; Moger, Julian

    2009-03-01

    We show that naturally occurring chitinous nanostructures found on the wings of the Graphium butterfly can be used as substrates for surface-enhanced Raman scattering when coated with a thin film of gold or silver. The substrates were found to exhibit excellent biocompatibility and sensitivity, making them ideal for protein assaying. An assay using avidin/biotin binding showed that the substrates could be used to quantify protein binding directly from changes in the surface-enhanced Raman scattering (SERS) spectra and were sensitive over a concentration range comparable with a typical enzyme-linked immunosorbent assays (ELISA) assay. A biomimetic version of the wing nanostructures produced using a highly reproducible, large-scale fabrication process, yielded comparable enhancement factors and biocompatibility. The excellent biocompatibility of the wings and biomimetic substrates is unparalleled by other lithographically produced substrates, and this could pave the way for widespread application of ultrasensitive SERS-based bioassays.

  5. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein.

    PubMed

    Hui, Ni; Sun, Xiaotian; Song, Zhiling; Niu, Shuyan; Luo, Xiliang

    2016-12-15

    An ultrasensitive biosensor for alpha-fetoprotein was developed based on electrochemically synthesized polyaniline (PANI) nanowires, which were functionalized with gold nanoparticles (AuNPs) and polyethylene glycols (PEG). The prepared PEG/AuNPs/PANI composite, combining the electrical conductivity of the AuNPs/PANI with the robust antifouling ability of PEG, offered an ideal substrate for the development of low fouling electrochemical biosensors. Alpha-fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker, was used as a model analyte, and its antibody was immobilized on the PEG/AuNPs/PANI for the construction of the AFP immunosensor. Using the redox current of PANI as the sensing signal, in addition to the good biocompatibility of PEG/AuNPs and the anti-biofouling property of PEG, the developed immunosensor showed improved biosensing performances, such as wide linear range and ultralow detection limit (0.007pgmL(-1)). More importantly, it is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ultrasensitive determination of DNA oxidation products by gas chromatography-tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage.

    PubMed

    Dawbaa, Sam; Aybastıer, Önder; Demir, Cevdet

    2017-04-15

    Oxidative stress is considered as one of the significant causes of DNA damage which in turn contributes to cell death through a series of intermediate processes such as cancer formation, mutation, and aging. Natural sources such as plant and fruit products have provided us with interesting substances of antioxidant activity that could be recruited in protecting the genetic materials of the cells. This study is an effort to discover some of those antioxidants effects in their standard and natural forms by performing an ultrasensitive determination of the products of DNA oxidation using GC-MS/MS. Experiments were used to determine the direct antioxidant activity of the substances contained in the tendrils of Vitis vinifera (var. alphonse) by extracting them and achieving Folin-Ciocalteau and CHROMAC analyses to determine the total phenolic content (TPC) and the antioxidant capacity of the extract, respectively; results revealed a phenolic content of 11.39±0.30mg Gallic Acid Equivalent (GAE)/g of the plant's fresh weight (FW) by Folin-Ciocalteau and 8.17±0.49mg Trolox Equivalent (TE)/g FW by CHROMAC assays. The qualitative analysis of the plant extract by HPLC-DAD technique revealed that two flavonoid glycosides namely rutin and isoquercitrin in addition to chlorogenic acid were contained in the extract. The determination of the DNA oxidation products was performed after putting DNA, rutin and isoquercitrin standard samples with different concentration, and the extract's sample under oxidative stress. Eighteen DNA oxidation products were traced using GC-MS/MS with ultra-sensitivity and the experiments proved a significant decrease in the concentration of the DNA oxidation products when the extract was used as a protectant against the oxidative stress. It is believed by conclusion that the extract of V. vinifera's (var. alphonse) tendrils has a good antioxidant activity; hence it is recommended to be used as a part of the daily healthy food list if possible

  7. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics.

    PubMed

    Inci, Fatih; Filippini, Chiara; Baday, Murat; Ozen, Mehmet Ozgun; Calamak, Semih; Durmus, Naside Gozde; Wang, ShuQi; Hanhauser, Emily; Hobbs, Kristen S; Juillard, Franceline; Kuang, Ping Ping; Vetter, Michael L; Carocci, Margot; Yamamoto, Hidemi S; Takagi, Yuko; Yildiz, Umit Hakan; Akin, Demir; Wesemann, Duane R; Singhal, Amit; Yang, Priscilla L; Nibert, Max L; Fichorova, Raina N; Lau, Daryl T-Y; Henrich, Timothy J; Kaye, Kenneth M; Schachter, Steven C; Kuritzkes, Daniel R; Steinmetz, Lars M; Gambhir, Sanjiv S; Davis, Ronald W; Demirci, Utkan

    2015-08-11

    Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes.

  8. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics

    PubMed Central

    Inci, Fatih; Filippini, Chiara; Ozen, Mehmet Ozgun; Calamak, Semih; Durmus, Naside Gozde; Wang, ShuQi; Hanhauser, Emily; Hobbs, Kristen S.; Juillard, Franceline; Kuang, Ping Ping; Vetter, Michael L.; Carocci, Margot; Yamamoto, Hidemi S.; Takagi, Yuko; Yildiz, Umit Hakan; Akin, Demir; Wesemann, Duane R.; Singhal, Amit; Yang, Priscilla L.; Nibert, Max L.; Fichorova, Raina N.; Lau, Daryl T.-Y.; Henrich, Timothy J.; Kaye, Kenneth M.; Schachter, Steven C.; Kuritzkes, Daniel R.; Steinmetz, Lars M.; Gambhir, Sanjiv S.; Davis, Ronald W.; Demirci, Utkan

    2015-01-01

    Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients’ homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE2RD), which addresses all these impediments on a single platform. The NE2RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE2RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE2RD’s broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients’ homes. PMID:26195743

  9. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  10. Enzyme-linked immunoassay for plasma-free metanephrines in the biochemical diagnosis of phaeochromocytoma in adults is not ideal.

    PubMed

    Mullins, Fiona; O'Shea, Paula; FitzGerald, Roland; Tormey, William

    2011-10-08

    The aim of the study was to define the analytical and diagnostic performance of the Labor Diagnostica Nord (LDN) 2-Met plasma ELISA assay for fractionated plasma metanephrines in the biochemical diagnosis of phaeochromocytoma. The stated manufacturer's performance characteristics were assessed. Clinical utility was evaluated against liquid chromatography tandem mass spectrometry (LC-MS/MS) using bias, sensitivity and specificity outcomes. Samples (n=73) were collected from patients in whom phaeochromocytoma had been excluded (n=60) based on low probability of disease, repeat negative testing for urinary fractionated catecholamines and metanephrines, lack of radiological and histological evidence of a tumour and from a group (n=13) in whom the tumour had been histologically confirmed. Blood collected into k(2)EDTA tubes was processed within 30 min. Separated plasma was aliquoted (×2) and frozen at -40°C prior to analyses. One aliquot was analysed for plasma metanephrines using the LDN 2-Met ELISA and the other by LC-MS/MS. The mean bias of -32% for normetanephrine (ELISA) when compared to the reference method (LC-MS/MS) makes under-diagnosis of phaeochromocytoma likely. The sensitivity of the assay (100%) was equal to the reference method, but specificity (88.3%) lower than the reference method (95%), making it less than optimum for the biochemical diagnosis of phaeochromocytoma. Plasma-free metanephrines as measured by Labor Diagnostica Nord (LDN) 2-Met ELISA do not display test characteristics that would support their introduction or continuation as part of a screening protocol for the biochemical detection of phaeochromocytoma unless the calibration problem identified is corrected and other more accurate and analytically specific methods remain unavailable.

  11. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  12. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  13. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  14. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  15. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  16. Tailoring metal/metal oxide nanostructures for ultra-sensitive detection

    NASA Astrophysics Data System (ADS)

    Morrill, Andrew Reese

    This thesis presents three diverse approaches to harnessing the material properties of nanostructures to produce ultra-sensitive detection platforms. In this work we have utilized nanostructure synthesis as the launching point for the creation of nanodevices with applications in chemical and biological sensing, catalysis and metrology. Silver nanowires were electrodeposited into a porous aluminum oxide (PAO) template. When these templates are chemically etched the nanowires become exposed and eventually collapse into bundles that harbor interstices that function as "hot-spots" for Raman field enhancement. Surface enhanced Raman spectroscopy experiments were carried out on these substrates in two ways using benzenethiol as the Raman probe. In both experiments the SERS spectra show significant (˜25 and ˜50 fold respectively) increase in intensity over the initial value (when the tips were barely exposed). Nanostructured titania (NST) thin films were produced by oxidizing titanium with hydrogen peroxide. These films are particularly well suited for integration into microfabricated sensing devices. The formation of NST relies on a re-deposition process in which an adequate amount of Ti-peroxo species must be generated and remain at the solid-solution interface. To reliably produce arrays of micro-patterned NST films on the wafer scale a patterning guide was developed and tested. Wafer scale arrays of NST micro gas-sensors have been fabricated using standard thin film techniques. Sensing elements are 20 mum on a side. High sensitivity to hydrogen is achieved by modification of the sensors with platinum nanoparticles. When exposed to 10 mT of hydrogen at 250°C, the functionalized devices exhibit more than one order of magnitude decrease in resistance with a response time of ˜7 seconds. Both NST and tin (IV) oxide nanowires were coated in aminosilane self-assembled monolayers (SAMs) which have many applications in binding biomolecules. There has been a plethora of

  17. 68Ga-PSMA 11 ligand PET imaging in patients with biochemical recurrence after radical prostatectomy - diagnostic performance and impact on therapeutic decision-making.

    PubMed

    Grubmüller, B; Baltzer, P; D'Andrea, D; Korn, S; Haug, A R; Hacker, M; Grubmüller, K H; Goldner, G M; Wadsak, W; Pfaff, S; Babich, J; Seitz, C; Fajkovic, H; Susani, M; Mazal, P; Kramer, G; Shariat, S F; Hartenbach, Markus

    2018-02-01

    To evaluate the diagnostic performance of [ 68 Ga]Ga-PSMA HBED-CC conjugate 11 positron emission tomography (PSMA-PET) in the early detection of metastases in patients with biochemical recurrence (BCR) after radical prostatectomy (RP) for clinically non-metastatic prostate cancer, to compare it to CT/MRI alone and to assess its impact on further therapeutic decisions. We retrospectively assessed 117 consecutive hormone-naïve BCR patients who had 68 Ga-PSMA 11 PET/CT (n = 46) or PET/MRI (n = 71) between May 2014 and January 2017. BCR was defined as two PSA rises above 0.2 ng/ml. Two dedicated uro-oncological imaging experts (radiology/nuclear medicine) reviewed separately all images. All results were presented in a blinded sequential fashion to a multidisciplinary tumorboard in order to assess the influence of PSMA-PET imaging on decision-making. The median time from RP to BCR was 36 months (IQR 16-72). Overall, 69 (59%) patients received postoperative radiotherapy. Median PSA level at the time of imaging was 1.04 ng/ml (IQR 0.58-1.87). PSMA-positive lesions were detected in 100 (85.5%) patients. Detection rates were 65% for a PSA value of 0.2 to <0.5 ng/ml, 85.7% for 0.5 to <1, 85.7% for 1 to <2 and 100% for ≥2. PSMA-positive lesions could be confirmed by either histology (16%), PSA decrease in metastasis-directed radiotherapy (45%) or additional information in diffusion-weighted imaging when PET/MRI was performed (18%) in 79% of patients. PSMA-PET detected lesions in 67 patients (57.3%) who had no suspicious correlates according to the RECIST 1.1 criteria on MRI or CT. PSMA-PET changed therapeutic decisions in 74.6% of these 67 patients (p < 0.001), with 86% of them being considered for metastases-directed therapies. We confirm the high performance of PSMA-PET imaging for the detection of disease recurrence sites in patients with BCR after RP, even at relatively low PSA levels. Moreover, it adds significant information to standard CT/MRI, changing

  18. Deployable Laboratory Applications of Nano- and Bio-Technology (Applications de nanotechnologie et biotechnologie destinees a un laboratoire deployable)

    DTIC Science & Technology

    2014-10-01

    applications of present nano-/ bio -technology include advanced health and fitness monitoring, high-resolution imaging, new environmental sensor platforms...others areas where nano-/ bio -technology development is needed: • Sensors : Diagnostic and detection kits (gene-chips, protein-chips, lab-on-chips, etc...studies on chemo- bio nano- sensors , ultra-sensitive biochips (“lab-on-a-chip” and “cells-on-chips” devices) have been prepared for routine medical

  19. Nanostructured plasmonic interferometers for ultrasensitive label-free biosensing

    NASA Astrophysics Data System (ADS)

    Gao, Yongkang

    Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug

  20. Ultrasensitive Plasmonic Biosensors for Real-Time Parallel Detection of Alpha-L-Fucosidase and Cardiac-Troponin-I in Whole Human Blood.

    PubMed

    Han, Xu; Shokri Kojori, Hossein; Leblanc, Roger M; Kim, Sung Jin

    2018-06-19

    Cancers and many other diseases, such as hepatocellular carcinoma (HCC) and cardiovascular diseases (CVD), have threatened human lives for centuries. Therefore, a novel technique for such disease prediction is in an urgent demand for timely treatment. Biomarkers, alpha-L-fucosidase (AFU) for HCC and cardiac troponin I (cTnI) for CVD, have proven to be essential in the role of disease detection. Herein, we report on an ultrasensitive plasmonic biosensor that converts plasmonic absorption to electrical current in order to detect AFU and cTnI using whole human blood in a real-time and parallel fashion. The detection limit was calculated to be 0.016 U/L for AFU and 0.015 ng/mL for cTnI, respectively. Combined with the versatility of the strategies for different biomarkers, these results demonstrate that the developed biosensor exhibits a promising application for the prediction of cancers and many other diseases.

  1. Integrated diagnostics

    NASA Technical Reports Server (NTRS)

    Hunthausen, Roger J.

    1988-01-01

    Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

  2. Development of a new first-aid biochemical detector

    NASA Astrophysics Data System (ADS)

    Hu, Jingfei; Liao, Haiyang; Su, Shilin; Ding, Hao; Liu, Suquan

    2016-10-01

    The traditional biochemical detector exhibits poor adaptability, inconvenient carrying and slow detection, which can't meet the needs of first-aid under field condition like natural or man-made disasters etc. Therefore a scheme of first-aid biochemical detector based on MOMES Micro Spectrometer, UV LED and Photodiode was proposed. An optical detection structure combined continuous spectrum sweep with fixed wavelength measurement was designed, which adopted mobile detection optical path consisting of Micro Spectrometer and Halogen Lamp to detect Chloride (Cl-), Creatinine (Cre), Glucose (Glu), Hemoglobin (Hb). The UV LED and Photodiode were designed to detect Potassium (K-), Carbon dioxide (CO2), Sodium (Na+). According to the field diagnosis and treatment requirements, we designed the embedded control hardware circuit and software system, the prototype of first-aid biochemical detector was developed and the clinical trials were conducted. Experimental results show that the sample's absorbance repeatability is less than 2%, the max coefficient of variation (CV) in the batch repeatability test of all 7 biochemical parameters in blood samples is 4.68%, less than the clinical requirements 10%, the correlation coefficient (R2) in the clinical contrast test with AU5800 is almost greater than 0.97. To sum up, the prototype meets the requirements of clinical application.

  3. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis†

    PubMed Central

    Gajjar, Ketan; Heppenstall, Lara D.; Pang, Weiyi; Ashton, Katherine M.; Trevisan, Júlio; Patel, Imran I.; Llabjani, Valon; Stringfellow, Helen F.; Martin-Hirsch, Pierre L.; Dawson, Timothy; Martin, Francis L.

    2013-01-01

    The most common initial treatment received by patients with a brain tumour is surgical removal of the growth. Precise histopathological diagnosis of brain tumours is to some extent subjective. Furthermore, currently available diagnostic imaging techniques to delineate the excision border during cytoreductive surgery lack the required spatial precision to aid surgeons. We set out to determine whether infrared (IR) and/or Raman spectroscopy combined with multivariate analysis could be applied to discriminate between normal brain tissue and different tumour types (meningioma, glioma and brain metastasis) based on the unique spectral “fingerprints” of their biochemical composition. Formalin-fixed paraffin-embedded tissue blocks of normal brain and different brain tumours were de-waxed, mounted on low-E slides and desiccated before being analyzed using attenuated total reflection Fourier-transform IR (ATR-FTIR) and Raman spectroscopy. ATR-FTIR spectroscopy showed a clear segregation between normal and different tumour subtypes. Discrimination of tumour classes was also apparent with Raman spectroscopy. Further analysis of spectral data revealed changes in brain biochemical structure associated with different tumours. Decreased tentatively-assigned lipid-to-protein ratio was associated with increased tumour progression. Alteration in cholesterol esters-to-phenylalanine ratio was evident in grade IV glioma and metastatic tumours. The current study indicates that IR and/or Raman spectroscopy have the potential to provide a novel diagnostic approach in the accurate diagnosis of brain tumours and have potential for application in intra-operative diagnosis. PMID:24098310

  4. Development of an ultrasensitive PCR assay for polycyclic musk determination in fish.

    PubMed

    Zhang, Xiaohan; Zhuang, Huisheng

    2018-05-01

    Polycyclic musks (PCMs) in the aquatic environment and organisms have become an emerging environmental issue because of their potential risk. The most used method for polycyclic musk determination is gas chromatography-mass spectrometry (GC-MS) with different sample extractions, which are somewhat expensive to operate, complex and laborious. In this study, a novel and ultrasensitive real-time polymerase chain reaction (PCR) assay with multiple signal amplification of carboxylic-DNA by gold nanoparticle-polyamidoamine conjugation (Au-PAMAM) was developed for determining polycyclic musks in fish. Hapten and immunogen were specially prepared. Polyclonal antibodies were produced based on the optimal immunisation, and the antibodies were characterised. Due to PAMAM's unique nanostructure of numerous functional amino groups, polyclonal antibody and carboxylic-DNA were immobilised by Au-PAMAM conjugation to develop the antibody-Au-PAMAM-DNA probes, which were used as a signal DNA amplifier in the PCR system. Compared with real-time immuno-PCR, this biological probe-amplified immuno-PCR (BPAI-PCR) assay had higher sensitivity due to the probes' higher ratio of signal DNA. Finally, the BPAI-PCR assay was applied to analyse AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene,Tonalide) concentrations in fish samples in the range from 1 pg/L to 10 ng/L, giving an of LOD 0.61 pg/L. In general, due to the specificity of the antibody and novel nanoprobe design, this BPAI-PCR assay provided a potential way for trace analysis of AHTN in the aquatic organisms. The high concentrations of AHTN found in cultivated fish should encourage further toxicological studies.

  5. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  6. Stoichiometric network theory for nonequilibrium biochemical systems.

    PubMed

    Qian, Hong; Beard, Daniel A; Liang, Shou-dan

    2003-02-01

    We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits.

  7. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  8. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.

    PubMed

    Qian, Hong; Beard, Daniel A

    2005-04-22

    The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.

  9. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation

    NASA Astrophysics Data System (ADS)

    McKnight, Timothy E.; Melechko, Anatoli V.; Griffin, Guy D.; Guillorn, Michael A.; Merkulov, Vladimir I.; Serna, Francisco; Hensley, Dale K.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.

    2003-05-01

    We demonstrate the integration of vertically aligned carbon nanofibre (VACNF) elements with the intracellular domains of viable cells for controlled biochemical manipulation. Deterministically synthesized VACNFs were modified with either adsorbed or covalently-linked plasmid DNA and were subsequently inserted into cells. Post insertion viability of the cells was demonstrated by continued proliferation of the interfaced cells and long-term (> 22 day) expression of the introduced plasmid. Adsorbed plasmids were typically desorbed in the intracellular domain and segregated to progeny cells. Covalently bound plasmids remained tethered to nanofibres and were expressed in interfaced cells but were not partitioned into progeny, and gene expression ceased when the nanofibre was no longer retained. This provides a method for achieving a genetic modification that is non-inheritable and whose extent in time can be directly and precisely controlled. These results demonstrate the potential of VACNF arrays as an intracellular interface for monitoring and controlling subcellular and molecular phenomena within viable cells for applications including biosensors, in vivo diagnostics, and in vivo logic devices.

  10. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  11. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  12. Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly

    PubMed Central

    Hobert, Judith A; Embacher, Rebecca; Mester, Jessica L; Frazier, Thomas W; Eng, Charis

    2014-01-01

    Unlike some other childhood neurodevelopmental disorders, no diagnostic biochemical marker has been identified in all individuals with an autism spectrum disorder (ASD). This deficit likely results from genetic heterogeneity among the population. Therefore, we evaluated a subset of individuals with ASDs, specifically, individuals with or without macrocephaly in the presence or absence of PTEN mutations. We sought to determine if amino or organic acid markers could be used to identify individuals with ASDs with or without macrocephaly in the presence or absence of PTEN mutations, and to establish the degree of macrocephaly in individuals with ASDs and PTEN mutation. Urine, blood and occipital–frontal circumference (OFC) measurements were collected from 69 individuals meeting DSM-IV-TR criteria. Urine and plasma samples were subjected to amino and organic acid analyses. PTEN was Sanger-sequenced from germline genomic DNA. Germline PTEN mutations were identified in 27% (6/22) of the macrocephalic ASD population. All six PTEN mutation-positive individuals were macrocephalic with average OFC+4.35 standard deviations (SDs) above the mean. No common biochemical abnormalities were identified in macrocephalic ASD individuals with or without PTEN mutations. In contrast, among the collective ASD population, elevation of urine aspartic acid (87% 54/62), plasma taurine (69% 46/67) and reduction of plasma cystine (72% 46/64) were observed. PTEN sequencing should be carried out for all individuals with ASDs and macrocephaly with OFC ≥2SDs above the mean. A proportion of individuals with ASDs may have an underlying disorder in sulfur amino acid metabolism. PMID:23695273

  13. Diagnostic Challenges in Prostate Cancer and 68Ga-PSMA PET Imaging: A Game Changer?

    PubMed

    Zaman, Maseeh uz; Fatima, Nosheen; Zaman, Areeba; Sajid, Mahwsih; Zaman, Unaiza; Zaman, Sidra

    2017-10-26

    Prostate cancer (PC) is the most frequent solid tumor in men and the third most common cause of cancer mortality among men in developed countries. Current imaging modalities like ultrasound (US), computerized tomography (CT), magnetic resonance imaging (MRI) and choline based positron emission (PET) tracing have disappointing sensitivity for detection of nodal metastasis and small tumor recurrence. This poses a diagnostic challenge in staging of intermediate to high risk PC and restaging of patients with biochemical recurrence (PSA >0.2 ng/ml). Gallium-68 labeled prostate specific membrane antigen (68Ga-PSMA) PET imaging has now emerged with a higher diagnostic yield. 68Ga-PSMA PET/CT or PET/MRI can be expected to offer a one-stop-shop for staging and restaging of PC. PSMA ligands labeled with alpha and beta emitters have also shown promising therapeutic efficacy for nodal, bone and visceral metastasis. Therefore a PSMA based theranostics approach for detection, staging, treatment, and follow-up of PC would appear to be highly valuable to achieve personalized PC treatment. Creative Commons Attribution License

  14. Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water.

    PubMed

    Ren, Wen; Mura, Stefania; Irudayaraj, Joseph M K

    2015-10-01

    Nitrate ions is a very common contaminant in drinking water and has a significant impact on the environment, necessitating routine monitoring. Due to its chemical and physical properties, it is hard to directly detect nitrate ions with high sensitivity in a simple and inexpensive manner. Herein with amino group modified graphene oxide (GO) as a sensing element, we show a direct and ultra-sensitive method to detect nitrate ions, at a lowest detected concentration of 5 nM in river water samples, much lower than the reported methods based on absorption spectroscopy. Furthermore, unlike the reported strategies based on absorption spectroscopy wherein the nitrate concentration is determined by monitoring an increase in aggregation of gold nanoparticles (GNPs), our method evaluates the concentration of nitrate ions based on reduction in aggregation of GNPs for monitoring in real samples. To improve sensitivity, several optimizations were performed, including the assessment of the amount of modified GO required, concentration of GNPs and incubation time. The detection methodology was characterized by zeta potential, TEM and SEM. Our results indicate that an enrichment of modified GO with nitrate ions contributed to excellent sensitivity and the entire detection procedure could be completed within 75 min with only 20 μl of sample. This simple and rapid methodology was applied to monitor nitrate ions in real samples with excellent sensitivity and minimum pretreatment. The proposed approach paves the way for a novel means to detect anions in real samples and highlights the potential of GO based detection strategy for water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ultrasensitive Genotypic Detection of Antiviral Resistance in Hepatitis B Virus Clinical Isolates▿ †

    PubMed Central

    Fang, Jie; Wichroski, Michael J.; Levine, Steven M.; Baldick, Carl J.; Mazzucco, Charles E.; Walsh, Ann W.; Kienzle, Bernadette K.; Rose, Ronald E.; Pokornowski, Kevin A.; Colonno, Richard J.; Tenney, Daniel J.

    2009-01-01

    Amino acid substitutions that confer reduced susceptibility to antivirals arise spontaneously through error-prone viral polymerases and are selected as a result of antiviral therapy. Resistance substitutions first emerge in a fraction of the circulating virus population, below the limit of detection by nucleotide sequencing of either the population or limited sets of cloned isolates. These variants can expand under drug pressure to dominate the circulating virus population. To enhance detection of these viruses in clinical samples, we established a highly sensitive quantitative, real-time allele-specific PCR assay for hepatitis B virus (HBV) DNA. Sensitivity was accomplished using a high-fidelity DNA polymerase and oligonucleotide primers containing locked nucleic acid bases. Quantitative measurement of resistant and wild-type variants was accomplished using sequence-matched standards. Detection methodology that was not reliant on hybridization probes, and assay modifications, minimized the effect of patient-specific sequence polymorphisms. The method was validated using samples from patients chronically infected with HBV through parallel sequencing of large numbers of cloned isolates. Viruses with resistance to lamivudine and other l-nucleoside analogs and entecavir, involving 17 different nucleotide substitutions, were reliably detected at levels at or below 0.1% of the total population. The method worked across HBV genotypes. Longitudinal analysis of patient samples showed earlier emergence of resistance on therapy than was seen with sequencing methodologies, including some cases of resistance that existed prior to treatment. In summary, we established and validated an ultrasensitive method for measuring resistant HBV variants in clinical specimens, which enabled earlier, quantitative measurement of resistance to therapy. PMID:19433559

  16. Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification.

    PubMed

    Yuan, Yali; Wei, Shiqiang; Liu, Guangpeng; Xie, Shunbi; Chai, Yaqin; Yuan, Ruo

    2014-02-06

    In this study, we for the first time presented an efficient, accurate, rapid, simple and ultrasensitive detection system for small molecule ochratoxin A (OTA) by using the integration of loop-mediated isothermal amplification (LAMP) technique and subsequently direct readout of LAMP amplicons with a signal-on electrochemiluminescent (ECL) system. Firstly, the dsDNA composed by OTA aptamer and its capture DNA were immobilized on the electrode. After the target recognition, the OTA aptamer bond with target OTA and subsequently left off the electrode, which effectively decreased the immobilization amount of OTA aptamer on electrode. Then, the remaining OTA aptamers on the electrode served as inner primer to initiate the LAMP reaction. Interestingly, the LAMP amplification was detected by monitoring the intercalation of DNA-binding Ru(phen)3(2+) ECL indictors into newly formed amplicons with a set of integrated electrodes. The ECL indictor Ru(phen)3(2+) binding to amplicons caused the reduction of the ECL intensity due to the slow diffusion of Ru(phen)3(2+)-amplicons complex to the electrode surface. Therefore, the presence of more OTA was expected to lead to the release of more OTA aptamer, which meant less OTA aptamer remained on electrode for producing LAMP amplicons, resulting in less Ru(phen)3(2+) interlaced into the formed amplicons within a fixed Ru(phen)3(2+) amount with an obviously increased ECL signal input. As a result, a detection limit as low as 10 fM for OTA was achieved. The aptasensor also has good reproducibility and stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Diagnostic value of plasma morphology in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Sergeeva, Yuliya V.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatiana P.

    2006-08-01

    Blood plasma can be considered as a special water system with self-organization possibilities. Plasma slides as the results of wedge dehydration reflect its stereochemical interaction and their study can be used in diagnostic processes. 46 patients with coronary heart disease were studied. The main group was formed of men in age ranged from 54 to 72 years old with stable angina pectoris of II and III functional class (by Canadian classification) (n=25). The group of compare was of those who was hospitalized with diagnosis of acute coronary syndrome, men in age range 40-82. Clinical examination, basic biochemical tests and functional plasma morphology characteristics were studied. A number of qualitative and quantitative differences of blood plasma morphology of patients with chronic and acute coronary disease forms was revealed.

  18. Bi-enzyme synergetic catalysis to in situ generate coreactant of peroxydisulfate solution for ultrasensitive electrochemiluminescence immunoassay.

    PubMed

    Wang, Haijun; Yuan, Ruo; Chai, Yaqin; Niu, Huan; Cao, Yaling; Liu, Huijing

    2012-01-01

    A novel electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of α-1-fetoprotein (AFP) was designed based on the in situ bi-enzymatic reaction to generate coreactant of peroxydisulfate for signal amplification. In this work, AuNPs were electrodeposited on the glassy carbon electrode (GCE) surface, which promoted the electron transfer. Then, L-cysteine and another layer of AuNPs were, respectively assembled onto the modified electrode surface, which formed the multilayer films for amplifying the ECL signal of peroxydisulfate and immobilizing antibody. At last, glucose oxidase (GOD) and horseradish peroxidase (HRP) were employed to block the nonspecific binding sites. When proper amounts of glucose were added in the detection solution, GOD catalyzed the oxidation of glucose to generate H(2)O(2), which could be further catalyzed by HRP to generate O(2) for the signal amplification. The linear range for AFP detection was 0.001-100 ng mL(-1), with a low detection limit of 3.3 × 10(-4) ng mL(-1). The novel strategy has the advantages of simplicity, sensitivity, good selectivity and reproducibility which might hold a new promise for highly sensitive bioassays applied in clinical detection. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  19. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor

    NASA Astrophysics Data System (ADS)

    Ha, Na-Reum; Jung, In-Pil; La, Im-Joung; Jung, Ho-Sup; Yoon, Moon-Young

    2017-01-01

    Overuse of antibiotics has caused serious problems, such as appearance of super bacteria, whose accumulation in the human body through the food chain is a concern. Kanamycin is a common antibiotic used to treat diverse infections; however, residual kanamycin can cause many side effects in humans. Thus, development of an ultra-sensitive, precise, and simple detection system for residual kanamycin in food products is urgently needed for food safety. In this study, we identified kanamycin-binding aptamers via a new screening method, and truncated variants were analyzed for optimization of the minimal sequence required for target binding. We found various aptamers with high binding affinity from 34.7 to 669 nanomolar Kdapp values with good specificity against kanamycin. Furthermore, we developed a reduced graphene oxide (RGO)-based fluorescent aptasensor for kanamycin detection. In this system, kanamycin was detected at a concentration as low as 1 pM (582.6 fg/mL). In addition, this method could detect kanamycin accurately in kanamycin-spiked blood serum and milk samples. Consequently, this simple, rapid, and sensitive kanamycin detection system with newly structural and functional analysis aptamer exhibits outstanding detection compared to previous methods and provides a new possibility for point of care testing and food safety.

  20. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.