Sample records for ultrashort femtosecond laser

  1. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  2. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  3. Acousto-optic replication of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  4. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  5. Ultraprecise medical applications with ultrafast lasers: corneal surgery with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Loesel, Frieder H.; Kurtz, Ron M.; Horvath, Christopher; Sayegh, Samir I.; Mourou, Gerard A.; Bille, Josef F.; Juhasz, Tibor

    1999-02-01

    We investigated refractive corneal surgery in vivo and in vitro by intrastromal photodisruption using a compact ultrafast femtosecond laser system. Ultrashort-pulsed lasers operating in the femtosecond time regime are associated with significantly smaller and deterministic threshold energies for photodisruption, as well as reduced shock waves and smaller cavitation bubbles than the nanosecond or picosecond lasers. Our reliable all-solid-state laser system was specifically designed for real world medical applications. By scanning the 5 micron focus spot of the laser below the corneal surface, the overlapping small ablation volumes of single pulses resulted in contiguous tissue cutting and vaporization. Pulse energies were typically in the order of a few microjoules. Combination of different scanning patterns enabled us to perform corneal flap cutting, femtosecond-LASIK, and femtosecond intrastromal keratectomy in porcine, rabbit, and primate eyes. The cuts proved to be highly precise and possessed superior dissection and surface quality. Preliminary studies show consistent refractive changes in the in vivo studies. We conclude that the technology is capable to perform a variety of corneal refractive procedures at high precision, offering advantages over current mechanical and laser devices and enabling entirely new approaches for refractive surgery.

  6. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    ABSTRACT. Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770  nm/830  nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  7. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  8. Laser eye protection bleaching with femtosecond exposure

    NASA Astrophysics Data System (ADS)

    Stolarski, Jacob; Hayes, Kristy L.; Thomas, Robert J.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.

    2003-06-01

    The measured optical density of various laser eye protection samples is presented as a function of irradiance using femtosecond laser pulses. We show that the protective quality of some eyewear degrades as irradiance increases. In previous studies this problem has been demonstrated for samples irradiated by nanosecond pulses, but the current study shows that some modern laser eye protection seems to be robust except for the irradiance level possible with ultrashort laser pulse exposure. We discuss the most likely saturation mechanisms in this pulse duration regime and its relevance to laser safety.

  9. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  10. Testing of a femtosecond pulse laser in outer space

    PubMed Central

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  11. Testing of a femtosecond pulse laser in outer space.

    PubMed

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-30

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  12. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  13. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    PubMed Central

    Nivas, Jijil JJ; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-01-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams. PMID:28169342

  14. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate.

    PubMed

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-07

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  15. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    NASA Astrophysics Data System (ADS)

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  16. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  17. Femtosecond laser three-dimensional micro- and nanofabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugioka, Koji, E-mail: ksugioka@riken.jp; Cheng, Ya, E-mail: ya.cheng@siom.ac.cn

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement ofmore » the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review

  18. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongjun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Xu, Jiancai, E-mail: jcxu@siom.ac.cn

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials withmore » a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.« less

  19. Tuning the frequency of ultrashort laser pulses by a cross-phase-modulation-induced shift in a photonic crystal fiber.

    PubMed

    Konorov, S O; Akimov, D A; Zheltikov, A M; Ivanov, A A; Alfimov, M V; Scalora, M

    2005-06-15

    Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.

  20. Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries.

    PubMed

    Santos, Moises Oliveira Dos; Latrive, Anne; De Castro, Pedro Arthur Augusto; De Rossi, Wagner; Zorn, Telma Maria Tenorio; Samad, Ricardo Elgul; Freitas, Anderson Zanardi; Cesar, Carlos Lenz; Junior, Nilson Dias Vieira; Zezell, Denise Maria

    2017-03-01

    Thousands of people die every year from burn injuries. The aim of this study is to evaluate the feasibility of high intensity femtosecond lasers as an auxiliary treatment of skin burns. We used an in vivo animal model and monitored the healing process using 4 different imaging modalities: histology, Optical Coherence Tomography (OCT), Second Harmonic Generation (SHG), and Fourier Transform Infrared (FTIR) spectroscopy. 3 dorsal areas of 20 anesthetized Wistar rats were burned by water vapor exposure and subsequently treated either by classical surgical debridement, by laser ablation, or left without treatment. Skin burn tissues were non-invasively characterized by OCT images and biopsied for further histopathology analysis, SHG imaging and FTIR spectroscopy at 3, 5, 7 and 14 days after burn. The laser protocol was found as efficient as the classical treatment for promoting the healing process. The study concludes to the validation of femtosecond ultra-short pulses laser treatment for skinburns, with the advantage of minimizing operatory trauma.

  1. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, N.; Cardoso, L.; Geada, J.

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  2. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE PAGES

    Lemos, N.; Cardoso, L.; Geada, J.; ...

    2018-02-16

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  3. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  4. Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips

    NASA Astrophysics Data System (ADS)

    Malek, C. Khan; Robert, L.; Salut, R.

    2009-04-01

    A hybrid process compatible with reel-to-reel manufacturing is developed for ultra low-cost large-scale manufacture of disposable microfluidic chips. It combines ultra-short laser microstructuring and lamination technology. Microchannels in polyester foils were formed using focused, high-intensity femtosecond laser pulses. Lamination using a commercial SU8-epoxy resist layer was used to seal the microchannel layer and cover foil. This hybrid process also enables heterogeneous material structuration and integration.

  5. [Flexible Guidance of Ultra-Short Laser Pulses in Ophthalmic Therapy Systems].

    PubMed

    Blum, J; Blum, M; Rill, M S; Haueisen, J

    2017-01-01

    In the last 20 years, the role of ultrashort pulsed lasers in ophthalmology has become increasingly important. However, it is still impossible to guide ultra-short laser pulses with standard glass fibres. The highly energetic femtosecond pulses would destroy the fibre material, and non-linear dispersion effects would significantly change beam parameters. In contrast, photonic crystal fibres mainly guide the laser pulses in air, so that absorption and dispersive pulse broadening have essentially no effect. This article compares classical beam guidance with mirrors, lenses and prisms with photonic crystal fibres and describes the underlying concepts and the current state of technology. A classical mirror arm possesses more variable optical properties, while the HCF (Hollow-Core Photonic Crystal Fibre) must be matched in terms of the laser energy and the laser spectrum. In contrast, the HCF has more advantages in respect of handling, system integration and costs. For applications based on photodisruptive laser-tissue interaction, the relatively low damage threshold of photonic crystal fibres compared to classic beam guiding systems is unacceptable. If, however, pulsed laser radiation has a sufficiently low peak intensity, e.g. as used for plasma-induced ablation, photonic crystal fibres can definitely be considered as an alternative solution to classic beam guidance. Georg Thieme Verlag KG Stuttgart · New York.

  6. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  7. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlOmore » is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.« less

  8. Bonding of glass with femtosecond laser pulses at high repetition rates

    NASA Astrophysics Data System (ADS)

    Richter, S.; Döring, S.; Tünnermann, A.; Nolte, S.

    2011-05-01

    We report on the welding of fused silica with ultrashort laser pulses at high repetition rates. Femtosecond laser pulses were focused at the interface of two optically contacted fused silica samples. Due to the nonlinear absorption in the focal volume and heat accumulation of successive pulses, the laser acts as a localized heat source at the focus position. Here, we analyze the influence of the laser and processing parameters on the amount of molten material. Moreover, we determine the achievable breaking stress by a three point bending test. With optimized parameters up to 75% of the breaking stress of the bulk material have been obtained.

  9. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A

    2004-06-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.

  10. Prompt increase of ultrashort laser pulse transmission through thin silver films

    NASA Astrophysics Data System (ADS)

    Bezhanov, S. G.; Danilov, P. A.; Klekovkin, A. V.; Kudryashov, S. I.; Rudenko, A. A.; Uryupin, S. A.

    2018-03-01

    We study experimentally and numerically the increase in ultrashort laser pulse transmissivity through thin silver films caused by the heating of electrons. Low to moderate energy femtosecond laser pulse transmission measurements through 40-125 nm thickness silver films were carried out. We compare the experimental data with the values of transmitted fraction of energy obtained by solving the equations for the field together with the two-temperature model. The measured values were fitted with sufficient accuracy by varying the electron-electron collision frequency whose exact values are usually poorly known. Since transmissivity experiences more pronounced changes with the increase in temperature compared to reflectivity, we suggest this technique for studying the properties of nonequilibrium metals.

  11. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Gaković, B.; Tsibidis, G. D.; Skoulas, E.; Petrović, S. M.; Vasić, B.; Stratakis, E.

    2017-12-01

    The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses.

  12. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Soundarapandian, S.

    2018-04-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  13. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Soundarapandian, S.

    2018-06-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  14. Generation of UV light by intense ultrashort laser pulses in air

    NASA Astrophysics Data System (ADS)

    Alexeev, Ilya; Ting, Antonio; Gordon, Daniel; Briscoe, Eldridge; Penano, Joe; Sprangle, Phillip

    2004-11-01

    The propagation of collimated high-peak-power ultrashort laser pulses in air has attracted considerable attention, which may have a variety of important applications including remote sensing and chemical-biological aerosols standoff detection. Sub-millimeter diameter laser filaments can develop without any focusing optics and instead solely from laser self-focusing and plasma formation in air. These filaments can produce ultraviolet radiations in the form of the 3rd harmonic of the fundamental frequency and also through spectral broadening due to self-phase modulation of the laser pulse. Using femtosecond laser pulses produced by a high power Ti:Sapphire laser (0.8 TW, 50 fs, 800 nm) we observed generation of the third harmonic radiation light in air (centered around 267 nm) by the laser filaments. Characterization of the 3rd harmonic generation with respect to the major gas components of the air will be reported. Supported by the ONR and RDECOM. I. Alexeev is NRC/NRL Post-Doc.

  15. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity  Service  Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB

  16. Three-dimensional femtosecond laser processing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Sugioka, Koji; Vázquez, Rebeca Martínez; Osellame, Roberto; Kelemen, Lóránd; Ormos, Pal

    2018-02-01

    The extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce nonlinear interaction such as multiphoton absorption and tunneling ionization with materials that are transparent to the laser wavelength. More importantly, focusing the femtosecond laser beam inside the transparent materials confines the nonlinear interaction only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. This 3D capability offers three different schemes, which involve undeformative, subtractive, and additive processing. The undeformative processing preforms internal refractive index modification to construct optical microcomponents including optical waveguides. Subtractive processing can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. Additive processing represented by two-photon polymerization enables the fabrication of 3D polymer micro- and nanostructures for photonic and microfluidic devices. These different schemes can be integrated to realize more functional microdevices including lab-on-a-chip devices, which are miniaturized laboratories that can perform reaction, detection, analysis, separation, and synthesis of biochemical materials with high efficiency, high speed, high sensitivity, low reagent consumption, and low waste production. This review paper describes the principles and applications of femtosecond laser 3D micro- and nanofabrication for lab-on-a-chip applications. A hybrid technique that promises to enhance functionality of lab-on-a-chip devices is also introduced.

  17. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  18. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Rupali, E-mail: phz148121@iitd.ac.in; Navas, M. P.; Soni, R. K.

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions weremore » investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.« less

  19. Femtosecond laser machining for characterization of local mechanical properties of biomaterials: a case study on wood

    PubMed Central

    Jakob, Severin; Pfeifenberger, Manuel J.; Hohenwarter, Anton; Pippan, Reinhard

    2017-01-01

    Abstract The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale. PMID:28970867

  20. Femtosecond laser machining for characterization of local mechanical properties of biomaterials: a case study on wood

    NASA Astrophysics Data System (ADS)

    Jakob, Severin; Pfeifenberger, Manuel J.; Hohenwarter, Anton; Pippan, Reinhard

    2017-12-01

    The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale.

  1. Two-photon transitions driven by a combination of diode and femtosecond lasers.

    PubMed

    Moreno, Marco P; Nogueira, Giovana T; Felinto, Daniel; Vianna, Sandra S

    2012-10-15

    We report on the combined action of a cw diode laser and a train of ultrashort pulses when each of them drives one step of the 5S-5P-5D two-photon transition in rubidium vapor. The fluorescence from the 6P(3/2) state is detected for a fixed repetition rate of the femtosecond laser while the cw-laser frequency is scanned over the rubidium D(2) lines. This scheme allows for a velocity selective spectroscopy in a large spectral range including the 5D(3/2) and 5D(5/2) states. The results are well described in a simplified frequency domain picture, considering the interaction of each velocity group with the cw laser and a single mode of the frequency comb.

  2. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    NASA Astrophysics Data System (ADS)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  3. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less

  4. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation

    NASA Astrophysics Data System (ADS)

    Gurevich, Evgeny L.

    2016-06-01

    Here we analyze the formation of laser-induced periodic surface structures (LIPSS) on metal surfaces upon single femtosecond laser pulses. Most of the existing models of the femtosecond LIPSS formation discuss only the appearance of a periodic modulation of the electron and ion temperatures. However the mechanism how the inhomogeneous surface temperature distribution induces the periodically-modulated surface profile under the conditions corresponding to ultrashort-pulse laser ablation is still not clear. Estimations made on the basis of different hydrodynamic instabilities allow to sort out mechanisms, which can bridge the gap between the temperature modulation and the LIPSS. The proposed theory shows that the periodic structures can be generated by single ultrashort laser pulses due to ablative instabilities. The Marangoni and Rayleigh-Bénard convection on the contrary cannot cause the LIPSS formation.

  5. Quantification of phase retardation in corneal tissues using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Calhoun, William R.; Beylin, Alexander; Weiblinger, Richard; Ilev, Ilko

    2013-03-01

    The use of femtosecond lasers (FSL) in ophthalmic procedures, such as LASIK, lens replacement (cataract surgery), as well as several other treatments, is growing rapidly. The treatment effect is based on photo ablation of ocular tissues by a series of ultra-short laser pulses. However, the laser beam characteristics change dynamically due to interactions with birefringent corneal tissue, which may affect the outcome of the laser treatment. To better understand the effect the cornea has on the laser characteristics, we developed a system for measuring retardation and validated it with precise, standard phase retarders. Then we measured the phase retardation of FSLs through bovine corneas and found that there is a considerable, location dependent, variation in retardation values. This information can potentially help optimize FSL parameters to make their application in ophthalmic procedures safer and more effective.

  6. Femtosecond laser in laser in situ keratomileusis

    PubMed Central

    Salomão, Marcella Q.; Wilson, Steven E.

    2014-01-01

    Flap creation is a critical step in laser in situ keratomileusis (LASIK). Efforts to improve the safety and predictability of the lamellar incision have fostered the development of femtosecond lasers. Several advantages of the femtosecond laser over mechanical microkeratomes have been reported in LASIK surgery. In this article, we review common considerations in management and complications of this step in femtosecond laser–LASIK and concentrate primarily on the IntraLase laser because most published studies relate to this instrument. PMID:20494777

  7. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  8. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  9. Dislocation structure produced by an ultrashort shock pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Tomoki, E-mail: t-matsu@mapse.eng.osaka-u.ac.jp; Hirose, Akio; Sano, Tomokazu

    We found an ultrashort shock pulse driven by a femtosecond laser pulse on iron generates a different dislocation structure than the shock process which is on the nanosecond timescale. The ultrashort shock pulse produces a highly dense dislocation structure that varies by depth. According to transmission electron microscopy, dislocations away from the surface produce microbands via a network structure similar to a long shock process, but unlike a long shock process dislocations near the surface have limited intersections. Considering the dislocation motion during the shock process, the structure near the surface is attributed to the ultrashort shock duration. This approachmore » using an ultrashort shock pulse will lead to understanding the whole process off shock deformation by clarifying the early stage.« less

  10. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  11. Characteristics of Ions Emission from Ultrashort Laser Produced Plasma

    PubMed Central

    Elsied, Ahmed M.; Termini, Nicholas C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2016-01-01

    The dynamic characteristics of the ions emitted from ultrashort laser interaction with materials were studied. A series of successive experiments were conducted for six different elements (C, Al, Cu, Mo, Gd, and W) using 40 fs, 800 nm Ti: Sapphire laser. Time-of-flight (TOF) ion profile was analyzed and charge emission dependencies were investigated. The effects of incident laser interaction with each element were studied over a wide range of laser fluences (0.8 J/cm2 to 24 J/cm2) corresponding to laser intensities (2.0 × 1013 W/cm2 to 6.0 × 1014 W/cm2). The dependencies of the angular resolved ion flux and energy were also investigated. The TOF ion profile exhibits two peaks corresponding to a fast and a slow ion regime. The slow ions emission was the result of thermal vaporization while fast ions emission was due to time dependent ambipolar electric field. A theoretical model is proposed to predict the total ion flux emitted during femtosecond laser interaction that depends on laser parameters, material properties, and plume hydrodynamics. Incident laser fluence directly impacts average charge state and in turn affects the ion flux. Slow ions velocity exhibited different behavior from fast ions velocity. The fast ions energy and flux were found to be more collimated. PMID:27905553

  12. Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams

    NASA Astrophysics Data System (ADS)

    Zhao, Lingrong; Wang, Zhe; Lu, Chao; Wang, Rui; Hu, Cheng; Wang, Peng; Qi, Jia; Jiang, Tao; Liu, Shengguang; Ma, Zhuoran; Qi, Fengfeng; Zhu, Pengfei; Cheng, Ya; Shi, Zhiwen; Shi, Yanchao; Song, Wei; Zhu, Xiaoxin; Shi, Jiaru; Wang, Yingxin; Yan, Lixin; Zhu, Liguo; Xiang, Dao; Zhang, Jie

    2018-04-01

    Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by far-infrared and terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time stamping of an ultrashort relativistic electron beam, whose energy is several orders of magnitude higher than photoelectrons. Such an ability is especially important for MeV ultrafast electron diffraction (UED) applications, where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression, while the arrival time may fluctuate at a much larger timescale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with a 6-fs (rms) pulse width has been determined with 1.5-fs (rms) accuracy. Furthermore, we have proposed and demonstrated a noninvasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards a sub-10-fs frontier, far beyond the approximate 100-fs (rms) jitter.

  13. Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation

    PubMed Central

    Shibata, Akimichi; Yada, Shuhei; Terakawa, Mitsuhiro

    2016-01-01

    Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of a poly(lactic-co-glycolic acid) (PLGA) following irradiation with femtosecond laser pulses at different wavelengths. Microscopic observation as well as water absorption and mass change measurement revealed that the biodegradation of the PLGA varied significantly depending on the laser wavelength. There was a significant acceleration of the degradation rate upon 400 nm-laser irradiation, whereas 800 nm-laser irradiation did not induce a comparable degree of change. The X-ray photoelectron spectroscopy analysis indicated that laser pulses at the shorter wavelength dissociated the chemical bonds effectively, resulting in a higher degradation rate at an early stage of degradation. PMID:27301578

  14. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.

    PubMed

    Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan

    2010-03-29

    We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

  15. Dynamics of laser-induced damage of spherical nanoparticles by high-intensity ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Komolov, Vladimir L.; Gruzdev, Vitaly E.; Przhibelskii, Sergey G.; Smirnov, Dmitry S.

    2012-12-01

    Damage of a metal spherical nanoparticle by femtosecond laser pulses is analyzed by splitting the overall process into two steps. The fast step includes electron photoemission from a nanoparticle. It takes place during direct action of a laser pulse and its rate is evaluated as a function of laser and particle parameters by two approaches. Obtained results suggest the formation of significant positive charge of the nanoparticles due to the photoemission. The next step includes ion emission that removes the excessive positive charge and modifies particle structure. It is delayed with respect to the photo-emission and is analyzed by a simple analytical model and modified molecular dynamics. Obtained energy distribution suggests generation of fast ions capable of penetrating into surrounding material and generating defects next to the nanoparticle. The modeling is extended to the case of a nanoparticle on a solid surface to understand the basic mechanism of surface laser damage initiated by nano-contamination. Simulations predict embedding the emitted ions into substrate within a spot with size significantly exceeding the original particle size. We discuss the relation of those effects to the problem of bulk and surface laser-induced damage of optical materials by single and multiple ultrashort laser pulses.

  16. Heat input and accumulation for ultrashort pulse processing with high average power

    NASA Astrophysics Data System (ADS)

    Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart

    2018-05-01

    Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.

  17. Femtosecond pulsed laser processing of electronic materials: Fundamentals and micro/nano-scale applications

    NASA Astrophysics Data System (ADS)

    Choi, Tae-Youl

    Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The

  18. Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process

    NASA Astrophysics Data System (ADS)

    Song, Hui; Dai, Ye; Song, Juan; Ma, Hongliang; Yan, Xiaona; Ma, Guohong

    2017-04-01

    In this paper, we report a non-reciprocal writing process for inducing asymmetric microstructure using a femtosecond laser with tilted pulse fronts in fused silica. The shape of the induced microstructure at the focus closely depends on the laser scan direction. An elongated end is observed as a kind of structural difference between the written lines with two reverse scans along + x and - x, which further leads to a birefringence intensity difference. We also find a bifurcation in the head region of the induced microstructure between the written lines along x and y. That process results from the focal intensity distortion caused by the pulse front tilt by comparing the simulated intensity distribution with the experimental results. The current results demonstrate that the pulse front tilt not only affects the free electron excitation at the focus but also further distorts the shape of the induced microstructure during a high-energy femtosecond laser irradiation. These results offer a route to fabricate optical elements by changing the spatiotemporal characteristics of ultrashort pulses.

  19. Optimization of the parameters for intrastromal refractive surgery with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Heisterkamp, Alexander; Ripken, Tammo; Lubatschowski, Holger; Welling, Herbert; Dommer, Wolfgang; Luetkefels, Elke; Mamom, Thanongsak; Ertmer, Wolfgang

    2001-06-01

    Focussing femtosecond laser pulses into a transparent media, such as corneal tissue, leads to optical breakdown, generation of a micro-plasma and, thus, a cutting effect inside the tissue. To proof the potential of fs-lasers in refractive surgery, three-dimensional cutting within the corneal stroma was evaluated. With the use of ultrashort laser pulses within the LASIK procedure (laser in situ keratomileusis) possible complications in handling of a mechanical knife, the microkeratome, can be reduced by using the treatment laser as the keratome itself. To study woundhealing effects, animal studies were carried out in rabbit specimen. The surgical outcome was analyzed by means of histological sections, as well as light and scanning electron microscopy. Dependencies on the dispersion caused by focussing optics were evaluated and optimized. Thus, pulse energies well below 1 (mu) J were sufficient to perform the intrastromal cuts. The laser pulses with a duration of 180 fs and energies of 0.5-100 (mu) J were provided by a modelocked frequency doubled erbium fiber-laser with subsequent chirped pulse amplification in a titanium sapphire amplifier at up to 3 kHz.

  20. In situ accurate determination of the zero time delay between two independent ultrashort laser pulses by observing the oscillation of an atomic excited wave packet.

    PubMed

    Zhang, Qun; Hepburn, John W

    2008-08-15

    We propose a novel method that uses the oscillation of an atomic excited wave packet observed through a pump-probe technique to accurately determine the zero time delay between a pair of ultrashort laser pulses. This physically based approach provides an easy fix for the intractable problem of synchronizing two different femtosecond laser pulses in a practical experimental environment, especially where an in situ time zero measurement with high accuracy is required.

  1. Femtosecond Lasers and Corneal Surgical Procedures.

    PubMed

    Marino, Gustavo K; Santhiago, Marcony R; Wilson, Steven E

    2017-01-01

    Our purpose is to present a broad review about the principles, early history, evolution, applications, and complications of femtosecond lasers used in refractive and nonrefractive corneal surgical procedures. Femtosecond laser technology added not only safety, precision, and reproducibility to established corneal surgical procedures such as laser in situ keratomileusis (LASIK) and astigmatic keratotomy, but it also introduced new promising concepts such as the intrastromal lenticule procedures with refractive lenticule extraction (ReLEx). Over time, the refinements in laser optics and the overall design of femtosecond laser platforms led to it becoming an essential tool for corneal surgeons. In conclusion, femtosecond laser is a heavily utilized tool in refractive and nonrefractive corneal surgical procedures, and further technological advances are likely to expand its applications. Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  2. Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashitkov, Sergei I; Komarov, P S; Ovchinnikov, A V

    An interferometric method is developed and realised using a frequency-modulated pulse for diagnosing a dynamics of fast deformations with a spatial and temporal resolution under the action of a single laser pulse. The dynamics of a free surface of a submicron-thick aluminium film is studied under an action of the ultrashort compression pulse with the amplitude of up to 14 GPa, excited by a femtosecond laser heating of the target surface layer. The spallation strength of aluminium was determined at a record high deformation rate of 3 Multiplication-Sign 10{sup 9} s{sup -1}. (extreme light fields and their applications)

  3. Post-filament self-trapping of ultrashort laser pulses.

    PubMed

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Andriukaitis, G; Flöry, T; Pugžlys, A; Fedotov, A B; Mikhailova, J M; Panchenko, V Ya; Baltuška, A; Zheltikov, A M

    2014-08-15

    Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

  4. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  5. Simple and effective preparation of nano-pulverized curcumin by femtosecond laser ablation and the cytotoxic effect on C6 rat glioma cells in vitro.

    PubMed

    Tagami, Tatsuaki; Imao, Yukino; Ito, Shunsuke; Nakada, Akiko; Ozeki, Tetsuya

    2014-07-01

    The pulverization of poorly water-soluble drugs and drug candidates into nanoscale particles is a simple and effective means of increasing their pharmacological effect. Consequently, efficient methods for pulverizing compounds are being developed. Femtosecond lasers, which emit ultrashort laser pulses, can be used to generate nanoscale particles without heating and are finding in various fields, including pharmaceutical science. Laser ablation holds promise as a novel top-down pulverization method for obtaining drug nanoparticles. We used a poorly water-soluble compound, curcumin (diferuloyl methane), to understand the characteristics of femtosecond laser pulverization. Various factors such as laser strength, laser scan speed, and the buffer solution affected the size of the curcumin particles. The minimum curcumin particle size was approximately 500 nm; the particle size was stable after 30 days. In vitro studies suggested that curcumin nanoparticles exhibited a cytotoxic effect on C6 rat glioma cells, and remarkable intracellular uptake of the curcumin nanoparticles was observed. The results suggest that femtosecond laser ablation is a useful approach for preparing curcumin nanoparticles that exhibit remarkable therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a

  7. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  8. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle

  9. Femtosecond laser-induced herringbone patterns

    NASA Astrophysics Data System (ADS)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  10. Long distance measurement with a femtosecond laser based frequency comb

    NASA Astrophysics Data System (ADS)

    Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.

    2017-11-01

    Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.

  11. Nanoplasmonic generation of ultrashort EUV pulses

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  12. Ultrashort-Pulse Laser System: Theory of Operation and Operating Procedures

    DTIC Science & Technology

    1992-07-01

    Nov 89 - Jul 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Ultrashort-Pulse Laser System : Theory of Operation and C - F33615-88-C-0631 Operating...i ’IR~A&, D2;" T.&B [E] al uicod [] j 0 Avhi lp.bilty C: oded’ Avail i Qiv ULTRASHORT-PULSE LASER SYSTEM : THEORY OF OPERATION AND OPERATING PROCEDURES

  13. Femtosecond laser refractive surgery: small-incision lenticule extraction vs. femtosecond laser-assisted LASIK.

    PubMed

    Lee, Jimmy K; Chuck, Roy S; Park, Choul Yong

    2015-07-01

    Small-incision lenticule extraction (SMILE) is a novel technique devised to correct refractive errors. SMILE circumvents excimer laser photoablation of cornea, as the stromal lenticule cut by femtosecond laser is removed manually. Smaller incisions and preservation of anterior corneal biomechanical strength have been suggested as some of the advantages of SMILE over femtosecond laser-assisted LASIK (FS-LASIK). In this review, we compared previous published results of SMILE and FS-LASIK. The advantage, efficacy and safety of SMILE are compared with FS-LASIK. SMILE achieved similar efficacy, predictability and safety as FS-LASIK. Greater preservations of corneal biomechanical strength and corneal nerves were observed in SMILE when compared with LASIK or PRK. Additionally, the incidence of postoperative dry eye syndrome was found to be less problematic in SMILE than in FS-LASIK. SMILE is a promising new surgery for refractive error correction. Prospective and retrospective studies of SMILE have shown that results of SMILE are similar to FS-LASIK. With advances in femtosecond laser technology, SMILE may gain greater acceptance in the future.

  14. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin

    2016-11-01

    Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.

  15. Femtosecond laser based enucleation of porcine oocytes for somatic cell nuclear transfer

    NASA Astrophysics Data System (ADS)

    Kütemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2009-07-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer (SCNT) in recent years. However, this method still results in very low efficiencies around 1% which originate from suboptimal culture conditions and highly invasive techniques for oocyte enucleation and injection of the donor cell using micromanipulators. In this paper, we present a new minimal invasive method for oocyte imaging and enucleation based on the application of femtosecond (fs) laser pulses. After imaging of the oocyte with multiphoton microscopy, ultrashort pulses are focused onto the metaphase plate of MII-oocytes in order to ablate the DNA molecules. We show that fs laser based enucleation of porcine oocytes completely inhibits the first mitotic cleavage after parthenogenetic activation while maintaining intact oocyte morphology in most cases. In contrast, control groups without previous irradiation of the metaphase plate are able to develop to the blastocyst stage. Further experiments have to clarify the suitability of fs laser based enucleated oocytes for SCNT.

  16. Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers.

    PubMed

    Zheng, Yan; Zhou, Yuehua; Zhang, Jing; Liu, Qian; Zhai, Changbin; Wang, Yonghua

    2015-03-01

    To compare flap morphology created by the WaveLight FS200 femtosecond laser and the VisuMax femtosecond laser, assessing the uniformity, accuracy, and predictability of flap creation. A total of 400 eyes had corneal flaps created with the WaveLight FS200 femtosecond laser (200 eyes) or the VisuMax femtosecond laser (200 eyes). The desired flap thickness was 110 μm. At 1 week postoperatively, all eyes were evaluated with RTVue Fourier-domain optical coherence tomography. Dimensions of the flaps were tested for their regularity, uniformity, accuracy, and predictability comparison. One week after surgery, the central flap thickness and the mean flap thickness of the FS200 group were 105.4 ± 3.4 μm and 105.7 ± 2.6 μm, respectively. They were both thinner than those of the VisuMax group, which were 110.8 ± 3.9 μm and 111.3 ± 2.3 μm, respectively. The mean deviation between the achieved and attempted flap thickness of the FS200 group (5.2 ± 1.9 μm) was greater than that of the VisuMax group (3.2 ± 1.8 μm). Flap thickness measurements at 36 points in both groups were close to the intended thickness. Morphology of the flaps in the 0-, 45-, 90-, and 135-degree lines created by the FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Flap dimensions created by the WaveLight FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Although the flap thickness created by the FS200 was less than that created by the VisuMax, measurements of both femtosecond lasers were close to the intended thickness.

  17. Femtosecond lasers for microsurgery of cornea

    NASA Astrophysics Data System (ADS)

    Vartapetov, Sergei K.; Khudyakov, D. V.; Lapshin, Konstantin E.; Obidin, Aleksei Z.; Shcherbakov, Ivan A.

    2012-03-01

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting ~400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 μJ. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 μm. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s-1. At a stage of preliminary tests of the system, the Κ8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  18. A plasma microlens for ultrashort high power lasers

    NASA Astrophysics Data System (ADS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  19. Ultrashort polarization-tailored bichromatic fields

    NASA Astrophysics Data System (ADS)

    Kerbstadt, Stefanie; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias

    2017-06-01

    We present a novel concept for the generation of ultrashort polarization-shaped bichromatic laser fields. The scheme utilizes a 4f polarization pulse shaper based on a liquid crystal spatial light modulator for independent amplitude and phase modulation of femtosecond laser pulses. By choice of either a conventional (p) or a composite (p-s) polarizer in the Fourier plane, the shaper setup enables the generation of parallel linearly and orthogonal linearly polarized bichromatic fields. Additional use of a ? wave plate behind the setup yields co-rotating and counter-rotating circularly polarized bichromatic fields. The scheme allows to independently control the spectral amplitude, phase and polarization profile of the output fields, offering an enormous versatility of bichromatic waveforms.

  20. Effects of femtosecond laser radiation on the skin

    NASA Astrophysics Data System (ADS)

    Rogov, P. Yu; Bespalov, V. G.

    2016-08-01

    A mathematical model of linear and nonlinear processes is presented occurring under the influence of femtosecond laser radiation on the skin. There was held an analysis and the numerical solution of an equation system describing the dynamics of the electron and phonon subsystems were received. The results can be used to determine the maximum permissible levels of energy generated by femtosecond laser systems and the establishment of Russian laser safety standards for femtosecond laser systems.

  1. Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch

    NASA Astrophysics Data System (ADS)

    König, Jens; Bauer, Thorsten

    2011-03-01

    Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.

  2. Monolithic hybrid optics for focusing ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-03-01

    Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.

  3. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  4. High incidence of rainbow glare after femtosecond laser assisted-LASIK using the upgraded FS200 femtosecond laser.

    PubMed

    Zhang, Yu; Chen, Yue-Guo

    2018-03-05

    To compare the incidence of rainbow glare (RG) after femtosecond laser assisted-LASIK (FS-LASIK) using the upgraded FS200 femtosecond laser with different flap cut parameter settings. A consecutive series of 129 patients (255 eyes) who underwent FS-LASIK for correcting myopia and/or astigmatism using upgraded WaveLight FS200 femtosecond laser with the original settings was included in group A. Another consecutive series of 129 patients (255 eyes) who underwent FS-LASIK using upgraded WaveLight FS200 femtosecond laser with flap cut parameter settings changed (decreased pulse energy, spot and line separation) was included in group B. The incidence and fading time of RG, confocal microscopic image and postoperative clinical results were compared between the two groups. There were no differences between the two groups in age, baseline refraction, excimer laser ablation depth, postoperative uncorrected visual acuity and refraction. The incidence rate of RG in group A (35/255, 13.73%) was significantly higher than that in group B (4/255, 1.57%) (P < 0.05). The median fading time was 3 months in group A and 1 month in group B (P > 0.05).The confocal microscopic images showed wider laser spot spacing in group A than group B. The incidence of RG was significantly correlated with age and grouping (P < 0.05). The upgraded FS200 femtosecond laser with original flap cut parameter settings could increase the incidence of RG. The narrower grating size and lower pulse energy could ameliorate this side effect.

  5. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  6. All-femtosecond laser-assisted in situ keratomileusis

    NASA Astrophysics Data System (ADS)

    Gabryte, Egle; Danieliene, Egle; Vaiceliunaite, Agne; Ruksenas, Osvaldas; Vengris, Mikas; Danielius, Romualdas

    2013-03-01

    We present a femtosecond solid-state Yb:KGW laser system capable of performing the complete laser-assisted in situ keratomileusis (LASIK) ophthalmic procedure. The fundamental infrared radiation (IR) is used to create the corneal flap, and subsequently the corneal stromal ablation is performed using the ultraviolet (UV) pulses of the fifth harmonic. The heating of cornea, ablated surface quality, and healing outcomes of the surgeries performed using the femtosecond laser system are investigated by both ex vivo and in vivo experiments and compared to the results of conventional clinical ArF excimer laser application. The results of this research indicate the feasibility of clinical application of femtosecond UV lasers for LASIK procedure.

  7. Ultrafast Laser Interaction Processes for Libs and Other Sensing Technologies

    DTIC Science & Technology

    2013-04-05

    Wang. Propagation of ultrashort pulses through water, Optics Express, (02 2007): . doi: 12/02/2009 8.00 Z. Chen, S. Mao. Femtosecond laser -induced...Richardson, "Nd:YAG-CO2 double- pulse laser -induced breakdown spectroscopy for explosive residues detection" SPIE Defense, Security, Sensing; Orlando, FL... Ultrashort Pulse Laser Workshop, Directed Energy Professional Society; Newton, MA, USA; 06/29,2009. 63. Martin C. Richardson, Michael Sigman

  8. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  9. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  10. Femtosecond laser structuring of titanium implants

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2007-06-01

    In this study we perform the first femtosecond laser surface treatment of titanium in order to determine the potential of this technology for surface structuring of titanium implants. We find that the femtosecond laser produces a large variety of nanostructures (nanopores, nanoprotrusions) with a size down to 20 nm, multiple parallel grooved surface patterns with a period on the sub-micron level, microroughness in the range of 1-15 μm with various configurations, smooth surface with smooth micro-inhomogeneities, and smooth surface with sphere-like nanostructures down to 10 nm. Also, we have determined the optimal conditions for producing these surface structural modifications. Femtosecond laser treatment can produce a richer variety of surface structures on titanium for implants and other biomedical applications than long-pulse laser treatments.

  11. Femtosecond lasers for microsurgery of cornea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceedmore » 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.« less

  12. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  13. Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material.

    PubMed

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Krüger, Jörg; Berger, Georg

    2010-08-01

    Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 Jcm(-2). In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    NASA Astrophysics Data System (ADS)

    Bogatov, N. A.; Kuznetsov, A. I.; Smirnov, A. I.; Stepanov, A. N.

    2009-10-01

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament.

  15. Mass spectrometric imaging and laser desorption ionization (LDI) with ice as a matrix using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Berry, Jamal Ihsan

    The desorption of biomolecules from frozen aqueous solutions on metal substrates with femtosecond laser pulses is presented for the first time. Unlike previous studies using nanosecond pulses, this approach produces high quality mass spectra of biomolecules repeatedly and reproducibly. This novel technique allows analysis of biomolecules directly from their native frozen environments. The motivation for this technique stems from molecular dynamics computer simulations comparing nanosecond and picosecond heating of water overlayers frozen on Au substrates which demonstrate large water cluster formation and ejection upon substrate heating within ultrashort timescales. As the frozen aqueous matrix and analyte molecules are transparent at the wavelengths used, the laser energy is primarily absorbed by the substrate, causing rapid heating and explosive boiling of the ice overlayer, followed by the ejection of ice clusters and the entrained analyte molecule. Spectral characteristics at a relatively high fluence of 10 J/cm 2 reveal the presence of large molecular weight metal clusters when a gold substrate is employed, with smaller cluster species observed from frozen aqueous solutions on Ag, Cu, and Pb substrates. The presence of the metal clusters is indicative of an evaporative cooling mechanism which stabiles cluster ion formation and the ejection of biomolecules from frozen aqueous solutions. Solvation is necessary as the presence of metal clusters and biomolecular ion signals are not observed from bare metal substrates in absence of the frozen overlayer. The potential for mass spectrometric imaging with femtosecond LDI of frozen samples is also presented. The initial results for the characterization of peptides and peptoids linked to combinatorial beads frozen in ice and the assay of frozen brain tissue from the serotonin transporter gene knockout mouse via LDI imaging are discussed. Images of very good quality and resolution are obtained with 400 nm, 200 fs pulses

  16. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Youngsang; Ha, Jeonghong; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-09-21

    In this work, we report substantially enhanced colloidal stability of aqueous nanoparticle suspensions by ultrashort laser pulse irradiation. A Ti:Sapphire femtosecond laser (wavelength: 800 nm; pulse duration: 50 fs at full width at half maximum) was used to modify the electrochemical properties of nanoparticle suspensions at laser fluences below the particle ablation threshold. The colloidal stability of the suspension was evaluated by zeta potential and dynamic light scattering (DLS). The DLS results along with the images from transmission electron microscopy revealed that the laser irradiation caused no distinct morphological change to the individual alumina particles, but a substantial portion of themore » clustered particles was fragmented by the laser pulses, decreasing the apparent size of the suspended particles. Also, X-ray photoelectron spectroscopy analysis indicates that the laser irradiation modified the surface chemistry of the alumina particles. The stabilizing capability of the proposed technique was turned out to be better than that of conventional ultrasonic treatments. The stability of the laser-treated sample with no added surfactant was maintained for up to 30 days, without requiring an additional homogenizing process such as magnetic stirring.« less

  17. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  18. The life cycle of infrared ultra-short high intensity laser pulses in air

    NASA Astrophysics Data System (ADS)

    Ma, Cunliang; Lin, Wenbin

    2015-08-01

    The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.

  19. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  20. Femtosecond lasers as novel tool in dental surgery

    NASA Astrophysics Data System (ADS)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  1. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  2. Construction of a femtosecond laser microsurgery system.

    PubMed

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2010-03-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.

  3. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  4. 22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz

    NASA Astrophysics Data System (ADS)

    Clady, R.; Azamoum, Y.; Charmasson, L.; Ferré, A.; Utéza, O.; Sentis, M.

    2018-05-01

    We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics ( f/4.5).

  5. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  6. Wavelength Dependence of Nanosecond IR Laser-Induced Breakdown in Water: Evidence for Multiphoton Initiation via an Intermediate State

    DTIC Science & Technology

    2015-04-29

    bubble generation and shock wave emission in water for femtosecond to nanosecond laser pulses . ...breakdown threshold in water for nanosecond (ns) IR laser pulses . Avalanche ionization (AI) is the most powerful mechanism driving IR ns laser-induced...acknowledged that femtosecond (fs) and picosecond (ps) IR breakdown is initiated by photoionization because ultrashort pulses are sufficiently

  7. Room temperature optical anisotropy of a LaMnO 3 thin-film induced by ultra-short pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun

    Ultra-short laser pulse induced optical anisotropy of LaMnO 3 thin films grown on SrTiO 3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm 2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn 3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnOmore » 3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  8. Suppressing the memory state of floating gate transistors with repeated femtosecond laser backside irradiations

    NASA Astrophysics Data System (ADS)

    Chambonneau, Maxime; Souiki-Figuigui, Sarra; Chiquet, Philippe; Della Marca, Vincenzo; Postel-Pellerin, Jérémy; Canet, Pierre; Portal, Jean-Michel; Grojo, David

    2017-04-01

    We demonstrate that infrared femtosecond laser pulses with intensity above the two-photon ionization threshold of crystalline silicon induce charge transport through the tunnel oxide in floating gate Metal-Oxide-Semiconductor transistor devices. With repeated irradiations of Flash memory cells, we show how the laser-produced free-electrons naturally redistribute on both sides of the tunnel oxide until the electric field of the transistor is suppressed. This ability enables us to determine in a nondestructive, rapid and contactless way the flat band and the neutral threshold voltages of the tested device. The physical mechanisms including nonlinear ionization, quantum tunneling of free-carriers, and flattening of the band diagram are discussed for interpreting the experiments. The possibility to control the carriers in memory transistors with ultrashort pulses holds promises for fast and remote device analyses (reliability, security, and defectivity) and for considerable developments in the growing field of ultrafast microelectronics.

  9. Laser parameters, focusing optics, and side effects in femtosecond laser corneal surgery

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Nuzzo, Valeria; Peyrot, Donald A.; Deloison, Florent; Savoldelli, Michèle; Legeais, Jean-Marc

    2008-02-01

    Nowadays, femtosecond lasers are routinely used in refractive eye surgery. Until recently, commercialised clinical systems were exclusively based on ytterbium or neodymium-doped solid state lasers emitting sub-picosecond pulses at a wavelength of about 1 μm and repetition rates of a few 10 kHz. These systems use pulse energies in the μJ range and focussing optics of NA = 0.3 to 0.5. Recent developments have provided a variety of alternative and equally viable approaches: systems are now available using nJ pulses at high numerical apertures and MHz repetition rates - an approach so far only used for femtosecond cell surgery - and fibre laser technology is now being used for femtosecond laser corneal surgery. Recent research has also provided more insight in side effects occurring in present systems: self focusing phenomena and so far unexplained periodical structures have been observed even at high numerical apertures (NA >> 0.5) and moderate pulse energies. The interaction of femtosecond laser pulses with strongly scattering tissue has been studied in view of extending the application of femtosecond lasers to keratoplasty for opaque corneas and to glaucoma surgery. The use of new laser wavelengths and adaptive optics has been proposed. Despite the reputation of femtosecond surgical systems for their precision, repeatability and the absence of secondary effects or complications, a closer examination reveals the presence of subtle phenomena which merit further investigation. We present three of these phenomena: the influence of optical aberration on the quality of the incision, the occurrence of filamentation effects, and the deposit of microscopic glass fragments when performing penetrating incisions.

  10. Femtosecond synchronism of x-rays and visible/infrared light in an x-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, B. W.

    2007-12-15

    A way is proposed to obtain ultrashort pulses of intense infrared/visible light in few-femtosecond synchronism with x-rays from an x-ray free-electron laser (XFEL). It makes use of the recently proposed emittance-slicing technique [Emma et al., Phys. Rev. Lett. 92, 074801 (2004)] to both restrict the duration of self-amplified spontaneous emission (SASE) to a few femtoseconds and to lead to a coherence enhancement of near-infrared transition undulator radiation (CTUR). The x-rays and the near-infrared light originate within the XFEL undulator from the same slice of electrons within a bunch and are therefore perfectly synchronized with each other. An example of realizingmore » the scheme at the Linac Coherent Light Source is presented. A few side issues are explored briefly, such as the magnitude of the velocity term versus the acceleration term in the Lienard-Wiechert fields and the possible use of the CTUR as a diagnostic tool for the SASE process itself.« less

  11. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  12. Tunable femtosecond lasers with low pump thresholds

    NASA Astrophysics Data System (ADS)

    Oppo, Karen

    The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.

  13. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    PubMed

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  14. Femtosecond laser-induced cell-cell surgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R; Elezzabi, Abdulhakem Y

    2014-04-01

    Laser-induced cell-cell surgical attachment using femtosecond laser pulses is reported. We have demonstrated the ability to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser. To check that the cells did not go through a cell-fusion process, a fluorescent dye Calcein AM was used to verify that the fluorescent dye did not migrate from a dyed cell to a non-dyed cell. The mechanical integrity of the attached joint was assessed using an optical tweezer. Attachment of cells was performed without the induction of cell-cell fusion, with attachment efficiency of 95%, and while preserving the cells' viability. Cell-cell attachment was achieved by delivery of one to two trains of femtosecond laser pulses lasting 15 ms each. Laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane. The inner cell membrane remained intact during the attachment procedure, and isolation of the cells' cytoplasm from the surrounding medium was obtained. A strong physical attachment between the cells was obtained due to the bonding of the membranes' ionized phospholipid molecules and the formation of a joint cellular membrane at the connection point. The cellular attachment technique, femtosecond laser-induced cell-cell surgical attachment, can potentially provide a platform for the creation of engineered tissue and cell cultures. © 2014 Wiley Periodicals, Inc.

  15. Complications of femtosecond-assisted laser in-situ keratomileusis flaps.

    PubMed

    Shah, Deepika N; Melki, Samir

    2014-01-01

    Femtosecond-assisted laser in-situ keratomileusis flaps have revolutionized refractive surgery since their introduction. Although these lasers are exceedingly safe, complications still do occur. This review focuses specifically on examining the literature and evidence for flap complications during femtosecond-assisted laser in-situ keratomileusis as well as their management.

  16. Femtosecond laser cataract surgery: technology and clinical practice.

    PubMed

    Roberts, Timothy V; Lawless, Michael; Chan, Colin Ck; Jacobs, Mark; Ng, David; Bali, Shveta J; Hodge, Chris; Sutton, Gerard

    2013-03-01

    The recent introduction of femtosecond lasers to cataract surgery has generated much interest among ophthalmologists around the world. Laser cataract surgery integrates high-resolution anterior segment imaging systems with a femtosecond laser, allowing key steps of the procedure, including the primary and side-port corneal incisions, the anterior capsulotomy and fragmentation of the lens nucleus, to be performed with computer-guided laser precision. There is emerging evidence of reduced phacoemulsification time, better wound architecture and a more stable refractive result with femtosecond cataract surgery, as well as reports documenting an initial learning curve. This article will review the current state of technology and discuss our clinical experience. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  17. Femtosecond-laser assisted cell reprogramming

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2017-02-01

    Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.

  18. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  19. Process for laser machining and surface treatment

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2004-10-26

    An improved method and apparatus increasing the accuracy and reducing the time required to machine materials, surface treat materials, and allow better control of defects such as particulates in pulsed laser deposition. The speed and quality of machining is improved by combining an ultrashort pulsed laser at high average power with a continuous wave laser. The ultrashort pulsed laser provides an initial ultrashort pulse, on the order of several hundred femtoseconds, to stimulate an electron avalanche in the target material. Coincident with the ultrashort pulse or shortly after it, a pulse from a continuous wave laser is applied to the target. The micromachining method and apparatus creates an initial ultrashort laser pulse to ignite the ablation followed by a longer laser pulse to sustain and enlarge on the ablation effect launched in the initial pulse. The pulse pairs are repeated at a high pulse repetition frequency and as often as desired to produce the desired micromachining effect. The micromachining method enables a lower threshold for ablation, provides more deterministic damage, minimizes the heat affected zone, minimizes cracking or melting, and reduces the time involved to create the desired machining effect.

  20. Novel oral applications of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wieger, V.; Wernisch, J.; Wintner, E.

    2007-02-01

    In the past decades, many efforts have been made to replace mechanical tools in oral applications by various laser systems. The reasons therefore are manifold: i) Friction causes high temperatures damaging adjacent tissue. ii) Smear layers and rough surfaces are produced. iii) Size and shape of traditional tools are often unsuitable for geometrically complicated incisions and for minimum invasive treatment. iv) Mechanical damage of the remaining tissue occurs. v) Online diagnosis for feedback is not available. Different laser systems in the µs and sub-&mrgs-pulse regime, among them Erbium lasers, have been tested in the hope to overcome the mentioned drawbacks and, to some extent, they represent the current state of the art with respect to commercial and hence practical application. In the present work the applicability of scanned ultrashort pulse lasers (USPLs) for biological hard tissue as well as dental restoration material removal was tested. It is shown that cavities with features superior to mechanically treated or Erbium laser ablated cavities can be generated if appropriate scan algorithms and optimum laser parameters are matched. Smooth cavity rims, no microcracks, melting or carbonisation and precise geometry are the advantages of scanned USLP ablation. For bone treatment better healing conditions are expected as the natural structure remains unaffected by the preparation procedure. The novelty of this work is represented by a comprehensive compilation of various experimental results intended to assess the performance of USPLs. In this context, various pulse durations in the picosecond and femtosecond regime were applied to dental and bone tissue as well as dental restoration materials which is considered to be indispensable for a complete assessment. Parameters like ablation rates describing the efficiency of the ablation process, and ablation thresholds were determined - some of them for the first time - and compared to the corresponding Erbium

  1. Calculus removal on a root cement surface by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kraft, Johan F.; Vestentoft, Kasper; Christensen, Bjarke H.; Løvschall, Henrik; Balling, Peter

    2008-01-01

    Ultrashort-pulse-laser ablation of dental calculus (tartar) and cement is performed on root surfaces. The investigation shows that the threshold fluence for ablation of calculus is a factor of two to three times smaller than that of a healthy root cement surface. This indicates that ultrashort laser pulses may provide an appropriate tool for selective removal of calculus with minimal damage to the underlying root cement. Future application of an in situ profiling technique allows convenient on-line monitoring of the ablation process.

  2. Femtosecond laser eye surgery: the first clinical experience

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Kurtz, Ron M.; Horvath, Christopher; Suarez, Carlos G.; Nordan, Lee; Slade, Steven

    2002-04-01

    A brief review of commercial applications of femtosecond lasers in a clinical setting with emphasis on applications to corneal surgery is presented. The first clinical results of 208 procedures conducted from June to November 2000 is reported. The results show that femtosecond lasers may be safely used as keratome for use in LASIK procedures.

  3. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    NASA Astrophysics Data System (ADS)

    Hikov, Todor; Pecheva, Emilia; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey; Petrov, Todor

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry.

  4. Investigating radiation induced damage processes with femtosecond x-ray pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Changyong

    2017-05-01

    Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.

  5. Hyperopic laser in situ keratomileusis: comparison of femtosecond laser and mechanical microkeratome flap creation.

    PubMed

    Antonios, Rafic; Arba Mosquera, Samuel; Awwad, Shady T

    2015-08-01

    To evaluate and compare the refractive predictability and stability of laser in situ keratomileusis (LASIK) flap creation performed with a femtosecond laser and with a mechanical microkeratome to correct mild to moderate hyperopia. American University of Beirut Medical Center, Beirut, Lebanon. Retrospective case series. Patients who had hyperopic LASIK treatment using the Amaris excimer laser were included. Eyes in which the LDV femtosecond laser was used for flap creation were compared with eyes in which the Moria M2 microkeratome was used. The microkeratome group comprised 53 eyes and the femtosecond laser group, 72 eyes. Baseline characteristics were similar between groups (P > .05). The mean spherical equivalent (SE) deviation from target 1 week postoperatively was -0.08 diopter (D) ± 0.58 (SD) in the femtosecond laser group and -0.06 ± 0.87 D in the microkeratome group (P = .92). Thereafter, the mean SE deviation from target increased gradually and by 6 months postoperatively was +0.30 ± 0.50 D and +0.70 ± 0.71 D, respectively (P = .001). The correlation between the achieved and the attempted SE refraction was better in the femtosecond laser group (R(2) = 0.806) than the microkeratome group (R(2) = 0.671). Using the same nomogram, the short-term refractive outcomes of hyperopic LASIK with flap creation performed with the femtosecond laser were comparable to those for the microkeratome; however, the femtosecond group showed significantly better stability over the 6-month follow-up and better predictability, as reflected by a lower standard deviation and stronger Pearson correlation. Dr. Arba Mosquera is an employee of Schwind eye-tech-solutions GmbH and Co. KG. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. Two-dimensional photoacoustic imaging of femtosecond filament in water

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Mareev, E. I.; Rumiantsev, B. V.; Bychkov, A. S.; Karabutov, A. A.; Cherepetskaya, E. B.; Makarov, V. A.

    2018-07-01

    We report a first-of-its-kind optoacoustic tomography of a femtosecond filament in water. Using a broadband (~100 MHz) piezoelectric transducer and a back-projection reconstruction technique, a single filament profile was retrieved. Obtained pressure distribution induced by the femtosecond filament allowed us to identify the size of the core and the energy reservoir with spatial resolution better than 10 µm. The photoacoustic imaging provides direct measurements of the energy deposition into the medium under filamentation of ultrashort laser pulses that cannot be obtained by existing techniques. In combination with a relative simplicity and high accuracy, photoacoustic imaging can be considered as a breakthrough instrument for filamentation investigation.

  7. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  8. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Shevelev, M.; Aryshev, A.; Terunuma, N.; Urakawa, J.

    2017-10-01

    The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.

  9. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Jiahui; Sokolov, Alexei V.; Benabid, F.

    2010-03-15

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist.

  10. Use of the Femtosecond Lasers in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Roszkowska, Anna M.; Urso, Mario; Signorino, Alberto; Aragona, Pasquale

    2018-01-01

    Femtosecond laser (FSL) is an infrared laser with a wavelength of 1053 nm. FS laser works producing photodisruption or photoionization of the optically transparent tissue such as cornea. Currently FS lasers have a wide range of applications in ophthalmic surgery. They are used above all in corneal surgery in refractive procedures and keratoplasty, and recently in cataract surgery. The use of the FSL in corneal refractive surgery includes LASIK flap creation, astigmatic keratotomy, Femtosecond Lenticule Extraction (FLEx), Small Incision Lenticule Extraction (SMILE) and channels creation for implantation of the intrastromal corneal rings. As to the corneal grafting, the FS lasers are used in laser-assisted anterior and posterior lamellar keratoplasty and customized trephination in the penetrating keratoplasty. FS Laser Assisted Cataract Surgery (FLACS) includes capsulorrhexis and nuclear fragmentation that enhance safety and efficacy of the procedure.

  11. Controlling nanoscale acoustic strains in silicon using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tzianaki, E.; Bakarezos, M.; Tsibidis, G. D.; Petrakis, S.; Loukakos, P. A.; Kosmidis, C.; Tatarakis, M.; Papadogiannis, N. A.

    2016-06-01

    The influence of femtosecond laser pulse chirp on laser-generated longitudinal acoustic strains in Si (100) monocrystal substrates is studied. Degenerate femtosecond pump-probe transient reflectivity measurements are performed using a layered structure of thin Ti transducer film on an Si substrate. Experimental results show that acoustic strains, manifested as strong Brillouin oscillations, are more effectively induced when negatively chirped femtosecond laser pulses pump the transducer. These results are theoretically supported by a modified thermo-mechanical model based on the combination of a revised two-temperature model and elasticity theory that takes into account the instantaneous frequency of the chirped femtosecond laser pump pulses.

  12. Analysis on ultrashort-pulse laser ablation for nanoscale film of ceramics

    NASA Astrophysics Data System (ADS)

    Ho, C. Y.; Tsai, Y. H.; Chiou, Y. J.

    2017-06-01

    This paper uses the dual-phase-lag model to study the ablation characteristics of femtosecond laser processing for nanometer-sized ceramic films. In ultrafast process and ultrasmall size where the two lags occur, a dual-phase-lag can be applied to analyse the ablation characteristics of femtosecond laser processing for materials. In this work, the ablation rates of nanometer-sized lead zirconate titanate (PZT) ceramics are investigated using a dual-phase-lag and the model is solved by Laplace transform method. The results obtained from this work are validated by the available experimental data. The effects of material thermal properties on the ablation characteristics of femtosecond laser processing for ceramics are also discussed.

  13. Hawking radiation from ultrashort laser pulse filaments.

    PubMed

    Belgiorno, F; Cacciatori, S L; Clerici, M; Gorini, V; Ortenzi, G; Rizzi, L; Rubino, E; Sala, V G; Faccio, D

    2010-11-12

    Event horizons of astrophysical black holes and gravitational analogues have been predicted to excite the quantum vacuum and give rise to the emission of quanta, known as Hawking radiation. We experimentally create such a gravitational analogue using ultrashort laser pulse filaments and our measurements demonstrate a spontaneous emission of photons that confirms theoretical predictions.

  14. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  15. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J. T.; Anderson, S. G.; Anderson, G.

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  16. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE PAGES

    Moody, J. T.; Anderson, S. G.; Anderson, G.; ...

    2016-02-29

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  17. Tear menisci after laser in situ keratomileusis with mechanical microkeratome and femtosecond laser.

    PubMed

    Xie, Wenjia; Zhang, Dong; Chen, Jia; Liu, Jing; Yu, Ye; Hu, Liang

    2014-08-21

    To investigate the effect on tear menisci after laser in situ keratomileusis (LASIK) with flap creation by either microkeratome or femtosecond laser. Sixty eyes of 30 myopes were analyzed. Fifteen patients underwent LASIK with Moria II microkeratome, and the other 15 patients with 60-KHz IntraLase femtosecond laser. Upper and lower tear meniscus parameters of height (UTMH, LTMH) and area (UTMA, LTMA) were measured by SD-OCT preoperatively and 1 week, 1 month, and 3 months postoperatively. Compared with the baseline values, all tear meniscus parameters decreased significantly at each postoperative time point (all P < 0.01) in both groups. LTMH increased significantly between 1 week and 1 month and between 1 and 3 months after surgery in the microkeratome (both P < 0.01) and femtosecond laser groups (P < 0.01, P = 0.012, respectively). There were significant increases in LTMA between 1 week and 1 month after surgery in the microkeratome group (P < 0.01) and in the femtosecond laser group (P = 0.028). There were no significant differences in UTMH, UTMA, LTMH, or LTMA between two groups. The depth of ablation was negatively correlated with the LTMA at 1 week after surgery (R = -0.256, P = 0.049) for all patients. There were no significant differences in the tear meniscus parameters between the microkeratome and femtosecond laser groups. The depth of ablation was significantly correlated with the LTMA only at 1 week after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  18. Femtosecond laser ablation of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  19. Remotely manageable system for stabilizing femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Cizek, Martin; Hucl, Vaclav; Smid, Radek; Mikel, Bretislav; Lazar, Josef; Cip, Ondrej

    2014-05-01

    In the field of precise measurement of optical frequencies, laser spectroscopy and interferometric distance surveying the optical frequency synthesizers (femtosecond combs) are used as optical frequency references. They generate thousands of narrow-linewidth coherent optical frequencies at the same time. The spacing of generated components equals to the repetition frequency of femtosecond pulses of the laser. The position of the comb spectrum has a frequency offset that is derived from carrier to envelope frequency difference. The repetition frequency and mentioned frequency offset belong to main controlled parameters of the optical frequency comb. If these frequencies are electronically locked an ultrastable frequency standard (i.e. H-maser, Cs- or Rb- clock), its relative stability is transferred to the optical frequency domain. We present a complete digitally controlled signal processing chain for phase-locked loop (PLL) control of the offset frequency. The setup is able to overcome some dropouts caused by the femtosecond laser non-stabilities (temperature drifts, ripple noise and electricity spikes). It is designed as a two-stage control loop, where controlled offset frequency is permanently monitored by digital signal processing. In case of dropouts of PLL, the frequency-locked loop keeps the controlled frequency in the required limits. The presented work gives the possibility of long-time operation of femtosecond combs which is necessary when the optical frequency stability measurement of ultra-stable lasers is required. The detailed description of the modern solution of the PLL with remote management is presented.

  20. Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems

    NASA Technical Reports Server (NTRS)

    Belenov, E.; Isakov, V.; Nazarkin, A.

    1994-01-01

    Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.

  1. Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity

    NASA Astrophysics Data System (ADS)

    Castro-Olvera, Gustavo; Garduño-Mejía, Jesus; Rosete-Aguilar, Martha; Roman-Moreno, Carlos J.

    2016-09-01

    In this work we present a numerical analysis of the mode coupling between the pump-beam and the laser-beam in a Ti:Sapphire crystal used as a gain medium of a femtosecond laser. Using the Matrix ABCD and propagation gaussian beam models, we obtained an optimal configuration for compensate the astigmatism in the output beam laser. Also we analysed pump-beam propagation and got the settings to fix the astigmatism in the crystal. Furthermore we apply this configuration to a homemade femtosecond laser, accomplishing an overall efficiency of laser to 20% in continuum wave (CW) and 16% in mode looking (ML) operation. The femtosecond laser have 30 nm bandwidth to FWHM at 810 nm corresponding 30fs.

  2. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    NASA Astrophysics Data System (ADS)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  3. Femtosecond Laser Flap Creation for Laser In Situ Keratomileusis in the Setting of Previous Radial Keratotomy.

    PubMed

    Rush, Sloan W; Rush, Ryan B

    2015-01-01

    The aim of the study was to report the outcomes of laser in situ keratomileusis (LASIK) in subjects with previous radial keratotomy (RK) using a novel femtosecond laser setting on a proprietary femtosecond laser platform. This was a retrospective, consecutive chart review of patients at a single private practice institution. The medical records of 16 eyes of 8 subjects who underwent femtosecond-assisted LASIK for consecutive hyperopia after RK were retrospectively reviewed. The preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed. All 16 eyes had successful femtosecond laser flap creation without significant intraoperative or postoperative complications. Uncorrected visual acuity significantly improved postoperatively (P = 0.0142) and remained stable through the final follow-up interval at 9 to 12 months postoperatively. None of the subjects lost any lines of best spectacle-corrected visual acuity in the postoperative period. The novel femtosecond laser technique described in this study can provide a safe and effective method for patients undergoing LASIK after previous RK. Future investigations are required to further validate the findings reported in this study.

  4. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  5. Reduction of protection from laser eyewear with ultrashort exposure

    NASA Astrophysics Data System (ADS)

    Stolarski, David J.; Stolarski, Jacob; Noojin, Gary D.; Rockwell, Benjamin A.; Thomas, Robert J.

    2001-07-01

    We have measured the optical density of various laser eye protection samples as a function of increasing irradiance. We show that the protective quality of some eyewear degrades as irradiance increases. In previous studies this problem has been demonstrated in samples irradiated by nanosecond pulses, but the current study shows that the modern laser eye protection seems to be robust except for the irradiance possible with ultrashort laser pulse exposure. We discuss the most likely saturation mechanisms in this pulse duration regime and discuss relevance to laser safety.

  6. No effect of femtosecond laser pulses on M13, E. coli, DNA, or protein.

    PubMed

    Wigle, Jeffrey C; Holwitt, Eric A; Estlack, Larry E; Noojin, Gary D; Saunders, Katharine E; Yakovlev, Valdislav V; Rockwell, Benjamin A

    2014-01-01

    Data showing what appears to be nonthermal inactivation of M13 bacteriophage (M13), Tobacco mosaic virus, Escherichia coli (E. coli), and Jurkatt T-cells following exposure to 80-fs pulses of laser radiation have been published. Interest in the mechanism led to attempts to reproduce the results for M13 and E. coli. Bacteriophage plaque-forming and bacteria colony-forming assays showed no inactivation of the microorganisms; therefore, model systems were used to see what, if any, damage might be occurring to biologically important molecules. Purified plasmid DNA (pUC19) and bovine serum albumin were exposed to and analyzed by agarose gel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively, and no effect was found. DNA and coat proteins extracted from laser-exposed M13 and analyzed by AGE or PAGE found no effect. Raman scattering by M13 in phosphate buffered saline was measured to determine if there was any physical interaction between M13 and femtosecond laser pulses, and none was found. Positive controls for the endpoints measured produced the expected results with the relevant assays. Using the published methods, we were unable to reproduce the inactivation results or to show any interaction between ultrashort laser pulses and buffer/water, DNA, protein, M13 bacteriophage, or E. coli.

  7. No effect of femtosecond laser pulses on M13, E. coli, DNA, or protein

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Holwitt, Eric A.; Estlack, Larry E.; Noojin, Gary D.; Saunders, Katharine E.; Yakovlev, Valdislav V.; Rockwell, Benjamin A.

    2014-01-01

    Data showing what appears to be nonthermal inactivation of M13 bacteriophage (M13), Tobacco mosaic virus, Escherichia coli (E. coli), and Jurkatt T-cells following exposure to 80-fs pulses of laser radiation have been published. Interest in the mechanism led to attempts to reproduce the results for M13 and E. coli. Bacteriophage plaque-forming and bacteria colony-forming assays showed no inactivation of the microorganisms; therefore, model systems were used to see what, if any, damage might be occurring to biologically important molecules. Purified plasmid DNA (pUC19) and bovine serum albumin were exposed to and analyzed by agarose gel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively, and no effect was found. DNA and coat proteins extracted from laser-exposed M13 and analyzed by AGE or PAGE found no effect. Raman scattering by M13 in phosphate buffered saline was measured to determine if there was any physical interaction between M13 and femtosecond laser pulses, and none was found. Positive controls for the endpoints measured produced the expected results with the relevant assays. Using the published methods, we were unable to reproduce the inactivation results or to show any interaction between ultrashort laser pulses and buffer/water, DNA, protein, M13 bacteriophage, or E. coli.

  8. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  9. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.; Skoulas, Evangelos; Papadopoulos, Antonis; Stratakis, Emmanuel

    2016-08-01

    The significance of the magnitude of the Prandtl number of a fluid in the propagation direction of induced convection rolls is elucidated. Specifically, we report on the physical mechanism to account for the formation and orientation of previously unexplored supra-wavelength periodic surface structures in dielectrics, following melting and subsequent capillary effects induced upon irradiation with ultrashort laser pulses. Counterintuitively, it is found that such structures exhibit periodicities, which are markedly, even multiple times, higher than the laser excitation wavelength. It turns out that the extent to which the hydrothermal waves relax depends upon the laser beam energy, produced electron densities upon excitation with femtosecond pulsed lasers, the magnitude of the induced initial local roll disturbances, and the magnitude of the Prandtl number with direct consequences on the orientation and size of the induced structures. It is envisaged that this elucidation may be useful for the interpretation of similar, albeit large-scale periodic or quasiperiodic structures formed in other natural systems due to thermal gradients, while it can also be of great importance for potential applications in biomimetics.

  10. Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser

    NASA Astrophysics Data System (ADS)

    Hung, Chia-Hung; Chang, Fuh-Yu

    2017-05-01

    In this study, a curve micromaching process on the edges of nitinol biliary stent was proposed by a femtosecond laser system with a galvano-mirror scanner. Furthermore, the outer diameter of nitinol tube was 5.116 mm, its inner diameter was 4.648 mm, and its length was 100 mm. The initial fabricated results of nitinol biliary stent represented that the edges of nitinol biliary stent were steep and squared by femtosecond laser. However, the results also indicated that if the laser movement path was precisely programmed by utilizing the unique characteristic of Gaussian beam of femtosecond laser with aligning the edges of stent, the radius of edges enhanced significantly from 9 μm to 42.5 μm. As a result, the edges of nitinol biliary stent can be successfully fabricated from squared edges to rounded-shaped edges with precise dimension, clean surface morphology, and minimal heat-affected zone remained. Hence, the nitinol biliary stent, after femtosecond laser micromachining, would not need any further post-process to remove heat-affected zone and the squared edges.

  11. Comprehensive studies of ultrashort laser pulse ablation of tin target at terawatt power

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-01-01

    The fundamental properties of ultrashort laser interactions with metals using up to terawatt power were comprehensively studied, i.e., specifically mass ablation, nanoparticle formation, and ion dynamics using multitude of diagnostic techniques. Results of this study can be useful in many fields of research including spectroscopy, micromachining, thin film fabrication, particle acceleration, physics of warm dense matter, and equation-of-state determination. A Ti:Sapphire femtosecond laser system (110 mJ maximum energy, 40 fs, 800 nm, P-polarized, single pulse mode) was used, which delivered up to 3 terawatt laser power to ablate 1 mm tin film in vacuum. The experimental analysis includes the effect of the incident laser fluence on the ablated mass, size of the ablated area, and depth of ablation using white light profilometer. Atomic force microscope was used to measure the emitted particles size distribution at different laser fluence. Faraday cup (FC) detector was used to analyze the emitted ions flux by measuring the velocity, and the total charge of the emitted ions. The study shows that the size of emitted particles follows log-normal distribution with peak shifts depending on incident laser fluence. The size of the ablated particles ranges from 20 to 80 nm. The nanoparticles deposited on the wafer tend to aggregate and to be denser as the incident laser fluence increases as shown by AFM images. Laser ablation depth was found to increase logarithmically with laser fluence then leveling off at laser fluence > 400 J/cm2. The total ablated mass tends to increase logarithmically with laser fluence up to 60 J/cm2 while, increases gradually at higher fluence due to the increase in the ablated area. The measured ion emitted flux shows a linear dependence on laser fluence with two distinct regimes. Strong dependence on laser fluence was observed at fluences < 350 J/cm2. Also, a slight enhancement in ion velocity was observed with increasing laser fluence up to 350 J

  12. Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model

    NASA Astrophysics Data System (ADS)

    Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.

    2016-08-01

    We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.

  13. Single-cell optoporation and transfection using femtosecond laser and optical tweezers.

    PubMed

    Waleed, Muhammad; Hwang, Sun-Uk; Kim, Jung-Dae; Shabbir, Irfan; Shin, Sang-Mo; Lee, Yong-Gu

    2013-01-01

    In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell.

  14. Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields

    NASA Astrophysics Data System (ADS)

    Fushitani, M.; Liu, C.-N.; Matsuda, A.; Endo, T.; Toida, Y.; Nagasono, M.; Togashi, T.; Yabashi, M.; Ishikawa, T.; Hikosaka, Y.; Morishita, T.; Hishikawa, A.

    2016-02-01

    Coherent light-matter interaction provides powerful methods for manipulating quantum systems. Rabi oscillation is one such process. As it enables complete population transfer to a target state, it is thus routinely exploited in a variety of applications in photonics, notably quantum information processing. The extension of coherent control techniques to the multiphoton regime offers wider applicability, and access to highly excited or dipole-forbidden transition states. However, the multiphoton Rabi process is often disrupted by other competing nonlinear effects such as the a.c. Stark shift, especially at the high laser-field intensities necessary to achieve ultrafast Rabi oscillations. Here we demonstrate a new route to drive two-photon Rabi oscillations on timescales as short as tens of femtoseconds, by utilizing the strong-field phenomenon known as Freeman resonance. The scenario is not specific to atomic helium as investigated in the present study, but broadly applicable to other systems, thus opening new prospects for the ultrafast manipulation of Rydberg states.

  15. Correlation between anterior chamber characteristics and laser flare photometry immediately after femtosecond laser treatment before phacoemulsification

    PubMed Central

    Pahlitzsch, M; Torun, N; Pahlitzsch, M L; Klamann, M K J; Gonnermann, J; Bertelmann, E; Pahlitzsch, T

    2016-01-01

    Purpose To assess the anterior chamber (AC) characteristics and its correlation to laser flare photometry immediately after femtosecond laser-assisted capsulotomy and photodisruption. Patients and methods The study included 97 cataract eyes (n=97, mean age 68.6 years) undergoing femtosecond laser-assisted cataract surgery (FLACS). Three cohorts were analysed relating to the flare photometry directly post femtosecond laser treatment (flare <100 n=28, 69.6±7 years; flare 100–249 n=47, 67.7±8 years; flare >249 photon counts per ms cohort n=22, 68.5±10 years). Flare photometry (KOWA FM-700), corneal topography (Oculus Pentacam, Germany: AC depth, volume, angle, pachymetry), axial length, pupil diameter, and endothelial cells were assessed before FLACS, immediately after femtosecond laser treatment and 1 day postoperative (LenSx Alcon, USA). Statistical data were analysed by SPSS v19.0, Inc. Results The AC depth, AC volume, AC angle, central and thinnest corneal thickness showed a significant difference between flare <100 vs flare 100–249 10 min post femtosecond laser procedure (P=0.002, P=0.023, P=0.007, P=0.003, P=0.011, respectively). The AC depth, AC volume, and AC angle were significantly larger (P=0.001, P=0.007, P=0.003, respectively) in the flare <100 vs flare >249 cohort 10 min post femtosecond laser treatment. Conclusions A flat AC, low AC volume, and a narrow AC angle were parameters associated with higher intraocular inflammation. These criteria could be used for patient selection in FLACS to reduce postoperative intraocular inflammation. PMID:27229702

  16. Correlation between anterior chamber characteristics and laser flare photometry immediately after femtosecond laser treatment before phacoemulsification.

    PubMed

    Pahlitzsch, M; Torun, N; Pahlitzsch, M L; Klamann, M K J; Gonnermann, J; Bertelmann, E; Pahlitzsch, T

    2016-08-01

    PurposeTo assess the anterior chamber (AC) characteristics and its correlation to laser flare photometry immediately after femtosecond laser-assisted capsulotomy and photodisruption.Patients and methodsThe study included 97 cataract eyes (n=97, mean age 68.6 years) undergoing femtosecond laser-assisted cataract surgery (FLACS). Three cohorts were analysed relating to the flare photometry directly post femtosecond laser treatment (flare <100 n=28, 69.6±7 years; flare 100-249 n=47, 67.7±8 years; flare >249 photon counts per ms cohort n=22, 68.5±10 years). Flare photometry (KOWA FM-700), corneal topography (Oculus Pentacam, Germany: AC depth, volume, angle, pachymetry), axial length, pupil diameter, and endothelial cells were assessed before FLACS, immediately after femtosecond laser treatment and 1 day postoperative (LenSx Alcon, USA). Statistical data were analysed by SPSS v19.0, Inc.ResultsThe AC depth, AC volume, AC angle, central and thinnest corneal thickness showed a significant difference between flare <100 vs flare 100-249 10 min post femtosecond laser procedure (P=0.002, P=0.023, P=0.007, P=0.003, P=0.011, respectively). The AC depth, AC volume, and AC angle were significantly larger (P=0.001, P=0.007, P=0.003, respectively) in the flare <100 vs flare >249 cohort 10 min post femtosecond laser treatment.ConclusionsA flat AC, low AC volume, and a narrow AC angle were parameters associated with higher intraocular inflammation. These criteria could be used for patient selection in FLACS to reduce postoperative intraocular inflammation.

  17. Volume gratings and welding of glass/plastic by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru

    2018-01-01

    Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.

  18. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  19. Evidence of femtosecond-laser pulse induced cell membrane nanosurgery

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2017-02-01

    The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  20. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  1. Femtosecond laser fabricating black silicon in alkaline solution

    NASA Astrophysics Data System (ADS)

    Meng, Jiao; Song, Haiying; Li, Xiaoli; Liu, Shibing

    2015-03-01

    An efficient approach for enhancing the surface antireflection is proposed, in which a black silicon is fabricated by a femtosecond laser in alkaline solution. In the experiment, 2 wt% NaOH solution is formulated at room temperature (22 ± 1 °C). Then, a polished silicon is scanned via femtosecond laser irradiation in 2 wt% NaOH solution. Jungle-like microstructures on the black silicon surface are characterized using an atomic force microscopy. The reflectance of the black silicon is measured at the wavelengths ranging from 400 to 750 nm. Compared to the polished silicon, the black silicon can significantly suppress the optical reflection throughout the visible region (<5 %). Meanwhile, we also investigated the factors of the black silicon, including the femtosecond laser pulse energy and the scanning speed. This method is simple and effective to acquire the black silicon, which probably has a large advantage in fast and cost-effective black silicon fabrication.

  2. Consequences of Femtosecond Laser Filament Generation Conditions in Standoff Laser Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-08-08

    We investigate the role of femtosecond laser focusing conditions on ablation properties and its implications on analytical merits and standoff detection applications. Femtosecond laser pulses can be used for ablation either by tightly focusing or by using filaments generated during its propagation. We evaluated the persistence of atomic, and molecular emission features as well as time evolution of the fundamental properties (temperature and density) of ablation plumes generated using different methods.

  3. Femtosecond laser corneal surgery with in situ determination of the laser attenuation and ablation threshold by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Nuzzo, Valeria; Albert, Olivier; Mourou, Gérard A.; Savoldelli, Michèle; Dagonet, Françoise; Donate, David; Legeais, Jean-Marc

    2007-02-01

    Femtosecond lasers start to be routinely used in refractive eye surgery. Current research focuses on their application to glaucoma and cataract surgery as well as cornea transplant procedures. To avoid unwanted tissue damage during the surgical intervention it is of utmost importance to maintain a working energy just above the ablation threshold and maintain the laser energy at this working point independently of the local and global tissue properties. To quantify the attenuation of the laser power density in the tissue by absorption, scattering and modification of the point spread function we monitor the second harmonic radiation generated in the collagen matrix of the cornea when exposed to ultrashort laser pulses. We use a CPA system with a regenerative amplifier delivering pulses at a wavelength of 1.06 μm, pulse durations of 400 fs and a maximum energy of 60 μJ. The repetition rate is adjustable from single shot up to 10 kHz. The experiments are performed on human corneas provided by the French Eye bank. To capture the SHG radiation we use a photomultiplier tube connected to a lockin amplifier tuned to the laser repetition rate. The measured data indicates an exponential decay of the laser beam intensity in the volume of the sample and allows for the quantification of the attenuation coefficient and its correlation with the optical properties of the cornea. Complementary analyses were performed on the samples by ultrastructural histology.

  4. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  5. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  6. Femtosecond digital lensless holographic microscopy to image biological samples.

    PubMed

    Mendoza-Yero, Omel; Calabuig, Alejandro; Tajahuerce, Enrique; Lancis, Jesús; Andrés, Pedro; Garcia-Sucerquia, Jorge

    2013-09-01

    The use of femtosecond laser radiation in digital lensless holographic microscopy (DLHM) to image biological samples is presented. A mode-locked Ti:Sa laser that emits ultrashort pulses of 12 fs intensity FWHM, with 800 nm mean wavelength, at 75 MHz repetition rate is used as a light source. For comparison purposes, the light from a light-emitting diode is also used. A section of the head of a drosophila melanogaster fly is studied with both light sources. The experimental results show very different effects of the pinhole size on the spatial resolution with DLHM. Unaware phenomena on the field of the DLHM are analyzed.

  7. Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene

    PubMed Central

    Goswami, Tapas; Das, Dipak K.; Goswami, Debabrata

    2013-01-01

    Dynamics of the chemical transformation of dicyclopentadiene into cyclopentadiene in a supersonic molecular beam is elucidated using femtosecond time-resolved degenerate pump–probe mass spectrometry. Control of this ultrafast chemical reaction is achieved by using linearly chirped frequency modulated pulses. We show that negatively chirped femtosecond laser pulses enhance the cyclopentadiene photoproduct yield by an order of magnitude as compared to that of the unmodulated or the positively chirped pulses. This demonstrates that the phase structure of femtosecond laser pulse plays an important role in determining the outcome of a chemical reaction. PMID:24098059

  8. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  9. Dipolar effects on propagation of ultrashort laser pulse in one-dimensional para-nitroaniline (pNA) molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Li, Hong-Yu; Liu, Ji-Cai; Wang, Chuan-Kui; Luo, Yi

    2005-12-01

    The dynamic behaviour of ultrashort (femtosecond) laser pulses in a molecular medium is studied by solving the full Maxwell-Bloch equations beyond the limits of the slowly varying envelope approximation and the rotating-wave approximation under the resonant and the non-resonant conditions. A one-dimensional asymmetric charge-transfer molecule, para-nitroaniline, is used as a model molecule whose electronic properties are calculated with the time-dependent hybrid density functional theory. Under the one-photon resonant condition, 4π pulse is separated into two sub-pulses. The weight of the second-harmonic component mainly contributed by the two-photon excitation becomes stronger with longer propagation time. Under the two-photon resonant condition, the separation of 4π pulse is not induced and many higher-order spectral components beyond the second-harmonic generation occur. Interestingly, when the pulse propagates for long enough, the carrier modification becomes so significant that a continuous spectrum is generated. The Fourier transform of the high-harmonic spectrum demonstrates that an even shorter laser pulse can be produced in both resonant and non-resonant propagations. The effects of permanent dipole moments on the pulse evolution are discussed.

  10. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  11. Femtosecond Laser Eyewear Protection: Measurements and Precautions

    PubMed Central

    Stromberg, Christopher J.; Hadler, Joshua A.; Alberding, Brian G.; Heilweil, Edwin J.

    2018-01-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications. PMID:29353984

  12. Femtosecond Laser Eyewear Protection: Measurements and Precautions.

    PubMed

    Stromberg, Christopher J; Hadler, Joshua A; Alberding, Brian G; Heilweil, Edwin J

    2017-11-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti +3 :Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications.

  13. Critical dimension control using ultrashort laser for improving wafer critical dimension uniformity

    NASA Astrophysics Data System (ADS)

    Avizemer, Dan; Sharoni, Ofir; Oshemkov, Sergey; Cohen, Avi; Dayan, Asaf; Khurana, Ranjan; Kewley, Dave

    2015-07-01

    Requirements for control of critical dimension (CD) become more demanding as the integrated circuit (IC) feature size specifications become tighter and tighter. Critical dimension control, also known as CDC, is a well-known laser-based process in the IC industry that has proven to be robust, repeatable, and efficient in adjusting wafer CD uniformity (CDU) [Proc. SPIE 6152, 615225 (2006)]. The process involves locally and selectively attenuating the deep ultraviolet light which goes through the photomask to the wafer. The input data for the CDC process in the wafer fab is typically taken from wafer CDU data, which is measured by metrology tools such as wafer-critical dimension-scanning electron microscopy (CD-SEM), wafer optical scatterometry, or wafer level CD (WLCD). The CD correction process uses the CDU data in order to create an attenuation correction contour, which is later applied by the in-situ ultrashort laser system of the CDC to locally change the transmission of the photomask. The ultrashort pulsed laser system creates small, partially scattered, Shade-In-Elements (also known as pixels) by focusing the laser beam inside the quartz bulk of the photomask. This results in the formation of a localized, intravolume, quartz modified area, which has a different refractive index than the quartz bulk itself. The CDC process flow for improving wafer CDU in a wafer fab with detailed explanations of the shading elements formation inside the quartz by the ultrashort pulsed laser is reviewed.

  14. Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.

    PubMed

    Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong

    2006-12-01

    The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.

  15. [Evaluation of free radical quantity in the anterior chamber following femtosecond laser-assisted capsulotomy].

    PubMed

    Tóth, Gábor; Sándor, Gábor László; Kleiner, Dénes; Szentmáry, Nóra; Kiss, Huba J; Blázovics, Anna; Nagy, Zoltán Zsolt

    2016-11-01

    Femtosecond laser is a revolutionary, innovative treatment method used in cataract surgery. To evaluate free radical quantity in the anterior chamber of the eye, during femtosecond laser assisted capsulotomy, in a porcine eye model. Seventy fresh porcine eyes were collected within 2 hours post mortem, were transported at 4 ºC and treated within 7 hours. Thirty-five eyes were used as control and 35 as femtosecond laser assisted capsulotomy group. A simple luminol-dependent chemiluminescence method was used to measure the total scavenger capacity in the aqueous humour, as an indicator of free radical production. The emitted photons were expressed in relative light unit %. The relative light unit % was lower in the control group (median 1%, interquartile range [0.4-3%]) than in the femtosecond laser assisted capsulotomy group (median 4.4%, interquartile range [1.5%-21%]) (p = 0.01). Femtosecond laser assisted capsulotomy decreases the antioxidant defense of the anterior chamber, which refers to a significant free radical production during femtosecond laser assisted capsulotomy. Orv. Hetil., 2016, 157(47), 1880-1883.

  16. Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique.

    PubMed

    Duan, Yuwen; McKay, Aaron; Jovanovic, Nemanja; Ams, Martin; Marshall, Graham D; Steel, M J; Withford, Michael J

    2013-07-29

    We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped "cladding" in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.

  17. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  18. Ultra-short wavelength operation in Thulium-doped silica fiber laser with bidirectional pumping

    NASA Astrophysics Data System (ADS)

    Xiao, Xusheng; Guo, Haitao; Yan, Zhijun; Wang, Hushan; Xu, Yantao; Lu, Min; Wang, Yishan; Peng, Bo

    2017-02-01

    An ultra-short wavelength operation of Tm-doped all fiber laser based on fiber Bragg gratings (FBGs) was developed. A bi-directional pump configuration for the ultra-short wavelength operation was designed and investigated for the first time. the laser yielded 3.15W of continuous-wave output at 1706.75nm with a narrow-linewidth of 50pm and a maximum slope efficiency of 42.1%. The dependencies of the slope efficiencies and pump threshold of the laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail. An experimental comparative study between two Thulium-doped fiber lasers (TDFLs) with two different pumping configuration(forward unidirectional pumping and bidirectional pumping) was presented. It is indisputable that the development of 1.7μm silicate fiber lasers with Watt-level output power open up a number of heart-stirring and tempting application windows.

  19. Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives

    DTIC Science & Technology

    2013-02-01

    DTRA-TR-12-65 Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives ...Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives HDTRA1-09-1-0021 Valery...destructive detection of volatile explosives . Moshe Shapiro1, Valery Milner1 and Jun Ye2 1University of British Columbia, Vancouver, Canada 2JILA

  20. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  1. First light from the Diocles laser: Relativistic laser-plasmas and beams

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2007-06-01

    Reported are first experimental results from a new high-power (150 TW) laser, Diocles, now in operation at the University of Nebraska, Lincoln. Discussed are novel approaches to using the ultra-high-intensity light from this laser to study relativistic laser plasma interactions. Bright, ultrashort duration (femtosecond ) pulses of energetic (keV -- MeV) x-ray and charged-particle beams are generated through these interactions. Also covered in this talk will be applications of these unique radiation sources for research in the physical sciences, as well as biomedicine, defense and homeland security.

  2. TiOx-based thin-film transistors prepared by femtosecond laser pre-annealing

    NASA Astrophysics Data System (ADS)

    Shan, Fei; Kim, Sung-Jin

    2018-02-01

    We report on thin-film transistors (TFTs) based on titanium oxide (TiOx) prepared using femtosecond laser pre-annealing for electrical application of n-type channel oxide transparent TFTs. Amorphous TFTs using TiOx semiconductors as an active layer have a low-temperature process and show remarkable electrical performance. And the femtosecond laser pre-annealing process has greater flexibility and development space for semiconductor production activity, with a fast preparation method. TFTs with a TiOx semiconductor pre-annealed via femtosecond laser at 3 W have a pinhole-free and smooth surface without crystal grains.

  3. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.

    PubMed

    Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J

    2010-10-01

    We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.

  4. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  5. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  6. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death

  7. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz; Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk; Zhukov, Vladimir P.

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when allmore » motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.« less

  8. Femtosecond laser ablated durable superhydrophobic PTFE sheet for oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Wentao; Yang, Qing; Chen, Feng; Yong, Jiale; Fang, Yao; Huo, Jinglan

    2017-02-01

    Femtosecond laser microfabrication has been attracting increasing interest of researchers in recent years, and been applied on interface science to control the wettability of solid surfaces. Herein, we fabricate a kind of rough microstructures on polytetrafluoroethylene (PTFE) sheet by femtosecond laser. The femtosecond laser ablated surfaces show durable superhydrophobicity and ultralow water adhesion even after storing in a harsh environment for a long time, including strong acid, strong alkali, and high temperature. A penetrating microholes array was further generated on the rough superhydrophobic PTFE sheet by a subsequent mechanical drilling process. The as-prepared material was successfully applied in the field of oil/water separation due to the inverse superhydrophobicity and superoleophilicity.

  9. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y

    2016-07-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  10. Effect of marking pens on femtosecond laser-assisted flap creation.

    PubMed

    Ide, Takeshi; Kymionis, George D; Abbey, Ashkan M; Yoo, Sonia H; Culbertson, William W; O'Brien, Terrence P

    2009-06-01

    To compare the ease of the flap lift after central corneal marking with 2 types of marking pens after femtosecond laser-assisted flap creation in laser in situ keratomileusis. Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. Porcine eyes were prepared for flap creation with a femtosecond laser (IntraLase). The eyes were assigned to 1 of 4 groups. After the femtosecond laser treatment, the difficulty of flap lifting the 4 groups was compared. Twelve porcine eyes, 3 in each group, were evaluated. In the 2 groups in which an oil-based pen was used, the corneal flap could not be lifted. In the 2 groups in which a water-based pen was used, the corneal flap was easily lifted. Oil-based ink may reduce the ability of the femtosecond laser to penetrate the cornea. The resultant corneal flap may require aggressive manipulation to be lifted. When used to mark the center of the cornea before flap creation, water-based ink provided greater ease of corneal flap lifting than oil-based ink. Because the marking is located over the center of the pupil, any alteration of the cornea in this area from aggressive flap lifting may result in substantial visual loss. Therefore, the use of an oil-based ink to mark the central cornea must be avoided to prevent traumatic irregularities of the flap stroma.

  11. Control of electron excitation and localization in the dissociation of H2(+) and its isotopes using two sequential ultrashort laser pulses.

    PubMed

    He, Feng; Ruiz, Camilo; Becker, Andreas

    2007-08-24

    We study the control of dissociation of the hydrogen molecular ion and its isotopes exposed to two ultrashort laser pulses by solving the time-dependent Schrödinger equation. While the first ultraviolet pulse is used to excite the electron wave packet on the dissociative 2psigma{u} state, a second time-delayed near-infrared pulse steers the electron between the nuclei. Our results show that by adjusting the time delay between the pulses and the carrier-envelope phase of the near-infrared pulse, a high degree of control over the electron localization on one of the dissociating nuclei can be achieved (in about 85% of all fragmentation events). The results demonstrate that current (sub-)femtosecond technology can provide a control over both electron excitation and localization in the fragmentation of molecules.

  12. Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-04-01

    In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.

  13. Corneal tissue interactions of a new 345 nm ultraviolet femtosecond laser.

    PubMed

    Hammer, Christian M; Petsch, Corinna; Klenke, Jörg; Skerl, Katrin; Paulsen, Friedrich; Kruse, Friedrich E; Seiler, Theo; Menzel-Severing, Johannes

    2015-06-01

    To assess the suitability of a new 345 nm ultraviolet (UV) femtosecond laser for refractive surgery. Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany. Experimental study. Twenty-five porcine corneas were used for stromal flap or lamellar bed creation (stromal depth, 150 μm) and 15 rabbit corneas for lamellar bed creation near the endothelium. Ultraviolet femtosecond laser cutting-line morphology, gas formation, and keratocyte death rate were evaluated using light and electron microscopy and compared with a standard infrared (IR) femtosecond laser. Endothelial cell survival was examined after application of a laser cut near the endothelium. Flaps created by the UV laser were lifted easily. Gas formation was reduced 4.2-fold compared with the IR laser (P = .001). The keratocyte death rate near the interface was almost doubled; however, the death zone was confined to a region within 38 μm ± 10 (SD) along the cutting line. Histologically and ultrastructurally, a distinct and continuous cutting line was not found after UV femtosecond laser application if flap lifting was omitted and standard energy parameters were used. Instead, a regular pattern of vertical striations, presumably representing self-focusing induced regions of optical tissue breakdown, were identified. Lamellar bed creation with standard energy parameters 50 μm from the endothelium rendered the endothelial cells intact and viable. The new 345 nm femtosecond laser is a candidate for pending in vivo trials and future high-precision flap creation, intrastromal lenticule extraction, and ultrathin Descemet-stripping endothelial keratoplasty. Mr. Klenke and Ms. Skerl were paid employees of Wavelight GmbH when the study was performed. Dr. Seiler is a scientific consultant to Wavelight GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Ultrafast Laser Interaction Processes for LIBS and Other Sensing Technologies

    DTIC Science & Technology

    2013-04-05

    Propagation of ultrashort pulses through water, Optics Express, (02 2007): . doi: 12/02/2009 8.00 Z. Chen, S. Mao. Femtosecond laser -induced electronic...CO2 double- pulse laser -induced breakdown spectroscopy for explosive residues detection" SPIE Defense, Security, Sensing; Orlando, FL, USA; 04/07...Matthieu Baudelet, Michael Sigman, Paul J Dagdigian, Martin C. Richardson, "Nd:YAG-CO2 Double- Pulse Laser Induced Breakdown Spectroscopy for Explosive

  15. Laser ablation mechanism of transparent layers on semiconductors with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Rublack, Tino; Hartnauer, Stefan; Mergner, Michael; Muchow, Markus; Seifert, Gerhard

    2011-12-01

    Transparent dielectric layers on semiconductors are used as anti-reflection coatings both for photovoltaic applications and for mid-infrared optical elements. We have shown recently that selective ablation of such layers is possible using ultrashort laser pulses at wavelengths being absorbed by the semiconductor. To get a deeper understanding of the ablation mechanism, we have done ablation experiments for different transparent materials, in particular SiO2 and SixNy on silicon, using a broad range of wavelengths ranging from UV to IR, and pulse durations between 50 and 2000 fs. The characterization of the ablated regions was done by light microscopy and atomic force microscopy (AFM). Utilizing laser wavelengths above the silicon band gap, selective ablation of the dielectric layer without noticeable damage of the opened silicon surface is possible. In contrast, ultrashort pulses (1-2 ps) at mid-infrared wavelengths already cause damage in the silicon at lower intensities than in the dielectric layer, even when a vibrational resonance (e.g. at λ = 9.26 μm for SiO2) is addressed. The physical processes behind this, on the first glance counterintuitive, observation will be discussed.

  16. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser.

    PubMed

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders; Søndergaard, Anders

    2012-01-01

    Posterior lamellar grafting of the cornea has become the preferred technique for treatment of corneal endothelial dysfunction. Posterior lamellar grafts are usually cut by a micro-keratome or a femto-second laser after the epithelial side of the donor cornea has been applanated. This approach often results in variable central graft thickness in different grafts and an increase in graft thickness towards the periphery in every graft. The purpose of this study was to evaluate if posterior lamellar grafts can be prepared from the endothelial side by a femto-second laser, resulting in reproducible, thin grafts of even thickness. A CZM 500 kHz Visumax femto-second laser was used. Organ cultured donor grafts were mounted in an artifical anterior chamber with the endothelial side up and out. Posterior grafts of 7.8 mm diameter and 130 micron thickness were prepared by femto-second laser cutting. A standard DSAEK procedure was performed in 10 patients with Fuchs endothelial dystrophy. Patients were followed-up regularly and evaluated by measurement of complications, visual acuity, corneal thickness (Pentacam HR), and endothelial cell density. Femto-laser cutting of grafts and surgery was uncomplicated. Rebubbling was necessary in 5 of 10 cases (normally only in 1 of 20 cases). All grafts were attached and cleared up during the first few weeks. After six months, the average visual acuity was 0.30 (range: 0.16 to 0.50), corneal thickness was 0.58 mm (range 0.51 to 0.63), and endothelial cell density was 1.570 per sq. mm (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months with satisfying endothelial cell counts. Poor visual acuity caused by interface scatter was observed in most patients. Femto-second laser cutting parameters needs to be optimised to

  17. Inverse Cutting of Posterior Lamellar Corneal Grafts by a Femtosecond Laser

    PubMed Central

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders; Søndergaard, Anders

    2012-01-01

    Purpose Posterior lamellar grafting of the cornea has become the preferred technique for treatment of corneal endothelial dysfunction. Posterior lamellar grafts are usually cut by a micro-keratome or a femto-second laser after the epithelial side of the donor cornea has been applanated. This approach often results in variable central graft thickness in different grafts and an increase in graft thickness towards the periphery in every graft. The purpose of this study was to evaluate if posterior lamellar grafts can be prepared from the endothelial side by a femto-second laser, resulting in reproducible, thin grafts of even thickness. Methods A CZM 500 kHz Visumax femto-second laser was used. Organ cultured donor grafts were mounted in an artifical anterior chamber with the endothelial side up and out. Posterior grafts of 7.8 mm diameter and 130 micron thickness were prepared by femto-second laser cutting. A standard DSAEK procedure was performed in 10 patients with Fuchs endothelial dystrophy. Patients were followed-up regularly and evaluated by measurement of complications, visual acuity, corneal thickness (Pentacam HR), and endothelial cell density. Results Femto-laser cutting of grafts and surgery was uncomplicated. Rebubbling was necessary in 5 of 10 cases (normally only in 1 of 20 cases). All grafts were attached and cleared up during the first few weeks. After six months, the average visual acuity was 0.30 (range: 0.16 to 0.50), corneal thickness was 0.58 mm (range 0.51 to 0.63), and endothelial cell density was 1.570 per sq. mm (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Conclusions Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months with satisfying endothelial cell counts. Poor visual acuity caused by interface scatter was observed in most patients. Femto-second laser cutting

  18. Femtosecond laser-induced blazed periodic grooves on metals.

    PubMed

    Hwang, Taek Yong; Guo, Chunlei

    2011-07-01

    In this Letter, we generate laser-induced periodic surface structures (LIPSSs) on platinum following femtosecond laser pulse irradiation. For the first time to our knowledge, we study the morphological profile of LIPSSs over a broad incident angular range, and find that the morphological profile of LIPSSs depends significantly on the incident angle of the laser beam. We show that LIPSS grooves become more asymmetric at a larger incident angle, and the morphological profile of LIPSSs formed at an incident angle over 55° eventually resembles that of a blazed grating. Our study suggests that the formation of the blazed groove structures is attributed to the selective ablation of grooves through the asymmetric periodic surface heating following femtosecond pulse irradiation. The blazed grooves are useful for controlling the diffraction efficiency of LIPSSs.

  19. Detection of polychlorinated biphenyls in transformer oils in Vietnam by multiphoton ionization mass spectrometry using a far-ultraviolet femtosecond laser as an ionization source.

    PubMed

    Duong, Vu Thi Thuy; Duong, Vu; Lien, Nghiem Thi Ha; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Hoa, Do Quang; Imasaka, Totaro

    2016-03-01

    Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less

  1. High-power ultrashort fiber laser for solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  2. Intraocular Lens Fragmentation Using Femtosecond Laser: An In Vitro Study

    PubMed Central

    Bala, Chandra; Shi, Jeffrey; Meades, Kerrie

    2015-01-01

    Purpose: To transect intraocular lenses (IOLs) using a femtosecond laser in cadaveric human eyes. To determine the optimal in vitro settings, to detect and characterize gasses or particles generated during this process. Methods: A femtosecond laser was used to transect hydrophobic and hydrophilic acrylic lenses. The settings required to enable easy separation of the lens fragment were determined. The gasses and particles generated were analysed using gas chromatography mass spectrometer (GC-MS) and total organic carbon analyzer (TOC), respectively. Results: In vitro the IOL fragments easily separated at the lowest commercially available energy setting of 1 μJ, 8-μm spot, and 2-μm line separation. No particles were detected in the 0.5- to 900-μm range. No significant gasses or other organic breakdown by products were detected at this setting. At much higher energy levels 12 μJ (4 × 6 μm spot and line separation) significant pyrolytic products were detected, which could be harmful to the eye. In cadaveric explanted IOL capsule complex the laser pulses could be applied through the capsule to the IOL and successfully fragment the IOL. Conclusion: IOL transection is feasible with femtosecond lasers. Further in vivo animal studies are required to confirm safety. Translational Relevance: In clinical practice there are a number of large intraocular lenses that can be difficult to explant. This in-vitro study examines the possibility of transecting the lasers quickly using femtosecond lasers. If in-vivo studies are successful, then this innovation could help ophthalmic surgeons in IOL explantation. PMID:26101721

  3. Pair Production Induced by Ultrashort and Ultraintense Laser Pulses in Plasmas

    NASA Astrophysics Data System (ADS)

    Luo, Yue-E.; Wang, Xue-Wen; Wang, Yuan-Sheng; Ji, Shen-Tong; Yu, Hong

    2018-06-01

    The probability of Schwinger pair production is calculated, which is induced by an ultraintense and ultrashort laser pulse propagating in a plasma. The dependence of the probability on the amplitude of the laser pulse and the frequency of plasmas is analyzed. Particularly, the effect of the pulse duration on the probability is discussed, by introducing a pulse-shape function to describe the temporal shape of the laser pulse. The results show that a laser with shorter pulse is more efficient in pair production. The probability of pair production increases when the order of the duration is comparable to the period of a laser.

  4. Holographic femtosecond laser processing and its application to biological materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio

    2017-02-01

    Femtosecond laser processing is a promising tool for fabricating novel and useful structures on the surfaces of and inside materials. An enormous number of pulse irradiation points will be required for fabricating actual structures with millimeter scale, and therefore, the throughput of femtosecond laser processing must be improved for practical adoption of this technique. One promising method to improve throughput is parallel pulse generation based on a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM), a technique called holographic femtosecond laser processing. The holographic method has the advantages such as high throughput, high light use efficiency, and variable, instantaneous, and 3D patterning. Furthermore, the use of an SLM gives an ability to correct unknown imperfections of the optical system and inhomogeneity in a sample using in-system optimization of the CGH. Furthermore, the CGH can adaptively compensate in response to dynamic unpredictable mechanical movements, air and liquid disturbances, a shape variation and deformation of the target sample, as well as adaptive wavefront control for environmental changes. Therefore, it is a powerful tool for the fabrication of biological cells and tissues, because they have free form, variable, and deformable structures. In this paper, we present the principle and the experimental setup of holographic femtosecond laser processing, and the effective way for processing the biological sample. We demonstrate the femtosecond laser processing of biological materials and the processing properties.

  5. On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses

    NASA Astrophysics Data System (ADS)

    Rudenko, Anton; Ma, Hongfeng; Veiko, Vadim P.; Colombier, Jean-Philippe; Itina, Tatiana E.

    2018-01-01

    Laser nanostructuring of glasses has attracted particular attention during laser decades due to its numerous applications in optics, telecommunications, sensing, nanofluidics, as well as in the development of nanocomposite materials. Despite a significant progress achieved in this field with the development and use of femtosecond laser systems, many questions remain puzzling. This study is focused on the numerical modeling of ultrashort laser interactions with glasses. Firstly, we consider laser light propagation and nonlinear ionization. Then, nanocavitation processes in glasses are modeled, followed by the hydrodynamic evolution of pores and cavities. The required conditions for nanopore formation and volume nanogratings erasure in the typical femtosecond laser-irradiation regimes are discussed in the frame of the developed model.

  6. Surface treatment of CFRP composites using femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  7. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  8. Morphologic features and surgically induced astigmatism of femtosecond laser versus manual clear corneal incisions.

    PubMed

    Zhu, Sha; Qu, Naibin; Wang, Wei; Zhu, Yanan; Shentu, Xingchao; Chen, Peiqing; Xu, Wen; Yao, Ke

    2017-11-01

    To compare the morphologic features and surgically induced astigmatism (SIA) between laser and manual clear corneal incisions (CCIs) after femtosecond laser-assisted cataract surgery. Eye Center, 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China. Prospective case series. Patients had femtosecond laser-assisted cataract surgery with a CCI created with the laser or manually after random allocation. The corrected distance visual acuity, corneal topography, and anterior segment optical coherence tomography were assessed at the 1-day, 1-week, 1-month, and 3-month follow-ups. The laser CCI group comprised 45 eyes and the manual CCI group, 48 eyes. The SIA was significantly lower in the manual CCI group than the laser CCI group at all visits (P < .05). At the 1-day and 1-week follow-ups, the mean CCI thickness was significantly smaller in the manual CCI group (P < .05). In the laser CCI group, the perpendicular linear distance between the external wound opening and the corneal vertex central line was statistically shorter than in the manual CCI group (P < .05). At 3 months, the SIA was correlated with the perpendicular linear distance with a Pearson correlation coefficient of -0.341 (P = .001). Femtosecond laser-created CCIs for cataract surgery caused more SIA than manually created CCIs, which could have resulted from inaccurate or uncertain corneal incision positioning of the femtosecond machine. Manual creation of CCIs is recommended in femtosecond laser-assisted cataract surgery until the locating system for the femtosecond laser incision is updated. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient.

    PubMed

    Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few

  10. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  11. Precision resection of intestine using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Gora, Wojciech S.; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2016-03-01

    Endoscopic resection of early colorectal neoplasms typically employs electrocautery tools, which lack precision and run the risk of full thickness thermal injury to the bowel wall with subsequent perforation. We present a means of endoluminal colonic ablation using picosecond laser pulses as a potential alternative to mitigate these limitations. High intensity ultrashort laser pulses enable nonlinear absorption processes, plasma generation, and as a consequence a predominantly non-thermal ablation regimen. Robust process parameters for the laser resection are demonstrated using fresh ex vivo pig intestine samples. Square cavities with comparable thickness to early colorectal neoplasms are removed for a wavelength of 1030 nm and 515 nm using a picosecond laser system. The corresponding histology sections exhibit in both cases only minimal collateral damage to the surrounding tissue. The ablation depth can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers for the resection of intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional electrocautery.

  12. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.

    PubMed

    Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu

    2009-06-15

    In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.

  13. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  14. Mechanical Strains Induced in Osteoblasts by Use of Point Femtosecond Laser Targeting

    PubMed Central

    Bomzon, Ze'ev; Day, Daniel; Gu, Min; Cartmell, Sarah

    2006-01-01

    A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond laser light was focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted cell. This contraction caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the monolayer. Quantification of the strain fields in the monolayer using digital image correlation revealed local strains much higher than threshold values typically reported to stimulate extracellular bone matrix production in vitro. This use of point targeting with femtosecond pulse lasers could provide a new method for stimulating cell activity in orthopaedic tissue engineering. PMID:23165014

  15. High-precision cutting of polyimide film using femtosecond laser for the application in flexible electronics

    NASA Astrophysics Data System (ADS)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2018-01-01

    The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.

  16. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE PAGES

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...

    2017-05-25

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  17. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  18. Femtosecond laser-assisted cataract surgery in anterior lenticonus due to Alport syndrome.

    PubMed

    Barnes, Alexander C; Roth, Allen S

    2017-06-01

    We describe a case of bilateral anterior lenticonus in a patient with Alport syndrome treated with femtosecond laser-assisted cataract surgery (FLACS). FLACS was performed without complication, and a desirable postoperative visual acuity was achieved. Femtosecond laser-assisted cataract surgery is an effective approach for managing patients with anterior lenticonus secondary to Alport syndrome.

  19. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  20. Comparison of Sub-Bowman Keratoplasty Laser In situ Keratomileusis Flap Properties between Microkeratome and Femtosecond Laser.

    PubMed

    Fazel, Farhad; Ghoreishi, Mohammad; Ashtari, Alireza; Arefpour, Reza; Namgar, Mohammad

    2017-01-01

    Since thin and high-quality flaps produce more satisfactory surgical outcomes, flaps created by mechanical microkeratomes are more economical as compared with femtosecond lasers, and no Iranian study has concentrated laser in situ keratomileusis (LASIK) flap peculiarities between Moria Sub-Bowman keratoplasty (SBK) microkeratomes and LDV femtoseconds, the present study compares and contrasts them. This cross-sectional study was done on all patients who underwent LASIK surgery 1-month before this study. Thirty eyes were divided into per group. Flaps in the first group and second group were created, respectively, using Moria SBK microkeratome and LDV femtosecond laser. The other stages of LASIK were done equally in both groups. One month after surgery, the thickness of flaps was measured by anterior segment optical coherence tomography in five regions of flaps. Corneal anterior density was calculated and recorded 1-month after surgery using pentacam and by employing optical densitometry in a distance in the limit range of 0-6 mm from cornea center. Densitometry measurements were obtained and expressed in standardized grayscale units (GSUs). Postsurgery densitometry results reveal that anterior densities of cornea in limit range of 0-2 mm in groups of LDV femtosecond laser and Moria microkeratome are 21.35 ± 0.87 GSU and 22.85 ± 1.25 GSU, respectively. Accordingly, these two groups are significantly different in this regard ( P < 0.001). Moreover, anterior densities of the cornea in the limit range of 2-6 mm in these groups are 19.66 ± 0.99 GSU and 20.73 ± 1.24 GSU, respectively. Accordingly, these two groups are significantly different in this regard ( P = 0.04). There is a lower mean of flap thickness in the case of LDV femtosecond laser. Femtosecond laser method is greatly preferred as compared with Moria microkeratome because of greater homogeneity in flap thickness, smaller thickness, and lower density in optical zone.

  1. Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics

    NASA Astrophysics Data System (ADS)

    Nakazawa, Masataka

    Ultrashort optical pulse sources in the 1.5-µm region are becoming increasingly important in terms of realizing ultrahigh-speed optical transmission and signal processing at optical nodes. This paper provides a detailed description of several types of mode-locked erbium-doped fiber laser, which are capable of generating picosecond-femtosecond optical pulses in the 1.55-µm region. In terms of ultrashort pulse generation at a low repetition rate (˜100 MHz), passively mode-locked fiber lasers enable us to produce pulses of approximately 100 fs. With regard to high repetition rate pulse generation at 10-40 GHz, harmonically mode-locked fiber lasers can produce picosecond pulses. This paper also describes the generation of a femtosecond pulse train at a repetition rate of 10-40 GHz by compressing the output pulses from harmonically mode-locked fiber lasers with dispersion-decreasing fibers. Finally, a new Cs optical atomic clock at a frequency of 9.1926 GHz is reported that uses a re-generatively mode-locked fiber laser as an opto-electronic oscillator instead of a quartz oscillator. The repetition rate stability reaches as high as 10-12-10-13.

  2. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  3. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  4. Generation of Ultrashort Pulses from Chromium - Forsterite Laser

    NASA Astrophysics Data System (ADS)

    Seas, Antonios

    This thesis discusses the generation of ultrashort pulses from the chromium-doped forsterite laser, the various designs, construction and operation of forsterite laser systems capable of generating picosecond and femtosecond pulses in the near infrared. Various mode-locking techniques including synchronous optical pumping, active mode-locking, and self-mode-locking were successfully engineered and implemented. Active and synchronously pumped mode-locking using a three mirror, astigmatically compensated cavity design and a forsterite crystal with a figure of merit of 26 (FOM = alpha_{rm 1064nm} /alpha_{rm 1250nm }) generated pulses with FWHM of 49 and 260 ps, respectively. The tuning range of the mode-locked forsterite laser in both cases was determined to be in the order of 100 nm limited only by the dielectric coatings of the mirrors used in the cavity. The slope efficiency was measured to be 12.5% for synchronous pumping and 9.1% for active mode-locking. A four mirror astigmatically compensated cavity was found to be more appropriate for mode-locking. Active mode-locking using the four-mirror cavity generated pulses with FWHM of 31 ps. The pulsewidth was further reduced to 6 ps by using a forsterite crystal with a higher figure of merit (FOM = 39). Pulsewidth-bandwidth measurements indicated the presence of chirp in the output pulses. Numerical calculation of the phase characteristics of various optical materials indicated that a pair of prisms made of SF 14 optical glass can be used in the cavity in order to compensate for the chirp. The insertion of the prisms in the cavity resulted in a reduction of the pulsewidth from 6 ps down to 900 fs. Careful optimization of the laser cavity resulted in the generation of stable 90-fs pulses. Pulses as short as 60 fs were generated and self-mode-locked mode of operation using the Cr:forsterite laser was demonstrated for the first time. Pure self-mode-locking was next achieved generating 105-fs pulses tunable between 1230

  5. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an

    2018-06-01

    In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.

  6. Pressure and Temperature Changes in In Vitro Applications with the Laser and Their Implications for Middle Ear Surgery

    PubMed Central

    Schwab, Burkard; Kontorinis, Georgios

    2010-01-01

    Background. The purpose of this study was to evaluate the thermal and pressure effects using a Titan Sapphire chirped-pulse amplifier system configured to deliver ultrashort pulses of 180 femtoseconds (fs) in an inner ear model. Materials and Methods. Temperature increases and heat exchange processes in the fluid (physiological saline) were examined in a calorically and physiologically approximated cochlea model for applying laser parameters effective in the creation of footplate perforations. Results. In the effective energy density range, the highest temperature increases achieved with the Carbon dioxide (CO2) laser were about 11 degrees C. The lowest temperature maxima were 6 degrees C with the Er:YAG laser (Yttrium-Aluminum-Oxide doted with Erbium3+-ions) and <5 degrees C with the femtosecond laser. Comparison of the laser-induced pressure with the limit graph published by Pfander indicated that the use of the fs laser is unobjectionable for fluences <1 J/cm2. Conclusions. Our investigations demonstrated that the application of the fs laser in middle ear surgery presents a new and promising addition to the range of ultrashort wavelength lasers used for this purpose. PMID:20953354

  7. Interface modification based ultrashort laser microwelding between SiC and fused silica.

    PubMed

    Zhang, Guodong; Bai, Jing; Zhao, Wei; Zhou, Kaiming; Cheng, Guanghua

    2017-02-06

    It is a big challenge to weld two materials with large differences in coefficients of thermal expansion and melting points. Here we report that the welding between fused silica (softening point, 1720°C) and SiC wafer (melting point, 3100°C) is achieved with a near infrared femtosecond laser at 800 nm. Elements are observed to have a spatial distribution gradient within the cross section of welding line, revealing that mixing and inter-diffusion of substances have occurred during laser irradiation. This is attributed to the femtosecond laser induced local phase transition and volume expansion. Through optimizing the welding parameters, pulse energy and interval of the welding lines, a shear joining strength as high as 15.1 MPa is achieved. In addition, the influence mechanism of the laser ablation on welding quality of the sample without pre-optical contact is carefully studied by measuring the laser induced interface modification.

  8. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  9. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery.

    PubMed

    Wu, B M; Williams, G P; Tan, A; Mehta, J S

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland).

  10. On femtosecond laser shock peening of stainless steel AISI 316

    NASA Astrophysics Data System (ADS)

    Hoppius, Jan S.; Kukreja, Lalit M.; Knyazeva, Marina; Pöhl, Fabian; Walther, Frank; Ostendorf, Andreas; Gurevich, Evgeny L.

    2018-03-01

    In this paper we report on the competition in metal surface hardening between the femtosecond shock peening on the one hand, and formation of laser-induced periodic surface structures (LIPSS) and surface oxidation on the other hand. Peening of the stainless steel AISI 316 due to shock loading induced by femtosecond laser ablation was successfully demonstrated. However, for some range of processing parameters, surface erosion due to LIPSS and oxidation seems to dominate over the peening effect. Strategies to increase the peening efficiency are discussed.

  11. Femtosecond all-solid-state laser for refractive surgery

    NASA Astrophysics Data System (ADS)

    Zickler, Leander; Han, Meng; Giese, G.'nter; Loesel, Frieder H.; Bille, Josef F.

    2003-06-01

    Refractive surgery in the pursuit of perfect vision (e.g. 20/10) requires firstly an exact measurement of abberations induced by the eye and then a sophisticated surgical approach. A recent extension of wavefront measurement techniques and adaptive optics to ophthalmology has quantitatively characterized the quality of the human eye. The next milestone towards perfect vision is developing a more efficient and precise laser scalpel and evaluating minimal-invasive laser surgery strategies. Femtosecond all-solid-state MOPA lasers based on passive modelocking and chirped pulse amplification are excellent candidates for eye surgery due to their stability, ultra-high intensity and compact tabletop size. Furthermore, taking into account the peak emission in the near IR and diffraction limited focusing abilities, surgical laser systems performing precise intrastromal incisions for corneal flap resection and intrastromal corneal reshaping promise significant improvement over today's Photorefractive Keratectomy (PRK) and Laser Assisted In Situ Keratomileusis (LASIK) techniques which utilize UV excimer lasers. Through dispersion control and optimized regenerative amplification, a compact femtosecond all-solid-state laser with pulsed energy well above LIOB threshold and kHz repetition rate is constructed. After applying a pulse sequence to the eye, the modified corneal morphology is investigated by high resolution microscopy (Multi Photon/SHG Confocal Microscope).

  12. Development of a nomogram for femtosecond laser astigmatic keratotomy for astigmatism after keratoplasty.

    PubMed

    St Clair, Ryan M; Sharma, Anushree; Huang, David; Yu, Fei; Goldich, Yakov; Rootman, David; Yoo, Sonia; Cabot, Florence; Jun, Jason; Zhang, Lijun; Aldave, Anthony J

    2016-04-01

    To develop a nomogram for femtosecond laser astigmatic keratotomy (AK) to treat post-keratoplasty astigmatism. Three academic medical centers. Retrospective interventional case series. A review of post-keratoplasty femtosecond laser AK was performed. Uncorrected (UDVA) and corrected (CDVA) distance visual acuities, manifest refraction, and keratometry were recorded preoperatively and 1, 3, 6, and 12 months postoperatively. The location, length, depth, and diameter of the AK incisions were recorded, and the surgically induced astigmatic correction was related to these variables using regression analysis. One hundred forty femtosecond laser AK procedures were performed after penetrating keratoplasty (PKP) (n = 129) or deep anterior lamellar keratoplasty (DALK) (n =11), with 89 procedures (80 PKP, 9 DALK) included in the analysis. The mean CDVA improved from 20/59 (0.47 logMAR ± 0.38 [SD]) preoperatively to 20/45 (0.35 ± 0.31 logMAR) postoperatively (P = .013) (n = 46). The mean keratometric astigmatism decreased from 8.26 ± 2.90 diopters (D) preoperatively to 3.62 ± 2.59 D postoperatively (P < .0001) (n = 89). The mean refractive cylinder decreased from 6.77 ± 2.80 D preoperatively to 2.85 ± 2.57 D postoperatively (P < .0001) (n = 69). A nomogram for femtosecond laser AK to treat post-keratoplasty astigmatism was generated using regression analysis. Femtosecond laser AK significantly improved UDVA and CDVA and significantly reduced keratometric astigmatism and refractive cylinder after keratoplasty. The nomogram generated should improve the accuracy of post-keratoplasty femtosecond laser AK. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    NASA Astrophysics Data System (ADS)

    Sotillo, B.; Chiappini, A.; Bharadwaj, V.; Hadden, J. P.; Bosia, F.; Olivero, P.; Ferrari, M.; Ramponi, R.; Barclay, P. E.; Eaton, S. M.

    2018-01-01

    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work, we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as provide a technique for their optimization.

  14. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Electron beam deflection, focusing, and collimation by a femtosecond laser lens

    NASA Astrophysics Data System (ADS)

    Minogin, V. G.

    2009-11-01

    This work examines spatial separation of femtosecond electron bunches using the ponderomotive potential created by femtosecond laser pulses. It is shown that ponderomotive optical potentials are capable of effectively deflecting, focusing, and collimating narrow femtosecond electron bunches.

  16. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  17. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  18. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  19. Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses

    NASA Astrophysics Data System (ADS)

    Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard

    2017-10-01

    We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy <20 mJ, peak power <1 TW), which enables near- and above-critical density interactions with moderate-density gas jets. We present thresholds for electron acceleration based on critical parameters for relativistic self-focusing and target width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.

  20. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    NASA Astrophysics Data System (ADS)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  1. Method of defining features on materials with a femtosecond laser

    DOEpatents

    Roos, Edward Victor [Los Altos, CA; Roeske, Franklin [Livermore, CA; Lee, Ronald S [Livermore, CA; Benterou, Jerry J [Livermore, CA

    2006-05-23

    The invention relates to a pulsed laser ablation method of metals and/or dielectric films from the surface of a wafer, printed circuit board or a hybrid substrate. By utilizing a high-energy ultra-short pulses of laser light, such a method can be used to manufacture electronic circuits and/or electro-mechanical assemblies without affecting the material adjacent to the ablation zone.

  2. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  3. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  4. Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Weickhardt, C.; Grun, C.; Grotemeyer, J.

    1998-12-01

    Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent.

  5. Several new directions for ultrafast fiber lasers [Invited].

    PubMed

    Fu, Walter; Wright, Logan G; Sidorenko, Pavel; Backus, Sterling; Wise, Frank W

    2018-04-16

    Ultrafast fiber lasers have the potential to make applications of ultrashort pulses widespread - techniques not only for scientists, but also for doctors, manufacturing engineers, and more. Today, this potential is only realized in refractive surgery and some femtosecond micromachining. The existing market for ultrafast lasers remains dominated by solid-state lasers, primarily Ti:sapphire, due to their superior performance. Recent advances show routes to ultrafast fiber sources that provide performance and capabilities equal to, and in some cases beyond, those of Ti:sapphire, in compact, versatile, low-cost devices. In this paper, we discuss the prospects for future ultrafast fiber lasers built on new kinds of pulse generation that capitalize on nonlinear dynamics. We focus primarily on three promising directions: mode-locked oscillators that use nonlinearity to enhance performance; systems that use nonlinear pulse propagation to achieve ultrashort pulses without a mode-locked oscillator; and multimode fiber lasers that exploit nonlinearities in space and time to obtain unparalleled control over an electric field.

  6. Laser assisted bioprinting using a femtosecond laser with and without a gold transductive layer: a parametric study

    NASA Astrophysics Data System (ADS)

    Desrus, H.; Chassagne, B.; Catros, S.; Artiges, C.; Devillard, R.; Petit, S.; Deloison, F.; Fricain, J. C.; Guillemot, F.; Kling, R.

    2016-03-01

    Experimental results of femtosecond Laser Assisted Bioprinting (LAB) are reported on. Two set-up, used to print different model bioinks and keratinocytes cells line HaCaT, were studied: first one was using a femtosecond laser with low pulse energy and an absorbing gold layer, whereas the second one used high pulse energy enabling the removal of the absorbing layer. Printed drop diameter and resulting height of the bioink jet are then quantified as a function of the LAB parameters such as laser energy, focus spot location or numerical aperture.

  7. Femtosecond laser dissection in C. elegans neural circuits

    NASA Astrophysics Data System (ADS)

    Samuel, Aravinthan D. T.; Chung, Samuel H.; Clark, Damon A.; Gabel, Christopher V.; Chang, Chieh; Murthy, Venkatesh; Mazur, Eric

    2006-02-01

    The nematode C. elegans, a millimeter-long roundworm, is a well-established model organism for studies of neural development and behavior, however physiological methods to manipulate and monitor the activity of its neural network have lagged behind the development of powerful methods in genetics and molecular biology. The small size and transparency of C. elegans make the worm an ideal test-bed for the development of physiological methods derived from optics and microscopy. We present the development and application of a new physiological tool: femtosecond laser dissection, which allows us to selectively ablate segments of individual neural fibers within live C. elegans. Femtosecond laser dissection provides a scalpel with submicrometer resolution, and we discuss its application in studies of neural growth, regenerative growth, and the neural basis of behavior.

  8. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors.

    PubMed

    Chen, H; Li, H; Sun, Yc; Wang, Y; Lü, Pj

    2016-02-11

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  9. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben

    2018-05-01

    Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

  10. Inactivation of Viruses by Coherent Excitations with a Low Power Visible Femtosecond Laser

    DTIC Science & Technology

    2007-06-05

    visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density...was greater than or equal to 50 MW/cm2. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width...visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power

  11. [Advantages and disadvantages of femtosecond laser assisted LASIK and SMILE].

    PubMed

    Zhang, F J; Sun, M S

    2018-01-11

    With the development of excimer laser and femtosecond laser equipment, application of diversified and customized surgical decision in modern corneal refractive surgery has been an inevitable trend. However, how to make a personalized decision with an accurate surgical design to achieve better visual quality becomes the main focus in clinical applications. Small-incision lenticule extraction (SMILE) and femtosecond assisted laser in situ keratomileusis (FS-LASIK) have been commonly acknowledged as the mainstream of corneal refractive surgery for ametropia correction nowadays. Both methods have been verified by clinical practice for many years. This article compares and elaborates the different characteristics with advantages and disadvantages of the two methods so as to provide some reasonable treatment options for refractive surgery. (Chin J Ophthalmol, 2018, 54: 7-10) .

  12. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing.

    PubMed

    Allegre, O J; Jin, Y; Perrie, W; Ouyang, J; Fearon, E; Edwardson, S P; Dearden, G

    2013-09-09

    We report on new developments in wavefront and polarization control for ultrashort-pulse laser microprocessing. We use two Spatial Light Modulators in combination to structure the optical fields of a picosecond-pulse laser beam, producing vortex wavefronts and radial or azimuthal polarization states. We also carry out the first demonstration of multiple first-order beams with vortex wavefronts and radial or azimuthal polarization states, produced using Computer Generated Holograms. The beams produced are used to nano-structure a highly polished metal surface. Laser Induced Periodic Surface Structures are observed and used to directly verify the state of polarization in the focal plane and help to characterize the optical properties of the setup.

  13. Femtosecond Laser-Assisted Descemetorhexis: A Novel Technique in Descemet Membrane Endothelial Keratoplasty.

    PubMed

    Pilger, Daniel; von Sonnleithner, Christoph; Bertelmann, Eckart; Joussen, Antonia M; Torun, Necip

    2016-10-01

    To explore the feasibility of femtosecond laser-assisted descemetorhexis (DR) to facilitate Descemet membrane endothelial keratoplasty (DMEK) surgery. Six pseudophakic patients suffering from Fuchs' endothelial dystrophy underwent femtosecond laser-assisted DMEK surgery. DR was performed using the LenSx femtosecond laser, followed by manual removal of the Descemet membrane. Optical coherence tomography images were used to measure DR parameters. Patients were followed up for 1 month to examine best corrected visual acuity, endothelial cell loss, flap detachment, and structure of the anterior chamber of the eye. The diameter of the DR approximated the intended diameter closely [mean error of 34 μm (0.45%) and 54 μm (0.67%) in the x- and y-diameter, respectively] and did not require manual correction. The median visual acuity increased from 0.4 logMAR (range 0.6-0.4 logMAR) preoperative to 0.2 logMAR (range 0-0.4 logMAR) postoperative. The median endothelial cell loss was 22% (range 7%-34%). No clinically significant flap detachments were noted. All patients had clear corneas after surgery, and no side effects or damage to structures of the anterior chamber were noted. Femtosecond laser-assisted DR is a safe and precise method for facilitating DMEK surgery.

  14. Femtosecond laser microfabrication in polymers towards memory devices and microfluidic applications

    NASA Astrophysics Data System (ADS)

    Deepak, K. L. N.; Venugopal Rao, S.; Narayana Rao, D.

    2011-12-01

    We have investigated femtosecond laser induced microstructures, gratings, and craters in four different polymers: poly methyl methacrylate (PMMA), poly dimethyl siloxane (PDMS), polystyrene (PS) and poly vinyl alcohol (PVA) using Ti:sapphire laser delivering 800 nm, 100 femtosecond (fs) pulses at 1 kHz repetition rate with a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals which were studied using UV-Visible absorption and emission, confocal micro-Raman and Electron Spin Resonance (ESR) spectroscopic techniques.

  15. Optical Waveguides Written in Silicon with Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer

    Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.

  16. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  17. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers

    PubMed Central

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N.; Hamm, James F.; Dani, Keshav M.; Dani, Anya R.

    2017-01-01

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. PMID:28772468

  18. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.

    PubMed

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N; Hamm, James F; Dani, Keshav M; Dani, Anya R

    2017-01-26

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects.

  19. Propagation of femtosecond laser pulses through water in the linear absorption regime.

    PubMed

    Naveira, Lucas M; Strycker, Benjamin D; Wang, Jieyu; Ariunbold, Gombojav O; Sokolov, Alexei V; Kattawar, George W

    2009-04-01

    We investigate the controversy regarding violations of the Bouguer-Lambert-Beer (BLB) law for ultrashort laser pulses propagating through water. By working at sufficiently low incident laser intensities, we make sure that any nonlinear component in the response of the medium is negligible. We measure the transmitted power and spectrum as functions of water cell length in an effort to confirm or disprove alleged deviations from the BLB law. We perform experiments at two different laser pulse repetition rates and explore the dependence of transmission on pulse duration. Specifically, we vary the laser pulse duration either by cutting its spectrum while keeping the pulse shape near transform-limited or by adjusting the pulses chirp while keeping the spectral intensities fixed. Over a wide range of parameters, we find no deviations from the BLB law and conclude that recent claims of BLB law violations are inconsistent with our experimental data. We present a simple linear theory (based on the BLB law) for propagation of ultrashort laser pulses through an absorbing medium and find our experimental results to be in excellent agreement with this theory.

  20. Femtosecond laser beam propagation through corneal tissue: Evaluation of therapeutic laser-stimulated second and third- harmonic generation

    NASA Astrophysics Data System (ADS)

    Calhoun, William R., III

    One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of

  1. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  2. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  3. Temperature increase in human cadaver retina during direct illumination by femtosecond laser pulses.

    PubMed

    Sun, Hui; Mikula, Eric; Kurtz, Ronald M; Juhasz, Tibor

    2010-04-01

    Femtosecond lasers have been approved by the US Food and Drug Administration for ophthalmic surgery, including use in creating corneal flaps in LASIK surgery. During normal operation, approximately 50% to 60% of laser energy may pass beyond the cornea, with potential effects on the retina. As a model for retinal laser exposure during femtosecond corneal surgery, we measured the temperature rise in human cadaver retinas during direct illumination by the laser. The temperature increase induced by a 150-kHz iFS Advanced Femtosecond Laser (Abbott Medical Optics) in human cadaver retinas was measured in situ using an infrared thermal imaging camera. To model the geometry of the eye during the surgery, an approximate 11x11-mm excised section of human cadaver retina was placed 17 mm behind the focus of the laser beam. The temperature field was observed in 10 cadaver retina samples at energy levels ranging from 0.4 to 1.6 microJ (corresponding approximately to surgical energies of 0.8 to 3.2 microJ per pulse). Maximal temperature increases up to 1.15 degrees C (corresponding to 3.2 microJ and 52-second illumination) were observed in the cadaver retina sections with little variation in temperature profiles between specimens for the same laser energy illumination. The commercial iFS Advanced Femtosecond Laser operating with pulse energies at approximately the lower limit of the range evaluated in this study would be expected to result in a 0.2 degrees C temperature increase and do not therefore present a safety hazard to the retina. Copyright 2010, SLACK Incorporated.

  4. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  5. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  6. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  7. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing.

    PubMed

    Hanada, Yasutaka; Sugioka, Koji; Midorikawa, Katsumi

    2010-01-18

    We have fabricated optical waveguides inside the UV-transparent polymer, CYTOP, by femtosecond laser direct writing for propagating UV light in biochip applications. Femtosecond laser irradiation is estimated to increase the refractive index of CYTOP by 1.7 x 10(-3) due to partial bond breaking in CYTOP. The waveguide in CYTOP has propagation losses of 0.49, 0.77, and 0.91 dB/cm at wavelengths of 632.8, 355, and 266 nm, respectively.

  8. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  9. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  10. Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy

    NASA Astrophysics Data System (ADS)

    Shuleiko, D. V.; Potemkin, F. V.; Romanov, I. A.; Parhomenko, I. N.; Pavlikov, A. V.; Presnov, D. E.; Zabotnov, S. V.; Kazanskii, A. G.; Kashkarov, P. K.

    2018-05-01

    A one-dimensional surface relief with a 1.20  ±  0.02 µm period was formed in amorphous hydrogenated silicon films as a result of irradiation by femtosecond laser pulses (1.25 µm) with a fluence of 0.15 J cm‑2. Orientation of the formed structures was determined by the polarization vector of the radiation and the number of acting pulses. Nanocrystalline silicon phases with volume fractions from 40 to 67% were detected in the irradiated films according to the analysis of Raman spectra. Observed micro- and nanostructuring processes were caused by surface plasmon–polariton excitation and near-surface region nanocrystallization, respectively, in the high-intensity femtosecond laser field. Furthermore, the formation of Si-III and Si-XII silicon polymorphous modifications was observed after laser treatment with a large exposure dose. The conductivity of the film increased by three orders of magnitude at proper conditions after femtosecond laser nanocrystallization compared to the conductivity of the untreated amorphous surface. The conductivity anisotropy of the irradiated regions was also observed due to the depolarizing contribution of the surface structure, and the non-uniform intensity distribution in the cross-section of the laser beam used for modification.

  11. Laser chirp effect on femtosecond laser filamentation generated for pulse compression.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang H

    2008-03-31

    The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.

  12. Femtosecond Lasers in Ophthalmology: Surgery and Imaging

    NASA Astrophysics Data System (ADS)

    Bille, J. F.

    Ophthalmology has traditionally been the field with prevalent laser applications in medicine. The human eye is one of the most accessible human organs and its transparency for visible and near-infrared light allows optical techniques for diagnosis and treatment of almost any ocular structure. Laser vision correction (LVC) was introduced in the late 1980s. Today, the procedural ease, success rate, and lack of disturbing side-effects in laser assisted in-situ keratomileusis (LASIK) have made it the most frequently performed refractive surgical procedure (keratomileusis(greek): cornea-flap-cutting). Recently, it has been demonstrated that specific aspects of LVC can take advantage of unique light-matter interaction processes that occur with femtosecond laser pulses.

  13. Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.

    PubMed

    Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F

    2017-01-01

    Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. Femtosecond laser-assisted cataract surgery in Alport syndrome with anterior lenticonus.

    PubMed

    Ecsedy, Mónika; Súndor, Gúbor L; Takúcs, Úgnes I; Krúnitz, Kinga; Kiss, Zoltún; Kolev, Krasimir; Nagy, Zoltún Z

    2015-01-01

    To report the surgical treatment of 3 eyes of 2 patients with bilateral anterior lenticonus due to Alport syndrome using femtosecond laser-assisted cataract surgery (FLACS). Two patients with Alport syndrome presented to our department due to anterior lenticonus in both eyes. We performed FLACS with posterior chamber lens implantation in both eyes of one patient and in one eye of the other patient. Anterior segment morphologic changes were visualized with a Scheimpflug camera, and anterior segment optical coherence tomography preoperatively and 3 months after surgery. Ultrastructure of the cut capsule edges was observed with scanning electron microscopy and compared to the edge of femtosecond laser capsulotomy performed on an otherwise healthy patient with cataract (control). The intraocular lens (IOL) postoperative positioning parameters met the international requirements of aspherical and wavefront customized IOLs (tilt <10 degree, decentration <800 µm). Scanning electron microscopy revealed the same characteristics of the cut capsule edges in the Alport and in the control eyes. Femtosecond laser cataract surgery can be a safe and successful method for optical rehabilitation of anterior lenticonus in patients with Alport syndrome.

  15. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation

  16. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  17. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  18. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  19. Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix

    NASA Astrophysics Data System (ADS)

    Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.

    2006-01-01

    Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.

  20. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefonov, O V; Ovchinnikov, A V; Il'ina, I V

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulsesmore » with intensities 10{sup 11} – 10{sup 13} W cm{sup -2}. (interaction of laser radiation with matter)« less

  1. Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Seifert, H. J.; Pfleging, W.

    2016-02-01

    Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.

  2. Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    PubMed Central

    2014-01-01

    Background Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. Results and discussions We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. Conclusion We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission

  3. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  4. Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome.

    PubMed

    Lin, Meng-Yin; Chang, David C K; Hsu, Wen-Ming; Wang, I-Jong

    2012-06-01

    To compare predictive factors for postoperative myopic regression between laser in situ keratomileusis (LASIK) with a femtosecond laser and LASIK with a mechanical microkeratome. Nobel Eye Clinic, Taipei, Taiwan. Retrospective comparative study. Refractive outcomes were recorded 1 day, 1 week, and 1, 3, 6, 9, and 12 months after LASIK. A Cox proportional hazards model was used to evaluate the impact of the 2 flap-creating methods and other covariates on postoperative myopic regression. The femtosecond group comprised 409 eyes and the mechanical microkeratome group, 377 eyes. For both methods, significant predictors for myopic regression after LASIK included preoperative manifest spherical equivalent (P=.0001) and central corneal thickness (P=.027). Laser in situ keratomileusis with a mechanical microkeratome had a higher probability of postoperative myopic regression than LASIK with a femtosecond laser (P=.0002). After adjusting for other covariates in the Cox proportional hazards model, the cumulative risk for myopic regression with a mechanical microkeratome was higher than with a femtosecond laser 12 months postoperatively (P=.0002). With the definition of myopic regression as a myopic shift of 0.50 diopter (D) or more and residual myopia of -0.50 D or less, the risk estimate based on the mean covariates in all eyes in the femtosecond group and mechanical microkeratome group at 12 months was 43.6% and 66.9%, respectively. Laser in situ keratomileusis with a mechanical microkeratome had a higher risk for myopic regression than LASIK with a femtosecond laser through 12 months postoperatively. Copyright © 2012. Published by Elsevier Inc.

  5. Comparison of Surgically Induced Astigmatism and Morphologic Features Resulting From Femtosecond Laser and Manual Clear Corneal Incisions for Cataract Surgery.

    PubMed

    Ferreira, Tiago B; Ribeiro, Filomena J; Pinheiro, João; Ribeiro, Paulo; O'Neill, João G

    2018-05-01

    To compare the surgically induced astigmatism (SIA) vector, flattening effect, torque, and wound architecture following femtosecond laser and manual clear corneal incisions (CCIs). In a double-armed, randomized, prospective case series, cataract surgery was performed for 600 eyes using femtosecond laser (300 eyes) or manual (300 eyes) 2.4-mm CCIs in temporal or superior oblique locations. SIA, flattening effect, torque, and the summated vector mean for SIA were calculated. Correlation with individual features was established and incision morphology was investigated by anterior segment optical coherence tomography at 3 months of follow-up. The SIA, flattening effect, and torque were lower in the femtosecond laser group for both incision locations, although the differences were not significant (all P > .05). The femtosecond laser group showed less dispersion of SIA magnitude and flattening effect. Temporal and superior oblique incisions resulted in flattening effect values of -0.11 and -0.21 diopters (D), respectively, in the femtosecond laser group and -0.13 and -0.34 D, respectively, in the manual group. Significant correlations with individual features were only found in the femtosecond laser group, with preoperative astigmatism being the only significant SIA predictor by multiple regression analysis (P = .003). Femtosecond laser CCIs showed less deviation from the intended length, wound enlargement, endothelial misalignment, and Descemet membrane detachments (all P < .037). Femtosecond laser CCIs were more reproducible. Although SIAs were smaller in femtosecond laser CCIs than in manual CCIs for both temporal and superior oblique incisions, the difference was not statistically significant. Association with individual features is highly variable. [J Refract Surg. 2018;34(5):322-329.]. Copyright 2018, SLACK Incorporated.

  6. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach.

    PubMed

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost.

  7. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK.

    PubMed

    Xia, Li-Kun; Yu, Jie; Chai, Guang-Rui; Wang, Dang; Li, Yang

    2015-01-01

    To compare refractive results, higher-order aberrations (HOAs), contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK) performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism. In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF) curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery. At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm), and 148.36±21.24 µm (attempted thickness 140 µm) in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA) of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA) occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05). The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01). The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01). The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT) of the femtosecond treated eyes were markedly longer than those of the microkeratome

  8. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK

    PubMed Central

    Xia, Li-Kun; Yu, Jie; Chai, Guang-Rui; Wang, Dang; Li, Yang

    2015-01-01

    AIM To compare refractive results, higher-order aberrations (HOAs), contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK) performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism. METHODS In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF) curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery. RESULTS At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm), and 148.36±21.24 µm (attempted thickness 140 µm) in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA) of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA) occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05). The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01). The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01). The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT) of the femtosecond treated eyes were markedly longer than those of

  9. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  10. Comparison of efficacy and safety of laser in situ keratomileusis using 2 femtosecond laser platforms in contralateral eyes.

    PubMed

    Rosman, Mohamad; Hall, Reece C; Chan, Cordelia; Ang, Andy; Koh, Jane; Htoon, Hla Myint; Tan, Donald T H; Mehta, Jodhbir S

    2013-07-01

    To compare the efficacy, predictability, and refractive outcomes of laser in situ keratomileusis (LASIK) using 2 femtosecond platforms for flap creation. Multisurgeon single center. Clinical trial. Bilateral femtosecond LASIK was performed using the Wavelight Allegretto Eye-Q 400 Hz excimer laser system. The Visumax femtosecond platform (Group 1) was used to create the LASIK flap in 1 eye, while the Intralase femtosecond platform (Group 2) was used to create the LASIK flap in the contralateral eye. The preoperative, 1-month, and 3-month postoperative visual acuities, refraction, and contrast sensitivity in the 2 groups were compared. The study enrolled 45 patients. Three months after femtosecond LASIK, 79.5% of eyes in Group 1 and 82.1% in Group 2 achieved an uncorrected distance visual acuity of 20/20 (P=.808). The mean efficacy index was 0.97 in Group 1 and 0.98 in Group 2 at 3 months (P=.735); 89.7% of eyes in Group 1 and 84.6% of eyes in Group 2 were within ± 0.50 diopter of emmetropia at 3 months (P=.498). No eye in either group lost more than 2 lines of corrected distance visual acuity. The mean safety index at 3 months was 1.11 in Group 1 and 1.10 in Group 2 (P=.570). The results of LASIK with both femtosecond lasers were similar, and both platforms produced efficacious and predictable LASIK outcomes. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ams, Martin; Dekker, Peter; Gross, Simon; Withford, Michael J.

    2017-01-01

    Optical waveguide Bragg gratings (WBGs) can be created in transparent materials using femtosecond laser pulses. The technique is conducted without the need for lithography, ion-beam fabrication methods, or clean room facilities. This paper reviews the field of ultrafast laser-inscribed WBGs since its inception, with a particular focus on fabrication techniques, WBG characteristics, WBG types, and WBG applications.

  12. Impact of the Femtosecond Laser in Line with the Femtosecond Laser-Assisted Cataract Surgery (FLACS) on the Anterior Chamber Characteristics in Comparison to the Manual Phacoemulsification.

    PubMed

    Pahlitzsch, Milena; Torun, Necip; Pahlitzsch, Marie Luise; Klamann, Matthias K J; Gonnermann, Johannes; Bertelmann, Eckart; Pahlitzsch, Thomas

    2017-01-01

    To assess the alterations of the anterior chamber conditions including laser flare photometry after femtosecond laser-assisted cataract surgery (FLACS) compared to the manual phacoemulsification. Data of n=70 FLACS (mean age 67.2 ± 8.9 years) and n=40 manual phacoemulsification (mean age 69.5 ± 9.6 years) were analyzed. The procedures were performed by LenSx Alcon, USA, and Alcon Infiniti Vision System, USA. The following parameters were recorded: laser flare photometry (Kowa FM 700, Japan), anterior chamber (AC) depth, AC volume, AC angle (Pentacam, Oculus Inc., Germany), lens density, pupil diameter, endothelial cell count and pachymetry. The analysis was performed preoperatively, immediately after femtosecond laser procedure and one day postoperatively. Between FLACS and the phaco control group, there was a significant difference in the AC depth (p=0.023, 3.77 mm vs. 4.05 mm) one day postoperatively. The AC angle (p=0.016) showed a significant difference immediately after the femto laser treatment. The central and thinnest pachymetry and endothelial cell count did not show a significant difference between the two study cohorts (p=0.165, p=0.291, p=0.979). The phaco cohort (n=40) demonstrated a non-statistically significant difference in the flare photometry of 15.80 photons/ms one postoperative day compared to the FLACS group 26.62 photons/ms (p=0.322). In this study population, no evidence for an additive damage caused by the use of the femtosecond laser was demonstrated. Furthermore, no increase in the central and thinnest corneal thickness and no increased endothelial cell loss was demonstrated by the laser energy.

  13. Propagation of an ultra-short, intense laser in a relativistic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlapmore » with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.« less

  14. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].

    PubMed

    Vogel, A; Freidank, S; Linz, N

    2014-06-01

    In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.

  15. Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Fuerbach, A.; Gross, S.; Little, D.; Arriola, A.; Ams, M.; Dekker, P.; Withford, M.

    2016-07-01

    Tightly focused femtosecond laser pulses can be used to alter the refractive index of virtually all optical glasses. As the laser-induced modification is spatially limited to the focal volume of the writing beam, this technique enables the fabrication of fully three-dimensional photonic structures and devices that are automatically embedded within the host material. While it is well understood that the laser-material interaction process is initiated by nonlinear, typically multiphoton absorption, the actual mechanism that results in an increase or sometimes decrease of the refractive index of the glass strongly depends on the composition of the material and the process parameters and is still subject to scientific studies. In this paper, we present an overview of our recent work aimed at uncovering the physical and chemical processes that contribute to the observed material modification. Raman microscopy and electron microprobe analysis was used to study the induced modifications that occur within the glass matrix and the influence of atomic species migration forced by the femtosecond laser writing beam. In particular, we concentrate on borosilicate, heavy metal fluoride and phosphate glasses. We believe that our results represent an important step towards the development of engineered glass types that are ideally suited for the fabrication of photonic devices via the femtosecond laser direct write technique.

  16. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds

    PubMed Central

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-01-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion. PMID:26271602

  17. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    NASA Astrophysics Data System (ADS)

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94 μm), titanium:sapphire femtosecond laser system (λ=1700 nm), and Nd:glass femtosecond laser (λ=1053 nm). Bovine samples were ablated at fluences of 8 to 18 J/cm2 with the erbium:YAG laser, at a power of 300±15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  18. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery.

    PubMed

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J F

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 μm), titanium:sapphire femtosecond laser system (λ = 1700 nm), and Nd:glass femtosecond laser (λ = 1053 nm). Bovine samples were ablated at fluences of 8 to 18 J∕cm2 with the erbium:YAG laser, at a power of 300 ± 15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ∕pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J∕cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  19. Thin film femtosecond laser damage competition

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Ristau, Detlev; Turowski, Marcus; Blaschke, Holger

    2009-10-01

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  20. Cutting of optical materials by using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas

    2001-11-01

    In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.

  1. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  2. [Crystalline lens photodisruption using femtosecond laser: experimental study].

    PubMed

    Chatoux, O; Touboul, D; Buestel, C; Balcou, P; Colin, J

    2010-09-01

    The aim of this study was to analyze the interactions during femtosecond (fs) laser photodisruption in ex vivo porcine crystalline lenses and to study the parameters for laser interaction optimization. An experimental femtosecond laser was used. The laser characteristics were: 1030 nm wavelength; pulse duration, 400 fs; and numerical aperture, 0.13. Specific software was created to custom and monitor any type of photoablation pattern for treatment purposes. Porcine crystalline lenses were placed in an open sky holder filled with physiological liquid (BSS) covered by a glass plate. A numerical camera was associated with metrological software in order to magnify and quantify the results. Transmission electron microscopy (TEM) was performed on some samples to identify the microscopic plasma interactions with the lens. The optimization of parameters was investigated in terms of the optical breakdown threshold, the sizing of interactions, and the best pattern for alignments. More than 150 crystalline lenses of freshly enucleated pigs were treated. The optical breakdown threshold (OBT) was defined as the minimal energy level per pulse necessary to observe a physical interaction. In our study, the OBT varied according to the following parameters: the crystalline lens itself, varying from 4.2 to 7.6 μJ (mean, 5.1 μJ), and the depth of laser focus, varying up to 1 μJ, increasing in the depth of the tissue. Analyzing the distance between impacts, we observed that the closer the impacts were the less power was needed to create a clear well-drawn defect pattern (lines), i.e., with a 4-μJ optimized OBT, when the impacts were placed every 2 μm for the x,y directions and 60 μm for the z direction. Coalescent bubbles created by plasma formation always disappeared in less than 24h. The nonthermal effect of plasma and the innocuousness on surrounding tissues were proven by the TEM results. The crystalline lens photodisruption by the femtosecond laser seems an innovative

  3. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  4. Direct femtosecond laser ablation of copper with an optical vortex beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anoop, K. K.; Rubano, A.; Marrucci, L.

    Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N=1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (21000) and a deep crater is formed. The nanostructure variation with themore » laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application.« less

  5. Postfabrication Phase Error Correction of Silicon Photonic Circuits by Single Femtosecond Laser Pulses

    DOE PAGES

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher; ...

    2016-11-29

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  6. Fiber laser-microscope system for femtosecond photodisruption of biological samples

    PubMed Central

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.

    2012-01-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105

  7. Femtosecond laser-assisted compared with standard cataract surgery for removal of advanced cataracts.

    PubMed

    Hatch, Kathryn M; Schultz, Tim; Talamo, Jonathan H; Dick, H Burkhard

    2015-09-01

    To compare effective phacoemulsification time (EPT) for the removal of brunescent cataracts treated with femtosecond laser-assisted cataract surgery with standard cataract phacoemulsification techniques. Ruhr University Eye Hospital, Bochum, Germany. Comparative prospective case study. The Lens Opacities Classification System III (LOCS III) grading system was used to measure eyes divided into 4 groups having cataract surgery. Groups 1 and 2 contained eyes with LOCS III grade nuclear opalescence (NO) 3 cataracts treated with standard cataract surgery and femtosecond laser-assisted cataract surgery, respectively. Groups 3 and 4 contained brunescent cataracts, LOCS III grades NO5, treated with standard cataract surgery and femtosecond laser-assisted cataract surgery, respectively. There were 240 eyes, with 60 eyes in each group. The EPT in Group 1 ranged from 0.46 to 3.10 (mean 1.38); the EPT in all eyes in Group 2 was 0 (P < .001). The EPT in Groups 3 and 4 was 2.12 to 19.29 (mean 6.85) and 0 to 6.75 (mean 1.35), respectively (P < .001). A comparison between EPT in Groups 1 and 4 showed that EPT in Group 4 was also lower than in Group 1 (P = .013). Groups 4 and 1 were the most statistically similar of all groups compared, suggesting that EPT for a femtosecond laser-treated grade 5 cataract was most similar to that of a standard-treated grade 3 cataract. Femtosecond laser pretreatment for brunescent cataracts allowed for a significant reduction in EPT compared with manual standard phacoemulsification techniques. Drs. Hatch, Talamo, and Dick are consultants to Abbott Medical Optics, Inc. Dr. Schultz has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Modeling of silicon in femtosecond laser-induced modification regimes: accounting for ambipolar diffusion

    NASA Astrophysics Data System (ADS)

    Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.

    2017-05-01

    During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.

  9. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    -540410.1007/3-540-47789-6_36 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.045005 97, 045005 (2006); Esirkepov , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.175003 92, 175003 (2004); Silva , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.015002 92, 015002 (2004); Fiuza , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.215001 109, 215001 (2012)].

  10. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    NASA Astrophysics Data System (ADS)

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  11. Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.

    PubMed

    Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin

    2018-03-16

    Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.

  12. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  13. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  14. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  15. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach

    PubMed Central

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    AIM To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. METHODS In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). RESULTS According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). CONCLUSION A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost. PMID:27500115

  16. Intacs for keratoconus and post-LASIK ectasia: mechanical versus femtosecond laser-assisted channel creation.

    PubMed

    Carrasquillo, Karen G; Rand, Janet; Talamo, Jonathan H

    2007-09-01

    To evaluate the efficacy of intracorneal ring segments to treat keratoconus and post-laser in situ keratomileusis (LASIK) keratectasia implanted by using either mechanical dissection or a femtosecond laser. Thirty-three eyes of 29 patients had intracorneal ring segments implanted by using mechanical dissection (17 eyes) or a femtosecond laser (16 eyes). Mean follow-up was 10.3 months. Parameters assessed before and after surgery included uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refractive spherical equivalent (MRSE), refractive cylinder (RC), best contact lens-corrected visual acuity (BCLVA), and contact lens tolerance. Statistically significant changes occurred for all parameters when we analyzed all 33 eyes as 1 group. Mean UCVA LogMar values improved from 1.0 +/- 0.3 (20/200) to 0.6 +/- 0.4 (20/80) (P < 0.0005). Mean BSCVA changed from 0.3 +/- 0.2 (20/40) to 0.2 +/- 0.2 (20/30) (10%; P < 0.05), and MRSE from -9 +/- 4 to -7 +/- 4 D (P < 0.05; 20%). There was a decrease of 0.5 D or more of RC in 62% of eyes. BCLVA improved from 0.2 +/- 0.2 (20/30) to 0.1 +/- 0.1 (20/25) after surgery (P < 0.02). Contact lens tolerance improved in 81% of eyes. There was no statistically significant difference in outcomes between mechanical dissection and femtosecond laser-assisted techniques. However, although statistical power was adequate to detect changes in clinical parameters as a result of surgery, it was not sufficient to conclusively show such differences between surgical techniques. For mild to moderate cases of keratoconus and post-LASIK keratectasia, the use of a femtosecond laser for Intacs channel creation seems as effective as mechanical dissection. Future studies are warranted to further evaluate channel creation by a femtosecond laser.

  17. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  18. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  19. Mid-infrared laser filaments in the atmosphere

    PubMed Central

    Mitrofanov, A. V.; Voronin, A. A.; Sidorov-Biryukov, D. A.; Pugžlys, A.; Stepanov, E. A.; Andriukaitis, G.; Flöry, T.; Ališauskas, S.; Fedotov, A. B.; Baltuška, A.; Zheltikov, A. M.

    2015-01-01

    Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 μm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared. PMID:25687621

  20. Femtosecond Laser Texturing of Surfaces for Tribological Applications

    PubMed Central

    Kirner, Sabrina V.; Griepentrog, Michael; Spaltmann, Dirk

    2018-01-01

    Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil. PMID:29762544

  1. Femtosecond Laser Texturing of Surfaces for Tribological Applications.

    PubMed

    Bonse, Jörn; Kirner, Sabrina V; Griepentrog, Michael; Spaltmann, Dirk; Krüger, Jörg

    2018-05-15

    Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil.

  2. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    PubMed Central

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    Abstract. Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94  μm), titanium:sapphire femtosecond laser system (λ=1700  nm), and Nd:glass femtosecond laser (λ=1053  nm). Bovine samples were ablated at fluences of 8 to 18  J/cm2 with the erbium:YAG laser, at a power of 300±15  mW with the titanium:sapphire femtosecond system, and at an energy of 3  μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18  J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates. PMID:25200394

  3. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  4. Wear-reducing Surface Functionalization of Implant Materials Using Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Oldorf, P.; Peters, R.; Reichel, S.; Schulz, A.-P.; Wendlandt, R.

    The aim of the project called "EndoLas" is the development of a reproducible and reliable method for a functionalization of articulating surfaces on hip joint endoprostheses due to a reduction of abrasion and wear by the generation of micro structures using ultrashort laser pulses. On the one hand, the microstructures shall ensure the capture of abraded particles, which cause third-body wear and thereby increase aseptic loosening. On the other hand, the structures shall improve or maintain the tribologically important lubricating film. Thereby, the cavities serve as a reservoir for the body's own synovial fluid. The dry friction, which promotes abrasion and is a part of the mixed friction in the joint, shall therefore be reduced. In experimental setups it was shown, that the abrasive wear can be reduced significantly due to micro-structuring the articulating implant surfaces. To shape the fine and deterministic cavities on the surfaces, an ultra-short pulsed laser, which is integrated in a high-precision, 5-axes micro-machining system, was used. The laser system, based on an Yb:YAG thin-disk regenerative amplifier, has an average output power of 50 W at the fundamental wavelength of 1030 nm, a maximum repetition rate of 400 kHz and a pulse duration of 6 ps. Due to this, a maximum pulse energy of 125 μJ is achievable. Furthermore external second and third harmonic generation enables the usage of wavelengths in the green and violet spectral range.

  5. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

  6. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  7. Femtosecond optoinjection of intact tobacco BY-2 cells using a reconfigurable photoporation platform.

    PubMed

    Mitchell, Claire A; Kalies, Stefan; Cizmár, Tomás; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G; Gunn-Moore, Frank J; Dholakia, Kishan

    2013-01-01

    A tightly-focused ultrashort pulsed laser beam incident upon a cell membrane has previously been shown to transiently increase cell membrane permeability while maintaining the viability of the cell, a technique known as photoporation. This permeability can be used to aid the passage of membrane-impermeable biologically-relevant substances such as dyes, proteins and nucleic acids into the cell. Ultrashort-pulsed lasers have proven to be indispensable for photoporating mammalian cells but they have rarely been applied to plant cells due to their larger sizes and rigid and thick cell walls, which significantly hinders the intracellular delivery of exogenous substances. Here we demonstrate and quantify femtosecond optical injection of membrane impermeable dyes into intact BY-2 tobacco plant cells growing in culture, investigating both optical and biological parameters. Specifically, we show that the long axial extent of a propagation invariant ("diffraction-free") Bessel beam, which relaxes the requirements for tight focusing on the cell membrane, outperforms a standard Gaussian photoporation beam, achieving up to 70% optoinjection efficiency. Studies on the osmotic effects of culture media show that a hypertonic extracellular medium was found to be necessary to reduce turgor pressure and facilitate molecular entry into the cells.

  8. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nicolodelli, Gustavo; de Fátima Zanirato Lizarelli, Rosane; Salvador Bagnato, Vanderlei

    2012-04-01

    Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788+/-0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses.

  9. Microfabrication technology by femtosecond laser direct scanning using two-photon photo-polymerization

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Liu, Li-Peng; Dai, Qi-Xun; Pan, Chuan-Peng

    2005-01-01

    Two-photon absorption (TPA) is confined at the focus under tight-focusing conditions, which provides a novel concept for micro-fabrication using two-photon photo-polymerization in resin. The development of three-dimensional micro-fabrication by femtosecond laser was introduced at first, then the merits of femtosecond two-photon photo-polymerization was expatiated. Femtosecond laser direct scanning three-dimensional (3D) micro-fabrication system was set up and corresponding controlling software was developed. We demonstrated a fabrication of three-dimensional microstructures using photo-polymerization of resin by two-photon absorption. The precision of micro-machining and the spatial resolution reached 1um because of TPA. The dependence of fabricated line width to the micro-fabrication speed was investigated. Benzene ring, CHINA and layer-by-layer of log structures were fabricated in this 3D- micro-fabrication system as examples.

  10. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haisu; Tzortzakis, Stelios, E-mail: stzortz@iesl.forth.gr; Materials Science and Technology Department, University of Crete, 71003 Heraklion

    2016-05-23

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  11. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai

    2018-03-01

    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  12. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan

    2006-08-01

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.

  13. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  14. Second-wave hydrodissection for aspiration of cortical remains after femtosecond laser-assisted cataract surgery.

    PubMed

    Lake, Jonathan C; Boianovsky, Celso; de Faria Pacini, Thiago; Crema, Armando

    2018-06-14

    We describe the technique of second-wave hydrodissection (the first wave being the initial cortical cleaving hydrodissection) performed after the removal of the cataract nucleus in femtosecond laser-assisted cataract surgery. After femtosecond laser application, the cortex is typically found adhered to the anterior capsule. Under high magnification, a steady stream of a balanced salt solution is directed toward the anterior capsule using a hydrodissection cannula. Full cleavage of the remaining cortex is observed by noting the appearance of a dark inner circle by the capsulotomy edge once the balanced salt solution wave has separated the cortex from the capsule. Irrigation/aspiration (I/A) of the cortical remains after the second wave is faster than I/A without this step in femtosecond laser-assisted cataract surgery. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Time-resolved microscopy reveals the driving mechanism of particle formation during ultrashort pulse laser ablation of dentin-like ivory

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Gavrilova, Anna; Rapp, Stephan; Frentzen, Matthias; Meister, Joerg; Huber, Heinz P.

    2015-07-01

    In dental health care, the application of ultrashort laser pulses enables dental tissue ablation free from thermal side effects, such as melting and cracking. However, these laser types create undesired micro- and nanoparticles, which might cause a health risk for the patient or surgeon. The aim of this study was to investigate the driving mechanisms of micro- and nanoparticle formation during ultrashort pulse laser ablation of dental tissue. Time-resolved microscopy was chosen to observe the ablation dynamics of mammoth ivory after irradiation with 660 fs laser pulses. The results suggest that nanoparticles might arise in the excited region. The thermal expansion of the excited material induces high pressure in the surrounding bulk tissue, generating a pressure wave. The rarefaction wave behind this pressure wave causes spallation, leading to ejection of microparticles.

  16. Liquid-Assisted Femtosecond Laser Precision-Machining of Silica.

    PubMed

    Cao, Xiao-Wen; Chen, Qi-Dai; Fan, Hua; Zhang, Lei; Juodkazis, Saulius; Sun, Hong-Bo

    2018-04-28

    We report a systematical study on the liquid assisted femtosecond laser machining of quartz plate in water and under different etching solutions. The ablation features in liquid showed a better structuring quality and improved resolution with 1/3~1/2 smaller features as compared with those made in air. It has been demonstrated that laser induced periodic structures are present to a lesser extent when laser processed in water solutions. The redistribution of oxygen revealed a strong surface modification, which is related to the etching selectivity of laser irradiated regions. Laser ablation in KOH and HF solution showed very different morphology, which relates to the evolution of laser induced plasma on the formation of micro/nano-features in liquid. This work extends laser precision fabrication of hard materials. The mechanism of strong absorption in the regions with permittivity (epsilon) near zero is discussed.

  17. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.

    PubMed

    Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R

    2016-11-15

    Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.

  18. Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus F.; Wehner, Martin; Lorenzen, Johann; Bovi, Manfred; Westhofen, Martin

    2004-07-01

    Introduction: Since the early 1980's, a considerable number of different laser systems have been introduced into reconstructive middle ear surgery. Depending on the ablation mode, however, pressure transients or thermal load to inner ear structures continue to be subject to discussion. Material and methods: We examined single spot ablations by a nanosecond-pulsed, frequency-tripled Nd:YAG-Laser (355 nm, beam diameter 10 μm, pulse rate 2 kHz, power 250 mW) on isolated human mallei. In a second set-up, a similar system (355 nm, beam diameter 20 μm, pulse rate 10 kHz, power 160-1500 mW) was coupled to a scanner to examine the morphology of bone surface ablation over an area of 1mm2. A third set-up employed a femtosecond-pulsed CrLiSAF-Oscillator (850 nm, pulse duration 100 fs, pulse energy 40μJ, beam diameter 36 μm, pulse rate 1 kHz) to compare these results with the former and with those obtained from a commercially available Er:YAG laser for ear surgery (Zeiss ORL E, 2940 nm, single pulse, energy 10-25 mJ). Results: In set-up 1 and 2, thermal effects in terms of marginal carbonization were visible in all single spot ablations of 1 s and longer. With ablations of 0.5 seconds, precise cutting margins with preservation of surrounding tissue could be observed. Cooling with saline solution resulted in no carbonization at 1500 mW and a scan speed of 500 mm/s. Set-up 3 equally showed no carbonization, although scanning times were longer and ablation less pronounced. Conclusion: Ultrashort pulsed laser systems could potentially aid further refinement of reconstructive microsurgery of the middle ear.

  19. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less

  20. Femtosecond versus picosecond laser pulses for film-free laser bioprinting.

    PubMed

    Petit, Stephane; Kérourédan, Olivia; Devillard, Raphael; Cormier, Eric

    2017-11-01

    We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.

  1. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  2. Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing

    NASA Astrophysics Data System (ADS)

    Ng, Jason Clement

    Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (< 0.5 dB) curved waveguides, directional couplers (DCs), and Mach-Zehnder interferometers (MZIs). The robustness and consistency of this maturing fabrication process was also reinforced through the scalable design and integration of a more complex, multi-component flat-top interleaver over a wide >70-nm spectral window. My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency

  3. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    NASA Astrophysics Data System (ADS)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The

  4. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, W. C.; Wang, R.; Xu, Z. J.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scalemore » array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.« less

  5. Femtosecond writing of near-surface waveguides in lithium niobate for low-loss electro-optical modulators of broadband emission

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-05-01

    In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.

  6. Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective's immersion liquid.

    PubMed

    Luo, Fangfang; Song, Juan; Hu, Xiao; Sun, Haiyi; Lin, Geng; Pan, Huaihai; Cheng, Ya; Liu, Li; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan

    2011-06-01

    We report the formation of inverted microstructures inside glasses after femtosecond laser irradiation by tuning the refractive index contrast between the immersion liquid and the glass sample. By using water as well as 1-bromonaphthalene as immersion liquids, microstructures with similar shape but opposite directions are induced after femtosecond laser irradiation. Interestingly, the elemental distribution in the induced structures is also inverted. The simulation of laser intensity distribution along the laser propagation direction indicates that the interfacial spherical aberration effect is responsible for the inversion of microstructures and elemental distribution. © 2011 Optical Society of America

  7. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding

    2018-01-01

    In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by

  8. Low-temperature diffusion assisted by femtosecond laser-induced modifications at Ni/SiC interface

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuya; Tomita, Takuro; Ueki, Tomoyuki; Hashimoto, Takuya; Kawakami, Hiroki; Fuchikami, Yuki; Hisazawa, Hiromu; Tanaka, Yasuhiro

    2018-01-01

    We investigated low-temperature diffusion at the Ni/SiC interface with the assistance of femtosecond laser-induced modifications. Cross sections of the laser-irradiated lines of two different pulse energies — 0.84 and 0.60 J/cm2 in laser fluence — were compared before and after annealing at 673 K. At the laser fluence of 0.60 J/cm2, a single flat Ni-based particle was formed at the interface after annealing. The SiC crystal under the particle was defect-free. The present results suggest the potential application of femtosecond laser-induced modifications to the low-temperature fabrication of contacts at the interface without introducing crystal defects, e.g., dislocations and stacking faults, in SiC.

  9. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    PubMed Central

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-01-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage. PMID:22029369

  10. Effect of Doping on the Properties of Hydrogenated Amorphous Silicon Irradiated with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Denisova, K. N.; Il'in, A. S.; Martyshov, M. N.; Vorontsov, A. S.

    2018-04-01

    A comparative analysis of the effect of femtosecond laser irradiation on the structure and conductivity of undoped and boron-doped hydrogenated amorphous silicon ( a-Si: H) is performed. It is demonstrated that the process of nanocrystal formation in the amorphous matrix under femtosecond laser irradiation is initiated at lower laser energy densities in undoped a-Si: H samples. The differences in conductivity between undoped and doped a-Si: H samples vanish almost completely after irradiation with an energy density of 150-160 mJ/cm2.

  11. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration

    PubMed Central

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing

    2016-01-01

    We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090

  12. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    PubMed

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  13. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liu, Manyu; Hu, Youwang; Sun, Xiaoyan; Wang, Cong; Zhou, Jianying; Dong, Xinran; Yin, Kai; Chu, Dongkai; Duan, Ji'an

    2017-01-01

    Sapphire, with extremely high hardness, high-temperature stability and wear resistance, often corroded in molten KOH at 300 °C after processing. The fabrication of microstructures on sapphire substrate performed by femtosecond laser irradiation combined with KOH solution chemical etching at room temperature is presented. It is found that this method reduces the harsh requirements of sapphire corrosion. After femtosecond irradiation, the sapphire has a high corrosion speed at room temperature. Through the analysis of Raman spectrum and XRD spectrum, a novel insight of femtosecond laser interaction with sapphire (α-Al2O3) is proposed. Results indicated that grooves on sapphire surface were formed by the lasers ablation removal, and the groove surface was modified in a certain depth. The modified area of the groove surface was changed from α-Al2O3 to γ-Al2O3. In addition, the impacts of three experimental parameters, laser power, scanning velocities and etching time, on the width and depth of microstructures are investigated, respectively. The modified area dimension is about 2 μm within limits power and speed. This work could fabricate high-quality arbitrary microstructures and enhance the performance of sapphire processing.

  14. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  15. Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry

    2011-02-01

    The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser

  16. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers.

    PubMed

    Yasui, Takeshi; Ichikawa, Ryuji; Hsieh, Yi-Da; Hayashi, Kenta; Cahyadi, Harsono; Hindle, Francis; Sakaguchi, Yoshiyuki; Iwata, Tetsuo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Inaba, Hajime

    2015-06-02

    Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers.

  17. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers

    PubMed Central

    Yasui, Takeshi; Ichikawa, Ryuji; Hsieh, Yi-Da; Hayashi, Kenta; Cahyadi, Harsono; Hindle, Francis; Sakaguchi, Yoshiyuki; Iwata, Tetsuo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Inaba, Hajime

    2015-01-01

    Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers. PMID:26035687

  18. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongyu; Liu Jiansheng; Wang Cheng

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less

  19. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber.

    PubMed

    Su, Xiancui; Wang, Yiran; Zhang, Baitao; Zhao, Ruwei; Yang, Kejian; He, Jingliang; Hu, Qiangqiang; Jia, Zhitai; Tao, Xutang

    2016-05-01

    In this Letter, a high-quality, few-layered black phosphorus (BP) saturable absorber (SA) was fabricated successfully, and a femtosecond solid-state laser modulated by BP-SA was experimentally demonstrated for the first time, to the best of our knowledge. Pulses as short as 272 fs were achieved with an average output power of 0.82 W, corresponding to the pulse energy of 6.48 nJ and peak power of 23.8 MW. So far, these represent the shortest pulse duration and highest output power ever obtained with a BP-based mode-locked solid-state laser. The results indicate the promising potential of few-layered BP-SA for applications in solid-state femtosecond mode-locked lasers.

  20. Interaction of femtosecond laser pulses with plants: towards distinguishing weeds and crops using plasma temperature

    NASA Astrophysics Data System (ADS)

    Kunz, Jeremy N.; Voronine, Dmitri V.; Ko, Brian A.; Lee, Ho Wai Howard; Rana, Aman; Bagavathiannan, Muthukumar V.; Sokolov, Alexei V.; Scully, Marlan O.

    2017-05-01

    The ability to distinguish between crops and weeds using sensors from a distance will greatly benefit the farming community through improved and efficient scouting for weeds, reduced herbicide input costs and improved profitability. In the present study, we examined the utility of femtosecond laser-induced breakdown spectroscopy (LIBS) for plant species differentiation. Greenhouse-grown plants of dallisgrass, wheat, soybean and bell pepper were evaluated using LIBS under an ambient environment. LIBS experiments were performed on the leaf samples of different plant species using a femtosecond laser system with an inexpensive lightweight detector. Temperatures of laser-induced plasma in plants depend on many parameters and were determined for each of the study species by the constituent elements interacting with femtosecond laser pulses. Using elemental calcium transitions in plant tissue samples to measure plasma temperatures, we report consistent differences among the four study species, with average values ranging from 5090 ± 168 K (soybean) to 5647 ± 223 K (dallisgrass).

  1. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  2. Acoustic experimental investigation of interaction femtosecond laser pulses with gas-aerosol media and biological tissues

    NASA Astrophysics Data System (ADS)

    Bochkarev, N. N.; Kabanov, A. M.; Stepanov, A. N.

    2008-02-01

    Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained of threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.

  3. Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio

    This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, themore » low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.« less

  4. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the verymore » beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.« less

  5. Femtosecond-laser setups for cell-membrane poration

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Batista, Ana; Sauer, Benjamin; König, Aisada; König, Karsten

    2018-02-01

    Focused femtosecond-laser pulses can create tiny transient holes in cell membranes which temporarily allows foreign genetic material from the outside to reach the cell interior. With suitable laser parameters this all optical "optoporation" allows highly efficient laser-assisted cell transfection by reprogramming the celĺs genetic code with very high cell survival rates. Furthermore, the use of viruses or nanoparticle as carriers which may cause serious side effects can be completely omitted. However, the cell positions need to be precisely determined to allow individual focusing of the laser radiation onto the cell membranes which is for large cell numbers quite elaborate and time consuming. We addressed these issues and present optical microscope add-ons for fast and almost hands-off laserassisted poration of cell membranes with automated determination of the positions of adherent cells in a culture dish or targeting continuously flowing cells in suspension.

  6. Femtosecond laser fluorescence and propagation in very dense potassium vapor.

    PubMed

    Makdisi, Y; Kokaj, J; Afrousheh, K; Nair, R; Mathew, J; Pichler, G

    2013-12-16

    Femtosecond (fs) laser propagation and fluorescence of dense potassium vapor was studied, and the spectral region around the first and the second doublets of the principal series lines of potassium atoms was investigated. In our search we did not observe the conical emission in the far field, although it was previously observed in the case of rubidium. We discuss the possible reason of this unexpected result. The fluorescence spectrum revealed Rb impurity resonance lines in emission due to the collisional redistribution from the K(4p) levels into the Rb(5p) levels. In the forward propagation of 400 nm femtosecond light we observed the molecular band red shifted from potassium second doublet. However, no molecular spectrum was observed when the mode-locked fs laser light was discretely tuned within the wings of the first resonance lines, at 770 nm.

  7. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  8. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  9. Studies of Inactivation Mechanism of non-enveloped icosahedral viruses by a visible ultrashort pulsed laser

    USDA-ARS?s Scientific Manuscript database

    The inactivation mechanism of ultrashort pulsed laser irradiation at a wavelength of 425 nm has been studied using two different-sized, non-enveloped icosahedral viruses, murine norovirus-1 (MNV-1) and human papillomavirus-16 (HPV-16) pseudovirions. Our experimental results are consistent with a mo...

  10. Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime

    NASA Astrophysics Data System (ADS)

    Kucherik, A. O.; Kutrovskaya, S. V.; Arakelyan, S. M.; Ryabchikov, Y. V.; Al-Kattan, A.; Kabashin, A. V.; Itina, T. E.

    2016-03-01

    Gold nanoparticles (Au NPs) attract particular attention because of their unique size-dependent chemical, physicochemical and optical properties and, hence, their potential applications in catalysis, nanoelectronics, photovoltaics and medicine. In particular, laser-produced colloidal nanoparticles are not only biocompatible, but also reveal unique chemical properties. Different laser systems can be used for synthesis of these colloids, varying from continuous wave (CW) to ultra-short femtosecond lasers. The choice of an optimum laser system is still a challenge in application development. To bring more light at this issue, we investigate an influence of laser parameters on nanoparticle formation from a gold target immersed in deionized water. First, an optical diagnostics of laser-induced hydrodynamic processes taking place near the gold surface is performed. Then, gold nanoparticle colloids with average particle sizes smaller than 10 nm and a very narrow dispersion are shown to be formed by CW laser ablation. The obtained results are compared with the ones obtained by using the second harmonics and with previous results obtained by using femtosecond laser systems.

  11. NRL Review, 2004

    DTIC Science & Technology

    2004-05-01

    intense laser - matter interaction studies, including particle acceleration. A new 10 Hz ultrashort - pulse (40 fs), Ti:Sapphire...of high- intensity ultrashort laser pulses . He is the chief developer of the HELCAP laser propagation code. Prior to joining NRL, he was employed by...two short- pulse high- intensity lasers , the Table-Top Terawatt (T3) laser and the new Ti:Sapphire Femtosecond Laser (TFL) to study intense

  12. Anomalous transmission of an ultrashort ionizing laser pulse through a thin foil.

    PubMed

    Ferrante, G; Zarcone, M; Uryupin, S A

    2003-08-22

    The formation of a highly anisotropic photoelectron velocity distribution as a result of the interaction of a powerful ultrashort laser pulse with a thin foil is found to yield a large skin-layer depth and an anomalous increase of the transmission coefficient. The physical reason for the effect is the influence of the incident wave magnetic field, through the Lorenz force, on the electron kinetics in the skin layer.

  13. Ionization assisted self-guiding of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Goltsov, A.; Chen, Q.; Scully, M.; Suckewer, S.

    2018-05-01

    We propose a new mechanism for the self-guiding of ultra-intense sub-picosecond laser pulses in gaseous media. It can be realized via optical field ionization by a laser pulse as it propagates inside an expanding cylindrical shock wave launched into ambient gas by a decayed plasma filament. In experiments, the filament was created in a hydrogen jet by a low energy femtosecond laser pre-pulse line focused with axicon lens. We demonstrated ionization-assisted guiding in structures with diameter as small as 14 μm and up to 3.5 mm long. The intensity reached 5 × 1017 W/cm2 in a single mode propagating for more than 100 Rayleigh lengths.

  14. Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF)

    NASA Astrophysics Data System (ADS)

    Wang, Yejun; Kulatilaka, Waruna D.

    2018-01-01

    Ultrashort-pulse, femtosecond (fs)-duration, two-photon laser-induced fluorescence (fs-TPLIF) measurements of carbon monoxide (CO) are reported in rich, sooting hydrocarbon flames. CO-TPLIF detection using conventional nanosecond or picosecond lasers are often plagued by photochemical interferences, specifically under fuel-rich flames conditions. In the current study, we investigate the commonly used CO two-photon excitation scheme of the B1Σ+ ← X1Σ+ electronic transition, using approximately 100-fs-duration excitation pulses. Fluorescence emission was observed in the Ångström band originating from directly populated B1Σ+ upper state, as well as, in the third positive band from collisionally populated b3Σ+ upper state. The current work was focused on the Ångström band emission. Interference from nascent C2 emissions originating from hot soot particles in the flame could be reduced to a negligible level using a narrower detection gate width. In contrast, avoiding interferences from laser-generated C2 Swan-band emissions required specific narrowband spectral filtering in sooting flame conditions. The observed less than quadratic laser pulse energy dependence of the TPLIF signal suggests the presence of strong three-photon ionization and stimulated emission processes. In a range of CH4/air and C2H4/air premixed flames investigated, the measured CO fluorescence signals agree well with the calculated equilibrium CO number densities. Reduced-interference CO-TPLIF imaging in premixed C2H4/O2/N2 jet flames is also reported.

  15. Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.

  16. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  17. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  18. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  19. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu.

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that themore » ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.« less

  20. Comparison of 2 femtosecond lasers for flap creation in myopic laser in situ keratomileusis: one-year results.

    PubMed

    Yu, Charles Q; Manche, Edward E

    2015-04-01

    To compare laser in situ keratomileusis (LASIK) outcomes between 2 femtosecond lasers for flap creation in the treatment of myopia up to 1 year. University eye clinic. Prospective randomized eye-to-eye study. Consecutive myopic patients were treated with wavefront-guided LASIK. One eye had a flap created by the Intralase FS 60 kHz femtosecond laser, and the fellow eye was treated with the Intralase iFS 150 kHz femtosecond laser. Eyes were randomized according to ocular dominance. Evaluations included measurement of uncorrected distance visual acuity (UDVA), corrected distance visual acuity, contrast sensitivity and wavefront aberrometry. The study enrolled 122 eyes of 61 patients. The mean preoperative spherical equivalent refraction was -4.62 diopters (D) ± 2.32 (SD) and -4.66 ± 2.30 D in the 150 kHz group and 60 kHz group, respectively. Patients preferred the 150 kHz laser to the 60 kHz laser intraoperatively (52.5% versus 26.2%) (P = .005). One week postoperatively, UDVA was 20/16 or better in 85.2% in the 150 kHz group and 70.5% in the 60 kHz group; the difference was statistically significant (P < .05). At 12 months, there were no significant differences in refractive outcomes or higher-order aberrations between the 2 groups. Flap creation with the 150 kHz system and the 60 kHz system resulted in excellent LASIK outcomes. Intraoperatively, patients preferred the 150 kHz system, which yielded better UDVA in the early postoperative period. There were no significant differences at 1 year between the 2 laser systems. Proprietary or commercial disclosures are listed after the references. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media

    NASA Astrophysics Data System (ADS)

    Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger

    2005-03-01

    In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.

  2. Colorizing metals with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2008-01-01

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  3. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Xian-Feng; Zhang, Cheng-Yun; Tie, Shao-Long; Lan, Sheng

    2017-02-01

    The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO2 parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO2 in this direction. Periodically aligned TiO2 nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  4. Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser.

    PubMed

    Liu, Jukun; Jia, Tianqing; Zhou, Kan; Feng, Donghai; Zhang, Shian; Zhang, Hongxin; Jia, Xin; Sun, Zhenrong; Qiu, Jianrong

    2014-12-29

    We present a controllable fabrication of nanogratings and nanosquares on the surface of ZnO crystal in water based on femtosecond laser-induced periodic surface structures (LIPSS). The formation of nanogrooves depends on both laser fluence and writing speed. A single groove with width less than 40 nm and double grooves with distance of 150 nm have been produced by manipulating 800 nm femtosecond laser fluence. Nanogratings with period of 150 nm, 300 nm and 1000 nm, and nanosquares with dimensions of 150 × 150 nm2 were fabricated by using this direct femtosecond laser writing technique.

  5. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects

    NASA Astrophysics Data System (ADS)

    Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan

    2016-09-01

    We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.

  6. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  7. Viability evaluation of culture cells patterned by femtosecond laser-induced impulsive force

    NASA Astrophysics Data System (ADS)

    Takizawa, Noriko; Okano, Kazunori; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi

    2008-02-01

    PC12 cells, which are derived from a rat pheochromocytoma, were independently patterned utilizing an impulsive force resulting in impulsive shockwave and cavitation bubble generation by focused femtosecond laser irradiation. Since the PC12 cells respond reversibly to nerve growth factor by induction of the neuronal phenotype, we can assess an influence that the impulsive force gives to the bioactivity in term of the cell differentiation. The patterned cells were accumulated on an intact dish and cultured for 3 days. The behavior of appearance and cell differentiation was observed by multipoint time-lapse system. On bases of these results, it was proved that the biological activity of the cell is unaffected by the femtosecond laser patterning.

  8. Photochemical gas lasers and hybrid (solid/gas) blue-green femtosecond systems

    NASA Astrophysics Data System (ADS)

    Mikheev, L. D.; Tcheremiskine, V. I.; Uteza, O. P.; Sentis, M. L.

    2012-01-01

    The review summarizes milestones and major breakthrough results obtained in the course of the development of a photochemical method applied to optical excitation of gas lasers on electronic molecular transitions by radiation from such unconventional pump sources as high-temperature electrical discharges and strong shock waves in gas. It also describes principles and techniques applied in hybrid (solid/gas) high-intensity laser systems emitting in the blue-green spectral region, and discusses wavelength scaling of laser-matter interaction by the example of laser wake-field acceleration (LWFA), high-order harmonic generation (HHG) and “water window” soft X-ray lasers. One of the most significant results of the photochemical method development consists in emerging broad bandwidth lasers (XeF(C-A), Xe2Cl, and Kr2F) operating in the blue-green spectral range, which have potential for amplification of ultra-short (down to 10 fs) optical pulses towards the Petawatt peak power level. The main goal of this review is to argue that the active media of these lasers may provide a basis for the development of fs systems generating super-intense ultrashort laser pulses in the visible spectral range. Some specific hybrid schemes, comprising solid state front-ends and photodissociation XeF(C-A) power boosting amplifiers, are described. They are now under development at the Lasers Plasmas and Photonic Processes (LP3) Laboratory (Marseille, France), the P.N. Lebedev Physical Institute (Moscow, Russia) and the Institute of High-Current Electronics (Tomsk, Russia) with the aim of conducting proof-of-principle experiments. Some consequences of the visible-wavelength laser field interaction with matter are also surveyed to demonstrate advantages of short driver wavelength in the considered examples. One of the most important consequences is the possibility of coherent soft X-ray generation within the “water window” spectral range with the use of short wavelength driver pulses to

  9. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.

    PubMed

    Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K

    2012-01-30

    Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

  10. Growth and Spectral Assessment of Yb3+-Doped KBaGd(MoO4)3 Crystal: A Candidate for Ultrashort Pulse and Tunable Lasers

    PubMed Central

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal. An Yb3+:KBaGd(MoO4)3 crystal with dimensions of 50×40×9 mm3 was grown by the TSSG method from the K2Mo2O7 flux. The investigated spectral properties indicated that Yb3+:KBaGd(MoO4)3 crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb3+:KBaGd(MoO4)3 crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers. PMID:23349892

  11. Growth and spectral assessment of Yb(3+)-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers.

    PubMed

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb(3+)-doped KBaGd(MoO(4))(3) crystal. An Yb(3+):KBaGd(MoO(4))(3) crystal with dimensions of 50×40×9 mm(3) was grown by the TSSG method from the K(2)Mo(2)O(7) flux. The investigated spectral properties indicated that Yb(3+):KBaGd(MoO(4))(3) crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb(3+):KBaGd(MoO(4))(3) crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers.

  12. Cytosolic Irradiation of Femtosecond Laser Induces Mitochondria-dependent Apoptosis-like Cell Death via Intrinsic Reactive Oxygen Cascades

    PubMed Central

    Yoon, Jonghee; Ryu, Seung-wook; Lee, Seunghee; Choi, Chulhee

    2015-01-01

    High-intensity femtosecond lasers have recently been used to irreversibly disrupt nanoscale structures, such as intracellular organelles, and to modify biological functions in a reversible manner: so-called nanosurgery and biophotomodulation. Femtosecond laser pulses above the threshold intensity sufficient for reversible biophotomodulation can cause irreversible changes in the irradiated cell, eventually leading to cell death. Here, we demonstrated that cytosolic irradiation with a femtosecond laser produced intrinsic cascades of reactive oxygen species (ROS), which led to rapid apoptosis-like cell death via a caspase and poly (ADP-ribose) polymerase 1 (PARP-1) signaling pathway. We further showed that cells with enhanced mitochondrial fusion activity are more resilient to laser-induced stress compared to those with enforced mitochondrial fission. Taken together, these findings provide fundamental insight into how optical stimulation intervenes in intrinsic cellular signaling pathways and functions. PMID:25648455

  13. Cytosolic irradiation of femtosecond laser induces mitochondria-dependent apoptosis-like cell death via intrinsic reactive oxygen cascades.

    PubMed

    Yoon, Jonghee; Ryu, Seung-Wook; Lee, Seunghee; Choi, Chulhee

    2015-02-04

    High-intensity femtosecond lasers have recently been used to irreversibly disrupt nanoscale structures, such as intracellular organelles, and to modify biological functions in a reversible manner: so-called nanosurgery and biophotomodulation. Femtosecond laser pulses above the threshold intensity sufficient for reversible biophotomodulation can cause irreversible changes in the irradiated cell, eventually leading to cell death. Here, we demonstrated that cytosolic irradiation with a femtosecond laser produced intrinsic cascades of reactive oxygen species (ROS), which led to rapid apoptosis-like cell death via a caspase and poly (ADP-ribose) polymerase 1 (PARP-1) signaling pathway. We further showed that cells with enhanced mitochondrial fusion activity are more resilient to laser-induced stress compared to those with enforced mitochondrial fission. Taken together, these findings provide fundamental insight into how optical stimulation intervenes in intrinsic cellular signaling pathways and functions.

  14. Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique.

    PubMed

    Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian; Pavel, Nicolaie

    2014-03-10

    We report on realization of buried waveguides in Nd:YAG ceramic media by direct femtosecond-laser writing technique and investigate the waveguides laser emission characteristics under the pump with fiber-coupled diode lasers. Laser pulses at 1.06 μm with energy of 2.8 mJ for the pump with pulses of 13.1-mJ energy and continuous-wave output power of 0.49 W with overall optical efficiency of 0.13 were obtained from a 100-μm diameter circular cladding waveguide realized in a 0.7-at.% Nd:YAG ceramic. A circular waveguide of 50-μm diameter yielded laser pulses at 1.3 μm with 1.2-mJ energy.

  15. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    NASA Astrophysics Data System (ADS)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  16. Vibration-Assisted Femtosecond Laser Drilling with Controllable Taper Angles for AMOLED Fine Metal Mask Fabrication.

    PubMed

    Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak

    2017-02-21

    This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane's position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices.

  17. A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandidov, V P; Kosareva, O G; Nyakk, A V

    A method for spatial regularisation of chaotically located filaments, which appear in a high-power femtosecond laser pulse, is proposed, numerically substantiated, and experimentally tested. This method is based on the introduction of regular light-field perturbations into the femtosecond-pulse cross section. (letters)

  18. Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics

    NASA Astrophysics Data System (ADS)

    Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles

    2018-05-01

    Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.

  19. Femtosecond Optoinjection of Intact Tobacco BY-2 Cells Using a Reconfigurable Photoporation Platform

    PubMed Central

    Mitchell, Claire A.; Kalies, Stefan; Cizmár, Tomás; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan

    2013-01-01

    A tightly-focused ultrashort pulsed laser beam incident upon a cell membrane has previously been shown to transiently increase cell membrane permeability while maintaining the viability of the cell, a technique known as photoporation. This permeability can be used to aid the passage of membrane-impermeable biologically-relevant substances such as dyes, proteins and nucleic acids into the cell. Ultrashort-pulsed lasers have proven to be indispensable for photoporating mammalian cells but they have rarely been applied to plant cells due to their larger sizes and rigid and thick cell walls, which significantly hinders the intracellular delivery of exogenous substances. Here we demonstrate and quantify femtosecond optical injection of membrane impermeable dyes into intact BY-2 tobacco plant cells growing in culture, investigating both optical and biological parameters. Specifically, we show that the long axial extent of a propagation invariant (“diffraction-free”) Bessel beam, which relaxes the requirements for tight focusing on the cell membrane, outperforms a standard Gaussian photoporation beam, achieving up to 70% optoinjection efficiency. Studies on the osmotic effects of culture media show that a hypertonic extracellular medium was found to be necessary to reduce turgor pressure and facilitate molecular entry into the cells. PMID:24244456

  20. Electromagnetic fields of an ultra-short tightly-focused radially-polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.; Li, Jian-Xing

    2017-12-01

    Fully analytic expressions, for the electric and magnetic fields of an ultrashort and tightly focused laser pulse of the radially polarized category, are presented to lowest order of approximation. The fields are derived from scalar and vector potentials, along the lines of our earlier work for a similar pulse of the linearly polarized variety. A systematic program is also described from which the fields may be obtained to any desired accuracy, analytically or numerically.

  1. Cutting thin glass by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  2. Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.

    PubMed

    Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y

    2012-04-15

    A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America

  3. [Corneal subbasal nerve density changes after laser in situ keratomileusis with mechanical microkeratome and femtosecond laser].

    PubMed

    Hu, Liang; Xie, Wenjia; Tang, Lei; Chen, Jia; Zhang, Dong; Yu, Peng; Qu, Jia

    2015-01-01

    To compare the corneal subbasal nerve density (SND) changes after laser in situ keratomileusis (LASIK) with a microkeratome and a femtosecond laser. Prospective clinical study. Sixty eyes of thirty myopes were included. Fifteen patients (30 eyes) underwent LASIK with the Moria II microkeratome, and the other 15 patients (30 eyes) with the 60 k Hz IntraLase femtosecond laser. Central, temporal and nasal corneal SNDs were measured by confocal microscopy and compared before surgery, 1 month, and 3 months after surgery. Analysis of variance and t test were used for comparing the differences between different time points and two groups. Preoperatively and 1 month, 3 months postoperatively, the SNDs were (16 728.30 ± 4 300.30), (1 875.42 ± 300.50) and (1 701.55 ± 194.11) µm/mm(2) in the central cornea, (11 379.70 ± 1 833.92), (1 341.20 ± 288.68) and (1 860.87 ± 147.60) µm/mm(2) in the temporal cornea, and (8 506.79 ± 662.83), (7 428.96 ± 712.99) and (8 044.32 ± 1 077.54) µm/mm(2) in the nasal cornea, respectively, in the microkeratome group, and (16 351.59 ± 3 503.88), (1 859.38 ± 452.93) and (2 043.67 ± 377.76) in the central cornea, (12 328.22 ± 2 007.43), (1 483.85 ± 371.28) and (2 126.31 ± 279.87) µm/mm(2) in the temporal cornea, and (8 347.91 ± 789.44), (1 475.53 ± 293.98) and (2 022.10 ± 282.89) µm/mm(2) in the nasal cornea, respectively, in the femtosecond laser group. The SNDs at three positions all decreased significantly at each time point postoperatively compared to the baseline values in both groups (1 and 3 months in the microkeratome group: central t = 18.981 and 18.912, temporal t = 30.121 and 27.921, and nasal t = 6.456 and 2.126; in the femtosecond laser group: central t = 22.667 and 22.379, temporal t = 29.000 and 28.376, and nasal t = 46.329 and 41.751; all P < 0.01, except 3 months at the nasal in the microkeratome group, P = 0.042). The nasal SND increased significantly from month 1 to month 3 (t = -3.921, P < 0.01) in the

  4. Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Baumgart, J.; Lubatschowski, H.; Heisterkamp, A.

    2009-11-01

    Femtosecond laser based nanosurgery of biological tissue is usually done in two different regimes. Depending on the application, low kHz repetition rates above the optical breakdown threshold or high MHz repetition rates in the low-density plasma regime are used. In contrast to the well understood optical breakdown, mechanisms leading to dissection below this threshold are not well known due to the complexity of chemical effects with high numbers of interacting molecules. Furthermore, the laser repetition rate may influence their efficiency. In this paper, we present our study on low-density plasma effects in biological tissue depending on repetition rate by static exposure of porcine corneal stroma to femtosecond pulses. We observed a continuous increase of the laser-induced damage with decreasing repetition rate over two orders of magnitude at constant numbers of applied laser pulses or constant laser pulse energies. Therefore, low repetition rates in the kHz regime are advantageous to minimize the total delivered energy to biological tissue during femtosecond laser irradiation. However, due to frequent excessive damage in this regime directly above the threshold, MHz repetition rates are preferable to create nanometer-sized cuts in the low-density plasma regime.

  5. Propagation of an ultrashort, intense laser pulse in a relativistic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed for the propagation of an ultrashort, intense laser pulse through an underdense plasma. The separability of plasma and optical frequencies ({omega}{sub p} and {omega} respectively) for small {omega}{sub p}/{omega} is not assumed; thus the validity of multiple-scales theory (MST) can be tested. The theory is valid when {omega}{sub p}/{omega} is of order unity or for cases in which {omega}{sub p}/{omega} {much_lt} 1 but strongly relativistic motion causes higher-order plasma harmonics to be generated which overlap the region of the first-order laser harmonic, such that MST would not expected to be valid although its principalmore » validity criterion {omega}{sub p}/{omega} {much_lt} 1 holds.« less

  6. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  7. [Results of residual ametropia correction using CIRCLE technology after femtosecond laser SMILE surgery].

    PubMed

    Kostin, O A; Rebrikov, S V; Ovchinnikov, A I; Stepanov, A A; Takhchidi, Kh P

    to evaluate functional results of reoperation performed according to the CIRCLE technology and using the VisuMax femtosecond laser and MEL-80 excimer laser in cases of regression of the refractive effect after SMILE surgery. We studied a group of post-SMILE patients. In those, who showed regression of the refractive effect at 1 year, reoperation was performed according to the CIRCLE technology and using the VisuMax femtosecond laser. The corneal flap was separated from the stromal bed and turned aside. Excimer laser ablation of the stromal bed was performed with the MEL 80 machine. The corneal flap was then placed back and rinsed from both sides. Uncorrected (UCVA) and corrected (BCVA) visual acuity as well as spherical equivalent (SE) were estimated before reoperation, on day 1, and at 1 month. After reoperation, BCVA and UCVA improved. Patient refraction became close to emmetropia. Specifically, UCVA was 0.23±0.18 at baseline (i.e. 1 year after SMILE) and 0.93±0.11 after the CIRCLE procedure (p<0.05). The absolute value of SE was 1.86±1.15 D and 0±0 D before and after CIRCLE, respectively (p<0.05). BCVA change was not statistically significant - from 0.95±0.1 to 0.93±0.11 (p>0.05). Reoperation performed according to the CIRCLE technology and using the VisuMax femtosecond laser and MEL-80 excimer laser provides an increase in visual acuity in case of post-SMILE regression of the refractive effect.

  8. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensivemore » theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.« less

  9. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  10. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilov, P A; Zayarnyi, D A; Ionin, A A

    The specific features of photofragmentation of sols of gold nanoparticles under focused femtosecond laser pulses in IR (1030 nm) and visible (515 nm) ranges is experimentally investigated. A high photofragmentation efficiency of nanoparticles in the waist of a pulsed laser beam in the visible range (at moderate radiation scattering) is demonstrated; this efficiency is related to the excitation of plasmon resonance in nanoparticles on the blue shoulder of its spectrum, in contrast to the regime of very weak photofragmentation in an IR-laser field of comparable intensity. Possible mechanisms of femtosecond laser photofragmentation of gold nanoparticles are discussed. (extreme light fieldsmore » and their applications)« less

  11. Probing Intermolecular Interactions in Binary Liquid Mixtures Using Femtosecond Laser-Induced Self-Defocusing.

    PubMed

    Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata

    2016-06-13

    Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔT P-V ) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.

  12. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  13. Generation of ultrashort pulses with minimum duration of 90\\ {\\text{fs}} in a hybrid mode-locked erbium-doped all-fibre ring laser

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.

    2016-11-01

    Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.

  14. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  15. Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Li, Rang; Nie, Weijie; Lu, Qingming; Cheng, Chen; Shang, Zhen; Vázquez de Aldana, Javier R.; Chen, Feng

    2017-07-01

    We report on the superficial cladding waveguides fabricated by direct femtosecond laser writing in Nd: CaF2 crystal with three different groups of parameters. The lowest propagation loss of waveguides has been determined to be 0.7 dB/cm at wavelength of 632.8 nm along TE polarization. The near fundamental modal distributions have been imaged through the end-face coupling technique. The guidance of the waveguides is found to possess low sensitivity on polarization of the probe light. By using a confocal microscope system, the micro-photoluminescence mappings and micro-fluorescence spectra are also obtained, which indicates the photoluminescence features of the Nd3+ ions are well preserved in the waveguide cores after direct femtosecond laser writing.

  16. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers.

    PubMed

    Tian, Haochen; Song, Youjian; Meng, Fei; Fang, Zhanjun; Hu, Minglie; Wang, Chingyue

    2016-11-15

    We demonstrate coherent beam combination between independent femtosecond Yb-fiber lasers by using the active phase locking of relative pulse timing and the carrier envelope phase based on a balanced optical cross-correlator and extracavity acoustic optical frequency shifter, respectively. The broadband quantum noise of femtosecond fiber lasers is suppressed via precise cavity dispersion control, instead of complicated high-bandwidth phase-locked loop design. Because of reduced quantum noise and a simplified phase-locked loop, stable phase locking that lasts for 1 hour has been obtained, as verified via both spectral interferometry and far-field beam interferometry. The approach can be applied to coherent pulse synthesis, as well as to remote frequency comb connection, allowing a practical all-fiber configuration.

  17. Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.

    2017-03-01

    Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.

  18. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator.

    PubMed

    Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T

    2013-06-01

    We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.

  19. Investigation of the formation mechanism and morphology of the features created in the interior of cornea by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Vukelic, Sinisa

    2015-03-01

    Laser assisted corneal surgeries often rely on the nonlinear absorption effect of ultrafast lasers to induce features in the interior of the cornea without affecting the surface. In particular, corneal flap formation in femtosecond assisted Laser- Assisted in situ Keratomileusis (LASIK) is based on the bubble creation. This study focuses on the interaction between the tissue and the femtosecond laser. Interior of cornea is treated with tightly focused femtosecond laser pulses. Due to the nature of the process, heating of the tissue within and around the focal volume is practically instantaneous. The affected region is subject to thermoelastic stress that arises with the steep temperature elevation. To predict the size of the region subject to the morphological changes due to the laser treatment, the temperature field is calculated. Cavitation bubble initiation and expansion process, which acts as precursor to the stress induced tissue trauma, is studied as well. Theoretical findings are compared against experimental results. High-speed camera is utilized to assess the laser treatment process, showing the temporal development of the cavitation bubbles. The results obtained in this study facilitate a better understanding of the effects of femtosecond laser assisted corneal surgeries and help in choosing optimal laser parameters.

  20. Ultra-short laser interactions with nanoparticles in different media: from electromagnetic to thermal and electrostatic effects

    NASA Astrophysics Data System (ADS)

    Itina, Tatiana E.

    2017-02-01

    Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.

  1. Influence of dispersion stretching of ultrashort UV laser pulse on the critical power for self-focusing

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2018-04-01

    The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.

  2. Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser.

    PubMed

    Bamba, Sonya; Rocha, Karolinne M; Ramos-Esteban, Jerome C; Krueger, Ronald R

    2009-06-01

    To report the incidence of and factors associated with rainbow glare after laser in situ keratomileusis (LASIK) flap creation with a 60 kHz femtosecond laser. Department of Refractive Surgery, Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. Consecutive patients having LASIK by the same surgeon were questioned during postoperative examinations or by telephone about postoperative rainbow glare (radiating colors around a white light at night). Femtosecond laser (IntraLase) settings included pulse frequency 60 kHz, flap thickness 90 to 110 mum, and spot/line separation 8 mum. Raster energy was 0.8 microJ (75% of eyes) and 1.0 to 1.1 microJ (25%). Excimer laser ablation was performed with the LADAR 4000 or 6000 platform using custom or conventional treatments. Of 260 consecutive patients, 256 (98.5%) were successfully contacted. Fifteen patients (28 eyes) reported postoperative rainbow glare (5.8%), described as 4 to 12 bands of color around a white light, with 6 bands most common. The symptom did not correlate with refractive error, age, or sex but was more frequent at 1.0 microJ or 1.1 microJ raster energy (11.6%) than at 0.8 microJ (4.1%). The incidence followed a bimodal distribution, with the first grouping due to inadequate alignment and higher energy just after laser installation and the second just before a later maintenance service call. Rainbow glare is a mild optical side effect of femtosecond LASIK. In this study, higher raster energy levels and length of time between service calls were associated with the occurrence of rainbow glare.

  3. Limits of applicability of a two-temperature model under nonuniform heating of metal by an ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D S; Yakovlev, E B

    The heating of metals (silver and aluminium) by ultrashort laser pulses is analysed proceeding from a spatially nonuniform kinetic equation for the electron distribution function. The electron subsystem thermalisation is estimated in a wide range of absorbed pulse energy density. The limits of applicability are determined for the two-temperature model. (interaction of laser radiation with matter)

  4. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    PubMed

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 ± 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.

  5. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  6. Laser in situ keratomileusis enhancements with the Ziemer FEMTO LDV femtosecond laser following previous LASIK treatments.

    PubMed

    Pietilä, Juhani; Huhtala, Anne; Mäkinen, Petri; Uusitalo, Hannu

    2013-02-01

    The aim of this paper is to present the accuracy, predictability, and safety outcomes of LASIK enhancements performed with the FEMTO LDV femtosecond laser (Ziemer Ophthalmic Systems, Port, Switzerland) and the Allegretto Wave Concerto 500 Hz excimer laser (Wavelight AG, Erlangen, Germany), following previous LASIK treatments. FEMTO LDV was used for flap creation in 85 previously LASIK-treated eyes of 62 patients. The intended flap thickness was 90 μm in 81 eyes and 140 μm in 4 eyes. The size of the suction ring was 9.0 mm in 72 eyes and 9.5 mm in 13 eyes. Flap dimensions were measured and correlated to preoperative characteristics. With the intended flap thickness of 90 μm in previously LASIK-treated eyes, the actual flap thickness was 90.2 ± 6.6 μm (range 80-122), and the flap diameter was 9.2 ± 0.2 mm (range 8.7-9.9). The mean hinge length was 4.0 ± 0.2 mm (range 3.0-4.8). Flap thickness correlated positively with patient age and hinge length. Complications were reported in 12 eyes (14.1 %). Most of the complications were very mild, and none of them prevented further refractive laser treatment. One eye lost two Snellen lines of best spectacle-corrected visual acuity. Femtosecond LASIK enhancement is warranted only in rare cases. Surgical experience is needed and special caution must be practiced. For cases of a primary free cap, femtosecond LASIK is not recommended.

  7. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.

    2017-03-01

    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

  8. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films

    PubMed Central

    Shi, Xuesong; Li, Xin; Jiang, Lan; Qu, Liangti; Zhao, Yang; Ran, Peng; Wang, Qingsong; Cao, Qiang; Ma, Tianbao; Lu, Yongfeng

    2015-01-01

    We developed a simple, scalable and high-throughput method for fabrication of large-area three-dimensional rose-like microflowers with controlled size, shape and density on graphene films by femtosecond laser micromachining. The novel biomimetic microflower that composed of numerous turnup graphene nanoflakes can be fabricated by only a single femtosecond laser pulse, which is efficient enough for large-area patterning. The graphene films were composed of layer-by-layer graphene nanosheets separated by nanogaps (~10–50 nm), and graphene monolayers with an interlayer spacing of ~0.37 nm constituted each of the graphene nanosheets. This unique hierarchical layering structure of graphene films provides great possibilities for generation of tensile stress during femtosecond laser ablation to roll up the nanoflakes, which contributes to the formation of microflowers. By a simple scanning technique, patterned surfaces with controllable densities of flower patterns were obtained, which can exhibit adhesive superhydrophobicity. More importantly, this technique enables fabrication of the large-area patterned surfaces at centimeter scales in a simple and efficient way. This study not only presents new insights of ultrafast laser processing of novel graphene-based materials but also shows great promise of designing new materials combined with ultrafast laser surface patterning for future applications in functional coatings, sensors, actuators and microfluidics. PMID:26615800

  9. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    PubMed

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  10. Femtosecond optical injection of intact plant cells using a reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Mitchell, Claire A.; Kalies, Stefan; Cizmar, Tomas; Bellini, Nicola; Kubasik-Thayil, Anisha; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan

    2014-03-01

    The use of ultrashort-pulsed lasers for molecule delivery and transfection has proved to be a non-invasive and highly efficient technique for a wide range of mammalian cells. This present study investigates the effectiveness of femtosecond photoporation in plant cells, a hard-to-manipulate yet agriculturally relevant cell type, specifically suspension tobacco BY-2 cells. Both spatial and temporal shaping of the light field is employed to optimise the delivery of membrane impermeable molecules into plant cells using a reconfigurable optical system designed to be able to switch easily between different spatial modes and pulse durations. The use of a propagation invariant Bessel beam was found to increase the number of cells that could be viably optoinjected, when compared to the use of a Gaussian beam. Photoporation with a laser producing sub-12 fs pulses, coupled with a dispersion compensation system to retain the pulse duration at focus, reduced the power required for efficient optical injection by 1.5-1.8 times when compared to a photoporation with a 140 fs laser output.

  11. Greater vertical spot spacing to improve femtosecond laser capsulotomy quality.

    PubMed

    Schultz, Tim; Joachim, Stephanie C; Noristani, Rozina; Scott, Wendell; Dick, H Burkhard

    2017-03-01

    To evaluate the effect of adapted capsulotomy laser settings on the cutting quality in femtosecond laser-assisted cataract surgery. Ruhr-University Eye Clinic, Bochum, Germany. Prospective randomized case series. Eyes were treated with 1 of 2 laser settings. In Group 1, the regular standard settings were used (incisional depth 600 μm, pulse energy 4 μJ, horizontal spot spacing 5 μm, vertical spot spacing 10 μm, treatment time 1.2 seconds). In Group 2, vertical spot spacing was increased to 15 μm and the treatment time was 1.0 seconds. Light microscopy was used to evaluate the cut quality of the capsule edge. The size and number of tags (misplaced laser spots, which form a second cut of the capsule with high tear risk) were evaluated in a blinded manner. Groups were compared using the Mann-Whitney U test. The study comprised 100 eyes (50 eyes in each group). Cataract surgery was successfully completed in all eyes, and no anterior capsule tear occurred during the treatment. Histologically, significant fewer tags were observed with the new capsulotomy laser setting. The mean score for the number and size of free tags was significantly lower in this group than with the standard settings (P < .001). The new laser settings improved cut quality and reduced the number of tags. The modification has the potential to reduce the risk for radial capsule tears in femtosecond laser-assisted cataract surgery. With the new settings, no tags and no capsule tears were observed under the operating microscope in any eye. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Vibration-Assisted Femtosecond Laser Drilling with Controllable Taper Angles for AMOLED Fine Metal Mask Fabrication

    PubMed Central

    Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak

    2017-01-01

    This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane’s position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices. PMID:28772571

  13. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  14. Digital-holographic analysis of femtosecond laser-induced photodisruption in ocular tissue

    NASA Astrophysics Data System (ADS)

    Saerchen, Emanuel; Biessy, Kevin; Kemper, Björn; Lubatschowski, Holger

    2014-02-01

    High repetition rated femtosecond laser oscillator systems with low pulse energy are more often applied for precise and safer eye surgery. Especially, the cutting procedure in the crystalline lens is of high important for presbyopia treatment. Nevertheless, the fundamental laser tissue interaction process is not completely understood, because apparently a self-induced process takes place, were one modified region changes the focusing behavior of following laser pulses. We used a MHz repetition rate femtosecond laser system with nJ-pulse energy which were focused inside an ocular-tissue-phantom (Hydroxy-ethylmethacrylat - HEMA) to induce photodisruption. The material change, caused by the fs-pulses was measured simultaneously with a compact digital-holographic microscope. To investigate the material manipulation at different time scales, we used a continuously illuminating light source. The holographic images provide quantitative values for optical path length difference (OPL), which is equivalent to a refractive index change. This change of the optical properties may cause following pulses to obtain different focusing conditions. Time lapse measurements during the laser application were performed, which show the temporal evolution of OPL. An increase of OPL during the laser application was measured, which was followed by a decrease in OPL after laser processing. Furthermore, similar experiments were performed in distilled water and in native porcine crystalline lenses. The fs-laser cutting effects in HEMA and crystalline lens were transferable. Simultaneous measurements of the material modification during the cutting process give rise to better knowledge of treatment modalities during ocular tissue processing.

  15. Comparison of characteristics of femtosecond laser-assisted anterior capsulotomy versus manual continuous curvilinear capsulorrhexis: A meta-analysis of 5-year results.

    PubMed

    Ali, Muhammad Hassaan; Ullah, Samee; Javaid, Usman; Javaid, Mamoona; Jamal, Samreen; Butt, Nadeem Hafeez

    2017-10-01

    To perform a meta-analysis on the precision and safety of femtosecond laser-assisted anterior capsulotomy versus conventional manual continuous curvilinear capsulorrhexis. This meta-analysis was conducted from February 2010 to November 2014. Literature search on PubMed, Google Scholar, ExcerptaMedica database and Cochrane Library was done to identify randomised controlled trials and case-control studies. SPSS 20 was used for data analysis. Of the 10 articles included, there were 3(30%) randomised controlled trials and 7(70%) non-randomised controlled trials. The meta-analysis was based on a total of 2,882eyes. Of them, 1,498(51.97%) underwent femtosecond laser-assisted capsulotomy and 1,384(48.02%) underwent manual continuous curvilinear capsulorrhexis. The diameter of the capsulotomy and the rates of anterior capsule tear showed no statistical difference between the femtosecond laser group and the manual capsulorrhexis group (p=0.29 and p=0.68). In terms of circularity of capsulotomy, femtosecond laser group had a more significant advantage than the manual capsulorrhexis group (p<0.001). Femtosecond laser performed capsulotomy with more precision and higher reliability than the manual continuous curvilinear capsulorrhexis.

  16. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    PubMed

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  17. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.

    PubMed

    Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki

    2004-12-01

    Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.

  18. Efficacy and perioperative timing of bromfenac in the management of ocular discomfort after femtosecond laser-assisted laser in situ keratomileusis.

    PubMed

    Cleaveland, Nathan A; De Mann, Derek W; Carlson, Neil E; Keil, Michael L

    2017-02-01

    To evaluate the safety, efficacy, and appropriate perioperative timing of the use of topical bromfenac ophthalmic solution 0.07% after femtosecond laser-assisted laser in situ keratomileusis (LASIK). Keil LASIK Vision Center, Grand Rapids, Michigan, USA. Prospective case series. Ocular discomfort was assessed 1, 2, and 5 hours postoperatively and the following morning using the Ocular Comfort Grading Assessment in patients treated with topical bromfenac 0.07% or artificial tears just before, just after, or before and after femtosecond laser-assisted LASIK. Visual outcomes and complications were noted up to 24 hours. The study enrolled 64 patients (120 eyes). Patients who were treated with bromfenac 0.07% just before or before and after femtosecond laser-assisted LASIK showed the greatest statistically significant decrease in several discomfort scores within the first few hours in comparison with the control group. Two hours after surgery, the majority of patients who were treated before and after LASIK were sleeping comfortably. There were no significant differences in visual acuity; 1 day postoperatively, the uncorrected distance visual acuity was 20/20 in 106 eyes (89%) and 20/25 or better in 116 eyes (97%). At 3 months, all patients had binocular distance visual acuity of 20/20 or better and 86% of patients had 20/15 or better. Ocular discomfort after femtosecond laser-assisted LASIK was reduced with a single dose of topical bromfenac 0.07% given immediately before surgery or given just before and after surgery and was typically minimal in all groups the morning after surgery. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyushkov, B N; Pivtsov, V S; Koliada, N A

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less

  20. Enhanced laser proton acceleration by target ablation on a femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Liao, Q.; Wu, M. J.; Gong, Z.; Geng, Y. X.; Xu, X. H.; Li, D. Y.; Shou, Y. R.; Zhu, J. G.; Li, C. C.; Yang, M.; Li, T. S.; Lu, H. Y.; Ma, W. J.; Zhao, Y. Y.; Lin, C.; Yan, X. Q.

    2018-06-01

    Proton acceleration during the interaction of an ultraintense (6 × 1019 W/cm2) femtosecond (fs) laser pulse with a thin (2.5 μm) foil target pre-ablated by a picosecond (ps) pulse is experimentally and numerically investigated. Enhancements in both proton cut-off energy and charge are observed with the target ablation due to a large number of energetic electrons generated from the preformed preplasma in front of the target. The enhanced proton beams are successfully collected at 4-9 MeV with ±4% energy spread and then transported to the irradiating platform. The results show that for the interaction between fs laser pulse and μm-thickness target, proton energy and charge can be enhanced by target ablation using a ps laser pulse, which is valuable for application like cancer radiotherapy.

  1. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.

    PubMed

    Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben

    2017-11-01

    Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Femtosecond laser-assisted deep anterior lamellar keratoplasty with big-bubble technique for keratoconus.

    PubMed

    Lu, Yan; Chen, Xiangfei; Yang, Liping; Xue, Chunyan; Huang, Zhenping

    2016-09-01

    The purpose of this study was to evaluate the clinical results after deep anterior lamellar keratoplasty (DALK) assisted by the femtosecond laser with big-bubble technique for keratoconus. A case series of 22 eyes in 19 patients with keratoconus was enrolled in the study. The 500-kHz VisuMax femtosecond laser (Carl Zeiss Meditec AG, Jena, Germany) was used to create a vertical side cut on donor and recipient corneas. Intraoperative and postoperative complications, uncorrected visual acuity, best-corrected visual acuity, corneal curvature, and central corneal thickness were evaluated in all patients. Big-bubble and naked Descemet's membrane (DM) were successfully achieved in twenty eyes (90.9%). Intraoperative macroperforation of DM occurred in two cases and converted to full-thickness keratoplasty. The mean follow-up time was 18.8 ± 5.3 months. The best-corrected visual acuity was increased from 0.3 to 1.0, mean corneal curvature was 43.0 ± 2.3D, and mean central corneal thickness was 508.9 ± 60.1 μm (range, from 430 to 600 μm) postoperatively. Our results indicate that femtosecond laser-assisted DALK with big-bubble technique is an accurate, safe, and effective method to treat the patients with keratoconus.

  3. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    NASA Astrophysics Data System (ADS)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  4. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring.

    PubMed

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time.

  5. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  6. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE PAGES

    Kluge, T.; Rödel, C.; Rödel, M.; ...

    2017-10-23

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  7. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T.; Rödel, C.; Rödel, M.

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  8. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  9. Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate

    PubMed Central

    JJ Nivas, Jijil; He, Shutong; Rubano, Andrea; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2015-01-01

    Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields. PMID:26658307

  10. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    NASA Astrophysics Data System (ADS)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  11. Intrastromal corneal reshaping using a high-intensity femtosecond laser: A novel method of vision correction

    NASA Astrophysics Data System (ADS)

    Han, Taehee

    A new technology to perform a minimally invasive cornea reshaping procedure has been developed. This can eliminate the incidence of the flap-related complications of the conventional eye refractive procedures by multiphoton processes using a very high-intensity (I ≥ 1013 W/cm 2), but low energy (Ep ˜ 100-200 microJ) femtosecond laser pulses. Due to much lower energy than that of the nanosecond laser pulses for the thermal photoablation, the multiphoton processes cause almost no collateral damage by heat and shock wave generation. In this method, a series of femtosecond laser pulses is used to create very narrow (< 30 microm) and sufficiently long (≥ 2.5 mm) micro-channels in the cornea. The micro-channels are oriented almost perpendicular to the eye's optical axis. Once the micro-channel reaches a desired length, another series of femtosecond pulses with higher intensity is efficiently delivered through the micro-channel to the endpoint where a certain amount of the stromal tissue is disintegrated by the multiphoton processes. The disintegrated fragments are ejected out of the cornea via the same micro-channel, allowing the corneal surface to collapse, and changing its refractive power. This new corneal reshaping method obviates any process of damaging the corneal surface layer, while retaining the advantages of the conventional refractive procedures such as Laser in situ keratomileusis (LASIK) and Photorefractive keratectomy (PRK). In order to demonstrate the flapless cornea reshaping procedure, we have conducted ex-vivo experiments on fresh porcine eyes. The reshaped corneas were evaluated by using optical coherence tomography (OCT). The test results have shown that this flapless intrastromal procedure can reshape the cornea as intended with almost no surface damage. We have also performed a series of experiments to demonstrate the multiphoton processes in the corneal tissue by very high-intensity femtosecond laser pulses. Through the optical emission

  12. Nano-machining of biosensor electrodes through gold nanoparticles deposition produced by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.

    2015-06-01

    We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.

  13. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting

    NASA Astrophysics Data System (ADS)

    Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.

    2016-05-01

    Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.

  14. Multiparameter Flowfield Measurements in High-Pressure, Cryogenic Environments Using Femtosecond Lasers

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.

    2016-01-01

    Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.

  15. Femtosecond-assisted laser in situ keratomileusis for consecutive hyperopia after radial keratotomy.

    PubMed

    Leccisotti, Antonio; Fields, Stefania V

    2015-08-01

    To evaluate femtosecond-assisted laser in situ keratomileusis (LASIK) for the treatment of hyperopic shift after radial keratotomy (RK). Private practice, Siena, Italy. Prospective case series. Eyes with a spherical equivalent (SE) of +1.0 diopters (D) to +4.0 D after RK with 6 or 8 incisions had LASIK. The flap (nominal thickness 130 μm) was created with a femtosecond laser (LDV Z2); the refractive ablation was performed with an excimer laser (217P). The flap was dissected in a centrifugal fashion along previous RK cuts. Eighteen eyes of 10 patients were treated. Preoperatively, the mean defocus equivalent was 3.13 diopters (D) ± 0.71 (SD); the corrected distance visual acuity (CDVA) was 0.09 ± 0.06 logMAR. At 9 months, the mean defocus equivalent was 0.51 ± 0.47 D (P < .05), with 13 eyes (72%) having 0.50 D or less of defocus equivalent and 16 eyes (89%) having 1.0 D or less of defocus equivalent. The mean CDVA was 0.04 ± 0.06 logMAR (P < .05). No lines of logMAR CDVA were lost. The mean uncorrected distance visual acuity was 0.11 ± 0.10 logMAR. The safety index was 1.11; the efficacy index was 0.97. No retreatments were performed. Flap complications were limited to an RK incision opening larger than 2 mm in 3 eyes and 1 case of a small, self-limiting epithelial ingrowth. Laser in situ keratomileusis with a low-energy femtosecond laser was a safe and effective approach to treat post-RK hyperopia, causing no relevant inflammation. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. THE ADVANTAGES OF FEMTOSECOND LASER-ASSISTED CATARACT SURGERY

    PubMed Central

    Gavris, M Monica; Belicioiu, Roxana; Olteanu, Ioana; Horge, Ioan

    2015-01-01

    Purpose: To present the advantages of performing femtosecond laser-assisted (Alcon-LenSx Inc.) cataract surgery. Methods: Cataract surgery was performed with the LenSx femtosecond laser (Alcon-LenSx Inc.) in 50 eyes of 50 patients. The laser was programmed to perform a 4,9-4,5 mm capsulorhexis, a 2,3 mm main corneal incision, two 1,3 mm side-port incisions and either a hybrid-pattern or a cylinder-pattern fragmentation of the nucleus. The evaluated parameters were the capsulotomy, the corneal wounds and the nucleus fragmentation. Phacoemulsification of the nucleus and aspiration of the cortex were performed with the Alcon Centurion Vision System and monofocal, toric and multifocal IOLs were successfully implanted. Results: A continuous, central, curvilinear capsulorhexis was performed in 48 cases, 96% (free-floating capsulotomy). In 2 cases, micro-adhesions were reported and detached with the Utrata forceps. Femtolaser capsulotomy resulted in a complete overlap of the anterior capsule over the IOL optics in all cases. Horizontal decentration was found in 2 cases, 4% and vertical decentration in 1 case, 2%. The main corneal incision was self-sealing in 49 cases, 98%. Sutures were used in 1 case, 2%. The hybrid pattern of nucleus fragmentation was used in 42 cases, 84% and the cylindrical pattern in 8 cases, 16%. The fragmentation was incomplete in one case of white cataract and in one case of traumatic cataract. Conclusions: The main advantages of femtolaser cataract surgery are standardized corneal incisions, perfectly centered, round capsulorhexis, and lens nucleus fragmentation even in eyes with hard cataracts. The laser precision is due to the real time OCT software programs, which cover the whole anterior segment, up to the posterior lens capsule. PMID:27373114

  17. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia

    PubMed Central

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method. PMID:29049418

  18. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    PubMed

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  19. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Shaoyang; Li, Xun; Li, Shiyang; Hu, Minglie; Cao, Youjia; Wang, Ching-Yue

    2012-04-01

    Calcium is a second messenger in all cells for various cellular processes. It was found in astrocytes and neurons that femtosecond laser stimulation could induce Ca2+ wave propagation. In this work, a femtosecond laser with a power above a certain threshold was focused on single HeLa/HEK293T cells for Ca2+ mobilization. Several types of Ca2+ oscillation patterns were found in neighboring cells. The Ca2+ wave propagated very fast across 40-μm gaps in the Ca2+-free medium mediated by the adenosine-triphosphate released from cells. This approach could provide a clean methodology to investigate the Ca2+ dynamics in non-excitable cells.

  20. Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Qu, Shiliang; Gao, Yachen; Jiang, Xiongwei; Zeng, Huidan; Song, Yinglin; Qiu, Jianrong; Zhu, Congshan; Hirao, K.

    2003-09-01

    Nonlinear absorptions of Au nanoparticles precipitated silicate glasses by irradiation of a focused femtosecond pulsed laser were investigated using Z-scan technique with 8 ns pulses at 532 nm. Optical limiting (OL) effects in such glasses have been also measured. It is observed that the behaviors of transition from saturable absorption to reverse saturable absorption and the OL performances for different samples are significantly different, which depend drastically on the irradiation power density of the femtosecond laser used for the Au nanoparticles precipitation in the glass. Strong nonlinear absorptions in these samples are mainly attributed to the surface plasmon resonance (SPR) and free carrier absorptions of the precipitated Au nanoparticles.

  1. Structure determination of molecules in an alignment laser field by femtosecond photoelectron diffraction using an X-ray free-electron laser

    PubMed Central

    Minemoto, Shinichirou; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Nakajima, Kyo; Niki, Kaori; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yoshida, Shintaro; Yagishita, Akira

    2016-01-01

    We have successfully determined the internuclear distance of I2 molecules in an alignment laser field by applying our molecular structure determination methodology to an I 2p X-ray photoelectron diffraction profile observed with femtosecond X-ray free electron laser pulses. Using this methodology, we have found that the internuclear distance of the sample I2 molecules in an alignment Nd:YAG laser field of 6 × 1011 W/cm2 is elongated by from 0.18 to 0.30 Å “in average” relatively to the equilibrium internuclear distance of 2.666 Å. Thus, the present experiment constitutes a critical step towards the goal of femtosecond imaging of chemical reactions and opens a new direction for the study of ultrafast chemical reaction in the gas phase. PMID:27934891

  2. Fracture toughness of ultrashort pulse-bonded fused silica

    NASA Astrophysics Data System (ADS)

    Richter, S.; Naumann, F.; Zimmermann, F.; Tünnermann, A.; Nolte, S.

    2016-02-01

    We determined the bond interface strength of ultrashort pulse laser-welded fused silica for different processing parameters. To this end, we used a high repetition rate ultrashort pulse laser system to inscribe parallel welding lines with a specific V-shaped design into optically contacted fused silica samples. Afterward, we applied a micro-chevron test to measure the fracture toughness and surface energy of the laser-inscribed welding seams. We analyzed the influence of different processing parameters such as laser repetition rate and line separation on the fracture toughness and fracture surface energy. Welding the entire surface a fracture toughness of 0.71 {MPa} {m}^{1/2}, about 90 % of the pristine bulk material ({≈ } 0.8 {MPa} {m}^{1/2}), is obtained.

  3. Modulations of anisotropic optical transmission on alumina-doped zinc oxide surface by femtosecond laser induced ripples

    NASA Astrophysics Data System (ADS)

    Lu, Yanhui; Jiang, Lan; Sun, Jingya; Cao, Qiang; Wang, Qingsong; Han, Weina; Lu, Yongfeng

    2018-04-01

    This study demonstrated that femtosecond-laser-induced ripples on an alumina-doped zinc oxide (AZO) film with space intervals of approximately 340 and 660 nm exhibit modulations of anisotropic optical transmission. At low laser fluence, ripples can not affect the original absorption peak of AZO film, but at higher laser fluence, the absorption peak of AZO film is disappeared due to the modulation by femtosecond laser induced ripples. Moreover, the relationship between the anisotropic optical transmission and the features of nanostructures is discussed. Ripples with a space interval of approximately 660 nm have a higher ability to block light than nanostructures with a space interval of approximately 340 nm. These observations indicate that anisotropic optical transmission has potential applications in the field of optoelectronics.

  4. Fabrication of low loss waveguide using fundamental light of Yb-based femtosecond laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Imai, Ryo; Konishi, Kuniaki; Yumoto, Junji; Gonokami, Makoto K.

    2017-03-01

    Laser direct writing of optical devices and circuits is attracted attention because of its ability of three-dimensional fabrication without any mask[1]. Recently, Yb-fiber or solid-state laser has been commonly used for fabrication in addition to traditional Ti:S laser. However, it is reported that waveguide cannot be fabricated in fused silica by using the fundamental light from Yb-based femtosecond laser[2]. Some groups reported on waveguide fabrication by using second-harmonic beam of such lasers[3], but wavelength conversion using nonlinear process has drawbacks such as destabilization of laser power and beam deformation by walk off. In this study, we investigated fabrication of low-loss waveguide in fused silica by using the fundamental beam (1030nm) from an Yb solid-state femtosecond laser with a pulse duration of 250 fs. The NA of focusing objective lens was 0.42. The fabricated waveguide was made to have a circular cross-section by shaping laser beam with a slit[4]. We fixed repetition rate to 150 kHz, and identified appropriate scan speed and pulse energy for fabrication of low loss waveguide. Waveguide fabricated with appropriate condition had a propagation loss of 0.2 dB/cm, and this is the first report on optical waveguides in a fused silica fabricated by femto-second laser pulses at a wavelength of 1030nm. [1]K. M. Davis, et. al., Opt. Lett 21, 1729(1996) [2]J. Canning, et. al., Opt. Mater. Express 1, 998(2011) [3]L. Shah, et. al., Opt. Express 13, 1999(2005) [4]M. Ams, et. al., Opt. Express 13, 5676(2005)

  5. Micro-structured femtosecond laser assisted FBG hydrogen sensor.

    PubMed

    Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong

    2015-11-30

    We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.

  6. Applications of laser-induced periodic surface structures (LIPSS)

    NASA Astrophysics Data System (ADS)

    Bonse, Jörn; Kirner, Sabrina V.; Höhm, Sandra; Epperlein, Nadja; Spaltmann, Dirk; Rosenfeld, Arkadi; Krüger, Jörg

    2017-02-01

    Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces.

  7. Multi-dimensional simulation package for ultrashort pulse laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Suslova, Anastassiya; Hassanein, Ahmed

    2017-10-01

    Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.

  8. Estimation of ultrashort laser irradiation effect over thin transparent biopolymer films morphology

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, C.; Bliznakova, I.; Slavov, D.; Husinsky, W.

    2015-01-01

    The collagen - elastin biopolymer thin films treated by CPA Ti:Sapphire laser (Femtopower - Compact Pro) at 800nm central wavelength with 30fs and 1kHz repetition rate are investigated. A process of surface modifications and microporous scaffold creation after ultrashort laser irradiation has been observed. The single-shot (N=1) and multi-shot (N<1) ablation threshold values were estimated by studying the linear relationship between the square of the crater diameter D2 and the logarithm of the laser fluence F for determination of the threshold fluences for N=1, 2, 5, 10, 15 and 30 number of laser pulses. The incubation analysis by calculation of the incubation coefficient ξ for multi - shot fluence threshold for selected materials by power - law relationship form Fth(N)=Fth(1)Nξ-1 was also obtained. In this paper, we have also shown another consideration of the multi - shot ablation threshold calculation by logarithmic dependence of the ablation rate d on the laser fluence. The morphological surface changes of the modified regions were characterized by scanning electron microscopy to estimate the generated variations after the laser treatment.

  9. Penetrating and Intrastromal Corneal Arcuate Incisions in Rabbit and Human Cadaver Eyes: Manual Diamond Blade and Femtosecond Laser-Created Incisions.

    PubMed

    Gray, Brad; Binder, Perry S; Huang, Ling C; Hill, Jim; Salvador-Silva, Mercedes; Gwon, Arlene

    2016-07-01

    To compare morphologic differences between freehand diamond or femtosecond laser-assisted penetrating and intrastromal arcuate incisions. Freehand diamond blade, corneal arcuate incisions (180° apart, 60° arc lengths) and 150 kHz femtosecond laser (80% scheimpflug pachymetry depth corneal thickness) arcuate incisions were performed in rabbits. Intrastromal arcuate incisions (100 μm above Descemet's membrane, 100 μm below epithelium) were performed in rabbit corneas (energy 1.2 μJ, spot line separation 3 × 3 μm, 90° side cut angle). Eyes were examined by slit lamp and light microscopy up to 47 days post-procedure. Freehand diamond blade penetrating incisions, and femtosecond laser penetrating and intrastromal arcuate incisions (energy 1.8 μJ, spot line separation 2 × 2 μm) were performed in cadaver eyes. Optical coherence tomography was performed immediately after surgery and the corneas were fixed for light scanning and transmission electron microscopy. The rabbit model showed anterior stromal inflammation with epithelial hyperplasia in penetrating blade and laser penetrating wounds. The laser intrastromal and penetrating incisions showed localized constriction of the stromal layers of the cornea near the wound. In cadaver eyes, penetrating wound morphology was similar between blade and laser whereas intrastromal wounds did not affect the cornea above or below incisions. Penetrating femtosecond laser arcuate incisions have more predictable and controlled outcomes shown by less post-operative scarring than incisions performed with a diamond blade. Intrastromal incisions do not affect uncut corneal layers as demonstrated by histopathology. The femtosecond laser has significant advantages in its ability to make intrastromal incisions which are not achievable by traditional freehand or mechanical diamond blades.

  10. Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold

    DTIC Science & Technology

    2016-05-23

    study of the fundamentals of femtosecond laser damage as a function of various parameters, laser wavelength, pulsewidth, pulse number, experimental ... experimental observation without any free parameters. The brand new FSD Lab constructed under the BRI grant in the Physics Research Building at the Ohio... studied across a range of band-gaps for s- and p-polarized light and it is found that conventional theoretical prediction on laser damage threshold

  11. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  12. Super-luminescent jet light generated by femtosecond laser pulses

    PubMed Central

    Xu, Zhijun; Zhu, Xiaonong; Yu, Yang; Zhang, Nan; Zhao, Jiefeng

    2014-01-01

    Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing. PMID:24463611

  13. Intense Femtosecond Laser-Mediated Electrical Discharge Enables Preparation of Amorphous Nickel Phosphide Nanoparticles.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Li, He-Long; Wang, Lei; Zhang, Yong-Lai; Sun, Hong-Bo

    2018-05-09

    Reported here is a high-efficiency preparation method of amorphous nickel phosphide (Ni-P) nanoparticles by intense femtosecond laser irradiation of nickel sulfate and sodium hypophosphite aqueous solution. The underlying mechanism of the laser-assisted preparation was discussed in terms of the breaking of chemical bond in reactants via highly intense electric field discharge generated by the intense femtosecond laser. The morphology and size of the nanoparticles can be tuned by varying the reaction parameters such as ion concentration, ion molar ratio, laser power, and irradiation time. X-ray diffraction and transmission electron microscopy results demonstrated that the nanoparticles were amorphous. Finally, the thermogravimetric-differential thermal analysis experiment verified that the as-synthesized noncrystalline Ni-P nanoparticles had an excellent catalytic capability toward thermal decomposition of ammonium perchlorate. This strategy of laser-mediated electrical discharge under such an extremely intense field may create new opportunities for the decomposition of molecules or chemical bonds that could further facilitate the recombination of new atoms or chemical groups, thus bringing about new possibilities for chemical reaction initiation and nanomaterial synthesis that may not be realized under normal conditions.

  14. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring

    PubMed Central

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time. PMID:28255346

  15. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.

    PubMed

    Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong

    2013-07-01

    We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.

  16. Effects of Short-term Preoperative Topical Ketorolac on Pupil Diameter in Eyes Undergoing Femtosecond Laser-Assisted Capsulotomy.

    PubMed

    Diakonis, Vasilios F; Kontadakis, Georgios A; Anagnostopoulos, Apostolos G; Yesilirmak, Nilufer; Waren, Daniel P; Cabot, Florence; Yoo, Sonia H; Donaldson, Kendall E

    2017-04-01

    To assess pupil diameter before and after femtosecond laser-assisted capsulotomy in patients who were pretreated with a short-term topical nonsteroidal anti-inflammatory drug (NSAID) (ketorolac) versus those without pretreatment. This prospective, randomized, observational case series included consecutive patients scheduled to undergo cataract extraction using the Catalys femtosecond laser platform (Abbott Medical Optics, Inc., Santa Ana, CA) to perform only capsulotomies. The same protocol for preoperative medical mydriasis was used for all patients, whereas pupil diameter was assessed using a surgical ruler immediately before and 3 minutes after femtosecond laser-assisted capsulotomy. The patients were divided into two groups: one received short-term topical ketorolac preoperatively and the other did not receive NSAID pretreatment (control). A total of 42 eyes of 42 patients (1 eye per patient) were included in the study. Mean pupillary miosis was 0.79 ± 1.08 and 1.57 ± 1.19 mm for the ketorolac and control groups, respectively. There was a statistically significant decrease in pupil diameter for both groups individually (P < .05). There was also a statistically significant difference between the two groups (P < .05) with the induced miosis in the eyes that did not receive topical NSAIDs prior to cataract extraction being twofold greater when compared with the miosis of the eyes that received ketorolac pretreatment. Short-term topical use of ketorolac prior to femtosecond laser-assisted cataract surgery seems to induce significantly less pupillary miosis in comparison to eyes that did not receive NSAID pretreatment. NSAID use is advised prior to femtosecond laser-assisted cataract surgery to minimize pupil miosis-related surgical difficulties or complications during cataract extraction. [J Refract Surg. 2017;33(4):230-234.]. Copyright 2017, SLACK Incorporated.

  17. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents.

    PubMed

    Gökhan Demir, Ali; Previtali, Barbara

    2014-06-01

    Magnesium alloys constitute an interesting solution for cardiovascular stents due to their biocompatibility and biodegradability in human body. Laser microcutting is the industrially accepted method for stent manufacturing. However, the laser-material interaction should be well investigated to control the quality characteristics of the microcutting process that concern the surface roughness, chemical composition, and microstructure of the final device. Despite the recent developments in industrial laser systems, a universal laser source that can be manipulated flexibly in terms of process parameters is far from reality. Therefore, comparative studies are required to demonstrate processing capabilities. In particular, the laser pulse duration is a key factor determining the processing regime. This work approaches the laser microcutting of AZ31 Mg alloy from the perspective of a comparative study to evaluate the machining capabilities in continuous wave (CW), ns- and fs-pulsed regimes. Three industrial grade machining systems were compared to reach a benchmark in machining quality, productivity, and ease of postprocessing. The results confirmed that moving toward the ultrashort pulse domain the machining quality increases, but the need for postprocessing remains. The real advantage of ultrashort pulsed machining was the ease in postprocessing and maintaining geometrical integrity of the stent mesh after chemical etching. Resultantly, the overall production cycle time was shortest for fs-pulsed laser system, despite the fact that CW laser system provided highest cutting speed.

  18. Femtosecond laser processing of optical fibres for novel sensor development

    NASA Astrophysics Data System (ADS)

    Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee

    2017-04-01

    We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.

  19. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon.

    PubMed

    Vorobyev, A Y; Guo, Chunlei

    2011-09-12

    Following direct femtosecond laser pulse irradiation, we produce a unique grating structure over a large area superimposed by finer nanostructures on a silicon wafer. We study, for the first time, the antireflection effect of this femtosecond laser-induced periodic surface structures (FLIPSSs) in the wavelength range of 250 - 2500 nm. Our study shows that the FLIPSSs suppress both the total hemispherical and specular polarized reflectance of silicon surface significantly over the entire studied wavelength range. The total polarized reflectance of the processed surface is reduced by a factor of about 3.5 in the visible and 7 in the UV compared to an untreated sample. The antireflection effect of the FLIPSS surface is broadband and the suppression stays to the longest wavelength (2500 nm) studied here although the antireflection effect in the infrared is weaker than in the visible. Our FLIPSS structures are free of chemical contamination, highly durable, and easily controllable in size.

  20. Investigation of ultrashort-pulsed laser on dental hard tissue

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2007-02-01

    Ultrashort-pulsed laser (USPL) can ablate various materials with precious less thermal effect. In laser dentistry, to solve the problem that were the generation of crack and carbonized layer by irradiating with conventional laser such as Er:YAG and CO II laser, USPL has been studied to ablate dental hard tissues by several researchers. We investigated the effectiveness of ablation on dental hard tissues by USPL. In this study, Ti:sapphire laser as USPL was used. The laser parameter had the pulse duration of 130 fsec, 800nm wavelength, 1KHz of repetition rate and the average power density of 90~360W/cm2. Bovine root dentin plates and crown enamel plates were irradiated with USPL at 1mm/sec using moving stage. The irradiated samples were analyzed by SEM, EDX, FTIR and roughness meter. In all irradiated samples, the cavity margin and wall were sharp and steep, extremely. In irradiated dentin samples, the surface showed the opened dentin tubules and no smear layer. The Ca/P ratio by EDX measurement and the optical spectrum by FTIR measurement had no change on comparison irradiated samples and non-irradiated samples. These results confirmed that USPL could ablate dental hard tissue, precisely and non-thermally. In addition, the ablation depths of samples were 10μm, 20μm, and 60μm at 90 W/cm2, 180 W/cm2, and 360 W/cm2, approximately. Therefore, ablation depth by USPL depends on the average power density. USPL has the possibility that can control the precision and non-thermal ablation with depth direction by adjusting the irradiated average power density.

  1. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  2. Tesla coil discharges guided by femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  3. Applications of ultrashort laser pulses in science and technology; Proceedings of the Meeting, The Hague, Netherlands, Mar. 12, 13, 1990

    NASA Technical Reports Server (NTRS)

    Antonetti, Andre (Editor)

    1990-01-01

    Topics discussed are on the generation of high-intensity femtosecond lasers, the high-repetition and infrared femtosecond pulses, and physics of semiconductors and applications. Papers are presented on the femtosecond pulse generation at 193 nm; the generation of intense subpicosecond and femtosecond pulses; intense tunable subpicosecond and femtosecond pulses in the visible and infrared, generated by optical parametric oscillators; a high-efficiency high-energy optical amplifier for femtosecond pulses; and the generation of solitons, periodic pulsing, and nonlinearities in GaAs. Other papers are on ultrafast relaxation dynamics of photoexcited carriers in GaAs, high-order optical nonlinear susceptibilities of transparent glasses, subnanosecond risetime high-power pulse generation using photoconductive bulk GaAs devices, femtosecond studies of plasma formation in crystalline and amorphous silicon, and subpicosecond dynamics of hot carrier relaxation in InP and GaAs.

  4. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  5. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  6. Fabrication of computer-generated holograms using femtosecond laser direct writing.

    PubMed

    Berlich, René; Richter, Daniel; Richardson, Martin; Nolte, Stefan

    2016-04-15

    We demonstrate a single-step fabrication method for computer-generated holograms based on femtosecond laser direct writing. Therefore, a tightly arranged longitudinal waveguide array is directly inscribed into a transparent material. By tailoring the individual waveguide length, the phase profile of an incident laser beam can be arbitrarily adapted. The approach is verified in common borosilicate glass by inscribing a designed phase hologram, which forms the desired intensity pattern in its far field. The resulting performance is analyzed, and the potential as well as limitations of the method are discussed.

  7. D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser.

    PubMed

    Liao, Changrui; Wang, Qiao; Xu, Lei; Liu, Shen; He, Jun; Zhao, Jing; Li, Zhengyong; Wang, Yiping

    2016-03-01

    The fabrication of fiber Bragg gratings was here demonstrated using ultrashort pulse laser point-by-point inscription. This is a very convenient means of creating fiber Bragg gratings with different grating periods and works by changing the translation speed of the fiber. The laser energy was first optimized in order to improve the spectral properties of the fiber gratings. Then, fiber Bragg gratings were formed into D-shaped fibers for use as refractive index sensors. A nonlinear relationship was observed between the Bragg wavelength and liquid refractive index, and a sensitivity of ∼30  nm/RIU was observed at 1.450. This shows that D-shaped fiber Bragg gratings might be used to develop promising biochemical sensors.

  8. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  9. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  10. Measurement of the temperature increase in the porcine cadaver iris during direct illumination by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald M.; Juhasz, Tibor

    2010-02-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary measurements indicated that during typical surgical use, 50-60% of laser energy may pass beyond the cornea with potential effects on the iris. To further evaluate iris laser exposure during femtosecond corneal surgery, we measured the temperature increase in porcine cadaver iris in situ during direct illumination by the iFS Advanced Femtoosecond Laser (AMO Inc. Santa Ana, CA) with an infrared thermal imaging camera. To replicate the illumination geometry of the eye during the surgery, an excised porcine cadaver iris was placed 1.5 mm from the flat glass contact lens. The temperature field was observed in twenty cadaver iris at laser pulse energy levels ranging from 1 to 2 μJ (corresponding approximately to surgical energies of 2 to 4 μJ per pulse). Temperature increases up to 2.3 °C (corresponding to 2 μJ per pulse and 24 second procedure time) were observed in the cadaver iris with little variation in temperature profiles between specimens for the same laser energy illumination. For laser pulse energy and procedure time characteristic to the iFS Advanced Femtoosecond Laser the temperature increase was measured to be 1.2 °C. Our studies suggest that the magnitude of iris heating that occurs during such femtosecond laser corneal surgery is small and does not present a safety hazard to the iris.

  11. Thin films deposited by femtosecond pulsed laser ablation of tungsten carbide

    NASA Astrophysics Data System (ADS)

    De Bonis, A.; Teghil, R.; Santagata, A.; Galasso, A.; Rau, J. V.

    2012-09-01

    Ultra-short Pulsed Laser Deposition has been applied to the production of thin films from a tungsten carbide target. The gaseous phase obtained by the laser ablation shows a very weak primary plume, in contrast with a very strong secondary one. The deposited films, investigated by Scanning Electron Microscopy, Atomic Force Microscopy, X-Ray Photoelectron Spectroscopy and X-Ray Diffraction, present a mixture of WC and other phases with lower carbon content. All films are amorphous, independently from the substrate temperature. The characteristics of the deposits have been explained in terms of thermal evaporation and cooling rate of molten particles ejected from the target.

  12. Ultrashort pulse energy distribution for propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  13. Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: comparison of corneal wound healing and inflammation

    PubMed Central

    Dong, Zixian; Zhou, Xingtao; Wu, Jihong; Zhang, Zhehuan; Li, Tao; Zhou, Zimei; Zhang, Shenghai; Li, Gang

    2014-01-01

    Aim To evaluate and compare early corneal wound healing and inflammatory responses after small incision lenticule extraction (SMILE) versus femtosecond laser laser in situ keratomileusis (LASIK). Methods Thirty-six eyes of 36 rabbits underwent SMILE, while another 36 eyes of 36 rabbits were treated with femtosecond laser LASIK. All the eyes were subjected to the same refractive correction of −6.00 DS/−1.00 DC. Twelve eyes that had no surgery were included for control. After euthanisation, corneal tissue sections were evaluated with terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling (TUNEL) assay to detect apoptosis at postoperative 4 and 24 h, immunocytochemistry for Ki67 to detect keratocyte proliferation at postoperative day 3, week 1 and month 1, and immunocytochemistry for CD11b to detect inflammation at postoperative day 1, day 3 and week 1, respectively. Results No adverse effects were noted after SMILE or LASIK. Corneal healing postoperatively was uneventful in all cases. There were significantly fewer TUNEL-positive corneal stromal cells after the SMILE procedure at 4 and 24 h postoperatively (p<0.01) compared with the LASIK procedure. In addition, immunocytochemistry showed significantly fewer Ki67-positive cells in the SMILE group than those in the femtosecond laser LASIK group at day 3 and week 1 postoperatively (p<0.05), but there was little expression of Ki67 at month 1 postoperatively in both groups. The CD11b-positive cells were significantly fewer in the SMILE group at day 1, day 3 and week 1 postoperatively (p<0.01). Conclusions SMILE induces less keratocyte apoptosis, proliferation and inflammation compared with femtosecond laser LASIK. PMID:24227802

  14. Ultrashort laser pulse processing of wave guides for medical applications

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Rosenfeld, Arkadi; Spaniol, Stefan B.; Terenji, Albert

    2003-06-01

    The availability of ultra short (ps and sub-ps) pulsed lasers has stimulated a growing interest in exploiting the enhanced flexibility of femtosecond and/or picosecond laser technology for micro-machining. The high peak powers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has been demonstrated. In this study, the potential of ultra short laser processing was used to modify the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the sub-surface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  15. Laser alchemy: direct writing of multifunctional components in a glass chip with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Lin, Jintian; Cheng, Ya

    2013-12-01

    Recently, hybrid integration of multifunctional micro-components for creating complex, intelligent micro/nano systems has attracted significant attention. These micro-/nano-systems have important applications in a variety of areas, such as healthcare, environment, communication, national security, and so on. However, fabrication of micro/nano systems incorporated with different functions is still a challenging task, which generally requires fabrication of discrete microcomponents beforehand followed by assembly and packaging procedures. Furthermore, current micro-/nano-fabrication techniques are mainly based on the well-established planar lithographic approach, which suffer from severe issues in producing three dimensional (3D) structures with complex geometries and arbitrary configurations. In recent years, the rapid development of femtosecond laser machining technology has enabled 3D direct fabrication and integration of multifunctional components, such as microfluidics, microoptics, micromechanics, microelectronics, etc., into single substrates. In this invited talk, we present our recent progress in this active area. Particularly, we focus on fabrication of 3D micro- and nanofluidic devices and 3D high-Q microcavities in glass substrates by femtosecond laser direct writing.

  16. Nano- and femtosecond UV laser pulses to immobilize biomolecules onto surfaces with preferential orientation

    NASA Astrophysics Data System (ADS)

    Lettieri, S.; Avitabile, A.; Della Ventura, B.; Funari, R.; Ambrosio, A.; Maddalena, P.; Valadan, M.; Velotta, R.; Altucci, C.

    2014-10-01

    By relying on the photonic immobilization technique of antibodies onto surfaces, we realized portable biosensors for light molecules based on the use of quartz crystal microbalances, given the linear dependence of the method on the laser pulse intensity. Here, we compare the quality of the anchoring method when using nanosecond (260 nm, 25 mJ/pulse, 5 ns, 10 Hz rep. rate) and femtosecond (258 nm, 25 μJ/pulse, 150 fs, 10 kHz rep. rate) laser source, delivering the same energy to the sample with the same average power. As a reference, we also tethered untreated antibodies by means of the passive adsorption. The results are striking: When the antibodies are irradiated with the femtosecond pulses, the deposition on the gold plate is much more ordered than in the other two cases. The effects of UV pulses irradiation onto the antibodies are also analyzed by measuring absorption and fluorescence and suggest the occurrence of remarkable degradation when nanosecond pulses are used likely induced by a larger thermal coupling. In view of the high average power required to activate the antibodies for the achievement of the photonic immobilization technique, we conclude that femtosecond rather than nanosecond laser pulses have to be used.

  17. The modification of generalized uncertainty principle applied in the detection technique of femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Ziyi

    2017-12-01

    Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.

  18. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  19. Dynamics of the Coulomb explosion of large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Krainov, V. P.; Roshchupkin, A. S.

    2001-12-01

    Dynamics of the inner and outer above-barrier ionization and of the Coulomb explosion are calculated for large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses. We have found that the Coulomb forces predominate in the expansion of these clusters in comparison with the hydrodynamic forces. The energy distribution of the iodine multiple atomic ions in laser focal volume is derived. Results of our calculations are in a good agreement with the recent experimental data of Tisch et al. [Phys. Rev. A 60, 3076 (1999)].

  20. Femtosecond Lasers with Diode Pumping for Using in Precision Metrology and Optical Fiber Communication

    DTIC Science & Technology

    2008-11-24

    folding angle of 32° to compensate astigmatism of the Brewster -cut Cr:F crystal. The gain crystal was 17 mm long and introduced positive group-delay...accomplished. For complete stabilization of the femtosecond comb one needs to control its absolute frequency. To realize this we use either angle - tilted...Kerr- lens mode-locking. To the best of our knowledge there is no published works on KLM ytterbium femtosecond lasers with multimode pumping. Stable